Search from over 60,000 research works

Advanced Search

A new RBF neural network with boundary value constraints

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Hong, X. orcid id iconORCID: https://orcid.org/0000-0002-6832-2298 and Chen, S. (2009) A new RBF neural network with boundary value constraints. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 39 (1). pp. 298-303. ISSN 1083-4419 doi: 10.1109/tsmcb.2008.2005124

Abstract/Summary

We present a novel topology of the radial basis function (RBF) neural network, referred to as the boundary value constraints (BVC)-RBF, which is able to automatically satisfy a set of BVC. Unlike most existing neural networks whereby the model is identified via learning from observational data only, the proposed BVC-RBF offers a generic framework by taking into account both the deterministic prior knowledge and the stochastic data in an intelligent manner. Like a conventional RBF, the proposed BVC-RBF has a linear-in-the-parameter structure, such that it is advantageous that many of the existing algorithms for linear-in-the-parameters models are directly applicable. The BVC satisfaction properties of the proposed BVC-RBF are discussed. Finally, numerical examples based on the combined D-optimality-based orthogonal least squares algorithm are utilized to illustrate the performance of the proposed BVC-RBF for completeness.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/15272
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Computer Science
Uncontrolled Keywords Boundary value constraints (BVC), D-optimality, forward regression, radial basis function (RBF), system identification, ORTHOGONAL LEAST-SQUARES, OPTIMALITY EXPERIMENTAL-DESIGN, SYSTEM-IDENTIFICATION, MODEL CONSTRUCTION, REGRESSION, ALGORITHM
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar