Sparse kernel modelling: a unified approach

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Chen, S., Hong, X. orcid id iconORCID: https://orcid.org/0000-0002-6832-2298 and Harris, C.J. (2007) Sparse kernel modelling: a unified approach. In: 8th International Conference on Intelligent Data Engineering and Automated Learning, Birmingham, UK.

Abstract/Summary

A unified approach is proposed for sparse kernel data modelling that includes regression and classification as well as probability density function estimation. The orthogonal-least-squares forward selection method based on the leave-one-out test criteria is presented within this unified data-modelling framework to construct sparse kernel models that generalise well. Examples from regression, classification and density estimation applications are used to illustrate the effectiveness of this generic sparse kernel data modelling approach.

Item Type Conference or Workshop Item (Paper)
URI https://reading-clone.eprints-hosting.org/id/eprint/14627
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Computer Science
Uncontrolled Keywords ORTHOGONAL LEAST-SQUARES, LOCAL REGULARIZATION, REGRESSION, ALGORITHM
Publisher Springer-Verlag
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar