Search from over 60,000 research works

Advanced Search

Finding the smallest eigenvalue by the inverse Monte Carlo method with refinement

Full text not archived in this repository.
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Alexandrov, V. and Karaivanova, A. (2005) Finding the smallest eigenvalue by the inverse Monte Carlo method with refinement. In: Sunderam, V. S., VanAlbada, G. D., Sloot, P. M. A. and Dongarra, J. J. (eds.) Computational Science - Iccs 2005, Pt 3. Lecture Notes in Computer Science, 3516. Springer-Verlag Berlin, Berlin, pp. 766-774. ISBN 0302-9743 3-540-26044-7

Abstract/Summary

Finding the smallest eigenvalue of a given square matrix A of order n is computationally very intensive problem. The most popular method for this problem is the Inverse Power Method which uses LU-decomposition and forward and backward solving of the factored system at every iteration step. An alternative to this method is the Resolvent Monte Carlo method which uses representation of the resolvent matrix [I -qA](-m) as a series and then performs Monte Carlo iterations (random walks) on the elements of the matrix. This leads to great savings in computations, but the method has many restrictions and a very slow convergence. In this paper we propose a method that includes fast Monte Carlo procedure for finding the inverse matrix, refinement procedure to improve approximation of the inverse if necessary, and Monte Carlo power iterations to compute the smallest eigenvalue. We provide not only theoretical estimations about accuracy and convergence but also results from numerical tests performed on a number of test matrices.

Item Type Book or Report Section
URI https://reading-clone.eprints-hosting.org/id/eprint/14332
Item Type Book or Report Section
Divisions Science
Uncontrolled Keywords Monte Carlo methods, eigenvalues, Markov chains, parallel computing, parallel efficiency, ALGORITHMS
Publisher Springer-Verlag Berlin
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar