Effect of colonic bacterial metabolites on Caco-2 cell paracellular permeability in vitro

Full text not archived in this repository.

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Hughes, R., Kurth, M.J., McGilligan, V., McGlynn, J. and Rowland, I.R. (2008) Effect of colonic bacterial metabolites on Caco-2 cell paracellular permeability in vitro. Nutrition and Cancer, 60 (2). pp. 259-266. ISSN 0163-5581 doi: 10.1080/01635580701649644

Abstract/Summary

One common effect of tumor promoters is increased tight junction (TJ) permeability. TJs are responsible for paracellular permeability and integrity of the barrier function. Occludin is one of the main proteins responsible for TJ structure. This study tested the effects of physiological levels of phenol, ammonia, primary bile acids (cholic acid, CA, and chenodeoxycholic acid, CDCA), and secondary bile acids (lithocholic acid, LCA, and deoxycholic acid, DCA) on paracellular permeability using a Caco-2 cell model. Paracellular permeability of Caco-2 monolayers was assessed by transepithelial electrical resistance (TER) and the apical to basolateral flux of [C-14]-mannitol. Secondary, but not primary, bile acids increased permeability as reflected by significantly decreased TER and increased mannitol flux. Both phenol and ammonia also increased permeability. The primary bile acid CA significantly increased occludin expression (P < 0.05), whereas CDCA had no significant effect on occludin expression as compared to the negative control. The secondary bile acids DCA and LCA significantly increased occludin expression (P < 0.05), whereas phenol had no significant effect on the protein expression as compared to the negative control. This suggests that the increased permeability observed with LCA, DCA, phenol, and ammonia was not related to an effect on occludin expression. In conclusion, phenol, ammonia, and secondary bile acids were shown to increase paracellular permeability and reduce epithelial barrier function at doses typical of levels found in fecal samples. The results contribute to the evidence these gut microflora-generated products have tumor-promoting activity.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/13301
Identification Number/DOI 10.1080/01635580701649644
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences
Interdisciplinary centres and themes > Institute for Cardiovascular and Metabolic Research (ICMR)
Uncontrolled Keywords N-NITROSO COMPOUNDS, KINASE-C-ALPHA, BILE-ACIDS, TIGHT JUNCTIONS, RESISTANT STARCH, FECAL MICROFLORA, PHORBOL ESTER, PROTEIN, CANCER, AMMONIA
Download/View statistics View download statistics for this item

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar