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ABSTRACT
Rationale: Recent advances in high- throughput molecular analyses of collagen peptides, especially ZooMS (Zooarchaeology by 
Mass Spectrometry), have permitted breakthroughs in the analysis of archaeological material that is highly fragmented, a factor 
that hinders morphological identification. Despite these advances, the challenge of successfully analysing archaeological sam-
ples with poorer collagen preservation persists. This paper examines the potential of two mass analysers, TOF (Time of Flight) 
and FTICR (Fourier- transform ion cyclotron resonance), and addresses how they can be used to optimise the ZooMS workflow.
Methods: Type 1 collagen (COL1) was extracted from 89 archaeological bones from the French Palaeolithic site of Le Piage 
(37–34 ka cal BP). Three ZooMS extraction protocols were applied, an acid- free buffer method (AmBic), offering rapid and less 
destructive analysis, and two methods of acid demineralisation (HCl and TFA) that provide higher peptide resolution. After 
analysing the specimens with MALDI- TOF and MALDI- FTICR, we used bottom- up and PRM (Parallel Reaction Monitoring) 
LC–MS/MS, and MALDI- CASI- FTICR (Continuous Accumulation of Selected Ions) to verify 26 ambiguous identifications.
Results: Overall, 99% of the samples could be identified to at least family level, with the rate of identification and precision 
varying by method. Despite challenges in detecting specific biomarkers with MALDI- FTICR—especially peptide A (COL1ɑ2 
978–990), which tends to be unstable and poorly ionised—the high resolution of this method allowed the successful identifica-
tion of more degraded specimens, including burnt bones.
Conclusions: Our work highlights the robustness of traditional MALDI- TOF ZooMS for retrieving collagen and for providing 
taxonomic identifications with low failure rates, features that are critical when processing large numbers of samples. MALDI- 
FTICR shows better potential when working with precious samples or degraded collagen. This study advances the analytical 
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detection of peptides by optimising the ZooMS workflow and by tailoring it to specific archaeological contexts showing variation 
in degree of preservation.

1   |   Introduction

Morphologically unidentifiable faunal remains are commonly 
found in archaeological sites. Their high degree of fragmenta-
tion in Palaeolithic contexts poses challenges for the interpre-
tation of site formation processes and human activity. Recently, 
the use of biomolecular analyses, such as palaeoproteomics [1], 
has proven effective in overcoming these challenges [2]. Proteins 
are abundant in ancient skeletal tissues and can preserve for 
millions of years [3]. This potential for preservation has sparked 
a surge of research and the establishment of the field of palaeo-
proteomics [4–9]. Type I collagen (COL1) is the most abundant 
protein in skeletal material and is highly stable [1, 9]. For this 
reason, a range of palaeoproteomic methods, notably ZooMS 
(Zooarchaeology by Mass Spectrometry), have been developed 
to identify archaeological faunal remains using variations in 
collagen peptide composition [10–12]. ZooMS is a collagen- 
based, high- throughput method, which relies on Matrix- assisted 
laser desorption ionisation (MALDI)- Time of Flight (TOF) mass 
spectrometry and peptide mass fingerprinting (PMF).

Since the emergence of ZooMS, various lab protocols have been 
developed in response to a range of methodological issues, 

including the evaluation of the impact of sampling techniques, 
extraction and digestion methods on peptide detection [13–22]. 
Few studies have compared mass spectrometry techniques 
despite their importance in elaborating novel applications 
[10, 23, 24]. In the ZooMS approach, the MALDI soft ionisation 
source is preferred because it performs better at capturing high 
molecular masses contained in collagen [22–24]. and its low costs 
allow for the rapid analysis of very large sets of samples (hun-
dreds to thousands of specimens). Here, we compare two analy-
sers coupled with a MALDI source, the MALDI- TOF (TOFMS) 
and the high- resolution MALDI- FTICR (Fourier- transform 
Ion Cyclotron Resonance, FTICRMS), and examine how they 
perform when using three different extraction procedures 
(Figure 1). Rather than providing a comprehensive comparison 
of all the various protocols currently in use, the aim of our study 
is to assess how the MALDI- FTICR mass spectrometer can en-
hance traditional ZooMS methodologies, and whether it can be 
used to develop a high- resolution workflow tailored specifically 
at degraded archaeological samples. We also used LC–MS/MS 
(using Data Dependant Analysis [DDA] and Parallel Reaction 
Monitoring [PRM]) and MALDI- CASI- FTICR (Continuous 
Accumulation of Selected Ions) mass spectrometry to verify tax-
onomic identifications that were ambiguous (Figure 1).

FIGURE 1    |    Simplified workflow for the collagen extraction procedures and mass spectrometry techniques (MALDI- TOF and MALDI- FTICR) 
applied to a sample of indeterminate bone fragments from Le Piage, France. This figure illustrates the three collagen extraction protocols (AmBic, 
TFA and HCl) and the two mass spectrometry approaches (MALDI- TOF and MALDI- FTICR) used in the analysis. The lower left and right panels 
show Peptide Mass Fingerprinting (PMF) of peptide P1 (ɑ1 508, m/z 1105) for a single sample (PI- 134- ICR) analysed with both mass spectrometers. 
The isotopic distributions are markedly different in these panels due to the separation by MALDI- FTICR of the two components of the first isotope. 
The spectrum shows a 13C and deamidated peptide peaks separated by 0.019 m/z. [Colour figure can be viewed at wileyonlinelibrary.com]
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We applied these methodological approaches to a sample of 
Early Aurignacian (37–34 ka cal. BP) bone fragments recovered 
during recent excavations at the site of Le Piage (Lot, France) 
[25–28]. Previous collagen- based analyses at the site, including 
radiocarbon dating and ZooMS analyses [29, 30], revealed rela-
tively poor collagen preservation, a pattern possibly explained by 
taphonomic processes (e.g., differing levels of sub- aerial weath-
ering related to changes in moisture or temperature). Therefore, 
this material provides an ideal, well- contextualised case study 
to address challenges posed by collagen preservation, a common 
issue in Palaeolithic contexts [31–33].

2   |   Material and Methods

2.1   |   Site Background

Le Piage (Lot, France) is an open- air site located in southern France 
with a well- preserved archaeological sequence [26]. Despite ini-
tial reports arguing for the presence of inter- stratifications of dis-
tinct techno- complexes [25, 28], recent excavations demonstrate 
a clear succession of Proto- Aurignacian (42–39 ka BP), Early 
Aurignacian (37–34 ka cal. BP) and Solutrean- Badegoulian (22.0–
24.5 ka cal. BP) occupations [26]. During the Early Aurignacian, 
the site appears to have been used primarily for short- term vis-
its by small groups with hunting activities mostly focused on 
reindeer exploitation, the dominant species in the faunal assem-
blage [29]. Despite its position within a limestone karstic system, 
open- air exposure as well as cyclic water inclusions from the La 
Relinquière stream appear to have negatively affected the preser-
vation of collagen [30]. This was illustrated both through failed 
radiocarbon dates, and variable identification rates and gluta-
mine deamidation values in a previous ZooMS study [31].

2.2   |   Sample Selection

This study analyses 89 morphologically unidentifiable bone frag-
ments stored at the University of Bordeaux, which were first anal-
ysed as part of a larger ZooMS study aimed at investigating species 
composition [31]. All fragments from this larger study are 1–2 cm 
in maximum length and were selected at random from the mate-
rial recovered through water screening from a single 25 × 25- cm 
sub- square of layer GI (Early Aurignacian). For the methodological 
study presented here, a subsample was selected to include different 
taxa and different degrees of collagen preservation (based on the 
previous ZooMS identifications) [31]. This also includes five frag-
ments showing black surface colouration likely induced by half or 
full carbonisation, which we assigned to Stiner's stage 2–4 [34]. 
Because of this burnt appearance and the fact that heat negatively 
affects collagen preservation, these fragments were only analysed 
with the acid- based protocols (HCl and TFA) using MALDI- MS 
and LC–MS/MS to optimise collagen extraction.

2.3   |   Chemicals, Preparation of Compounds 
and Buffer Solutions

The ammonium bicarbonate (AmBic) buffer was purchased 
from Sigma- Aldrich (Saint- Louis, MO, USA) for a 50- mM 

buffer with a pH of 8.8. Trifluoroacetic acid (TFA, Carl Roth, 
Karlsruhe, Germany) and hydrochloric acid (HCl, Sigma- 
Aldrich) were used for demineralisation solutions (% (v/v) 
TFA and 0.6 M HCl). The bovine trypsin was purchased 
from Promega (Madison, WI, USA), while the HypersSep 
C18 96 well plates and AttractSPE®Disks 96 wells C18 are 
from Thermo Fischer Scientific (Waltham, MA, USA) and 
Affinisep (Le Houlme, France), respectively. The matrix a- 
cyano- 4- hydroxycinnamic acid (HCCA) was obtained from 
VWR (Radnor, PA, USA). All water samples were of Ultra 
High Quality (UHQ) and were obtained from Milli- Q® IQ 
7003/7005 Water Purification Systems (Merck Millipore, 
Burlington, Massachusetts, United States) or derived by 
water filtration with a two- stage Millipore system (Milli- Q® 
Academic with Q- Gard 1 and Progard 2 cartridges, Merck 
Millipore, Burlington, Massachusetts, United States) at the 
University of Lille.

2.4   |   Experimental Setting

All sampling, collagen extraction and peptide purification were 
conducted in the Palaeoproteomics laboratory of the Chaire 
de Paléoanthropologie, Collège de France, Paris, France. 
The TFA protocol was performed in the Miniaturization for 
Synthesis, Analysis and Proteomics unit (MSAP), University 
of Lille, France. All specimens were sampled twice to test 
three different protocols (Table SI 1). Bone chips of approxi-
mately 5–10 mg were obtained using pliers and put in 96- well 
plates  [35]. The same bone chips were analysed successively 
applying the AmBic [22] and HCl demineralisation [11] pro-
tocols. The original bone was subsequently scraped with a 
scalpel to sample ~5 mg of bone powder transferred into a 
MSIPS4510 plate (Merck Millipore, Burlington, MA, USA) im-
mersed in TFA solution for demineralisation [10]. The last well 
of each plate was left empty as a control for contamination.

2.4.1   |   AmBic Protocol

The AmBic protocol is based on Van Doorn et al. (Table S1) [22]. In 
each sample, 100 μL 50 mM AmBic (pH: 8.8) was added, left over-
night and discarded. Then, the samples were incubated in 100 μL 
of AmBic at 65°C for 1 h. The plate was centrifuged and 50 μL of 
supernatant was collected to add 1 μL of trypsin (Promega) at 37°C 
for 16 to 18 h. The bone sample was subsequently stored in the re-
maining 50 μL of AmBic at −20°C. To halt digestion, 1 μL of 10% 
trifluoroacetic acid (TFA) was added. The samples were cleaned 
in HyperSep C18 96- well plates using a HyperSep™ Universal 
Vacuum Manifold. The filtered peptides were finally eluted in 
100 μL of conditioning solution (0.1% TFA in 50:50 ACN/water v/v).

2.4.2   |   HCL Protocol

The remaining bone chips, collected in 50 μL of AmBic, were 
demineralised in 120 μL of 0.6 M HCl acid overnight and rinsed 
three times with 100 μL 50 mM AmBic (pH: 8.8) following the 
protocol described in Buckley et al. [11] The subsequent steps 
replicate those for the AmBic extraction protocol (Table S1).
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2.4.3   |   TFA Protocol

The protocol of demineralisation with TFA is described in Bray 
et al. [10]. Briefly, 0.45- μm MultiScreenHTS- IP 96 wells plates 
(MSIPS4510, Millipore, Billerica, MA, USA) was hydrated with 
70% ethanol. All solutions were eluted through the wells using a 
vacuum manifold (Merck KGaA, Darmstadt, Germany) pumped 
by a DS 102 rotary vane pump (Agilent, Santa Clara, CA, USA). 
Then, <5 mg of bones were deposited and demineralised with 
100 μL of TFA 5% at 4°C and left overnight. The demineralisa-
tion solution was recovered in 96- well plates. The bones were 
subsequently washed with 100 μL of AmBic 50 mM (pH: 8.8) and 
gelatinised at 65°C during 1 h. After this, 8 μL of NaOH 6 M were 
added followed by 100 μL of AmBic 100 mM (pH: 8.8) added to 
the demineralisation solution. The bones and the demineralised 
solution were digested with trypsin at 37°C left overnight. The 
peptides from bones and the demineralised solution were puri-
fied on C18 96- well plates (Affinisep). The concentration was 
then estimated by measuring the OD at 215 nm using 1 μL of 
the solution with the aid of a droplet UV spectrometer (DS- 11+, 
Denovix, Wilmington, DE, USA). In this paper, the results of 
this protocol are only presented for the bone powder as the anal-
ysis of the demineralisation solution did not provide additional 
peaks useful for PMF.

2.5   |   Mass Spectrometry Instruments

A MALDI- TOF 5200 AB Sciex (Framingham, MA, USA) in the 
High School of Physics and Industrial Chemistry (ESPCI) in 
Paris, France, and a Bruker 9.4 Tesla SolariX XR FTICR mass 
spectrometer controlled by ftmsControl software (equipped 
with a CombiSource and a ParaCell, Bruker Daltonics, Bremen, 
Germany) in the MSAP, University of Lille, France, were used 
for the analyses. For the additional LC–MS/MS analyses, we 
used an Orbitrap Q Exactive plus Mass Spectrometer hyphen-
ated to a U3000 RSLC Nanofluidic HPLC System (ThermoFisher 
Scientific, Bremen, Germany) based at the MSAP laboratory at 
the University of Lille, France.

2.5.1   |   TOFMS

MALDI ionisation allows the detection of intact peptides, and 
for this reason, has widely been used in ZooMS studies. This 
apparatus is usually coupled with a TOF analyser [11, 20, 34–37] 
in order to cover the spectrum of high mass molecules con-
tained in digested collagen [23, 38, 39]. We deposited 0.5 μL 
of peptide solution on 384- well AB Sciex MALDI plates in 
triplicates, except for the TFA extraction deposited only once 
for comparison with the MALDI- FTICR. Next, we mixed the 
solution with 0.5 μL of HCCA matrix (10 mg/mL; 0.1% TFA 
in 50:50 ACN/water v/v) and let the spotted solutions dry in a 
fume hood. The calibrant (Proteomix Peptide calibration mix4, 
LaserBioLabs, Sophia Antipolis, France) was mixed with the 
same matrix (1 mg/2 mL) and spotted on the 13 dedicated spots 
disseminated on the MALDI plate. The external plate model 
calibration was performed on four peptides bradykinin frag-
ment 1–5, 573.315 Da: human angiotensin II (1046.542 Da), neu-
rotensin (1672.917 Da), ACTH fragment 18–39 (2464.199) and 
oxidised insulin B chain (3494.651 Da) for each of the 13 spots. 

The calibration was performed manually and checked auto-
matically within a precision of 50 ppm. For MALDI MS sample 
measurements, laser intensity was set at 50% after optimisa-
tion of signal- to- noise ratio on several spots, then operated at 
up to 3.000 shots accumulated per spot, and covering a mass- 
to- charge range of 800 to 3500 Da. The analysis was run in an 
automatic mode after a manual control of 10 samples. The trip-
licate spectra obtained from the MALDI- TOF were merged [18], 
smoothed and converted in RStudio using the MALDIquant 
and MALDIquantForeign packages [40]. The software mMass 
(V.5.5.0) was used to analyse the spectra (http:// www. mmass. 
org/ ) [41] with a signal- to- noise (S/N) ratio set at 3.0 to enhance 
peak detection [42].

2.5.2   |   FTICRMS

The FTICR analyser is a high- resolution ion cyclotron reso-
nance analyser [43]. It is commonly used for the analysis of 
complex samples, such as petroleum, in instances where high 
resolution is required to differentiate compounds that number 
in the thousands [43]. More recently, it has been integrated in 
cultural heritage studies [44, 45], although its application to 
archaeological specimens remains limited [10]. FTICR analy-
sis is based on ion cyclotron frequency, which is converted in 
a mass spectrum [43]. The FTICR analyser measures peptide 
masses with greater accuracy and at a higher resolution than 
a TOF analyser. For these reasons, it typically provides more 
precise and more secure ZooMS identifications [10]. To perform 
FTICR analyses, we deposited 1 μL of peptide solution on 384 
Ground steel MALDI plates (Bruker Daltonics) on which 1 μL 
of HCCA matrix (10 mg/mL in ACN/H2O 80:20 v/v 0.1% TFA) 
was added. The spots were then left to dry at room temperature. 
To reduce costs, triplicates were not run as this is not standard 
for MALDI- FTICR. The MALDI- FTICR analyser was equipped 
with a Bruker Smartbeam- II™ laser system that operated at a 
frequency of 1000 Hz. The predefined shot pattern for irradi-
ation was set at ‘medium.’ Each mass spectrum was obtained 
from the automatic merging of 10 scans of 300 laser shots using 
2 M data points and a mass range of m/z 700 to 4500 (FID (Free 
Induction Decay) = 5.128 s). The laser power was set to 32%. The 
MALDI- FTICR was calibrated with a saturated solution of red 
phosphorus in ACN. The software Data Analysis Bruker 5.0 was 
used to read the MALDI- FTICR spectra with S/N set at 3.0, and 
quality at 0.6.

2.5.3   |   Bottom- Up LC–MS/MS

The LC–MS/MS methods were performed as described in 
Bray et  al. [46] on a subsample of 26 specimens for which the 
MALDI- MS analysis resulted in ambiguous identifications. To 
perform this analysis, we used the HCl collagen extracts stored 
in the freezer after the MALDI- MS analyses to avoid the inva-
siveness of a third round of sampling. Samples were diluted at a 
concentration of 1 μg/μL before LC–MS/MS analysis. LC–MS/MS 
analyses were performed on an Orbitrap Q Exactive plus mass 
spectrometer hyphenated to a U3000 RSLC Microfluidic HPLC 
System (ThermoFisher Scientific, Waltham, Massachusetts, USA). 
One microlitre of the peptide mixture at a concentration of 1 μg/
μL was injected with solvent A (5% acetonitrile and 0.1% formic 
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acid v/v) for 3 min at a flow rate of 10 μL·min−1 on an Acclaim 
PepMap100 C18 pre- column (5 μm, 300 μm i.d. × 5 mm) from 
ThermoFisher Scientific. The peptides were then separated on a 
C18 Acclaim PepMap100 C18 reversed phase column (3 μm, 75 μm 
i.d. × 500 mm) using a linear gradient (5%–40%) of solution B (75% 
acetonitrile and 0.1% formic acid) at a rate of 250 nL·min−1. The 
column was washed with 100% of solution B during 5 min and then 
re- equilibrated with buffer A. The column and the pre- column 
were placed in an oven at a temperature of 45°C. The entire anal-
ysis was completed in approximately 140 min. The LC runs were 
performed in positive ion mode with MS scans from m/z 350 to 
1500 in the Orbitrap mass analyser (resolution: 70000, m/z 200). 
The automatic gain control was set at 1e106. MS/MS scans were 
sequentially acquired in a high- energy collision dissociation cell 
for the 15 best detected ions in the full MS survey scan. Automatic 
gain control was set at 5e105, and the normalised collision energy 
was set to 28 eV. Dynamic exclusion was set at 90s. Ions with more 
than eight charges were excluded.

Bioinformatics analysis of the raw LC–MS/MS forms was per-
formed with Proteome Discoverer™ 2.4 (ThermoFisher Scientific) 
using the Sequest HT search engine. The sequences were first in-
terrogated against the Swissprot database, which contains 571,282 
entries (release 2024_02). Then, the sequences were compared 
with the COL1A1 and COL1A2 markers for Bos taurus reported in 
the Uniprot database (accession number P02453, P02465 respec-
tively), while for R. tarandus, we used the sequences from Genome 
assembly RanTarSib_v1_BIUU (https:// www. ncbi. nlm. nih. 
gov/ datas ets/ genome/ GCA_ 00402 6565.1/ ) (Data  S1, sequences 
Rangifer_Bos) because the published Swissprot sequence is in-
complete [12]. The precursor's mass tolerance was set at 10 ppm, 
and fragment ion mass tolerance, to 0.02 Da. Semi- trypsin mode 
was set to an enzyme. Variable modifications were set for hydroxy-
proline (P, +15.995 Da), oxidation of methionine (M, +15.995 Da), 
deamidation of glutamine and asparagine (N, Q, +0.98 Da).

2.5.4   |   Targeted Peptides: LC–MS/MS PRM and MALDI 
CASI FTICR MS

The 26 samples submitted to DDA LC–MS/MS were also anal-
ysed using PRM (Parallel Reaction Monitoring) LC–MS/MS and 
MALDI- CASI- FTICR to target specific biomarkers. The PRM 
LC–MS/MS analyses [47] were performed with the same concen-
tration of peptides, injection volume and mass spectrometer as for 
bottom- up LC–MS/MS. However, the total duration of the analysis 
was limited to 70 min. We used a PRM workflow with one MS1 
full scan (m/z 350–1500) and scheduled MS/MS fragmentation of 
six ZooMS markers (Data S2, data for PRM and CASI). The MS 
spectra were acquired with AGC at 1e106, ion time injection was 
90 ms set at 70000 resolution. To obtain MS/MS spectra, AGC 
was set at 5e105, ion time injection was 200 ms set at 17500 res-
olution. Isolation windows were completed at m/z 2 and the en-
ergy for HCD fragmentation was performed at 30 eV. LC–MS/MS 
data were processed by Quant Browser (Thermo) and Skyline [48]. 
Peak intensities were used for peptide identification. The four best 
resolved fragment ions were used for sequence identification. The 
full peptide sequences used for the PRM and MS/MS spectra of the 
six ZooMS markers that we selected for PRM are provided in the 
supplementary dataset (Data S2, data for PRM and CASI).

Each mass spectrum from MALDI- CASI- FTICR [48, 49] analy-
sis was obtained from 20 scans of 500 laser shots using 1 M data 
points and a mass range of m/z 700 to 3500 (FID = 2.564 s). Six 
ions were selected: m/z 1105.6, 1150.6, 1166.6, 1192.7, 1208.7 and 
1427.7, with isolation windows at m/z 10. The full peptide se-
quences used for CASI are given in the supplementary dataset 
(Data S2, data for PRM and CASI).

2.6   |   PMF for Le Piage Taxa

The taxonomic identifications were made manually by PMF, 
based on a published database [12] which records the masses 
of nine peptide markers for mammalian species. In the anal-
ysis, we followed the recent nomenclature to name these 
peptide markers (GVQGPPGPAGPR, COL1ɑ1 508–519 [P1]; 
GLTGPIGPPGPAGA PGDKGE (A/T ) GP SGPAGP TGA R , 
COL1ɑ1 586–618 [F]; GSTGEIGPAGPPGPPGLR, COL1ɑ2 
292–309 [P2]; GEQGPAGPPGFQGLPGPAGTAGEAGKPGER, 
COL1ɑ2 454–483 [E]; GIPGEFGLPGPAGAR, COL1ɑ2 484–
498 [B]; GPPGESGAAGPTGPIGSR, COL1ɑ2 502–519 [C]; 
GPSGEPGTAGPPGTPGPQG(L/F)LG(A/P)PGFLGLPGSR, 
COL1ɑ2 757–789 [G]; GLPGVAGSVGEPGPLGIAGPPGAR, 
COL1ɑ2 793–816 [D]; (I/A)GQPGAVGPAGIR, COL1ɑ2 978–990 
[A]) [50]. The peptides have masses between m/z 800 to 3500, 
which corresponds to approximately 8 to 30 amino acids per 
peptide [35]. Because AmBic tends to produce peaks of lower 
intensity with MALDI- TOF—a problem that impedes spectral 
analysis—they were not analysed on MALDI- FTICR. As our 
aim was to explore potential future ZooMS applications rather 
than extensively test all possible protocols with these mass spec-
trometers, we prioritised testing HCl with MALDI- FTICR to 
enhance ZooMS identifications on archaeological material that 
derive from challenging contexts.

In a PMF- based analysis, all biomarkers are potentially crucial, 
as their specific associations provide the basis for taxonomic 
identification. In this study, we recorded the presence of nine 
markers for each specimen and protocol (Data S3, recording of 
the peptide markers). Some peptides, such as peptide A (COL1ɑ2 
978–990), were essential for distinguishing Bos/Bison from rein-
deer, the most common taxon at the site (Figure 2) [12, 29, 31]. 
Peptide A (COL1ɑ2 978–990) is identified by a pair of markers 
(m/z 1150.6 and 1166.6 for reindeer; m/z 1192.7 and 1208.7 for 
Bos/Bison) [12] that are the products of hydroxylation of a pro-
line, which causes a 15.99 mass shift of the marker. However, 
peptide A (COL1ɑ2 978–990) can be difficult to identify, as one 
or both peaks may be poorly ionised. High- mass peptide mark-
ers (Bos/Bison: peptide F [COL1ɑ1 586–618], m/z 2853–2869; 
peptide G [COL1ɑ2 757–789], m/z 3017–3033; Reindeer: peptide 
F [COL1ɑ1 586–618], m/z 2883–2899; peptide G [COL1ɑ2 757–
789], m/z 3077–3093) are also critical for the identification of 
Bos/Bison and reindeer, but their presence is also constrained by 
collagen preservation. When these peptide markers were poorly 
ionised, the specimens were assigned to Bovidae/reindeer (in the 
presence of peptide C [COL1ɑ2 502–519]) or Bovidae/Cervidae 
(in the absence of peptide C [COL1ɑ2 502–519]) [28], (Table S2). 
Equidae are also present at Le Piage; these can be distinguished 
from other taxa by using peptide marker D (COL1ɑ2 793–816, 
m/z 2145.1) [12, 31].
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3   |   Results

3.1   |   Differential Identification Rates

The three protocols (AmBic, HCl and TFA) coupled with two 
MALDI mass spectrometry techniques (TOFMS and FTICRMS) 
produced ZooMS identification rates ranging from 71.4 to 91.7% 
(Table  1). Combining all approaches, 99% of the bones were 
identified to at least family level (see full list of identifications in 
Data S4). The rate of identification varied by type of protocol and 

mass spectrometer used, with certain approaches outperform-
ing others in their ability to separate Bovidae from reindeer or 
Cervidae. Specimens assigned to Bovidae/reindeer and Bovidae/
Cervidae were included in the sample of identified specimens, as 
they can yield insights on the taxonomic nature of the specimens 
and can be used to exclude other attributions. Interestingly, both 
the lowest (71.4%, HCl protocol) and highest (91.7%, TFA pro-
tocol) rates of identifications were observed with the MALDI- 
FTICR analyser (Table 1), which suggests that the efficacy of a 
mass spectrometer also depends on the extraction protocol.

FIGURE 2    |    Examples of peptide A (COL1ɑ2 978–990) m/z for two specimens analysed with HCl- MALDI- TOF MS. At the top, in blue, specimen 
PI- 134 with peptide A shows 1150.6 and 1166.6 m/z peaks that are characteristic of reindeer. At the bottom, in orange, specimen PI- 133 with peptide 
A shows 1192.7 and 1208.7 m/z peaks that are specific to Bos/Bison. [Colour figure can be viewed at wileyonlinelibrary.com]
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3.1.1   |   Identifications on the MALDI- TOF Analyser

To replicate the standard procedure used in ZooMS, we com-
pared the MALDI- TOF taxonomic identifications obtained with 
three different protocols (AmBic, HCl and TFA). We began 
with the less destructive AmBic protocol, an approach in gen-
eral complemented by the HCl protocol when additional or 
improved identifications are needed. We also considered the 
TFA protocol—commonly used with MALDI- FTICR [10]—to 
evaluate its compatibility with MALDI- TOF. Our results show 
similar rates of identifications (>75%) for the three methods, 
although the taxonomic distributions are significantly differ-
ent according to a chi- square test of independence (Table  1; 
AmBic+TOF vs. TFA + TOF, χ2 = 18.4, p < 0.01; AmBic+TOF vs. 
HCL + TOF, χ2 = 10.7, p < 0.05). The adjusted standardised re-
siduals indicate that reindeer is significantly more common in 
the AmBic data (AmBic + TOF vs. TFA + TOF = +2.68, p < 0.01; 
AmBic + TOF vs. HCL + TOF = +1.32, p = 0.0937), whereas 
‘Bovidae/reindeer’ are more abundant in the TFA and HCL data 
(AmBic + TOF vs. TFA + TOF = +3.94, p < 0.001; AmBic + TOF 
vs. HCL + TOF = +2.84, p < 0.01).

3.1.2   |   Identifications on the MALDI- FTICR Analyser

When applying TFA and HCl demineralisation protocols with 
MALDI- FTICR, the rate of identification for the HCl- MALDI- 
FTICR protocol (71.4%, Table 1) is lower than that obtained with 
TFA- MALDI- FTICR (91.7%, Table  1); however, the difference 
is not statistically significant (HCl + FTICR vs. TFA + FTICR, 
χ2 = 6.6, p > 0.05). The higher rate of identification obtained 
with TFA- MALDI- FTICR is slightly deceptive given the high 
representation (36.9%) of ‘Bovidae/reindeer’—a poorly resolved 

taxon—in the sample. This caveat aside, we note that TFA- 
MALDI- FTICR produced fewer spectra lacking any collagen 
markers (Table 1), including a single case of a blank spectrum, 
relative to the HCl protocol (Data S3, recording of the peptide 
markers).

3.2   |   Peptide Markers Presence and Intensity

In open- air contexts like Le Piage, the identification of peptide 
markers tends to be challenging [36]. When assessing the pres-
ence/absence of the nine main ZooMS markers across our sam-
ples (Figure 3 and Data S5, peptide markers), we can make three 
main observations (Figure 3):

 i. When collagen was recovered, the HCl- MALDI- TOF 
yielded the most robust and precise identifications and was 
best at detecting all nine diagnostic peptide markers.

 ii. Failures (spectra with two or fewer diagnostic peaks) were 
less common with the TFA- MALDI- FTICR approach, 
which indicates improved collagen extraction. However, 
the proportion of imprecise identifications (e.g., Bovidae/
reindeer) was relatively high with this approach.

 iii. With an average of seven peptide biomarkers per spectrum, 
the less invasive AmBic- MALDI- TOF approach generated 
precise identifications. However, the number of detected 
peptide markers is highly variable (ranging from 0 to 9) as 
this method is probably most affected by collagen preser-
vation issues.

With both mass spectrometers, the use of the HCl protocol 
increased homogeneity in peak detection at both low (< m/z 

FIGURE 3    |    Boxplots illustrating the total number of diagnostic peptide markers (maximum 9) detected per protocol (n = 84 specimens, burnt 
bones excluded). Each specimen is identified by a dot. The boxplots indicate the median and quartiles, while the violins show the distribution of the 
specimens around the median. Taxonomic identification becomes more reliable as the number of detected peaks increases. Failed spectra are ones 
with two or fewer diagnostic peptide markers. [Colour figure can be viewed at wileyonlinelibrary.com]
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2500, TOFMS: 74%; FTICRMS: 84%) and high (> m/z 2500, 
TOFMS: 55%; FTICRMS: 30%) masses (Figures 4 and S5). The 
AmBic protocol coupled with MALDI- TOF was efficient at de-
tecting low (72%, Data S5), but not high (28%, Data S5) mass 
peptides. This problem was amplified with the TFA- MALDI- 
TOF method, as it yielded an even lower rate of detection of 
high mass peptides (5%, Data S5), possibly because the colla-
gen solutions were deposited only once—not in triplicates—to 
make the protocol comparable to that of the MALDI- FTICR 
data obtained using TFA solutions. The TFA- MALDI- FTICR 
protocol was most efficient at detecting peptides with masses 
between m/z 1400 and m/z 2300 (Figure 4). Regardless of the 
method, we note that when the spectra are most challenging, 
possibly due to poorer collagen preservation, the peptides 
with the highest masses are typically those that were miss-
ing from the spectra [19], a trend best exemplified by the 
MALDI- FTICR data. Our results also seem to confirm that 
MALDI- TOF outperforms the other methods when the pep-
tidic solutions are spotted in triplicates. Overall, peptide A 
(COL1ɑ2 978–990)—a crucial marker for differentiating Bos/
Bison from reindeer—was best detected in our study using 
MALDI- TOF with the AmBic protocol (Figure 4).

Given the pivotal role played by peptide A (COL1ɑ2 978–990) 
in our analysis, we tried to accurately quantify its presence. 
MALDI- FTICR spectra are ideal for that, as they yield the exact 
mass of the peptide (m/z 1166.6742 or m/z 1208.6746). To pro-
vide an objective measure, we developed an intensity ratio to 
quantify the minimum intensity required for the detection of 
peptide A (COL1ɑ2 978–990) relative to peptide P1 (COL1ɑ1 
508–519), a marker of collagen presence in mammals (Data S6, 
relative intensity of ratio peptide A/P1). However, the measure 

was inconclusive, likely because preservation and peak expres-
sion were too variable between samples.

3.3   |   Control and Precision of the MALDI 
MS Results Using DDA and PRM LC–MS/MS 
and MALDI- CASI- FTICR

Complementary MS analyses were conducted on a subset of 
degraded samples (n = 26, including five burnt fragments) 
that could only be assigned to ‘Bovidae/reindeer’ using TFA- 
MALDI- FTICR. These specimens were reanalysed here with 
the goals of (i) confirming the presence of endogenous collagen, 
(ii) improving the analytical distinction between reindeer and 
Bos/Bison and (iii) assessing the confidence limits for the detec-
tion of MALDI- FTICR peaks.

3.3.1   |   DDA LC–MS/MS

Of the 26 samples analysed using LC–MS/MS, 13 resulted in 
positive identifications (see list of identifications in Data S4). 
Of these, 12 were assigned to reindeer, and one, to Bos sp. 
Except for samples PI- 175- ICR and PI- 186- ICR, both at-
tributed to Bovidae/reindeer, the other specimens had all 
previously been identified as deriving from reindeer or Bos/
Bison with one or more protocols. Failures with LC–MS/MS 
mostly involved highly degraded specimens. The specimen 
identified as Bos sp. with LC–MS/MS had consistently been 
assigned to Bos/Bison regardless of the MALDI- TOF protocol 
(AmBic, TFA, and HCl), which supports the new attribution. 
In contrast, specimens identified as Bovidae/reindeer using 

FIGURE 4    |    The nine peptide markers used for identifying mammalian species in this study and their occurrence (%) in the study assemblage 
as a function of extraction protocol (AmBic, HCl or TFA) and MALDI mass spectrometer (TOFMS or FTICRMS). [Colour figure can be viewed at 
wileyonlinelibrary.com]
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the TFA- MALDI- FTICR method—given the dual presence of 
m/z 1166.6276 and m/z 1208.6746 peaks—were all assigned 
to reindeer. This result confirms the difficulty of identifying 
peptide A (COL1ɑ2 978–990) in degraded samples.

3.3.2   |   PRM LC–MS/MS and MALDI- CASI- FTICR MS

To better target the presence of peptide A (COL1ɑ2 978–990) 
and refine the taxonomic identifications of those degraded 
samples, PRM LC–MS/MS and MALDI- CASI- FTICR were 
performed (Figures  S1–S8: MS/MS spectra for targeted ions 
with PRM LC–MS/MS). The identifications obtained with 
these approaches are internally consistent (Table S3). Relative 
to the preceding methods, MALDI- CASI- FTICR and PRM LC–
MS/MS allowed the identification of one and two additional 
specimens (Data  S4, list of all identifications), respectively. 
These taxonomic attributions were based on the presence of 
peptides P1 (COL1ɑ1 508–519) and A (COL1ɑ2 978–990). As 
these more sensitive methods target peptides, they provide 
an independent approach to the MALDI- FTICR and DDA 
LC–MS/MS methods. Our study, which represents the first 
application of MALDI- CASI- FTICR- MS to Palaeolithic re-
mains, suggests that the approach has considerable potential 
for improving taxonomic identification in contexts of variable 
or poor collagen preservation.

3.3.3   |   Burnt Bones

Collagen in bone tends to break down when heated, leading to 
significant loss of organic matter, particularly when bones are 
heavily carbonised or calcined [51–53]. For this reason, burnt 
bones are typically excluded from ZooMS analyses. However, 
there is uncertainty regarding the threshold temperature that 
prevents ZooMS analysis [54], and recent studies have shown 
successful retrieval of collagen peptides from incompletely burnt 
bones as determined by visual assessment [8, 55]. The five sam-
ples comprised in this study were visually characterised as burnt 
according to Stiner et al. [34] one fragment was assigned to Stage 
2 (less than half carbonised: PG_003), three to Stage 3 (fully 
carbonised: PG_001, PG_004, PG_005), and one to Stage 4 (less 
than half calcined: PG_002). Although the MALDI- TOF anal-
yses failed for all these specimens, we wanted to test whether 
high- resolution FTICRMS could provide a more productive al-
ternative. The TFA- FTICR protocol yielded encouraging results, 
although taxonomic resolution remained low (S4 List of all identi-
fications). The signal obtained with MALDI- FTICR is consistent 
with Bovidae/reindeer or Bovidae/Cervidae in three instances 
(PG- ICR- 001, PG- ICR- 002, PG- ICR- 003), whereas two remains 
(PG- ICR- 004, PG- ICR- 005) indicate the presence of Bos/Bison 
biomarkers (peptide F [COL1ɑ1 586–618]). The use of PRM LC–
MS/MS and MALDI- CASI- FTICR analyses failed at detecting 
peptide A (COL1ɑ2978–990), which prevented us from confirm-
ing these identifications (Data S4, list of all identifications).

4   |   Discussion

This study compared traditional MALDI- TOF ZooMS analyses 
with high- resolution MALDI- FTICR mass spectrometry using 

Palaeolithic bone fragments with variable collagen preservation. 
The objective was to determine how MALDI- TOF and MALDI- 
FTICR can be integrated into a targeted ZooMS workflow aimed 
at optimising collagen extraction and spectral quality.

4.1   |   Spectral Quality

We assessed spectral quality using two main criteria: [16, 56, 57] 
the resolution of the spectral data and the presence of diagnostic 
peptide markers.

4.1.1   |   Spectral Resolution

The quality of a spectrum for PMF reflects the ease with which 
a peptide peak can be distinguished from background noise, 
contaminants and undesirable elements, such as polymers, 
trypsin, and matrix elements. The high number of peaks can 
obscure the detection of diagnostic peptide markers, especially 
when they are poorly ionised. As an example, in our study, peaks 
were 10 times more abundant in MALDI- FTICR spectra than 
in TOF spectra, which can confound the detection of diagnostic 
peaks. Poorly preserved peaks are less likely to be detected with 
MALDI- TOF, which paradoxically facilitates the detection of 
well- expressed markers. Consequently, the analysis of MALDI- 
FTICR spectra is more challenging and an automated process 
may reveal particularly useful in Palaeolithic contexts where 
collagen peaks tend to be poorly preserved [58].

4.1.2   |   Peptide Markers Detection

Peptide marker detection is influenced by multiple factors, in-
cluding collagen preservation within the bone, as well as the 
extraction protocol used, the reaction of each peptide, and the 
type of mass spectrometry. In our study, the retrieval of the nine 
target peptide markers showed some variation depending on 
the combinations tested in this study, leading to differences in 
taxonomic resolution. Similarly to other studies [7, 20, 36, 56] 
when some of these markers are missing, those that are most fre-
quently absent are peptide A (COL1ɑ2 978–990) and those with 
high masses (>m/z 2500). This trend was consistent across all 
protocols and both mass spectrometers and is probably related to 
collagen degradation. The chemical properties of those specific 
peptides and their interaction with lab reagents could also ex-
plain why they are usually less frequently recovered than other 
peptides, but this remains to be explored.

4.1.3   |   Enhancing Peptide Marker A (COL1ɑ2 978–990) 
With MALDI- FTICR MS

Although the use of intensity ratios did not improve the detection 
of peptide A (COL1ɑ2 978–990), our results highlight three main 
conclusions regarding its detection in the studied assemblage:

 i. The presence of a hydroxylated peak at m/z 1192.6796 is 
critical for the identification of Bos/Bison specimens; the 
unique presence of a m/z 1208.6745 peak is an insufficient 
criterion.
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 ii. The m/z 1166.6276 peak seems a reliable indicator of the 
presence of peptide A in reindeer, even when the hydroxyl-
ated m/z 1150.6327 peak is absent.

 iii. Peptide A (COL1ɑ2 978–990) tends to be more poorly 
ionised in reindeer than in Bos/Bison. When both m/z 
1166.6276 and m/z 1208.6745 peaks are present, the for-
mer tend to be less intense, yet its detection (at a minimum 
s/n ratio of 3) is sufficient to confidently assign the sample 
to reindeer. However, it is critical to ensure the absence of 
contamination in this context.

4.1.4   |   Contaminant Detection With 
MALDI- CASI- FTICR

The use of MALDI- CASI- FTICR facilitates the detection of 
contaminants. For instance, compared to the standard MALDI- 
FTICR analysis, the CASI mode improved the distinction of 
human keratin (e.g., [M + H] + 1192.63206, m/z 596.8199) from 
bovid collagen (e.g., [M + H] + 1192.67968, m/z 596.8435). These 
two components cannot be distinguished using MALDI- TOF 
due to its lower resolution.

4.2   |   Tailoring Protocols and Instruments to 
the Study Material

For the same mass spectrometer, we observed substantial vari-
ability in the results depending on the extraction protocol in use. 
This suggests a strong link between protocol type and spectral 
quality.

4.2.1   |   TOFMS

With MALDI- TOF, the three protocols tested gave very simi-
lar results, including the AmBic buffer, which, unlike HCl and 
TFA, does not involve bone demineralisation. This result was 
unexpected because the acid protocols should, in theory, in-
crease the retrieval of collagen peptides [16, 56, 59]. However, it 
has also been shown that demineralisation can adversely impact 

protein survival [60]. Methodological factors may also explain 
this pattern. For instance, the acid HCl analysis was conducted 
a few months after the AmBic protocol, and storage in a freezer 
at −20°C may have altered collagen preservation [61]. Moreover, 
the TFA extractions were performed on smaller, single- spotted 
samples of bone powder (1–5 mg) which possibly impacted col-
lagen recovery [16].

4.2.2   |   FTICRMS

MALDI- FTICR MS provided variable results depending on the 
protocol used for collagen extraction (HCl or TFA). The results 
suggest that coupling TFA with MALDI- FTICR MS can increase 
the number of taxonomic identifications, even when collagen is 
highly degraded. It remains unclear which parameters directly 
affect the results given the large number of variables at play (e.g., 
sampling method, demineralisation time, the type of acid used 
and the filtration method; see Table S1).

4.3   |   Optimised ZooMS Workflow

To optimise ZooMS identification rates both the extraction pro-
tocol and MS instrument can be tailored to the preservation 
state of the samples and the characteristics of the research ques-
tion (Figure 5).

4.3.1   |   Large- Scale Studies of Material With Unknown 
or Variable Collagen Preservation

Large- scale ZooMS studies usually involve sampling large 
numbers of bone fragments with limited or no information on 
collagen preservation. Because AmBic is less destructive than 
acid- based methods, the bone sample can be reused for further 
analyses; for this very reason, its use should be prioritised when-
ever possible. AmBic is particularly efficient at retrieving low 
mass peptides (<m/z 2500) such as peptide A (COL1α2 978–990), 
an important marker in ZooMS analyses. The HCl acid- based 
protocol can be used as a substitute when samples have failed 

FIGURE 5    |    New workflow that improves the use of MALDI- FTICR and MALDI- TOF mass spectrometers in ZooMS analyses. Targeted analysis 
focuses on a small number of remains showing poor collagen preservation that can benefit from a high- resolution MALDI- FTICR analysis. Large- 
scale studies are best carried out using MALDI- TOF with AmBic and HCl. These approaches can be combined with MALDI- FTICR for samples 
showing poor collagen preservation. [Colour figure can be viewed at wileyonlinelibrary.com]
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or for poorly resolved identifications. Our study confirms that 
the HCl protocol combined with MALDI- TOF tends to produce 
more complete spectra—which, in our study, included most or 
all of the nine peptide markers we selected—resulting in bet-
ter resolved identifications. Access to MALDI- TOF instruments 
is generally easier than for MALDI- FTICR, making it ideal for 
large- scale proteomic screening.

4.3.2   |   Targeted Studies of Selected Specimens 
or Material With Known Poor Collagen Preservation

In contexts where the primary goal is to ensure maximal colla-
gen extraction—for instance where sampling should be minimal 
(e.g., bone artefacts) [20, 55] or when collagen is poorly pre-
served (e.g., burnt bone)—the use of TFA and MALDI- FTICR 
should be favoured because this method seems more successful. 
Regarding peptide marker A (COL1ɑ2 978–990), we recommend 
increasing the s/n ratio (up to five) to obtain more secure identi-
fications. Our analyses also show that the MALDI- CASI- FTICR 
is a good complement to standard FTICR MS, as it is fast and 
effective at detecting contaminants and specific biomarkers, and 
appears to be as efficient as PRM LC–MS/MS analyses. Finally, 
MALDI- CASI- FTICR is a useful tool for pre- screening large sets 
of samples with a standard ZooMS protocol and as quality con-
trol to verify the exact mass of key discriminating peptides.

4.4   |   Future Directions

Despite some limitations, our results show that MALDI- FTICR 
provides a convenient alternative that complement the ZooMS 
MALDI- TOF workflow, especially when combined with the 
TFA protocol. There are several ways in which the potential of 
the approach can be enhanced in the future.

4.4.1   |   Sample Size

For future applications, we recommend increasing the quantity 
of sampled bone material from 5 to 20 mg, particularly when col-
lagen preservation is likely to be variable. These larger samples 
can then be examined using multiple approaches to collagen ex-
traction. Sampling bone chunks rather than bone powder may 
also improve collagen retrieval [12], although this remains to be 
verified with MALDI- FTICR.

4.4.2   |   The Use of Replicates

To optimise the ZooMS workflow, we assessed whether high- 
resolution MALDI- FTICR spectra could be obtained without 
using triplicates for degraded samples [10], thereby minimising 
both costs and processing time. Our work showed that MALDI- 
FTICR outperformed MALDI- TOF when the protocol (TFA) 
was combined with single spotting (SI 4, List of all identifica-
tions). Because MALDI- TOF is known to perform better with 
triplicate spotting—an observation further supported by our 
study—we predict that the use of replicates with MALDI- FTICR 
should further improve precision in taxonomic identification. 
Alternatively, the demineralisation solutions kept through the 

TFA protocol can be used to minimise protein loss. In our study, 
they provided very few collagen peaks, which explain why they 
were excluded from our comparisons. However, the spectra are 
not always blank, which might prove useful when examining 
precious or degraded samples.

4.4.3   |   Time and Cost Effectiveness

ZooMS is increasingly being used in archaeological research 
largely due to its accessibility and low costs. The use of MALDI- 
FTICR permits rapid analysis without necessitating additional 
expertise in data processing, thereby facilitating its integra-
tion into the ZooMS workflow. While MALDI- FTICR pro-
vides higher resolution data, analytical costs are higher than 
for MALDI- TOF, but lower than for LC–MS/MS. To minimise 
expenses and implement an accessible new ZooMS workflow, 
we did not prioritise measuring replicates. However, if MALDI- 
FTICR is integrated into a targeted analysis involving smaller 
sample sets, the use of replicates is feasible while maintaining 
relatively low costs.

4.4.4   |   Burnt Material

Preliminary results are encouraging as they show that 
MALDI- FTICR can successfully be used to identify burnt 
bone. Additional experimental work on burning temperature 
[34], combined, for instance, with FTIR techniques (Fourier- 
transform infrared spectroscopy) [52, 62] is needed to fully ex-
plore the potential of this approach in ZooMS analysis.

5   |   Conclusion

Our study shows that MALDI- TOF performs better when com-
bined with triplicate spotting as applied with the AmBic and HCl 
protocols. MALDI- TOF is particularly effective when collagen is 
well preserved and when assessing large quantities of material 
as the spectral analysis is simplified. However, MALDI- FTICR 
used with the TFA protocol outperforms all other methods in 
terms of collagen retrieval. This may be critical when collagen 
is highly degraded (including when the specimen has been ex-
posed to heat). MALDI- FTICR thus emerges as a robust com-
plementary tool to MALDI- TOF, especially to enhance poorly 
resolved MALDI- TOF taxonomic identifications. In addition, 
MALDI- CASI- FTICR can also be used for targeted analyses in 
contexts of poor collagen preservation and for ascertaining the 
presence of specific taxa in faunal assemblages. MALDI- CASI- 
FTICR can achieve comparable results as PRM LC–MS/MS in 
a fraction of the time. Our study also demonstrates that com-
bining several mass spectrometry techniques to analyse poorly 
preserved samples can enhance the resolution and robustness of 
taxonomic attributions.
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