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ABSTRACT
The coupling between carbon uptake and water loss through stomata implies that gross primary production (GPP) can be limited 
by soil water availability through reduced leaf area and/or stomatal conductance. Ecosystem and land-surface models commonly 
assume that GPP is highest under well-watered conditions and apply a stress function to reduce GPP as soil moisture declines. 
Optimality considerations, however, suggest that the stress function should depend on climatic aridity: ecosystems adapted to 
more arid climates should use water more conservatively when soil moisture is high, but maintain unchanged GPP down to a 
lower critical soil-moisture threshold. We use eddy-covariance flux data to test this hypothesis. We investigate how the light-use 
efficiency (LUE) of GPP depends on soil moisture across ecosystems representing a wide range of climatic aridity. ‘Well-watered’ 
GPP is estimated using the sub-daily P model, a first-principles LUE model driven by atmospheric data and remotely sensed 
vegetation cover. Breakpoint regression is used to relate daily β(θ) (the ratio of flux data–derived GPP to modelled well-watered 
GPP) to soil moisture estimated via a generic water balance model. The resulting piecewise function describing β(θ) varies with 
aridity, as hypothesised. Unstressed LUE, even when soil moisture is high, declines with increasing aridity index (AI). So does 
the critical soil-moisture threshold. Moreover, for any AI value, there exists a soil moisture level at which β(θ) is maximised. This 
level declines as AI increases. This behaviour is captured by universal non-linear functions relating both unstressed LUE and 
the critical soil-moisture threshold to AI. Applying these aridity-based functions to predict the site-level response of LUE to soil 
moisture substantially improves GPP simulation under both water-stressed and unstressed conditions, suggesting a route towards 
a robust, universal model representation of the effects of low soil moisture on leaf-level photosynthesis.

1   |   Introduction

The tight coupling between carbon uptake and water loss via 
stomata (Cowan and Farquhar  1977; Manzoni et  al.  2011a) 
implies that gross primary production (GPP) can be limited 
by water availability through reduced vegetation cover and 
leaf area index, reduced stomatal conductance, or a combina-
tion of these. Reduced evapotranspiration under water stress 

causes increased sensible heat flux, warming the atmosphere 
above the canopy, which, in turn, causes a further reduction 
in transpiration and plant carbon uptake (Gentine et al. 2016; 
Grossiord et al. 2020; Seneviratne et al. 2010). Plants need to 
coordinate these two processes—water loss and carbon up-
take—to maximise assimilation while minimising water loss. 
Although this trade-off is well established as a general concept, 
determining whether the reduction in GPP is due to stomatal 
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or non-stomatal limitation or both remains challenging; more-
over, the mechanisms behind non-stomatal limitation are not 
entirely clear. However, plants in seasonally dry environments 
evidently have to deal with low soil moisture and must adjust to 
it by reducing either leaf area or photosynthesis. In this study, 
we isolate the effects of soil moisture on the light-use efficiency 
(LUE) of photosynthesis relative to the well-watered condition, 
which we represent using the sub-daily version of the P model 
(Mengoli et al. 2022) using remotely sensed data on fractional 
absorbed solar radiation (fAPAR), a measure of green vegeta-
tion cover, as an input to the model.

There is evidence that soil moisture, rather than atmospheric 
demand, is the principal immediate constraint on GPP in 
arid and semi-arid ecosystems (Dubey and Ghosh  2023; Pei 
et al. 2020; Xu et al. 2023, but see also Verma and Ghosh 2024, 
who showed how antecedent vapour pressure deficit (VPD) 
acts on GPP via its effect on soil moisture). GPP is substantially 
reduced—much more than total ecosystem respiration—in re-
sponse to drought (e.g., Shi et al. 2014). Liu et al. (2020) showed 
that soil moisture is the dominant water stress on vegetation 
over 70% of the global land area. However, the response of 
GPP to water stress in models from the previous round of the 
Coupled Model Intercomparison Project, CMIP5, is too strong 
(Huang et al. 2016) and representation of the soil moisture ef-
fects on GPP remains one of the largest sources of uncertainty 
in carbon cycle models (Trugman et al. 2018). Many studies 
have focused on the impact of drought on vegetation green-
ness (e.g., Li et al. 2023); but soil moisture stress also impacts 
light-use efficiency (LUE) directly, which further reduces GPP 
(Lv et al. 2023; Xing et al. 2023). Thus, it is important to ac-
count for the impact of soil moisture stress on LUE, as well as 
on vegetation greenness.

The P model is a model for the LUE of GPP based on eco-
evolutionary optimality (EEO) theory (Cai and Prentice  2020; 
Stocker et al. 2020; Wang et al. 2017). It captures the trade-off 
between CO2 uptake and water loss and provides realistic es-
timates of the seasonal and diurnal cycles of GPP under well-
watered conditions, performing as well as or better than more 
complex models despite having far fewer parameters (Harrison 
et al. 2021; Stocker et al. 2020). The sub-daily version of the P 
model, tested at multiple sites representing different biomes, 
climates and vegetation types, accurately simulates diurnal 
and seasonal cycles of GPP in well-watered climates without re-
quiring any plant functional type-specific parameters (Mengoli 
et al. 2022). But despite the model's accuracy as judged against 
GPP inferred from eddy-covariance flux measurements in well-
watered ecosystems, it overestimates GPP in seasonally dry en-
vironments. This is because although the model accounts for 
the effect of VPD in reducing stomatal conductance, it does not 
account for any additional impact of soil-moisture stress. Given 
the potential for EEO-based models to provide robust represen-
tations of vegetation and land-surface exchanges with the at-
mosphere (Franklin et al. 2020; Harrison et al. 2021; Mengoli 
et al. 2022), it is important to develop a well-founded approach 
to implement soil-moisture stress in an EEO context.

A number of studies have indicated that ecosystems in more arid 
regions adapt by extracting water at lower rates yet continue to 
do so at an unchanged rate down to lower critical soil-moisture 

thresholds than ecosystems in humid regions. Intuitively, this 
strategy is consistent with the concept of optimal water use under 
limited availability. It is expected to be manifested both in evapo-
transpiration (ET) and GPP due to the dominance of transpira-
tion in ET, and the close coupling between transpiration and GPP. 
An empirical analysis of the influence of soil moisture stress on 
ET responses across biomes by Fu et al. (2021) found that critical 
soil-moisture thresholds for ET decline vary widely, with arid eco-
systems maintaining unchanged ET at lower soil moisture levels 
than well-watered ecosystems. Fu et  al.  (2022) further showed 
that both the critical soil-moisture threshold and the maximum 
evaporative fraction (EF, the fraction of available energy used 
for ET) under moist conditions are shaped by climatic aridity: 
more arid ecosystems conserve water at high soil moisture lev-
els, but sustain ET as soil moisture decreases to lower levels. In 
other words, arid ecosystems optimise water use by adopting 
strategies that maximise evapotranspiration and photosynthesis 
under water-limited conditions. Fu et al. (2024) derived a global 
map of critical soil-moisture thresholds, showing that these 
thresholds vary depending on aridity, soil texture and vegetation 
cover. Supporting these findings, Bassiouni et  al.  (2020) identi-
fied lower soil-moisture thresholds for water uptake in arid eco-
systems. Theoretical modelling by Manzoni et al. (2014) explains 
this behaviour as representing optimal coordination of hydraulic 
traits to maximise long-term water use, with arid-adapted plants 
sustaining water uptake from drier soils. Bassiouni, Manzoni, 
and Vico  (2023) expanded this idea using a theoretical model 
linking plant hydraulic traits to climate, showing that optimal 
water-use strategies result in varied threshold values across cli-
mates and demonstrating that these strategies align with an eco-
evolutionary optimal response to water scarcity. These various 
findings emphasise that vegetation models should incorporate 
aridity-related soil-moisture thresholds and highlight the conver-
gence of data-driven and theoretical studies in supporting a gen-
eral hypothesis of optimal water use.

Vegetation and land-surface models commonly assume that 
GPP at any location is maximal under well-watered conditions 
(Bonan 2019) and account for the effect of low soil moisture on 
GPP by applying a stress function (β)  that reduces GPP—as a 
function of declining soil moisture—once a critical threshold of 
soil water availability is reached. However, not all models apply 
the stress function directly to GPP. Whether a stress function 
should be applied directly to photosynthesis (as, e.g., in the JULES 
model: Clark et al. 2011), to stomatal conductance, gs (as in the LPJ 
model: Sitch et al. 2003) or to the maximum carboxylation rate, 
Vcmax (as in the ORCHIDEE model: Krinner et al. 2005) is debated 
(Rogers et al. 2017; De Kauwe et al. 2013). A more process-based 
approach has been implemented in the CLM5 model, using plant 
hydraulics to predict β as a function of the leaf water potential 
(Liu et al. 2024). Observational studies show that water stress reg-
ulates GPP via both stomatal and non-stomatal processes (Egea, 
Verhoef, and Vidale 2011), but open questions remain about their 
relative importance. In this paper, we focus specifically on how 
soil moisture influences the LUE of GPP irrespective of specific 
mechanisms. We derive piecewise linear functions for this rela-
tionship on a site-by-site basis and show how the parameters of 
these functions relate to climatic aridity.

The critical soil-moisture threshold used in the applica-
tion of soil-moisture stress functions in current models is 
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either universal or prescribed by vegetation type (e.g., Best 
et al. 2011; Boussetta et al. 2013; Oleson et al. 2013). However, 
Fu et  al.  (2021) using eddy covariance flux tower observa-
tions from the ICOS network across Europe, estimated critical 
soil-moisture thresholds by analysing EF and soil-moisture 
relationships during dry-down periods and noting how the co-
variance between VPD and GPP changes sign as soil moisture 
declines. They showed that the critical soil-moisture thresh-
old at which EF is reduced varies across biomes and climates. 
Fu et al. (2022) extended this analysis to a global scale. Their 
results suggested systematic differences in critical thresh-
olds across ecosystems, with drylands showing adaptations 
to water scarcity. Comparing grasslands and (dry) savannas, 
they showed that the EF response of grasslands yields higher 
annual GPP than if the same ecosystems adopted the EF re-
sponse of savannas, and vice versa. Such findings suggest 
that models relying on a single threshold underestimate the 
complexity of plant water use, especially under conditions of 
water scarcity. These findings are, however, consistent with a 
shift from isohydric to anisohydric stomatal regulation with 
increasing climatic aridity (McDowell  2011; Kumagai and 
Porporato 2012; Konings and Gentine 2017) and with the idea 
that plant strategies should maximise carbon assimilation 
over the annual cycle.

Here we compare flux tower–derived estimates of daily GPP, 
which are inferred from half-hourly eddy covariance mea-
surements of net ecosystem exchange (NEE) using a variety of 
assumptions to partition NEE into GPP and respiration compo-
nents (Pastorello et al. 2020), with the expected ‘well-watered’ 
GPP as calculated by the sub-daily P model (Mengoli et al. 2022) 
across the full range of aridity represented in the global flux 
tower network (https://​fluxn​et.​org/​). We analysed daily GPP 
data from 67 eddy-covariance flux towers representing this 
range. We fitted breakpoint regressions to account for the im-
pact of soil moisture (θ) on LUE, expressed as the ratio β(θ) of 
flux-derived GPP to GPP as predicted by the P model for well-
watered conditions. The observed (remotely sensed) fAPAR, 
which depends on the leaf area index, was used to drive the 
sub-daily P model and is, therefore, already included in the well-
watered GPP simulated by the model. This approach excludes 
leaf area dynamics, as these are already accounted for in the 
denominator of the β(θ) ratio (i.e., the well-watered simulated 
GPP), in order to focus on LUE.

We then analysed fitted values of both the maximum β(θ) and 
the critical threshold of θ as non-linear functions of the cli-
matic aridity index (AI), defined as the ratio of annual poten-
tial evapotranspiration (PET) to annual precipitation. These 
relationships were used to generate a family of β(θ) functions, 
dependent on AI, which can serve as multipliers of the mod-
elled, well-watered GPP. The performance of the resulting 
model was compared with that of the uncorrected sub-daily 
P model, with a version of the sub-daily model that applies 
the soil-moisture stress function previously developed by 
Stocker et  al.  (2020) for use with the ‘classic’ P model, and 
with the MODIS remotely sensed GPP product (Running and 
Zhao 2021). The function relating to the reduction of assimi-
lation due to low soil moisture varies systematically as a func-
tion of climatic aridity, rather than being dependent on the 

type of vegetation. Moreover, GPP reductions under low soil 
moisture satisfy an optimality criterion: that is, for any given 
aridity value, there exists a soil moisture level at which the 
associated GPP response function is maximal; while as aridity 
increases, this level declines.

2   |   Methods

2.1   |   The P Model

The P model is an LUE model based on EEO theory for the 
trade-off between carbon uptake and water loss (Prentice 
et al. 2014) and the acclimation and/or adaptation of leaf-level 
photosynthesis to environmental conditions (Wang et al. 2017). 
The model is driven by air temperature, VPD, incident pho-
tosynthetic photon flux density (PPFD), fAPAR, elevation 
(through atmospheric pressure) and the ambient partial pres-
sure of carbon dioxide (ca). The model distinguishes C3 and C4 
photosynthesis but does not require specification of distinct pa-
rameter values of any other plant functional types. When driven 
by satellite-derived fAPAR, it reproduces the seasonal cycle and 
interannual variability in GPP at flux sites from a range of nat-
ural vegetation types as well as geographic variation in GPP 
(Balzarolo, Peñuelas, and Veroustraete 2019; Stocker et al. 2020; 
Wang, Prentice, and Davis 2014) and temporal trends in GPP at 
flux sites (Cai and Prentice 2020).

The P model was modified by Mengoli et al.  (2022) to simu-
late diurnal cycles, separating the instantaneous responses of 
GPP (with photosynthetic parameters fixed over the diurnal 
cycle) from the acclimation responses of those parameters on 
a time scale of around 2 weeks. This modified model (P-model 
subDaily v1.0.0, accessible at Mengoli 2023b) is used here 
to simulate daily GPP as the daily sum of GPP computed on 
half-hourly timesteps. The sub-daily model can be run in two 
modes, either by using an exponential-weighted mean of the 
acclimating quantities or by using a 15-day running mean of 
midday temperature to determine acclimation. The two meth-
ods produce virtually identical results (Mengoli et  al.  2022). 
Here, we use a 15-day running mean of midday temperature 
to determine acclimation. Mengoli et  al.  (2022) showed that 
the P-model subDaily v1.0.0 accurately reproduces the diurnal 
cycle of GPP in well-watered sites but overestimates GPP in 
drylands because it does not include any soil-moisture limita-
tion on GPP.

The FULL configuration of the current standard P model Pv1.0 
(Stocker et al. 2020) includes an empirical water stress function 
(also based on eddy-covariance flux data) that approaches 1 at 
a threshold value of θ (θ*), where θ is plant-available water ex-
pressed as a fraction of soil water-holding capacity, and θ* is 
set to 0.6. The function declines more steeply with decreasing 
θ in drier climates, with climatic moisture quantified by an 
estimate of the ratio (α) of actual evapotranspiration (AET) to 
potential evapotranspiration (PET). This function is used in 
Pv1.0 (FULL) as a multiplier of the modelled, well-watered GPP, 
in a similar way to the function proposed here (accessible at 
Mengoli 2023a) but has not previously been applied in the sub-
daily model.
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2.2   |   Flux Tower Data

GPP and meteorological data at 67 flux tower sites (Table S1) 
were obtained from the FLUXNET2015 dataset (Pastorello 
et  al.  2020). We used GPP based on the daytime partition-
ing method (Lasslop et  al.  2010; Pastorello et  al.  2020). 
FLUXNET2015 provides the meteorological variables required 
to run the P model, including air temperature, VPD and PPFD 
on a half-hourly timestep. However, it does not provide fAPAR. 
We obtained fAPAR at each site from the dataset produced by 
Stocker et  al.  (2020) from the MODIS MCD15A3H Collection 
6 dataset (Myneni, Knyazikhin, and Park 2015), accessible at 
Stocker (2020). The original dataset has a spatial resolution of 
500 m and a temporal resolution of 4 days. Stocker et al. (2020) 
filtered these data to remove points where clouds were present 
and derived daily data by linear interpolation. We used a subset 
of the sites from Stocker et al. (2020), chosen to cover the full 
range of aridity with no major gaps. We initially selected all 
sites available in the FLUXNET2015 dataset that, according to 
the 20-year climatological aridity index (see paragraph below 
for its computation), were classified as arid/dry sites—nine in 
total. Then, we included 22 sites classified as semi-arid and 36 
sites classified as humid. To balance the contributions from 
arid, semi-arid and humid categories, we intentionally did not 
include all available sites in FLUXNET2015, as the excluded 
sites were all classified as humid. Sites were selected based on 
the following criteria: geographic distribution to ensure sites 
were spread out globally across different climates and represen-
tativeness of the full range of vegetation types in the dataset. 
Sites were also selected based on a minimum record length of 
2 years, with quality-control flags indicating ‘good’ observa-
tions for at least 80% of the half-hourly records (Table S1). For 
arid sites, however, the 2-year minimum record requirement 
was not applied due to the limited number of such sites, which 
would have further reduced the number of arid sites available 
for analysis. Meteorological and MODIS data were not available 
for some sites/years, so analyses and simulations were based 
on different years across sites (Table S1). Only the half-hourly 
records flagged as ‘good’ were used.

2.3   |   Calculation of the GPP Reduction Factor

We calculated the ratio β(θ) between flux-derived and P-model 
subDaily v1.0.0 modelled, well-watered GPP for each site and 
day. Our approach differs from that of Stocker et al.  (2020) in 
three key respects. First, our fitted stress function is allowed to 
take values < 1 under well-watered conditions. We thus allow 
for the possibility that ecosystems adapted to arid climates use 
water more conservatively even when soil moisture is abun-
dant. Second, in order to ensure consistency of the soil moisture 
calculation across sites, we calculate daily soil moisture using 
the Simple Process-led Algorithms for Simulating Habitats 
(SPLASH) model (version 1: Davis et  al.  2017) with simulated 
soil moisture converted to relative soil water content (θ) by di-
viding by the generic bucket size in SPLASH (150 mm). Third, 
we use the aridity index AI (the ratio of PET to annual precip-
itation) rather than the factor α used by Stocker et al. (2020) as 
a climatological index, because of its wider use in the literature, 
and because its calculation is independent of the SPLASH mod-
el's estimation of ΑΕΤ.

2.4   |   Breakpoint Regression Analysis

We used breakpoint regression (Toms and Lesperance 2003) to 
evaluate the relationship between the β(θ) ratio and soil water 
content, which identifies and estimates the maximum level of the 
β(θ) ratio under well-watered conditions, and the critical thresh-
old below which the ratio declines linearly towards the wilting 
point, at each site. This model was selected based on its ability 
to capture key transitions in water stress, as demonstrated in a 
previous study (Fang and Gentine 2024) where a piecewise lin-
ear relationship was found to consistently represent water stress 
limitations across diverse ecosystems. Before this analysis, we re-
moved values of flux-derived GPP below the 5th percentile (which 
gave highly variable β(θ) ratios) and observations with greater 
than the 99th percentile of θ, which would otherwise have dom-
inated the regression at many well-watered sites. Preliminary 
analyses showed that the intercept was generally close to zero 
and that imposing the constraint β(0) = 0 had little effect at the 
great majority of sites (Figure S1). We therefore imposed this con-
straint resulting in a regression model with just two parameters, 
the maximum level of β(θ) (y) and the critical threshold of θ (ψ):

where β(θ) is equal to its maximum level (y) when θ ≥ ψ while it 
is equal to the ratio between its maximum level and the critical 
threshold (y/ψ) when θ < ψ.

The non-parametric Kruskal–Wallis test was used to determine 
whether there were significant differences in fitted parameter 
values among aridity classes. We used p < 0.05 as the criterion to 
identify significant differences between classes.

2.5   |   Calculation of the Aridity Index

The length of the meteorological records in FLUXNET2015 
is too short to calculate a climatological index at most sites. 
We, therefore, derived AI using climate data for a 20-year 
period (2001–2020) from the CRU TS 4.06 gridded climate 
dataset (Harris et  al.  2020). We obtained precipitation data 
directly from the CRU dataset and calculated PET using tem-
perature, precipitation and cloud cover from this dataset as 
inputs to SPLASH version 1 (Davis et al. 2017). Of the 67 se-
lected sites, nine were classed as arid (AI > 5), 22 as semi-arid 
(2 < AI < 5) and 36 as humid (AI < 2) (Tables  1 and S1). We 
removed two sites classified as arid (AU-Lox, AI = 6.32, and 
US-Wkg, AI = 6.34) and one classified as semi-arid (AU-RDF, 
AI = 2.16), either because they were irrigated crops (AU-Lox, 
AU-RDF) or because the presence of extensive wetlands indi-
cates that they were groundwater-fed (US-Wkg). The deriva-
tion of the stress function was thus eventually based on the 
analysis of 64 sites.

2.6   |   Dependencies of Parameters on Aridity

The breakpoint regression yielded values of two parameters (y, 
ψ) for each of the 64 sites. We fitted relationships for each pa-
rameter as functions of site AI using non-linear regression. Both 
parameters were fitted with a power function:

(1)β(θ) =min
[

y, (y∕ψ) × θ
]
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TABLE 1    |    Statistics of P model performance (root mean squared error, RMSE and percent bias, PBIAS) using the new soil-moisture stress function 
(new), with its aridity-based parameters, and the stress function used by Stocker et al. (2020) but applied in the sub-daily model used here, compared 
to P model performance with no soil moisture correction (ww). The sites are grouped by aridity index (AI) classes (see also Supplementary Table 1).

Site ID AI ARIDITY RMSE(ww) RMSE(new) RMSE(v1.0) PBIAS (ww) PBIAS (new) PBIAS (v1.0)

AU-TTE 7.17 arid 2.07 0.51 0.94 2938.9 658.4 1299.3

AU-ASM 6.97 arid 2.47 0.96 1.02 277.1 −3.3 99.5

AU-Cpr 6.36 arid 2.83 0.77 0.87 187.6 −27.4 37.7

US-Wkg 6.34 not used 3.93 0.9 1.86 349.6 15.1 145.3

AU-Lox 6.32 not used 2.15 7.03 5.79 2 −76.1 −58.9

US-Whs 5.89 arid 3.4 0.93 1.68 571.7 74.3 266.8

AU-GWW 5.75 arid 2.57 0.53 1.1 197.4 −18.7 70.1

US-SRG 5.08 arid 4.01 1.46 2.25 289.4 7.1 135.9

US-SRM 5.02 arid 2.82 1.04 1.45 246.5 −5.1 106.6

US-Cop 3.99 semi-arid 1.89 0.46 1.05 577.9 85.8 300.3

AU-Ync 3.96 semi-arid 2.75 0.67 1.7 428.9 53.5 240.1

ES-Ln2 3.84 semi-arid 3.92 0.77 1.71 5359.2 1096.2 2468.2

AU-Stp 3.71 semi-arid 2.62 1.33 1.44 162.5 −16 79.3

AU-Emr 3.08 semi-arid 4.39 1.03 2.87 320.5 50.3 198.8

AU-Gin 2.93 semi-arid 3.22 1.61 1.71 89.9 −41.2 32.8

AR-SLu 2.89 semi-arid 2.07 5 2.13 16.9 −56.3 −13.8

ES-LgS 2.88 semi-arid 3.33 0.78 1.69 197.4 −9.2 99.3

CN-Du2 2.7 semi-arid 4.53 1.47 3.02 421.4 87.9 256.7

ZA-Kru 2.69 semi-arid 2.14 3.3 1.82 19.5 −55.5 −7.5

US-AR2 2.61 semi-arid 3.88 1.39 2.59 318 61.1 205.5

US-AR1 2.49 semi-arid 3.1 1.5 2.15 156.2 2.9 89.8

AU-Whr 2.39 semi-arid 3.13 1.41 1.63 79.6 −35.4 36.2

CN-HaM 2.34 semi-arid 1.63 1.68 1.02 48.6 −41.1 18

AU-Dry 2.32 semi-arid 3.31 1.85 1.63 85.6 −36.6 38.3

IT-Noe 2.26 semi-arid 4.04 1.61 1.86 99 −38.4 42.8

US-Ton 2.23 semi-arid 4.39 1.4 3.05 140.9 −19.4 85.8

US-Var 2.22 semi-arid 5.6 1.27 4.01 313 40.3 219.3

ZM-Mon 2.18 semi-arid 3.11 3.2 1.88 38.5 −50.3 8.9

AU-RDF 2.16 not used 4.34 2.3 3.46 194.7 11 140

US-ARb 2.04 semi-arid 4.02 2.91 3.05 100.7 −13.8 63.1

US-ARc 2.04 semi-arid 3.46 2.54 2.43 80.4 −22.9 46.1

AU-DaS 1.81 humid 2.3 2.9 1.56 29 −50.8 5.8

AU-Rig 1.81 humid 3.91 1.81 3.45 106.6 −7.8 86.9

AU-DaP 1.8 humid 3.76 3.21 2.66 70.4 −32.8 43.7

AU-Wom 1.75 humid 5.63 2.26 4.25 65.2 −25.7 47

IT-Cp2 1.73 humid 6.05 2.49 4.1 76.1 −29.4 47.4

AU-Wac 1.69 humid 3.79 2.54 2.54 41.8 −39.8 20.9

(Continues)
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6 of 19 Global Change Biology, 2025

where b is expected to be negative. This function is bounded 
above in order to avoid potential values > 1 in extremely wet 
sites, although none were present in the dataset.

2.7   |   Application

Equations (1) and (2) determine a unique β(θ) function for each 
value of AI. This function was applied as a multiplier of mod-
elled GPP:

where GPPnew is the revised, soil-moisture corrected GPP, GPPww 
is the GPP simulated by the P-model subDaily v1.0.0 without 
soil-moisture correction and β(θ) is given by Equation (1) with 
parameter values derived from Equation  (2) as a function of 
site AI. We compared the predictions of GPP obtained using 
this new soil-moisture stress function to GPP simulated by the 
P-model subDaily v1.0.0 with (a) no soil-moisture stress and 
(b) the soil-moisture stress function used in Pv1.0 at all of the 
flux tower sites, with meteorological data provided for the site 
in the FLUXNET2015 dataset and fAPAR data from Stocker 

(2)parameter =min
[

a ⋅ AIb, 1
]

(3)GPPnew = GPPww × β(θ)

Site ID AI ARIDITY RMSE(ww) RMSE(new) RMSE(v1.0) PBIAS (ww) PBIAS (new) PBIAS (v1.0)

FR-Pue 1.57 humid 5.22 1.56 3.6 116.7 −14.8 81.7

AU-Ade 1.55 humid 2.3 3.5 1.88 8.4 −52.2 −3.8

AU-How 1.46 humid 2.83 3.23 2.01 23.3 −53.2 2

CA-SF3 1.41 humid 4.38 1.12 3.61 161.7 30.5 134.7

FR-Fon 1.39 humid 3.04 3.39 2.59 42.1 −34 26

IT-Col 1.35 humid 4.95 3.32 3.59 79.3 −24.3 53.5

AU-Tum 1.34 humid 4.51 3.78 3.76 33.2 −32.9 23.4

IT-SRo 1.34 humid 4.34 2.75 2.9 53.1 −34.6 34.6

US-KS2 1.21 humid 13.08 5.23 12.65 233.6 84.3 226

CA-Man 1.19 humid 5.38 2.06 4.94 160.4 40.7 144.5

CA-NS4 1.19 humid 4.09 1.48 3.82 150.8 39.4 140.5

DE-Gri 1.18 humid 2.32 2.87 2.07 17.1 −35.3 12.1

IT-MBo 1.18 humid 4.51 2.13 4.09 69.1 −2.7 62.4

RU-Ha1 1.11 humid 1.75 1.05 1.58 46.4 −17.2 39.8

FR-LBr 1.1 humid 3.27 2.18 2.56 40.4 −31 29.9

US-Wi6 1.08 humid 5.5 2.18 5.46 177.2 66 176.2

AR-Vir 1.02 humid 4.24 2.9 3.87 35.5 −20.7 31.2

US-PFa 1.02 humid 4.33 1.91 4.26 146.3 50.7 144.2

US-Syv 1.01 humid 4.88 2 4.84 87.6 15.6 86.6

RU-Fyo 0.97 humid 2.92 2.14 2.79 36.3 −19.7 32.9

BE-Bra 0.91 humid 3.01 1.32 3 45.8 −5.8 45.7

FI-Hyy 0.87 humid 2.96 1.97 2.86 50.1 −10.6 47.3

NL-Hor 0.84 humid 3.31 1.73 3.14 65.5 −4.5 62.4

CH-Oe1 0.8 humid 3.67 3.94 3.67 2.8 −31.5 2.6

BR-Sa3 0.78 humid 11.1 5.04 11.03 105.3 34.1 104.6

CZ-BK2 0.78 humid 5.74 3.16 5.73 89.3 31.1 89.1

DE-RuR 0.78 humid 6.42 2.96 6.4 101.1 36.1 100.8

BE-Vie 0.73 humid 2.54 2.33 2.54 14.3 −22.5 14.3

CH-Fru 0.71 humid 7.17 3.85 7.17 97.8 43.5 97.8

IT-Tor 0.63 humid 3.83 2.14 3.83 80.3 37.2 80.3

TABLE 1    |    (Continued)
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et al. (2020). We also compared these predictions with the cur-
rent, improved version of the widely used MODIS GPP product 
(MOD17A2HGF v0.61: Running and Zhao  2021; https://​doi.​
org/​10.​5067/​MODIS/​​MOD17​A2HGF.​061). The goodness of fit 
between each of the modelled estimates of GPP and the flux-
derived GPP at each site was quantified by the root mean squared 
error (RMSE).

3   |   Results

The response of LUE to water stress could be described by 
Equation (1) using site-specific parameters (Figures 1 and S2). 
To assess the fit of the breakpoint regression model across sites, 
we computed R-squared values, included in Figure S2. As ex-
pected, the R-squared values are variable, reflecting site-specific 
environmental variability and inherent uncertainties. Despite 
this variability, the selection of the breakpoint regression model 
is supported by previous research (Fang and Gentine  2024), 
which demonstrated that a piecewise linear relationship is ap-
propriate for describing water stress limitation across diverse 
ecosystems. These findings provide a solid theoretical foun-
dation for applying the model to estimate GPP under varying 
moisture conditions.

Figures  2 and 3 depict site-specific parametrisation results, 
showing the dependence of GPP reduction thresholds and max-
imum assimilation values on aridity conditions. Both the max-
imum assimilation level and the critical threshold at which soil 
moisture stress starts to impact LUE were found to vary system-
atically with aridity. The maximum assimilation level under 
well-watered conditions becomes progressively lower from 
humid through semi-arid to arid sites (Figure 2).

The difference between humid, semi-arid and arid sites is sig-
nificant. The critical threshold is also reduced, such that water 
stress sets in at higher soil moisture in humid sites than in 
semi-arid or arid sites (Figure 2). This difference is also signif-
icant. Moreover, the slope of the stress function below the crit-
ical threshold becomes progressively steeper with increasing 
aridity. Thus, plants growing in more arid environments have a 
lower maximum LUE overall but sustain this level under drier 
soil conditions (Figure 3). These relationships were also evident 
when the intercept was not constrained to zero (Figure S3).

Both model parameters showed non-linear relationships with 
AI that could be fitted using Equation (2) (Figure 4). Although 
there were some outliers, these do not seem to be related to ei-
ther vegetation type (Figure S4) or the seasonal concentration 

FIGURE 1    |    Relationship between soil moisture stress and the β(θ) ratio. Examples of the fitted maximum β(θ) ratio (the ratio of actual flux-
derived to modelled well-watered gross primary production) and its response to relative soil moisture below the critical threshold (green line) for 
three sites representing the range of climatological aridity levels using site-specific parameters. The β(θ) ratio and relative soil water content are both 
unitless. Note that the scale above 1 has been compressed for visualisation purposes. Plots for all the sites used in the analysis are given in Figure S2.
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of precipitation (Figure  S5). The derived equations for the 
maximum β(θ) level (y) and the critical threshold of θ (ψ) are 
as follows:

and
We performed a sensitivity test to assess the impact of uncer-
tainty in the estimated parameters on GPP by substituting the 

(4)y =min
[

0.62 AI−0.45, 1
]

(5)ψ =min
[

0.34 AI−0.60, 1
]

FIGURE 2    |    Comparison of the maximum β(θ) ratio and the critical threshold value of soil moisture. Box-plot comparison of the fitted maximum 
β(θ) ratio (the ratio of actual flux-derived to modelled well-watered gross primary production) (above) and the critical threshold value of soil moisture 
(below) under arid, semi-arid and humid conditions, using site-specific parameters. Arid sites have AI > 5, semi-arid sites have AI between 2 and 5, 
and humid sites have AI < 2. The black line is the median, the box is the interquartile range and the whiskers show the range, with outliers shown as 
asterisks. Letters indicate whether the median values are significantly different based on the Kruskal–Wallis test, p < 0.05. Classes that are signifi-
cantly different from one another are indicated by different letters.

FIGURE 3    |    Maximum β(θ) ratio and the critical soil-moisture threshold under different aridity levels. Values of the fitted maximum β(θ) ratio 
(the ratio of actual flux-derived to modelled well-watered gross primary production) using site-specific parameters and the critical threshold value of 
soil moisture against the climatic aridity index (AI), showing non-linear regressions of both parameters against AI.
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upper and lower values of the standard errors on the fitted 
parameters in Equations  4 and 5. This test showed that these 
uncertainties had little impact on β(θ) and did not change the 
simulated GPP (Figure 5).

Implementation of the new empirical soil-moisture stress func-
tion, using aridity-based parameters (i.e., the same set of pa-
rameters, in Equations 4 and 5, applied to all sites), produced 
a substantial improvement in model performance compared 
to simulations with no soil-moisture stress function (Figures 6 
and S6–S8). At sites classified as arid (AI > 5), simulations that 
did not account for soil–water stress produced an overestima-
tion of maximum GPP between 2 and 8 gC m−2 d−1 (The only 
exception to this was AU-Lox where the P model predictions 
that did not account for soil-water stress accurately matched 
the observed magnitude of GPP; see Figure S4. This site is an 
irrigated orchard). The overestimation of peak GPP at sites clas-
sified as semi-arid (AI between 2 and 5) was of a similar mag-
nitude (2 to 10 gC m−2 d−1). Even at sites classified as humid 
(AI < 2), there was an improvement in performance at most 
sites (Figures 6 and S8).

To further illustrate the accuracy of the model, we present a 
heatmap scatter plot comparing simulated and observed daily 
GPP at the same selected sites displayed in Figure 6 (Figure S9). 
This visualisation provides a visual assessment of model accu-
racy relative to the 1:1 line, with denser concentrations of data 
points appearing in red. The model shows the strongest agree-
ment for lower GPP values, where the highest data density is 
concentrated, while discrepancies emerge at higher GPP values. 
R2 values for these sites confirm this pattern, with poor values 
in the three arid sites—AU-Crp, US-SRM and US-SRG—and in 
the semi-arid site (ES-LgS), but higher values for the other five 
sites—US-Var (0.76), US-Ton (0.70), AU-Wom (0.67), NL-Hor 
(0.75) and US-PFa (0.75), demonstrating good predictive skills 
in humid and semi-arid regions.

The improved performance compared to the version of the P 
model with no soil-moisture stress function is reflected in the 
RMSE values (Table 1). The RMSE for arid sites ranged from 
0.51 to 1.46 gC m−2 d−1 compared to 2.07 to 4.01 gC m−2 d−1 when 
no stress function was applied. All of the arid sites showed a re-
duction in RMSE, with an average reduction in RMSE of 69.3%. 
The RMSE for semi-arid sites ranged from 0.46 to 5.0 gC m−2 d−1 
compared to 1.63 to 5.6 gC m−2 d−1 when no stress function was 
applied. All but four of the 21 semi-arid sites showed a reduc-
tion in RMSE, with an average reduction in RMSE of 47.3%. 
The RMSE for humid sites ranged from 1.05 to 5.23 gC m−2 d−1 
compared to 1.75 to 13.08 gC m−2 d−1 when no stress function 
was applied. All but five of the 36 humid sites showed a reduc-
tion in RMSE, with an average reduction of 42.1%.

The new soil-moisture stress function also performed substan-
tially better than the stress function used in Pv1.0, reducing the 
overestimation of peak GPP across arid, semi-arid and humid sites 
(Figures  6 and S10–S12). The RMSE for arid sites ranged from 
0.51 to 1.46 gC m−2 d−1 compared to 0.87 to 2.25 gC m−2 d−1 when 
the Pv1.0 moisture-stress function was applied. All of these sites 
showed reduced RMSE. The RMSE for semi-arid sites ranged from 
0.46 to 5.0 gC m−2 d−1 compared to 1.02 to 4.01 gC m−2 d−1 when the 
Pv1.0 moisture-stress function was applied. All but six of these 22 
sites showed reduced RMSE. The RMSE for humid sites ranged 
from 1.05 to 5.23 gC m−2 d−1 compared to 1.56 to 12.65 gC m−2 d−1 
when the Pv1.0 moisture-stress function was applied. All but eight 
of these 36 sites showed reduced RMSE.

Comparison of the new soil-moisture stress function with 
MODIS GPP shows a similar level of performance (Figure  7; 
Supplementary Figures  13–15). The average RMSE for the P 
model and MODIS at arid sites is 6.67 and 5.80 gC m−2 8-d−1, re-
spectively, and the range of RMSE values (Table 2) is comparable 
(3.51–11.08 gC m−2 8-d−1 for the P model; 3.50–9.83 gC m−2 8-d−1 
for MODIS GPP). The average RMSE at semi-arid sites is 13.98 

FIGURE 4    |    Predicted β(θ) ratio functions for different aridity levels. Predicted β(θ) ratio (the ratio of actual flux-derived to modelled well-watered 
gross primary production) functions based on the regressions shown in Figure 3, for different levels of the aridity index (AI).
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and 14.66 gC m−2 8-d−1 for the P model and MODIS, respec-
tively, with ranges 3.84–39.41 gC m−2 8-d−1 (P model) and 4.62–
51.60 gC m−2 d−1 (MODIS GPP). The average RMSE at humid 

sites is 19.61 and 16.80 gC m−2 8-d−1 for the P model and MODIS, 
respectively, and again the ranges are comparable (P model: 6.17 
to 40.95 gC m−2 8-d−1; MODIS 6.40 to 30.06 gC m−2 8-d−1).

FIGURE 5    |    Sensitivity of the model to parameter uncertainty. The plot shows gross primary production (GPP) using the new soil-moisture stress 
function (GPPnew) at six sites representing the range of climatological aridity compared to the simulated GPP resulting from adding the upper 
(GPPnew +) and lower (GPPnew −) standard error to the canonical fitted parameters in Equations 4 and 5. The flux-derived values (GPPobs) are also 
shown. Note that the scale varies between the rows.
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11 of 19

FIGURE 6    |    Impact of new soil-moisture stress function on simulated gross primary production. Examples of how the new soil-moisture stress 
function, with its aridity-based parameters, modifies simulated gross primary production (GPPnew) at nine sites representing the range of climato-
logical aridity compared to how the original stress function, when applied in the sub-daily model, affects simulated GPP (GPPv1.0). The new model 
is compared to the simulated level of GPP under well-watered conditions (GPPww), and to flux-derived values (GPPobs). Note that the scale varies 
between the rows. Plots for all the flux tower sites are given in Figures S6–S11.

 13652486, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.70098 by G

iulia M
engoli - <

Shibboleth>
-m

em
ber@

reading.ac.uk , W
iley O

nline L
ibrary on [11/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 19 Global Change Biology, 2025

Figure 8 illustrates how well the model explains variations in 
total annual GPP across different sites and aridity classes. It 
compares observed and simulated total annual GPP—computed 

by summing daily GPP values, accounting for soil–water stress 
using the new empirical soil-moisture stress function, and av-
eraging across multiple years with adequate data coverage 

FIGURE 7    |    Comparison of simulated and observed gross primary production under different aridity levels. Comparison of simulated gross pri-
mary production, including the new soil-moisture stress function (GPPnew), with its aridity-based parameters, and the gross primary production 
simulated by MOD17A2HGF v0.61 (GPPMODIS) against flux-derived values (GPPobs) at nine sites representing the range of climatological aridity. 
Note that the scale varies between the rows. Plots for all the flux tower sites are given in Figures S12–S14.
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TABLE 2    |    Statistics of P model performance (root mean squared error, RMSE and percent bias, PBIAS) using the new soil-moisture stress 
function (new), with its aridity-based parameters, compared to MOD17A2HGF v0.61 performance (MODIS). The sites are grouped by aridity index 
(AI) classes (see also Table S1).

Site ID AI ARIDITY RMSE(new) RMSE(MODIS) PBIAS (new) PBIAS (MODIS)

AU-TTE 7.17 arid 4.01 4.27 702.7 692.2

AU-ASM 6.97 arid 7.51 5.96 −2.2 20.7

AU-Cpr 6.36 arid 5.51 4.45 −24.7 18.3

US-Wkg 6.34 not used 6.96 6.78 14.2 −19.4

AU-Lox 6.32 not used 52.43 41.96 −75.5 −57

US-Whs 5.89 arid 7.19 5.49 74.6 32.7

AU-GWW 5.75 arid 3.51 3.45 −18.1 7.4

US-SRG 5.08 arid 11.08 9.83 7.4 −7.1

US-SRM 5.02 arid 7.86 7.13 −5.4 −4.6

US-Cop 3.99 semi-arid 3.84 4.62 112.2 145.2

AU-Ync 3.96 semi-arid 7.99 9.91 156.1 241.9

ES-Ln2 3.84 semi-arid 6.86 9.92 1080.4 1594.5

AU-Stp 3.71 semi-arid 10.11 7.62 −15.4 19.8

AU-Emr 3.08 semi-arid 7.75 11.1 47.6 84.8

AU-Gin 2.93 semi-arid 12.56 8.6 −40.8 18.1

AR-SLu 2.89 semi-arid 39.41 51.59 −56.3 −74.2

ES-LgS 2.88 semi-arid 5.49 8.27 −10.7 47.7

CN-Du2 2.7 semi-arid 11.15 9.28 89.8 63.8

ZA-Kru 2.69 semi-arid 23.02 15.19 −51.3 12

US-AR2 2.61 semi-arid 10.04 9.05 61.2 15.2

US-AR1 2.49 semiarid 15.48 15.85 −17.4 −29.1

AU-Whr 2.39 semi-arid 10.64 6.86 −35.3 −9.2

CN-HaM 2.34 semi-arid 12.64 14.71 −40.8 −56.8

AU-Dry 2.32 semiarid 15.49 12.06 −40.5 −17.6

IT-Noe 2.26 semi-arid 12.55 19.84 −39.7 49.7

US-Ton 2.23 semi-arid 10.02 8.71 −21 5.1

US-Var 2.22 semi-arid 9.52 13.97 39.2 64.4

ZM-Mon 2.18 semi-arid 24.53 17.68 −50.2 −14.7

AU-RDF 2.16 not used 17.93 23.67 −1.6 28.7

US-ARb 2.04 semi-arid 25.27 29.53 −21.4 −34

US-ARc 2.04 semi-arid 19.62 23.62 −22.9 −32.8

AU-DaS 1.81 humid 21.7 22.01 −48.1 −31.3

AU-Rig 1.81 humid 13.51 14.97 −6.2 −2.3

AU-DaP 1.8 humid 24.87 23.36 −32.1 −6.4

AU-Wom 1.75 humid 15.75 14.04 −23.7 4.7

IT-Cp2 1.73 humid 22.62 14.21 −33.5 −2.5

(Continues)
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14 of 19 Global Change Biology, 2025

(> 50%) and data quality (> 0.8) for each site. Total annual GPP 
is in units of gC m−2 year−1.

Across most sites, the model captures a reasonably consistent 
pattern of GPP over- or underestimation across years, suggest-
ing stability in performance (preliminary figures not shown). 
Consequently, we averaged GPP across years to obtain a multi-
year mean of total annual GPP per site, given that no differences 
among years were highlighted from preliminary investigations. 
This approach also ensures data consistency by excluding years 
with low data coverage and poor data quality.

The majority of sites cluster closely around the 1:1 line, indi-
cating that the model performs well overall after the applica-
tion of the new function. To further assess the performance of 
the model, we conducted an additional experiment using site-
specific parameters instead of the aridity-based approach. As 
shown in Supplementary Figure  16, this approach yielded a 
slightly higher R2 value (0.85) compared to the aridity-based 
parameterisation (0.70, Figure  8). This result confirms that 
the aridity-based formulation effectively captures most of the 
variability while some site-specific differences remain unac-
counted for. While some arid sites show minor overestimations 

Site ID AI ARIDITY RMSE(new) RMSE(MODIS) PBIAS (new) PBIAS (MODIS)

AU-Wac 1.69 humid 19.49 20.18 −37.3 19

FR-Pue 1.57 humid 11.57 10.92 −14.6 8.2

AU-Ade 1.55 humid 26.83 24.76 −52.8 −43

AU-How 1.46 humid 24.62 17.08 −51.2 −22

CA-SF3 1.41 humid 6.17 12.08 8.2 23.8

FR-Fon 1.39 humid 26.27 12.05 −34.2 3.6

IT-Col 1.35 humid 25.12 20.47 −23.9 0.9

AU-Tum 1.34 humid 28.98 22.33 −32.4 −16.3

IT-SRo 1.34 humid 20.78 14.64 −34.7 −13.7

US-KS2 1.21 humid 40.95 17.2 88.1 24.6

CA-Man 1.19 humid 21.68 16.62 85.6 33.5

CA-NS4 1.19 humid 10.51 8.85 45.1 29.7

DE-Gri 1.18 humid 21.36 18.19 −34.9 −27.8

IT-MBo 1.18 humid 15.58 13.19 −3.1 −18.4

RU-Ha1 1.11 humid 7.48 6.4 −16.4 −14.6

FR-LBr 1.1 humid 15.57 12.29 −30.6 −20.2

US-Wi6 1.08 humid 14.74 21.4 59.1 86.6

AR-Vir 1.02 humid 23.03 26.32 −21.5 −20

US-PFa 1.02 humid 13.32 16.33 46.6 54.7

US-Syv 1.01 humid 13.98 10.97 15.6 −9.7

RU-Fyo 0.97 humid 15.41 15.45 −20.1 −26.6

BE-Bra 0.91 humid 9.3 6.62 −6.8 0

FI-Hyy 0.87 humid 14.8 10.17 −11.7 −18.9

NL-Hor 0.84 humid 13.34 12.57 −6.1 −6.8

CH-Oe1 0.8 humid 28.33 30.06 −30.2 −37.2

BR-Sa3 0.78 humid 38.47 26.22 31 −21

CZ-BK2 0.78 humid 20.05 19.45 24.1 21.3

DE-RuR 0.78 humid 21.85 16.78 37.1 −24.8

BE-Vie 0.73 humid 16.21 19.69 −22.5 −35.2

CH-Fru 0.71 humid 28.03 23.37 44.5 −34.8

IT-Tor 0.63 humid 13.73 13.66 38.6 −34.7

TABLE 2    |    (Continued)
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or underestimations, both semi-arid and humid sites exhibit 
a slight tendency for the model to underestimate annual GPP. 
Overall, no clear systematic bias is apparent across aridity 
classes, and a good fit with the observations is noticeable in the 
majority of sites analysed.

There are, however, some notable exceptions where the model 
fails to match observed GPP (Figure 8; Supplementary Figures 6, 
7). Specifically, the sub-daily P model with the new function 
fails to capture the trends of observed GPP at the semi-arid site 
ES-Ln2 and the arid site AU-TTE (Supplementary Figures  6, 
7), as does the sub-daily P model with the previous function 
(Supplementary Figures  9, 10). Furthermore, these two sites 
are also sites where the MODIS GPP model shows a very large 
bias, similar to the bias of the sub-daily P model (Supplementary 
Figures 12, 13). Both sites have distinct characteristics that likely 
limit the model's ability to capture the observed GPP. The arid 
AU-TTE site experiences highly seasonal rainfall with consider-
able interannual variability, while the semi-arid ES-Ln2 site is a 
managed ecosystem.

4   |   Discussion

We have developed an empirical function to account for soil-
moisture stress on LUE in the sub-daily version of the P model 
(P-model subDaily v1.0.0). The introduction of an empirical 
function to account for soil-moisture stress, previously devel-
oped by Stocker et al. (2020) for use with the standard P model 
(Pv1.0), improved the simulation of GPP by focusing on reducing 
GPP when soil moisture was below a critical threshold of the 

β(θ) ratio. This stress function does not perform as well in the 
sub-daily P model. This reflects differences in the acclimation 
timescales of the two models: the standard P model acclimates 
to daily average conditions, while the sub-daily P model opti-
mises for noon conditions when GPP responses to soil-moisture 
stress are more pronounced. Consequently, a stronger correction 
is needed in the sub-daily P model to capture this effect ade-
quately. By incorporating a reduction in the maximum level of 
the β(θ) ratio with increasing aridity, we have further improved 
the performance of the sub-daily P model. However, the com-
parison with the Stocker et al. (2020) correction shows that the 
two corrections are not interchangeable.

The performance of the P-model subDaily v1.0.0 is similar 
to that of the most recent and improved gap-filled version of 
MODIS GPP (MOD17A2HGF v 0.61). MODIS is a widely used 
product but uses a PFT-specific parametrisation, whereas the 
P model makes no distinctions by PFTs. Furthermore, whereas 
MODIS is empirically based, the P model has a strong theoret-
ical basis in eco-evolutionary optimality theory, allowing it to 
take account of the impact of changing CO2 on assimilation in 
a natural way. Thus, our theory-based and parameter-sparse 
model provides an alternative approach that performs as well 
as the MODIS product.

The application of the new function substantially reduces the 
overestimation of GPP compared to the original model and to 
the moisture stress function developed by Stocker et al. (2020) 
when applied in the sub-daily model. However, the model does 
not always capture peaks in GPP shown by the observations; 
it also overestimates GPP outside the growing season at some 

FIGURE 8    |    Comparison of simulated and observed total annual gross primary production across multiple sites. Comparison of simulated total 
annual gross primary production including the new soil-moisture stress function, with its aridity-based parameters, and the flux-derived total an-
nual gross primary production across 67 sites classified by aridity (arid, semi-arid, humid). Points represent log-transformed values of GPP observed 
(log(GPPobs) and simulated (log(GPPsim) at the different sites. Each point shows the multiyear mean of total annual GPP at each site, calculated from 
years with > 50% data coverage and > 0.8 data quality. The 1:1 line indicates ideal model performance. GPP is in units of gC m−2 year−1.
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sites (e.g., US-Var). It is difficult to identify the causes of spe-
cific mismatches between eddy-covariance-derived and simu-
lated GPP on particular days or weeks because such mismatches 
can have multiple causes. In addition to possible issues with the 
model itself, there is uncertainty in the partitioning of measured 
net ecosystem exchange to GPP versus ecosystem respiration 
(particularly during the non-growing season) and unavoidable 
discrepancies between the satellite-derived pixel data and the 
footprint of the flux tower (Prentice et al. 2024).

The reduction in the maximum level of LUE with increasing 
aridity is consistent with the analyses of Fu et al. (2022), which 
focused on EF. The climatological aridity index (AI) provides a 
measure of the degree to which water is likely to be limiting (to 
both EF and LUE) at some time during the growing season. Our 
findings confirm the proposed hypothesis that the response of 
GPP to soil moisture varies systematically with climatic arid-
ity, rather than being dependent on the type of vegetation. This 
pattern reflects different water-use strategies adopted by plants 
to optimise carbon assimilation over the whole growing season 
in the climate to which they are adapted (Manzoni et al. 2011b; 
Manzoni et al. 2014; Bassiouni, Manzoni, and Vico 2023; Vico 
et al. 2013; Fu et al. 2022). The fact that there is a limitation on 
EF and LUE—even during intervals with abundant soil mois-
ture—in more arid climates supports this hypothesis of climate-
adapted water conservation strategies. Moreover, as also noted 
by Fu et al. (2022) for EF, the slope of β(θ) against θ (y/ψ in equa-
tion (1)) becomes steeper with increasing aridity. This behaviour 
results from the values of the exponent of AI in Equations  (4) 
and (5) (0.60 > 0.45), which indicate that y/ψ is an increasing 
function of AI. It implies that, for every value of AI, there is a 
value of θ at which the associated LUE is maximised, exceeding 
that of all other β(θ) functions, and that this optimal θ value de-
clines as AI increases.

It is well known that some plants continue to photosynthesise at 
higher levels of drought stress than others, a behaviour that re-
flects variability in the strictness of stomatal regulation (Tardieu 
and Simoneau 1998; McDowell et al. 2008). However, both strict 
(isohydric) regulation and less strict (anisohydric) regulation 
can occur within the same community (e.g., Mediavilla and 
Escudero  2003; Cruz de Souza et  al.  2020; Raffelsbauer et  al. 
2023) and species may show variable regulation over the sea-
son and between years (Klein 2014; Konings and Gentine 2017). 
Thus, although there is some evidence that this behaviour is en-
vironmentally controlled (Manzoni et al. 2011b; McDowell 2011; 
Kumagai and Porporato  2012; Zhou et  al.  2014; Konings and 
Gentine  2017), consistent with our finding that the critical 
threshold becomes lower as climatological aridity increases, 
it is likely that plant communities often show a diversity of re-
sponses. Our results indicate considerable scatter in both fitted 
parameters, whose origin and potential adaptive significance 
would repay more detailed study.

This work was originally designed to improve the performance 
of the P model and provide a simple algorithm that could have 
more general utility in land surface modelling. The new ap-
proach enables the highly parsimonious and parameter-sparse 
sub-daily P model to be applied globally, across a wide range of 
aridity and soil moisture conditions, without requiring complex 
parametrisation or tuning. How best to represent soil moisture 

in this context is a challenge. We have opted for a minimalist 
approach, using SPLASH. SPLASH is a single-bucket model that 
considers only water that is held between the wilting point and 
field capacity, and does not account for variation in water hold-
ing capacity among soils. The x-intercept of the breakpoint rela-
tionship corresponds to the wilting point. We have constrained 
breakpoint regressions through the origin since little informa-
tion was lost by doing so. In reality, the permanent wilting point 
varies across species (Koepke, Kolb, and Adams 2010; Bartlett, 
Scoffoni, and Sack  2012) but is also strongly affected by soil 
properties (Czyż and Dexter  2012; Chagas Torres et  al.  2021), 
complexities that we have intentionally ignored to retain the 
general applicability of our approach. By using a generic soil 
water balance model, we have also intentionally decoupled AET 
(computed by SPLASH on the assumption that the ratio AET/
PET is proportional to relative soil water content) from GPP, thus 
disregarding the feedback by which seasonal changes in GPP 
can influence the seasonal time course of AET and soil mois-
ture. This trade-off simplifies the derivation of the function and 
facilitates its implementation in a global modelling framework. 
However, while ignoring the coupling is a logical starting point 
since the fully coupled system may show a greater variety of be-
haviours, consideration of the coupling will be necessary for cli-
mate modelling applications.

We have developed an empirical soil-moisture stress function 
that not only improves the performance of the P model but is 
also readily transferable to other modelling contexts. This re-
search, therefore, represents a step towards an empirically well-
founded representation of the interactions between carbon and 
water cycling, where the next step will involve the interactive 
coupling of transpiration and GPP in a land-surface modelling 
framework. However, we have used a long-term average of cli-
mate parameters to calculate the aridity index (AI). Under a 
changing climate, AI will change along with changes in vege-
tation properties such as rooting depth and hydraulic strategy. 
This poses two practical questions about how to implement our 
approach in the context of future climate change. First, what 
is the appropriate timescale at which to update the AI calcula-
tion? Second, how will the response to aridity be modified by 
changes in atmospheric CO2? Both questions are likely related 
to trait plasticity, plant lifespan and the speed and magnitude of 
climate change. Further research should prioritise addressing 
these questions to enhance the applicability of our approach in 
a changing world.

5   |   Conclusions

We have derived a new empirical function to account for the 
soil moisture effect on the light-use efficiency of GPP as a 
function of climatological aridity. The new function provides 
a constraint on both the maximum level of GPP and the crit-
ical soil-moisture threshold, with increasing climatological 
aridity. Climatological aridity provides a measure of the de-
gree to which water is likely to be limiting at some time during 
the growing season. The new formulation is thus consistent 
with the idea that plants adopt water conservation strategies 
to optimise assimilation over the whole growing season in the 
climate to which they are adapted. The new formulation pro-
duces an improved simulation of GPP at flux tower sites from 
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arid, semi-arid and humid regions, both during water-stressed 
conditions and during unstressed periods. Although this new 
function is tested in the context of the existing LUE model (the 
P model), it is generic and could easily be implemented in other 
models, including land-surface schemes.
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