
 

 
 

 
 
 
 

 

 

 

Evaluating the consistency of 
ensemble forecasts 
 

A thesis submitted for the degree of Doctor of Philosophy 
 

Department of Geography & Environmental Science 

David Shaw Richardson 
September 2024 





 

i 
 

Declaration 

I confirm that this is my own work and the use of all material from other sources has been 

properly and fully acknowledged. 

 

David Richardson





 

iii 
 

Abstract 

Ensemble forecasts play an essential role in providing early warnings to mitigate the impact of 

hazardous weather events. However, there are still many areas where ensemble information is 

not fully exploited. One key issue limiting the uptake of ensemble forecasts is the jumpiness that 

can sometimes occur between successive forecasts. Ensemble forecasts show the range of 

future weather scenarios that can occur, allowing users to make appropriate risk-based 

decisions. Occasionally a new forecast seems to contradict the previous forecast by introducing 

a new weather scenario that was not represented in the previous ensemble. Such 

inconsistencies can cause users to lose confidence in the forecasting system.  

This thesis aims to improve the diagnosis and understanding of these ensemble forecast 

inconsistencies. First, a methodology is developed to quantify the consistency between a 

sequence of ensemble forecasts valid for a given time, taking account of the full ensemble 

distribution. This enables a quantitative evaluation of the consistency or jumpiness between 

successive forecasts, providing insights into the relationship between jumpiness, skill and 

spread. 

The thesis also provides practical guidance to address user concerns about ensemble jumpiness. 

It provides specific guidance that will enable users to make better use of the available 

operational ensemble tropical cyclone track and genesis forecasts. The thesis shows that 

evaluation of forecast consistency is complementary to the current focus on skill and ensemble 

spread, and that an integrated approach using both skill and consistency measures can be 

beneficial in evaluation of ensemble forecast performance. 

Implementation of this approach at NWP centres will ensure that users have the necessary 

information and guidance to mitigate the impact of run-to-run jumpiness and will provide 

feedback to model developers on model weaknesses, complementing existing evaluation tools. 

The research in this thesis will help improve the utilisation of ensemble forecasts to provide 

early warnings of significant weather hazards, contributing to the UN Early Warnings for All 

initiative.  
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Chapter 1  Introduction 

1.1 Motivation and aim 

The chaotic nature of the atmosphere means that numerical weather prediction (NWP) forecasts are 

sensitive to small changes in their initial conditions. Operational NWP centres address this by running 

a number of forecasts from similar starting conditions. The resulting ensemble of forecasts shows the 

range of future atmospheric states consistent with the known uncertainties in the initial conditions 

(Leutbecher and Palmer 2008; Swinbank et al. 2016).  

The skill of weather forecasts has increased steadily over the years (Bauer et al. 2015; Haiden et al. 

2019). This is a result of improvements to the forecast models, an increase in the number of 

observations, and improvements to the data assimilation which processes the observations to make 

the initial conditions for the forecast. Bauer et al. (2015) refer to this steady progress as the “quiet 

revolution” of NWP. Ensemble forecast skill has also improved through better quantification of initial 

condition uncertainties and representation of model uncertainties (Buizza and Richardson 2017; 

Buizza et al. 2008; Leutbecher et al. 2017; Swinbank et al. 2016). 

Despite the increase in skill and undoubted progress in the use of ensemble forecasts, there are still 

many areas where the ensemble information is not fully exploited. One of the key issues limiting the 

uptake of ensemble forecasts is run-to-run jumpiness, when the latest ensemble run seems to 

contradict the previous forecast by introducing a new weather scenario that was not represented in 

the earlier forecast. For example, the ensemble forecast made on Monday may predict that the 

coming weekend will be mild and wet over the UK, with perhaps some uncertainty about the location, 

timing and amount of rain. With the benefit of additional observations in the initial conditions, the 

updated forecast made on Tuesday should reduce these uncertainties giving more clarity about where 

and when the rain will occur. If instead, Tuesday’s forecast changes to predict a cold dry weekend, this 

introduces an inconsistency with the previous forecast: if this cold weather could occur at the 

weekend then Monday’s forecast should have included the possibility among the solutions in the 

ensemble. Similarly, if Monday’s ensemble predicts that a tropical cyclone will make landfall at the 

weekend somewhere along the coast of Texas, Tuesday’s forecast will be consistent if it narrows down 

the at-risk areas of the Texas coast; but the Tuesday forecast would be inconsistent if it changed to 

predict landfall in Florida which was not identified as at risk in Monday’s forecast. These differences 

between successive forecasts valid for the same time are referred to as run-to-run consistency or 

jumpiness. Concerns over such inconsistencies are regularly raised in feedback from users of ECMWF 

forecasts  (Hewson 2021, 2020). They present a significant challenge to forecast centres and can cause 

users to lose confidence in the forecasting system (Hewson 2020; Pappenberger et al. 2011b; McLay 
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2011; Elsberry and Dobos 1990; Magnusson et al. 2021; Dunion et al. 2023). A major challenge in 

ensemble forecasting is to understand why these inconsistencies occur and how ensemble forecast 

systems need to be improved to address the underlying causes (Dunion et al. 2023).  

Additional significant outstanding challenges for ensemble forecasting include the prediction of high-

impact weather and regime transitions (ECMWF 2015; Brunet et al. 2023). In order to evaluate 

progress and make relevant choices to maximise the performance of forecasts, relevant diagnostics 

and verification tools are needed. Verification and diagnostic tools have been essential in monitoring 

progress and identifying weaknesses in the forecasting system, helping to guide the direction of 

research to improve the forecasts. As the modelling systems evolve, new verification and diagnostic 

approaches will be needed (ECMWF 2015; Ebert et al. 2013, 2018; Dorninger et al. 2018).  

One major challenge in the evaluation of forecast performance for high impact weather is the 

availability of observations.  Differences in reporting practices between regions, differences in spatial 

or temporal scale between observation and model, lack of common definition between observed and 

modelled quantities (e.g. thunderstorm or tropical cyclone), measurement errors, or complete lack of 

observations (data sparse regions) all have significant impact on the ability to properly assess forecast 

quality and identify underlying model weaknesses. 

The consistency between successive ensemble forecasts valid for the same time is referred to as run-

to-run consistency or jumpiness. Evaluation of the run-to-run consistency of ensemble forecasts will 

directly address the concerns over ensemble jumpiness raised by forecasts users. This evaluation does 

not depend on the availability of observations and is therefore not affected by the observational issues 

described above. Quantifying the level of jumpiness in an ensemble system provides valuable 

information to the forecast user, while identifying the circumstances in which jumpiness occurs is an 

important step towards addressing the underlying cause. This may complement the established 

verification methods and help to identify weaknesses in the ensemble prediction system. 

The evaluation of run-to-run ensemble consistency has so far received relatively little attention in the 

literature. Therefore the main aim of this PhD thesis is: 

Aim: to carry out research to improve the use and understanding of ensemble forecasts through 

the evaluation of run-to-run consistency together with existing verification methods. 

1.2 Objectives and research questions 

1.2.1 Evaluation of the run-to-run consistency in ensemble forecasts 

The first step was to develop and demonstrate an appropriate score to evaluate the run-to-run 

jumpiness of ensemble forecasts. 
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Previous work on forecast consistency has focused on deterministic forecasts, for example in the 

context of model output statistics (Ruth et al. 2009), comparing automated with manual forecasts 

(Griffiths et al. 2019), comparing deterministic rainfall forecasts from different models (Ehret 2010) 

and in forecasts of river flow (Pappenberger et al. 2011a). The only study to date on the jumpiness in 

the ECMWF ensemble focused on the deterministic ensemble mean forecast (Zsoter et al. 2009). None 

of the methods used in these studies are directly applicable to assess the consistency of a sequence 

of ensemble forecasts taking account of the full ensemble distribution. There is therefore a need to 

develop a measure of forecast consistency that accounts for all aspects of the ensemble empirical 

distribution. 

This raised the first key research question: How can we identify run-to-run consistency in a sequence 

of ensemble forecasts? 

This question was the motivation for the first objective of this PhD research: 

Objective 1: Develop a suitable index to measure the run-to-run consistency in a sequence of 

ensemble forecasts and demonstrate how this can identify important cases of high ensemble 

forecast jumpiness. 

This objective was addressed in the study presented in Chapter 3 entitled “Evaluation of the 

consistency of ECMWF ensemble forecasts” and published in Geophysical Research Letters in 2020. 

1.2.2 Jumpiness in ensemble forecasts of Atlantic tropical cyclone tracks 

The forecasting of tropical cyclone (TC) tracks is one area where the flow-dependent probabilistic 

information in operational ensembles is not fully exploited (Titley et al. 2019; Dunion et al. 2023; 

Conroy et al. 2023) and run-to-run jumpiness in ensemble track forecasts has caused difficulties for 

forecast users (Magnusson et al. 2021). 

Hurricane Laura (2020) was one case which had unusually large inconsistency from run to run in the 

ECMWF tracks, causing problems for forecasters at the National Hurricane Center (NHC) who were 

trying to assess the areas at risk as along the US Gulf coast (Magnusson et al. 2021). As well as being 

unusually jumpy compared to ECMWF forecasts for other TCs, the jumpiness of the ECMWF tracks for 

Laura was not seen in the track forecasts from other global ensemble systems.  

This raised the second key research question: How does run-to-run consistency vary between ensemble 

forecasts from different centres, and do these differences shed light on the causes of jumpiness?, which 

motivated the second objective: 

Objective 2: Evaluate and compare the jumpiness in ensemble forecasts of Atlantic tropical cyclone 

tracks from three operational centres, identify any common factors and provide guidance to users.  
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This objective was addressed in the study presented in Chapter 4 entitled “Jumpiness in ensemble 

forecasts of Atlantic tropical cyclone tracks” and published in Weather and Forecasting in 2024. 

1.2.3 Jumpiness of TC genesis  

Prediction of TC genesis is a major scientific challenge and the processes involved are not well 

understood (Tang et al. 2020; Rajasree et al. 2023). Although ensemble forecasts have been shown to 

have some skill in predicting TC genesis (Komaromi and Majumdar 2014, 2015; Majumdar and Torn 

2014; Yamaguchi and Koide 2017; Yamaguchi et al. 2015), the use of ensemble probabilistic 

information in TC genesis forecast products for operational TC centres is still limited (Hon et al. 2023). 

One of the key issues limiting the uptake of ensemble forecasts is the run-to-run jumpiness that can 

occur in some situations (Dunion et al. 2023; Magnusson et al. 2021). Another factor is the lack of 

routine evaluation of the products provided by the global centres: although ECMWF regularly 

publishes verification results for ensemble forecasts of the track and intensity of existing TCs (Haiden 

et al. 2023), it does not routinely evaluate genesis forecasts, so users do not have a clear picture of 

ensemble performance in predicting genesis (Magnusson et al. 2021).   

A major difficulty in the evaluation of TC genesis forecasts is the lack of a common definition across 

different models and observation datasets. Reporting practices differ across regions, while differences 

in feature identification between different TC trackers can have a significant impact on the number of 

TCs identified in ensemble forecasts covering the period of an event that is subsequently observed 

(Conroy et al. 2023) therefore affecting the forecast probability of the genesis event. The absence of 

a generally agreed best practice for the definition and evaluation of TC genesis has been identified as 

an important area for the international TC community to address (Dunion et al. 2023). 

The lack of routine operational verification, poor understanding of occasional run-to-run jumpiness 

and the representativeness issues surrounding evaluation of TC genesis against observations led to 

the third key research question: Can an integrated approach using both skill and consistency measures 

be beneficial in evaluation of ensemble forecast performance for weather hazards with significant 

forecasting challenges and significant observational representativeness or uncertainty issues?  

This motivated the third objective:  

Objective 3: Evaluate the skill and consistency of ECMWF forecasts of Atlantic tropical cyclone 

genesis, provide guidance to users and identify factors affecting forecast performance. 

This objective was addressed in the study presented in Chapter 5 entitled “Skill and consistency of 

ECMWF forecasts of Atlantic tropical cyclone genesis” which was submitted to Weather and 

Forecasting in 2024. 
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1.3 Structure of the thesis 

The structure of the thesis (Figure 1.1) is formed around the three main papers produced during the 

PhD, which are re-formatted into the format of the thesis in order to preserve the literary unity of the 

thesis as a whole. Table 1-1 summarises the research questions and the corresponding objectives 

introduced in section 1.2, together with the title of the chapter containing the associated research 

study.  

Chapter 2 provides a literature review to substantiate the motivation for carrying out the research on 

ensemble forecast consistency and introduce the main datasets used in the thesis. Chapters 3, 4, and 

5 contain the three main research outputs of this thesis, addressing in turn the three objectives set in 

section 1.2. Chapter 6 contains a summary of additional papers and reports that I have contributed to 

during this PhD and that are connected to the work of the thesis. Chapter 7 discusses the key findings 

and limitations of the research conducted during the thesis and provides recommendations for next 

steps to take forward the outcomes of the thesis. Finally, conclusions to the thesis are presented in 

Chapter 8. A list of references is provided at the end of the thesis, followed by appendices containing 

the published versions of Chapters 3 and 4 and the submitted version of Chapter 5, together with 

other important co-authored papers and reports.  

 

 

Figure 1.1.  Schematic structure of the PhD. 
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Chapter contents 

Chapter 2: Literature review. 
Research Question Objective Chapter details 

How can we identify run-to-run 
consistency in a sequence of 
ensemble forecasts? 

Develop a suitable index to 
measure the run-to-run 
consistency in a sequence 
of ensemble forecasts and 
demonstrate how this can 
identify important cases of 
high ensemble forecast 
jumpiness. 
 
 

Chapter 3: Evaluation of the consistency 
of ECMWF ensemble forecasts 

How does run-to-run consistency 
vary between ensemble forecasts 
from different centres, and do these 
differences shed light on the causes 
of jumpiness? 

Evaluate and compare the 
jumpiness in ensemble 
forecasts of Atlantic 
tropical cyclone tracks 
from three operational 
centres, identify any 
common factors and 
provide guidance to users. 

Chapter 4: Jumpiness in ensemble 
forecasts of Atlantic tropical cyclone 
tracks 

What factors affect the jumpiness 
and skill of TC genesis forecasts? 
 
Can an integrated approach using 
both skill and consistency measures 
be beneficial in evaluation of 
ensemble forecast performance for 
weather hazards with significant 
forecasting challenges and  
significant observational 
representativeness or uncertainty 
issues? 

Evaluate the skill and 
consistency of ECMWF 
forecasts of Atlantic 
tropical cyclone genesis, 
provide guidance to users 
and identify factors 
affecting forecast 
performance 

Chapter 5: Skill and consistency of 
ECMWF forecasts of Atlantic tropical 
cyclone genesis 

Table 1-1. Summary of research questions and the associated objectives and chapters. 
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Chapter 2  Literature review 

2.1 Ensemble forecasting 

Ensemble predictions have been produced regularly at the European Centre for Medium-Range 

Weather Forecasts (ECMWF) since December 1992 (Molteni et al. 1996) and at the National Centers 

for Environmental Prediction (NCEP) (Toth and Kalnay 1993). Today, global ensemble prediction 

systems (EPS) are run at many operational NWP centres to provide forecasts for the medium range 

(up to two weeks ahead).  

Typically these EPS comprise a control forecast initialized from the operational analysis, plus additional 

integrations initialized from perturbations to the control analysis (Buizza et al. 1998). The size and 

resolution of the ensemble is a compromise dependent on available high-performance computing 

(HPC) resources. The operational EPS usually have 20-50 members and are run at a lower spatial 

resolution than the single high-resolution deterministic forecast that is also run as part of the 

operational forecast suite. The EPS complements the deterministic forecast by the provision of 

information about the probability distribution of future weather, based on uncertainty in the initial 

analysis. 

In 2023 a major milestone in global NWP was achieved when ECMWF upgraded the resolution of the 

ensemble to match that of the deterministic forecast and so effectively make a unified purely 

ensemble-based forecasting system (Haiden et al. 2023).  

As well as benefitting from improvements to the data assimilation and NWP model, ensemble forecast 

skill has also improved as the forecast uncertainties have been better quantified through 

improvements to the initial condition perturbations and representation of model uncertainties (Buizza 

and Richardson 2017; Buizza et al. 2008; Leutbecher et al. 2017; Swinbank et al. 2016; Zhou et al. 2022; 

Inverarity et al. 2023) 

Ensemble forecasts generate a large amount of data, and the ability to extract and communicate the 

relevant information for each user’s decision-making process is essential to the successful use of the 

ensemble. Several products have been developed to address different user requirements. Clustering 

products group similar ensemble members together depending on defined flow characteristics 

appropriate for different applications (Ferranti et al. 2015, 2018; Neal et al. 2016, 2024; Richardson et 

al. 2020a; Grams et al. 2017). The Extreme Forecast Index (EFI) was designed to alert users to 

potentially extreme weather (Lalaurette 2003; Zsoter et al. 2015). Products to automatically identify 

and track tropical cyclones (Conroy et al. 2023; Heming et al. 2019; Titley et al. 2019; Magnusson et 

al. 2021) and extratropical cyclones (Hewson and Titley 2010) can be used to identify areas at risk from 
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potentially damaging storms. This thesis investigates run-to-run ensemble forecast consistency using 

some of these operational products designed to focus on the large-scale flow (Chapter 3) and high 

impact weather (tropical cyclones tracks in Chapter 4 and tropical cyclone genesis in Chapter 5). 

The main focus of this thesis is on the global medium-range ensembles from the European Centre for 

Medium-Range Weather Forecasts (ECMWF). The ECMWF forecasting system including the ensemble 

(ENS) is upgraded about once a year, with improvements introduced to the data assimilation, model 

physics and dynamics, and ensemble configuration (Haiden et al. 2019, 2021, 2022). Relevant 

information about the operational configurations used in each part of this thesis is provided in the 

data sections of Chapter 3, 4 and 5. In Chapter 4, the ECMWF ensemble TC track forecasts were 

compared with those from two other global centres: the US National Centers for Environmental 

Prediction (NCEP) and the UK Met Office. The forecast data from the other two centres was retrieved 

from the TIGGE database (Bougeault et al. 2010; Swinbank et al. 2016). 

2.2 Run-to-run consistency (jumpiness) 

Global NWP centres typically produce a new forecast every 6-12 hours, with the latest forecast starting 

from initial conditions (the analysis) that takes account of the most recent observations received at 

the centre. In a sequence of consecutive forecasts valid for the same time, the more recent forecasts 

will on average be more skilful as they benefit from the additional observations in the initial 

conditions. However, because of the uncertainties in the initial conditions and the potential rapid 

growth of small initial differences (see section 2.3.5), there can be large differences between 

consecutive forecasts, especially at longer forecast lead times, and sometimes a more recent single 

deterministic forecast will be significantly less skilful than the preceding forecast.  

Ensemble forecasts are designed to explicitly account for uncertainties in the initial conditions, and 

one of the of the expected benefits of ensemble forecasts is that a sequence of consecutive forecasts 

valid for the same time will be more consistent than an equivalent sequence of individual forecasts 

(Zsoter et al. 2009; Buizza 2008a). Ensemble forecasts show the range of weather scenarios that can 

occur, allowing users to make appropriate risk-based decisions. An ensemble forecast made two 

weeks in advance will show a range of possible outcomes. New observations included in the initial 

conditions for subsequent forecasts will eliminate some of these scenarios and the forecast will 

become more certain. However, occasionally a new forecast seems to contradict the previous forecast 

by introducing a new weather scenario that was not represented in the earlier forecast; in this way, 

the new forecast is inconsistent with the previous forecast. 

As an illustration of consistent and inconsistent forecasts, Figure 2.1 shows two hypothetical 

sequences of forecasts made on consecutive days (labelled as Monday, Tuesday, Wednesday). Each 
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panel shows the area at risk from a tropical cyclone (TC) as it is forecast to move across the Caribbean 

and the Gulf of Mexico, from an initial position south of Hispaniola. The ensemble forecast provides a 

set of TC tracks that will spread out depending on the uncertainty in the forecast. The blue shading 

shows the areas at risk, based on the ensemble information.  

 

Figure 2.1. Hypothetical examples of sequences of three consistent (top) and inconsistent (bottom) ensemble forecasts 
initialised on three consecutive days (Monday, Tuesday, Wednesday). In each panel, the blue shading indicates the area at 
risk from a tropical cyclone that is forecast to move north-westwards over the Caribbean and Gulf of Mexico in the coming 
days. 

The top row is an example of a consistent sequence. The forecast initialised on Monday shows that 

the TC, initially south of Hispaniola, will move north-west affecting Jamaica and Cuba before 

continuing towards the US Gulf coast. The exact track is uncertain, and the TC is forecast to make 

landfall along the coast of Texas or Louisiana. Tuesday’s forecast (shown in the middle panel) and then 

Wednesday’s forecast become steadily more certain: the range of solutions in the ensemble is 

reduced, benefiting from the additional observations received since Monday and therefore the area 

at risk is better defined, by Wednesday’s forecast concentrating the likely area of US landfall around 

the Texas/Louisiana border. 

The bottom row shows a contrasting example of an inconsistent sequence of ensemble forecasts. In 

this case, Tuesday’s forecast is very different from Monday’s in terms of US landfall: in Tuesday’s 

forecast, the risk of landfall in the US is concentrated on the eastern Gulf coast. This area was not 

identified as at risk in Monday’s forecast, and therefore the forecasts from Monday and Tuesday are 

inconsistent with each other. Monday’s forecast should identify all possible areas at risk and the 

following forecast should refine this, eliminating some possibilities, but not introducing new solutions 

that are not already present in Monday’s forecast. Finally in this example, Wednesday’s forecast jumps 
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back towards Monday's solutions, with landfall predicted on the western Gulf coast. The forecasts 

from Monday and Wednesday are consistent with each other, but neither is consistent with the 

forecast from Tuesday. The sequence as a whole (Monday, Tuesday, Wednesday) is inconsistent and 

an example of a flip-flop (Zsoter et al. 2009) or windshield-wiper effect (Broad et al. 2007), where the 

whole ensemble jumps back and forth between two different solutions. 

Concerns over such inconsistent behaviour in the ECMWF ensemble are regularly raised in feedback 

from users of ECMWF forecasts  (Hewson 2021, 2020). In some cases the ensemble distribution as a 

whole can flip-flop over several consecutive forecasts (Magnusson et al. 2021). Contradictory 

messages from such jumpiness present a significant challenge to forecasters and decision-makers and 

can cause users to lose confidence in the forecasting system (Dunion et al. 2023; Elsberry and Dobos 

1990; Magnusson et al. 2021; McLay 2011; Pappenberger et al. 2011b)   

As users receive the latest NWP output, they must decide how to revise their weather-dependent 

decisions to take account of the new forecast information. In the example in Figure 2.1, how should 

the forecaster respond to the large jump in predicted landfall between Monday’s and Tuesday’s 

forecast? Should they downgrade any warnings for the western Gulf coast and focus the warning area 

on the newly identified eastern coast? Or do they keep warnings in place for the west in anticipation 

of a possible jump back in the next forecast, while extending the warning to also cover the area further 

east?  

 Forecasters will need to strike a balance between closely following the changed model guidance and 

taking a more conservative approach of making a smaller change to mitigate the potential need to 

make a change in the opposite direction later, that is to avoid a so-called windshield-wiper effect 

(Broad et al. 2007). This balance is likely to be dependent on the user and their specific application. A 

survey of Warning Coordination Meteorologists in the US National Weather Service found that 

forecast inconsistency was a key problem and affected credibility (Sherman-Morris et al. 2018). TC 

forecasters have similar concerns, and consequently tend to adjust the predictions with the aim to 

minimise jumpiness in the operational forecasts (Broad et al. 2007). 

McLay (2011) applied a simple dynamic decision model to sequences of more or less jumpy ensemble 

forecasts and demonstrated that the jumpier sequences led to the greatest overall expense incurred 

by the decision-maker. This provides some qualitative support to the perception that jumpy forecasts 

are more challenging for users to manage. 

To make informed decisions, users need to have the relevant information about the forecast 

behaviour: how often do jumps occur? When are they likely to happen? Why are ensemble forecasts 

sometimes inconsistent? How large can these differences be? Information quantifying the consistency 
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between successive probabilistic forecasts can be important to inform optimal decision making, such 

as whether to act now or wait for the next forecast (Regnier and Harr 2006; Jewson et al., 2021, 2022). 

Both noted that such information is not readily available to users. 

Evaluation of the run-to-run consistency of NWP forecasts has received little attention in the 

literature. Ruth et al. (2009) introduced the forecast convergence score (FCS) to measure the number 

of significant jumps in a sequence of model output statistics (MOS) forecasts valid at the same time. 

The FCS counts the number of jumps over a threshold and also includes a measure of the sum of 

forecast differences through the sequence. The FCS can be applied to point forecasts of temperature 

and probability of precipitation (PoP), but not to ensemble distributions as a whole. Ruth et al. (2009) 

use the FCS to assess whether MOS forecasts have the same overall level of consistency as the 

forecasts issued by Weather Forecast Offices. More recently, Griffiths et al. (2019) introduced a flip-

flop index (FFI) to compare the jumpiness of automated and manual forecasts for locations in 

Australia. Like the FCS, the FFI computes the sum of the absolute differences between a sequence of 

forecasts valid for the same time. However, it does not explicitly count large jumps. To avoid penalizing 

trends, the difference between the maximum and minimum values in the sequence is subtracted. Like 

the FCS, the FFI is applied to temperature and PoP forecasts, with the aim to compare the overall 

consistency of automated and manual systems.   

Elsberry and Dobos (1990) investigated the consistency of TC guidance for the Western North Pacific 

by using the difference in cross-track errors between successive forecasts. Fowler et al. (2015) 

assessed the consistency of Atlantic TC track forecasts by counting how often in a sequence of 

forecasts the predicted position changes from one side to the other of a fixed reference track, for 

example the observed track. However, they caution that biased forecasts may appear to be consistent 

since successive forecasts may jump considerably without crossing the observed track. Both Elsberry 

and Dobos (1990) and Fowler et al (2015) recommended that evaluation of forecast consistency be 

included alongside the routine evaluation of forecast accuracy.  

Forecast consistency has also been considered in the context of comparing deterministic rainfall 

forecasts from different models (Ehret 2010) and in forecasts of river flow (Pappenberger et al. 2011a).  

In the only study to date of the run-to-run consistency of the ECMWF ensemble, Zsoter et al. (2009) 

investigated the consistency of successive ensemble-mean forecasts of the large-scale flow over 

Europe valid for the same time. They define an inconsistency index as the difference between two 

fields over a given area, divided by their average standard deviation over the area. They consider cases 

of large jumps (inconsistency greater than a chosen threshold) and focus on sequences of jumps of 

opposite sign (flip-flops). Using this methodology, they showed that ensemble-mean forecasts are 
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more consistent than the corresponding ensemble control forecasts. Zsoter et al. (2009) conclude by 

noting that to further investigate the benefit of ensemble forecasts compared to single forecast, an 

index for probabilistic forecasts will need to be developed.  

None of the above methods are directly applicable to assess the consistency of a sequence of 

ensemble forecasts taking account of the full ensemble distribution. There is therefore a need to 

develop a measure of forecast consistency that accounts for all aspects of the ensemble empirical 

distribution.  

2.3 Evaluation of ensemble forecasts 

2.3.1 Introduction 

Reasons for the evaluation or verification of forecasts are usually grouped into three categories, 

referred to as administrative, scientific and economic (Jolliffe and Stephenson 2011; Wilks 2020; Brier 

and Allen 1951). 

Administrative verification includes the routine monitoring of forecast performance for quality 

assurance and monitoring the long-term trend in forecast improvements. Examples include the 

headline scores used at ECMWF (Haiden et al. 2023) and the WMO standard verification for global 

NWP and global ensemble NWP (WMO 2023). 

The aim of scientific verification is to understand the strengths and weaknesses of the forecasting 

system and to provide feedback to model developers to guide research on future improvements to 

the model. As well as standard scores, this evaluation can involve process diagnostics (Day et al. 2020), 

error tracking (Magnusson 2017a; Grams et al. 2018), ensemble sensitivity analysis (Torn and Hakim 

2009) and relaxation experiments (Jung 2011; Jung et al. 2010). The methodologies can be used to 

address overall systematic errors of the forecasting system or to target particular flow-dependent 

aspects of the performance. ECMWF’s comprehensive annual verification report (Haiden et al. 2023, 

2022, 2021) illustrates the wide range of measures used to evaluate the quality of the ECMWF 

forecasting system and to assess the changes in performance resulting from the introduction of new 

model cycles. 

Economic verification focuses on the user, with the objective of providing the user with the 

information they need to gain the maximum benefit from the available forecast information. The 

benefit or value of a given forecasting system can be very different for different users depending on 

their decision-making requirements. There is a compromise to be made – ideally the verification 

scores are simple and easy to understand, while also providing the user with relevant guidance on 

how the forecasts will benefit their decision-making process (Richardson 2011). 
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2.3.2 WMO standard verification for EPS 

The World Meteorological Organisation (WMO) has defined a standard set of verification scores for 

EPS forecasts produced by global NWP centres (WMO 2023). This provides users with consistent 

verification information on the ensemble products produced by the different centres and enables the 

centres to compare EPS forecast quality with each other using a consistent evaluation framework. 

Such intercomparisons help the producing centres to better understand their models’ performance 

and can guide developments to improve predictions.  

The WMO standard scores have been chosen to provide key information appropriate to monitor the 

quality of state-of-the-art EPS while at the same time being straightforward to implement in a 

consistent way at each producing centre using where relevant a common climatology and set of 

verifying observations. 

The WMO standardized verification for EPS comprises three required components:  

• Verification of the ensemble mean (EM) as a deterministic forecast using root-mean-squared 

error (RMSE) and anomaly correlation 

• Evaluation of ensemble spread measured as the standard deviation across ensemble 

members  

• Verification of the ensemble as a probabilistic forecast using the Continuous Ranked 

Probability Score (CRPS) 

In addition, producing centres are encouraged to exchange verification results for EPS probability 

forecasts of specified dichotomous (yes/no) events. These results are exchanged as tables and the 

WMO Lead Centre for EPS verification (LC-EPSV) uses these to produce several verification scores 

including Brier score (BS) and relative operating characteristic (ROC). 

The scores are applied to a defined set of forecast variables (including 500hPa height, 850 hPa 

temperature, near-surface temperature and wind, and precipitation) to give an overview of the EPS 

performance in forecasting both the large-scale weather systems and the main weather elements. 

Scores are regularly exchanged between the participating producing centres and are collected and 

displayed by the WMO LC-EPSV (see https://epsv.kishou.go.jp/EPSv/). 

The definitions for the WMO standard scores are provided on the web sites of the WMO Lead Centres 

for Deterministic and EPS verification: 

• https://confluence.ecmwf.int/display/WLD/Score+definitions+and+requirements 

• https://epsv.kishou.go.jp/EPSv/ 

https://epsv.kishou.go.jp/EPSv/
https://confluence.ecmwf.int/display/WLD/Score+definitions+and+requirements
https://epsv.kishou.go.jp/EPSv/
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They are presented in Table 2-1 using the notation used in this thesis for ease of reference. In Chapters 

4 and 5 the CRPS is presented in its kernel representation (Gneiting and Raftery 2007); this is 

mathematically equivalent to the WMO specification (discrete formulation, Hersbach (2000)), but the 

kernel representation shows more clearly the relationship between the CRPS and the mean absolute 

error (MAE) as well as the link to the divergence measures used in this thesis to quantify the jumpiness 

between consecutive ensemble forecasts. 

Score  definition 

Mean square error 
(MSE) 
 

1
𝑊
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Root mean square 
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Continuous ranked 
probability score (CRPS) 
for climate forecast 

𝐶𝑅𝑃𝑆(𝑐𝑙𝑖𝑚) = = >𝑆(𝑥) − 𝑂!(𝑥)A
"𝑑𝑥

*

+*
 

Continuous ranked 
probability skill score 
(CRPSS) 

𝐶𝑅𝑃𝑆𝑆 =
𝐶𝑅𝑃𝑆(𝑐𝑙𝑖𝑚) − 𝐶𝑅𝑃𝑆(𝑓)

𝐶𝑅𝑃𝑆(𝑐𝑙𝑖𝑚)
 

Relative operating 
characteristic (ROC) 

Plot of hit rate 𝐻 against false alarm rate 𝐹 for range of decision 
thresholds (typically probability thresholds) for a given binary (yes/no) 
event 
 
 𝐻 = 𝑝(event forecast|event observed)  
𝐹 = 	𝑝(event	forecast|event not observed)  

ROC area (ROCA) Area under the ROC curve 

Table 2-1 Verification scores and related measures used or referred to in this thesis. 

For verification over a set of 𝑁 cases (or 𝑁 grid points), 𝑦! is the verifying value (observation or 

analysis), 𝑓! is a single deterministic forecast, and is  𝑓!,-, 𝑚 = 1,…𝑀 Is an ensemble of 𝑀 members. 

The climatological mean value of the variable is 𝑐, anomalies from the climate are represented as 𝑓!& =

𝑓! − 𝑐 and 𝑦!& = 𝑦! − 𝑐, and angle brackets 〈 〉 indicate the mean over the verification sample 〈𝑓!&〉 =
%
.
∑ 𝑓!&#
!$% . 

The weights 𝑤! are defined as: 

• Verification against analyses over a grid of 𝑁 grid points: 𝑤! = cos 𝜃!, cosine of latitude at 

grid point 𝑛 

• Verification against observations or against analysis for single location (over set of  𝑁 cases): 

𝑤! =
%
#

 

with the sum of weights 𝑊 = ∑ 𝑤!#
% . 

For verification of probabilistic forecasts for a given binary (yes/no) event over a set of 𝑁 cases, 𝑝!is 

the forecast probability and 𝑜! is the verification, where 𝑜! = 1 if the event occurs and 𝑜! = 0 

otherwise. The climatological probability (base rate) of the event is 𝑠. For a continuous variable 𝑥, the 

forecast probability cumulative distribution function (CDF) is 𝑃!(𝑥), the verification expressed as a 

CDF is 𝑂!(𝑥), where 𝑂!(𝑥) = 1 if the verifying value is greater than 𝑥 and zero otherwise, and the 

climate CDF is 𝑆(𝑥). 
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2.3.3 ECMWF verification for EPS 

ECMWF uses a wide range of measures to assess the quality of its medium-range ensemble (ENS). 

These include the WMO standard verification scores described in the previous section.  

ECMWF has selected a set of 8 headline scores to monitor the long-term trend in forecast performance 

(Haiden et al. 2023). Four of these are for the ENS. Three ENS scores are based on the WMO standard 

verification CRPS. Two of these aim to monitor the overall ENS performance; they are expressed as 

skill scores relative to climatology and presented as the lead time at which the skill score reaches a 

given value, chosen to focus the verification on a particular forecast range appropriate to the forecast 

variable:  

• the lead time at which the Continuous Ranked Probability Skill Score (CRPSS) reaches 25% for 

500hPa geopotential over the extra-tropical northern hemisphere 

• the lead time at which the CRPSS reaches 10% for 24-h total precipitation over the extra-

tropics (both hemispheres combined) 

The third is chosen to focus on specific cases of large errors, which can be masked in the overall scores: 

• The proportion of large errors (CRPS>5°C) in the ENS probabilistic forecasts of near-surface 

temperature over the extra-tropics 

The large errors in near-surface temperature tend to occur in particular weather situations of calm air 

in winter (stable boundary-layer) where the near-surface temperature is especially sensitive to 

differences in cloud cover, near-surface wind speed and snow on the ground (Haiden et al. 2018). 

The fourth headline score for the ENS focuses on high-impact weather and measures the skill of the 

Extreme Forecast Index (EFI) for near-surface wind speed over Europe using the ROC area. 

In addition to these ENS-oriented scores, the headline scores include tropical cyclone position error 

at forecast day 3 for the high-resolution deterministic forecast (HRES). 

ECMWF maintains a comprehensive suite of verification measures to give a comprehensive evaluation 

of the forecasting system including the HRES and ENS. Many of these are provided for users to 

reference on the ECMWF web site (https://www.ecmwf.int/en/forecasts/quality-our-forecasts). In 

addition, ECMWF prepares an annual review of forecast performance including a wide range of 

verification results (Haiden et al. 2023). 

https://www.ecmwf.int/en/forecasts/quality-our-forecasts
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2.3.4 Observation uncertainty and representativeness 

NWP forecasts can be verified against corresponding model analyses or against observations, or both. 

The apparent skill of the forecasts can sometimes vary considerably depending on the choice of 

verifying data (Feldmann et al. 2019; Mittermaier 2012; Pinson and Hagedorn 2012).  

Verification against the model analysis ensures an equivalence between forecast and verifying data, 

although any model errors affecting both forecast and analysis will not be apparent in the verification 

results. On the other hand, verification against observations is affected by representativeness issues 

– point observations (e.g. from a single synoptic observing station) are not directly representative of 

the grid scale of the model because of the local variations that can occur within the area covered by a 

single model grid box. For example, if a model is run with a 20 km grid spacing, the forecast rainfall at 

each model grid point represents the average rainfall over a 400 km2 region. For a small-scale event, 

such as a summer thunderstorm, there can be large differences between the rainfall measured at an 

individual location and the average rainfall over the larger area represented by the model. When NWP 

forecasts are verified against point observations, the mismatch between the spatial and temporal 

scales of the forecast and observation can be a significant contribution to the overall error (Tustison 

et al. 2001; Bowler 2006; Mittermaier 2008, 2014; Mittermaier and Stephenson 2015). It is important 

to take account of this scale mismatch in forecast verification, especially in the verification of extreme 

events (Goeber et al, 2008). 

Representativeness can account for a substantial proportion of the apparent under-dispersion of the 

ensemble forecast. A number of standard measures that assess the calibration or reliability of an EPS, 

such as rank histograms (PIT diagrams) and reliability diagrams, as well as scores such as BS, CRPS and 

ROC are sensitive to representativeness issues and care needs to be taken in interpretation of the 

results if the observation uncertainty is not properly accounted for (Saetra et al. 2004; Candille and 

Talagrand 2008; Yamaguchi et al. 2016; Rodwell et al. 2016, 2018; Ferro 2017; Bowler 2008). 

Another aspect of representativeness is when the model and observation do not directly represent 

the same variable, for example the verification of thunderstorm forecasts using lightning data 

(Marsigli et al. 2021) or in comparing model TCs with subjectively-based reports of TC position and 

intensity (Conroy et al. 2023; Dunion et al. 2023). As the resolution and accuracy of ensemble forecasts 

increases, there is an increasing focus on the prediction of high-impact weather. Intense high-impact 

events (e.g. hail, lightning, tornados) are often very localised and not well captured or even measured 

by conventional observing networks. This has led to an increased interest in exploiting non-

conventional observations, including citizen observations, in ensemble verification (Marsigli et al. 

2021; Tsonevsky et al. 2018). The lack of direct physical correspondence between model variable and 

observation, as well as differences in spatial and temporal scales between forecasts and observations, 
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all contribute to representativeness issues that will need to be addressed to properly evaluate the 

ensemble performance (Marsigli et al. 2021; Janjić et al. 2018; Casati et al. 2022). 

2.3.5 Error growth and predictability  

The relative contributions of initial condition uncertainty and deficiencies in the forecast model can 

be investigated using a simple error growth model first introduced by Lorenz (1982) and extended by 

(Dalcher and Kalnay 1987). The original model (Lorenz 1982) was designed so that small initial errors 

would grow exponentially at first, representing the chaotic nature of the atmosphere (Lorenz 1963), 

while at longer ranges the forecast error would on average be the same as that from a randomly 

chosen atmospheric state, representing the loss of predictability at long forecast lead times. Dalcher 

and Kalnay (1987) introduced an additional linear error growth term to represent model error. This 

results in a three-parameter model, representing the doubling time of small errors, the asymptotic 

level at which errors saturate, and the linear growth of error associated with model deficiencies. As 

well as providing a way to assess the relative importance of model and initial condition errors 

(Simmons and Hollingsworth 2002; Magnusson and Källén 2013), the error-growth model can also be 

used to investigate the potential predictability limit, i.e. the forecast range at which even an almost 

perfect model started from near-perfect initial conditions would lose skill due to the intrinsic chaotic 

nature of the atmosphere. This was the aim of the original study of Lorenz (1982) and has been 

revisited most recently by Zhang et al. (2019). These studies have focused on the deterministic 

predictability limit, the forecast range at which an individual forecast becomes indistinguishable from 

a random selection from the climate distribution.  Zhang et al. (2019) conclude that reducing the 

current initial condition uncertainty by an order of magnitude could extend the deterministic limit for 

daily weather forecasts by up to 5 days.  

Froude et al. (2013) consider the predictability limit for both the ECMWF high-resolution deterministic 

forecast (HRES) and the ensemble mean of the corresponding ECMWF ensemble forecasts (ENS). They 

show that the error growth is lower for the ensemble mean than for the HRES and that the shape of 

the error growth curves are different, with the error growth of the ensemble mean starting to 

decrease around day 10, rather than continuing to grow as for the HRES. They note that a possible 

reason for this is that the ensemble mean starts to lose predictive skill at this time range. 

These studies consider only the average growth rate over a large sample of cases (typically a season) 

and hence do not consider any flow-dependent aspects of error growth. Zhang et al. (2019) note in 

their conclusions that determining the limit for probabilistic prediction and for weather regimes is 

beyond the scope of their work and that future studies that consider the interaction between tropical 

and midlatitude systems would also be valuable. 
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It is well known that forecast skill varies from day to day, and an alternative approach to evaluation of 

forecast performance is to focus more specifically on cases with large forecast error, often referred to 

as forecast busts.  

Rodwell et al. (2013)  define a forecast bust as a case where the day 6 forecast for 500 hPa geopotential 

height over Europe has an RMSE larger than 60m and anomaly correlation of less than 40%, hence 

ensuring that the bust cases involve errors in both magnitude and pattern (phase). They show that 

these busts are often linked with the prediction of blocking over Europe and tend to occur in spring in 

forecasts where the initial conditions have a trough over the Rockies and high convective available 

potential energy (CAPE).  

Also investigating forecast busts over Europe, Lillo and Parsons (2017) found that such bust situations 

are in general associated with changes in the large-scale flow pattern over the North Atlantic (regime 

transitions; Ferranti et al. 2015) resulting from the initiation and growth of Rossby wave trains 

extending from North America towards Europe. They found the most frequent busts in autumn at 

times with tropical storms recurving in the central Atlantic. The adverse impact of extra-tropical 

transition of tropical storms on predictability over Europe has also been shown by Jones et al. (2003), 

Keller et al. (2019) and Brannan and Chagnon (2020). 

These studies focus on deterministic forecast busts. For ensemble forecasts in these situations, the 

reduced predictability should be reflected in increased ensemble spread (Rodwell et al. 2013; 

Magnusson 2017; Leutbecher and Palmer 2008). Cases where the ensemble spread is small compared 

to the ensemble mean error could be characterised as ensemble busts. Although suggested by Rodwell 

et al. (2013), this has not yet been systematically investigated. In a study of flow-dependent mid-

latitude predictability, Sánchez et al. (2020) characterised cases where the forecast error grows much 

faster than the ensemble spread as “predictability barriers” and associated such cases with strong 

diabatic influences on tropospheric advection. Alternatively, an ensemble bust could be defined as a 

case where the ensemble error exceeds a specified threshold. Haiden et al. (2019) consider the 

ECMWF ensemble to have a large error in 2m temperature if the CRPS exceeds 5K. They show the 

frequency of such large errors has steadily decreased as the forecasting system has improved over the 

last 20 years. However, there has not yet been any study of the specific situations associated with 

these cases, or on whether there is any common deficiency in ensemble spread.    

Evaluation of the run-to-run consistency of ensemble forecasts is an alternative approach to  

investigating flow-dependent aspects of forecast performance and may complement the approaches 

proposed above. The research presented in Chapter 3-5 demonstrates the use of this new approach 

in identifying and investigation the causes of inconsistent ensemble behaviour. 
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2.3.6 Ensemble reliability – the spread-error relationship  

A fundamental requirement for ensemble forecasts is that the spread of the ensemble represents the 

uncertainty in the forecasting system (due to model errors and imperfect knowledge of the initial 

conditions). The ensemble spread can be measured for example by the standard deviation across the 

ensemble members. Averaged over a large number of cases, the spread should be equal to the average 

error of the ensemble-mean. This is known as the spread-error relationship (Leutbecher and Palmer 

2008) and is one basic method for assessing the reliability of an ensemble forecasting system. In 

practice a small adjustment needs to be added to account for the finite size of operational ensemble 

forecasts, and it can be important also to account for any mean bias of the forecast model as well as 

for uncertainty in the verifying observation or analysis (Saetra et al. 2004; Yamaguchi et al. 2016; 

Rodwell et al. 2016). 

Rodwell et al. (2016) provide a detailed derivation and application of the spread-error relationship, 

taking account of all the above aspects. The resulting “reliability budget” separates the mean-squared 

difference between ensemble mean and verifying observation into three components representing 

bias, spread (ensemble variance) and observation error, together with a residual term that represents 

the reliability deficiency in the ensemble. They demonstrate how regional deficiencies in reliability can 

be related to both observation error and representation of model uncertainty. These results were 

based on the application of the reliability budget over a full season, and hence did not take account 

of any flow-dependent aspects of the ensemble uncertainty. Rodwell et al. (2016) conclude that it 

would be useful to investigate the spread-error relationship in different flow situations, such as 

European blocking (Ferranti et al. 2015), or cases of mesoscale convective systems over north America 

(Rodwell et al. 2013) which have been shown to be important for medium-range predictability. 

In a first step towards this more flow-dependent evaluation, Rodwell et al. (2018) applied the same 

reliability budget approach to a sample of cases where a particular flow pattern over North America 

was present in the initial conditions. This pattern, a trough over the Rockies and high convective 

available potential energy (CAPE) over eastern North America, has been shown to lead to increased 

uncertainty in the forecasts 6 days later over Europe (Rodwell et al. 2013). Rodwell et al. (2018) show 

that in these situations the uncertainty growth rate is too small in the jet stream region over North 

America, possibly related to systematic errors in the height that the convection reaches in the areas 

of high CAPE.  

Investigation of the evolution of ensemble spread (uncertainty growth) in other flow types including 

large-scale weather regimes may give insights into relevant model deficiencies. This may help to 

identify avenues for model developments that will improve the prediction of transitions between 
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large-scale weather regimes, currently a major challenge for operational ensemble forecasting 

systems (ECMWF 2015; Ferranti et al. 2018; Vitart et al. 2017). 

The standard spread-error relationship (Rodwell et al. 2016; Leutbecher and Palmer 2008) and error-

growth model used to investigate predictability limits for deterministic forecasts (Dalcher and Kalnay 

1987) both use root-mean-square metrics of error and dispersion (standard deviation). In Chapter 4, 

the link between consistency, spread and error is explored using new diagnostic measure of forecast 

consistency developed in Chapter 3 and corresponding CRPS error score and the related measure of 

ensemble spread based on the mean absolute difference between ensemble members. This ensures 

the evaluation considers the full ensemble distribution  (Gneiting and Raftery 2007; Thorarinsdottir et 

al. 2013). 

2.4 Tropical cyclones 

2.4.1 introduction 

Tropical cyclones (TCs) are among the most damaging natural hazards. Providing early warnings is 

essential for mitigating their impacts and protecting life and property. This is coordinated globally 

under the WMO Tropical Cyclone Programme (WMO/TCP); there are five regional bodies responsible 

for the different ocean basins where TCs occur (WMO 2017). Although WMO/TCP has worked towards 

standardising terminology and practices globally there are still differences between the different 

regions. TCs are categorized according to their intensity based on maximum sustained surface wind 

speed associated with the TC (WMO 2017). Weaker systems with wind speeds less than 17 ms-1 (34 

kt) are generally referred to as tropical depressions; more developed systems with wind speeds 18-32 

ms-1 (34-63 kt) are tropical storms; while hurricanes or typhoons (depending on the region) are the 

strongest TCs with winds at least 33 ms-1 (64 kt). Precise definitions for the different regions are given 

in the official WMO Regional Operational Plans (https://community.wmo.int/en/tropical-cyclone-

operational-plans).  

Each year, there are 80-90 TCs that reach at least tropical storm strength (17 ms-1) globally, with the 

greatest number occurring in the Western North Pacific (Schreck et al. 2014; Frank and Young 2007; 

WMO 2017). In the North Atlantic basin there are 8-15 tropical storms annually (Schreck et al. 2014). 

Weaker TCs that fail to reach tropical storm strength are often not included in evaluation studies since 

the reporting practices are more subjective and particularly variable between regions (WMO 2017). 

The process of forming a new TC is referred to as TC genesis or tropical cyclogenesis. TCs develop from 

precursor disturbances to the background tropical atmospheric state. There are different mechanisms 

in the different regions (basins) and within a given basin, although the processes involved are still not 

fully understood (Rajasree et al. 2023; Tang et al. 2020; Emanuel 2022). 

https://community.wmo.int/en/tropical-cyclone-operational-plans
https://community.wmo.int/en/tropical-cyclone-operational-plans
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The focus of the research in this thesis (Chapters 4 and 5) is on the Atlantic basin. The main precursor 

in the Atlantic is African Easterly Waves (AEWs) which accounts for around 60% of TC genesis events  

(Landsea 1993; Russell et al. 2017). A further 10% of TC genesis events are indirectly related to AEW 

(Russell et al. 2017). However, there is little correlation between the number or intensity of AEWs and 

the number of TCs in a season (Avila et al. 2000; Russell et al. 2017). The factors that influence why 

some AEWs lead to TC genesis and others do not (so-called developing and non-developing waves) is 

an area of continuing research (Núñez Ocasio et al. 2021, 2020; Lawton et al. 2022; Feng et al. 2023). 

Other mechanisms also lead to the development of TC in the Atlantic, including the tropical transition 

pathways (McTaggart-Cowan et al. 2013, 2008).  

2.4.2 Ensemble forecast products for TCs 

Global NWP centres produce specialized forecast products for tropical cyclones. This is an automated 

post-processing of the NWP outputs that identifies TCs in the forecasts and tracks their movement as 

the forecast evolves. The outputs from the tracker are files containing the predicted location (latitude 

and longitude), maximum sustained wind speed and minimum MSLP, typically at 6 h steps through 

the forecast. Tracks are computed for existing TCs (those that are already officially reported at the 

beginning of the forecast) for the high-resolution deterministic forecast and for each ensemble 

member. Some centres also generate tracks for TCs that do not exist at the initial time but develop 

during the forecast. Centres are encouraged to distribute the forecast tracks in real time and to archive 

them in the TIGGE database (Bougeault et al. 2010; Swinbank et al. 2016).  

Additional forecast products can be constructed based on these forecast tracks. For example, ECMWF 

strike probability maps show the probability that a given TC will pass within 120 km of any given 

location within the next 240 hours. This is one way to summarise the ensemble track information for 

a given existing TC. ECMWF also generates TC activity maps that shows the probability for an active 

TC (either pre-existing or one that develops during the forecast) to pass within 300 km of any location 

within a 48 h window at different forecast lead times.  

Each centre runs its own tropical cyclone tracker (Conroy et al. 2023). In Chapter 4, I use the TC tracks 

for ECMWF (Magnusson et al. 2021), NCEP (Marchok 2021), and the Met Office (Heming 2017) for 

existing TCs from the TIGGE archive. In Chapter 5, I use the ECMWF ensemble tracks for TCs that 

develop during the forecast to investigate the performance in predicting TC genesis. 

Differences in feature identification between different TC trackers can have a significant impact on 

the number of TCs identified by a forecast model (Conroy et al. 2023) and there is currently no 

generally agreed best practice for the definition and evaluation of TC genesis (Dunion et al. 2023). This 

remains a challenge for the international community to address. 
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2.4.3 Verification of ensemble TC products  

There has been significant progress in forecasting TC tracks due to improvements in observing 

systems, data assimilation and NWP modelling (Landsea and Cangialosi 2018; Yamaguchi et al. 2017). 

Official forecasts of tropical cyclone (TC) tracks are typically based on guidance from Numerical 

Weather Prediction (NWP) models (Conroy et al. 2023). NWP ensemble forecasts are increasingly 

being used. Although their use in official forecasts is often limited to the ensemble mean (EM) track, 

there is increasing evidence of the benefits of using more of the ensemble probabilistic information 

(Titley et al. 2019, 2020; Kawabata and Yamaguchi 2020; Leonardo and Colle 2017). 

Guidelines for TC verification were developed by the WMO Joint Working Group on Forecast 

Verification Research (WMO, 2013). The evaluation of operational ensemble TC track forecasts 

includes EM track errors, ensemble spread and verification of strike probability (e.g. Cangialosi 2022, 

Haiden et al. 2022, Titley et al. 2020, Heming et al. 2019, Leonardo and Colle 2017). The probabilistic 

performance of ensemble TC forecasts is usually assessed based on the skill of strike probability 

forecasts as measured by the Brier skill score (Yamaguchi et al. 2012; Titley et al. 2020; Leonardo and 

Colle 2017). ROC (Haiden et al. 2023) and reliability diagrams (Haiden et al. 2023; Leonardo and Colle 

2017) are also used in some studies.  

The TC position error (great circle distance from forecast to observed TC location, in km or often in 

mi) can be broken down into cross-track (CT) and along-track (AT) error, where the observed TC track 

provides a reference orientation. CT errors are more associated with the location of landfall, while AT 

errors are more related to speed issues. The causes of CT and AT errors can be different and they are 

often investigated independently (Leonardo and Colle 2021, 2020). 

The research presented in Chapter 4 investigates the run-to-run consistency of ensemble forecasts of 

Atlantic TC tracks, focusing on the CT position. It compares the forecast jumpiness with spread and 

error of the TC tracks. An innovation in Chapter 4 is the use of CRPS as a measure of the ensemble TC 

track error to account for the full ensemble distribution, rather than using the error of the ensemble 

mean. 

Although ECMWF regularly publishes verification results for ensemble forecasts of the track and 

intensity of existing TCs (Haiden et al. 2023), it does not routinely evaluate genesis forecasts, so users 

do not have a clear picture of ENS performance (Magnusson et al. 2021). Previous studies have shown 

that ensemble forecasts do have skill in predicting TC genesis (Komaromi and Majumdar 2014, 2015; 

Majumdar and Torn 2014; Yamaguchi and Koide 2017; Yamaguchi et al. 2015). In Chapter 5, the run-

to-run consistency and skill of ECMWF ensemble forecasts for TC genesis are investigated; the skill is 

evaluated using the Brier skill score following the approach of (Yamaguchi et al. 2015). 
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2.4.4 Best track data  

Official reports of TC tracks and intensity are prepared by the World Meteorological Organization 

(WMO) Regional Specialized Meteorological Centres (RSMCs) and Tropical Cyclone Warning Centres 

(TCWCs). For the Atlantic basin, the responsible centre is the US National Hurricane Center (NHC; 

RSMC Miami). As well as providing track information in real time, the RSMCs and TCWCs also carry out 

post-event analysis to make an official record of the history of the tropical cyclone over its lifecycle, 

known as the best track. This is done subjectively by the forecasters using all available observational 

data, some of which may not have been available in real time when the original reports were made 

(Landsea and Franklin 2013). Best track data includes the location and intensity of the tropical cyclone 

every 6 hours. Intensity is defined as the maximum wind associated with the tropical cyclone at 10m 

above the surface, and conventionally reported in knots for the Atlantic basin (1kt = 0.5 m/s). Central 

pressure of the TC is also included. The best track reports from all RSMCs and TCWCs are collated and 

archived in the International Best Track Archive for Climate Stewardship (IBTrACS, (Knapp et al. 2018, 

2010)). The IBTrACS data is used in the studies in Chapters 4 and 5. 

2.4.5 Uncertainties in best track data  

In situ observations of TC structure are limited and to a large extent the best track relies on 

information derived from satellite data. TC intensity can be estimated from an analysis of satellite 

cloud images (visible and infra-red) using the semi-subjective Dvorak technique (Dvorak 1984; Velden 

et al. 2006) or the automated Advanced Dvorak Technique (Olander and Velden 2007). Both methods 

analyse organized cloud patterns to derive an index of TC intensity, then use look-up tables to 

associate the derived intensity index to a maximum surface wind and MSLP for the TC. 

In the Atlantic basin, aircraft data are also available for some TCs, with reconnaissance missions being 

flown by U.S. Air Force Reserve’s 53rd Weather Reconnaissance Squadron C-130s and aircraft from 

the National Oceanic and Atmospheric Administration (NOAA) Aircraft Operations Center. These 

aircraft observations are mainly limited to the western parts of the basin (west of 60°W) and are 

available for approximately 30% of best track report times (Rappaport et al. 2009; Torn and Snyder 

2012). 

Uncertainties in the best track information were investigated by Torn and Snyder (2012) and Landsea 

and Franklin (2013). Position uncertainties were found to be larger for weaker TCs, while uncertainties 

in intensity were greater for stronger TCs. Both studies found similar results, with average position 

errors around 35 n mi (65 km) for TS without aircraft data and 22 n mi (40 km) with aircraft. Maximum 

wind speed uncertainties were 8-10 kt.  
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In Chapter 4, the best tracks are used as a frame of reference to define cross-track and along-track 

directions, and in Chapter 5 the best track position and intensity at the time and location of TS genesis 

are used as reference points for investigating the ensemble jumpiness. An important benefit of 

evaluating ensemble jumpiness is that it is a property of the ensemble system and does not depend 

on the observations.  Therefore the uncertainties in the best track estimates do not directly affect the 

results on TC consistency that are presented in Chapters 4 and 5.  

However, the research in this thesis does also compare the forecast jumpiness to forecast skill for 

position error (Chapter 4) and genesis (Chapter 5). The best track uncertainties for position are 

relatively small compared to the medium-range forecast position errors and will have limited impact 

on the forecast skill results (Landsea and Franklin 2013; Torn and Snyder 2012). However, the 

uncertainty in intensity is significant and should be accounted for in verification of intensity forecasts; 

at present this is not done in operational verification and is an area where further research is needed. 

In Chapter 5 the best track intensity is used to identify the observed genesis – the first point on the 

observed track with maximum wind greater than 17 m/s (34 kt). In comparing the ensemble forecast 

tracks, I allow a tolerance of 500 km and 24h in position and timing of the observed genesis. In this 

way I account for the uncertainty in when the best track reaches TS strength.  

2.4.6 Challenges and issues  

Although the skill of ensemble probabilistic forecasts is increasingly recognised, the pull-through into 

operations has been limited. In a report to the 9th WMO International Workshop on Tropical Cyclones 

(IWTC-9), Titley et al. (2019) identified a number of challenges and issues that limited the use of 

ensemble probabilistic forecast information. They identified several areas for research to enable 

forecasters to make better use of ensemble forecasts, including: improving ensemble forecast skill, 

user-oriented verification, best practice, communicating uncertainty information.  

One outcome of IWTC-9 was the formation of the WMO/WWRP Tropical Cyclone-Probabilistic 

Forecast Products (TC-PFP) project, which is also endorsed as a WMO Seamless GDPFS Pilot Project 

(Dunion et al. 2023). Additional challenges and issues limiting the use of ensemble forecasts identified 

by this project include run-to-run jumpiness in the ensemble (which can lead to reduced forecaster 

confidence), lack of verification for TC genesis, and it was recommended that research should be done 

to address these issues (Dunion et al. 2023). 

These issues were also recognised by ECMWF as requiring research to develop guidance to users of 

the ECMWF forecasts, in particular to address the lack of routine verification for TC genesis and the 

run-to-run jumpiness in ensemble forecasts, especially for TCs (Magnusson et al. 2021). 
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These research gaps are addressed in Chapter 4 which addressed jumpiness for TC tracks and Chapter 

5 which evaluates the skill and jumpiness of ECMWF ENS genesis forecasts. The aims of the research 

are to identify jumpy cases, investigate common factors that may help to understand the ensemble 

model weaknesses and to establish a baseline evaluation of the ability of the current ECMWF ENS to 

predict TC genesis in the Atlantic. 

2.5 Summary 

This chapter has reviewed the current state and recent progress in ensemble forecasting including for 

TC track and genesis, reviewed recent progress in different aspects of forecast evaluation and 

documented previous work on forecast consistency. The chapter provides additional background 

information supporting the motivation of the aim and main objectives of the thesis and identifying 

relevant research gaps and introduces the datasets used in the thesis. The following three chapters 

contain the three main papers produced during the PhD and details of the datasets and methods used 

in each study are presented in the relevant section of each chapter.  
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Chapter 3  Evaluation of the consistency of ECMWF ensemble 
forecasts 

The first objective of the PhD was to develop a suitable index to measure the run-to-run consistency 

in a sequence of ensemble forecasts and demonstrate how this can identify important cases of high 

ensemble forecast jumpiness. The paper addressing this objective was published in Geophysical 

Research Letters with the following reference: 

Richardson, D.S., Cloke, H.L. and Pappenberger, F. (2020) ‘Evaluation of the Consistency of ECMWF 

Ensemble Forecasts’, Geophysical Research Letters, 47(11), p. e2020GL087934. Available at: 

https://doi.org/10.1029/2020GL087934. 

The contributions of the authors of this paper are as follows: D.R. designed the study with advice from 

H.C. and F.P., produced the datasets, carried out the analysis, and led the writing of the manuscript. 

All authors assisted with writing the manuscript. Overall, 90% of the writing was undertaken by D.R. 

The published article can be found in Appendix A1. 

Key Points: 

• A new divergence index is introduced to measure inconsistency (jumpiness) in a sequence of 

ensemble forecasts 

• The ECMWF ensemble has occasional large inconsistency between successive runs, with the 

largest jumps tending to occur at 7-9 days lead 

• To understand the causes of jumpiness it is important to consider the time evolution of each 

ensemble (eg using phase space trajectories) 

Abstract. An expected benefit of ensemble forecasts is that a sequence of consecutive forecasts valid 

for the same time will be more consistent than an equivalent sequence of individual forecasts. 

Inconsistent (jumpy) forecasts can cause users to lose confidence in the forecasting system. We 

present a first systematic, objective evaluation of the consistency of the European Centre for Medium-

Range Weather Forecasts (ECMWF) ensemble using a measure of forecast divergence that takes 

account of the full ensemble distribution. Focusing on forecasts of the North Atlantic Oscillation and 

European Blocking regimes up to two weeks ahead, we identify occasional large inconsistency 

between successive runs, with the largest jumps tending to occur at 7-9 days lead. However, care is 

needed in the interpretation of ensemble jumpiness. An apparent clear flip-flop in a single index may 
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hide a more complex predictability issue which may be better understood by examining the ensemble 

evolution in phase space. 

Plain Language Summary. Ensemble forecasts show the range of weather scenarios that can occur, 

allowing users to make appropriate risk-based decisions. An ensemble forecast made two weeks in 

advance will show a range of possible outcomes. New observations included in subsequent forecasts 

will eliminate some of these scenarios and the forecast will become more certain. Occasionally a new 

forecast seems to contradict the previous forecast by introducing a new weather scenario that was 

not represented in the earlier forecast. Such inconsistencies can cause users to lose confidence in the 

forecasting system. We present a new method to assess the consistency of ensemble forecasts of 

large-scale weather patterns over Europe made by the European Centre for Medium-Range Weather 

Forecasts. We show that a careful analysis of each forecast is needed to understand how and why 

these jumps occur. Understanding and reducing the occurrence of inconsistent ensemble forecasts 

will increase user confidence and improve decision-making. 

3.1 Introduction  

The chaotic nature of the atmosphere means that numerical weather prediction (NWP) forecasts are 

sensitive to small changes in their initial conditions. Operational NWP centres address this by running 

a number of forecasts from similar starting conditions. The resulting ensemble of forecasts shows the 

range of future atmospheric states consistent with the known uncertainties in the initial conditions 

(Leutbecher and Palmer 2008; Swinbank et al. 2016). One of the expected benefits of ensemble 

forecasts is that a sequence of consecutive forecasts valid for the same time will be more consistent 

than an equivalent sequence of individual forecasts (Zsoter et al. 2009; Buizza 2008a). Inconsistent (or 

jumpy) forecasts are difficult to handle and can cause users to lose confidence in the forecasting 

system (Pappenberger et al. 2011b; Hewson 2020). However, this aspect of ensemble forecasts has 

received little attention in the literature.  

The inconsistency between successive ensemble-mean forecasts valid for the same time was 

investigated by Zsoter et al. (2009). They define an inconsistency index as the difference between two 

fields over a given area, divided by their average standard deviation over the area. They consider cases 

of large jumps (inconsistency greater than a chosen threshold) and focus on sequences of jumps of 

opposite sign (flip-flops). Using this methodology, they showed that ensemble-mean forecasts are 

more consistent than the corresponding ensemble control forecasts. Zsoter et al. (2009) conclude by 

noting that to further investigate the benefit of ensemble forecasts compared to single forecast, an 

index for probabilistic forecasts will need to be developed. Forecast consistency has also been 

considered in the context of model output statistics (Ruth et al. 2009), comparing automated with 
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manual forecasts (Griffiths et al. 2019), comparing deterministic rainfall forecasts from different 

models (Ehret 2010) and in forecasts of river flow (Pappenberger et al. 2011b). 

None of the above methods are directly applicable to assess the consistency of a sequence of 

ensemble forecasts taking account of the full ensemble distribution. In this work, for the first time, we 

investigate the consistency of the European Centre for Medium-Range Forecasts (ECMWF) ensemble 

(ENS) using a measure of forecast divergence that accounts for all aspects of the ensemble empirical 

distribution.  

We focus on two key characteristics of the large-scale flow over the European-Atlantic region: the 

North Atlantic Oscillation (NAO) and Scandinavian Blocking (BLO). Predicting transitions between such 

large-scale weather regimes two weeks or more ahead is a significant scientific challenge and at the 

frontier of numerical weather prediction (ECMWF 2015). These transitions are associated with large-

scale changes in temperature and winds over Europe (Ferranti et al. 2018; Yiou and Nogaj 2004)    and 

hence have significant societal impacts, for example on health (Charlton-Perez et al. 2019) and on 

energy production (Grams et al. 2017). We consider the full 15-day forecast range of the operational 

ENS.  

The data and indices used are introduced in section 3.2. Methods, including the definition of the 

forecast divergence are described in section 3.3. We then evaluate the inconsistency of the ENS 

forecasts for NAO and BLO and compare the jumpiness of the ENS with that of the ensemble mean 

(EM) and control forecasts in section 3.4. We present concluding remarks and avenues for future work 

in section 3.5. 

3.2 Data 

We study the time evolution of the NAO and BLO patterns that are associated with high-impact 

temperature anomalies over Europe (Ferranti et al. 2018). Following the approach of Ferranti et al. 

(2018), we use a 2-dimensional phase space based on the two leading Empirical Orthogonal Functions 

(EOFs) of mid-tropospheric flow computed over the Euro-Atlantic region. The EOFs are computed 

using daily geopotential height at 500 hPa computed for the Euro-Atlantic region (30°N to 88.5°N, 

80°W to 40°E) from 29 years of extended winter periods (October to March) of ECMWF ERA-Interim 

data (Dee et al. 2011; Berrisford et al. 2011). For the EOF computation a 5-day running mean was used 

and the mean seasonal cycle was removed. The first EOF represents the positive phase of the NAO 

(NAO+): a negative anomaly over Iceland and positive anomaly to the south (Cassou 2008). The second 

EOF has a positive anomaly (high pressure) over Scandinavia, and a low to the east over the Atlantic, 

representing the flow pattern associated with blocking events over northern Europe (Ferranti et al. 

2015). We refer to Ferranti et al. (2018) for further details. 
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We study the consistency of the operational ECMWF ensemble forecasts (Buizza and Richardson 2017; 

Ben Bouallègue et al. 2019) of the large-scale flow over the North-Atlantic Europe region for DJF 2016-

2019, ie 1 Dec 2015 to 28 Feb 2019, a total of 361 cases. All forecasts verifying at 00 UTC between 1 

December and 28/29 February are included in the evaluation. The ENS comprises 50 perturbed 

members and 1 control member. The forecasts are valid for lead times of 1 to 15 days (at 24-hour 

intervals). The 500 hPa fields of each ENS forecast are extracted on a 1x1 degree grid and projected 

onto the two EOFs. The projections describe the magnitude of the NAO and BLO in each forecast, 

calculated relative to the climatological standard deviation. Following Ferranti et al (2018), cases with 

projections greater than one standard deviation are considered large amplitude events.  

3.3 Methods  

We consider a sequence of ensemble forecasts valid for the same time 𝑡/ and started from initial 

conditions between 1 and L days before, 𝑓(𝑡/ , 𝑖), 𝑖 = 1,…𝐿. Each ensemble consists of M members, 

𝑓-(𝑡/ , 𝑖),𝑚 = 1,…𝑀. We consider NAO and BLO separately, so 𝑓- are univariate and real-valued. 

To measure the difference between two ensembles f and g with M and N members respectively, we 

use the divergence function given by  
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𝑑 is the divergence function associated with the Continuous Ranked Probability Score (CRPS), which 

is widely used to measure of the quality of ensemble forecasts (Gneiting and Raftery 2007). If either 

M or N is equal to one, then 𝑑 reduces to the CRPS, while if both are one, 𝑑 is simply the absolute 

distance |𝑓 − 𝑔|. This means that 𝑑 can also be used to measure the difference between two 

ensemble-mean or control forecasts. 𝑑 shares the important property of propriety with CRPS (Gneiting 

and Raftery 2007) and as shown by Thorarinsdottir et al. (2013) these properties make 𝑑 a particularly 

suitable choice.  

The difference between two ensemble forecasts initialized on consecutive days and valid for the same 

time is  

𝐷(𝑡/ , 𝑖) = 𝑑>𝑓(𝑡/ , 𝑖), 𝑓(𝑡/ , 𝑖 − 1)A, 𝑖 = 1,… , 𝐿 (3-2) 

where 𝑓(𝑡/ , 0) is the set of initial perturbed ensemble members at time 𝑡/. 

To measure the overall divergence (or inconsistency) between the sequence of forecasts valid for a 

given time we sum the divergence between successive pairs of forecasts. To focus on the jumpiness 



31 

Chapter 3.  Evaluation of the consistency of ECMWF ensemble forecasts 

within the sequence rather than a general trend across lead times (or a single large jump representing 

a one-time change in predictability), we subtract the difference between the first and last forecast of 

the sequence, and define the Divergence Index (DI) for a given case as: 

𝐷𝐼(𝑡/) =
1

𝐿 − 1b
c#𝐷(𝑡/ , 𝑙)

2

3$%

d − 𝑑>𝑓(𝑡/ , 𝐿), 𝑓(𝑡/ , 0)Ae (3-3) 

The divergence index is calculated for the ENS and also for the ensemble control forecast (CTRL) and 

the ensemble mean (EM). We refer to DI(ENS), DI(CTRL) and DI(EM) respectively. In this study, all 

ensemble forecasts have M=50 members (control not included) and we consider forecasts up to lead 

time of L=15 days. 

As noted above, for a single forecast such as CTRL and EM, the divergence is equal to the absolute 

difference. For these forecasts, DI is similar (though not identical) to the Flip-Flop Index of Griffiths et 

al. (2019).   

3.4 Results 

Figure 3.1 (upper panel) shows the DI(ENS) for NAO (solid) and BLO (dashed) for each day of the last 

four winters (December-February 2015-16 to 2018-19; the vertical dotted lines indicate the start of 

each season). Positive values indicate higher inconsistency. There is similar variability in DI for both 

regimes (standard deviation of 0.027 for NAO and 0.028 for BLO). However, the peaks of high/low 

consistency occur at different times. Winter 2018-19 was more inconsistent than usual for blocking, 

while forecasts for NAO were not unusually inconsistent in this season. Overall, there is no strong 

correlation between inconsistency in forecasts of blocking and NAO (correlation =-0.1 over the full set 

of cases). 
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Figure 3.1 Consistency in ENS forecasts of the NAO and BLO regimes. Upper panel: timeseries of overall consistency DI(ENS) 
of 1-15 day forecasts verifying during winters (December-February) 2015-2019. Positive values indicate lower consistency. 
Lower panels show examples of both consistent and inconsistent cases for each regime. Each example shows the 
distribution of ENS forecasts verifying for a given date with lead time of 1 to 15 days; box and whiskers show min, max and 
25, 50 and 75 percentiles of the ENS distribution (50 perturbed members); red line shows the ENS control.   

To illustrate the different levels of consistency associated with the high and low DI, three example 

cases are shown in the lower panel (labelled A, B, C on top panel). B (centre) shows an example of a 

case with very good consistency in forecasting the BLO regime. The plot shows the amplitude of 

blocking for 14 December 2017 predicted by forecasts initialized between 30 November and 13 

December. The 15-day ENS forecast has a broad distribution (large spread), similar to the climate 

distribution. Subsequent forecasts show smaller spread and a consistent shift of the ENS towards 

negative BLO.  

C (right) shows a contrasting case with poor consistency in forecasting blocking. The plot shows the 

amplitude of blocking for 14 December 2018 predicted by forecasts initialized on 30 November to 13 

December. The longest-range forecasts are similar to the climate distribution; there is a trend over 

the following days showing an increasing probability for blocking. However, there is then an abrupt 

change in the forecast to a strong signal for neutral conditions, followed by an equally abrupt change 

back to blocking. This is the most inconsistent BLO case of this whole period.  

A (left) is a case of large inconsistency for the NAO. This occurs at the end of an extended period of 

strong NAO- (and associated cold weather over NW Europe). The forecasting challenge in this case is 

to identify when this cold event will end. The longest-range forecasts show large uncertainty, but with 
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probability of around 50% for a return to near-normal conditions (NAO magnitude  <1). The forecasts 

from 11 January onwards show much higher probability for the end of the NAO- event, with the 

exception of the forecast from 13 January which again gives a higher probability for the cold spell to 

continue beyond 21 January.  

These cases of large inconsistency illustrate the challenge for users – in both there is an apparent 

increase in certainty for a change in weather type (regime). But this is thrown into doubt by a large 

change in a subsequent forecast. The following jump back is also difficult for the user to manage - can 

it be trusted, or will the following forecast jump again? While such cases are uncommon in the ENS 

(Figure 3.1, top), they nevertheless can cause a loss of confidence in the forecasts and merit further 

investigation.  

The consistency of ENS is compared with that of the control forecast and of the EM in Figure 3.2 for 

NAO (results for BLO are similar).  Overall, DI is much larger for the EM (mean DI 0.14) and especially 

CTRL (0.42) than for ENS (0.01), reflecting how the full ENS distribution does mitigate the jumpiness 

seen in the deterministic forecasts. The cases with large DI(ENS) also tend to have large DI(EM), and 

vice versa. The examples of inconsistent ENS forecasts in Figure 3.1 are typical – there is a substantial 

shift of the whole ENS distribution, which is reflected in both DI(EM) and DI(ENS). For more consistent 

cases, the correlation is less strong. When the whole ENS distribution is very consistent, the EM must 

also be consistent. However, when the EM is consistent there may still be variation in the ENS 

distribution as a whole (for example changes in spread) that can lead to larger DI(ENS).  

 

Figure 3.2. Comparison of consistency of ENS, CTRL and EM for NAO. Each panel shows a scatter plot of DI(ENS) on the x-
axis against a) DI(EM) and b) DI(CTRL). 361 cases verifying during winters (December-February) 2015-2019. 

There is much less correlation between DI(ENS) and DI(CTRL). The most inconsistent cases for ENS 

tend to be associated with a substantial shift in the whole ENS distribution and the control also shows 
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large inconsistency as expected. However, there are also cases with large DI(CTRL) but small DI(ENS) 

– large jumps in CTRL are not reflected in the ENS as a whole, as seen in the examples. This is an 

important result that demonstrates that jumpiness in the ENS is not simply a consequence of a 

corresponding jumpiness in the CTRL.  

Figure 3.3 shows the distribution of magnitude of the individual jumps (|𝐷(𝑡/ , 𝑖)|, absolute value of 

difference between forecasts started 1 day apart) at each lead time for both ENS and CTRL. The two 

inconsistent cases A and C from Figure 3.1 are highlighted. As well as having large overall DI(ENS), both 

cases have some of the largest individual ENS jumps between consecutive forecasts at any lead time. 

As for DI, the magnitude of the individual jumps is much larger for CTRL than for ENS.  

 

Figure 3.3. Distribution of jumps (|𝐷(𝑡!, 𝑖)|)  at each forecast lead time (i days) for CTRL (top) and ENS (bottom) for the NAO 
(left) and BLO (right) regimes. box and whiskers show 25, 50 and 75 percentiles of the ENS distribution, with outliers shown 
by open circles; thick blue lines show the mean value. The values for the sequence of forecasts verifying on 22 January 2016 
for NAO (cyan) and 14 December 2018 (magenta) correspond to the two examples of inconsistent forecasts shown in Figure 
3.1. 
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Figure 3.3 highlights another important difference between the jumpiness of the ENS and CTRL. For 

CTRL, |𝐷(𝑡/ , 𝑖)| increases with lead time, with the mean jump approaching 1 by day 15. However, for 

ENS the largest mean value and most extreme jumps tend to occur at around 7-9 days lead. At longer 

lead times, as memory of the initial conditions is lost, the limit of predictability is reached and each 

forecast behaves like a random draw from the climate distribution. This means that at long lead the 

difference between two control forecasts will be on average the same as the difference between two 

randomly selected states from the climate (see text S1 for details). In contrast, at this range, two ENS 

forecasts will represent two statistically indistinguishable samples from the same climate distribution. 

Any difference between them will only be due to sampling and for a sufficiently large ensemble 

𝐷(𝑡/ , 𝑖) will be small. 

We have seen that DI can identify cases of high inconsistency in the ENS. A more detailed investigation 

of such cases is merited to understand what aspects of the ensemble forecast configuration lead to 

such behaviour. The high-DI cases A and C (Figure 3.1) both occur in situations of transitions between 

large-scale regimes. A compact way to visualize these transitions is in a phase-space plot which can be 

used to examine how the magnitude of both BLO and NAO evolve through the forecast for each 

ensemble member (Ferranti et al. 2018). Following this approach for high-DI cases also brings some 

new insight into the jumpiness itself. 

To illustrate this, we consider the BLO case of 14 December 2018 (C in Figure 3.1) and examine the 

phase-space trajectories of the relevant forecasts. We compare the forecasts started on 5 and 9 

December (which both predict a positive BLO pattern) with the contrasting forecast from 7 December 

which has largest probability for a negative BLO to occur (Figure 3.4a). Figure 3.4b (and Figure 3.S1) 

shows the phase-space evolution of the forecasts from 5, 7 and 9 December 2018. The forecast from 

9 December follows the observed trajectory with only a few members moving too quickly away from 

the block. The forecast from 7 December also follows the observed trajectory for the first 4-5 days of 

the forecast, but then most members fail to maintain the blocking and evolve too quickly towards the 

more mobile NAO+ pattern, leading to the poor 7-day forecast for BLO (Figure 3.4a, cyan). The forecast 

from 5 December does not follow the observed trajectory so well from 9 December onwards: most 

ENS members move too quickly into a strong blocking, and NAO-. Although this forecast gives a strong 

indication of blocking for 14 December (day 9 forecast, Figure 3.4a, blue), the evolution leading to this 

is clearly inconsistent with the observed development. While Figure 3.4a suggests that the forecast 

from 7 December has lost the signal that was present in earlier forecasts, the analysis of the phase 

space trajectories shows that the situation was more complex. In fact, the forecast from 7 December 

better captured the observed evolution up to 11 December, with significantly smaller ENS spread. 

Neither the 5 December nor the 7 December forecast captured the observed trajectory after this time. 
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It was only the later forecasts, from 9 December onwards that correctly predicted the observed 

evolution.   

This shows us that care is needed in the interpretation of the ensemble jumpiness. An apparent clear 

flip-flop in a single index may hide a more complex predictability issue. When investigating the cause 

of a case of high DI, it is important to frame the analysis in the right context, as shown by Figure 3.4. 

From a diagnostic point of view, Figure 3.4a raises the question: why does the forecast from 7 

December lose the signal that was present in the earlier forecast from 5 December? In contrast, 

looking at the wider context of Figure 3.4b raises the question: what mechanism caused the two 

successive changes in predictability, first to avoid the too strong NAO-/BLO (5 December forecast), 

and secondly to maintain the block and not move too quickly to NAO+ (7 December forecast). Error 

tracking (Magnusson 2017a; Grams et al. 2018) shows that both these errors can be traced back to 

the initial mishandling of developing trough-ridge patterns over eastern North America (Figures 3.S2 

and 3.S3).  

 

 

Figure 3.4. Phase space trajectories of ENS forecasts initialized on 5, 7, 9 December 2018.  a: amplitude of blocking for 14 
December 2018 predicted by forecasts from different initial times up to 15 days ahead with forecasts from 5, 7 and 9 
December highlighted; box and whiskers show min, max and 25, 50 and 75 percentiles of the ENS distribution, with outliers 
shown by open circles; red line shows the ENS control. b: phase space trajectories of ENS forecasts initialized on 5, 7, 9 
December 2018 (blue, cyan, magenta respectively) and verifying analysis trajectory (black; analysis position on 5 December 
marked by x, subsequent days marked by dots).  

3.5 Conclusions 

Predicting transitions between large-scale weather regimes two weeks ahead is a significant 

forecasting challenge. Occasionally, successive ensemble forecasts can give contradictory indications 

about the probability for a change in weather type. Such jumpiness or “flip-flopping” is difficult for 

x 
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users to manage since the forecast does not give a consistent message for decision making. While 

such cases are uncommon (Figure 3.1), they nevertheless can cause a loss of confidence in the 

forecasts and merit further investigation.  

For the first time, we have carried out a systematic, objective evaluation of the consistency of ECMWF 

ensemble forecasts that takes account of the full ensemble distribution. This extends the earlier work 

of Zsoter et al. (2009) who focused specifically on flip-flops of the ensemble mean.  

We investigated the ENS consistency for two key flow patterns for Europe, NAO and blocking. We used 

a measure of the divergence between two ensembles started at different times but valid for the same 

time. This allowed us to quantify both individual jumps and the overall consistency of a sequence of 

ENS forecasts valid for a given time. Our main conclusions are: 

• In general, the peaks of high and low consistency occur at different times for NAO and BLO; 

there is no strong correlation between inconsistency for NAO and BLO (Figure 3.1). 

• DI for the ENS is on average much lower than for EM and especially for CTRL (Figure 3.2) 

demonstrating benefit of the ensemble in mitigating the jumpiness of the deterministic 

forecasts by representing the range of possible scenarios. 

• The largest individual jumps for ENS tend to be days 7-9, while for the CTRL the magnitude of 

individual jumps continues to increase throughout the forecast (Figure 3.3). This is associated 

with the different asymptotic behaviour of the (deterministic) CTRL forecast and the ENS at 

long forecast lead. 

• Care is needed in the interpretation of the ensemble jumpiness. What looks at first sight to be 

a clear case of flip-flopping in a single index (BLO or NAO) may be a more complex 

predictability issue. This may be better understood by examining the phase-space evolution 

of both components together (Figure 3.4).  

In this work, we assessed the consistency of the univariate forecast of NAO and BLO separately. 

However, we also showed how it is important to consider the ensemble trajectories in the 2-

dimensional phase space to properly understand the reason for apparent jumpiness. It will therefore 

be valuable to extend the divergence and DI methodology to the multivariate situation so that the 

consistency of NAO and BLO can be evaluated together. This will also enable investigation of the 

consistency of other aspects of ensemble performance such as for tropical cyclone tracks.  

The divergence index (DI) allows us to identify important cases of high ensemble forecast 

inconsistency, and to routinely monitor the occurrence of such cases. Careful diagnosis of these cases 

will help to identify the causes of the inconsistency and hence to address the relevant aspects of 
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ensemble configuration and modelling. Reducing the occurrence of inconsistent (or jumpy) ensemble 

forecasts will increase user confidence and improve decision-making.  

3.6 Supporting information 

3.6.1 Introduction 

This supporting information provides details on the asymptotic limit for jumps of the CRTL forecast 

and four figures with explanatory text detailing the evolution of the errors in the forecasts from 5, 7, 

9 December 2018. 

Text S1 explains the theoretical limit for the magnitude of individual jumps in the CTRL forecast. 

Text S2 describes the evolution of the errors in the ensemble mean forecasts from 5, 7, 9 December 

2018 which are shown in Figures 3.S2-S4.  Figure 3.S1 shows the magnitude of the BLO and NAO 

projections for all ensemble members of these forecasts at 24-hour intervals. This is the same 

information as shown in Figure 3.4b, but with each lead time shown separately for 9-14 December for 

extra clarity. 

3.6.2 Text S1 

Figure 3.3 shows the distribution of magnitude of the individual jumps |𝐷(𝑡/ , 𝑖)| at each lead time 

for both ENS and CTRL. For CTRL, For CTRL, |𝐷(𝑡/ , 𝑖)| increases with lead time, with the mean value 

approaching 1 by day 15. Here we consider the asymptotic limit for this mean value. 

At long lead times, each forecast behaves like a random draw from the climate distribution, i.e. two 

control forecasts 𝑓(𝑡/ , 𝑖) and 𝑓(𝑡/ , 𝑖 − 1) will be uncorrelated for sufficiently large 𝑖. The average 

distance (divergence) between two such random states, 𝑓 and 𝑔, is  

𝑑4fff = |𝑓 − 𝑔|fffffffff 

where the overbar denotes the average of all cases, the subscript 𝑟 indicates this is for random 

selection of states, and recall that for the deterministic forecast the divergence 𝑑 is the absolute 

distance |𝑓 − 𝑔|.  

If the climatology is normally distributed then we can compute 𝑑4fff analytically 	

𝑑4fff =
2
√𝜋

𝜎 ≈ 1.13𝜎 

where 𝜎 is the climate standard deviation. In our study the NAO and BLO projections are already 

normalized by the climate standard deviation, so that 𝜎 = 1. Hence we could expect the mean 

curves for CTRL shown in Figure 3.3 to tend to 1.13 in the long-range as predictability is lost. The fact 
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that this limit has not quite been reached by day 15 is suggests there is some predictability still at 

this range. 

The above relies on the assumption that the climate distribution is normal. If we make no 

assumption about the climatological distribution of the projections, then we cannot make an 

analytic value for 𝑑4  but we can derive an upper limit. 

The mean absolute distance 𝑑4fff is related to the mean squared distance 𝑑4
"fffff: 

>𝑑4 −	𝑑4fffA
"fffffffffffffff = 𝑑4

"fffff + 𝑑4fff
" − 2𝑑4fff

" = 𝑑4
"fffff − 𝑑4fff

" 

The mean-squared difference between two random states can be written as 

𝑑4
"fffff = (𝑓 − 𝑔)"fffffffffff = 𝑓"fff + 𝑔"fff − 2𝑓𝑔ffff = 2𝜎" 

since by definition the random states f and g are uncorrelated, 𝑓𝑔ffff = 0, and 𝑓"fff = 𝑔"fff = 𝜎".  

This is the standard result that asymptotically the control forecast error will be equal to twice the 

climatological variance. 

Hence, from the above two equations we see that 

𝑑4fff
" = 𝑑4

"fffff − >𝑑4 −	𝑑4fffA
"fffffffffffffff = 2𝜎" − >𝑑4 −	𝑑4fffA

"fffffffffffffff
 

This shows that the mean absolute distance 𝑑4fff is never greater than the root mean squared distance 

n𝑑4
"fffff. As noted above, in this study  𝜎 = 1, and so the upper limit for the asymptotic (long-lead) 

limit for the mean curves for CTRL in Figure 3.3 is √2.  

3.6.3 Text S2 

The forecast from 5 December develops too strong BLO and NAO- for 11-12 December (Figure 3.S1). 

This can be seen clearly in the ensemble mean forecast (Figure 3.S2) – there is a large error in the ridge 

over the E Atlantic, the axis of the ridge is too far west and there is a too strong north-westwards 

extension over Iceland and towards Greenland (consistent with the NAO- signal). The troughs either 

side of this main ridge are too deep, giving overall a much too strong omega block (enhanced omega 

pattern). The error pattern established by 11 December remains through the rest of the forecast. This 

error pattern can be traced back through the forecast to an over amplification of the trough-ridge 

structure over eastern North America the western Atlantic in the 72-hour forecast: enhanced ridge 

over the Hudson Bay, slightly extended trough off the eastern seaboard and small overdevelopment 

of the ridge in the mid-Atlantic.  
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The forecast from 7 December captures much better the initial trough ridge structure (on 9 December) 

and does not overextend the meridional pattern, resulting in much lower errors over N 

Atlantic/Europe on 11-12 December (Figure 3.S3). However, upstream errors in a following trough-

ridge pattern (also originating with positive error over the Hudson Bay and negative errors over the 

east coast) amplify downstream. In this case though the interaction with the pre-existing ridge appears 

to speed up the anticyclonic wave breaking and the high pressure moves further downstream. This 

results in especially large error over western Europe. 

It is worth noting that the forecast from 5 December also has very similar error structure that develops 

in this second trough-ridge pattern (compare the centres of the error positive and negative over the 

west Atlantic on 12 December in Figures 3.S2 and 3.S3). However, the much extended and higher 

amplitude pre-existing block in the central Atlantic appears to limit the impact of this second error 

pattern. 
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Figure 3.S1. Phase space plots of ENS forecasts initialized on 5, 7, 9 December 2018 (blue, cyan, magenta respectively) 
verifying on 9-14 December (panels a to f). In each panel the verifying analysis trajectory is shown at 24-hour intervals from 
5 December to the verifying date (black line). 
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Figure 3.S2. 500 hPa geopotential height error (shaded) for the ensemble mean forecast (red) from 0 UTC on 9 December 
2018 together with the verifying analysis (black), at 24-hour intervals.   
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Figure 3.S3. 500 hPa geopotential height error (shaded) for the ensemble mean forecast (red) from 0 UTC on 7 December 
2018 together with the verifying analysis (black), at 24-hour intervals. 
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Figure 3.S4. 500 hPa geopotential height error (shaded) for the ensemble mean forecast (red) from 0 UTC on 9 December 
2018 together with the verifying analysis (black), at 24-hour intervals. 

 

 

 



45 

Chapter 4.  Jumpiness in ensemble forecasts of Atlantic tropical cyclone tracks 

Chapter 4  Jumpiness in ensemble forecasts of Atlantic tropical 
cyclone tracks 

The second objective of the PhD was to evaluate and compare the jumpiness in ensemble forecasts of 

Atlantic tropical cyclone tracks from three operational centres, identify any common factors and 

provide guidance to users. The paper addressing this objective was published in Weather and 

Forecasting with the following reference: 

Richardson, D.S., Cloke, H.L., Methven, J.A. and Pappenberger, F. (2024) ‘Jumpiness in Ensemble 

Forecasts of Atlantic Tropical Cyclone Tracks’, Weather and Forecasting, 39(1), pp. 203–215. Available 

at: https://doi.org/10.1175/WAF-D-23-0113.1. 

The contributions of the authors of this paper are as follows: D.R. designed the study with advice from 

H.C., J.M. and F.P., obtained the datasets, carried out the analysis, and led the writing of the 

manuscript. All authors assisted with writing the manuscript. Overall, 90% of the writing was 

undertaken by D.R. 

The published article can be found in Appendix A2. 

Abstract. We investigate the run-to-run consistency (jumpiness) of ensemble forecasts of tropical 

cyclone tracks from three global centres: ECMWF, the Met Office and NCEP. We use a divergence 

function to quantify the change in cross-track position between consecutive ensemble forecasts 

initialized at 12-hour intervals. Results for the 2019-2021 North Atlantic hurricane season show that 

the jumpiness varied substantially between cases and centres, with no common cause across the 

different ensemble systems. Recent upgrades to the Met Office and NCEP ensembles reduced their 

overall jumpiness to match that of the ECMWF ensemble. The average divergence over the set of cases 

provides an objective measure of the expected change in cross-track position from one forecast to the 

next. For example, a user should expect on average that the ensemble mean position will change by 

around 80-90 km in the cross-track direction between a forecast for 120 hours ahead and the updated 

forecast made 12 hours later for the same valid time. This quantitative information can support users’ 

decision making, for example in deciding whether to act now or wait for the next forecast. We did not 

find any link between jumpiness and skill, indicating that users should not rely on the consistency 

between successive forecasts as a measure of confidence. Instead, we suggest that users should use 

ensemble spread and probabilistic information to assess forecast uncertainty, and consider multi-

model combinations to reduce the effects of jumpiness. 



46 

Chapter 4.  Jumpiness in ensemble forecasts of Atlantic tropical cyclone tracks 

Plain Language Summary. Forecasting the tracks of tropical cyclones is essential to mitigate their 

impacts on society. Numerical weather prediction models provide valuable guidance, but occasionally 

there is a large jump in the predicted track from one run to the next. This jumpiness complicates the 

creation and communication of consistent forecast advisories and early warnings. In this work we aim 

to better understand forecast jumpiness and we provide practical information to forecasters to help 

them better use the model guidance. We show that the jumpiest cases are different for different 

modelling centres, that recent model upgrades have reduced forecast jumpiness, and that there is not 

a strong link between jumpiness and forecast skill. 

4.1 Introduction  

Official forecasts of tropical cyclone (TC) tracks are typically based on guidance from Numerical 

Weather Prediction (NWP) models (Conroy et al. 2023). NWP ensemble forecasts are increasingly 

being used. Although their use in official forecasts is often limited to the ensemble mean (EM) track, 

there is increasing evidence of the benefits of using more of the ensemble probabilistic information 

(Titley et al. 2019, 2020; Kawabata and Yamaguchi 2020; Leonardo and Colle 2017). One benefit of 

using ensembles is the increased consistency between consecutive forecasts (Buizza 2008b; Zsoter et 

al. 2009). There are nevertheless occasions where an ensemble is unexpectedly jumpy with the 

predicted TC locations flip-flopping over several consecutive forecasts (Magnusson et al. 2021). Such 

cases can be difficult to interpret, complicating the creation of consistent forecast advisories and early 

warning communications.  Understanding the frequency and reasons for these cases as well as 

information about the overall levels of consistency in operational ensemble forecasts can help 

forecasters to better use the available ensemble track data. 

As new forecast information arrives (usually every 6-12 hours for global NWP models), forecasters 

need to decide how to revise their forecasts to take account of the new forecast information. National 

Hurricane Center (NHC) Tropical Cyclone Advisories often discuss the change in forecast track due to 

updated guidance, making adjustments to the path depending on the new information. There is a 

balance to be struck between closely following the changed model guidance and taking a more 

conservative approach of making a smaller change to minimise the potential need to make a change 

in the opposite direction later, that is to avoid a so-called windshield-wiper effect (Broad et al. 2007). 

Contradictory messages from such jumpiness can cause difficulties for decision-makers and reduce 

users’ confidence in the forecasts (Hewson 2020; Pappenberger et al. 2011b; McLay 2011; Elsberry 

and Dobos 1990). Information quantifying the consistency between successive probabilistic forecasts 

can be important to inform optimal decision making, such as whether to act now or wait for the next 
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forecast (Regnier and Harr 2006; Jewson et al. 2022, 2021). Both noted that such information is not 

readily available to users. 

Evaluation of operational ensemble TC track forecasts includes EM track errors, ensemble spread and 

strike probability (e.g. Cangialosi 2022; Haiden et al. 2022; Titley et al. 2020; Heming et al. 2019; 

Leonardo and Colle 2017). However, few authors have addressed the jumpiness of TC track forecasts. 

Elsberry and Dobos (1990) investigate consistency of TC guidance for the Western North Pacific by 

using the difference in cross-track errors between successive forecasts. Fowler et al. (2015) assess 

consistency of Atlantic TC track forecasts by counting forecast crossovers – how often in a sequence 

of forecasts the predicted position changes from one side to the other of a fixed reference track, for 

example the observed track. However, they caution that biased forecasts may appear to be consistent 

since successive forecasts may jump considerably without crossing the observed track. Both Elsberry 

and Dobos (1990) and Fowler et al. (2015) recommend the regular evaluation of forecast consistency 

in addition to the standard assessments of forecast accuracy. 

More generally, there has been limited investigation of forecast jumpiness, especially for ensemble 

forecasts. Zsoter et al. (2009) considered flip-flops in sequences of forecasts all valid for a given time 

and showed that EM forecasts are more consistent than the corresponding ensemble control 

forecasts. Griffiths et al. (2019) introduced a flip-flop index to compare the consistency of automated 

and manual forecasts, while Ruth et al. (2009) assessed how model output statistics improved forecast 

consistency. Forecast consistency has been considered for rainfall (Ehret 2010) and river flow 

(Pappenberger et al. 2011b).  

These previous studies were mainly focused on deterministic forecasts (either single runs or EM) and 

the methods are not directly applicable to assess the jumpiness in sequence of ensemble forecasts 

taking account of the full ensemble distribution. Recently, Richardson et al. (2020b) introduced a 

measure of forecast jumpiness based on forecast divergence that accounts for all aspects of the 

ensemble empirical distribution. They used this to investigate jumpiness of ensemble forecasts for the 

large-scale flow over the Euro-Atlantic region. 

In the present study we apply the forecast jumpiness measure introduced by Richardson et al. (2020b) 

to ensemble forecasts of Atlantic TCs, focusing on the run-to-run consistency in the cross-track 

direction which is most important in determining the location of TC landfall. The aim is to provide 

forecasters and model developers with information about the jumpiness of ensemble TC forecasts. 

This will help forecasters and decision-makers better understand the expected changes between 

successive forecasts. We address the following questions:  



48 

Chapter 4.  Jumpiness in ensemble forecasts of Atlantic tropical cyclone tracks 

• How does run-to-run jumpiness vary from case to case and between the ensemble systems of 

different NWP centres? 

• Is there a common cause of ‘jumpy’ cases – are the ensembles from different centres 

particularly jumpy for the same TC cases and if so what is the reason? 

• Have recent ensemble model upgrades had a noticeable effect on the forecast consistency?  

• What guidance should be provided to forecasters and decision-makers on the ensemble 

jumpiness – what information is practically useful? Is there any useful link between jumpiness 

and skill? 

 We investigate these questions using ensemble forecast data from three global NWP centres. The 

data used in this study and the methods to assess forecast jumpiness are introduced in sections 4.2 

and 4.3. Results are presented in section 4.4. We start with a case study to illustrate the issues of 

ensemble TC track jumpiness. Then we look at the overall jumpiness over the 2019, 2020 and 2021 

Atlantic hurricane seasons. Finally, we consider the relationship between jumpiness, error and spread. 

We conclude with a summary, recommendations for forecasters and avenues for future work in 

section 4.5. 

4.2 Data 

In this study we investigate the run-to-run consistency of ensemble tropical cyclone track forecasts 

from three global centres: the European Centre for Medium-Range Weather Forecasts (ECMWF), the 

US National Centers for Environmental Prediction (NCEP) and the UK Met Office. Each centre runs its 

own tropical cyclone tracker (Conroy et al. 2023) and the resulting track forecasts are archived on the 

TIGGE database (Bougeault et al. 2010; Swinbank et al. 2016). We retrieve the TIGGE forecast tracks 

for all available dates from the Atlantic basin for 2019, 2020 and 2021 for forecasts initialized at 00 

and 12 UTC from the ECMWF ensemble (ENS, 51 members integrated on ~18 km grid), NCEP ensemble 

(GEFS, 21 members, ~34 km grid until 22 September 2020; 31 members, ~25 km grid from 23 

September 2020 onwards), and Met Office ensemble (MOGREPS-G, 36 members, ~20 km grid). A given 

TC is not always tracked in every ensemble member (for example because the system dissipates in 

that member or the forecast intensity is below the threshold used in the tracking algorithm) and we 

exclude cases where a centre has fewer than 10 members that track the TC at each forecast step.  

We use the observed TC positions from International Best Track Archive for Climate Stewardship 

(IBTrACS, Knapp et al. 2018, 2010). We concentrate our analysis on named Atlantic tropical cyclones 

and for each cyclone include all 00 and 12 UTC verification times when the observed system is at least 

tropical storm strength (winds at least 34 kt) and the system is reported as tropical in IBTrACS (Titley 
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et al. 2020; Goerss 2000). For each of these verification times we consider all available TIGGE forecasts. 

These include forecasts initialized when the TC is still a tropical depression. However, TIGGE forecast 

tracks are only generated for existing TCs, so longer lead-time forecasts are not always available for 

verification times close to when the TC is first analysed as a tropical storm. This means that overall 

there are fewer forecasts for longer lead times than for shorter lead times in our sample. 

We make a homogeneous sample by only including a case if the ensemble data is available from each 

of the three centres. This ensures that we are comparing the different centres over the same set of 

cases. The total number of cases decreases with forecast lead time from 356 for 12-hour forecasts to 

91 for 120-hour forecasts.  To maintain a reasonable sample we restrict the study to forecasts of 120 

hours or less. 

Our focus is on the changes between successive forecasts for a given verification time. We therefore 

need to set a minimum number of consecutive initial times over which we can assess these changes. 

For a given verification time 𝑡/, we require a minimum of 6 consecutive forecasts, initialized at (𝑡/ −

12	hours), (𝑡/ − 24	hours), up to (𝑡/ − 72	hours), all valid for 𝑡/. To ensure homogeneity, the same 

cases must be available from all three centers. With these conditions, the total number of available 

cases to assess the run-to-run jumpiness is 139 over the three-year period. 

Each NWP centre has made upgrades to their operational ensemble system during the 2019-21 period 

used in this study. A major upgrade to the GEFS was implemented on 23 September 2020, including 

the introduction of a new forecast model and an increase in the number of ensemble members from 

20 to 30 (Zhou et al. 2022). This upgrade brought significant improvements to the ensemble 

performance, including for tropical cyclone forecasts. The MOGREPS-G ensemble was upgraded on 4 

December 2019, including a major change to the generation of the ensemble perturbations (Inverarity 

et al. 2023) and revised model physics (Walters et al. 2019). This upgrade improved TC track errors 

(Met Office 2019). 

Upgrades to the ECMWF ENS in June 2019 (Haiden et al. 2019), June 2020 (Haiden et al. 2021) and 

May 2021 (Rodwell et al. 2021) were neutral in terms of TC track performance, although the latter 

two brought improvements to intensity forecasts (Rodwell et al. 2021; Bidlot et al. 2020). A later 

upgrade in October 2021 did also improve TC track forecasts (Haiden et al. 2022); however, there was 

only one Atlantic TC in 2021 after this date. Overall, the ECMWF ensemble track forecast performance 

can be considered relatively stable over the period of this study.  We therefore use the ENS as a 

reference against which to evaluate the impact of the upgrades of the other centres on ensemble 

jumpiness. 
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4.3 Methods 

For each tropical cyclone, the observed track provides a convenient frame of reference. We consider 

jumpiness in a sequence of forecasts in terms of changes in the predicted cross-track location (Elsberry 

and Dobos 1990). A positive cross-track position indicates that the forecast is to the right of observed 

track (facing the observed direction of travel). We also consider the links between jumpiness, 

ensemble error and spread. All scores – error, spread and jumpiness – are computed in terms of the 

cross-track distance and are defined below. 

We measure the cross-track error of the ensemble forecasts using the Continuous Ranked Probability 

Score (CRPS). The CRPS is widely used for evaluation of ensemble forecasts. It is a so-called proper 

score: if the ‘true’ forecast probability distribution is 𝐹, a proper score ensures that the best expected 

score will be achieved using the forecast 𝐹 rather than any other forecast distribution 𝐺 ≠ 𝐹. Hence 

forecasters are rewarded for honest forecasts reflecting their true beliefs. As a proper score, CRPS 

discourages hedging (Gneiting and Raftery 2007) and rewards both reliability and resolution (Hersbach 

2000).  

For an ensemble of 𝑀 members 𝑓' , 𝑖 = 1,…𝑀 the CRPS is given in its kernel representation by  

CRPS(𝑓) =
1
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where 𝑦 is the verifying observation (Gneiting and Raftery 2007). The first term is the mean of the 

absolute error of the individual ensemble members and the second term is the mean of the distances 

between the different ensemble members which accounts for the ensemble spread. 

The ensemble mean forecast is given by  

𝑓̅ =
1
𝑀
#𝑓'

1

'$%

	 (4-2) 

For a single deterministic forecast, the CRPS is equal to the mean absolute error, so the error of the 
ensemble mean is  

CRPS>𝑓̅A = 	 \𝑓̅ − 𝑦\	 (4-3) 

 

To allow us to compare the mean spread and error over the sample of cases, we use a measure of 

ensemble spread that is also based on the mean absolute difference. The spread measure which 

corresponds to the mean absolute error of the ensemble mean is the mean absolute deviation of 

ensemble members from the ensemble mean:    
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𝑠 =
1
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On average over a large sample of cases the ensemble mean error (Eq. 4-3) and spread (Eq. 4-4) should 

be equal for a well-tuned ensemble system. 

To measure the ‘jump’ from one forecast to the next we follow Richardson et al. (2020b) and use the 

divergence function 𝑑 associated with the CRPS. For two ensembles 𝑓 and 𝑔 with 𝑀 and 𝑁 members 

respectively, 𝑑 is given by  
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The first term measures the distance between the two ensembles 𝑓 and 𝑔, while the second and third 

terms reflect the variability (spread) in each ensemble, 𝑓 and 𝑔, respectively. Comparing Eq. 4-5 to Eq. 

4-1 shows that the divergence reduces to the CRPS if either 𝑀 or 𝑁 is equal to one. If both	𝑀 and 𝑁 

are one then 𝑑 is the absolute distance |𝑓 − 𝑔|. The divergence 𝑑 takes account of both location and 

spread differences between 𝑓 and 𝑔 and, like the CRPS, 𝑑 is a proper score  (Gneiting and Raftery 

2007; Thorarinsdottir et al. 2013) which discourages hedging. 

Consider a given verification time 𝑡/: an ensemble forecast 𝑓 valid for this time and initialized ℎ hours 

before is written 𝑓(𝑡/ , ℎ) and individual ensemble members are 𝑓'(𝑡/ , ℎ). In this study 𝑓'(𝑡/ , ℎ) 

represents the distance (in km) in the cross-track direction from the observed TC location at 

verification time 𝑡/. The difference between two consecutive ensemble forecasts initialized at time 

(𝑡/ − ℎ) and (𝑡/ − (ℎ − 12)) and valid for the same time 𝑡/ is  

𝐷(𝑡/ , ℎ) = 𝑑>𝑓(𝑡/ , ℎ), 𝑓(𝑡/ , ℎ − 12)A			 (4-6) 

where 𝑑 is the divergence function (Eq. 4-5). 

To measure the overall divergence between the sequence of 𝐿 forecasts valid for a given time we use 

the mean divergence between successive pairs of forecasts: 

𝐷(𝑡/)fffffff =
1

𝐿 − 1
c#𝐷(𝑡/ , 12𝑙)

2

3$"

d			 (4-7) 

Larger values of 𝐷} indicate greater change (in position, spread or both) between successive forecasts 

in the sequence. However it does not necessarily indicate jumpiness in the sense of flip-flopping back 

and forth between different solutions. For example, if in the initial ensemble forecast all members are 

far to the right of the observed position and subsequent forecasts become progressively closer to the 

observed location, this will result in large 𝐷}. To distinguish between ‘trend’ cases and ‘flip-flop’ cases, 
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we use the difference between the first and last forecasts of the sequence to represent this overall 

change (trend). Subtracting this difference from 𝐷} gives the Divergence Index (DI) introduced by 

Richardson et al. (2020b) which highlights jumpiness (flip-flops) in the sequence: 

DI(𝑡/) = 𝐷(𝑡/)fffffff −
1

𝐿 − 1
𝑑>𝑓(𝑡/ , 12𝐿), 𝑓(𝑡/ , 12)A			 (4-8) 

In this way, DI will be less sensitive than 𝐷} to trends caused by bias or to cases with single large jumps 

(resulting for example from a sudden increase in predictability). This means that the larger values of 

DI will be more closely related to flip-flops in the sequence of forecasts. 

Our focus is on the performance of the ensemble forecast distribution and both 𝐷 and DI are 

computed using all available ensemble members. However, because the ensemble mean (EM) track 

is also often used in operational forecasting we also compute the same measures for the ensemble 

mean. Note that for tropical cyclone tracks, the ensemble mean refers to the Euclidean mean position 

of the tracks from the individual ensemble members and not to a track calculated from the ensemble 

mean spatial fields.  

The statistical significance of differences between the different centres’ distributions of 𝐷} and	DI are 

assessed using the Kolmogorov-Smirnov (KS) and Mann-Whitney U (MWU) tests (Wilks 2020). Both 

tests are non-parametric statistical methods to compare the empirical cumulative distributions of two 

samples. The MWU test is mainly sensitive to differences in location (e.g. differences in the median), 

while the KS test is sensitive to differences in both location and shape of the distributions. 

4.4 Results 

We start with an example to illustrate the issues of jumpiness and sampling. Then we look at the 

overall jumpiness over 2019, 2020 and 2021 seasons. Finally, we consider the relationship between 

jumpiness, error and spread. 

4.4.1 Example: Hurricane Laura, August 2020 

Hurricane Laura formed initially as a tropical storm in the western tropical Atlantic on 20 August 2020 

and affected several Caribbean countries. After travelling across the Caribbean, it reached hurricane 

strength on 25 August as it entered the Gulf of Mexico. It made landfall in Louisiana at 06 UTC on 27 

August. Here we focus on the ECMWF ensemble (ENS) forecasts for 00 UTC on 27 August, just before 

the Louisiana landfall. Figure 4.1 shows the ENS tracks for Laura from forecasts initialized every 12 

hours between 21 and 25 August. The earliest forecasts, from 20 August 12 UTC (not shown) and 21 

August 00 UTC were almost all to the north-east (right-hand side) of the observed track throughout 

the forecast, and predicted landfall most likely along the central and eastern Gulf coast. From 21 
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August 12 UTC, the forecasts showed a higher probability for landfall further west, although with a 

large uncertainty as shown by the distribution of the tracks from the individual ensemble members. 

Between 22 August 00 UTC and 24 August 00 UTC, successive forecasts exhibited a “flip-flop” 

behaviour, alternating between the western or more central Gulf coast as the most likely landfall 

location. Finally, from 24 August 12UTC onwards, the forecasts more consistently indicated the 

western solution as most likely and it turned out that the observed track was at the eastern (right-

hand) end of the range of predicted locations. 

 

Figure 4.1. Hurricane Laura: ECMWF ensemble forecast tracks (blue: control; grey: perturbed members) and observed track 
(black). Forecast start dates (DT) from 00 UTC on 21 August to 00 UTC on 25 August 2020. Coloured symbols show forecast 
and observed (hourglass) position at 00 UTC 27 August. 

We can summarize the variations in successive forecasts for a fixed valid time in a box-and-whisker 

meteogram (Figure 4.2). This shows the distribution of the position in the cross-track direction for all 

ensemble members valid for 00 UTC on 27 August, from forecasts initialized every 12 hours between 

20 August 12 UTC (the first available forecast) and 26 August 12 UTC. Each ENS forecast has one control 

forecast and 50 perturbed members. However, the number of members that successfully track Laura 
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until 27 August is substantially below this, especially for the earlier forecasts. Figure 4.2 clearly shows 

the jumpiness of the ENS forecasts. The earlier forecasts are mainly to the right of the observed track 

(too far east), while the shorter-range forecasts are too far west (left of observed track). Intermediate 

forecasts flip-flop between left and right of the observed position. For each lead time (except the 48-

hour forecast from 00 UTC 25 August), the observed track does lie within the ensemble distribution. 

However, the jumpiness (lack of consistency) between successive forecasts poses a challenge for 

forecasters trying to assess the most likely location of landfall.  

 

Figure 4.2. Jumpiness of ensemble forecasts for hurricane Laura, valid at 00 UTC on 27 August 2020. Each box plot 
summarizes the distribution of the cross-track (CT) errors (error at right-angles to the observed direction of travel; negative 
values indicate left-of-track error) for one ensemble forecast; distance measured in km. Forecasts started every 12 hours 
from 12 UTC 20 August; y-axis shows the forecast initial time. Box and whisker show the min, max and 25, 50 and 75 
percentiles of the ensemble distribution (number of members shown to right of plot). Ensemble mean shown as X. a: 
ECMWF ENS, b: Met Office MOGREPS-G, c: NCEP GEFS. 

This was a particularly jumpy case for the ENS (Magnusson et al. 2021) which merits further 

investigation. Comparing with other ensemble forecasts may help to identify possible causes. For 

example, if all centres display the same flip-flop behaviour it might suggest a common cause, such as 

changes in available observational data between the different analysis times. 

Figure 4.2b and Figure 4.2c show the corresponding cross-track position forecasts for the MOGREPS-

G and GEFS ensembles. Note that the MOGREPS-G ensemble data is missing from the TIGGE archive 



55 

Chapter 4.  Jumpiness in ensemble forecasts of Atlantic tropical cyclone tracks 

for forecast start times 12 UTC 21 August and 00 UTC 22 August. There are some similarities between 

all three centres: a general right bias for earlier forecasts (initialized 00 21 August and earlier), with a 

substantial proportion of members not able to track Laura as far as the verification time of 00 UTC 27 

August. Short-range forecasts for all centres are slightly left of the observed position. However, 

neither MOGREPS-G nor GEFS shows the same degree of flip-flop behaviour as ENS. 

The MOGREPS-G forecasts are the most consistent from 12 UTC 22 August onwards, with relatively 

small changes between successive forecasts. The GEFS forecasts maintain the initial right-hand bias 

for several successive forecasts, with a notable jump between 00 and 12 UTC on 21 August. There is a 

second noticeable jump between 12 UTC on 23 and 00 UTC on 24 August, after which the GEFS 

forecasts are generally close to the observed position, although with a small left bias. It is also worth 

noting that both MOGREPS-G and GEFS track Laura in all members for forecasts initialized from 12 

UTC 23 August onwards, while the ECMWF ensemble does not, even for the shorter ranges. The three 

centres use different tracking algorithms, and this suggests differences in the sensitivity and 

robustness of the different trackers (Conroy et al. 2023).  

This example was chosen to illustrate jumpiness in the ECMWF ENS, and in particular the flip-flops 

between successive forecasts. Comparison with the other centres shows that this was not a feature 

common to all centres. The ENS jumpiness may be related to possible issues with the data assimilation 

or initial perturbations, but further work is needed to investigate this (Magnusson et al. 2021). 

Alternatively, this could be just a chance occurrence due to the limited number of ensemble members. 

For each of the initial times before 25 August, 20-30% of the ENS members did not track Laura as far 

as the verification time of 00 UTC on 27 August. In some cases, especially for initial times on 24 and 

25 August, the ECMWF tracker misassigned some of the later forecast steps to hurricane Marco. 

However, this does not account for the majority of the missing tracks. These may be related to 

difficulties in initializing the cyclone due to the land interactions as Laura passed Puerto Rico, 

Hispaniola, and Cuba, while at earlier initial times, Laura was a relatively weak tropical storm and there 

was relatively large uncertainty in the initial analysed position (Magnusson et al. 2021). We have 

recomputed the results including the corrected misassigned tracks and confirmed that this does not 

affect any of our conclusions. 

How typical is this Laura case? To investigate how often such jumpy cases occur and whether 

jumpiness tends to occur for the same or different cases in different ensemble systems, the following 

sections consider the run-to-run consistency over all Atlantic tropical cyclones from 2019-2021. 
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4.4.2 Ensemble jumpiness 2019-2021  

To summarize the run-to-run inconsistency for a single case, we use the mean divergence 𝐷} and 

divergence index (DI), both computed over all forecasts verifying at a given time for a given tropical 

cyclone.  𝐷} measures the overall change in each sequence of forecasts, while DI accounts for the trend 

over the sequence and highlights any flip-flop behavior. 

Figure 4.3 shows the distribution of 𝐷} and DI over all available cases for Atlantic tropical cyclones from 

2019-2021 for the ENS, MOGREPS-G and GEFS ensembles. For 𝐷}, ENS has the lowest median value 

and smallest inter-quartile range, while the distribution for GEFS is noticeably broader than for the 

other centers. The difference between the distributions of GEFS and the other centers are statistically 

significant at the 1% level for both the KS and MWU tests. Although much closer to each other, the 

difference between ENS and MOGREPS-G distributions is significant at the 5% level for MWU test (but 

not significant for KS). For DI, GEFS also has the broadest distribution and ENS has the narrowest 

distribution. The difference between MOGREPS-G and GEFS is not statistically significant. ENS is 

significantly different from both MOGREPS-G and GEFS at the 5% level.  

 

Figure 4.3. Run-to-run inconsistency (jumpiness) of ensemble forecasts for Atlantic tropical cyclone tracks (2019-21). Box 
plots show the distribution over all cases for the two divergence-based measures, a) mean divergence (𝐷() and b) 
Divergence index (DI). Box plots show the interquartile range and the median; the whiskers indicate the minimum and 
maximum values that are within 1.5 times the interquartile range; any more extreme points are shown with open circles as 
outliers. For both 𝐷( and DI larger positive values indicate the most inconsistent cases. The points for the example case of 
hurricane Laura shown in Figure 4.1 and Figure 4.2  (verification time 27 August 2020, 00 UTC) are marked as red filled 
circles. 

In general, a larger ensemble should give a more robust representation of the predicted distribution 

while a smaller ensemble will be more susceptible to sampling uncertainties and therefore may be 

expected to jump more from run to run. The above results are therefore consistent with the GEFS 

ensemble having fewer members than the other centres, especially before the upgrade to 31 

members in September 2020. However, other factors can also influence the run-to-run consistency of 
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the ensemble. For example, a lack of spread due to under-representation of either initial condition or 

model uncertainties would also tend to make the ensemble more jumpy. The impact of the upgrade 

is considered in the next sub-section. 

High positive values indicate the most inconsistent cases for both 𝐷} and DI. For each centre, points 

that are more than 1.5 times the inter-quartile range above the upper quartile are classed as outliers 

(marked with open circles in Figure 4.3). The example case for hurricane Laura discussed in the 

previous section is highlighted – this is an extreme outlier for ENS for both measures, highlighting the 

unusually large jumpiness for this case.   

For MOGREPS-G and GEFS, this case was not an outlier for DI, consistent with the absence of flip-flops 

that characterized the ENS forecasts. Although not the most extreme case, this case was an outlier for 

GEFS using the 𝐷} measure. This was due to the large right bias in the earlier GEFS forecasts. This 

example illustrates the difference between 𝐷} and DI: ENS had several flip-flops between successive 

forecasts, while changes between GEFS forecasts were more associated with a trend away from the 

initial right bias. Both centres had large mean divergence 𝐷}, but the underlying cause was different. 

MOGREPS-G was more consistent than the other centres. 

We have seen that while Laura was an example of extreme jumpiness for ENS, this was not such an 

extreme case for the other centres, especially for DI. Scatter plots of 𝐷} and DI for pairs of centres 

(Figure 4.4) show that this is a typical example. For each pair of centres, the number of cases that are 

outliers (high positive values, the most inconsistent cases) for either one centre or both centres are 

indicated in the figure. The dashed lines in the figures indicate the threshold used for the outliers (1.5 

times the inter-quartile range above the upper quartile). The jumpiest cases (high positive DI) for one 

centre are in general not extremes for the other centres. For DI, none of the other ENS outliers are 

also outliers for either of the other centres. The results are similar for the outliers from MOGREPS-G 

and GEFS. There is only one case which is an outlier for more than one centre, MOGREPS-G and GEFS, 

but that case is not an outlier for ENS. For 𝐷}, the highlighted Laura case is unusual in that it has high 

𝐷} for both ENS and GEFS, although the cause is different for each center as discussed above. However, 

more typically the cases of high 𝐷} for one center are not exceptional for the other centers. In the 

scatter plots, the outliers with high 𝐷} tend to lie away from the diagonal so that there are substantially 

more cases in the upper-left and lower-right quadrants than in the upper-right.  
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Figure 4.4. Comparison of jumpiness between different centres’ ensemble forecasts for Atlantic tropical cyclone tracks 
(2019-21). Scatter plots show the distribution of the two divergence-based measures, mean divergence (𝐷(, top row) and 
Divergence index (DI, bottom row) over all cases for pairs of centres. For both 𝐷( and DI larger positive values indicate the 
most inconsistent cases. Dashed lines mark the threshold for the most inconsistent outliers (1.5 times the inter-quartile 
range above the upper quartile). In each panel, the number of cases that are outliers for both centres or just one of the 
centres is indicated in the corresponding quadrant. The points for the example case of hurricane Laura shown in Figure 4.1 
and Figure 4.2 (verification time 27 August 2020, 00 UTC) are marked as red filled circles. 

These results suggest that the ensemble jumpiness is not strongly linked to the atmospheric situation 

or to the availability of observations. Rather, they suggest that individual model deficiencies or 

sampling uncertainties are more likely causes for the jumpiness. Sampling uncertainties will lead to 

run-to-run jumpiness if the ensemble is not large enough to fully represent the distribution of possible 

outcomes; a larger ensemble would better sample this underlying distribution and improve 

consistency from run to run. Alternatively, an ensemble may fail to properly represent the range of 

possible outcomes because the perturbations to initial conditions are not adequate or because the 

uncertainties in the model formulation are not sufficiently represented. Either of these will result in 

the ensemble spread being too small and may lead to jumpy behaviour. 

4.4.3 The effect of recent NWP system upgrades on ensemble jumpiness   

The results of the previous section showed that overall GEFS was more jumpy than the other centres. 

The GEFS upgrade in September 2020 was the most substantial upgrade of any of the centres during 

the study period, including a new forecast model, changes to the ensemble perturbations and an 

increase in the number of ensemble members. It brought a substantial improvement in the spread of 
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tropical cyclone track forecasts (Zhou et al. 2022).  Here we consider the impact of the upgrade on the 

jumpiness of ensemble track forecasts.  

We separate our sample into two subsets initialized before (64 cases) and after (75 cases) the GEFS 

upgrade. In Figure 4.5 we compare the empirical cumulative distribution of the mean divergence 𝐷} 

for the three centres before (Figure 4.5a) and after (Figure 4.5b) the upgrade. Overall, 𝐷} is significantly 

lower after the upgrade (comparing Figure 4.5a and Figure 4.5b). However, this applies also to the 

results from the other centres, suggesting that the difference is at least partly due to the differences 

between the observed samples. To mitigate this sampling effect, we focus on the difference between 

the GEFS ensemble and the other centres for the two subsets of cases.  

 

Figure 4.5. Effect of GEFS v12 cycle upgrade, 23 September 2020. Empirical cumulative distribution function of  𝐷( for 
subsamples of cases (a) before and (b) after the upgrade. 

Before the upgrade, the GEFS had substantially more cases with high values of 𝐷} compared to ENS 

and MOGREPS (Figure 4.5a). The difference in distribution compared to the other centres is highly 

significant at well below the 1% level for both KS and MWU tests. Differences in the distributions for 

ENS and MOGREPS-G are not statistically significant. After the upgrade, the GEFS distribution was 

much closer to those of the other centres (Figure 4.5b) and there were no statistically significant 

differences between the distributions of any of the centres. These results show that the upgrade to 

the GEFS did make a significant difference to the consistency in terms of mean divergence 𝐷}. As for 

the full sample, differences in the distributions of DI are smaller (not shown); the only statistically 

significant difference between GEFS and either of the other centers is with ENS before the GEFS 

upgrade.  

The GEFS upgrade brought a substantial improvement in the spread of tropical cyclone track forecasts. 

This was considerably under-dispersive in the previous version and the upgrade resulted in a much 

better spread-error relationship, due to the upgrade to the stochastic model perturbations (Zhou et 
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al. 2022). The change in 𝐷} is consistent with this increase in spread for the GEFS system. In general, a 

larger spread will give a broader distribution of tropical cyclone positions and the change between the 

set of positions for successive forecasts would tend to be less than for a less dispersive ensemble. For 

the same reason, the improved spread might also be expected to affect DI. Although there was some 

indication of this in our results (the ENS and GEFS distributions were closer and not significantly 

different after the upgrade), it was not such a clear change as for 𝐷}. 

It is possible that additional factors as well as the increased spread also helped to improve 𝐷}. For 

example, a reduction in cross-track bias in the longer-lead forecasts would help to reduce 𝐷}, but would 

not tend to affect DI. Leonardo and Colle (2021) showed that the GEFS had larger cross-track errors 

than ENS in a large sample of Atlantic tropical cyclones for 2008-2016. We were not able to identify 

any significant changes in the GEFS bias after the upgrade in our sample of cases. While the change in 

ensemble spread was large enough to identify in our sample, it may be that other differences require 

larger samples. Leonardo and Colle (2021) also noted that large year-to-year variability made it 

difficult to identify any changes due to model upgrades. 

The MOGREPS-G upgrade in December 2019 also improved TC track errors and spread (Met Office 

2019; Titley et al. 2020). Taking the same approach as above we found that for the subset of cases 

before the MOGREPS-G upgrade there was a significant difference between the ENS and MOGREPS-G 

distributions for both 𝐷} and DI (with the MOGREPS-G having overall higher jumpiness). After the 

upgrade there was no significant difference between the two centres. See Figure 4.S1 in the 

supplemental material (section 4.6). 

We conclude that the recent upgrades to the MOGREPS-G and GEFS systems both improved the run-

to-run consistency of the ensemble track forecasts, and that since these upgrades the overall 

jumpiness is similar for the three ensemble systems. 

4.4.4 Comparison of error, spread and divergence  

We now compare the mean scores over all cases for the three different aspects of ensemble 

performance: error, spread and divergence. The upper panel of Figure 4.6 shows the ensemble error 

(CRPS, left), divergence (𝐷, centre) and spread (𝑠, right) at lead times out to five days ahead for the 

three centres. The vertical bars indicate the bootstrapped 95% confidence intervals for each centre’s 

scores. Overall, the three centres have similar performance and most differences between scores are 

not statistically significant.  
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Figure 4.6. Error, spread and divergence for forecast lead time from 12 to 120 hours. Scores for the full ensemble are shown 
on the upper row; corresponding error and divergence for the ensemble means are shown below. a, d: CRPS error; b, e: 
divergence; c: ensemble spread; f: bias. Vertical bars indicate 95% confidence intervals. Mean scores over all available cases 
for each forecast lead time: number of cases indicated above x-axis. 

The larger divergences in the short range for ENS and GEFS (Figure 4.6b) are consistent with the lower 

spread (Figure 4.6c) at these time steps for these centres. MOGREPS-G has larger initial spread (maybe 

partly due to the time-lagging of the initial conditions of the MOGREPS-G system), and this will tend 

to reduce the difference (divergence) between consecutive forecasts as seen in Figure 4.6b. 

For each centre, the mean ensemble divergence (Figure 4.6b) is approximately equal to the mean 

difference in CRPS between consecutive forecasts (difference between successive points on the curves 

in Figure 4.6a). The agreement is particularly strong at short range for all centres, and for ENS at all 

forecast ranges. In other words, on average the divergence gives an indication of the expected change 

in error for the next forecast. However, this does not apply in individual cases.  

Table 4-1 shows the Pearson correlation between divergence and CRPS across all available cases for 

each forecast lead time. For comparison, the correlation between ensemble spread and CRPS is also 

shown. Corresponding scatter plots are shown in Figures 4.S2-4.S5 in the supplemental material 

(section 4.6). The association between divergence and error is in general substantially weaker than 

the link between spread and error. These results are consistent with previous studies that show the 

benefit of using spread as a measure of forecast uncertainty  (Majumdar and Finocchio 2010; Titley et 

al. 2019; Yamaguchi et al. 2009; Kawabata and Yamaguchi 2020). However, the low correlation for 

divergence suggests that it does not provide useful case-to-case guidance: there is no indication that 

users should expect less jumpy cases to be more skilful. 
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Step (h) ENS MOGREPS-G GEFS 

72 0.18 (0.45) 0.22 (0.38) 0.07 (0.29) 

84 0.25 (0.56) 0.32 (0.47) 0.05 (0.27) 

96 0.19 (0.58) 0.36 (0.47) -0.01 (0.32) 

108 0.29 (0.67) 0.42 (0.41) 0.19 (0.44) 

Table 4-1. Correlation between divergence and error. Each row shows the correlation between the CRPS error at a given 
forecast lead time h and the divergence 𝐷 between h-hour and (h+12)-hour forecasts. For comparison the correlation 
between the CRPS and the ensemble spread for the h-hour forecasts is shown in brackets.   

Table 4-2 shows the Pearson correlation over all cases between the two overall measures, 𝐷} and DI, 

and the corresponding mean error over all forecast lead times CRPSfffffff. Although for 𝐷} the correlation 

is somewhat higher than for the individual forecast steps (Table 4-1), the corresponding scatter plots 

show large variations in error for cases of both low and high 𝐷}. This again suggests that users should 

be cautious in individual cases – a consistent case with relatively low jumpiness may still have large 

overall error. 

Centre 𝐷}	v	CRPSfffffff		 DI v	CRPSfffffff 

ENS 0.54 -0.30 

MOGREPS-G 0.56 -0.01 

GEFS 0.67 -0.30 

Table 4-2. Correlation between overall jumpiness and error (𝐶𝑅𝑃𝑆-------).	

We can do the same analysis for the ensemble-mean forecasts, which are often used in operational 

TC forecasting (Figure 4.6d,e; lower panel). Again, the divergence gives useful additional information 

for forecast users. For example, for ENS the ensemble mean cross-track error is around 175 km for 

120-hour forecasts (Figure 4.6d), and the ensemble spread is similar (showing that the ensemble 

system is overall well-tuned; Figure 4.6c). The mean expected change in cross-track EM position 

between T+120 and T+108 is ~80 km (Figure 4.6e). This is similar for all three centres. 

The forecast systematic error (bias) is shown in Figure 4.6f. Overall, each centre has a negative bias, 

that is the forecast positions tend to be to the left of the observed position. However, there is large 

uncertainty as indicated by the large confidence intervals shown on the plot. Magnusson et al. (2021) 

show that the ENS tends to have a left-of-track bias for northward-moving TCs, but a right-of track 

bias for westward moving systems and this situation-dependent variation in bias may partly explain 

the large confidence intervals at  longer lead times. As for the other scores, the confidence intervals 

indicate that there is no significant difference between the biases of the different centres. Comparing 
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Figure 4.6d and Figure 4.6f shows that for all centres the bias is relatively small compared to the total 

error. 

4.5 Conclusions 

We have carried out an investigation of the jumpiness or run-to-run consistency of ensemble forecasts 

of tropical cyclone tracks. We used ensemble forecasts from the TIGGE tropical cyclone track archive 

for three global centres: ECMWF (ENS), Met Office (MOGREPS-G) and NCEP (GEFS). The forecasts were 

compared to the observed tracks for all named tropical cyclones from the IBTrACS archive for the 

Atlantic basin for 2019, 2020 and 2021.  

We looked at the change in the distribution of cross-track position (relative to the observed track) for 

tropical cyclones in consecutive ensemble forecasts initialized at 12-hours intervals. This was 

quantified using the divergence function 𝐷 associated with the CRPS error score following (Richardson 

et al. 2020b). The overall jumpiness of a sequence of forecasts all verifying at the same time was 

summarized using the mean divergence 𝐷} and the Divergence Index DI.  

We present our conclusions in the framework of the questions posed in the introduction. 

4.5.1 How does run-to-run jumpiness vary from case to case and between the ensemble systems of 
different NWP centres?  

The distribution of DI was similar for each centre, showing substantial variation between centres with 

a few significant outliers. There was no strong agreement between the centres on which cases were 

most jumpy. The case shown for Hurricane Laura was a typical example: this was the most extreme 

case of jumpiness (largest DI) for the ECMWF ENS, showing a clear flip-flopping of the ensemble 

between being left and right of the observed track in successive forecasts. This behaviour was not 

apparent in either the MOGREPS or GEFS ensembles. This case also illustrated the difference between 

the two summary measures 𝐷} and DI. Earlier GEFS forecasts were substantially to the right of the 

observed track and this right-of-track bias decreased in later forecasts. The large trend over successive 

forecasts is indicated in the relatively high mean divergence. However, the absence of the flip-flop 

behaviour seen in the ECMWF ENS results in the DI being close to the overall median value. Using the 

combination of both 𝐷} and DI can help to distinguish these different behaviours in a sequence of 

forecasts. 

4.5.2 Is there a common cause of ‘jumpy’ cases – are the ensembles from different centres 
particularly jumpy for the same cases and if so what is the reason?  

The jumpiest cases were different for each centre for both 𝐷} and DI, indicating that there is not a 

common cause of jumpiness across the different ensemble systems. This suggests that the ensemble 
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jumpiness is not strongly related to the prevailing atmospheric conditions or to the available 

observations.  

Outliers for the different centres may be due more to specific issues in the data assimilation, models 

or ensemble configurations. Recent studies highlight both continuing progress and ongoing challenges 

in each of these areas (e.g. Magnusson et al. 2019, 2021). However, a deeper analysis of outliers would 

require a substantially larger sample than we have used and is beyond the scope of the present work. 

Leonardo and Colle (2021) used 9 years (2008–16) of Atlantic TC data to investigate the causes of large 

cross-track errors in the GEFS and ENS. However, we have also seen that recent upgrades to ensemble 

systems have led to a significant reduction in the ensemble jumpiness and therefore including a longer 

sample of earlier years may not be representative of the current ensemble capabilities. 

Another possible reason for the occasional cases of large jumpiness is sampling uncertainty due to 

finite ensemble size. This would be consistent with outliers occurring at different times for the 

different centres. Richardson (2001) showed how even a well-tuned ensemble will appear unreliable 

if it has insufficient members and that the required number of ensemble members depends on both 

the underlying distribution and the needs of the users. Leutbecher (2019) and Craig et al. (2022) have 

demonstrated substantial sensitivity to ensemble size in studies using large ensembles of 200 

members and 1000 members respectively. Kondo and Miyoshi (2019) suggest that up to 1,000 

ensemble members are necessary to represent important aspects of some forecast distributions. The 

impact of ensemble size on forecast jumpiness has not been investigated and is a topic for future 

work. 

4.5.3 Have recent ensemble model upgrades had a noticeable effect on the forecast jumpiness?  

In this study we used a three-year period to provide a sufficient number of cases to assess. During this 

period upgrades to both the MOGREPS-G and GEFS ensembles resulted in substantial improvements 

to their predictions of TC tracks. Using the ECMWF ENS as a reference, we found that both these 

upgrades significantly reduced the jumpiness of the ensembles. Before the upgrades the ENS was 

significantly less jumpy than the other centres. However, after the upgrades there was no significant 

difference between the centres. Both upgrades increased the spread of the ensembles, and the 

improved jumpiness is consistent with this change. These results suggest that it is the overall level of 

ensemble spread that is important and that differences in initialization and perturbation methodology 

between the current systems are not a major factor in determining the overall level of ensemble 

jumpiness. 

The more recent upgrade to the ENS at the end of 2021 improved TC track errors by 10% but had little 

impact on the overall spread (Haiden et al. 2022). This improved the statistical reliability of the TC 
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track. The impact on jumpiness of this upgrade has not been assessed but can be done once a 

sufficient sample of cases is available. 

4.5.4 What guidance should be provided to forecasters and decision-makers on the ensemble 
jumpiness – what information is practically useful? Is there any useful link between jumpiness and 
skill?  

The divergence 𝐷 gives an indication of the expected change in cross-track position from one forecast 

to the next. For example, a user should expect on average that the ensemble mean position will 

change by around 80-90 km in the cross-track direction between a forecast for 120 hours ahead and 

the 108-hour forecast for the same time made 12 hours later. The expected change between a 72-

hour and 60-hour forecast is around 50 km. These expected changes were similar for all three centres. 

Corresponding values for the expected divergence for the full ensemble distributions are 20-25 km 

and 10-15 km respectively. These results address the user requirements identified for example by 

Regnier and Harr (2006) and Jewson et al. (2022) to provide objective measures of the expected 

change from run to run so that users can take account of this in their decision making. 

We did not find any strong link between either 𝐷} or DI and error (CRPS). This indicates that users 

should not rely on the jumpiness or consistency between successive forecasts as measure of 

confidence in the forecasts. This is consistent with the work of Zsoter et al. (2009) who found only a 

weak link between jumpiness and error in ensemble forecasts for Europe. In contrast, ensemble 

spread and the ensemble probabilistic information (e.g. strike probabilities) have been shown to 

provide useful situation-dependent guidance on forecast uncertainty (Majumdar and Finocchio 2010; 

Leonardo and Colle 2017; Titley et al. 2020; Kawabata and Yamaguchi 2020). 

Although we note that the effect of more recent system upgrades has not yet been evaluated, users 

should expect generally similar levels of jumpiness in the three ensemble systems considered in this 

study. The jumpiest cases will tend to be different for the different centres, likely to be a result of 

sampling uncertainties or specific deficiencies in the individual ensemble configurations.  

One practical approach for users to adopt to address both these potential sources of jumpiness would 

be to combine the ensemble forecasts from the different centres into multi-model ensembles. Such 

multi-model combinations have already been shown to improve probabilistic TC track prediction 

(Yamaguchi et al. 2012; Leonardo and Colle 2017; Titley et al. 2020; Kawabata and Yamaguchi 2020). 

Another option would be to use lagged ensembles, combining consecutive forecasts from one centre. 

By construction this will reduce jumpiness and this is already used in the MOGREPS-G system to 

increase ensemble size. Although our aim in this study was to evaluate and compare the jumpiness in 

the individual systems, the effect of multi-model combinations on ensemble jumpiness is an area for 

future work. 
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4.6 Supplementary material 

This supplementary material provides 5 additional figures to complement the results shown in the 

paper. 

Figure 4.S1 shows the impact of the MOGREPS-G upgrade in December 2019 on the mean divergence 

𝐷} and Divergence Index DI. Before the upgrade, the differences between the empirical cumulative 

distributions for ENS and MOGREPS-G are statistically significant at the 5% level (𝑝 < 0.03) for 𝐷} and 

at the 1% level (𝑝 < 0.005) for DI using both the Kolmogorov-Smirnov and Mann-Whitney U tests. 

After the upgrade there was no significant difference between ENS and MOGREPS-G. 

Figures 4.S2-4.S5 show scatter plots of divergence against error and of spread against error for lead 

times of 72, 84, 96 and 108 hours. These figures complement the correlations shown in Table 4-1. 

 

Figure 4.S1  Effect of MOGREPS-G cycle upgrade, 4 December 2019. Top row: empirical cumulative distribution function of  
𝐷( for subsamples of cases (a) before and (b) after the upgrade. Bottom row: empirical cumulative distribution function of DI 
for subsamples of cases (c) before and (d) after the upgrade. 
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Figure 4.S2. Correlation between divergence and error (top row) and between spread and error (bottom row). On the top 
row, each panel shows a scatter plot over all cases of the CRPS error at a forecast lead time of 72 hours and the divergence 
𝐷 between 72-hour and 84-hour forecasts for a: ENS, b: MOGREPS-G, and c: GEFS . For comparison the correlation between 
the CRPS and the ensemble spread 𝑠 for the 72-hour forecast is shown in the panel below.  The Pearson correlation 
coefficient 𝑟 for each sample is shown in the title of each panel. 

 

Figure 4.S3. As Figure 4.S2 for 84-hour forecast.   
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Figure 4.S4 As Figure 4.S2 for 96-hour forecast.   

 

 

Figure 4.S5. As Figure 4.S2 for 108-hour forecast.   

 



69 
 

Chapter 5.  Skill and consistency of ECMWF forecasts of Atlantic tropical cyclone genesis 

Chapter 5 Skill and consistency of ECMWF forecasts of Atlantic 
tropical cyclone genesis 

The third objective of the PhD was to evaluate the skill and consistency of ECMWF forecasts of Atlantic 

tropical cyclone genesis, provide guidance to users and identify factors affecting forecast 

performance. The paper addressing this objective has been submitted to Weather and Forecasting 

with the following reference: 

Richardson, D.S., Cloke, H.L., Magnusson, L., Majumdar., S. J., Methven, J.A. and Pappenberger, F. 

(2024) ‘Skill and consistency of ECMWF forecasts of Atlantic tropical cyclone genesis’, Weather and 

Forecasting (submitted June 2024; re-submitted November 2024 following review) 

The contributions of the authors of this paper are as follows: D.R. designed the study with advice from 

L.M. and S.M., obtained the datasets, carried out the analysis, and led the writing of the manuscript. 

All authors assisted with writing the manuscript. Overall, 90% of the writing was undertaken by D.R. 

The submitted article can be found in Appendix A3. 

Abstract. We evaluate the skill and jumpiness of the ECMWF medium-range ensemble (ENS) in 

predicting tropical cyclone genesis in the Atlantic basin. Focusing on the probabilistic performance of 

the ENS, we assess how far in advance the ENS can predict genesis, quantify the consistency 

(jumpiness) from run to run and investigate what factors influence the skill and consistency. We find 

that first indications of genesis are picked up at least 7 days ahead in 50% of the observed cases, 

although strong signals often only appear less than 3 days before genesis. There are significant 

regional differences, with observed genesis events predicted 2-3 days earlier in the eastern Atlantic 

than in other areas. The genesis probabilities can be jumpy from run to run and the jumpiest cases are 

in the more skilful regions (central and eastern Atlantic) and for situations where the initial signal for 

genesis appears at longer lead time. In the eastern Atlantic, there is a tendency for the ENS tracks to 

reach tropical storm strength earlier and further east than observed; this model bias can affect both 

skill and jumpiness of the genesis forecasts. Our results provide guidance to forecasters on how to use 

and interpret the ENS predictions. Areas for future work include the link between early intensification 

in the eastern Atlantic and African easterly wave activity, the relationship between skill and the TC 

development pathways, and the impact of systematic analysis differences between 0000 UTC and 

1200 UTC on forecast intensity. 

Significance statement. Forecasting where and when tropical cyclones will appear increases the lead 

time at which decision makers can begin to take preparatory mitigating action. Numerical weather 
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prediction models can provide important guidance, but sometimes are not consistent from one run to 

the next. We evaluate the skill and consistency of a state-of-the-art global model in predicting the 

formation of tropical cyclones up to ten days ahead and provide guidance to forecasters on how to 

use and interpret the model predictions. We show that the formation of tropical cyclones can be 

predicted 2-3 days earlier in the eastern Atlantic than in the western Atlantic and identify some of the 

factors influencing both skill and consistency. 

5.1 Introduction  

Following significant progress in forecasting tropical cyclone (TC) tracks (Landsea and Cangialosi 2018) 

and intensity (Cangialosi et al. 2020), there is increasing focus on predicting TC genesis (Hon et al. 

2023). For the Atlantic basin, the US National Hurricane Center (NHC) Tropical Weather Outlook 

provides forecasts of TC genesis for 2 and 7 days ahead (Hon et al. 2023). By providing information 

about the likely development of TCs before they have formed, skilful genesis forecasts can effectively 

increase the lead time at which decision makers can begin to take preparatory mitigating action.  

Numerical weather prediction (NWP) forecasts including ensemble forecasts are used in operational 

genesis forecasts (Titley et al. 2019; Hon et al. 2023), often in combination with statistical methods 

(Halperin et al. 2017). Use and verification of NWP genesis forecasts has focused on deterministic 

aspects, assessing hits and false alarms using standard contingency-table measures such as hit rate or 

probability of detection, success ratio, and the threat score or critical success index (Wilks 2020). 

These have been applied to the high-resolution global forecasts from different centres  (Halperin et 

al. 2016, 2013; Liang et al. 2021) to ensemble mean forecasts (Li et al. 2016; Wang et al. 2018) and to 

individual ensemble members (Zhang et al. 2022).  

Recently there has been increasing development of probabilistic TC genesis forecast products for 

operational centres (Hon et al. 2023). For example, Halperin et al. (2017) developed a statistical–

dynamical tool to generate TC genesis probabilities using logistic regression models applied to the 

outputs from several high-resolution global NWP models. A consensus probability is also provided 

when more than one model predicts a genesis event. Verification using Brier scores and reliability 

diagrams showed that these provide useful guidance (Halperin et al. 2017), and the products are 

regularly used in the NHC (Hon et al. 2023). The use of probabilistic information from the ensembles 

is more limited, although ensemble forecasts have been shown to have skill in predicting TC genesis 

(Komaromi and Majumdar 2014, 2015; Majumdar and Torn 2014; Yamaguchi and Koide 2017; 

Yamaguchi et al. 2015). 

One of the key issues limiting the uptake of ensemble TC forecasts is the run-to-run jumpiness that 

can occur in some situations (Dunion et al. 2023; Magnusson et al. 2021). Large jumps in the predicted 
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probability of TC genesis between successive ensemble forecasts present a significant challenge to 

forecast centres and lessen users’ confidence in the prediction system (McLay 2008; Elsberry and 

Dobos 1990; Hewson 2020; Dunion et al. 2023; Pappenberger et al. 2011b). Although approaches such 

as multi-model combinations or lagged ensembles can help mitigate such jumpiness, it is important 

to identify and understand the underlying causes of such jumpy behaviour. Quantifying the level of 

jumpiness in an ensemble system provides valuable information to the forecast user. This can be 

important for example in helping the user to decide between acting now or waiting for the next 

forecast (Regnier and Harr 2006; Jewson et al. 2022, 2021). Identifying the circumstances in which 

jumpiness occurs is an important step towards addressing the underlying cause – is it related to model 

or analysis uncertainty (lack of spread in the ensemble perturbations) or model bias, or is it an 

indication of insufficient ensemble size to give a reliable uncertainty estimate?  Jumpiness of TC track 

forecasts has been investigated for the western North Pacific (Elsberry and Dobos 1990) and the 

Atlantic (Fowler et al. 2015; Richardson et al. 2024). However there has been no corresponding 

assessment of TC genesis forecasts. In this study we conduct a first assessment of the jumpiness of 

the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble (ENS) forecasts for 

TC genesis. 

Another factor limiting the use of ensemble TC genesis forecasts is the lack of routine evaluation of 

the products provided by the global centres. Although ECMWF regularly publishes verification results 

for ensemble forecasts of the track and intensity of existing TCs (Haiden et al. 2023), it does not 

routinely evaluate genesis forecasts, so users do not have a clear picture of ENS performance 

(Magnusson et al. 2021).  

These knowledge gaps are addressed in this study which evaluates the skill and jumpiness of the 

ECMWF medium-range ensemble (ENS) in predicting TC genesis in the Atlantic basin. We address the 

following questions: 

• How far in advance can the ENS forecast TC genesis the Atlantic basin? 

• How consistent from run to run are the forecasts of the observed genesis events? 

• What are the factors that influence the skill and consistency of the ENS genesis forecasts and 

what future work will help to improve these forecasts? 

In each case, we focus on the probabilistic performance of the ENS. The data we use in this study and 

the methods we apply to identify genesis events are described in section 5.2, with verification scores 

and consistency measures introduced in section 5.3.  Results are presented in section 5.4, addressing 

each of the three key questions in turn. We conclude with a summary and discussion of directions for 

future work in section 5.5. 
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5.2 Data 

We investigate the ability of the ECMWF ensemble (ENS) to predict the genesis of tropical cyclones 

over the Atlantic. ENS comprises 50 perturbed members integrated on ~18km grid until 27 June 2023 

and thereafter on ~9km grid. The ECMWF tropical cyclone tracker (Magnusson et al. 2021) identifies 

and tracks both existing TCs and those that develop during the forecast. The tracker is applied to all 

ensemble members. These operational forecast tracks are archived on the TIGGE database  (Bougeault 

et al. 2010; Swinbank et al. 2016). We retrieve the operational forecast tracks for ENS forecasts 

initialized at 0000 and 1200 UTC from May to December 2019-2023 and consider forecast lead times 

from one to ten days ahead. 

We evaluate the forecasts against the observed TC data from the International Best Track Archive for 

Climate Stewardship (IBTrACS, (Knapp et al. 2018, 2010). We extract the observed positions and 

maximum winds from all named Atlantic tropical storms (i.e. tropical cyclones that reach tropical 

storm strength during their life cycle). We focus our evaluation on the first time the observed system 

is reported as a tropical system of at least tropical storm strength (winds at least 34 kt; 1kt ~ 0.51 m s-

1), which we define as the genesis time for the tropical storm (TS) (Magnusson et al. 2021; Zhang et al. 

2022). To ensure a consistent set of forecast lead times throughout the evaluation, we limit the 

verification times to also be 0000 and 1200 UTC and so the observed genesis time is the first 0000 or 

1200 UTC time with wind >17 m s-1. There were 98 observed tropical storms in the Atlantic basin during 

the 5-year study period. However, TS Imelda (2019) was a TS for less than 12 h and was not included 

in the verification, therefore we used 97 observed TS genesis in this work. 

To investigate how well and how consistently the ENS can forecast the observed TS genesis events, 

we compute the probability of TS genesis or TS activity at the observed genesis time and location for 

each of the 97 observed TS. 

For a given verification time 𝑡/, we refer to an ensemble forecast 𝑓 valid for this time and initialized ℎ 

hours earlier as 𝑓(𝑡/ , ℎ) and write the individual ensemble members as 𝑓-(𝑡/ , ℎ). Given the inherent 

limitations of predictability as well as uncertainties in both forecast and observations (Landsea and 

Franklin 2013; Torn and Snyder 2012), we do not expect the forecast to predict genesis at exactly the 

time and location of the reported observed genesis event. Therefore, we define tolerances in both 

space and time. Several different choices have been used in previous studies (Halperin et al. 2016, 

2013; Zhang et al. 2022; Magnusson et al. 2021; Yamaguchi et al. 2015). For each observed TS genesis 

event, we use the following procedure where 𝑡/ represents the observed genesis time: 

• For the ENS forecast 𝑓(𝑡/ , ℎ) we count how many members m have TC tracks that pass within 

500 km of the observed genesis location at any time between 𝑡/ − 24 h and 𝑡/ + 24 h. We 
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define the proportion of members m/M as the forecast probability of TC activity at the 

observed genesis event. This gives the probability for TC but does not address the intensity or 

the location of genesis in the forecast. We refer to this set of forecast probabilities as FATC. 

• To address the intensity, we select the subset of the forecast tracks that have maximum wind 

greater than a given threshold. We use 17 m s-1 for a direct comparison with the observed 

intensity, but also consider lower thresholds (e.g., 15 m s-1) to account for potential 

differences in intensity in the forecasts. We refer to these forecast activity probabilities as 

FA17 and FA15, respectively. 

• Finally, to address the timing of the genesis we again subset the forecast tracks to keep only 

those that have forecast genesis within 24 h and 500 km of the observed genesis event. We 

define the forecast genesis event as the first point on the track with wind greater than 17 m 

s-1 and refer to this set of forecast probabilities as FG17. 

Table 5-1 summarizes the different sets of forecast probabilities that we consider in this study and the 

naming convention that we use. 

For a broader perspective, to consider the overall forecast probabilities of TC genesis and to include 

assessment of false alarms, we also conduct some evaluation on a regular 1°x1° latitude-longitude 

grid. At each grid point, the forecast TS genesis probability is defined as the proportion of ENS 

members that predict a TS genesis event to occur within 500km of that grid point (center of the 1°x1° 

box) and between 24h and 216h ahead. Similarly, we define TS genesis to occur if there is an observed 

TS genesis event within 500 km of the grid point and within the same 192 h (8-day) time window. 
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Identifier set	 description 

FG17 Forecast TS genesis 17 m s-1 Forecast TC track passes within 500 km and 24 h of 

given location and the first time that wind is >17 m s-1 

along this track is within this time/location tolerance 

FA17 Forecast TS activity 17 m s-1 Forecast TC track passes within 500 km and 24 h of 

given location and has wind >17 m s-1. But forecast 

genesis may have occurred earlier (i.e., first step with 

wind >17 m s-1 may have occurred more than 24 h 

before 𝑡/) and more than 500 km from the given 

location. 

FA15 Forecast TC activity 15 m s-1 Forecast TC track passes within 500 km and 24 h of 

given location and has wind >15 m s-1. But forecast 

genesis may have occurred earlier (i.e., first step with 

wind >15 m s-1 may have occurred more than 24 h 

before 𝑡/) and more than 500 km from the given 

location. Accounts for overall lower intensity in 

forecasts  

FATC Forecast TC activity Forecast TC track passes within 500 km and 24 h of 

given location (forecast wind may not reach TS 

strength) 

Table 5-1. Different forecast sets considered in this study. Identifier used to refer to each set of forecast probabilities. 

5.3 Verification and consistency measures 

We evaluate the ENS forecasts of TC activity and genesis using the Brier score (Wilks 2020) which is a 

measure of the mean squared error of the forecast probability: 

b =
1
𝑁
#(𝑝! − 𝑦!)"
#

'$%

	 (5-1) 

where 𝑝! is the forecast probability (proportion of ENS members that predict the event), 𝑦! is 1 if the 

event occurs and 0 otherwise and N is the total number of cases.  

In the assessment of overall performance using the gridded data (section 4d), we use the observed 

sample climate probability of genesis 𝑦f as a reference forecast: 
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yf =
1
𝑁
#𝑦'

#

'$%

		 (5-2) 

This sample climate includes all dates in our evaluation data and is computed separately for each grid 

point. By construction, the sample climate has the lowest Brier score of any fixed reference forecast 

and so is harder to beat than a long-term climate; using this as a reference for the Brier skill score 

hence provides a conservative indication of forecast skill.    

 The Brier score of the climate forecast is given as 

b( =
1
𝑁
#(𝑦f − 𝑦')"
#

'$%

	 (5-3) 

and the Brier skill score is then given as  

B =
𝑏) − 𝑏
𝑏)

(5-4) 

Positive values of B indicate positive skill relative to the sample climate. Maximum skill 𝐵 = 1 is 

achieved for perfect deterministic forecasts. 

We evaluate the hits and false alarms associated with different forecast probability thresholds using 

the ROC (Mason 1982; Ben Bouallègue and Richardson 2022) and performance diagram (Roebber 

2009). The ROC is a plot of the hit rate (proportion of observed events correctly forecast) against false 

alarm rate (proportion of observed non-events where genesis was forecast). The performance 

diagram plots the hit rate against the success ratio (proportion of genesis forecasts that were correct); 

the performance diagram also shows the frequency bias (number of forecast events divided by 

number of observed events) and the threat score (number of hits divided by the sum of hits, misses 

and false alarms). 

To measure the jumpiness or consistency over a sequence of forecasts we measure the difference 

(divergence) 𝑑 in probability between consecutive forecasts.  

Here, we consider the forecasts initialized at 12 h intervals between 24 h and 216 h before a given 

verification time 𝑡/. The probability of the given event (TC activity or TS genesis) in the ENS forecast 

initialized at 𝑡/ − ℎ is written as 𝑝(𝑡/ , 𝑡/ − ℎ) and the difference between consecutive forecasts is  

𝐷(𝑡/ , ℎ) = 𝑑>𝑓(𝑡/ , ℎ), 𝑓(𝑡/ , ℎ − 12)A = |𝑝(𝑡/ , ℎ) − 𝑝(𝑡/ , ℎ − 12)| (5-5) 

The mean divergence over the full sequence of L = 17 initial times is   

𝐷(𝑡/)fffffff =
1

𝐿 − 1
c#𝐷(𝑡/ , 24 + 12𝑙)
2+%

3$%

d	 (5-6) 
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The minimum value of 𝐷} is zero, indicating that the forecast probability does not change over the set 

of forecasts, while larger values indicate greater differences in probability between successive 

forecasts in the sequence.  

For each observed genesis event, we expect that the forecast probability will be low at the longest 

forecast ranges (close to the climatological probability) and will increase, ideally reaching close to 

100% at the shortest forecast ranges. To account for the expected increase in probability over the 

sequence of forecasts, we use the difference between the probabilities from the first and last forecasts 

of the sequence to represent this overall trend. We then subtract this difference from 𝐷} to give the 

Divergence Index, DI (Richardson et al. 2020b, 2024): 

DI(𝑡/) = 𝐷(𝑡/)fffffff −
1

𝐿 − 1
	|𝑝(𝑡/ , 24 + 12(𝐿 − 1)) − 𝑝(𝑡/ , 24)| (5-7) 

DI summarizes the jumpiness about the overall trend over the sequence of forecasts, with larger 

values of DI indicating more jumpy forecasts (bigger difference in probabilities).  

5.4 Results 

Firstly, we evaluate how far in advance the ENS can predict the observed genesis events with low, 

medium, and high probability. Next, we assess how consistent these probabilities are in the sequence 

of consecutive forecasts leading up to each observed genesis event. We then consider potential 

factors that may affect the jumpiness and skill of these forecasts. Finally, we assess the overall skill of 

the ENS probability forecasts for TC genesis and activity. 

5.4.1 How far in advance can we predict the observed Atlantic TS genesis events?  

Figure 5.1 shows the percentage of the 97 observed genesis events that were forecast with at least 

5%, 35% and 65% probabilities at or before each forecast lead time from 216 to 24 hours in advance. 

The probability thresholds were chosen to be consistent with the categories used to indicate low, 

medium and high probability respectively in the NHC Tropical Weather Outlook. NHC genesis 

probabilities are given in 10% intervals and their low, medium and high probability categories are 10-

30%, 40-60% and 70-100% respectively. 
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Figure 5.1. Lead time of ENS forecasts of TS genesis. The percentage of cases predicted with probability of at least (a) 5% 
(low), (b) 35% (medium) and (c) 65% (high) at lead times from 216 to 24 h before the observed TS genesis time. 

The red curve shows the results for the FG17 probabilities where the forecast is required to match the 

observed genesis in both timing and intensity (within the specified 500 km and 24 h tolerances). Few 

cases are predicted with high probability (Figure 5.1c) and only 20% of cases can be predicted with 

medium probability more than 72 h ahead (Figure 5.1b). The low probability threshold is reached in 

over 50% of cases at 168 h lead time (Figure 5.1a), indicating that the ENS is capable of generating 

tropical storms a week in advance although the predictability is low. 

The three blue curves in each panel of Figure 5.1 help to identify some of the reasons for this poor 

performance in the direct forecasting of the observed genesis. The solid blue curve shows the results 

for the FA17 probabilities. As well as the hits included in FG17, these allow for early genesis in the 

forecasts and indicate the proportion of ENS members that have TS activity at the observed genesis 

time and location. Many more cases are predicted for all three probability categories for FA17 than 

for FG17: more than 20% of observed events are predicted with high probability at least 72 h ahead, 

with the proportion increasing to over 50% for the medium probability threshold and over 80% for 

low probability. 25% of cases are predicted with medium probability at least 6 days (144 h) ahead. The 

higher probabilities for FA17 compared to FG17 show that the timing of TS genesis is one significant 

difference between ENS and observed genesis, with a substantial number of forecast tracks reaching 

TS strength before the observed genesis time. Comparing FA17 and FA15 (solid and dashed blue lines) 

shows that the choice of wind threshold for the forecast tracks also affects the performance. The 

relatively minor change of wind threshold from 17 to 15 m s-1 increases the proportion of correctly 

forecast cases by around 10 percentage points. Larger improvements are achieved when considering 

all forecast tracks without specifying a minimum wind speed (FATC, dotted blue line): around 60% of 

cases are predicted with medium probability at least 6 days (144 h) ahead and with high probability 

at least 4 days (96 h ahead). The sensitivity to wind thresholds agrees with results from other studies 

(Yamaguchi et al. 2015; Zhang et al. 2022).  
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Figure 5.2. Lead time of ENS forecasts of observed TS genesis events. Longest lead time (hours) at which the probability of 
TS activity (FA17) at the observed TS genesis location was predicted with probability of at least (a) 5%, (b) 35% and (c) 65%. 
(d) shows the jumpiness in forecast probability for these cases, as measured by DI. 

The geographical distribution of the FA17 results is shown in Figure 5.2 for each of the 

low/medium/high probability thresholds. The TS in the eastern Atlantic tend to be predicted earlier 

than those in the Caribbean and the Gulf of Mexico. In the central and eastern Atlantic (east of 60°W 

and south of 30°N) the median lead time for the first indications of TS activity (low 5% probability 

threshold) is 228 h (the longest lead we have considered here). For medium and high probability 

thresholds the corresponding median lead times are 132 h and 72 h, respectively. In contrast, the 

equivalent median lead times for the western Atlantic, Caribbean and Gulf of Mexico (west of 60°W, 

south of 30°N) are 204, 48 and 36 h. respectively. In other words, the observed genesis events in the 

eastern Atlantic are predicted 2-3 days earlier than those further west. The predictability for the 

genesis >30°N is generally similar to that for the western Atlantic. The consistency or jumpiness of 

these forecasts as measured by DI is shown in Figure 5.2d. Again, there are strong geographical 

variations, with the highest DI (jumpiest cases) in the central and east Atlantic. The median DI for this 

region is 8.75, more than twice the median DI value of the western and northern regions (3.5 and 4.0 

respectively).  

The regional differences may be associated with different tropical cyclogenesis pathways (McTaggart-

Cowan et al. 2013, 2008). The more predictable (and also more jumpy) cases tend to occur in regions 
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dominated by non-baroclinic developments, although some of the most predictable and jumpiest 

genesis events occur in the Cape Verde region associated with the low-level baroclinic pathway 

(baroclinic development under the African easterly jet). The less predictable cases further west and 

north are in regions where other baroclinic pathways (tropical transition TT (Davis and Bosart 2003, 

2004); trough interaction) are more common developments. This is consistent with results from 

(Wang et al. 2018) who found lower predictability in the TT pathways in an evaluation of reforecasts 

from the NCEP GEFS ensemble. It is however notable that there are very few predictable cases in the 

Caribbean and Gulf of Mexico despite the non-baroclinic pathway also being a significant development 

category in this region. These non-baroclinic pathways often originate from barotropic breakdown of 

vorticity along stalled fronts, which are smaller and could be less predictable, especially for a lower-

resolution model. Environmental factors influencing TC genesis in the western Atlantic have been 

discussed by Klotzbach et al. (2022) and (in the wider context of cyclonic circulations over central 

America) by Papin et al. (2017). Additional factors, such as land interactions, may also affect the model 

ability to correctly predict genesis and would have a more significant impact on genesis forecasts in 

the western Atlantic and Caribbean rather than eastern Atlantic; this is an area for future research. 

5.4.2 Consistency – the jumpiest forecasts of observed TS genesis events  

The run-to-run consistency of the ENS forecast probabilities is shown in Figure 5.3 for the 12 cases 

with highest DI for the FA17 forecasts. For each case, the forecast probabilities from the forecasts 

initialized every 12 hours from 24 to 216 h before the observed genesis are shown for each forecast 

set FG17, FA17, FA15, FATC. 

Most of these jumpy cases occur in September (August for Laura) and there are cases for each of the 

five years in our sample. As seen from Figure 5.2, the jumpy cases are typically in the central to east 

Atlantic and between 10°N and 20°N. The two exceptions to both time and location are Bonnie and 

Claudette which were both early season TCs in the west of the basin. Claudette was the only one of 

these cases that did not originate from an African easterly wave.  
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Figure 5.3. Forecast probability of TS activity for the jumpiest FA17 cases. Curves show the forecast probability of TC activity 
at the observed genesis time genesis time (𝑡!) and location X (latitude, longitude) for forecasts initialized at 12h intervals 
from 216 to 24 h before the observed genesis time. The probability for genesis (FA17) is shown by the red line, while the 
three blue curves show the probability of TC activity with different wind intensity thresholds FA17 (solid dark blue), FA15 

(dashed blue), and FATC (dotted light blue). The legend shows the jumpiness (DI) and error (Brier score, BS) for each. 

In most cases the jumpiness is related to the forecast intensity: the FATC probabilities are much more 

consistent from run to run than the FA17 probabilities, and the corresponding DI is consequently much 

lower. The two notable exceptions to this are Laura and Vicky, which both have substantial jumpiness 

for the lower wind thresholds. Interactions between African easterly waves or between these waves 

and other low-pressure systems have also been noted to affect the forecast probabilities of genesis 

for cases including Laura and Paulette (Magnusson et al. 2021). In the case of Vicky, we note that 

Teddy and Vicky originated from successive easterly waves that developed off the coast of Africa on 

10 and 11 September 2020. The earlier ENS forecasts tended to favour a development associated with 

Vicky with tracks moving north-westwards away from the coast of Africa, while later forecasts 

produced more westward tracks associated with Teddy. This uncertainty about which would be the 

stronger development, together with potential interactions between the two, may account for the 

jumpiness seen in the predictions for both Vicky and Teddy. 

 A notable feature of several cases is the high probability for TS activity (FA17) at longer range that is 

not maintained in the following forecasts made closer to the observed genesis time. Peter, Earl, 
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Philippe, and Bonnie all have high probability (>65%) at some time 5 or more days ahead, but then 

have much lower probabilities for later forecasts. However, in all these cases the probability for TC 

activity (FATC) remains consistently high (well above 65%).  

The jumpiest case in this sample is hurricane Lorenzo. There is a clear flip-flopping in the FA17 

probabilities between the forecasts started at 0000 UTC and those started at 1200 UTC: the forecasts 

from 1200 UTC tend to have lower probability for TS activity than the forecasts from 0000 UTC made 

12 h earlier and later. This suggests some systematic difference between the analyses for 0000 and 

1200 UTC that affects the forecast intensity. Similar flip-flops, though not as large or long-lasting can 

be seen in some other cases (e.g. Nigel, Paulette).  

These cases illustrate a number of different behaviours in the run-to-run consistency of the forecasts. 

In the next section we consider some of the factors that may contribute to these distinctive 

characteristics. 

5.4.3 Factors affecting forecast jumpiness and skill  

In this section we consider three factors that may affect the forecast jumpiness results discussed in 

the previous section. We look at the effect of ensemble size, the issue of flip-flops between 0000 and 

1200 UTC analysis times and finally consider the early genesis noted in all results and how this model 

bias may affect the results for both jumpiness and skill. Although a detailed analysis of causes is 

beyond the scope of the present study, the aim of this initial assessment is to identify avenues for 

further research. 

5.4.3.1 The effect of ensemble size 

We compute the forecast probabilities as the proportion of ensemble members that predict TC activity 

at a given time and location. How much does the finite ensemble size affect the jumpiness in these 

probabilities? In this section we use a simple idealized framework to illustrate sampling effects and 

show the levels of jumpiness that might be expected in an ensemble of 50 members. 

Figure 5.4a shows four idealized examples of how the probability of a TC increases over a set of 17 

consecutive forecasts (such as the sequences of forecasts initialized every 12 hours from 216 to 24 h 

before a given observed genesis time, as used in this study). For each set of probabilities, we generate 

an idealized M-member ensemble by drawing a random sample with the given probability p at each 

step (Bernoulli process such that each member is either 1, representing forecast of genesis or 0, 

indicating genesis not forecast) and then compute the DI for this sequence of 17 ensemble forecasts. 

We repeat this to generate 10000 cases and summarize the distribution of DI over these 10000 cases 

in Figure 5.4b.  
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Figure 5.4. Effect of ensemble size on forecast jumpiness. (a) 4 idealized examples of how the probability of TC genesis 
might evolve over a sequence of 17 50-member ensemble forecasts initialized e.g., every 12 hours from 216 to 24 h before a 
given verification time. (b) the empirical cumulative distribution of DI for each of the probability sets shown in (a) based on 
10000 cases. (c) the effect of ensemble size (number of members) on the extreme percentiles (95% solid, 99% dashed, 99.9% 
dotted) of the DI distribution for the probability set leading to the jumpiest cases (p_med). 

The four examples represent different predictability: linear increase in probability with forecast lead 

time (p_lin); a high predictability situation (p_high) in which the genesis event is forecast with high 

probability from five days ahead; a low predictability situation (p_low) where there is no signal at 

longer range and medium probability (35%) is reached only around 3-4 days ahead; and finally an 

intermediate situation (p_med) where the signal for genesis is captured with medium probability more 

than 7 days ahead, and this level of predictability is maintained until the probability increases again 

closer to the event. 

The expected jumpiness for a 50-member ensemble varies depending on the underlying predictability 

(Figure 5.4b). The low predictability situation is also the least jumpy of the four examples – when the 

probability of the event is low, there is little variability in the ensemble probability due to sampling 

(i.e. the finite ensemble size) and the jumpiness (DI) is also low. The intermediate predictability 

(p_med) situation is the jumpiest, with expected DI substantially higher than for the other examples. 

In general the sampling effects due to limited ensemble size are largest for probabilities close to 50%. 

We have seen that the jumpiness of the ENS genesis forecasts is higher in the central and eastern 

Atlantic where the predictability is also higher than in other parts of the basin. This is consistent with 

the above results – the low predictability (p_low) situation is more typical in the west of the basin, 

while the intermediate (p_med) is more representative of the central and eastern Atlantic. Users 

should be aware that more predictable situations are likely to be more jumpy because of sampling 

effects from the finite size of the ensemble. 

For all four idealized distributions, the maximum DI is less than 10. In section 5.4.1 we noted that the 

median DI for the observed genesis events in the eastern Atlantic was 8.75. This is much higher than 

would be expected from any of the idealized cases considered here. While still high compared to these 

idealized results, the median DI in the other parts of the Atlantic basin (3.5-4) is closer to the values 

suggested by these idealized cases. 
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Figure 5.4c shows how the ensemble size affects the results for the probability distribution that gives 

the jumpiest results overall (p_med, Figure 5.4b). As noted above, for a 50-member ensemble the 

probability of DI>10 is extremely small. However, for a 20-member ensemble the chance of having 

DI>10 is not negligible: we should expect that more than 5% of cases will have DI>10. In general 

sampling uncertainties will be larger for smaller ensembles (the proportion of members predicting 

genesis will be a less reliable estimate of the true underlying probability) and therefore the jumpiness 

from run to run will increase and more cases should be expected with large DI. Conversely, there is a 

steady decrease in the chances of high jumpiness as the ensemble size increases from 20 to 100 

members: for a 100-member ensemble, the maximum DI is not likely to be above 5.  

Overall, these idealized results suggest that for the ENS and the set of observed cases considered here, 

values of DI greater than 10 are unlikely to be due purely to ensemble size. The high median value of 

DI (8.75) for the cases in the eastern Atlantic suggests there is a substantial number of cases where 

factors other than pure sampling contribute to the jumpiness. 

However, it should be noted that if the ensemble is under-dispersive, the effective ensemble size could 

be lower than the nominal 50 members and this could significantly affect the DI. These idealized 

results also show that increasing ensemble size would be expected to reduce overall jumpiness and 

improve the overall consistency of the ENS predictions. This may be important for some decision-

making applications (Jewson et al. 2022) such as deciding when to plan and initiate evacuation from 

areas at potential risk (Regnier and Harr 2006) or rerouting of transportation to avoid adverse weather 

(McLay 2008). 

5.4.3.2 Analysis impacts – flip-flop between 0000 and 1200 UTC initial conditions 

The case of Lorenzo demonstrated a marked jumpiness between the forecasts initialized at 0000 and 

at 1200 UTC. Figure 5.5 shows the forecast tracks for Lorenzo initialized from 36 to 168 h before the 

observed genesis time. The circle indicates locations within 500 km of the observed genesis location. 

The potential for TS activity is predicted at all lead times, and the earliest forecast with high probability 

was initialized 7 days before the observed genesis time (Figure 5.3). Most of the forecast TCs intensify 

to TS strength very soon after the track leaves land and moves over the sea off the African coast. This 

is generally earlier than the observed genesis, consistent with the low probabilities shown in the FG17 

curve in Figure 5.3. A notable feature of the forecast probabilities (both FA17 and FA15) is the long 

sequence of flip-flops in the probabilities between successive forecasts: the forecasts started from 

0000 UTC have higher probability than those started 12 h earlier and 12 h later at 1200 UTC. 
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Figure 5.5. ENS forecasts for the genesis of Lorenzo, 1200 UTC 23 September 2019. ECMWF ensemble forecast tracks (blue) 
and observed track (black). Forecast start dates (DT) from 1200 UTC on 16 September to 0000 UTC on 22 September 2019 
(LT: forecast lead time in hours to observed genesis time). Coloured symbols show forecast intensity (maximum wind speed) 
at all times within 24 h of the observed genesis time (1200 UTC 21 September to 1200 UTC 23 September); Colours 
represent the maximum wind speed: yellow (<17 m s-1), orange (17-32 m s-1), red (>32 m s-1). Observed genesis location at 
1200 UTC 23 September marked (x) and circle indicates locations within 500 km radius of this location. 
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We extracted the maximum wind for each forecast TC position within 500 km and 24 h of the observed 

genesis position and time of Lorenzo for all ENS forecasts started from 0000 UTC and compared the 

distribution of these winds with those from the forecasts started at 1200 UTC. There is a statistically 

significant shift towards stronger winds in the forecasts from 0000 UTC analysis times (Figure 5.6). This 

suggests that there is some systematic difference in the assimilation at 0000 and 1200 UTC that affects 

the intensification of the forecasts in this case. One possibility is the analysis over West Africa where 

a systematic difference in analysis increments has been identified in the ECMWF assimilation system 

(Bormann et al. 2023). The reasons for this are not yet understood and are the subject of further 

investigation.  

While some other cases in the same region also have some flip-flops between 0000 and 1200 UTC 

initial conditions, this is not a common occurrence. Therefore, while assimilation differences may be 

one factor, it is likely that a combination of factors may be involved to make the large and significant 

impact found in this Lorenzo case. Further evaluation of this case is beyond the scope of this paper, 

but the results suggest that additional investigation into the differences between 0000 and 1200 UTC 

analyses may be relevant.  

 

 

Figure 5.6. Sensitivity of TC intensity to analysis time in ENS forecasts for the genesis of Lorenzo, 1200 UTC 23 September 
2019. Empirical cumulative distribution functions of maximum wind speed for ENS TC forecasts initialized at 0000 UTC (solid 
red line) and at 1200 UTC (dotted blue line) that are within 500 km and 24 h of the observed genesis event of Lorenzo (at 
11.1°N, 23.3°W). All forecast start dates between 0000 UTC 14 and 1200 UTC 22 September. 
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5.4.3.3 Model bias (systematic error) 

In many cases that develop from tropical waves over Africa, the forecast tracks intensified to TS 

strength before the observed TS genesis time. The example of Lorenzo above shows that the forecast 

tracks often intensified to TS strength immediately after leaving the African continent and moving 

over sea.  

To investigate how typical this early intensification is, we consider all forecast tracks in the 5-year 

sample. Figure 5.7a shows the location of the first time each forecast track reaches TS strength, 

accumulated on a 1°x1° grid. Figure 5.7b shows the observed locations for the equivalent first time 

that the observed TC is reported as TS. There is a substantial peak in the number of forecast TCs that 

intensify to TS strength immediately after leaving the African coast. In contrast, none of the observed 

cases are reported to reach TS intensity east of 20°W. There are fewer forecast TS genesis events in 

the central and western areas (60-80°W, 10-20°N). Overall, there is a shift eastwards of the genesis 

locations in the forecasts. A similar bias in overforecasting TC genesis was found in the NCEP GEFS 

reforecasts, associated with overactivity of African easterly waves in that system  (Li et al. 2016; Wang 

et al. 2018).  

Overdevelopment of initial wave activity over Africa and the quick intensification to TS soon after the 

waves move over the open sea may also account for some of the high DI cases shown in Figure 5.3.  

Peter and Philippe were two cases predicted with high probability at longer lead times, but for both 

the probability for TS intensity dropped at shorter leads. In each case the higher probabilities occurred 

for forecasts initialized when the wave activity was still over the African continent, and TS genesis 

occurred soon after the system left the coast. In the later forecasts where the forecast TC developed 

further to the west, the probabilities for more intense developments (both FA17 and FA15) were 

lower. 

In summary, there is a tendency in the ENS for TC development to occur too quickly in TCs that develop 

from African easterly waves and for the intensification to TS to occur soon after the wave moves over 

the ocean, often before the TC reaches 20°W. This may be a cause of the jumpy behaviour seen in 

some cases.  

We hypothesize that this bias is associated with overdevelopment of African easterly wave activity in 

the ENS and identify this as an important area for future research.  
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Figure 5.7. Locations of TS genesis in forecasts and observations. (a) forecast genesis: location of the first point on each 
forecast track with maximum wind speed >17 m s-1; map shows total number of forecast genesis events in each 1°x1° grid 
box over the full set of forecasts May-December 2019-2023. (b) observed TS genesis locations for all 97 observed cases; 
colour indicates the reported maximum wind at genesis time in the IBTrACS data (m s-1) 

5.4.4 Overall skill of TS genesis forecasts  

So far, we have focused on the results for observed TS genesis events. Although these results show 

the performance for hits and misses of observed events, they do not take account of false alarms in 

the forecasts.  

To assess the overall performance of the ENS genesis probability forecasts, we now include all forecast 

tracks, including those false alarm cases where a TS did not actually occur. For each case, and at each 

grid point, the forecast is the probability that a TS genesis event will occur within 500km and between 

24h and 216h ahead 

Figure 5.8 shows the Brier skill score (B, Eq. (5.4)) of these ENS forecasts of TS genesis. This shows that 

there is skill in some areas. The highest skill is in the eastern Atlantic, consistent with the regions where 

genesis was found to be more predictable at longer lead for the observed cases (Figure 5.2). Although 

BSS is lower in more western areas, there are still some regions with positive skill. The low overall skill 

is consistent with the findings in the earlier sections that FG17 skill is limited because of the tendency 

in the ENS to predict TS genesis earlier than observed.  
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Figure 5.8. Skill of ENS forecasts of TS genesis. Brier skill score for the forecast probability that TS genesis will occur within 
500 km of each grid point during the forecast, between 24 h and 216 h lead time; score computed over all forecasts in 5 
years sample 2019-2023. 

Figure 5.9a shows the reliability diagram for the TS genesis forecasts; the ENS probabilities are 

grouped into 10% probability intervals and accumulated over all grid points and over the full 5-year 

sample. The curve is below the diagonal, indicating that the genesis forecasts are overconfident and 

lack reliability. While this can be a result of lack of spread in the ensemble, it is also consistent with 

our results that the ENS tends to predict TS genesis earlier than observed. A similar overconfidence is 

also found in the operational ECMWF verification of TC activity (Haiden et al. 2023) and in 

corresponding TC activity forecasts from other ensemble systems (Magnusson et al. 2021). 

The positive slope of the reliability curve shows that, while lacking reliability,  the forecasts do have 

some resolution: the ability to distinguish between more and less likely genesis events. This 

discrimination ability is confirmed in Figure 5.9b which shows the ROC diagram for the genesis 

forecasts. In the ROC computation, all possible forecast probabilities are considered (Ben Bouallègue 

and Richardson 2022). In Figure 5.9b, the ROC for all grid points is compared with the corresponding 

ROC curves for three sub-regions: the skill is greater in the eastern Atlantic (east of 60°W and south 

of 30°N) and lower in the western ( west of 60°W and south of 30°N) and northern (north of 30°N) 

areas. This confirms the regional differences in skill noted in the evaluation of the observed cases 

(Figure 5.2). Although the reliability diagrams for the sub-areas are more noisy due to the smaller 

sample size in each sub-area, they also indicate better performance for the eastern region and lowest 

reliability in the northern region. 
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Figure 5.9. Evaluation of ENS forecasts of TS genesis to occur between 24 h and 216 h lead time; scores computed over all 
forecasts in 5 years sample 2019-2023. a) reliability diagram, results accumulated over all grid points; b) ROC diagram for 
all grid points (solid red) and for western (orange dashed), eastern (blue dash-dotted) and northern (dotted green) sub-
regions (see text for details); c) performance diagram for eastern (E) and western (W) regions and for the low (L), medium 
(M) and high (H) probability thresholds (first letter indicates region and second letter indicates the probability threshold), 
grey diagonal lines show bias and grey curved lines show threat score; d) ROC diagram comparing overall results (all, solid 
red, same as in panel b) with FG17 forecasts of TS genesis at lead times of 72, 120 and 168 h. 

To highlight the false alarms as a proportion of the genesis forecasts, the skill of the genesis forecasts 

for the low, medium and high probability thresholds in the eastern and western regions is shown on 

a performance diagram in Figure 5.9c. As for the reliability diagram and ROC, Figure 5.9c shows a 

substantial difference in performance between eastern and western areas, especially for the low and 

medium probabilities, with substantially better hit rate for a similar false alarm ratio. As for the other 

performance measures, the northern region has the poorest performance (not shown). 
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Figure 5.9d shows the ROC curves for the FG17 forecasts for days 3, 5 and 7 (72, 120, 168 h in grey) 

together with the overall ROC (same as in Figure 5.9b). The discrimination skill decreases at longer 

lead, although there is still substantial discrimination ability at 168 h. The overall ROC (for genesis 

between 24 and 216 h) lies between the curves for 120 h and 168 h, suggesting the overall results are 

reasonably indicative of the medium-range performance. 

The results in this section have been based on the comparison of the forecast and observed genesis 

of tropical storms, defined as the first point on forecast or observed track with wind speed of 17 m s-

1. To investigate the sensitivity of the results to the forecast wind speed threshold, we recomputed 

the ROC results using alternative forecast wind speed thresholds of 8 m s-1, 15 m s-1 and 19 m s-1, all 

verified against the operational genesis of TS (17 m s-1). We found that the results are relatively 

insensitive to small changes (+/-2 m s-1) in the forecast wind speed threshold, but a large reduction in  

the forecast threshold (to 8 m s-1) substantially reduces the forecast skill. This section has focused on 

whether TS genesis will occur at some point during the forecast, and this may be why these results 

are not too sensitive to the wind threshold – a given threshold will likely be exceeded as the tropical 

cyclone intensifies during the forecast. A more detailed investigation of the definition of genesis in the 

forecast and the effect on forecast skill will be a topic for future research. 

5.5 Conclusions 

We have investigated the ability of the ECMWF ensemble forecasts ENS to predict the genesis of 

tropical cyclones in the Atlantic basin up to 10 days ahead. We compared the ENS operational TC track 

forecasts to observed tracks from the IBTrACS archive for all named tropical storms for the 5 years 

2019-2023.  

We focused on the probabilistic performance of the ENS rather than the evaluation of deterministic 

forecasts that has been more typically the subject of previous studies. 

Defining a genesis event as the first time the TC reached tropical storm strength (winds at least 17 m 

s-1), the ENS probability forecasts (FG17, Table 5-1) of the observed genesis events had relatively low 

skill with only 20% of the observed cases predicted with medium or high probability (probability 35% 

or more) more than 72 h ahead. In many cases the forecast track reached TS strength more than 24 h 

before the observed TS genesis time. Allowing for this early genesis in the forecasts increased the 

forecast probabilities (FA17, Table 5-1) for the observed event.  

In part, this may reflect differences between the IBTrACS reports and the ECMWF TC tracker - the 

ECMWF tracker tends to pick up the TC at an earlier stage than the official designation as a TC. 

Differences in feature identification between different TC trackers can have a significant impact on 



91 
 

Chapter 5.  Skill and consistency of ECMWF forecasts of Atlantic tropical cyclone genesis 

the number of TCs identified by a forecast model (Conroy et al. 2023) and there is currently no 

generally agreed best practice for the definition and evaluation of TC genesis (Dunion et al. 2023).  

We also found substantial geographical variation in the performance of the ENS probabilities: 

observed genesis events were predicted 2-3 days earlier in the central and eastern Atlantic than in 

other parts of the basin. The regional differences may be associated with intrinsic differences in 

predictability in different tropical cyclogenesis pathways (McTaggart-Cowan et al. 2013, 2008; Wang 

et al. 2018). Investigation of the ENS skill and jumpiness in the different pathways is an area of future 

research. 

We assessed the run-to-run consistency of the ENS probabilities of genesis using the divergence index 

DI (Richardson et al 2020, 2024). The DI also varied between different regions, with the jumpiest cases 

being in the central and eastern Atlantic. The median DI here was more than twice that found in the 

western and northern parts of the basin. The most jumpy cases occurred in different years but almost 

always in late August or September. In most of these cases the jumpiness depended on the forecast 

intensity: the forecasts were consistent in predicting the existence of the TC, but the probability for 

the TC to be at tropical storm strength varied from run to run. 

Understanding the causes of jumpiness is important to inform both users and model developers. 

Forecast jumpiness is a measure of the internal consistency of the forecasting system. Although we 

used the observed genesis events as reference, the computation of DI does not depend on the 

observations. Hence, the results for jumpiness are not directly affected by the differences between 

the model and observed definitions of genesis discussed above. Examining the issues affecting 

jumpiness can therefore help to identify potential weakness in the modelling system. Based on 

consideration of the most jumpy cases in our sample, we considered a number of factors that could 

affect the ENS jumpiness in predicting TC genesis.  

One possible cause of large jumpiness is the sampling uncertainty associated with the limited 

ensemble size. We found that the DI for the most jumpy cases is significantly higher than should be 

expected for a well-constructed 50-member ensemble. However, jumpiness is sensitive to ensemble 

size and the highest values of DI found in our results may occur for ensembles with around 20 

members. While ENS track forecasts are well-calibrated, the forecast intensity is overall 

underdispersive (Haiden et al. 2023) and in some situations this may reduce the effective ensemble 

size, contributing to increased jumpiness. In certain situations with intrinsically low predictability, 

there may be particular sensitivity to ensemble size and substantially more than 50 members may be 

needed to properly represent the underlying distribution (Leutbecher 2019; Craig et al. 2022; Kondo 
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and Miyoshi 2019). This may be important in some genesis situations involving complex interactions 

between waves where the ENS showed large jumpiness. 

In some cases, there was a notable sequence of flip-flops between the forecasts started from 0000 

and 1200 UTC analyses. Lorenzo was a particularly strong example, and for this case we found a 

significant difference between the forecast maximum winds associated with the TCs initialized at the 

two analysis times, with higher winds from the 0000 UTC analysis. We hypothesize that this may be 

associated with a known systematic difference in analysis increments at 0000 and 1200 UTC over West 

Africa in the ECMWF assimilation system (Bormann et al, 2023). However, this flip-flop behaviour was 

not a common feature across cases, suggesting that a combination of factors in addition to the analysis 

differences may be involved to make the large and significant impact found in this case. This is an area 

requiring further investigation. 

A significant difference between the observed and forecast TS genesis is that the ENS TC tracks tend 

to intensify to TS strength earlier than the observed TS genesis event. ENS tracks that develop from 

African easterly waves often reach TS soon after the wave moves over the ocean, often before the TC 

reaches 20°W. This may be a cause of the jumpy behaviour seen in some cases (for example Peter and 

Philippe) where earlier forecasts had high probability for TS development, while later forecasts that 

were initialized after the disturbance moved over the ocean had lower probability. The association 

with jumpy behaviour lends weight to this being a systematic error in the forecasting system and not 

just an artifact of the differences between forecast and observed genesis identification methods. We 

hypothesize that this bias is associated with overdevelopment of African easterly wave activity in the 

ENS and identify this as an important area for future research. 

Finally, we provided a baseline evaluation of the skill of the ENS TS genesis forecasts including all 

forecasts from the 5-year sample to take account of both hits and false alarms. Overall, forecasts were 

overconfident but showed good discrimination ability, with higher skill in the east of the basin 

(particularly for low to medium probabilities) consistent with the results for the observed genesis 

cases. The ECMWF forecasting system is typically upgraded annually and some of these changes affect 

the tropical cyclone performance, for example the increase in ensemble resolution in 2023 (Haiden et 

al. 2023). Given that TS genesis is a relatively rare event, skill evaluation generally needs to be carried 

out over a sample of several seasons, inevitably covering a number of different model versions 

(Leonardo and Colle 2021). We found cases of large jumpiness in each year of our sample, and this 

suggests that the underlying causes still need to be addressed. The overall results can be seen as a 

general assessment of recent model performance and provide a benchmark against which to evaluate 

future model developments. 
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Chapter 6  Additional research towards the aim of this thesis 

In addition to the three main papers of this thesis (Chapters 3-5), I have contributed to several other 

publications that are relevant to the overall aim of the thesis: to carry out research to improve the 

use and understanding of ensemble forecasts through the evaluation of run-to-run consistency 

together with existing verification methods. 

These are summarised below. The first paper, Magnusson et al. (2021), made a significant contribution 

to the focus of the second and third main objectives of the thesis addressed in Chapters 4 and 5. The 

remaining papers are grouped under six main headings that correspond to the topics discussed under 

recommendations and next steps in the next chapter (section 7.4). Some papers contribute to several 

topics; they are included under the most relevant heading, and Table 6-1 at the end of this chapter 

indicates which topics are relevant for each paper. 

6.1 Contribution to main objectives of the thesis 

6.1.1 Magnusson et al. (2021) 

Magnusson, L., Majumdar, S., Emerton, R., Richardson, D., et. al. (2021) ‘Tropical cyclone activities at 

ECMWF’, ECMWF Technical Memorandum 888. ECMWF. Available at: 

https://doi.org/10.21957/zzxzzygwv. 

This comprehensive review of TC activities at ECMWF was prepared and presented as a Special Topic 

paper to the ECMWF Scientific and Technical Advisory Committees in October 2021. 

The study identified occasional jumpiness of TC tracks as a significant issue that have caused 

challenges for forecasters, in particular for the landfall of Hurricane Laura in 2020. This provided an 

important opportunity to demonstrate the benefit of using the DI consistency measure developed as 

the first objective of this PhD (Chapter 3) to a significant high-impact weather hazard. The result is 

shown in Figure 6.1 – applying the DI to the ECMWF ensemble track positions of all 2020 Atlantic TCs 

shows that the forecasts for hurricane Laura stand out as the most inconsistent cases. This confirmed 

the subjective feedback from forecasters who were trying to assess the areas most at risk along the 

US Gulf coast. The DI results showed that inconsistency was especially large around the time of 

landfall. 
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Figure 6.1.  Run-to-run jumpiness of ECMWF ensemble TC  track forecasts for the  Atlantic basin in 2020; all cases with at 
least 20 members for lead times 12, 24, 36, …, 60 h and longer if available). Divergence index (DI) – large positive numbers 
indicate inconsistent cases (large negative numbers indicate high consistency). Each dot represents the DI for a sequence of 
forecasts valid for one valid time of the observed TC. Reproduced from Fig 18 in Appendix A4 (Magnusson et al, 2021).  

This preliminary work on TC track jumpiness laid the foundation for objective 2 of the thesis and the 

research to address this objective was presented in Chapter 4. 

The review also highlighted key issues and research gaps in the prediction of TC genesis, including 

occasional run-to-run jumpiness and the lack of routine verification. This was instrumental in setting 

the third objective for the PhD which was addressed in the research contained in Chapter 5 of the 

thesis. 

My contribution: I was a member of the editorial team that coordinated the aims, objectives and 

contents of the report and reviewed all the writing. I contributed to the section on forecast challenges, 

conducting the analysis and writing the text for the forecast jumpiness (figure 18 and accompanying 

text), biases in cross-track and along-track errors (figure 19 and accompanying text), and the 

preliminary evaluation of genesis forecasts (figures 23, 24 and accompanying text). 

This report is included in Appendix A4. 
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6.2 Guidance for forecast users 

6.2.1 Ben Bouallègue et al. (2019) 

Ben Bouallègue, Z., Magnusson, L., Haiden, T. and Richardson, D.S. (2019) ‘Monitoring trends in 

ensemble forecast performance focusing on surface variables and high-impact events’, Quarterly 

Journal of the Royal Meteorological Society, 145(721), pp. 1741–1755. Available at: 

https://doi.org/10.1002/qj.3523. 

This paper discussed the challenges involved in monitoring trends in ensemble forecast performance, 

especially for high-impact weather events. It investigated the relative benefits of different choices of 

methodology, including definition of events, impact of representativeness error and selection of 

reference benchmark. In Section 7.4.1. it is recommended that trends in ensemble forecast 

consistency be monitored at operational centres and the results from this paper will provide useful 

guidance in establishing the appropriate method to do that. 

My contribution: I contributed to the discussion and interpretation of results and editing of the paper. 

6.3 Causes of jumpiness  

6.3.1 Ben Bouallégue et al. (2020) 

Ben Bouallégue, Z., Ferro, C.A.T., Leutbecher, M. and Richardson, D.S. (2020) ‘Predictive verification 

for the design of partially exchangeable multi-model ensembles’, Tellus A: Dynamic Meteorology and 

Oceanography, 72(1), pp. 1–12. Available at: https://doi.org/10.1080/16000870.2019.1697165 

This paper develops a methodology to account for different ensemble sizes in verification of multi-

model ensemble configurations. It shows that the performance of different ensemble combinations 

can be robustly estimated based on a small subset of members from each model. 

Ensemble size is one factor influencing run-to-run jumpiness. The research in this thesis has shown 

the benefit of comparing ensembles from different centres (with different numbers of members) and 

it is also recommended that the use multi-model combinations to mitigate jumpiness be assessed. It 

will be useful to see if the results from this paper can also be applied to the measures of jumpiness to 

account for the different ensemble sizes.   

My contribution: I contributed to the conceptualization, discussion and interpretation of results and 

editing of the paper. 

6.3.2 Day et al. (2020) 

Day, J.J., Arduini, G., Sandu, I., Magnusson, L., Beljaars, A., Balsamo, G., Rodwell, M. and Richardson, 

D. (2020) ‘Measuring the Impact of a New Snow Model Using Surface Energy Budget Process 

https://doi.org/10.1002/qj.3523
https://doi.org/10.1080/16000870.2019.1697165
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Relationships’, Journal of Advances in Modeling Earth Systems, 12(12). Available at: 

https://doi.org/10.1029/2020MS002144. 

Diagnosing the causes of model errors for a single variable such as surface temperature can be difficult 

because of the range of processes involved. This paper developed a set of diagnostic tools that are 

useful for evaluating the energy exchange at the Earth's surface in an Earth System Model, from a 

process-based perspective, using in situ observations. These tools were used to show that the 

improvements to surface temperature following the introduction of a new multi-layer snow scheme 

in the ECMWF model were a result of a better representation of the surface energy balance, showing 

that the model bias is improved for the right reasons. 

When addressing causes of ensemble jumpiness, it will be important to understand the underlying 

model weaknesses and confirm that any improvements from model developments are being made for 

the right reasons. Processed-based diagnostics, such as the one developed in this study, have an 

important role to play in this process. 

My contribution: I contributed to the discussion and interpretation of results and editing of the paper. 

6.4 Mitigation of ensemble forecast jumpiness  

An outcome of this thesis is a recommendation to investigate the use of multi-model combinations 

and statistical post-processing to mitigate the impact on users of ensemble jumpiness. The following 

papers relate to these two approaches. 

6.4.1 Gascón et al. (2019) 

Gascón, E., Lavers, D., Hamill, T.M., Richardson, D.S., Bouallègue, Z.B., Leutbecher, M. and 

Pappenberger, F. (2019) ‘Statistical postprocessing of dual-resolution ensemble precipitation 

forecasts across Europe’, Quarterly Journal of the Royal Meteorological Society, 145(724), pp. 3218–

3235. Available at: https://doi.org/10.1002/qj.3615. 

This paper assessed combinations of raw and post-processed output from two different ensembles 

and developed a new method for the statistical calibration that takes account of differences in 

ensemble size between training data (reforecasts) and the real-time forecasts.  

My contribution: I contributed to the conceptualization, discussion and interpretation of results and 

editing of the paper. 
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6.4.2 Feldmann et al. (2019) 

Feldmann, K., Richardson, D.S. and Gneiting, T. (2019) ‘Grid- Versus Station-Based Postprocessing of 

Ensemble Temperature Forecasts’, Geophysical Research Letters, 46(13), pp. 7744–7751. Available at: 

https://doi.org/10.1029/2019GL083189. 

This paper compared the benefits of postprocessing ensemble temperature forecasts with gridded 

analyses against postprocessing at observation sites. It showed that the statistical postprocessing 

improves on the raw model output and that the relative improvement achieved by postprocessing is 

greater when trained and verified against station observations.  

My contribution: I contributed to the conceptualization, discussion and interpretation of results and 

editing of the paper. 

6.4.3 Korhonen et al. (2020)    

Korhonen, N., Hyvärinen, O., Kämäraïnen, M., Richardson, D.S., Järvinen, H. and Gregow, H. (2020) 

‘Adding value to extended-range forecasts in northern Europe by statistical post-processing using 

stratospheric observations’, Atmospheric Chemistry and Physics, 20(14). Available at: 

https://doi.org/10.5194/acp-20-8441-2020. 

This paper demonstrated the potential to improve extended-range forecasts for weeks 3-4 and 5-6 by 

better accounting for the influence of the stratospheric polar vortex. Post-processing the ensemble 

forecasts of near-surface temperature using information about the stratospheric winds at the start of 

the forecast was shown to improve the skill of the temperature forecasts over northern Europe in 

winter.   

My contribution: I contributed to the discussion and interpretation of results. 

6.4.4 WMO (2021)  

WMO (2021) ‘Guidelines on Ensemble Prediction System Postprocessing’, Geneva: WMO. Available 

at: https://library.wmo.int/records/item/57510-guidelines-on-ensemble-prediction-system-

postprocessing#.YOW-x-gzYuV (Accessed: 9 July 2024). 

This report was developed to provide WMO Members with practical guidelines about the range of 

postprocessing methods by which they can use information from available EPS forecasts to enhance 

and improve forecasts for their own specific regions and applications. 

My contribution: I contributed to the conceptualization, writing and editing of the report. 
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6.5 Measures of jumpiness and skill  

6.5.1 Rodwell et al. (2020) 

Rodwell, M.J., Hammond, J., Thornton, S. and Richardson, D.S. (2020) ‘User decisions, and how these 

could guide developments in probabilistic forecasting’, Quarterly Journal of the Royal Meteorological 

Society, 146(732), pp. 3266–3284. Available at: https://doi.org/10.1002/qj.3845. 

This paper investigated how users combine objective probabilities with their own subjective feelings 

when deciding how to act on weather forecast information. The audience at a Live Science event held 

by the Royal Meteorological Society was asked to make yes/no decisions on the basis of a range of 

forecast probabilities. The results were used to build a picture of the distribution of cost-loss ratios 

across the audience and to calculate a ‘User Brier Score’ (UBS) to measure the overall utility to society 

(represented by the audience as a whole), and which could be used to guide forecast system 

development. Differences between results for the UBS and Brier score demonstrate how forecast 

utility depends of the decision-making requirements of the user community. 

This study provided valuable insight into users’ decision-making based on probabilistic forecast 

information and on the choice of user-relevant scores to monitor and guide forecast system 

developments. It would be equally valuable to develop and carry out a corresponding study to 

investigate users behaviour when making choices over a sequence of forecasts and to assess the 

consequences for users actions of jumpiness in that forecast sequence.  

My contribution: I contributed to the conceptualization, discussion and interpretation of results and 

editing of the paper. 

This paper is included in Appendix A5 

6.5.2 Ben Bouallègue and Richardson (2022) 

Ben Bouallègue, Z. and Richardson, D.S. (2022) ‘On the ROC Area of Ensemble Forecasts for Rare 

Events’, Weather and Forecasting, 37(5), pp. 787–796. Available at: https://doi.org/10.1175/WAF-D-

21-0195.1. 

The ROC is a common verification tool used to assess the discrimination ability of ensemble forecasts. 

Interpretation of ROC results can be difficult for rare events. This paper investigated and provided 

recommendations to facilitate the use and interpretation of the ROC in these situations. It also 

introduced a new approach to use the concept of imprecise probabilities and to subdivide the lowest 

ensemble probability category to address the issue of capturing low-probability events with limited 

ensemble size. 
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The ROC has been used in some previous studies of ensemble performance for TC genesis (a rare 

event) and it would be a useful extension of the research carried out for Chapter 5 of the thesis to 

extend that verification (using the Brier score) to also include ROC scores. That should be done 

following the recommendation and applying the methodology in this study. The same approach 

should be used in integrated evaluation studies of skill and jumpiness of ensemble forecasts of other 

high-impact weather hazards (section 7.4.5) 

My contribution: I contributed to the conceptualization, writing, discussion and interpretation of 

results of the paper. 

This paper is included in Appendix A6 

6.6 Applications to other hazards 

6.6.1 Vitart et al. (2019a) 

Vitart, F., Alonso-Balmaseda, M., Ferranti, L., Benedetti, A., Balan-Sarojini, B., Tietsche, S., Yao, J., 

Janousek, M., Balsamo, G., Leutbecher, M., Bechtold, P., Polichtchouk, I., Richardson, D., Stockdale, T. 

and Roberts, C. (2019a) ‘Extended-range prediction’, ECMWF Technical Memorandum 854. ECMWF. 

Available at: https://doi.org/10.21957/pdivp3t9m. 

This comprehensive review of extended-range forecasting at ECMWF was prepared and presented as 

a Special Topic paper to the ECMWF Scientific and Technical Advisory Committees in October 2019. 

The paper reviewed the progress of ECMWF forecasting for the extended range (1-2 months ahead) 

over the last five years. It provided a summary of lessons learned from participating in the WMO 

Subseasonal to Seasonal (S2S) project. It also discussed the considerations and choices made in 

preparation for upgrading the extended-range forecasting system, including the balance between 

ensemble size, resolution and production frequency to make best use of the additional computation 

resources expected from the forthcoming new HPC at ECMWF. 

It includes an example showing that run-to-run consistency can be an issue in the extended-range 

forecasts, and further research on this would be useful: this is discussed further in Chapter 7 (section 

7.4.5) of this thesis.   

My contribution: I contributed to the strategy for the proposed new configuration, the discussion and 

interpretation of results and editing of the paper. 
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6.7 Data availability and challenges 

6.7.1  Ben Bouallegue et al. (2020) 

Ben Bouallegue, Z., Haiden, T., Weber, N.J., Hamill, T.M. and Richardson, D.S. (2020) ‘Accounting for 

Representativeness in the Verification of Ensemble Precipitation Forecasts’, Monthly Weather Review, 

148(5), pp. 2049–2062. Available at: https://doi.org/10.1175/MWR-D-19-0323.1. 

This paper addresses the representativeness issue that occurs when comparing point measurements 

of precipitation to model gridded data representative of the mean precipitation over a larger area. A 

new methodology is applied to account for this mismatch in spatial scale and the representativeness 

is shown to have a large impact on verification results.  

Although evaluation of ensemble consistency does not rely on observations, they are essential to the 

overall evaluation of forecast quality. When incorporating consistency as part of an integrated 

approach to evaluation of ensemble performance it will be important to take account of 

representativeness when evaluating the ensemble against observations. 

My contribution: I contributed to the conceptualization, discussion and interpretation of results and 

editing of the paper. 

6.7.2 Lavers et al. (2019, 2020) 

Lavers, D.A., Harrigan, S., Andersson, E., Richardson, D.S., Prudhomme, C. and Pappenberger, F. (2019) 

‘A vision for improving global flood forecasting’, Environmental Research Letters, 14(12), p. 121002. 

Available at: https://doi.org/10.1088/1748-9326/AB52B2. 

Lavers, D.A., Ramos, M.-H., Magnusson, L., Pechlivanidis, I., Klein, B., Prudhomme, C., Arnal, L., 

Crochemore, L., Van Den Hurk, B., Weerts, A.H., Harrigan, S., Cloke, H.L., Richardson, D.S. and 

Pappenberger, F. (2020) ‘A Vision for Hydrological Prediction’, Atmosphere, 11(3), p. 237. Available at: 

https://doi.org/10.3390/atmos11030237. 

Both papers highlight how a lack of hydrological observations in many areas of the world present a 

severe limitation on the evaluation of hydrological forecasts and can severely restrict the useability of 

the forecasts and diagnosis and understanding of model weaknesses. 

Evaluation of the run-to-run jumpiness of the hydrological forecasts is one approach that may help to 

identify model issues and is an area for future research. Nevertheless observations will still be 

essential to evaluate the skill and usefulness of the forecasts. 

My contribution: I contributed to the conceptualization, discussion and interpretation of results and 

editing of Lavers et al. (2019) and to the reviewing and editing of Lavers et al. (2020). 

https://doi.org/10.1088/1748-9326/AB52B2
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6.8 Summary table of co-authored publications 
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Chapter 7  Discussion and recommendations 

This thesis has addressed three objectives relating to the run-to-run jumpiness of ensemble forecasts. 

The overall aim was to respond to user concerns and to demonstrate how evaluation of jumpiness can 

complement existing verification methods in understanding ensemble forecast performance and 

identifying aspects where future research may improve ensemble prediction systems. 

The three main objectives were: 

1. Develop a suitable index to measure the run-to-run consistency in a sequence of ensemble 

forecasts and demonstrate how this can identify important cases of high ensemble forecast 

jumpiness. 

2. Evaluate and compare the jumpiness in ensemble forecasts of Atlantic tropical cyclone tracks 

from three operational centres, identify any common factors and provide guidance to users. 

3. Evaluate the skill and consistency of ECMWF forecasts of Atlantic tropical cyclone genesis, 

provide guidance to users and identify factors affecting forecast performance. 

Each objective was addressed in a research paper, included in the thesis as Chapters 3, 4, and 5. 

Additional work carried out over the course of the PhD was summarised in Chapter 6. This Chapter 

discusses the outcomes and limitations of the research of each of the three main papers (Chapters 3, 

4 and 5) and presents several recommendations for next steps. 

7.1 Identifying run-to-run consistency in ensemble forecasts 

This study was designed to answer the first key research question: How can we identify run-to-run 

consistency in a sequence of ensemble forecasts? 

It addressed the first objective: Develop a suitable index to measure the run-to-run consistency in a 

sequence of ensemble forecasts and demonstrate how this can identify important cases of high 

ensemble forecast jumpiness. 

The study, entitled “Evaluation of the consistency of ECMWF ensemble forecasts”, forms Chapter 3 of 

this thesis and was published in Geophysical Research Letters in 2020. 

7.1.1 Key findings 

The first objective was to develop and demonstrate an appropriate score to evaluate the run-to-run 

jumpiness of ensemble forecasts. This needed to be able to quantify both individual jumps and the 

overall consistency in a sequence of consecutive forecasts valid for a given time. The aim was to 

account for the full ensemble distribution rather than just considering the ensemble mean (EM) as in 
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previous studies. The research in this study developed the Divergence Index (DI) to fulfil these criteria 

and provided the first systematic, objective evaluation of ECMWF ensemble (ENS) jumpiness. 

The study identified important general characteristics of run-to-run consistency and compared the 

ensemble jumpiness with that of the deterministic control (CTRL) and EM forecasts. The DI was 

substantially lower for the ENS than for the control forecast and the EM, demonstrating how by 

representing the range of possible scenarios, the ensemble distribution as a whole mitigates the 

jumpiness seen in the deterministic forecasts. On average, the error and spread of ensemble forecasts 

increase with forecast lead time, reaching an asymptotic limit dependent on the climatological 

atmospheric variability. The jumpiness of a deterministic forecast such as the ensemble control also 

increases throughout the forecast. However the ensemble as a whole behaves differently – at long 

forecast lead times when predictability is lost, ensemble forecasts will represent samples from the 

climate distribution and jumpiness will only be due to the sampling effects of finite ensemble size. The 

largest run-to-run jumps between ensemble forecasts will occur for some intermediate forecast lead 

time. In Chapter 3, this was found to be at 7-9 days ahead for forecasts of the large-scale flow, but this 

will be different for different forecasting applications. 

The study focused on two key characteristics of the large-scale flow over the European-Atlantic region: 

the North Atlantic Oscillation (NAO) and Scandinavian Blocking (BLO). Predicting transitions between 

such weather regimes is a significant scientific challenge at the frontier of NWP and identifying and 

understanding EPS behaviour in these situations is important to guide research to improve the 

predictions. The DI identified occasional cases where successive ensemble forecasts give contradictory 

indications about the probability for a change in weather type. To understand the reasons for this 

jumpiness, more detailed investigation is needed to identify what aspects of the ensemble forecast 

configuration lead to such behaviour. This was illustrated for one high-DI case: error tracking showed 

that the jumpiness was related to the initial mishandling of developing trough-ridge patterns over 

eastern North America. This provides useful information for developers investigating the causes of 

poor forecasts. It was also shown that care is needed in the interpretation of jumpiness using a single 

index - an apparent clear flip-flop in a single index may hide a more complex predictability issue. 

7.1.2 Limitations 

The key aim of this study was to develop and demonstrate a methodology to measure the run-to-run 

consistency in a sequence of ensemble forecasts. The main limitations of the study are that only a 

single evaluation measure (chosen to correspond to the standard CRPS verification score) was used to 

assess jumpiness, and the methodology was only applied to two indices representing the large-scale 

flow over Europe. The second of these limitations was addressed in the following studies, where the 
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DI was applied to TCs. Application to different weather hazards and forecasting timescales will be 

important to evaluate how the methodology and conclusions apply in other circumstances.  Forecast 

verification employs a range of different scores that have different characteristics, which can be used 

to address different aspects of forecast performance. Similarly, alternative scores to evaluate run-to-

run consistency may be useful. This is discussed further in section 7.4.4, including the extension to the 

multi-variate case identified as a specific limitation of the study.  

An additional limitation is that this study only addressed run-to-run consistency and did not consider 

the potential relationships between jumpiness, error and skill. It is important to demonstrate how 

evaluation of consistency complements existing verification procedures, and these aspects were 

addressed in the following studies (Chapters 4 and 5).  

Finally, although the study did investigate the causes of two specific cases of high jumpiness, it did not 

consider the range of factors that may cause ensemble jumpiness or discuss methods to identify such 

factors. Again, these limitations were addressed in the subsequent research presented in Chapters 4 

and 5. 

7.2 Jumpiness in ensemble forecasts of Atlantic tropical cyclone tracks  

This study was designed to answer the second key research question: How does run-to-run 

consistency vary between ensemble forecasts from different centres, and do these differences shed 

light on the causes of jumpiness? 

It addressed the second objective: Evaluate and compare the jumpiness in ensemble forecasts of 

Atlantic tropical cyclone tracks from three operational centres, identify any common factors and 

provide guidance to users. 

The study, entitled “Jumpiness in ensemble forecasts of Atlantic tropical cyclone tracks”, forms 

Chapter 4 of this thesis and was published in Weather and Forecasting in 2024. 

7.2.1 Key findings 

This study applied the DI developed in Chapter 3 to investigate the run-to-run consistency of ensemble 

TC track forecasts from three operational NWP centres (ECMWF, the Met Office and NCEP). It was 

found that the jumpiness varied substantially between cases and that the jumpiest cases were 

different for each centre. This suggests that the ensemble jumpiness is not strongly linked to the 

atmospheric situation or to the availability of observations, which would be expected to affect all 

centres. Instead, the results suggest that sampling uncertainties (due to limited ensemble size) or 

individual model deficiencies are more likely causes for the jumpiness. Although earlier versions of the 

Met Office and NCEP ensembles were shown to be overall more jumpy than the ECMWF ensemble, 
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recent upgrades significantly reduced jumpiness and the most recent operational ensembles of each 

centre had similar overall levels of jumpiness. The different centres use different methodologies to 

generate initial perturbations and account for model uncertainties and the results from this study 

suggest that the differences in methodology are not a major factor in determining the run-to-run 

consistency of the ensemble systems. 

The study provided quantitative information to users on the expected change in cross-track position 

from one forecast to the next. This information has practical applications in supporting users’ decision 

making, for example in deciding whether to act now or wait for the next forecast. Finally, the study 

investigated the link between ensemble forecast jumpiness and probabilistic skill.  

There was no clear association between jumpiness and skill, indicating that users should not rely on 

the consistency between successive forecasts as a measure of confidence; there is no indication that 

users should expect less jumpy cases to be more skilful. This provides important guidance for forecast 

users.  

7.2.2 Limitations 

By comparing the jumpiness of three different ensemble systems, this study showed that the causes 

of jumpiness are most likely due either to sampling uncertainty (finite ensemble size) or to specific 

issues in the data assimilation, model or ensemble configuration. These issues were not investigated 

further in this study and this limitation is one area where further research is needed. An initial analysis 

of the expected impact of ensemble size on ensemble forecast jumpiness was subsequently carried 

out in Chapter 5 and this was shown to provide valuable context, demonstrating that sampling effects 

due to ensemble size were not a major factor in that study. 

A second limitation of the study is that it only evaluated three North Atlantic TC seasons (2019-2021). 

Since NWP models are regularly upgraded, selecting an appropriate set of cases is always a balance 

between generating a large enough sample and ensuring that the results are representative of the 

current operational forecasts. Although all three centres upgraded their ensemble systems during the 

three year period of the study, the ECMWF upgrades were neutral in terms of their impact on TC track 

performance, allowing the ECMWF ensemble to be used as a reference against which to assess the 

impacts of the upgrades at the other centres. 

One approach to investigate further the causes jumpiness in each centre would be to carry out a more 

detailed examination of individual cases, as was done using error tracking in Chapter 3. However, 

investigation of the jumpiness for hurricane Laura in the ECMWF ensemble did not identify any specific 

cause (Magnusson et al. 2021) and further work is needed to investigate this. 
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An alternative approach is to look for commonalities across the most jumpy cases. However,	 this 

would require a substantially larger sample from a given ensemble model version. This could be done 

by including TCs from other basins, although the model performance is known to vary between basins 

and the processes involved are different so this also may not produce a homogeneous sample. 

Operational ensemble reforecasts have been developed to address the sampling issues discussed 

here. ECMWF produces ensemble reforecasts for the past 20 years using each operational version of 

the ensemble system and these are used in statistical post-processing of the operational forecasts and 

in verification of forecast performance. Because of the limitations of computational resources the 

reforecasts are run with reduced ensemble size (11 instead of 50 members) and are only produced 

twice a week from initial conditions on Monday and Thursday. This configuration precludes their use 

in assessing run-to-run consistency in the operational (twice-daily) forecasts.  

Approaches to mitigate jumpiness, such as multi-model or lagged ensembles combinations were not 

assessed in this study and are topics for future research (see section 7.4.3). 

A final limitation to note for this study is that it only addressed the ensemble TC track jumpiness of 

three operational centres in the North Atlantic. While it provides valuable guidance to users on the 

jumpiness of the three global ensemble systems and identifies likely factors influencing the ensemble 

jumpiness, the conclusions may not be applicable to other forecast centres, weather hazards or 

forecast time-scales. It is therefore important to undertake equivalent studies to provide appropriate 

guidance in other applications. 

7.3 Skill and consistency of ECMWF forecasts of Atlantic tropical cyclone genesis  

This study was designed to answer the third key research question: Can an integrated approach using 

both skill and consistency measures be beneficial in evaluation of ensemble forecast performance for 

weather hazards with significant forecasting challenges and significant observational 

representativeness or uncertainty issues? 

It addressed the third objective: Evaluate the skill and consistency of ECMWF forecasts of Atlantic 

tropical cyclone genesis, provide guidance to users and identify factors affecting forecast 

performance. 

The study, entitled “Skill and consistency of ECMWF forecasts of Atlantic tropical cyclone genesis”, 

forms Chapter 5 of this thesis and was submitted to Weather and Forecasting in 2024. 

7.3.1 Key findings 

This study addressed two key knowledge gaps that limit the effective use of ECMWF ensemble 

forecasts of TC genesis (Magnusson et al. 2021): 
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• lack of routine evaluation of the operational ENS forecasts of TC genesis 

• lack of guidance to users and poor understanding of occasional run-to-run jumpiness 

The study evaluated the skill and jumpiness of the ECMWF medium-range ensemble (ENS) in 

predicting TC genesis in the Atlantic basin. The study provided a first quantitative evaluation of the 

probabilistic performance of the ENS, finding that first indications of genesis are picked up at least 7 

days ahead in 50% of the observed cases, although strong signals may not appear until 3 days before 

genesis. There are significant regional differences, with observed genesis events predicted 2-3 days 

earlier in the eastern Atlantic than in other parts of the basin. In some cases, genesis probabilities are 

jumpy from run to run; the jumpiest cases occur in the more skilful regions (central and eastern 

Atlantic) and for situations where the initial signal for genesis appears at longer lead time. In the 

eastern Atlantic, there is a tendency for the ENS tracks to reach tropical storm strength earlier and 

further east than observed; this model bias can affect both skill and jumpiness of the genesis forecasts.  

The results are sensitive to the choice of wind threshold in the forecasts and this may be related to 

differences between the observed (IBTrACS) and ECMWF model definitions of TCs. The lack of an 

agreed best practice for the definition of TC genesis is a significant challenge that makes it difficult to 

carry out effective evaluation of TC genesis forecasts (Dunion et al. 2023). However, forecast 

jumpiness is a measure of the internal consistency of the forecasting system, and the results for 

jumpiness are not directly affected by these differences between model and observed definitions of 

genesis. Hence evaluation of jumpiness can provide important complementary information, especially 

in situations with substantial model-observation representativeness issues. Examination of factors 

that affect ensemble jumpiness may identify potential weakness in the modelling system.  

Addressing one of the limitations of the previous study (Chapter 4), this study used a simple idealized 

framework to demonstrate the expected impact of ensemble size on jumpiness. It was shown that the 

DI for the most jumpy cases in the study was significantly higher than should be expected for a well-

constructed 50-member ensemble, indicating that sampling effects were not the main factor affecting 

the jumpiness of the genesis forecasts.   

Examination of the most jumpy cases in the sample of genesis events identified several alternative 

factors that could affect both the ENS jumpiness and skill in predicting TC genesis. These include the 

link between early intensification in the eastern Atlantic and African easterly wave activity, the impact 

of systematic differences between 0000 and 1200 UTC analyses on forecast intensity, the impact of 

interactions between tropical waves, and the relationship between skill and the different TC 

development pathways. 
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7.3.2 Limitations 

This study used data from five Atlantic TC seasons (2019-2023) to provide a sample of around 100 

observed TC genesis events. This was a compromise between having a large enough sample of events 

and using as up-to-date versions of the operational ensemble system as possible. Because of the small 

sample of cases available for each model version, the impact of system upgrades on the results was 

not assessed, although it was shown that the jumpiest cases were spread across the 5 years of the 

sample. While including data for other TC basins would increase the overall sample size, the TC 

development processes involved are different and there are also inconsistencies in the observations 

between different basins (the IBTRaCS observations are subjectively determined and the criteria used 

vary between basins); therefore the analysis was restricted to the Atlantic basin. It would, though, be 

valuable to repeat the study for other basins to provide corresponding guidance for users and to 

identify factors affecting ensemble performance in those regions. 

Although this study included a first assessment of the effect of ensemble size on ensemble jumpiness, 

further work is needed to provide a more comprehensive evaluation. The study identified a number 

of factors that may affect both the skill and jumpiness of the ECMWF ensemble forecasts, but further 

research is needed to understand and address the model issues involved and to improve the 

forecasting system. This will need more in depth diagnostic analysis of the model behaviour. 

The study provided a first assessment of the operational ENS probabilistic skill in predicting TC genesis 

using the BSS, reliability diagram, performance diagram and ROC. It would be useful to extend the 

evaluation to include other verification measures. For example, decomposition of the BSS will provide 

a more understanding of the resolution and reliability aspects of the forecast. It would also be valuable 

to conduct more conditional verification to better evaluate temporal and spatial variations in skill. 

However, a larger sample than was used in this study would be needed to give robust results for these 

additional evaluations.  

This study only investigated the performance of the ECMWF ensemble. Although the analysis in 

Chapter 4 did not identify any common causes of TC jumpiness across the different centres, it would 

be interesting to carry out a similar comparison for TC genesis. Equivalent studies to Chapter 5 for 

other centres are also important to provide corresponding guidance to forecasters on their ensemble 

genesis capabilities. Multi-model and lagged approaches as well as statistical post-processing could 

also be investigated as ways to mitigate the effects of the biases and jumpiness identified in the 

ECMWF ensemble.  

A key limitation and important issue to address is the lack of a common definition of TC genesis in the 

different models and in the observed datasets. This complicates the process of comparing the 
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different models with each other and with the observed genesis events. Although evaluation of run-

to-run consistency of each model can mitigate this, intercomparison of results for different centres 

will still be affected. Work to address the issues of best practice for the definition and evaluation of 

TC genesis has been proposed as part of the WMO TC-PFP project (Dunion et al 2023). 

7.4 Recommendations 

7.4.1 Guidance for forecast users 

A key motivation for this thesis was the concerns raised by users about run-to -run jumpiness in 

ensemble forecasts and a lack of available  guidance to address these concerns. 

In Section 2.2, I presented a hypothetical example of a jumpy sequence of ensemble TC forecasts 

which raised a number of challenges and questions for the forecaster. The research carried out in this 

thesis has provided general guidance on ensemble jumpiness as well as more specific guidance on the 

jumpiness of ensemble TC track forecasts, neither of which was previously available to forecast users.  

Faced with a similar set of jumpy ensemble forecasts, a user will now have relevant information to 

help them make optimal use of the ensemble. Firstly, with reference to the results from Chapter 4, 

the user will know the typical size of jumps between successive forecasts (e.g. 80-90 km for the 

difference between 120-h and 108-h ensemble mean forecast TC positions for a fixed verification time) 

and will be able to put the current situation in context (is this an unusually jumpy situation?). This 

quantitative information will be applicable in the type of decision-making situations (act now or wait 

for the next forecast) discussed by Regnier and Harr (2006) and Jewson et al. (2022, 2021).  

Users will also know from Chapter 4 that if the ensemble forecast from one global centre is particularly 

jumpy, it may be worth looking at the forecasts from other centres since the jumpy cases tend to occur 

at different times for the different ensemble systems. Depending on the users decision making, it may 

be appropriate to consider multi-model ensemble combinations to mitigate jumpiness (see Section 

7.4.3). 

Users will know that the current ensemble TC track forecasts from the three leading global centres 

have similar overall run-to-run consistency. If the consistency assessment had been applied as part of 

the routine evaluation of new model cycles, the global centres would have been able inform users 

about significant improvements to ensemble consistency in recent model upgrades at both the Met 

Office and NCEP. Users will also be aware that there is not a strong link between jumpiness and 

forecast skill and that they should not rely on consistency between consecutive forecasts as a measure 

of confidence in the forecasts. 
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Specific guidance will be different for different forecasting applications. The results from Chapter 5 

provide additional guidance for users of ECMWF TC genesis forecasts, including that jumpy cases tend 

to occur more in the eastern Atlantic than the rest of the basin (partly associated with systematic 

model errors in that region) and that in jumpy cases it can be useful to consider lower wind thresholds 

in the forecasts (which tend to be more consistent). 

This thesis has shown that occasional cases of large run-to-run inconsistency occur in current 

operational EPS for both the large-scale flow (Chapter 3) and for TC tracks (Chapter 4) and genesis 

(Chapter 5). All of these have consequences for user decisions. The outcomes of this research provide 

guidance for forecasters on the expected jumpiness and advice on how to manage this in the 

forecasting process. It is recommended that operational centres provide guidance on ensemble 

jumpiness alongside existing guidance on the skill and interpretation of ensemble forecasts. As with 

standard skill scores, a routine monitoring of forecast jumpiness will allow monitoring of trends and 

inform users of any changes over time due to model cycle upgrades (Ben Bouallègue et al. 2019). 

7.4.2 Causes of jumpiness 

A second key motivation for the thesis was to identify factors affecting ensemble jumpiness. In 

Chapter 3, the jumpiest cases were found to be associated with transitions between large-scale 

regimes. For TC tracks (Chapter 4), jumpiness in some ensemble systems was associated with a lack of 

spread (indicating insufficient representation of model or analysis uncertainty), while in Chapter 5 

model bias was found to be a factor affecting jumpiness in TC genesis. Ensemble size was also shown 

to be an important factor affecting jumpiness – the ensemble needs to be large enough to give a 

reliable estimate of the forecast uncertainty. External factors that may affect run-to-run jumpiness 

include missing or erroneous observations at certain analysis times or a change in atmospheric 

predictability. 

The research in this thesis has focused on ensemble jumpiness in the Euro-Atlantic region, where the 

prevalence of large-scale weather regimes is well-documented (Ferranti et al. 2015, 2018; Woollings 

et al. 2010; Straus et al. 2017; Hannachi et al. 2017), and in Chapter 3 the jumpiest forecasts were 

found to occur in cases of regime transition. Is jumpiness more likely to occur in regions with 

substantial regime-like behaviour? Ensemble size is likely to be a factor in such cases – if the predicted 

distribution is multi-modal as would occur for a situation where regime transition is possible, then a 

larger ensemble will be needed to give robust estimates of the transition probabilities than would be 

needed in a situation with a more unimodal predictive distribution. Also, conditional bias in 

forecasting changes of regime (Ferranti et al. 2018) may contribute to situation-dependent jumpiness. 

However, how much the presence of distinct weather regimes or forecast scenarios (where ensemble 
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members cluster into distinct weather types) affects the occurrence or magnitude of run-to-run 

jumpiness is an open question and would merit further research. This would help to identify whether 

jumpiness is more likely to occur in some regions than others. 

Identifying the circumstances in which jumpiness occurs is an important step towards addressing the 

underlying cause. It is therefore recommended that run-to-run consistency and the associated causes 

be investigated as part of the routine evaluation of ensemble strengths and weaknesses. The 

approaches used in the thesis, including comparison between different centres, assessment of 

common factors in outliers and more in-depth evaluation of individual cases, can be used in such 

evaluations to analyse the different factors involved.  

Further research is recommended on the effects of limited ensemble size on jumpiness. As well as 

understanding how important this is for a given operational system (and providing guidance on 

optimal ensemble configuration) the effect of different ensemble sizes needs to be taken into account 

when comparing across different centres or evaluating research experiments with reduced ensemble 

size. Work on adapting the DI to take account of ensemble size would be valuable, following equivalent 

work on verification scores (Richardson 2001; Ferro et al. 2008; Ferro 2014; Ben Bouallégue et al. 

2020). 

7.4.3 Mitigation of ensemble forecast jumpiness  

There are several approaches that can be taken to mitigate the impact of ensemble jumpiness for 

forecast users. 

The most straightforward option is to generate lagged ensembles by combining consecutive forecasts 

(DelSole et al. 2017; Mittermaier 2007). By construction this will reduce run-to-run inconsistencies. 

Lagged ensembles are already used in some operational settings, typically as a way to increase 

ensemble size as an efficient use of computational resources (Shanker et al. 2022; Roberts et al. 2023). 

While the lagged approach is bound to reduce jumpiness, the impact on forecast skill is a balance 

between the benefit of increasing the number of ensemble members and the detrimental impact of 

including older forecasts in the combined ensemble: 

• On average the most recent ensemble forecast will have higher skill; adding older forecasts 

may reduce the forecast skill, especially in cases where the most recent observations lead to 

a significant increase in predictability.  

• Adding earlier forecasts increases the ensemble size and so may better account for sampling 

uncertainties. This is likely to be particularly useful where either the ensemble size for a given 
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initial time is small, or in situations with high uncertainty and potential extreme event at the 

tail of the forecast distribution (low probability extreme event) 

Lagged ensembles have been shown to improve skill when combining small ensembles (Ben 

Bouallègue et al. 2013; Shanker et al. 2022) but do not always provide improvements for larger 

ensembles (Buizza 2008a). The impact is also likely to depend on the forecast lead time and the 

difference in initial time between the components of the lagged system (Vitart and Takaya 2021). It is 

therefore important to assess the impact of a lagged approach on forecast skill and if necessary to 

balance a potential decrease in skill against a guaranteed reduction in jumpiness.  

A second approach is to combine forecasts from different centres to create a multi-model ensemble 

(Johnson and Swinbank 2009; Swinbank et al. 2016; Hagedorn et al. 2012; Gascón et al. 2019). As for 

lagged ensembles, a multi-model combination naturally increases ensemble size and so addresses 

sampling issues. However if the different contributing ensemble systems are not equally skilful, the 

combined ensemble may have reduced skill compared to the best single-model system. An additional 

factor is different error characteristics of the component ensemble systems. The multi-model 

combination may cancel out biases in the different models and compensate for specific flow-

dependent errors in individual systems.  

In Chapter 4 it was shown that the jumpiest cases for TC track forecasts were different in the different 

centres’ ensembles, suggesting that a multi-model combination would be beneficial, while the skill of 

multi-model ensemble track forecasts has already been demonstrated (Titley et al. 2020). Many 

studies have investigated the skill of multi-model ensembles and shown that benefits vary depending 

on the forecast variable, forecast range, relative skill and size of contributing models (e.g. see the 

review of TIGGE-based multi-model studies in Swinbank et al. (2016)). 

An additional approach, that can be applied independently or in combination with either the lagged 

or multi-model combination, is statistical post-processing of the ensemble distribution. This can 

include weighting of the individual models that contribute to the combined multi-model ensemble. 

There are many methods for post-processing ensemble forecasts: see (WMO 2021; Vannitsem et al. 

2018, 2021) for recent comprehensive reviews. The main focus of ensemble post-processing has been 

on improving forecast skill. It would be beneficial to also investigate the impact of different post-

processing methodologies on forecast jumpiness. 

Further research is recommended to explore the benefits of lagged and multi-model ensembles as 

well as statistical ensemble post-processing to mitigate ensemble jumpiness.  

7.4.4 Measures of jumpiness and skill 
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In this thesis the run-to-run consistency of ensemble forecasts was evaluated using DI and 𝐷}. The 

difference between two consecutive ensemble forecasts valid for the same time was measured by the 

quadratic divergence corresponding to the CRPS error measure (Chapters 3, 4) to take account of the 

ensemble distribution, and by directly using the absolute difference in probability for the discrete 

event of TC genesis in Chapter 5. The quadratic divergence has the added advantage of being 

applicable to deterministic forecasts as well as to EPS, and the ENS, EM and CTRL were compared in 

Chapter 3. The CRPS and BS used in this thesis are two common measures of ensemble probabilistic 

skill.  CRPS has not been used in TC track verification before and it is recommended to add it to the 

routine verification of ensemble TC track forecasts. 

CRPS and BS can both be interpreted in terms of potential economic value of forecasts to users in an 

idealised cost-loss decision-making model. However, this assumes a uniform distribution of users 

across all possible cost-loss ratios. Studies show that users tend to be more concentrated towards 

lower cost-loss ratios, and appropriate skill scores to focus on a specific set of users can be derived 

(Richardson 2001; Rodwell et al. 2020). It is recommended to carry out research to investigate the 

impact of run-to-run jumpiness on users with different decision-making criteria; this would require 

using a more complex decision model than the simple cost-loss model, to take account of a user’s 

choice to act now or wait for the next forecast.  

A range of verification measures are used to focus on different aspects of ensemble performance. The 

relative operating characteristic (ROC) is another common verification measure, useful in comparing 

the performance of different forecasting systems, including comparing deterministic and probabilistic 

systems. Although care is needed in the application and interpretation when evaluating rare events 

(Ben Bouallègue and Richardson 2022), it will be interesting to explore its use an integrated 

investigation of skill and jumpiness.   

The logarithmic or ignorance score (Good 1952; Roulston and Smith 2002) is an alternative error 

measure that can be related to a user’s expected profit from betting on forecast outcomes (Hagedorn 

and Smith 2009). The logarithmic score can be more sensitive than the CRPS to some flow-dependent 

variations in ensemble spread (Leutbecher 2019). The divergence function associated with the 

logarithmic score is the Kullback-Leibler divergence (Gneiting and Raftery 2007) and it would be 

interesting to see whether this would be pick out different aspects of forecast jumpiness. However, 

the logarithmic score and Kullback-Leibler divergence both require non-zero probabilities and 

therefore are not directly applicable to the raw ensemble members. Hence some further research is 

needed to derive the best way to assess the ensemble jumpiness using these measures. 
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In Chapter 3 it was shown that jumpiness is different for the NAO and BLO indices. A multivariate 

measure of jumpiness would allow assessment of both indices together and may lead to more insights. 

The multivariate equivalent of the CRPS is known as the energy score (Gneiting and Raftery 2007) and 

a corresponding measure of the difference between two ensembles could be made in the same way. 

7.4.5 Application to other hazards 

This thesis has demonstrated the benefit of assessing the run-to-run jumpiness of ensemble forecasts 

in the large-scale flow over Europe and for TC tracks and genesis. It would be valuable to extend the 

evaluation to other weather hazards.  

In 2022, the United Nations launched the Early Warnings for All (EW4All) initiative (WMO 2022) with 

the aim to ensure that within five years early warning systems are in place to protect all people from 

hazardous weather, water, and climate events. The WMO has identified EW4All priority hazards, 

including tropical cyclones, extra-tropical storms, heatwaves and cold-waves, drought, 

thunderstorms, floods, coastal inundation, storm surges, and glacial lake outflows. 

Many of these priority hazards present both forecasting and evaluation challenges as was the case for 

TC genesis. Observations are often either lacking (data-sparse regions), differ in scale from the model 

(heavy localised precipitation) or are not directly comparable to model output variables (e.g. 

thunderstorms).  

Heatwaves and cold spells are often related to changes in large-scale weather patterns. The jumpiness 

in medium-range forecasts for two such patterns (NAO and blocking) related to the occurrence of 

wintertime cold spells in Europe was considered in Chapter 3, and the methodology could be applied 

to summer heatwaves using appropriate summer weather regimes. Prediction of heatwaves and cold 

spells beyond the medium range is a major challenge (Brunet et al. 2023; ECMWF 2015) while low skill 

and jumpiness in the ECMWF extended-range forecasts for the 3-4 week range have been raised as 

areas of concern for the ECMWF forecast users (Hewson 2021, 2020). The configuration of the ECMWF 

extended-range forecasts was recently changed from 50-member ensembles run twice a week to 100 

members run daily (Vitart et al. 2022, 2019a). This increase in ensemble size and forecast frequency 

improves the skill and should also help to improve jumpiness. However, skill is still limited at weeks 3-

4 and more work is needed to identify causes for the lack of predictability. An evaluation of run-to-

run consistency in the new configuration will provide useful guidance to users on the current 

jumpiness characteristics and may also help to identify model issues.  

Vitart et al. (2019a) present an example where unusually mild temperatures over Europe were well 

forecast 2-3 weeks ahead, while longer-range forecasts predicted unusually cold temperatures for the 

same period. A comparison with the ensemble forecasts from other centres showed a similar 
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behaviour, suggesting that in this case there may be a common driver of the jumpy behaviour. 

Although this is a single case, it demonstrates that the factors affecting forecast jumpiness may be 

different if different variables and timescales are considered. 

It is recommended that the integrated approach used in Chapter 5 be applied to evaluate the 

capability of ensemble prediction systems to provide appropriate products to support early-warnings 

for the WMO priority hazards. Including evaluation of run-to-run consistency in the evaluation will 

help to mitigate identified problems with observations, contribute to understand factors affecting 

model predictability and provide guidance to users to allow then to make best use of the available 

ensemble forecasts. 

7.4.6 Data availability and challenges 

In Chapter 4 the run-to-run consistency of ensemble forecasts from three global operational centres 

was compared using data from the TIGGE archive. The TIGGE archive for medium-range ensemble 

forecasts (Swinbank et al. 2016) and the corresponding S2S archive for sub-seaonal to seasonal 

forecasts (Vitart et al. 2017) have been invaluable resources for research in evaluation of forecast 

performance, multi-model ensemble combinations and identification of model systematic errors. It is 

strongly recommended to use these datasets to help assess differences in jumpiness between 

ensemble systems, to identify factors affecting jumpiness (as done in Chapter 4) as well as to 

demonstrate mitigation approaches through use of multi-model ensembles. It is important that both 

TIGGE and S2S are continued to facilitate this research.   

In both Chapters 4 and 5, having a sufficiently large sample was an issue and necessitated 

compromising between the number of cases in the sample and ensuring that the results are relevant 

to the performance of the current operational forecasts. Reforecasts are designed to address this data 

availability issue. 

The ECMWF operational reforecasts comprise 11-member ensembles run twice weekly for the past 

20 years to provide a homogeneous dataset of model integrations using the same model version as 

used for the real-time forecasts (Vitart et al. 2019b). They are used to calibrate the real-time forecasts 

and to evaluate the skill of the operational system over a much larger number of years than is possible 

with the real-time forecasts (the ECMWF forecasting system is typically upgraded each year). Because 

they are currently produced only twice a week (because of constraints computational resources), they 

cannot be used to evaluate the run-to-run jumpiness between the medium-range forecasts initialized 

every 12 hours as needed for the research in this thesis. Although the configuration will remain the 

same for the medium-range reforecasts, the reforecast configuration for the extended-range system 

will be changed to run every 2 days in the next model cycle (49r1) due to be implemented in late 2024. 
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Although this is still less frequent than the operational extended-range forecasts that now run once a 

day, it may be useful to investigate the jumpiness in the extended-range reforecasts, especially to 

assess the jumpiness at the longer forecast ranges 3-5 weeks ahead.  

The ECMWF reforecast ensembles have substantially fewer members than the operational forecasts 

(11 compared to 51 members) and this difference needs to be accounted for in both verification (Ben 

Bouallégue et al. 2020) and post-processing (Gascón et al. 2019). Evaluation of run-to-run consistency 

will also need to take account of this difference if the reforecasts are to be used to provide guidance 

on the expected jumpiness of the operational forecasts. It is recommended that research is carried 

out to address the feasibility to extend predictive verification approach (Ben Bouallégue et al. 2020) 

to the evaluation of ensemble jumpiness.  

The NOAA reforecast dataset (Hamill et al. 2013) is run daily and although again not at the same 

frequency as the operational medium-range forecasts may be a useful dataset to assess some aspects 

of the jumpiness in the GEFS. Again, it has significantly fewer members than the real-time forecasts 

and additional research will be needed to interpret how results would apply to the real-time system. 

It is recommended to use reforecast datasets where feasible to investigate run-to-run consistency and 

to carry out necessary research to account for differences in ensemble size. 

The availability, quality and representativeness of observational datasets is another challenge for 

forecast evaluation. Regional differences in TC reporting and differences between the definition of TC 

genesis in the model and observation datasets were a significant limitation in assessing the skill of the 

TC genesis forecasts in Chapter 5. A key benefit of assessing consistency is that it does not rely on 

observations. Nevertheless, observations are essential to quantify and understand the skill and value 

of ensemble forecasts. It is recommended that a strong case be made for the observational 

requirements for forecast evaluation as well as for forecast initialization (Lavers et al. 2020, 2019), and 

that observational representativeness be accounted for in verification (Ben Bouallegue et al. 2020). 

7.4.7 Data-driven models 

In the last two years, there has been rapid development of weather forecast models based on Machine 

Learning (ML). Following the pioneering work of Keisler (2022), several groups have developed data-

driven ML weather forecast models (Pathak et al. 2022; Bi et al. 2023; Lam et al. 2023a,b; Chen et al. 

2023), typically trained on the ECMWF ERA5 reanalysis (Hersbach et al. 2020). Although requiring 

significant computing resources to train the model, these data-driven models can produce real-time 

deterministic medium-range forecasts much more quickly and for a fraction of the cost of running an 

NWP model. The ML models do though require the initial conditions from the NWP-based data 

assimilation to initialise their forecasts. The skill of these models is comparable to that of the current 
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operational global NWP models for both the large-scale flow patterns and for extreme events (Ben 

Bouallègue et al. 2024). 

The physical realism of these ML models is an area of significant current research. While they have 

been shown to produce physically realistic dynamical behaviour in some studies (Hakim and Masanam 

2023), other authors have noted substantially different behaviour, for example in initial error growth 

(Selz and Craig 2023) and some physical inconsistency between variables (Bonavita 2024).  

Several data-driven models, including the AIFS developed at ECMWF (Lang et al. 2024) are displayed 

in real time on the ECMWF web site and are regularly monitored by ECMWF forecast analysts. 

Although examples of jumpy behaviour have been noticed, there is an impression that overall, the ML 

models tend to be less jumpy from run to run than the deterministic ECMWF NWP model (Magnusson, 

2023).  

The main focus to date has been on deterministic ML forecasts, but experimental ensemble systems 

are also now being explored (Hu et al. 2023) and ECMWF recently introduced the first experimental 

version of its data-driven ensemble forecast model, AIFS-ENS.  

Exploring the run-to-run consistency of these data-driven systems, in particular the ensemble 

forecasts, may give additional insights into the behaviour of these ML models. It is recommended to 

investigate this once sufficient data is available from the ML ensembles. Depending on the results of 

this proposed work it may be useful to update the Weatherbench benchmark procedures for 

evaluation of data-driven models (Rasp et al. 2020, 2024). 

7.5 Summary 

This Chapter has discussed the key outcomes and limitations of the research conducted for this thesis 

and presented recommendations on next steps to apply these findings and on directions for further 

research.  

The scientific contribution of this thesis is a new objective diagnostic approach to quantify the run-to-

run consistency of a sequence of ensemble forecasts. This includes the development of a new 

divergence index (DI) that was used to evaluate the ensemble consistency for the first time in a way 

that accounted for all aspects of the ensemble distribution. A second new score, 𝐷}, was developed as 

a complement to DI, and it was shown that DI and 𝐷} can be used together to distinguish inconsistency 

due to trends in the forecasts from inconsistency due to flip-flopping between different solutions. The 

new scores were used to provide new insights into the relationship between jumpiness, skill and 

spread, and to show how the asymptotic behaviour of ensemble consistency differs from that of 

deterministic forecasts.  
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Another important scientific contribution of this thesis has been to provide practical guidance to 

address user concerns over ensemble jumpiness. In particular, Chapters 4 and 5 have provided specific 

guidance for users that will enable them to make better use of the available operation ensemble 

tropical cyclone track and genesis forecasts.  The new diagnostic approach developed in this thesis 

can and should be used to provide equivalent guidance for other ensemble forecast applications. It 

was shown that evaluation of forecast consistency is complementary to the current focus on skill and 

ensemble spread, and that an integrated approach using both skill and consistency measures can be 

beneficial in evaluation of ensemble forecast performance.  

The work in this thesis and the recommended next steps will contribute to improving the utilisation 

of ensemble forecasts to provide early warnings of significant weather hazards, especially important 

in the context of the UN Early Warnings for All initiative. 
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Chapter 8  Conclusions 

There is a growing recognition that ensemble forecasts have a key role to play in improving the skill 

and use of early warnings to enable actionable decisions to mitigate the impact of hazardous weather 

events. This thesis has presented a range of research to improve the use and understanding of 

ensemble forecasts through the evaluation of run-to-run consistency together with existing 

verification methods. This chapter summarises the main scientific contributions of the thesis. 

A new diagnostic approach was developed to quantify the run-to-run jumpiness (inconsistency) in a 

sequence of ensemble forecasts (Chapter 3). The divergence index (DI) enabled the consistency of the 

ECMWF ensemble forecasts (ENS) to be assessed for the first time in a way that accounted for all 

aspects of the ensemble distribution. It was shown that the DI was much lower for the ENS than for 

the EM and the CTRL, demonstrating how the ensemble as a whole mitigated the jumpiness of the 

deterministic forecasts by representing the range of possible forecast scenarios. The jumpiness of the 

CRTL increased throughout the forecast, while the ENS jumpiness peaked around forecast days 7-9. 

This difference is a consequence of the different asymptotic behaviour of the single CTRL and the ENS 

distribution as a whole, and is important for both users and developers to understand.  

The benefit of the DI was demonstrated for two indices representing different large-scale weather 

regimes over the north Atlantic and Europe. The study found that peaks of high and low consistency 

occur at different times for NAO and BLO; there was no strong correlation between the forecast 

jumpiness for the two regimes. A more detailed investigation of the jumpiest cases found that the 

inconsistency in these cases was related to uncertainty in the transitions between the two regimes, 

originating in mishandling of developing trough-ridge patterns over eastern North America. 

Investigation of the jumpiness in ensemble TC track forecasts from 3 different global centres found 

that each centre had occasional cases of high jumpiness, but that the jumpiest cases were different 

for each centre (Chapter 4). This implies that the cause of the ensemble jumpiness is not strongly 

related to either the prevailing atmospheric conditions or the available observations, since these 

would be expected to affect the forecasts from all three centres. It is more likely that the jumpiness is 

a result of specific issues in the data assimilation, modelling or ensemble configurations of each centre. 

It was shown that recent model upgrades to both MOGREPS-G and GEFS did significantly reduce their 

jumpiness (probably as a result of improvements to the ensemble spread) and that the overall level 

of jumpiness is similar for all three centres in their current operational configurations. The study 

introduced a second score, 𝐷}, to help identify different aspects of forecast consistency. Used together, 

DI and 𝐷} can distinguish between run-to-run consistency due to trends in the forecast and cases of 

flip-flopping between different solutions. 
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The association between jumpiness and skill was also investigated. No clear link was found, indicating 

that users should not rely on the consistency between successive forecasts as a measure of 

confidence. However, the ensemble spread does provide useful situation-dependent information on 

the forecast uncertainty. The study also provided quantitative guidance to forecasters on the expected 

jumpiness between successive forecasts, addressing specific user requirements for decision makers 

who need to decide between acting now and waiting for the next forecast. 

The skill and consistency of the operational ENS forecasts of TC genesis were evaluated for the first 

time, revealing significant regional differences in performance across the Atlantic basin (Chapter 5). 

Observed genesis events were predicted 2-3 days earlier in the eastern Atlantic than in other regions. 

However, the forecast genesis probabilities were not always consistent from run to run, with the 

jumpiest cases occurring in the more skilful regions and in situations where the initial signal for genesis 

appeared at longer lead time. A notable bias for TCs to develop to tropical storm strength earlier and 

further east in the model than in the observations was identified and shown to affect both skill and 

jumpiness.  

A new aspect of this study was the assessment of the expected impact of ensemble size on the forecast 

jumpiness. This showed that the DI for the jumpiest cases in the study was significantly higher than 

expected for a reliable (well-tuned) 50-member ensemble and is therefore likely to indicate a 

deficiency in the ensemble system. Examination of the jumpiest cases identified several potential 

contributing factors, including the link between early intensification in the eastern Atlantic and African 

easterly wave activity, and the impact of systematic analysis differences between 0000 UTC and 1200 

UTC on forecast intensity. The relationship between skill and the TC development pathways was 

highlighted as another area for future work. 

A key aim of the study was to provide users with guidance on the ENS probabilistic performance in 

predicting Atlantic TC genesis, to support wider use of the operational ENS forecasts. As well as 

providing the first quantitative skill assessment of the ENS genesis forecasts, this guidance included 

recommendations on the differences between forecast and observed genesis (timing and location), 

situations where jumpiness is more likely to occur, and practical steps to mitigate the impact of the 

jumpiness, including the consideration of different wind thresholds in the forecasts. 

The research carried out in this thesis has been directed towards improving the use and understanding 

of ensemble forecasts through the evaluation of ensemble forecast consistency together with existing 

verification methods. Recommended next steps were discussed in Section 7.4. Implementation of 

these recommendations at NWP centres will ensure that users have the necessary information and 

guidance to mitigate the impact of occasional run-to-run jumpiness and will provide additional 



123 

Chapter 8.  Conclusions 

feedback to model developers on model weaknesses, complementing the use of existing evaluation 

tools. The recommendations for future research will help to develop the range of evaluation tools to 

address ensemble consistency, improve understanding of EPS behaviour and extend the applicability 

of the approach.  

It is hoped that the research carried out in this thesis together with the recommended next steps will 

be beneficial in future research and operational activities to improve the utilisation of ensemble 

forecasts to provide early warnings of significant weather hazards, contributing to the UN Early 

Warnings for All initiative. 
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A1. Published Article: Evaluation of the consistency of ECMWF ensemble 
forecasts 

This appendix contains the published version of Chapter 3 of this thesis, with the following 

reference: 

Richardson, D.S., Cloke, H.L. and Pappenberger, F. (2020) ‘Evaluation of the Consistency of ECMWF 

Ensemble Forecasts’, Geophysical Research Letters, 47(11), p. e2020GL087934. Available at: 

https://doi.org/10.1029/2020GL087934. 
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A2. Published Article: Jumpiness in ensemble forecasts of Atlantic tropical cyclone 
tracks  

This appendix contains the published version of chapter 4 of this thesis, with the following reference: 

Richardson, D.S., Cloke, H.L., Methven, J.A. and Pappenberger, F. (2024) ‘Jumpiness in Ensemble 

Forecasts of Atlantic Tropical Cyclone Tracks’, Weather and Forecasting, 39(1), pp. 203–215. Available 

at: https://doi.org/10.1175/WAF-D-23-0113.1. 
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A3. Submitted Article: Skill and consistency of ECMWF forecasts of Atlantic tropical 
cyclone genesis  

This appendix contains the formatted version of chapter 5 of this thesis that was submitted to Weather 

and Forecasting, with the following reference: 

Richardson, D.S., Cloke, H.L., Magnusson, L., Majumdar., S. J., Methven, J.A. and Pappenberger, F. 

(2024) ‘Skill and consistency of ECMWF forecasts of Atlantic tropical cyclone genesis’, Weather and 

Forecasting (resubmitted November 2024 following revison) 
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A4. Technical Memorandum: Tropical cyclone activities at ECMWF  

This appendix contains the full version of the ECMWF Technical Memorandum summarised in 
Section 6.1.1: 

Magnusson, L., Majumdar, S., Emerton, R., Richardson, D., et. al. (2021) ‘Tropical cyclone activities at 

ECMWF’, ECMWF Technical Memorandum 888. ECMWF. Available at: 

https://doi.org/10.21957/zzxzzygwv. 
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A5. Published Article: User decisions, and how these could guide developments in 
probabilistic forecasting 

This appendix contains the published version of the following paper (summarised in Section 6.5.1): 

Rodwell, M.J., Hammond, J., Thornton, S. and Richardson, D.S. (2020) ‘User decisions, and how these 

could guide developments in probabilistic forecasting’, Quarterly Journal of the Royal Meteorological 

Society, 146(732), pp. 3266–3284. Available at: https://doi.org/10.1002/qj.3845. 
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A6. Published Article: On the ROC Area of Ensemble Forecasts for Rare Events 

This appendix contains the published version of the following paper (summarised in Section 6.5.2): 

Bouallègue, Z. Ben and Richardson, D.S. (2022) ‘On the ROC Area of Ensemble Forecasts for Rare 

Events’, Weather and Forecasting, 37(5), pp. 787–796. Available at: https://doi.org/10.1175/WAF-D-

21-0195.1. 
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