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Systems/Circuits

Bayesian Mapping of the Striatal Microcircuit Reveals
Robust Asymmetries in the Probabilities and Distances of
Connections

François Cinotti and Mark D. Humphries
School of Psychology, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

The striatum’s complex microcircuit is made by connections within and between its D1- and D2-receptor expressing projec-
tion neurons and at least five species of interneuron. Precise knowledge of this circuit is likely essential to understanding
striatum’s functional roles and its dysfunction in a wide range of movement and cognitive disorders. We introduce here a
Bayesian approach to mapping neuron connectivity using intracellular recording data, which lets us simultaneously evaluate
the probability of connection between neuron types, the strength of evidence for it, and its dependence on distance. Using it
to synthesize a complete map of the mouse striatum, we find strong evidence for two asymmetries: a selective asymmetry of
projection neuron connections, with D2 neurons connecting twice as densely to other projection neurons than do D1 neu-
rons, but neither subtype preferentially connecting to another; and a length-scale asymmetry, with interneuron connection
probabilities remaining non-negligible at more than twice the distance of projection neuron connections. We further show
that our Bayesian approach can evaluate evidence for wiring changes, using data from the developing striatum and a mouse
model of Huntington’s disease. By quantifying the uncertainty in our knowledge of the microcircuit, our approach reveals a
wide range of potential striatal wiring diagrams consistent with current data.
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Significance Statement

To properly understand a neuronal circuit’s function, it is important to have an accurate picture of the rate of connection
between individual neurons and how this rate changes with the distance separating pairs of neurons. We present a Bayesian
method for extracting this information from experimental data and apply it to the mouse striatum, a subcortical structure
involved in learning and decision-making, which is made up of a variety of different projection neurons and interneurons.
Our resulting statistical map reveals not just the most robust estimates of the probability of connection between neuron types,
but also the strength of evidence for them, and their dependence on distance.

Introduction
As the input of the basal ganglia circuit, the striatum has been
ascribed key computational roles in action selection (Redgrave et
al., 1999; Gurney et al., 2001a; Liénard and Girard, 2014), deci-
sion-making (Bogacz and Gurney, 2007; Ding and Gold, 2010,
2012; Yartsev et al., 2018), and reinforcement learning (Reynolds
et al., 2001; Samejima et al., 2005; Bornstein and Daw, 2011;

Khamassi and Humphries, 2012; Gurney et al., 2015). Within the
striatum is a microcircuit comprising the GABAergic spiny pro-
jection neurons (SPNs), which make up to 97% of striatal neu-
rons in the rat (Oorschot, 2013), and at least five species of
predominantly GABAergic interneurons (Burke et al., 2017;
Tepper et al., 2018). These SPNs divide into two populations that
express either the D1 or D2 type of dopamine receptors (Gerfen
et al., 1990; Gerfen and Surmeier, 2011). Projections from the D1
and D2 SPN populations, respectively, form the striatonigral and
striatopallidal pathways (Gerfen et al., 1990; Kreitzer, 2009;
Gerfen and Surmeier, 2011), through which they influence dy-
namics throughout the basal ganglia and beyond. The microcir-
cuit’s connections onto the D1 and D2 SPNs are then a
potentially major actor in sculpting the output of this nucleus,
and thus the computations ascribed to it.

One key to understanding the role of the microcircuit in the
computations of striatum is knowing the relative influence of
one neuron type on another (Alexander and Wickens, 1993;
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Hjorth et al., 2009; Humphries et al., 2009; Lau et al., 2010; Ponzi
and Wickens, 2010; Klaus et al., 2011; Damodaran et al., 2014).
Two broad influences of this microcircuit on the output of SPNs
are well known: the feedforward inhibition by GABAergic inter-
neurons, and feedback inhibition by lateral connections between
the SPNs (Plenz, 2003; Tepper et al., 2004, 2008; Humphries et
al., 2010). But to understand how all elements of the striatum’s
microcircuit influence its output requires a full account of the
microcircuit’s wiring, which we currently lack. To address this
problem, here we synthesize data from pairwise intracellular re-
cording studies to generate a statistically rigorous and compre-
hensive map of the wiring probabilities between the key neuron
species of the mouse striatum.

A key issue in estimating connection probabilities from intra-
cellular recording data is that recording studies report a single
probability for each connection type, given by the rate of success-
ful connections between two types of neuron, without providing
any measures of uncertainty. In this paper, we solve this problem
by introducing a Bayesian approach to estimating the probability
of connection between neuron types using pairwise intracellular
recording data, which allows us to draw rigorous conclusions
about the strength of evidence for claims about the microcircuit.
Using this approach on data from the mouse striatum, we show
that the previously reported asymmetry between the rates at
which D1 and D2 neurons make connections is robust, with D2
SPNs having roughly twice the connection rate of D1 SPNs; but
contrary to previous claims, we also show there is no evidence
for an asymmetry in the rates at which they receive connections,
and so there is no preferential target for D1 or D2 SPNs. We
then demonstrate a new method for using single measurements

of connection rates to estimate distance-dependent probabilities
and their uncertainty. Using these methods to analyze both SPN
and interneuron connectivity, we complete our Bayesian map of
the connectivity of the mouse striatum. Finally, we demonstrate
how our Bayesian approach lets us quantify and test changes to
that microcircuit map: we test the claim that D1 SPN connec-
tions are altered in a mouse model of Huntington’s disease, and
find no evidence for it; and, using recent data from Krajeski et al.
(2019), we show the selective asymmetry of D1 and D2 SPNs
appears at different stages during development. Our Bayesian
approach thus simultaneously evaluates the probability of con-
nection between neuron types, its dependence on distance, and
the strength of evidence for it, creating a solid foundation for
theories of striatal computation.

Materials and Methods
Data processing.We extracted data on pairwise connections from in-

tracellular recordings of striatal neurons from a database of studies. The
full set of data we extracted is given in Table 1. Because of the way
Taverna et al. (2008) gave their results, namely, reporting the number of
connected pairs and specifying whether any were bidirectional instead of
reporting the number of connections, the number of tests for nonmixed
pairs we use in this paper is doubled compared with the original study.
For instance, when Taverna et al. (2008) say they found 5 connected
pairs of 19 pairs of D1 neurons, we interpret this as 5 connections of 38
tests, to be consistent with the mixed D1 and D2 pairs, which by neces-
sity are unidirectional (a D1! D2 connection can only be tested in one
direction or it becomes a D2 ! D1 connection). This was also the case
for the data of Cepeda et al. (2013) on SPN connections in wild type and
Huntington’s disease model mice.

Table 1. Pairwise connection data from mice used to build the Bayesian map of the striatum microcircuit, alongside Bayesian estimates of the connection
probabilitiesa

Study Pair k n a b p̂MAP 95% credibility interval

Taverna et al. (2008) D1 SPN ! D1 SPN 5 38 7.56 51.12 0.116 [0.057, 0.225]
D1 SPN ! D2 SPN 3 47 5.56 62.12 0.069 [0.030, 0.158]
D2 SPN ! D1 SPN 13 47 15.56 52.12 0.222 [0.138, 0.336]
D2 SPN ! D2 SPN 14 78 16.56 82.12 0.161 [0.101, 0.247]
D1 SPN ! SPN 8 85 10.56 95.12 0.092 [0.051, 0.164]
D2 SPN ! SPN 27 125 29.56 1116.12 0.199 [0.142, 0.272]

Planert et al. (2010) D1 SPN ! D1 SPN 3 43 5.56 58.12 0.074 [0.032, 0.167]
D1 SPN ! D2 SPN 3 66 5.56 81.12 0.054 [0.023, 0.124]
D2 SPN ! D1 SPN 10 80 12.56 88.12 0.117 [0.068, 0.196]
D2 SPN ! D2 SPN 7 31 9.56 42.12 0.172 [0.093, 0.300]
D1 SPN ! SPN 6 109 8.56 121.12 0.059 [0.030, 0.114]
D2 SPN ! SPN 17 111 19.56 112.12 0.143 [0.093, 0.214]
FS ! D1 SPN 8 9 9 2 0.889 [0.555, 0.975]
FS ! D2 SPN 6 9 7 4 0.667 [0.348, 0.878]

Gittis et al. (2010) FS ! D1 SPN 48 90 49 43 0.533 [0.431, 0.633]
FS ! D2 SPN 27 77 28 51 0.351 [0.253, 0.462]
FS ! FS 7 12 8 6 0.583 [0.316, 0.808]
FS ! PLTSb 2 21 3 20 0.095 [0.029, 0.292]
FS ! ACh 0 3 1 4 0 [0, 0.602]
PLTS ! MSN 2 60 3 59 0.033 [0.010, 0.114]
PLTS ! PLTS 0 26 1 27 0 [0, 0.13]
PLTS ! FSb 0 20 1 21 0 [0, 0.161]
PLTS ! ACh 0 10 1 11 0 [0, 0.285]

Dorst et al. (2020) TH ! ACh 13 50 14 38 0.260 [0.159, 0.396]
ACh ! TH 11 41 12 31 0.268 [0.157, 0.420]

Ibáñez-Sandoval et al. (2011) NGF ! SPN 25 29 26 5 0.862 [0.693, 0.944]
English et al. (2011) ACh ! NGF 8 14 9 7 0.571 [0.323, 0.787]

NGF ! ACh 3 14 4 12 0.214 [0.078, 0.481]
ak, Number of connected pairs in that study; n, number of sampled pairs; a, b, parameters of the resulting beta distribution for the posterior of p using either the literature prior for SPN connections or a uniform prior for
interneurons as explained in the main text; p̂MAP , the MAP estimate of p.
bData concerning FS ! PLTS and PLTS ! FS connections from Gittis et al. (2010) were pooled with that of Szydlowski et al. (2013).
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Bayesian inference of connection probabilities. A single experimental
test for determining whether one neuron connects to another will yield
either a positive or negative result, so that it is equivalent to a Bernoulli
test with a success rate p, the unknown probability of connection we are
trying to infer. When analyzing a whole study consisting of several of
these tests, we assume that each test is independent and shares the same
success rate p with the others. Thus, the study as a whole can be
described using a binomial distribution as follows:

PðX ¼ kjpÞ ¼ n
k

� �
pkð1� pÞn�k (1)

where k is the number of connected pairs and n the total number of
tested pairs of that type. In this way, the binomial distribution provides a
likelihood for the data given p.

Our goal is to estimate this p, the probability of connection, and the
uncertainty of that estimate. According to Bayes theorem, the posterior
distribution for p can be determined by the following:

fposteriorðpÞ / PðX ¼ kjpÞfpriorðpÞ (2)

given a prior fprior(p), which is a probability distribution describing our
initial beliefs about the possible value of p. Finding a posterior for the
success rate of a binomial distribution is a well-known problem in
Bayesian inference, and the prior distribution used in this case is a beta
distribution as follows:

fpriorðp; a; bÞ ¼ pa�1ð1� pÞb�1

Bða; bÞ (3)

with a and b the parameters determining the shape of the prior, and B(a,
b) the so-called beta function. The main advantage of this type of prior,
known as the conjugate prior of binomial distributions, is that the poste-
rior that results from combining this prior with a likelihood in the form
of a binomial distribution simply turns out to be a new beta distribution
with updated parameters (sparing us the trouble of renormalizing the
righthand side of Eq. 2 to get a proper probability density function) as
follows:

fposteriorðpÞ ¼ fpriorðp; a1 k; b1 n� kÞ (4)

In other words, to determine the posterior, we simply have to add
the number of successful tests k to a, and the number of unsuccessful
tests n – k to b.

Consequently, obtaining the posterior distribution is a single line of
code. In MATLAB, this is posterior = betapdf (p, a1 k, b1 n – k) with p
a vector of probabilities of connection for which we want the corre-
sponding probability density value, and a and b the shape parameters of
the initial prior.

Design of the prior based on previous literature. In Results, we test a
set of standard priors for the beta distribution, the uniform prior
(a= b=1), the Jeffreys prior (a= b=0.5), and the Haldane prior
(a= b=0). We also test a prior based on previous literature of connec-
tions between SPNs, which we derive here. Knowing its meanm and var-
iance v, the shape parameters of a beta distribution are as follows:

a ¼ m
mð1�mÞ

v
� 1

� �
(5)

b ¼ ð1�mÞ mð1�mÞ
v

� 1

� �
(6)

Previous studies that did not differentiate the D1 and D2 subtypes
have shown that SPNs connect to one another at a mean rate of 0.12
(Czubayko and Plenz, 2002; Tunstall et al., 2002; Koos et al., 2004;
Taverna et al., 2004), leaving us with a decision to make about the

desired variance of the prior. Despite their thoroughness (325 tested
pairs in Koos et al., 2004), we could not directly use a beta distribution
based on the number of pairs in the initial studies, as the resulting var-
iance, which would reflect uncertainty attached to the measurement of
the average connection rate between all types of pairs, would be so small
that the new evidence with SPN subtype distinction would be unable to
significantly affect the posterior. Indeed, the desired variance should
reflect the fact that the average connection rate of 0.12 masks the poten-
tial existence of four distinct connection rates for each pair. We were
unable to find a principled way of deriving this desired variance; and for
this reason, different values of variance were tested before settling for
0.005, which gives the corresponding beta distribution a shape that
makes such a prior both sufficiently informative as to be interesting
without being completely insensitive to the addition of new data. Setting
m = 0.12 and v=0.005, we find a=2.56 and b= 18.12.

Inferring distance-dependent probabilities of connection from point
estimates. Intracellular recording studies typically report a maximum
distance of pairwise recording, so our point estimate p of the probability
of connection is then actually an integral over any distance-dependent
probability of connection. We show here how we can derive estimates
for the distance-dependent probability of connection from these point
estimates, using simple models.

We assume that the probability of connection from a source neuron
to a target neuron at distance r away is an exponentially decreasing func-
tion of distance as follows:

Pðconnectionjdistance ¼ rÞ ¼ e�b r; (7)

with decay parameter b . While a simple model, its advantage for us is
its dependence on a single parameter b , which we show below can be
inferred directly from our point estimate p, giving us a full posterior dis-
tribution for b too. Thus, while the model for PðconnectionjdistanceÞ is
user-defined, we use our Bayesian inference approach to both fit the
model’s parameter and obtain its uncertainty (indeed, our approach is
sufficiently general that any one parameter model could be used for
PðconnectionjdistanceÞ).

Our goal here is to estimate the length-scale of the decay of connectivity,
particularly so that we may compare the scales between different types of
connection, rather than find a detailed model of the distance dependence
decay of the probability of connections. Finding the most accurate models
would require both having the exact distances between all pairs of sampled
neurons (e.g., all pairs of D1 SPNs sampled), which are often not readily
available, and solving a range of issues, including the following: finding suit-
able models to fit the data; finding appropriate methods to fit the models to
the data; determining whether the data have sufficient power to fit each
model; determining whether the data have sufficient power to decide
between different models; and determining whether the data have sufficient
power to accurately recover the parameters of each model. The specific dis-
tance-dependent model of a particular type of connection in the striatum is
thus a considerable piece of work, beyond our scope here. Moreover, it is
unlikely in any case to markedly change the estimated length-scale over
which the probability of connection decays, as we expect distance depend-
ence to decay exponentially: models of connectivity in the striatum derived
from overlapping models of dendrites and axons (Humphries et al., 2010;
Hjorth et al., 2020) and data from cortical slices (Levy and Reyes, 2012) and
cultures (Barral and Reyes, 2016) all show that probabilities of connection
between neurons exponentially decrease with distance. Our exponential
model is thus a reasonable choice.

Given our model for PðconnectionjdistanceÞ, we now want to find
the mapping p(b ) between a given point-estimate probability of connec-
tion p and the decay parameter b . The mapping between p and b can
be expressed as follows:

pðb Þ ¼
ðR

0

fsampðrÞe�b rdr; (8)

which is the product of the probability fsamp(r) of experimenters selecting
a neuron at distance r from another, and of the probability of these
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neurons being connected knowing r (Eq. 7), integrated over all possible val-
ues of r (for a visual depiction of what Eq. 8 means, see Fig. 3C). R is the
maximum distance at which the experimenters recorded their pairs of
neurons.

Taking a central neuron as a reference point, we start by looking for
a distribution for r, the distance between that central neuron and other
neurons chosen for testing. By definition of a probability density func-
tion, fsamp(r) must be such that the probability that r is found between
two arbitrary values r1 and r1 1 Dr is as follows:

Pðr1,r,r1 1DrÞ ¼
ðr11Dr

r1

fsampðrÞdr (9)

This probability distribution for distance depends on how the experi-
menters sampled their pairs. We consider two models for fsamp(r). Our first
model is that, given a starting neuron, experimenters are equally likely to
sample any target neuron within their maximum recording radius — we
call this model fequi. Our second model is that, from the starting neuron,
experimenters will sample its nearest neighbor — we call this model fNN.
Next, we derive the fequimodel and describe the fNNmodel below.

The equiprobable sampling model. For a given distance r1 from a
central neuron, the probability of selecting a neuron within the volume
bounded by r1 and r11 Dr is also equal to the ratio of the expected num-
ber of neurons found within it over the expected number of neurons in
the total volume as follows:

Pðr1,r,r1 1DrÞ ¼ N:Vðr1Þ
N:Vtot

(10)

withV (r1) the subvolume bounded by r1 and r11 Dr, Vtot the total volume
and N the density of SPNs of whichever given type experimenters are cur-
rently trying to sample. N cancels out in the fraction, which implies that the
probability distribution for distance is, counterintuitively perhaps, inde-
pendent of postsynaptic SPN subtype, as long as the density is constant
everywhere. According to the reported methods of the two studies we evalu-
ate for SPN connections, experimenters selected neurons within the same
field of focus at a maximum distance R of either 50mm (Taverna et al.,
2008) or 100 mm (Planert et al., 2010), which means that the total volume
of interest is a cylinder of height h, corresponding to the depth of the field
of focus, and the subvolume is a hollow cylinder, as depicted in Figure 3B.

Vtot ¼ hpR2 (11)

Vðr1Þ ¼ hpððr1 1DrÞ2 � r21Þ ¼ 2pr1hDr1phDr2 (12)

If we now combine the general definition of a probability density
function (Eq. 9) with this particular equiprobable sampling assumption,
we now have the following:

ðr11Dr

r1

fequiðrÞdr ¼ 2r1Dr1Dr2

R2
(13)

which we can solve to find fequi by differentiating the righthand side of
the equation to obtain the following:

fequiðrÞ ¼ 2r
R2

(14)

So that finally, by plugging Equation 14 into Equation 8, we obtain
the following:

pðb Þ ¼ 2
R2

ðR

0

re�b rdr (15)

which can be used to create a mapping from b to p, p(b ).

The nearest-neighbor sampling model. To derive the nearest-neighbor
model, we will consider the case where experimenters only patched pairs of
neurons, ignoring the fact that Planert et al. (2010) would also patch triplets
or quadruplets, and we will assume that they always patched the closest neu-
ron within the maximum distance they set themselves. This means that we
are looking for the density function for the nearest neighbor, fNN(r).

Because information about the nearest neighbor distribution was
hard to find, we reproduce its derivation here, basing ourselves on
Krider and Kehoe (2004), in case such a derivation would be of interest
to others. Such a density function must satisfy the following:

fNNðrÞ ¼ 1�
ðr

0

fNNðxÞdx
� �

2prhN (16)

which states that the probability density that the nearest neuron is found at
distance r is the product of the probability that the first neuron is not indeed
found at a shorter distance from the central neuron (the first element in
brackets on the righthand side) and of the probability that there is a neuron
between r and r1 dr. This latter probability is itself the product of the infin-
itesimal cylindrical volume found between r and r1 dr, i.e., 2prhdr with h
(mm) the height of the cylinder, and N (mm–3) the average density of neu-
rons. If we now differentiate fNN(r), we get the following:

dfNN
dr

¼ �
d

ðr

0

fNNðxÞdx
� �

dr
2prhN1 1�

ðr

0

fNNðxÞdx
� �

2phN

(17)

According to Leibniz’ rule, we get on the one hand the following:

d
ðr

0

fNNðxÞdx
� �

dr
¼ fNNðrÞ (18)

We can also substitute the term in brackets in the second half of
Equation 17, thanks to the following rewriting of Equation 16 as follows:

1�
ðr

0

fNNðxÞdx ¼ fNNðrÞ
2prhN

(19)

After these substitutions and factoring by fNN, we can now rewrite
Equation 17 as follows:

dfNN
dr

¼ fNNðrÞ 1
r
� 2prhN

� �
(20)

dfNN
fNN

¼ 1
r
� 2prhN

� �
dr (21)

lnðfNNðrÞÞ ¼ lnðrÞ � phNr2 1 constant (22)

ln
fNNðrÞ

r

� �
¼ �phNr2 1 constant (23)

fNNðrÞ ¼ kre�phNr2 (24)

with k, the normalization constant. Usually, k is defined so that integrat-
ing fNN between 0 and infinity is equal to 1 (i.e., the nearest neighbor
must be somewhere in that interval). In our particular case, however,
experimenters set themselves a maximum distance of either 50 or 100
mm, meaning that the closest neuron must be closer than this distance
(if there was no neuron closer than this, experimenters would simply
look for another pair). In other words, k is such that:

1420 • J. Neurosci., February 23, 2022 • 42(8):1417–1435 Cinotti and Humphries · Bayesian Mapping of the Striatal Microcircuit



k
ðR

0

re�pr2hNdr ¼ 1 (25)

which ultimately gives us the following:

k ¼ 2phN
1� e�pR2hN

(26)

As previously, we can now combine these probabilities of sampling a
neuron at a given distance with the probability of connection given dis-
tance (Eq. 8) to find the overall probability of connection as follows:

pðb Þ ¼
ðR

0

Pðconnectionjdistance ¼ rÞ:fNNðrÞdr ¼ k
ðR

0

re�rðprhN1b Þdr

(27)

which gives us a new mapping between p and b .
Unlike the equiprobable model, the nearest-neighbor model depends

on both the density of neurons N and the depth of the sampling plane h.
Given that we have collapsed probabilities of connection based on the
nature of the presynaptic neuron, we simply use an overall SPN density
in the mouse brain of 80,500 per mm3 following the convention of
Hjorth et al. (2020) who chose this number based on the work of Rosen
and Williams (2001) (and which is close to the estimated density of
84,900 per mm3 in the rat brain) (Oorschot, 1996). As for h, the experi-
menters tell us that neurons were sampled in the same field of focus that
would correspond to a height with an order of magnitude of a tenth or
even a hundredth of micrometer. However, given that for a neuron to be
in the same field of focus as another, it suffices that some part of its
soma, whose diameter is between 10 and 20 mm in mice according to
Gagnon et al. (2017), intersects this very small volume, we can expect h
to be much larger in practice. Because of this uncertainty, we used three
different values of h to get three different nearest-neighbor distributions:
0.1, 1, and 10mm.

Transformation of posterior distributions. Having obtained the map-
ping p(b ) between p and b , we can go a step further and find a full dis-
tribution (a posterior) for b , by transforming the posteriors we have
previously obtained for p, fp(p), into posteriors for b , fb (b ). By defini-
tion of a density function, for any possible values a and b of b , we
have:

ðb

a

fb ðb Þdb ¼ Pða,b,bÞ (28)

Thanks to the mapping from b to p (which is monotonically
decreasing), we can also write:

Pða,b,bÞ ¼ PðpðbÞ,p,pðaÞÞ ¼ �
ðpðbÞ

pðaÞ
fpðpÞdp (29)

Finally, integration by substitution tells us:

�
ðpðbÞ

pðaÞ
fpðpÞdp ¼ �

ðb

a

fpðpðb ÞÞ dpðb Þ
db

db (30)

Hence, by identification with Equation 28:

fb ðb Þ ¼ �fpðpðb ÞÞ dpðb Þ
db

(31)

In order to draw fb , we converted regularly interpolated values of b
into the corresponding values of p using Equation 15 for the equiprob-
able sampling model or Equation 27 for the nearest-neighbor model.

Obtaining the derivative of p with respect to b in Equation 31
depended on the sampling process. In the case of equiprobable sampling,

after an integration by parts of Equation 15, we arrive at the following
expression of p(b ):

pðb Þ ¼ �2
R2b

ðRe�bR1
1
b
e�bR � 1

b
Þ (32)

which can be differentiated with respect to b as follows:

dpðb Þ
db

¼ 2

R2b 3 ðe�bRððRb11Þ2 1 1Þ � 2Þ (33)

However, in the case of the nearest-neighbor distribution, we were
unable to find a closed-form for dpðb Þ

db , and resorted to a numerical
approximation based on the regularly interpolated values of b and the
corresponding values of p given by Equation 27.

Code availability. All code used for this work was written with
MATLAB. The code necessary for the Bayesian analysis of p, the transfor-
mation of fp(p) to fb (b ), and the Monte Carlo simulations depicted in
Figure 4C, D is available on the Github account of the M.D.H. laboratory:
https://github.com/Humphries-Lab/Bayesian-map-of-striatum-circuitry.

Results
Patch-clamp data on connection rates between SPNs
We begin by reviewing key data on the connections within and
between the D1 and D2 type SPNs, which we will also use to mo-
tivate our Bayesian approach. Previous studies by Taverna et al.
(2008) and Planert et al. (2010) collected data on pairwise con-
nections between SPN subtypes in slices obtained from both the
dorsal and ventral striatum of mice. The subtype of the SPNs was
determined by targeted expression of EGFP under the control of
either a D1 or D2 receptor promoter sequence for Taverna et al.
(2008) and of only a D1 receptor promoter for Planert et al.
(2010). Nonlabeled SPNs were then assumed to belong to which-
ever group was not meant to be labeled in this particular animal,
and electrophysiological criteria were used to exclude interneur-
ons. After choosing a pair of neighboring cells, no further apart
than 50 mm, Taverna et al. (2008) detected connections in cur-
rent-clamp mode by injecting a depolarizing current step in the
first (potentially presynaptic) neuron of the pair, and measuring
depolarizing postsynaptic potentials in the second one. This pro-
cedure was then repeated the other way around. Planert et al.
(2010) recorded up to four neighboring neurons simultaneously,
with a larger maximum intersomatic distance of 100 mm, and
detected connections by stimulating one neuron with a train of
depolarizing pulses to generate action potentials in the presynap-
tic neuron and recording the potential postsynaptic responses of
the other neurons.

In both studies, the ratio of successful tests to the total num-
ber of tests (Table 1) was then reported as an estimate p̂ for the
true probability of connection between these types of neuron
(plotted as the bars in Fig. 1A,B), in accordance with frequentist
inference about a proportion. As they are estimates, they come
with a level of uncertainty about the true proportion that
depends on sample size, which here is the number of pairs that
were tested. In a frequentist approach, this uncertainty would
usually be given by a confidence interval.

However, typically, intracellular recording studies do not
report any estimate for the uncertainty surrounding their meas-
urements of p̂, and recent theoretical studies of striatum (Burke
et al., 2017; Hjorth et al., 2020; Bahuguna et al., 2015) have sim-
ply used the raw values p̂ from Taverna et al. (2008) and Planert
et al. (2010) to construct their models, supposing in particular
that the probability of D1 to D1 connections is about twice as
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large as D1 to D2 connections. When we do
compute confidence intervals, such as the
Wilson confidence interval for binomial pro-
portions (Brown et al., 2001) that we add our-
selves in Figure 1A, B, we find that, given the
relatively small sample sizes, the confidence
intervals overlap considerably.

Bayesian inference of connection
probabilities
As we have just explained, frequentist inference
gives us a single point estimate p̂ for the proba-
bility of connection, normally surrounded by a
confidence interval, which may be too large to
be of any practical use and also, because it is
flat, may give the illusion that the true value of
p might be anywhere within this interval with
equal probability. By contrast, Bayesian infer-
ence is more informative because it gives us a
full probability density function fp(p), called the
posterior, telling us exactly how likely every
possible value of p actually is, given the col-
lected data. In this way, even when confidence
intervals overlap, as is the case for practically all
the SPN to SPN connections here (Fig. 1A,B),
which in a frequentist interpretation would lead
us to dismiss the difference as nonsignificant
without insight as to whether this is because of
insufficient data or a true nondifference (Dienes,
2014; Makin and De Xivry, 2019), Bayesian in-
ference gives us a much clearer picture of what
the data can tell us. We introduce here a simple
Bayesian approach to calculating the full poste-
rior fp(p) for each type of connection from any
pairwise intracellular recording data.

As we show in Materials and Methods, for
these data, Bayesian inference turns out to be
simple. Given the number of pairwise tests n,
and the number of successful connections k,
the posterior for p is a beta distribution with
updated shape parameters as follows:

fposteriorðpÞ ¼ Betaðp; a1 k; b1 n� kÞ;
(34)

given initial values for its two parameters a and
b. These initial values define the prior distribu-
tion for p, which reflects our initial beliefs
about the possible values of p.

For instance, if we had initial values of a and
b equal to 1, and we were looking at the data con-
cerning D1 ! D1 connections obtained by
Taverna et al. (2008) (Table 1) with n=38 tests and k=5 connec-
tions found, then we would obtain a=6 and b=34, and the result-
ing posterior would be the one depicted in Figure 1C (light blue
curve). Depending on our assumptions, different values of a and b
can be used to give the prior a desired shape. We begin with the
common choice of the uniform distribution in which p could be
anywhere between 0 and 1 with equal probability, achieved by set-
ting a=b=1 as in the example just given.

Using this prior in combination with the data of Taverna et
al. (2008) gives us the posterior curves shown in Figure 1C. Once

obtained, we can revert, if necessary, to a more frequentist stand-
point by extracting from these density functions a single point
estimate p̂, typically the maximum a posteriori (MAP) value,
which is simply the value of p for which fp(p) is maximum, and a
credibility interval around that MAP, which is the Bayesian
equivalent of a confidence interval. The MAPs concentrate
around relatively low values of p; and their exact values, which
are given in Table 2, lie between 0.06 for D1 ! D2 pairs and
0.28 for D2 ! D1 pairs. The uncertainty surrounding p is given
by the width of the posteriors and of the 95% credibility intervals
underneath the curves. For the data from Taverna et al. (2008),
the connections with the smallest credibility interval of ;0.1 are

Figure 1. Probability of lateral connections between SPNs estimated using either frequentist or Bayesian methods.
A, B, Frequentist estimates of the probabilities of connection computed from intracellular recording data, and our com-
puted 95% Wilson confidence intervals. C, D, Posterior probability density functions for the probability of connection
using a Bayesian approach. Colored bars underneath the plot represent the 95% credibility intervals corresponding to
each probability density function. Inset, Shape of the prior, a uniform distribution. E, F, Posterior probability density
functions using the Jeffreys prior. G, H, Posterior probability density functions using a prior based on previous literature
with mean equal to 0.12 and variance equal to 0.005.
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the D1 ! D2 pairs, whereas the least well-resolved connections
are the D2 ! D1 pairs for which the credibility interval spans
;0.2. By contrast, when we apply the uniform prior to the data of
Planert et al. (2010), the D2 ! D1 connections have the smallest
uncertainty and the D2! D2 connections the largest (Fig. 1D).

The fact that we used the same prior for all pairs of neuron
types reflects our initial belief that there is no difference in the
probability of connection between pairs. To overcome this belief
requires a sufficient amount of evidence, and we can start com-
paring the different probabilities of connection visually by look-
ing at how much the different posteriors overlap. Based on
Figure 1C, for example, it seems that, in the data of Taverna et al.
(2008), probabilities of connection segregate depending on the
nature of the presynaptic neuron in the pair. The posteriors
involving presynaptic D1 neurons overlap considerably with one
another, and their region of highest density is lower than for pre-
synaptic D2 neurons who also show great overlap, while there is
much less overlap between pairs with different presynaptic neu-
rons. This becomes even more obvious when looking at the 95%
credibility intervals drawn underneath the curves that show
more or less overlap depending on the nature of the presynaptic
neuron: the credibility intervals for pairs with a presynaptic D1
neuron share an overlapping interval roughly covering probabil-
ities of 0.05-0.15, while the overlapping interval for connections
with a presynaptic D2 SPN ranges between probabilities of
;0.20-0.28. A similar pattern repeats itself in the data of Planert
et al. (2010) (Fig. 1D), although the exact values of the overlap-
ping regions are shifted toward 0 compared with Taverna et al.
(2008), an effect that is potentially because of the maximum dis-
tance of sampling as explained later. This opens the possibility
that there is indeed an asymmetry in terms of probability of con-
nection that is dependent on the subtype of the presynaptic neu-
ron, with no or little effect of the postsynaptic target subtype,
something we will explore more thoroughly later.

One of the main advantages of Bayesian inference is that it
forces researchers to be explicit about their priors and gives them
the opportunity to choose appropriate ones. In order to illustrate
this, we applied three further priors to the experimental data.
First, the so-called noninformative Jeffreys prior sets a= b=1/2.
An intuitive way of understanding this prior is to picture our-
selves at the very beginning of the experiment, waiting for the
result of the very first paired stimulation and recording. This test
will either be successful or not, meaning that the shape of the
prior should give most and equal weight to these two outcomes
(Fig. 1E, inset). Figure 1E, F shows the posteriors that result from
using this prior, and we can see how they are practically identical
to the posteriors obtained with a uniform prior. This was also the
case when using the Haldane prior for which a and b equal 0
(not shown).

Our third prior is based on prior data, for Bayesian inference
also provides us with a principled way of integrating previous
knowledge into the prior. Earlier work (Taverna et al., 2004;
Czubayko and Plenz, 2002; Koos et al., 2004) quantified the rate
of lateral connections between SPNs without distinguishing SPN
subtypes and concluded that lateral connections occurred at a
rate of ;0.12. Using this information, we can design a beta dis-
tribution with a mean of 0.12 and an arbitrary variance of 0.005
(see Materials and Methods), which serves as our third and final
prior shown in the inset of Figure 1G. Although the posteriors
are more clearly different from the ones obtained with the uni-
form and Jeffreys prior, they still look very similar. Indeed, we
find that the MAP values for a given type of connection (Table
2) are very close whatever the choice of prior, and the previous

observation that the curves seem to segregate according to the
subtype of the presynaptic neuron is valid in every case. On the
other hand, because this prior is more informative than the two
previous ones, uncertainty is reduced, as witnessed by the smaller
credibility intervals. Given this robustness to the different priors,
we shall henceforth exclusively use the prior based on previous
literature when analyzing connections between SPNs.

D1 neurons make fewer connections than D2 neurons
We previously observed that D1 neurons seem to make fewer
connections than D2 neurons without necessarily targeting one
subtype over the other, based on how the posterior distributions
appear to segregate by presynaptic subtype in Figure 1. We can
go beyond this qualitative analysis by calculating a density func-
tion fD for the difference between two probabilities of connec-
tion. For instance, if we are interested in the difference in the
probability of connection between D1! D1 and D1! D2 pairs
(Fig. 2A), using the posterior distributions fD1!D1(p) and
fD1!D2(p), we can find the density function for D(D1!D1)–

(D1!D2) by the following:

fDðD1!D1Þ�ðD1!D2Þ ðD ¼ kÞ ¼
ðminð1;1�kÞ

maxð0;�kÞ
fD1!D1ðp ¼ x1kÞfD1!D2ðp ¼ xÞdx (35)

with the bounds of the integral such that x1 k lies between 0
and 1. We can then calculate the probability that D(D1!D1)–

(D1!D2) is smaller than 0 by integrating this distribution between
�1 and 0 (or calculate if it is greater than 0 by integrating the dis-
tribution between 0 and 1). By contrast, the frequentist strategy
would be to compute a p value giving the probability of getting
an experimental result at least as extreme as the one observed
assuming the null hypothesis of no difference in connection
probabilities (i.e., D = 0), whereas the Bayesian approach allows
us to calculate the probability that D is less than (or greater than)
0 given experimental results. Thus, whereas the p value tells us
how surprising the actual data are if we accept the null hypothe-
sis, the Bayesian approach can quantify precisely how unlikely
the null hypothesis actually is.

We applied this method to answer the question: do SPNs of
either kind preferentially target SPNs of a certain subtype? In
particular, based on their point estimates of connection probabil-
ities, Taverna et al. (2008) have claimed that D1 neurons prefer
to connect to other D1 neurons than to D2 neurons, a claim
used in the computational study by Burke et al. (2017). As evi-
denced in Figure 2A, E, which plots the density functions for
D(D1!D1)– (D1!D2) according to the data by Taverna et al. (2008)

Table 2. MAP estimates for the different probabilities of connection between
SPNs, using different priors and different experimental studiesa

Study Pair Uniform Jeffreys Literature

Taverna et al. (2008) D1 ! D1 0.132 0.122 0.116
D1 ! D2 0.064 0.054 0.069
D2 ! D1 0.277 0.272 0.222
D2 ! D2 0.179 0.175 0.161

Planert et al. (2010) D1 ! D1 0.070 0.060 0.074
D1 ! D2 0.045 0.038 0.054
D2 ! D1 0.125 0.120 0.117
D2 ! D2 0.226 0.217 0.172

aThe “literature” prior is based on data on pairwise connections from intracellular recording studies that pre-
dated techniques for identifying types of SPN, as explained in the main text.
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and Planert et al. (2010), respectively, this is not the case as both
density functions include 0 among their most likely values.
Indeed, the probability that D(D1!D1)– (D1!D2) is smaller than 0
is equal to 0.19 and 0.30 in Taverna et al. (2008) and Planert et
al. (2010), respectively. Similarly, we do not find any difference
when looking at whether D2 neurons have a preference for a par-
ticular postsynaptic neuron subtype (for the density functions of
D(D2!D2)– (D2!D1), see Fig. 2B,F): for Taverna et al. (2008), the
probability that D(D2!D2)– (D2!D1) is larger than 0 is 0.16, and
the probability that it is smaller than 0 is 0.17 for Planert et al.
(2010). We thus find no evidence that SPNs of one subtype (D1
or D2) preferentially target a certain subtype.

Having established that rates of connection are not different for a
given presynaptic neuron subtype, we can collapse the data accord-
ing to the subtype of the presynaptic neuron to answer another ques-
tion: are D1 neurons more or less likely to make connections overall
than D2 neurons? To do this, we simply add up the total number of
tested pairs and connections found for the same presynaptic neuron
type (e.g., for D1 SPNs: nD1!SPN ¼ nD1!D11nD1!D2 and similarly
for k). In essence, this is equivalent to considering the posterior of
one connection rate as the prior for connections with that same pre-
synaptic neuron subtype (e.g., fD1!D1(p) is the prior for fD1!SPN(p)).
Figure 2C, G shows the posterior distributions for the col-
lapsed datasets, and both studies agree that D1 SPNs are
less likely than D2 SPNs to make connections to other
SPNs. The MAP values for connection rates from D1 neu-
rons are 0.092 and 0.059 in Taverna et al. (2008) and
Planert et al. (2010), respectively, versus 0.199 and 0.143 for
connection rates from D2 neurons. If we look at the density
function for the difference between the probability of con-
nections for D1 and D2 neurons (Fig. 2D,H), the MAPs for
fDðD1!SPNÞ�ðD2!SPNÞ are �0.11 and �0.08 for Taverna et al. (2008)
and Planert et al. (2010), respectively, while in both cases,
the probability that D(D1!SPN)– (D2!SPN) is less than 0 is
equal to 0.99. Thus, both studies contain very convincing
evidence that D2 neurons are about twice as likely as D1
neurons to make connections to another SPN.

Probability of connection as a function of distance
So far, when considering data on SPN connections from Taverna
et al. (2008) and Planert et al. (2010), we have been careful to an-
alyze each study separately, resisting the temptation of combin-
ing the two into a more powerful dataset. We were justified in
being so careful since the two experiments used different maxi-
mum intersomatic distances between neurons, namely, 50mm in
the study of Taverna et al. (2008) and 100 mm in that of Planert
et al. (2010). Given that probability of connection between neu-
rons typically decreases with distance (Hellwig, 2000; Humphries
et al., 2010), sampling within a larger area around a neuron will
probably cause a decrease in the ratio of connected pairs. Indeed,
if we compare the probability of D1 or D2 neurons making lat-
eral connections between the two experiments, we find that these
probabilities tend to be larger in Taverna et al. (2008), which has
the smaller sampling area, as illustrated by the corresponding
density functions shown in Figure 3A. We thus introduce here a
method for estimating the distance-dependent probability of
connection between neuron types from data on neuron pairs
recorded between some known maximum separation; our first
use of this method is then to see whether the distance depend-
ence is consistent between the two studies of SPN connectivity.

To do this, we start by positing that this decrease obeys a sim-
ple exponential decay function as follows:

Pðconnectionjdistance ¼ rÞ ¼ e�b r (36)

with b the decay parameter of unknown value, and r (for radius)
the distance separating the two neurons. Ideally, to estimate this
b parameter would require knowledge about the exact distance
between every recorded pair of neurons, from which we could
directly fit the model, but with simple assumptions on the sam-
pling method used by experimenters, we can find an alternative
way of converting values of b into p. Since the distance between
each sampled pair of neurons in an experiment is indeed
unknown to us, we shall consider it as a random variable. We
can now express p as a function of b as follows:

Figure 2. Comparison of the probabilities of connections between different SPN combinations. A, Density function for the difference in the probabilities of connection in pairs with a presyn-
aptic D1 neuron using data from Taverna et al. (2008). B, Density function for the difference in the probabilities of connection in pairs with a presynaptic D2 neuron using data from Taverna et
al. (2008). C, Posterior density functions for the probabilities of connection collapsed according to the presynaptic neuron subtype. Bars underneath the curves correspond to the 95% credibility
intervals. D, Density function for the difference in connection probability between pairs with a presynaptic D1 neuron and pairs with a presynaptic D2 neuron. E-H, Same as in A-D, using data
from Planert et al. (2010).
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pðb Þ ¼
ðR

0

fsampðrÞe�b rdr; (37)

which is the product of the probability fsamp(r) of experimenters
selecting a neuron at distance r from another, and of the proba-
bility of these neurons being connected knowing r (Eq. 36) inte-
grated over all possible values of r (for a visual depiction of what
Eq. 37 means, see Fig. 3C). R is the maximum distance at which
the experimenters are sampling neurons, equal to 50 or 100 mm
in Taverna et al. (2008) and Planert et al. (2010), respectively.
We now need to find fsamp(r).

A simple model for fsamp would be that, given a certain
volume surrounding a central neuron, the probability of

sampling any given neuron in that volume is equiprobable
for all neurons (Fig. 3B): we call this model fequi. With this
assumption, we obtain the following solution (see Materials
and Methods):

pðb Þ ¼ 2
R2

ðR

0

re�b rdr (38)

which gives us the corresponding value of p for any desired value
of b . As we have posteriors fp(p) for the probability of connec-
tion between two types of neuron, we can now transform these
into posteriors for b , fb (b ) through parameter substitution
using Equation 38.

Figure 3. Estimating the probability of connection as a function of distance. A, Density function for the difference in connection rates for a given presynaptic SPN type between the Taverna
et al. (2008) and Planert et al. (2010) studies. B, Experimenters chose their neurons within a certain maximum distance Rmax, which defined a thin cylindrical volume of interest (here we draw
the top of that cylinder). In the case of equiprobable sampling, the probability of choosing neurons further away increases as the infinitesimal volume corresponding to that distance increases
as a linear function of r. C, The probability of finding a connected pair of neurons depends on two different processes: (1) the process of connection, modeled by the probability of connection
between two neurons given the distance between them, which we postulate decays exponentially; and (2) the process of sampling neurons in the experiment, modeled as the probability of
selecting another neuron at a given distance from a starting neuron. We explore here two different scenarios for the sampling process: an equiprobable scenario in which neurons within a
determined volume are selected randomly, and a nearest-neighbor scenario in which the selected neuron is whichever is the closest within the maximum distance set by the experimenters.
The overall rate of connection reported by the experimenters then corresponds to the integral (shaded areas) of the product of these two probability models. Hence, differences in sampling
processes can cause different rates of connection, even if the probability of connection given distance is the same.
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Probability of connection decreases faster for D1 than for D2
neurons
We apply this method to the posteriors for the probabilities of
connection collapsed according to the subtype of the presynaptic
SPN and obtain the posteriors for the decay rate b shown in
Figure 4A, B for D1 and D2 neurons, respectively. Despite not
being perfect, there is a good level of agreement between the two
studies, which give estimates in the same ballpark. In both cases,
although the posteriors do not overlap much, they do indeed lie
quite close to each other providing us with a continuous, albeit

broad, range of possible values. In the case of D1 neurons, the
decay rate is expected to be in a region between 0.03 and 0.13
mm–1. The exponential decay curves representing the probability
of connection as a function of distance for a decay rate equal to
the MAP of each study (which are given in Table 3) are also
shown in the inset of Figure 4A, and it is evident that they are
extremely close to one another. As for D2 neurons (Fig. 4B), the
decay rate is smaller, as expected given that we have already
shown that the overall probability of connection is higher for
these neurons, ranging between 0.02 and 0.07mm–1.

To get a better idea of how consistent the results are between
the Taverna et al. (2008) and Planert et al. (2010) datasets, we
used Monte Carlo simulations to try and recover the number of
observations made by each experiment with its own value of R
using the b value that seems most likely given the two posterior
curves, that is, the intersection of the two posterior curves (Fig.
4A,B, black dotted lines). We ran 10,000 virtual experiments by
generating random distances between pairs of neurons (accord-
ing to Eq. 14) and the maximum distance R used by that study,
and then deciding whether they were indeed connected accord-
ing to the probability of connection of Equation 36. We gener-
ated the same number of pairs as tested in each study and then
reported the number of times we obtained the exact same num-
ber of positive results (Fig. 4C,D, red bars in the histograms). For
instance, setting an intermediate decay rate of 0.075mm–1 for D1

Figure 4. Estimates for the distance dependence of connection probability between SPNs A, B, Posterior density functions for the decay parameter of an exponential function representing
the probability that a D1 or D2 neuron connects to a neighboring neuron. Bars underneath represent 95% credibility intervals. Vertical black dashed line indicates the value of b at the maxi-
mum intersection of the two posteriors. Inset, Probabilities of connection given distance using the MAP values from the decay rate posteriors. C, D, Monte Carlo simulations in which the best
intersection estimate of b from A and B is used to try and replicate the exact experimental results of Taverna et al. (2008) (left) and Planert et al. (2010) (right) concerning pairs with a D1
presynaptic neuron (C) or a presynaptic D2 neuron (D). The exact results obtained by the experimenters correspond to the red bars and given between brackets underneath the bar graphs. E,
F, Density functions for the difference in decay rates between the two studies.

Table 3. MAPs and 95% credibility intervals (in lm–1) of the posterior curves
for b

Study Pair b̂ MAP (mm
–1) 95% credibility interval

Taverna et al. (2008) D1 SPN ! SPN 0.084 [0.064, 0.125]
D2 SPN ! SPN 0.054 [0.043, 0.070]

Planert et al. (2010) D1 SPN ! SPN 0.053 [0.040, 0.082]
D2 SPN ! SPN 0.033 [0.026, 0.045]
FSI ! D1 SPN 0.002 [0.0004, 0.009]
FSI ! D2 SPN 0.006 [0.002, 0.017]

Gittis et al. (2010) FSI ! D1 SPN 0.004 [0.003, 0.005]
FSI ! D2 SPN 0.007 [0.005, 0.009]
FSI ! FSI 0.003 [0.001, 0.008]

Ibáñez-Sandoval et al. (2011) NGF ! SPN 0.002 [0.001, 0.006]
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neurons, and generating 10,000 replications of the experiment of
Taverna et al. (2008), which recorded 85 pairs of SPNs with a D1
presynaptic neuron, we obtained .500 simulations where
exactly 8 pairs were connected, which is the number originally
reported (Fig. 4C, left). In all 4 cases, we managed to replicate the
original results relatively often, proving that the best estimates
for b are reasonable. As a sanity check, we also used the decay
rate MAPs for one subtype to try and replicate the results of the
other subtype and found it much harder, if not impossible, to
replicate the results, verifying that the decay rates have to be dif-
ferent for the two types of SPNs (results not shown).

If we compare the estimates between the two datasets more
critically, there is a clear bias for the posterior curves extracted
from Taverna et al. (2008) to be shifted to the right compared
with the posterior curves from Planert et al. (2010) (Fig. 4A,B).
Indeed, if we refer to the insets in Figure 4A, B, the best estimate
of b according to the study by Taverna et al. (2008) would pre-
dict a 50% drop in probability of connection every 8 mm for D1
neurons versus every 13 mm according to the study by Planert et
al. (2010). In the case of D2 neurons, the difference between the
two exponential curves is even greater, with a half distance of 13
mm versus 21 mm according to Taverna et al. (2008) and Planert
et al. (2010), respectively. Furthermore, the density functions for
the difference in posteriors between the two studies both lie pre-
dominantly in the positive domain (Fig. 4E,F), and the probabil-
ity that the decay rate is larger in the Taverna than Planert data
is 0.967 and 0.996 for b D1!SPN and b D2!SPN, respectively.
Although the disagreement between the datasets is small, it is
nonetheless consistent.

Biased neuron sampling could explain differences between
datasets
One potential explanation is that the sampling of neuron pairs
was more complex than the equiprobable sampling model we
first assumed. In this section, we explore this possibility by

considering a model for fsamp where,
rather than choose neurons equiprobably
within a visible area surrounding a
neuron, experimenters preferentially
tested neurons that were closest to
one another, to maximize the proba-
bility of detecting connections.

To explore this model, we used the
same probability of connection given dis-
tance (Eq. 36) in combination with a new
density function fNN for the probability
of the distance to the nearest neighbor, to
derive a new mapping from p to b . We
found the resulting mapping to be (see
Materials and Methods):

pðb Þ ¼ k
ðR

0

re�rðp rhN1b Þdr; (39)

where k is a normalizing constant.
Contrary to the previous equiprobable
sampling model (Eq. 38), where these pa-
rameters cancelled out, this mapping
depends on N, the density of SPNs in the
striatum, and h, the height of the cylinder
in which sampling takes place. We used
here an estimate of the SPN density in
mice of 80,500 per mm3, and tested three

different values of h to get three different nearest-neighbor distri-
butions: 0.1, 1, and 10 mm. We then use this mapping to trans-
form the posteriors for p into posteriors for b as before (see
Materials and Methods).

The first column of Figure 5 shows the resulting posteriors
for D1 neurons. The picture for h= 0.1 mm is not so different
from that obtained under the equiprobable sampling hypothesis,
but for greater values of h, the posteriors overlap far more. In
particular, for h = 1mm, the posterior curves practically coincide.
Similarly, for D2 neurons, h=0.1 mm does not much improve
the agreement between the two studies, but greater values of h do
(Fig. 5, second column). This approach successfully illustrates
how a tendency to select neurons closer together might account
for the discrepancy observed in estimates of the decay parameter
using the simpler equiprobable sampling model. Moreover, this
analysis shows how the details of data sampling matter when
estimating connectivity statistics from intracellular recording
data.

Fast spiking (FS) interneurons preferentially connect to D1
SPNs
We now turn to completing our Bayesian map of the striatal
microcircuit by evaluating the connections of different species of
interneurons to the SPNs and to each other; we present the full
map in Discussion (see Fig. 10). Three main types of interneur-
ons are commonly documented (Kreitzer, 2009): FS, persistent
low threshold spiking (PLTS), and cholinergic (ACh) interneur-
ons. We will also include in this list TH and NPY-expressing
NeuroGliaForm (NGF) interneurons because of their relation-
ship to ACh interneurons, which is crucial to the function of the
cholinergic component of the circuitry (English et al., 2011;
Ibáñez-Sandoval et al., 2011; Dorst et al., 2020). We took data on
pairwise intracellular recordings of these interneuron types from
the range of studies listed in Table 1, and determined Bayesian

Figure 5. Density functions for the decay parameter assuming a nearest-neighbor model of neuron selection for different
values of the depth h of the sampling region. A, Density function for b for D1 neurons when h= 0.1 mm. B, Density function
for b for D2 neurons when h= 0.1mm. C, D, Same as in A, B for h= 1mm. E, F, Same as in A, B for h= 10mm.
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posteriors for p as previously. Unlike for the
SPNs, we did not have prior studies of the
interneuron connections to help us design a
prior, so we relied on a uniform prior instead.

We focus first on FS interneurons that pro-
ject to the SPNs, using intracellular recording
data from Planert et al. (2010) and Gittis et al.
(2010). The posteriors we obtain for Planert et
al. (2010) (Fig. 6B) are consistent with quite
high connection probabilities: the MAPs
are 0.67 and 0.89 for connections to D2 and
D1 neurons, respectively. However, the small
size of the samples means that the range of
possible values is also broad (95% credibility
intervals: D2, [0.35, 0.88]; D1, [0.56, 0.98]).
Fortunately, the study of Gittis et al. (2010)
is based on a much larger sample resulting
in narrower posteriors shown in Figure 6A.
Thanks to these narrower posterior curves, it
is possible to conclude that FS interneurons pref-
erentially target D1 neurons. Indeed, when we
integrate DFS!D1– FS!D2 (Fig. 6A, inset), we find
the probability that FS interneurons prefer to
connect to D1 neurons is.0.99.

The two studies seem to disagree as
Planert et al. (2010) gives much higher esti-
mates of p, but this is resolved by taking into
account the maximum distance used by the
two studies: 100 mm for Planert et al. (2010)
and 250 mm for Gittis et al. (2010). Indeed, if
we convert the posteriors for p into posteriors
for the exponential decay rate b of the proba-
bility of connection given distance, with the
assumption of equiprobable sampling as pre-
viously explained, we obtain posteriors that
very largely overlap (Fig. 6C,E; Table 3), thus
reconciling the two studies. In line with the
already discussed overall smaller rate of
connection to D2 neurons, the probability
of connection drops much faster as dis-
tance increases for connections to D2 neu-
rons (dropping to 50% after ;100 mm; see
Fig. 6F) than for connections to D1 neu-
rons (50% connection rates occurring at a
distance of at least 200 mm; see Fig. 6D). Consequently, there
are at least two length-scales in the striatal microcircuit, with
connections between SPNs falling to 50% probability within
a few tens of micrometers (Fig. 4A,B), but connections to
SPNs from FS interneurons falling to 50% probability at
�100 mm (Fig. 6D,F).

PLTS interneurons make few local connections in striatum
We turn now to the connections that FS interneurons make on
other interneurons of the striatum. To assess these, we analyzed
data from Gittis et al. (2010) on connections FS interneurons
make to PLTS, cholinergic, and other FS interneurons (Fig. 7A).
Their data on connections between FS and PLTS interneurons
were pooled with the data on the same connections from
Szydlowski et al. (2013): We checked that the data from the two
studies were in agreement by calculating posteriors separately for
each study and found the density functions for the difference
between the posteriors (D) for both directions (FS !PLTS and

PLTS !FS) included 0 among their most likely values (results
not shown).

We see from these data that the probability of connection from
FS interneurons to PLTS interneurons is low (p̂MAP ¼ 0:10), but
uncertainty regarding these connections is quite large (95% credi-
bility interval = [0.03, 0.29]), while the probability of connection
to cholinergic interneurons is even more uncertain with a credibil-
ity interval ranging from 0 to 0.60 and therefore requires more
investigation. Connections between FS interneurons are relatively
common (p̂MAP ¼ 0:58) but with broad uncertainty (95% credi-
bility interval = [0.32, 0.81]). While this broad uncertainty in p
translates into a broad uncertainty for the decay rate b of the
probability of connection given the distance between a pair of FS
interneurons (Fig. 7B), we see that the distance dependence for pairs
of FS interneurons is similar to that for connections of FS interneur-
ons to SPNs with a half-distance for connection probability as a
function of distance of ;200 mm for b̂ MAP ¼ 0:003mm�1.
Unfortunately, Szydlowski et al. (2013) do not provide a maximum
distance which prevents us from transforming fp(p) for FS! PLTS
pairs into the corresponding fb (b ).

Figure 6. Bayesian analysis of connection probabilities of FS interneurons onto D1 and D2 SPNs. A, Connection proba-
bilities of FS interneurons connecting to D1 and D2 SPNs according to the data of Gittis et al. (2010) who set a maximum
distance of 250 mm between neurons. Inset, Density function for the difference in probability of connection. B, Same as
in A, according to the data of Planert et al. (2010) who used a maximum distance of 100 mm instead. C, Posterior den-
sity functions for the decay rate of probability of connection for FS! D1 pairs assuming equiprobable sampling of neu-
rons. D, Probabilities of connection given distance for three different values of b corresponding to the MAP estimates
of each study and the intersection of the two posterior curves. E, F, Same for FS!D2 pairs as in C and D, respectively.
Because the MAP estimate for Planert et al. (2010) coincides with the intersection of the two posteriors, only two expo-
nential decays are tested in F.
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The combined data of Gittis et al. (2010) and Szydlowski et al.
(2013) (Fig. 7C) show no evidence that PLTS interneurons con-
nect locally to other interneurons (p̂MAP ¼ 0 for all pairs), but
connections to SPNs, although sparse, are clearly established
within a maximum distance of 250 mm (p̂MAP ¼ 0:033, 95%
credibility interval = [0.010, 0.114]). Compared with FS inter-
neurons, there is less uncertainty concerning the rates of connec-
tion for these PLTS interneurons, as evidenced by the smaller
credibility intervals shown in Figure 7C. It remains to be seen

whether there is an asymmetry in connection probability to D1
and D2 SPNs as the experimenters did not make this distinction
when testing PLTS! SPN connections.

Further evidence that the effect of cholinergic interneurons
onto SPNs is mediated by GABA interneurons
A recent study (Dorst et al., 2020) reported intracellular record-
ing data on connections between cholinergic interneurons and
the subtype of GABAergic interneurons that express TH (Table
1). When we apply our Bayesian method to this dataset (Fig.
7D), we find that TH and cholinergic interneurons connect
reciprocally to one another quite frequently and with practically
equal probabilities (p̂Ach!TH ¼ 0:268; p̂TH!Ach ¼ 0:260), with
uncertainty estimates, which are relatively good compared with
other interneuron connections (95% credibility interval = [0.159,
0.396] for TH ! ACh connections, and [0.157, 0.420] for ACh
! TH connections).

The activity of cholinergic interneurons indirectly affects
SPNs via at least one type of GABAergic interneuron (English et
al., 2011). To examine this route, we combine pairwise intracellu-
lar recording data from English et al. (2011) on connections
between cholinergic interneurons and NPY-NGF interneurons,
with data from Ibáñez-Sandoval et al. (2011) on connections
from NPY-NGF interneurons to SPNs. Our analysis (Fig. 7E)
reveals that cholinergic neurons connect frequently to NPY-
NGF interneurons, which in turn connect very frequently to
SPNs, making them an effective relay of cholinergic signals; this
relay may also be regulated by the NPY-NGF interneurons fre-
quent feedback connections on cholinergic interneurons.
Furthermore, given that Ibáñez-Sandoval et al. (2011) used a
maximum distance between neurons of 100 mm, it is possible to

Figure 7. Bayesian analysis of connection probabilities between striatal interneurons using a uniform prior. A, Posterior density functions for FS interneuron connections onto other interneur-
ons according to the data of Gittis et al. (2010). B, Posterior density functions for the decay rate of probability of connection for FS! FS pairs assuming equiprobable sampling of neurons.
Inset, Exponential decay function for the probability of connection between pairs of FS interneurons corresponding to the MAP estimate of the decay rate. C, Posterior density functions for
PLTS interneuron connections onto other interneurons according to the data of Gittis et al. (2010). D, Posterior density functions for connections between cholinergic and TH interneurons
according to data from Dorst et al. (2020). E, Posterior density functions for connections between cholinergic interneurons, NGF interneurons, and SPNs according to the data of English et al.
(2011) and Ibáñez-Sandoval et al. (2011). F, Posterior density functions for the decay rate of the probability of connection for NGF! SPN pairs assuming equiprobable sampling of neurons.
Inset, Exponential decay function for the probability of connection between NGF! SPN pairs corresponding to the MAP estimate of the decay rate in F.

Table 4. Experimental data from WT and Huntington’s disease (HD) model
mice from Cepeda et al. (2013), alongside results of the Bayesian analysis
using either a uniform or literature priora

Data Pair k n Prior p̂MAP 95% credibility interval

WT D1 SPN ! D1 SPN 4 14 Uniform 0.286 [0.118, 0.551]
Literature 0.170 [0.079, 0.333]

D1 SPN ! D2 SPN 2 10 Uniform 0.200 [0.060, 0.518]
Literature 0.124 [0.048, 0.292]

D2 SPN ! D1 SPN 2 10 Uniform 0.200 [0.060, 0.518]
Literature 0.124 [0.048, 0.292]

D2 SPN ! D2 SPN 4 14 Uniform 0.143 [0.043, 0.405]
Literature 0.109 [0.042, 0.260]

HD model D1 SPN ! D1 SPN 7 22 Uniform 0.318 [0.164, 0.529]
Literature 0.210 [0.14, 0.359]

D1 SPN ! D2 SPN 1 6 Uniform 0.167 [0.037, 0.579]
Literature 0.104 [0.035, 0.283]

D2 SPN ! D1 SPN 1 6 Uniform 0.167 [0.037, 0.579]
Literature 0.104 [0.035, 0.283]

D2 SPN ! D2 SPN 0 14 Uniform 0 [0, 0.218]
Literature 0.048 [0.013, 0.180]

aFor each type of connection, k is the number of connections that were found and n is the total number of
tested connections.
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transform the posteriors for the probability of NGF ! SPN into
posteriors for the exponential decay rate b of probability of con-
nection given distance. The MAP of b is the lowest we have
found at ;0.002 mm–1 (Fig. 7F; Table 3). This means that, even
at a distance of 100 mm from an NGF interneuron, an SPN still
has a 0.8 probability of receiving a connection from this inter-
neuron, which partly explains the effectiveness of the cholinergic
system in regulating SPN activity.

Evidence used to compare SPN subtype connection rates in
WT and Huntington’s disease mice is insufficient
To this point, we have used our Bayesian approach to evaluate
the probability of connection, the evidence for it, and (where
possible) its dependence on the distance between neurons for ev-
ery unique connection within the striatal microcircuit (for which
there are extant data). We turn now to showing how our
Bayesian approach lets us not just construct a map of the micro-
circuit, but also quantitatively test evidence for changes in the
microcircuit. To do so, in this section, we evaluate evidence that
connections between SPNs change in a mouse model of
Huntington’s disease (Cepeda et al., 2013); in the next section,
we evaluate evidence for how connections between SPNs change
over development.

The study of Cepeda et al. (2013) used smaller samples of
identified SPN pairs than the (Taverna et al., 2008) and (Planert
et al., 2010) studies of SPN connectivity (Table 4); consequently,
the resulting posteriors are notably impacted by the choice of the
prior (Fig. 8A,D). Indeed, the posterior curves obtained from the
data of Cepeda et al. (2013) with a uniform prior or the prior
based on previous literature look very different, contrary to those
of Taverna et al. (2008) (compare Fig. 1C and Fig. 1G) and
Planert et al. (2010) (compare Fig. 1D and Fig. 1H). In particular,
the posteriors for WT mice obtained from the prior based on the
previous literature look very similar to the initial prior (Fig. 8D)

simply because of the small number of samples. Independently
of the choice of prior, the posteriors overlap so much that it is
not possible to confirm the rates of connection differ between
any pairs of SPNs in the WT mice (Fig. 8A,D). Given how broad
the posteriors are, we infer that this lack of difference is because
of insufficient data rather than a true absence of difference.

Crucially, this lack of data is also true when comparing con-
nection rates between the WT and Huntington’s model mice
(Fig. 8A,B or Fig. 8D,E). We find no evidence to support one of
the conclusions reached by the authors that D1 ! D1 connec-
tions are more likely in the Huntington’s model than WT mice.
Indeed, if we plot the density functions for the difference in
probabilities of connection for D1 ! D1 pairs between the two
animal groups, we can see that it is very probable for this differ-
ence to be 0, but also any other value ranging from;�0.3 to 0.3
if we use a uniform prior (Fig. 8C) or a slightly more conserva-
tive �0.2 to 0.15 using the prior based on previous literature
(Fig. 8F).

D2 SPN connection asymmetries appear during development
The development of connections between SPNs and their asym-
metry can be tracked through postnatal development thanks to a
recent study by Krajeski et al. (2019) who measured the probabil-
ity of connection for different SPN pairs at three different stages
of postnatal mouse development. The researchers reported that
D1 neurons established lateral connections earlier than D2 neu-
rons (a reproduction of these results with our added Wilson CIs
is shown in Fig. 9A–C). We used our Bayesian approach to check
this conclusion against the uncertainty in the experimental data,
and provide further details of the development of the striatal
microcircuit.

In order to apply our Bayesian method to these data, we
resort to the uniform prior, since we have no particular expecta-
tion about these connection rates at these stages of development,

Figure 8. Bayesian analysis of the study by Cepeda et al. (2013), comparing the probability of lateral SPN connections in WT mice and a model of Huntington’s disease. A, Posterior density
functions for the probabilities of connection in the WT mice using a uniform prior. Bars underneath represent the 95% credibility intervals. The curves for D2 ! D1 and D1 ! D2 coincide
exactly. B, Posterior density functions for Huntington’s disease animals using a uniform prior. The curves for D2! D1 and D1! D2 also coincide exactly. C, Probability density function for
the difference in probabilities of connection for D1! D1 pairs between the two animal groups. D-F, Same as in A-C using the prior based on the past literature.
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and obtain the posteriors for each combination of neurons
shown in Figure 9D–F. We have also tested the Jeffreys prior and
obtained practically identical results (not shown). We can see
that D1 neurons have already made some connections in the first
3-6 d of postnatal development (P3-P6; Fig. 9D), but it is hard to
say from inspecting the posteriors at each subsequent develop-
mental stage (P9-P12 and P21-P28) whether the connections
made by D1 SPNs continue to develop or have already finished
by P3-P6 (Fig. 9E,F). If we instead look at the difference in poste-
riors (fD) between consecutive developmental stages (Fig. 9G,H),
we see some evidence that connections made by D1 neurons
continue to develop, with respective probabilities of 0.81 (P3-P6
to P9-P12) and 0.77 (P9-P12 to P21-P28) that the connection
density of D1 neurons increases (probabilities again found by
integrating fD between 0 and 1). Comparing the earliest (P3-P6)
and latest (P21-P28) stages gave a similar probability of 0.85 that
D1 connections increased (data not shown).

For presynaptic D2 neurons on the other hand, it is clear that
no or very few connections are present at P3-P6, and that they
gradually appear later (Fig. 9D–F). Computing the difference in
posteriors (fD) for P(D2 ! D2) and P(D2 ! D1) between con-
secutive stages (Fig. 9G,H), we find the probability that D2 SPNs
increase their connection density is 0.95 between P3-P6 and P9-
P12 and 0.92 between P9-P12 and P21-P28, indicating a

gradual development of these con-
nections up to postnatal days 21-28.
By also calculating fDðD2!D1Þ�ðD2!D2Þ at
each of these three stages (plotted as
insets in Fig. 9D–F), we find good
evidence that D2 neurons first con-
nect to other D2 neurons before
connecting to D1 neurons, support-
ing the claim by the authors of the
original article (Krajeski et al.,
2019). Notably, our analyses in this
paper have thus shown that, while there
is no evidence for a difference in the
probability of presynaptic D2 SPNs con-
necting to D1 or D2 SPNs in the adult
striatum (Fig. 2B,F), there is evidence
that the D2 ! D1 and D2 ! D2 con-
nections develop at different rates.

Our finding of strong evidence that
D1 neurons are less likely to receive
connections from SPNs than D2 neu-
rons, both in adults (Fig. 2) and at later
stages of development (Fig. 9), implies
a role for active wiring processes in the
developing striatum. We considered a
simple model of a passive wiring pro-
cess in which the contact of an axon
from a first neuron onto the dendrite of
a second neuron is determined only by
the probability that an axon segment
and a dendritic segment simultaneously
occupy the same location (Liley and
Wright, 1994; Kalisman et al., 2003;
Humphries et al., 2010). For SPNs, we
have the repeated observation that D1
SPNs have denser dendritic trees for the
same volume as D2 SPNs (Gertler et al.,
2008; Fujiyama et al., 2011; Gagnon et
al., 2017). A passive wiring model would
thus predict that D1 SPN dendrites

receive more axonal contacts than D2 SPN dendrites from the
same presynaptic type of SPN.

If this were true, we would expect to find in our analyses here
that the asymmetry of connection rates would depend on the
type of the postsynaptic neuron, when we instead find it depends
on the type of presynaptic neuron; and we would expect D1 !
D1 connections to be quite numerous when indeed these are
quite rare. Together with our confirmation that the data of
Krajeski et al. (2019) show D1 and D2 neurons develop their
connections at a different rate, our analyses thus suggest that
there is an active wiring process in striatal development that
causes either an underexpression of connections to D1 SPNs or
overexpression of connections to D2 SPNs.

Discussion
We presented a Bayesian inference approach to analyzing con-
nectivity using intracellular recording data, and applied it to
reconstruct the microcircuit of the striatum from an exhaustive
survey of data from pairwise intracellular recordings. None of
these data have had any assessment of the uncertainty in their
connection estimates or of the strength of evidence they provide.
Our new approach allows us to now draw rigorous conclusions

Figure 9. Postnatal development of the lateral connections of SPNs using data from Krajeski et al. (2019). A-C, Point estimates
of the probabilities of connection at different developmental stages from Krajeski et al. (2019). We add here the 95% Wilson CIs.
D-F, Posterior probability density functions for the probability of connections between SPNs at each developmental stage. Colored
bars underneath the plot represent the 95% credibility intervals. A uniform prior as in Figure 1C is used. Inset, Density function
for the difference in probability of connection for pairs with a D2 presynaptic neuron. G, H, Density functions for the difference in
connection probabilities for each pair of neuron types between consecutive stages of postnatal development.
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about the strength of evidence for claims about the microcircuit,
and in turn synthesize these data into as complete a map as the
data allow.

A Bayesian map of the striatal microcircuit in mice
Figure 10 synthesizes the complete map we obtained of the stria-
tal microcircuit in mice. It emphasizes our key results: first, there
is strong evidence of a connection asymmetry that depends on
the type of presynaptic SPN, namely, that D2 SPNs are roughly
twice as likely to contact another SPN as D1 SPNs, but no evi-
dence of an asymmetry that depends on the type of postsynaptic
SPNs; second, that there is strong evidence for FS interneurons
preferentially connecting to D1 SPNs; third, that there is strong
evidence of dense projections from NPY-NGF interneurons to
SPNs, likely as dense or denser than those from FS interneurons;
and, finally, that connections between SPNs occur on much
shorter-length-scales than the connections made by interneurons.

For ease of interpretation, Figure 10 summarizes each con-
nection probability as the best point estimate we can obtain (i.e.,
the MAP of the corresponding posterior distribution). But we
now have the full posterior distributions underlying these esti-
mates, and some of these are broad; for example, the connection
probability from NGF to ACh interneurons has a 95% credible
interval twice as wide as its best (MAP) estimate (Table 1). Our
posterior distributions thus reveal that a wide range of potential
striatal wirings are consistent with current data.

From this, it follows that any model of the striatum should
sample its connection probabilities from these posteriors to
understand the robustness of the results. It is now well estab-
lished that parameters of neural models fall into two classes:
those whose precise values are critical to the resulting predictions
of a model, and those to which a model is not sensitive (Panas et
al., 2015; Ponce-Alvarez et al., 2020). And it is likely that striatal dy-
namics are indeed sensitive to variations in the probabilities and dis-
tances of connections (Humphries et al., 2010; Spreizer et al., 2017).
Thus, we propose that computational researchers change their usual
practice of setting a single value for connection parameters, and

instead sample from the posterior distribution on each run of their
model; to this end, we give the complete form of all our posteriors
for p in Table 1 and our credibility intervals for the decay parameter
b in Table 3.

Extending the microcircuit map
Constructing our map also revealed or reemphasized fur-
ther research questions. First, because the available experi-
mental data are drawn from across the striatum, the map is
silent on anatomical issues, such as whether connection
probabilities differ between the patch and matrix compart-
ments of the striatum or between different regions of the
striatum. Second, we lack data on the connectivity of some
types of striatal interneuron thought distinct to those exam-
ined here, including the calretinin-expressing interneurons
and rare subtypes of 5HT3a-expressing interneurons
(Tepper et al., 2018). Also omitted are the known connec-
tions from ACh interneurons to SPNs. As these synapses
use muscarinic receptors, and so are metabotropic, they do
not evoke postsynaptic currents detectable by the simulta-
neous stimulation and recording technique used in the
studies relied on here. However, new techniques, such as
induced overexpression of G-protein activated ion channels
(Mamaligas and Ford, 2016), may allow the future quantifi-
cation of connection rates. An advantage of our approach is
that any new data on pairwise recording data in the stria-
tum can build directly on our analyses, by either updating
the posteriors we arrived at or by estimating new posteriors
for connections that lack data at present.

Third, we emphasize that this is a map of the local microcir-
cuit, for the connections from a source neuron to other types of
neurons in its neighborhood. Our distance-dependent probabil-
ity model assumes that connection probability falls monotoni-
cally with distance within the neighborhood. However, subtypes
of interneurons that send axons longer distances (Tepper et al.,
2018) could violate this assumption, such as reports of PLTS
interneurons with an axon that spans a distance of .1 mm

Figure 10. Map of the striatum microcircuitry based on the MAP estimates for p and, when a maximum intersomatic distance was available, the decay rate b assuming equiprobable sam-
pling. Line thickness is indicative of the relative probability of these connections. Connections between and within SPN subtypes are assumed to be the same for a given presynaptic subtype,
as established in the main text, and the two different estimates for p correspond to the two different maximum distances used in Taverna et al. (2008) and Planert et al. (2010). Modelers wish-
ing to use this map should be aware of the relative population size of these different neurons. For instance, although the probability of connection between SPNs is relatively small compared
with connections from FS interneurons, this is potentially counterbalanced by the much greater number of SPNs within a given volume (Humphries et al., 2010). The map also necessarily omits
known connections for which there are no appropriate intracellular recording data.
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making infrequent bouquets of terminals (Kawaguchi, 1993).
More detailed knowledge of these long-distance connections
would allow for a more complete map of striatal connectivity.

Finally, this is a map of connectivity: full knowledge of the
influence of one neuron type on another requires data on the
strength of the different connections, which may in turn depend
on where on the target neuron they fall (Oorschot et al., 2013;
Du et al., 2017).

Implications for theories of the striatum
Ever since the paper by Jaeger et al. (1994), which reported find-
ing no functional lateral connections among SPNs, computa-
tional modeling of the striatum and wider basal ganglia moved
away from earlier lateral inhibition models implementing a win-
ner-takes-all strategy where these connections took center stage
(Groves, 1983) toward a predominantly feedforward view (Plenz,
2003; Tepper et al., 2004). According to these feedforward mod-
els (e.g., Mink, 1996; Gurney et al., 2001b; Frank, 2005;
Humphries et al., 2006; Leblois et al., 2006), the output of the
striatum is entirely determined by the pattern of its cortical
inputs modulated by the strength of the different cortico-striatal
synapses.

Our Bayesian map of the striatal microcircuit provides further
evidence that this feedforward model is limited because the stria-
tum’s internal circuit is crucial in shaping its outputs. In the clas-
sic direct-indirect pathway model of the basal ganglia (Alexander
and Crutcher, 1990), the D1 and D2 SPNs respectively form the
populations originating the direct and indirect pathways to the ba-
sal ganglia output nuclei, D1 SPNs sending direct axonal projec-
tions, and the D2 SPNs projecting first to the globus pallidus,
which relays to the output nuclei. We have shown that data on
connections between D1 and D2 SPNs (Taverna et al., 2008;
Planert et al., 2010) provide strong evidence for D2 SPNs making
more connections to other SPNs than D1 SPNs. Some models and
theories have interpreted these data as showing that the indirect
pathway will dominate the direct pathway output (Bahuguna et
al., 2015; Burke et al., 2017). However, that the same data provide
no evidence of an asymmetry in the preferred targets of D1 or D2
SPNs further suggests that there is not a selective inhibition of the
D1 SPNs by D2 SPNs, but that the D2 SPNs are as equally likely to
inhibit themselves as D1 SPNs. As such, the nature of the interac-
tion of the direct and indirect pathways, and hence their response
to cortical and thalamic inputs, remains unclear.

Microcircuit mapping can be used anywhere in the brain
We showed a range of advantages that our Bayesian approach
has over more traditional frequentist approaches. One is that it
replaces a single point estimate surrounded by a flat CI by a pos-
terior distribution covering all the possible values, so that over-
laps between connection rates become immediately apparent.
Second, as argued by Dienes (2014), when differences between
connection rates are nonsignificant, Bayesian methods allow us
to distinguish between cases where the data are insufficient to
draw a conclusion from cases where there really is no difference.
For instance, the posteriors for connection rates in the study of
Cepeda et al. (2013) strongly overlap (Fig. 8); but because the
posteriors are so broad, we know this is because of insufficient
data rather than evidence of no difference. On the contrary,
when we failed to find a difference in connection rates for differ-
ent postsynaptic targets of the D1 and D2 SPNs, the posteriors
are sufficiently narrow for us to confidently conclude that such a
difference is either absent or quite small (Fig. 2). Third, when
making comparisons between probabilities of connection, we

can use the full posteriors to compute an explicit probability that
the difference is less than or greater than zero. A final advantage
of Bayesian inference is the use of priors to incorporate past
results, as we did for the connections between SPNs, or test our
starting assumptions, as we did by showing our SPN connection
results were robust to the choice of prior distribution.

Our approach can easily be applied to any brain regions
where paired recording experiments have taken place, such as
the recent study of Ellender et al. (2019) on how the embryonic
origin of cortical neurons influences their connection probabil-
ities. Indeed, obtaining the posterior distributions given k posi-
tive tests of connection and n – k negative tests requires a single
line of MATLAB or Python thanks to built-in functions (see
Materials and Methods). Consequently, not only are these
Bayesian methods easily applicable to intracellular recording
data from any brain region, but also may be a rare case where it
is easier to be Bayesian than frequentist.
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