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Abstract. Artificial Intelligence (AI) classifier models based on Deep Neural Networks (DNN) have demonstrated su-

perior performance in medical diagnostics. However, DNN models are regarded as "black boxes" as they are not intrin-

sically interpretable and, thus, are reluctantly considered for deployment in healthcare and other safety-critical domains. 

In such domains explainability is considered a fundamental requisite to foster trust and acceptability of automatic deci-

sion-making processes based on data-driven machine learning models. To overcome this limitation, DNN models require 

additional and careful post-processing analysis and evaluation to generate suitable explainability of their predictions. 

This paper analyses a DNN model developed for predicting Alzheimer’s Disease to generate and assess explainability 

analysis of the predictions based on feature importance scores computed using sensitivity analysis techniques. In this 

study, a high dimensional dataset was obtained from Magnetic Resonance Imaging of the brain for healthy subjects and 

for Alzheimer’s Disease patients. The dataset was annotated with two labels, Alzheimer’s Disease (AD) and Cognitively 

Normal (CN), which were used to build and test a DNN model for binary classification. Three Global Sensitivity Analysis 

(G-SA) methodologies (Sobol, Morris, and FAST) as well as the SHapley Additive exPlanations (SHAP) were used to 

compute feature importance scores. The results from these methods were evaluated for their usefulness to explain the 

classification behaviour of the DNN model. The feature importance scores from sensitivity analysis methods were as-

sessed and combined based on similarity for robustness. The results indicated that features related to specific brain re-

gions (e.g., the hippocampal sub-regions, the temporal horn of the lateral ventricle) can be considered very important in 

predicting Alzheimer's Disease. The findings are consistent with earlier results from the relevant specialised literature 

on Alzheimer’s Disease. The proposed explainability approach can facilitate the adoption of black-box classifiers, such 

as DNN, in medical and other application domains.  

 

Keywords: Sensitivity Analysis, Explainability, Neural Network, predicting Alzheimer’s, Feature Importance, SHAP, 

Sobol, Morris, Fast and High Dimensional Dataset. 

1 Introduction 

In recent times, there has been a surge in the usage of AI tools in the field of healthcare. These AI tools, including Machine 

Learning (ML) and Deep Neural Network (DNN) based models, are being used for the diagnosis and prediction of degen-

erative neurological disorders such as Alzheimer's Disease (AD), Parkinson's Disease (PD), and Mild Cognitive Impair-

ment (MCI). In situations that involve critical healthcare, it is essential that the AI models output should be explainable, 

interpretable, accurate, reliable, and trustworthy. However, the DNN models are often perceived to lack transparency and 

re-adaptability, and their black-box nature and high level of complexity make for poor explainability and interpretability 

of the basis of their inferences. Therefore, it is imperative to evaluate and enhance their explainability to improve their 

reliability and acceptability. Sensitivity analysis is an effective approach for assessing and improving the explainability of 

the model. 

 

Sensitivity Analysis (SA) examines the effects of variations in independent input variables and model parameters on the 

output of the model. This analysis is useful for researchers to gain a deeper understanding of the internal state vectors of 

the model and the rationale behind the predictions. Additionally, this study can facilitate the refinement or modification of 

the model, focusing on significant aspects or addressing any underlying defects. Consequently, SA can contribute to the 

valuation and enhancement of the interpretability and explainability of the model, ultimately leading to greater reliability, 

transparency, and reduced complexity. While various interpretations of interpretability and explainability exist in the liter-

ature, this analysis adopts the definition in [1]. 
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Interpretability refers to the investigation of the model parameters and their impact on the output. The process requires 

comprehending the internal mechanics of the model and applying that understanding to make forecasts. This enhances the 

credibility of the model and ensures equitable predictions. Machine Learning (ML) models are highly interpretable as they 

are simple, use fewer parameters, and adhere to a set of operational principles. Therefore, ML models are highly interpret-

able. Conversely, DNNs are essentially black boxes by nature and exhibit intricate structure with numerous layers and 

complex operations, which makes it difficult to understand their inner workings and grasp the rationale behind their pre-

dictions. 

 

Explainability refers to a detailed examination of the model input to evaluate its impact on the output. It refers to the ability 

to clearly explain predictions and to pinpoint the variables that affected them. Explainability leads to a clear and intuitive 

explanation for determining the most essential or important input features for the developed model and its predictions. This 

also enables understanding of the faults and biases in the model that impact its performance. While achieving interpreta-

bility for DNNs is challenging, explainability can be utilised to comprehend the most influential input features of the model 

and the rationale behind predictions. 

 

Sensitivity Analysis [2] encompasses two complementary techniques: Global Sensitivity Analysis (GSA) and Local Sen-

sitivity Analysis (LSA). Although both methods can be used for interpretability and explainability, this study primarily 

focuses on explainability. GSA examines variations in the model output behaviour with respect to the entire input space. 

The method involves varying the value of all input features at once and measuring the resulting output changes, with the 

objective of identifying the input features having the most influence on the output. LSA examines how variations in one 

independent input variable impact the model output. The method involves altering the value of one input feature at a time 

while observing the output changes. Therefore, GSA is used to understand key features across the entire dataset, while 

LSA is used to understand essential features in a single case. The global sensitivity offers a comprehensive explanation of 

the model. Two popular GSA methodologies and tools that are useful for assessing explainability are SHAP and SALib 

python libraries consisting of Sobol, Morris, and FAST methods.  

 

Sobol and FAST are variance-based methods, which provide a quantifiable measure of the relative importance of each 

variable and its interactions by breaking down the output of the model variation into contributions from each input variable 

and their interactions. Sobol is computationally demanding for large datasets because of the enormous number of model 

assessments that must be conducted. Whereas, FAST computes sensitivity indices quickly using the Fast Fourier Trans-

form, making it an efficient tool for high- dimensional datasets. 

 

The Morris method uses a screening technique, Morris elementary effects, to estimate the influence of each input variable 

on the output by changing one variable at a time and estimating the change in output. The Morris method generates sample 

space using a different sampling strategy, and various strategies yield different sensitivity analyses. For the Morris method 

to provide sample data that is typical of actual data, the input variables are required to be independent in nature however, 

the method reveals interactions between the input features as an output. SHAP is a game theory-based method that gener-

ates feature significance as a Shapley value, which indicates the average contribution of the feature to the model output. 

SHAP delivers consistent results and clearly explains complicated interactions. 

 

The present paper describes assessment of explainability of DNN models developed for detecting Alzheimer's Disease, 

based on feature importance scores determined using global sensitivity analysis. The classification was performed on a 

high-dimensional Alzheimer's dataset with two labels: Alzheimer's Disease and Cognitively Normal. Two datasets were 

used: one that comprised all feature metrics gathered from the FreeSurfer and the other that included a subset with fewer 

metrics. The GSA methodologies or tools, namely SHAP and SALib libraries containing Sobol, Morris, and FAST meth-

ods, were used to identify the feature importance scores that are significant for explaining the model. The first approach 

used the SALib python package and implemented Sobol, Morris, and FAST methods for determining the feature im-

portance scores for the two datasets and evaluating the three methods and their outcomes. The second approach computed 

the feature importance scores using SHAP. Finally, the results obtained from the sensitivity analysis methods were analysed 

to determine similarity among them and the resultant methods were combined to form the final list of the most importan 

features. 



The remainder of this article is structured as follows: Section 2 presents a brief literature survey, Section 3 describes the 

datasets utilised for analysis, Section 4 elaborates the implementation of diverse global sensitivity analysis methodologies 

for ascertaining the feature importance, while Section 5 provides the obtained results and ensuing discussions. Lastly, 

Section 6 presents some conclusions. 

 

 

 

 

 

2 Literature Review 

This literature review is focused on different research approaches utilised for identifying feature importance using sensi-

tivity analysis, the use of sensitivity analysis in the context of deep neural networks and some general aspects of the pre-

diagnostics for the detection of Alzheimer’s Disease. 

 

The words interpretability and explainability are frequently used interchangeably in the broad literature, although it is more 

appropriate to adopt different meanings in specialised work. A distinction between interpretability and explainability has 

been used in [1], which correspond to a standard definition for the terms that is widely accepted. The interpretable models 

typically offer a justification inherently, i.e. they provide a way to understand the logic behind their output in terms of 

semantics of the target problem and the input variables. Interpretability is typically implicitly provided by the model itself.  

On the other hand, the explainability of a model refers to a posthoc justification that is explicitly created after the model is 

built for the specific purpose to understand a model that typically is not interpretable on its own. Explainability is typically 

aimed at linking predictions and the input variables that influenced them by building a supplemental model for that purpose. 

 

Some of the popular methodologies used for sensitivity analysis are Sobol, FAST and Morris. Shapely Additive exPlana-

tions (SHAP) is a popular method used to generate posthoc explanations for black-box machine learning models. SHAP is 

based on the Shapley values from game theory and measures the contributions of each input feature to the predictions. In 

order to do that, SHAP compares the results of two scenarios, one which includes a feature and another without that feature. 

This comparison is performed for all possible combinations of the features. The obtained Shapley values indicate feature 

importance scores, which are computed as the average marginal contribution of the feature when included in the feature 

subset and when excluded from the subset. SHAP was found to be more robust and consistent with results [3], when 

compared with LIME (Local Interpretable Model-Agnostic Explanations), another explainability method. However, an-

other study found that SHAP could be computationally very expensive for large numbers of input variables [4]. 

 

Sobol is a variance-based GSA method which quantifies the contribution of each input feature to the variance in the output 

of a model. Sobol analysis involves computing two values, the first order Sobol index and the total effect Sobol index. The 

first-order Sobol index is used to compute the contribution of each input feature to the variation of the output, whereas the 

total-effect Sobol index is used to compute the overall contribution of an input feature and its interactions with other 

features [5]. The method assumes the features are independent and uncorrelated however second order indices which is 

interaction between the input features is given as an output [6]. 

 

The Morris approach is a variance-based GSA method whereby each input feature is perturbed (changed) one at a time and 

the corresponding output variance is measured. A scaled variance of a uniform distribution determines the amount of 

required perturbation. Each component is perturbed numerous times to produce a series of basic effects. The average of 

these Morris elementary effects absolute values offers an approximation of the most important of those input features [7]. 

However, this approach requires a large number of samples for computing the feature importance. Also, it requires the 

input data to be independent in nature for it to generate a sample space which is similar to the input data. The methodology 

produces an infinity in the generated samples for the inputs that are not meeting the expectations of the Morris approach 

[8]. 

 

The Fourier Amplitude Sensitivity Test (FAST) [9] method involves variance based global sensitivity analysis. The ap-

proach employs Fourier analysis which involves producing a set of Fourier coefficients based on the input features and 

utilising these coefficients to estimate the variation of the output of the model. The Fourier coefficients are then used to 

determine the relative contribution of the variation of each input feature and rank the features depending on their contribu-

tion to the output variance. The approach is quite fast and efficient even while dealing with a high dimensional dataset as 

it uses Fourier transform techniques. 
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In [10], the SHAP methodology was applied along with other sensitivity analysis for identifying the feature importance of 

multiple subsets of Alzheimer’s Disease dataset from ADNI. The procedures carried out by the study were feature selection, 

model training, and sensitivity analysis using machine learning models. The most significant features found in one of the 

datasets were the hippocampal and the cortical thickness. 

 

Alzheimer’s Disease (AD) is a neurodegenerative disease resulting in permanent damage to the neurological system of th 

brain. AD is externally characterised by behavioural changes such as language and short-term memory issues, trouble in 

executing tasks that require cognition, changes in personality, and loss of social and inter-personal skills, which act as early 

indicators of the disease (Radiology.org) [11]. The onset and the progress of the disease can be detected from observable 

changes in the physiological structures in the brain, which may be obtained from radiological images. An accurate diag-

nostic tool should be able to select the already established physiological changes with high accuracy. Research shows that 

AD is directly linked to structural changes in the hippocampus and in the entorhinal cortex located in the medial temporal 

lobe of the brain [12]. 

3 Datasets 

The present study utilized a data set that contained brain T1-weighted structural MRI scans with a slice thickness of 1.5 

mm obtained from 1901 research participants. The data for this study was sourced from three publicly available data re-

positories, namely the Australian Imaging Biomarker & Lifestyle Flagship Study of Ageing (AIBL), Alzheimer's Disease 

Neuroimaging Initiative (ADNI), and Information eXtraction from Images (IXI). 

 

The main purpose of this study was to develop a tool to support improvement in the diagnosis of AD. It was noted that the 

ADNI library is composed of multiple images of the same subject taken from various studies. To ensure consistency, 

screening and baseline scans were selected as the adopted photos since they were the earliest accessible scans of a subject. 

When there were multiple images of the same subject the image with the greatest contrast-to-noise ratio (CNR) was chosen. 

 

To facilitate operations such as skull stripping, image registration, cortical and subcortical segmentation, hippocampal 

subfields segmentation, and calculation of cortical thickness, surface, and volume, all images were pre-processed using 

FreeSurfer version 6.0 [13]. 

 

A significant number of files containing numerical measurements connected to specific regions of interest were produced 

during the pre-processing stage (ROI). KNIME [14] and its extension KSurfer [15] were used to extract, filter, and clean 

the data created by the pre-processing. 

 

A total of 446 traits were obtained from the data generated by FreeSurfer. The utilisation of ICV normalisation and the 

estimated total intracranial volume (ICV) were not included. Inaccurate or duplicate features were discarded during the 

data cleansing phase, resulting in the elimination of 42 traits. The numerical measurements of the brain were referred to as 

the feature set F = {fi}, with |F| = 404. The selection of traits was not based on specific domain expertise. 

  

The raw dataset included information from both the right and left-brain hemispheres. Within each hemisphere, five distinct 

types of metrics were calculated from MRI scan images, comprising volume, thickness, thickness standard deviation, mean 

curvature, and area. Our concentration for feature selection was specifically on AD and CN as targets to perform experi-

ments. Dataset 1 consisted of 401 features for classes AD and CN that encompassed all of the metrics excluding Gender, 

Age and Label. Dataset 2 consisted of 265 features for classes AD and CN that encompassed all of the metrics excluding 

Gender, Age and Label. 

4 Methodologies 

This section outlines the two methodologies implemented for conducting sensitivity analysis on two distinct Deep Neural 

Network (DNN) models coded in Python. The sensitivity analysis leveraged two Python method libraries, namely SHAP 

and the SALib for Sobol, Morris, and FAST methods. The goal of the analysis methodologies was to execute sensitivity 



analysis on a specified DNN model for a given input dataset and produce output predictions utilising different methods. 

The analysis outcome comprises of a set of features and their corresponding feature importance scores, specific to a desig-

nated DNN model, input dataset, and analysis methodology. Subsequently, the resulting feature importance scores across 

all methods are evaluated to determine the most significant features. 

 

The sensitivity analysis was conducted on two distinct DNN models, which differ by the input dataset and the internal 

architecture of the model. As previously discussed in Section 3 Datasets, there exist two distinct datasets of features. The 

dataset 1 consists of 401 features, excluding the Label, whereas the 2 dataset 2 consists of a subset of 265 features, exclud-

ing the Label. 

 

The DNN Model 1 meant for analysing 401 features and is composed of an initial layer that utilises the 'ReLU' activation 

function, 3 sets of hidden layers along with dropout layers, and a last output layer that uses a Sigmoid activation function. 

The input layer contained neurons tailored for 401 features with the activation of 'ReLU'. Each hidden layer, which con-

tained the 'ReLU' activation function, was followed by a dropout layer with a dropout rate of 30%. The initial hidden layer 

set comprises 200 neurons, the second hidden layer set comprises 100 neurons, and the last hidden layer set comprises 50 

neurons. The ultimate output layer included one neuron that employed a sigmoid activation function for binary classifica-

tion. Prediction accuracy of the DNN Model 01 obtained with Dataset 1 using Stratified 10 Cross validation was approx. 

91% with 3% standard deviation. 

 

The DNN Model 2 meant for analysing 265 features. It featured an input layer that utilised the 'ReLU' activation function, 

3 sets of hidden layers along with dropout layers, and a final output layer that employed the Sigmoid activation function. 

The input layer contained neurons specifically designed for 265 features and used the 'ReLU' activation function. Each 

hidden layer started with the 'ReLU' activation function and ended with a dropout layer that has a 30% dropout rate. The 

first hidden layer had 150 neurons, the second had 75, and the last hidden layer had 30 neurons. The final output layer 

consisted of a single neuron that was equipped with a sigmoid activation function for binary classification. Prediction 

accuracy of the DNN Model 2 obtained with Dataset 2 using Stratified 10 Cross validation was approx. 91.4% with 4.4 as 

standard deviation. 

4.1 Methodology 1 

This section describes the Python implementation of the SALib library for the Sobol, Morris, and FAST methods. The 

implementation made use of two distinct datasets, namely Dataset 1 and Dataset 2. Individual DNN models were created 

for each dataset. The objective of this methodology is to perform various sensitivity analyses on the two DNN models and 

to identify the most important features in predicting Alzheimer's Disease. 

 

The implementation procedure begins with the preparation of the dataset for model training. Datasets 1 and 2 are used to 

define training features and the target label, the training dataset is then scaled in preparation for normalisation. The DNN 

Models 1 and 2 were trained using Dataset 1 and Dataset 2, respectively. Using the trained DNN models and corresponding 

datasets, the Sobol, Morris, and FAST methods were utilised for prediction. 

 

For each of the methods, a definition of the original data was provided which includes the data mean, standard deviation, 

and distribution as parameters for generating the sample dataset. The sample size parameter was also provided which 

determined the resultant sample size of the dataset. The resultant sample dataset was created by following the perturbation 

techniques of the respective specified methods which involved adding small amounts of noise to the original dataset and 

increasing the dataset size. 

 

The generated resultant sample dataset was used for prediction. The predicted target and the definition of the dataset was 

provided to the ‘analyse’ function of specified methods. The output from the ‘analyse’ function provided the results of 

sensitivity analysis containing feature importance scores. 

 

To obtain stable, and reliable results, the above procedure was run a number of times by training the DNN model with a 

specified dataset, then prediction using the resultant sample dataset generated by the specified method and subsequent 

analysis for feature importance. 

 

The DNN models are usually randomly initialised with weights and biases which can lead to a slightly different output for 

each run. While training, stochastic optimisation techniques such as ADAM were used. This leads to a selection of different 

subsets of training data resulting in different outputs each time. Carrying out the training and prediction in the DNN models 

for multiple iterations will produce robust, reliable estimates of the performance of the model as well as the feature im-

portance score. 
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The resultant feature importance scores from all the methodologies namely Sobol, Morris and FAST require post-pro-

cessing of the data to identify the most important features for each method. 

 

Figure 01 is a schematic flow chart representation of the Methodology 1. The same procedure was followed for Sobol, 

Morris, and FAST methods. 

 

 

Fig. 1. Schematic Flowchart of Methodology 1 

4.2 Methodology 2 

This section describes the implementation of the SHAP method using python library. The implementation uses DNN model 

1 and DNN model 2 which were created for dataset 1 and 2 respectively as described in the previous section. The objective 

of this methodology was to perform SHAP sensitivity analyses on the two DNN models and to identify the most important 

features in predicting Alzheimer's Disease. 

 

The implementation procedure begins with the preparation of the dataset for model training. The dataset 1 and 2 was used 

to define training features and the target label. The training dataset was then scaled in preparation for normalisation. The 

corresponding datasets were used to train both DNN Model 1 and Model 2. 

 

In order to carry out Shapley analysis, the SHAP explainer function was initialised using the input data and the trained 

DNN model. for generating Shapley values. The analysis focus was to explicate the effect of the input data on the output 

for the respective model. 

 

The procedure followed for Methodology 2 comprised of multiple runs of the DNN models to produce robust and reliable 

estimates of feature importance. The resultant feature importance scores from SHAP require post processing to identify the 

most important features for the methodology. 

 

Figure 02 is a schematic flow chart representation of the Methodology 2 using the SHAP method. 



 

Fig. 2. Schematic Flowchart of Methodology 2 

5 Results and Discussions 

Explainability of DNN classifier models developed for detection of Alzheimer’s Disease was assessed using compatible 

Alzheimer’s datasets and sensitivity analysis methods, namely SHAP and SALib containing Sobol, Morris and FAST. 

 

The two DNN models 1 and 2 were developed and trained using datasets 1 and 2 respectively. The developed models were 

analysed using SHAP, Sobol, Morris, and FAST methods. Under Methodology 1, Sobol, Morris and FAST methods were 

used to analyse both DNN models. Under Methodology 2, SHAP method was used to analyse both DNN models. In each 

analysis, the chosen method was run 500 times for Dataset 1 with 401 features and 300 times for Dataset 2 having 265 

features so as to average out any fluctuations in the obtained outputs. In each analysis, feature importance scores were 

obtained as outputs. 

 

The features importance score obtained using 4 methods was thoroughly analysed to determine their similarities. Each 

feature importance score list was converted into a corresponding ranking pattern to show difference between the corre-

sponding rankings over the number of specified features. 

 

The absolute difference between two rankings was computed using equation (1) for a specified number of selected features. 

This formula quantifies the relative discrepancy by dividing the absolute difference between rankings by the specified 

number of features. The averaging of rank differences provides a measure of central tendency that represents the overall 

similarity between the compared lists. This averaging of the results yields a single aggregate value to represent the collec-

tive similarity. This analysis as shown in Figure 03 was performed over various sets of selected features values 
  

𝑎𝑏𝑠(𝐴 − 𝐵) 

𝑆𝑁𝑆𝐹 

 If A ≤ SNSF or B ≤ SNSF (1) 

where A is a rank from Rank list A, B is rank from rank list B and SNSF is the Specified Number of Selected Features. 
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Upon comparison, it was found that the results obtained from SHAP and Sobol methods demonstrated the highest degree 

of similarity. To ensure the reliability of the methodology, only the results from SHAP and Sobol methods were selected 

for further analysis. 

 

 

Fig. 3. Similarity analysis for 4 different approaches and 401 features dataset 

To create the final feature importance ranking, the results obtained from SHAP and Sobol methods were combined using the 

Rank position (reciprocal rank) method [16] which is illustrated in equation (2). The rank score for document ‘i’ is 

computed, utilising its position information across all retrieval systems (j = 1 . . . n). 

𝑟(𝑑𝑖) =
1

∑
1

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑑𝑖𝑗)
𝑗

 (2) 

The Rank Position score was calculated for each document to be combined. These scores were then used to sort the docu-

ments into a non-decreasing order. The scores derived from this method were subsequently ranked to form the    ultimate 

feature importance ranking. 

 

Table 01 describes the 20 most important features recognised by the rank reciprocal method out of the 401 features. The 

results were obtained from DNN model 01 using SHAP and Sobol methods. The table contains a list of features along with 

their corresponding medical terminologies and references to medical literature. 

 



 

Table 1. 20 most important features recognised by the rank reciprocal method out of the 401 features. 

 
Feature Name Medical Names Medical Reference 

Left-Inf-Lat-Vent Temporal horn of left 

lateral ventricle 

(Vernooij et al, 2020) [17] 

Right-Inf-Lat-Vent Temporal horn of right 

lateral ventricle 

(Vernooij et al, 2020) [17] 

left_Hippocampal_tail Hippocampal tail (Zhao et al,2019) [18] 

left_presubiculum Pre subiculum (Carlesimo et al,2015) [19] 

Le 

ft_Whole_hippocampus 

Hippocampus (Rao et al,2022) [20] 

left_molecu-

lar_layer_HP 

Molecular Layer Hip-

pocampus 

(Stephen et al,1996) [21] 

left_subiculum Subiculum (Carlesimo et al,2015) [19] 

right_Hippocampal_tail Hippocampal tail (Zhao et al,2019) [18] 

lh_bankssts_volume Banks of Superior 

Temporal Sulcus 

(Sacchi et al,2023) [22] 

lh_bankssts_thick-

nessstd 

Banks of Superior 

Temporal Sulcus 

(Sacchi et al,2023) [22] 

lh_parahippocam-

pal_thickness 

Para Hippocampal (Van et al,2000) [23] 

rh_paracentral_thick-

nessstd 

Paracentral (Yang et al,2019) [24] 

right_subiculum Subiculum (Carlesimo et al,2015) [19] 

rh_inferiorparie-

tal_thickness 

Inferior Parietal (Jacobs et al,2012) [25] 

lh_transversetem-

poral_meancurv 

Transverse Temporal (Peters et al,2009) [26] 

Left-Amygdala Amygdala (Poulin et al,2011) [27] 

left_hippocampal fissure Hippocampal Sulcus (Bastos et al,2006) [28] 

 

left_GC-ML-DG 

Granule Cell (GC) and 

Molecular Layer (ML) of 

the Dentate Gyrus (DG) 

 

(Ohm et al, 2007) [29] 

Right-Amygdala Amygdala (Poulin et al,2011) [27] 

rh_inferiortemporal_vol-

ume 

Inferior Temporal (Scheff et al,2011) [30] 

 

The results in the Table 01 and 02 highlight the significance of the brain regions indicated by the selected features in early 

detection of Alzheimer's Disease. 

 

Table 02 outlines the 20 most important features as identified by the reciprocal ranking method out of the 265 features 60% 

of which are identical to the Table 01. The table findings have adopted the DNN model 02 for SHAP and Sobol along with 

their corresponding medical terminologies. Also, references to medical literature are provided, emphasising the importance 

of these features or brain regions in the early detection of Alzheimer's Disease. 

Table 2. 20 most important features as identified by the reciprocal ranking method out of the 265 features. 

 

Feature Name Medical Names Medical Reference 

 

Left-Inf-Lat-Vent 

 

Temporal horn of left 

lateral ventricle 

 

(Vernooij et al, 2020) 

[17] 

 

Right-Inf-Lat-Vent 

 

Temporal horn of right 

lateral ventricle 

 

(Vernooij et al, 2020) 

[17] 
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Feature Name Medical Names Medical Reference 

right_Hippocampal_tail Hippocampal tail (Zhao et al,2019) [18] 

left_presubiculum Presubiculum (Carlesimo et al,2015) 

[19] 

left_subiculum Subiculum (Carlesimo et al,2015) 

[19] 

left_Hippocampal_tail Hippocampal tail (Zhao et al,2019) [18] 

left_hippocampal-fissure Hippocampal Sulcus (Bastos et al,2006) [28] 

lh_parahippocam-
pal_thickness 

Para Hippocampal 
 

(Van Hoesen et al,2000) 

[23] 

left_molecular_layer_HP Molecular Layer Hippocampus (Stephen et al,1996) [21] 

rh_entorhinal_thickness Entorhinal (Van Hoesen et al,1991) 

[31] 

rh_rostralmiddlefron-
tal_thickness 

Rostral Middle Frontal 
 

(Vasconcelos et al,2014) 

[32] 

rh_inferiorparietal_thick-
ness 

Inferior Parietal (Greene SJ et al,2010) 

[33] 

left_Whole_hippocam-
pus 

Hippocampus (Rao et al,2022) [20] 

lh_precuneus_thickness Precuneus (Giacomo et al, 2022) 

[34] 

Left-Amygdala Amygdala (Poulin et al,2011) [27] 

   

Optic-Chiasm Optic-Chiasm (Sadun AA et al,1990) 

[35] 

Right-Pallidum Pallidum (Miklossy J et al,2011) 

[36] 

rh_entorhinal_volume Entorhinal (Van Hoesen et al,1991) 

[31] 

right_presubiculum Pre-Subiculum (Carlesimo et al,2015) 

[19] 

Left-Pallidum Pallidum (Miklossy J et al,2011) 

[36] 

 

 

The comparison between Table 01 and Table 02 highlights the abiding significance of specific brain regions in the early 

detection of Alzheimer's Disease. The fact that both tables demonstrate a significant 60% overlap in characteristics, while 

using distinct models for validation, serves to highlight the resolute nature of these common traits. This prevailing trend as 

also confirmed by findings reported in relevant medical literature, serves to underscore the paramount importance of the 

specific brain regions in the field of Alzheimer's research. 

 

The trustworthiness of medical diagnostic systems relies heavily on their repeatability. Utilising a vast number of input 

features, the DNN-based classifier accurately predicts outcomes, particularly with a select subset of features. To ensure the 

explainability of the DNN classifier, sensitivity analysis methods are employed to identify the most significant features. 

The repeatability of these crucial features signifies the consistency of the diagnosis. For evaluating the developed model, 



repeatability is assessed by analysing the important features obtained through SHAP and Sobol analyses. In SHAP analysis, 

the output of each iteration is scrutinised to determine the input feature that yields the highest score. By analysing the 

output of 500 iterations, it was possible to determine how frequently an input feature appeared with the maximum score. 

The results are presented as histograms in Figure 4 below which shows the similar outputs obtained through Sobol analysis. 

The recurrence of these features instils confidence in the accuracy of the diagnosis. 

 

Fig. 4. Repeatability analysis for 2 different approaches with 401 features dataset 

6 Conclusions 

Classification models based on Deep Neural Networks (DNN) were developed for predicting Alzheimer’s Disease and 

were studied using sensitivity analysis techniques to assess model explainability based on feature importance scores. An 

Alzheimer’s dataset with two labels, Alzheimer’s Disease and Cognitively Normal, was utilised for the classification task. 

Two DNN models were developed to analyse two datasets of different sizes. The analysis aimed at assessing the extent of 

the explainability and used two approaches based, respectively, on SHAP and on Global Sensitivity Analysis (G-SA) tech-

niques (Sobol, Morris and FAST) from the python library SALib. 

 

In the study of Alzheimer's Disease diagnosis, numerous significant characteristics have been recognised as noteworthy in 

terms of their correlation with the evolution and diagnosis of the disease. These characteristics incorporate the temporal 

horn of the left and right lateral ventricles, the hippocampal tail, the pre-subiculum, the whole hippocampus, the molecular 

layer of the hippocampus, the subiculum, the banks of the superior temporal sulcus, the para hippocampal region, the 

paracentral area, the inferior parietal region, the transverse temporal area, the amygdala, the hippocampal sulcus, and the 

inferior temporal area. These features have been extensively scrutinized and linked with various aspects of       Alzheimer's 

Disease, such as neuroimaging, structural modifications, atrophy, and clinical correlations. The assessment of the signifi-

cance of these features has contributed to enhancing our understanding of the use of sensitivity analysis techniques for the 

explainability of machine learning models and for feature selection. A subset of important features was effectively utilised 

by the DNN-based classifier to accurately forecast outcomes.  

 

By using sensitivity analysis techniques significant features were identified. The repeatability of the results of a medical 

diagnostic system is a crucial factor in determining its reliability. The consistent presence of some features in multiple 

analyses serves to enhance the credibility of the diagnostic model. 

 

This research has made notable contributions to the field of computer science by advancing the use of machine learning 

models for Alzheimer's Disease prediction and addressing the critical aspect of explainability. By developing and analysing 

the results from Deep Neural Network (DNN) models, the study has contributed to insights into their performance and the 

extent of explainability. The research has focused on assessing the explainability of these models through sensitivity anal-

ysis techniques, shedding light on the significant variables. Furthermore, the study has conducted a comprehensive feature 

analysis, exploring key features such as the temporal horn of the lateral ventricles, hippocampal regions, and other relevant 

areas, providing a deep understanding of the complex dynamics of the disease. Additionally, by presenting a comparative 

analysis of SHAP and sensitivity analysis techniques, the research has provided valuable insights into their performance 

and suitability for feature importance assessment, guiding researchers in selecting the most effective approach for predic-

tive models. 
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