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Abstract
Long-range winter predictions over the Euro-Atlantic sector have demonstrated
significant skill but suffer from systematic signal-to-noise errors. Here, I exam-
ine sources of early winter seasonal predictability in 16 state-of-the-art seasonal
forecasting systems. As in previous studies, these systems demonstrate skill in
the hindcasts of the large-scale atmospheric circulation in early winter, asso-
ciated with the East Atlantic pattern. The predictability is strongly tied to the
El Niño–Southern Oscillation (ENSO) teleconnection to the North Atlantic,
though the systems’ response to ENSO is systematically too weak. The hind-
casts of the East Atlantic index exhibit substantial signal-to-noise errors, with
the systems’ predicted signal generally being smaller than would be expected
for the observed level of skill, though there is substantial spread across systems.
The signal-to-noise errors are found to be strongly linked to the strength of the
ENSO teleconnection in the systems; those with a weaker teleconnection exhibit
a larger signal-to-noise problem. The dependency on modelled ENSO telecon-
nection strength closely follows a simple scaling relationship derived from a
toy model. Further analysis reveals that the strength of the ENSO teleconnec-
tion in the systems is linked to pervasive climatological biases in the North
Atlantic and North Pacific jets. More specifically, systems that better represent
the dynamics of the North Atlantic jet—with more frequent poleward jet excur-
sions, less frequent high-latitude blocking, and a more poleward climatological
jet position—are better at representing the ENSO teleconnection to the North
Atlantic in early winter, with lower associated signal-to-noise errors.
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1 INTRODUCTION

The variability in wintertime climate over Europe, as well
as parts of North America, is strongly controlled by vari-
ability in the large-scale atmospheric circulation over the
extratropical North Atlantic. As a result, there is substan-
tial interest in long-range, or “seasonal”, forecasts (i.e., lead
times of a month or more) of these large-scale circulation
anomalies. Historically, long-range forecast skill over the
North Atlantic had proven to be elusive (e.g. Johansson,
2007; Smith et al., 2012). However, more recent fore-
cast systems have demonstrated increased levels of skill
over the North Atlantic (e.g. Scaife et al., 2014; Dunstone
et al., 2016; Baker et al., 2018), opening up new avenues
for the application of these long-range forecasts (e.g. Clark
et al., 2017; Stringer et al., 2020; Thornton et al., 2019).
Previous studies have largely focused on understanding
the long-range prediction skill of the North Atlantic
Oscillation (NAO) because it is the dominant mode of
large-scale circulation variability over the Euro-Atlantic
sector (e.g. Hurrell et al., 2003). However, it has recently
been shown that early winter (November–January) pre-
dictions of the East Atlantic (EA) pattern, the second
largest mode of large-scale circulation variability over the
Euro-Atlantic sector, are skilful in many state-of-the-art
seasonal forecasting systems (Thornton et al., 2023).

The main source of skill in long-range predictions of
early winter Euro-Atlantic circulation variability is the El
Niño-Southern Oscillation (ENSO) phenomenon in the
tropical Pacific Ocean (Thornton et al., 2023). During
early winter, ENSO variability is strongly correlated with
variability in the EA pattern over the North Atlantic
(Ayarzagüena et al., 2018; King et al., 2018), with El Niño
years projecting onto a positive phase of the EA pattern,
bringing significantly milder and wetter conditions to
western Europe, with the opposite conditions typically
occurring in La Niña years. The influence of ENSO on
the EA pattern in early winter is characterised by the sup-
pression of poleward jet excursions during El Niño years
and a zonal extension of the jet (O’Reilly et al., 2024).
Recent studies show that whereas the ENSO teleconnec-
tion to the North Atlantic in early winter, specifically the
link between ENSO and the EA pattern, is robustly repro-
duced by state-of-the-art seasonal forecasting systems, the
teleconnection in the systems is much weaker than that
observed in reanalysis datasets (Molteni & Brookshaw,
2023; Thornton et al., 2023). However, the underlying
causes for the weak teleconnection, and the associated
weak forecast signals, remain unclear.

Weak signals in long-range forecasts of the extratrop-
ical large-scale circulation are not unique to the early
winter North Atlantic. For many long-range initialised
ensemble “hindcasts” (or reforecasts of past seasons),

the correlation skill with observations is much larger
than should be possible given the signal-to-noise ratio (or
perfect model correlation) of the hindcast ensemble. Pre-
vious studies have shown that these problems exist for
later winter seasonal forecasts (e.g. Scaife et al., 2014;
Dunstone et al., 2016; Baker et al., 2018), subseasonal
forecasts over the North Pacific (Garfinkel et al., 2022),
decadal forecasts of the wintertime North Atlantic (e.g.
Smith et al., 2019, 2020; Marcheggiani et al., 2023), and
summertime seasonal forecasts over the North Atlantic
(e.g. Dunstone, 2018, 2023) and may be related to defi-
ciencies in decadal large-scale circulation variability in
free-running climate model simulations (e.g. Bracegirdle
et al., 2018; Simpson et al., 2018; O’Reilly et al., 2019a,
2019b, 2021). These signal-to-noise errors have collectively
been dubbed the “signal-to-noise problem” (or “signal-to-
noise paradox”) in the climate science literature (Scaife
& Smith, 2018). The signal-to-noise problem is a
major challenge within climate science, as these errors
significantly limit confidence in regional climate pre-
dictions made using model simulations, over a range of
time-scales.

A number of theories for the underlying cause, or
causes, of the signal-to-noise problem have been proposed.
Recent studies have pointed to insufficient atmospheric
eddy feedback in models, possibly due to low atmospheric
resolution, as being responsible for the weak predicted
signal in models (Scaife et al., 2019; Hardiman et al., 2022).
Some studies have suggested that the misrepresentation of
regime persistence, possibly linked to deficiencies in eddy
feedbacks, as a possible explanation of why the signal-to-
noise problem emerges (Strommen, 2020; Strommen &
Palmer, 2019). Other studies have indicated that models
are lacking in their response to specific predictable
drivers, such as those associated with midlatitude ocean–
atmosphere interactions (Ossó et al., 2020; Zhang
et al., 2021) or low-frequency variability in the strato-
sphere (O’Reilly et al., 2019b; Charlton-Perez et al., 2019).
These are not all mutually exclusive and may be of varying
importance in the different manifestations of the signal-
to-noise problem. Despite there being a number of pro-
posed theories, there remains considerable uncertainty
about the origins of the signal-to-noise problem in
extratropical circulation variability.

In this study I analyse the predictability of the large-
scale circulation over the North Atlantic in a suite of sea-
sonal forecasting systems, aiming to understand the causes
of the signal-to-noise errors in the early winter predictions.
I find that, for all the systems, the majority of the sea-
sonal forecast skill during this period can be attributed
to the ENSO teleconnection, but the ENSO teleconnec-
tion is too weak in the systems. The strength of the tele-
connection is shown to account for the variation of the
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signal-to-noise ratios across the systems, and this scaling
can be explained using a toy model of the forecasts.
The strength of the ENSO teleconnection is shown to
be linked to pervasive biases in the North Atlantic
jet—systems whose climatological behaviour is closer to
observations are found to have a stronger ENSO telecon-
nection to the North Atlantic and reduced signal-to-noise
issues. These findings provide useful benchmarks for the
improvement of operational seasonal forecasting systems
and the identification of signal-to-noise errors in other
instances.

2 DATASETS AND METHODS

2.1 Reanalysis data

We use the state-of-the-art European Centre for
Medium-range Weather Forecasts Reanalysis v5 (ERA5)
dataset (Hersbach et al., 2020) as the reference dataset
in the analysis that follows. ERA5 data are used over
the period 1950–2020, comprising 71 winters in total;
and a shorter period that is the same as the hindcasts,
1993–2016, is also used in places.

2.2 Seasonal forecasting systems

In this study I analyse data from hindcasts, which are
retrospective forecasts routinely performed by operational
forecasting systems. I use hindcasts from 16 different sea-
sonal forecasting systems that are stored in the Copernicus
Climate Change Service (C3S) multi-model archive (see
Table 1 for details). It should be noted that these systems
are from eight different international forecasting centres,
so some systems may be expected to be more similar than
others, and the 16 systems are not wholly independent.
The systems include current and recently operational sys-
tems. I have chosen to analyse all the systems in the C3S
archive that have hindcasts covering the common period
1993–2016 (i.e., 24 winters) with initialisation dates on
or before October 1. Our analysis focuses on the early
winter period, November and December, that has been
shown to have substantial skill in the hindcasts (Thornton
et al., 2023), which is at least in part due to the strong ENSO
teleconnection to the North Atlantic during the early win-
ter (e.g. Ayarzagüena et al., 2018). The systems vary in
ensemble size, with between 10 and 42 members per hind-
cast year depending on the system. The C3S hindcast
datasets were regridded to a common 2.5◦ × 2.5◦ grid for
the analysis with the exception of the eddy-driven jet lat-
itude diagnostics, which were performed using U850 data
regridded to a 1◦ × 1◦ grid.

T A B L E 1 Seasonal forecast systems from the Copernicus
Climate Change Service (C3S) archive analysed in this study.

Model name

Hindcast
ensemble
size Centre of origin

CMCC-SPS3 40 Centro Euro-Mediterraneo
sui Cambiamenti Climatici
(CMCC)

CMCC-SPS3.5 40 CMCC

DWD-GCFS2.0 30 Deutscher Wetterdienst
(DWD)

DWD-GCFS2.1 30 DWD

ECCC-CanCM4i 10 Environment and Climate
Change Canada (ECCC)

ECCC-GEM-NEMO 10 ECCC

ECCC-GEM5-NEMO 10 EECCC

ECMWF-SEAS5 25 European Centre for
Medium-Range Weather
Forecasts (ECMWF)

JMA-CPS2 10 Japan Meteorological
Agency (JMA)

JMA-CPS3 10 JMA

MF-Sys6 25 Météo-France (MF)

MF-Sys7 25 MF

MF-Sys8 25 MF

NCEP-CFSv2 12 National Centers for
Environmental Prediction
(NCEP)

UKMO-GloSea5-GC2-LI 42 UK Met Office (UKMO)

UKMO-GloSea6 42 UKMO
Note: Full details for these systems and the datasets are available from the
C3S Climate Data Store (https://confluence.ecmwf.int/display/CKB
/Description+of+the+C3S+seasonal+multi-system).

2.3 ENSO index

We use the National Oceanic and Atmospheric Admin-
istration’s “Oceanic Niño Index” methodology to
define ENSO years, using the HadISST dataset (Rayner
et al., 2003). The Oceanic Niño Index methodology
uses three-month averages of sea-surface temperatures
(SSTs) averaged over the Nino-3.4 index region (170◦
W–120◦W, 5◦ S–5◦N). ENSO winters are identified when
SST anomalies have a magnitude greater than 0.5 K rel-
ative to a moving 30-year averaged climatology (or the
last 30 years where this window extends past the last date
in the dataset). An additional requirement is that the
SST anomaly must remain over the threshold for four
consecutive rolling 3-month seasons, one of which must
be December–February (DJF). Over the extended ERA5
period a total of 20 El Niño winters and 20 La Niña winters
are identified, and over the C3S period a total of seven
El Niño winters and eight La Niña winters are identified
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(a list of the years is shown in Supporting Information
Table S1). For the interannual correlations, the 3-month
DJF winter Nino-3.4 SST index is used, calculated as
already detailed from the HadISST dataset.

2.4 EA index

The EA index is defined here as the second empirical
orthogonal function (EOF) of the early winter (November–
December) area-weighted mean-sea-level pressure (SLP)
anomalies over the Euro-Atlantic sector (90◦ W–40◦ E,
20◦–70◦ N). The ERA5 data over 1950–2020 are used to
calculate the reference patterns and indices. The refer-
ence EOF patterns are shown in Supporting Information
Figure S1. The C3S indices are calculated by projecting the
SLP anomalies from each system onto the pattern of the
EA from the ERA5 dataset and then renormalised. This is
repeated for all of the C3S systems to generate the hindcast
EA indices. The conclusions are not qualitatively sensitive
to the choice of EA index definition, and signal-to-noise
errors are also found if using the systems’ own EA pattern
(the equivalent to Figure 3 is shown for the systems’ own
EOF2 in Supporting Information Figure S3).

2.5 Blocking event diagnostic

To assess the behaviour of atmospheric blocking I apply a
two-dimensional large-scale wave-breaking index, which
has been commonly used to identify blocking events in the
literature (e.g. Woollings et al., 2008). Here, I follow the
methodology outlined in Masato et al. (2013). The block-
ing index uses daily averaged Z500 fields and identifies
meridional reversals of the climatological Equator-to-Pole
gradient, calculated over regions spanning 15◦ to the north
and south of each point in the northern midlatitudes.
Events must also extend at least 15◦ in longitude and are
required to persist for at least 5 days to be identified as
blocking events.

2.6 North Atlantic eddy-driven jet
diagnostic

In the following analysis I analyse the behaviour of
the daily North Atlantic eddy-driven jet, its variability,
and response to ENSO. To identify the latitude of the
eddy-driven jet over the North Atlantic I broadly follow
the method of Woollings et al. (2010). The daily zonal wind
in the lower troposphere (at 850 hPa) is zonally averaged
between 0◦ and 60◦ W, retaining values from 15◦ N to
75◦N. The daily zonal mean zonal wind is then low-pass
filtered using a 10-day Lanczos filter to identify changes

in the jet on time-scales longer than those of individual
synoptic systems. The North Atlantic eddy-driven jet lat-
itude is identified as the latitude of the maximum wind
speed for each day. These daily jet latitudes are used to
compute probability distributions of the jet latitude using
a kernel density estimate, with standard bandwidth h =
1.06𝜎n−1∕5, where 𝜎 is the standard deviation and n is the
sample size (Silverman, 1981). In the probability density
functions presented herein, I use the same h calculated
from ERA5 to smooth the probability density functions
from the C3S simulations, which provides a fairer compar-
ison between the reanalysis and model data.

2.7 Ratio of predictable components

To quantify the signal-to-noise in the hindcasts I compute
the “ratio of predictable components” (RPC), which has
previously been used in various studies evaluating forecast
skill (e.g. Eade et al., 2014; Scaife & Smith, 2018). The RPC
is the ratio of the correlation skill between the ensemble
mean hindcast and the observations (rmo) and the corre-
lation skill of the hindcast ensemble mean predicting a
single ensemble member (rmm):

RPC = rmo

rmm
. (1)

To calculate rmm, which can be referred to as a perfect
model correlation, I remove one ensemble member from
each season at random to create an individual realisation.
The ensemble mean is calculated from the remaining
ensemble members and correlated with the individual
realisation. This is repeated 10,000 times and the result-
ing r2 values are averaged; the square-root of this average
gives the perfect model correlation, rmm.

2.8 Confidence intervals

To calculate confidence intervals I used a Monte Carlo
bootstrap resampling (with replacement). The resampling
was repeated at random 10,000 times to provide estimates
of the confidence intervals shown.

3 RESULTS

3.1 Overview of early winter hindcast
skill and ENSO teleconnection in the C3S
systems

We begin by examining the ensemble mean hindcast
correlation skill of the SLP in the C3S systems initialised
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F I G U R E 1 Multisystem ensemble mean hindcast correlation
skill for early winter (November–December) sea-level pressure in
the Copernicus Climate Change Service (C3S) systems, over the
hindcast period 1993–2016. The equivalent plots for each of the 16
C3S systems are shown in Supporting Information Figure S2.
[Colour figure can be viewed at wileyonlinelibrary.com]

on October 1, which is shown for the multisystem mean
in Figure 1 (maps for each individual system are shown
in Supporting Information Figure S2). As is typical for
seasonal forecast systems, there is substantial correlation
skill in the Tropics and over much of the North Pacific.
The multisystem mean and most of the individual systems
exhibit a local maximum in SLP correlation skill located
over the extratropical North Atlantic, consistent with the
results shown by Thornton et al. (2023) for the ensem-
ble mean of a smaller subset of these C3S systems, albeit
for the sightly different November–January season (here,
I focus on the November–December early winter season,
as this period has the strongest and most consistent ENSO
teleconnection; O’Reilly et al. (2024)). The local maximum
in SLP correlation skill in the eastern North Atlantic in the
C3S systems projects onto the EA pattern (i.e., Supporting
Information Figure S1), a region strongly associated with
the early winter ENSO teleconnection.

To examine the representation of the early winter
ENSO teleconnections in the C3S systems, I now examine
the SLP difference between El Niño and La Niña years;
these are shown in Figure 2 for each C3S system and
ERA5 (correlations between the Nino-3.4 index and the
SLP anomaly in each ensemble member are also shown,
in contours). The C3S systems all show ENSO differ-
ences with negative SLP (and negative correlations) over
the eastern North Atlantic, though there is substantial
variation in the magnitude of the ENSO influence. In all
systems, however, the ENSO teleconnection to the North
Atlantic appears weaker than that seen in ERA5. This is
most clear for the C3S reference period (i.e., 1993–2016),
though the systems’ teleconnections are also substan-
tially weaker for the extended ERA5 period, which might
be considered a statistically more robust measure of the
observed teleconnection.

The weak early winter ENSO teleconnection to the
North Atlantic is not only evident in the SLP anomaly.

Figure 3 shows the C3S average teleconnection in terms of
zonal wind anomalies, alongside the equivalent telecon-
nection estimated from ERA5. For the upper tropospheric
winds (U200) it is clear that the influence of ENSO on the
North Atlantic jet anomalies is weaker in the C3S sys-
tems than in reanalysis. In terms of upper level winds,
it seems the disparities are most obvious in the North
Atlantic, with the North Pacific teleconnection being of
similar strength in the C3S systems and the reanalysis.
The ENSO impact on early winter blocking events is also
shown in Figure 3. A recent observational study showed
that the ENSO influence on the North Atlantic jet is estab-
lished through changes in the frequency of poleward jet
excursions and associated Iberian wave-breaking events
(O’Reilly et al., 2024), evident in the change in ERA5
blocking frequency shown here. In contrast, there are
only very modest changes in the frequency of Iberian
wave-breaking events associated with ENSO in the C3S
systems. Together, these provide a consistent picture of
the dynamical response to ENSO over the North Atlantic
being weaker in the C3S systems than in observations.

3.2 Signal-to-noise of the EA index
hindcasts and link to the ENSO
teleconnection strength

To compare the hindcast skill across the C3S systems more
quantitatively it is useful to analyse the skill of the EA
index (see Section 2.4). The EA index is a useful mea-
sure as it captures the main areas of skill over the North
Atlantic during early winter and also dominates the ENSO
teleconnection to the North Atlantic during this period.
The ensemble mean hindcast correlation skill (i.e., rmo) of
the early winter EA index in the C3S systems is shown
in Figure 4a. Skill varies across the systems, but the vast
majority of the systems exhibit skill levels above r = 0.3,
with only three of the systems exhibiting correlation skills
with P > 0.05 (based on a t-test). Also shown in Figure 4a is
the perfect model correlation (i.e., rmm) for each of the C3S
systems. For all but two of the systems, the perfect model
correlation is lower than the hindcast correlation skill, and
in some cases it is much lower. The signal-to-noise of the
hindcast EA indices (in terms of RPC; see Section 2.7)
is shown in Figure 4b. The C3S systems nearly all have
RPC > 1, demonstrating that predictions of the early win-
ter EA index are generally underconfident—consistent
with the findings of Thornton et al. (2023).

To examine how ENSO influences the early winter EA
index I computed the correlation between the early winter
EA index and Nino-3.4 index across ensemble members
for each C3S system; these are shown in Figure 5a, along
with the equivalent correlation in ERA5. The correlation
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(1993–2016) (1950–2020)

F I G U R E 2 Early winter (November–December, ND) El Niño–Southern Oscillation (ENSO) teleconnection calculated using sea-level
pressure (SLP) anomaly in each of the Copernicus Climate Change Service (C3S) systems over the period 1993–2016. Shading shows the
composite difference between El Niño and La Niña years (defined using the Oceanic Niño Index; see Section 2.3), and the contours show the
correlation between the SLP anomaly in each ensemble member and the observed Nino-3.4 sea-surface temperature index. Contours start
from 0.2 with an interval of 0.1, and are emboldened at 0.4 and 0.7; negative contours are indicated by dashed lines. Also shown are the
equivalent plots for the European Centre for Medium-range Weather Forecasts Reanalysis v5 (ERA5) data over an extended period
(1950–2020). Hatching shows regions where the 5–95% confidence interval of the composite difference (calculated using a bootstrap
resampling) intersects zero. [Colour figure can be viewed at wileyonlinelibrary.com]

values vary between r = 0.1 and 0.4 for the C3S systems,
but these are all less than in ERA5. For the C3S period
(1993–2016) the correlation in ERA5 is 0.57, though this
short period is subject to substantial sampling uncer-
tainty. However, even when estimated over a longer period
(1950–2020) the correlation between the EA index and
Nino-3.4 is 0.44, higher than any individual C3S system.
The weak influence of ENSO on the EA index in early
winter is consistent with the weak teleconnection patterns
shown in Figures 2 and 3.

We now compare the signal-to-noise in the predictions
of the EA index, in terms of RPC, with the strength

of the ENSO teleconnection to the EA index in early
winter, shown in Figure 5b. Previous studies have high-
lighted that the RPC is a more useful measure of the
signal-to-noise ratio in model predictions that exhibit sig-
nificant levels of skill (Hardiman et al., 2022); following
this convention, I plot the systems that have ensemble
mean hindcast skill with P < 0.05 (see Figure 4), though
the conclusions drawn from the analysis are not sensi-
tive to this specific criterion. From the distribution of
the points in Figure 5b it is clear that, across the C3S
systems, those with weaker ENSO teleconnections
generally have larger signal-to-noise errors, with a linear
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F I G U R E 3 Early winter (November–December, ND) El Niño–Southern Oscillation (ENSO) teleconnection averaged across the 16
different Copernicus Climate Change Service (C3S) systems over the period 1993–2016, calculated for U200 and blocking frequency (see
Section 2.5). The teleconnection metrics were calculated for each system individually, then averaged. Shading shows the composite difference
between El Niño and La Niña years (defined using the Oceanic Niño Index; see Section 2.3) and the contours show the correlation between
each variable anomaly in each ensemble member and the observed Nino-3.4 sea-surface temperature index. Contours start from 0.2 with an
interval of 0.1, and are emboldened at 0.4 and 0.7; negative contours are indicated by dashed lines. Also shown are the equivalent plots for the
European Centre for Medium-range Weather Forecasts Reanalysis v5 (ERA5) data over an extended period (1950–2020). Hatching for the
reanalysis plots shows regions where the value is outside the 10–90% range of the C3S systems. Hatching for the C3S average plots shows
regions where less than 75% of the systems have composite differences with the same sign. [Colour figure can be viewed at
wileyonlinelibrary.com]

correlation of r = −0.76. The teleconnection strength
(𝛽mem) is only weakly related to the EA hindcast skill
(r = 0.17) but is strongly tied to the EA perfect model skill
(r = 0.88), indicating that the teleconnection strength
is impacting the RPC by reducing model signal. These
results suggest that the weak ENSO teleconnection across
the systems is responsible for causing the early winter
signal-to-noise problem over the North Atlantic.

To provide some further insight into the relationship
between the RPC and the ENSO teleconnection strength,
I consider a toy model of the hindcasts, which I outline
here. We will first model the EA index in the observations
as being linearly dependent on ENSO:

EA∗
obs = 𝛽obsN∗

34 + 𝜖obs, (2)

where EA∗
obs is the normalised EA index, N∗

34 is the nor-
malised observed Nino-3.4 index, 𝛽obs is a dimension-
less regression coefficient, and 𝜖obs is a random residual
term with a mean of zero. Similarly, we can model the
(normalised) forecast ensemble mean EA index, EA∗

em,
and the (normalised) forecast ensemble member EA

indices, EA∗
mem, as

EA∗
em = 𝛽emN∗

34 + 𝜖em,

EA∗
mem = 𝛽memN∗

34 + 𝜖mem. (3)

Note here that the normalised “observed” Nino-3.4 index,
N∗

34, is included in the linear models as the seasonal fore-
casts of the Nino-3.4 index are very skilful over the lead
times considered here, and this simplifies the expressions
that follow (though does not materially affect the resulting
scaling). Using the expressions for different normalised EA
indices, we can now evaluate expectations of the correla-
tions used to calculate the RPC:

rmo = corr(EA∗
obs,EA∗

em)
= corr(𝛽obsN∗

34 + 𝜖obs, 𝛽emN∗
34 + 𝜖em)

≈ 𝛽obs𝛽em

rmm = corr(EA∗
mem,EA∗

em)
= corr(𝛽memN∗

34 + 𝜖mem, 𝛽emN∗
34 + 𝜖em)

≈ 𝛽mem𝛽em. (4)
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F I G U R E 4 (a) Ensemble mean hindcast correlation skill (red circles) and the perfect model correlation skill (grey circles) for the East
Atlantic (EA) index over the period 1993–2016 for each of the Copernicus Climate Change Service (C3S) systems (the dotted line indicates
the correlation skill corresponding to P = 0.05 based on a t test). (b) Ratio of predictable components (RPC) for the EA index hindcasts for
each of the C3S systems (the solid line indicates where RPC = 1, which would indicate a reliable forecast by this measure and systems with
RPC > 1 being underconfident). Models that have hindcast correlation skills with P < 0.05 are indicated by lighter shaded circles in both
panels. Values for a simple multisystem mean, produced by combining ensemble members from all systems, are also shown in both panels.
[Colour figure can be viewed at wileyonlinelibrary.com]

Here, we have made the assumption that the covariance
between the residual terms is zero and that the residual
terms average to zero1. This results in a simple expected
scaling of the RPC:

RPC = rmo

rmm
≈ 𝛽obs

𝛽mem
. (5)

Therefore, if this is an appropriate model, we should expect
the RPC of the EA index hindcasts to be dependent on the
ratio of the observed ENSO teleconnection strength 𝛽obs
and the ensemble member ENSO teleconnection strength
𝛽mem.

There are various assumptions that go into this toy
model. An important assumption is that ENSO alone is
responsible for the forecast skill in the EA index and that
it does so in linear way. To test this assumption, I calcu-
lated the skill of a simple linear model fit to each hindcast
system separately and compared this with the actual hind-
cast skill; the fraction of the actual hindcast skill (i.e., r2

mo)
that can be accounted for by the linear model is plotted in
Supporting Information Figure S4. In all the C3S systems,
the majority of the skill can be recovered in the simple
linear ENSO model, indicating that the linear model is
a reasonable approach. It is important to note that the
systems that exhibit the highest hindcast correlation skill
are those that cannot be fully explained by this linear

model, which indicates some of the hindcast skill arises
from other, more complex, sources. A related assumption
is that the residual terms have zero covariance and zero
mean (e.g., other sources of skill would result in a pos-
itive correlation between the residual terms). In reality,
owing to finite ensemble sizes and short hindcast peri-
ods, these terms will not be exactly uncorrelated and any
deviations from zero will deteriorate the fit of the scaling
expression.

The predicted scaling of RPC for the early winter EA
indices is plotted with the actual RPC values in Figure 5b.
The green curve shows the RPC scaling for the observed
ENSO teleconnection over the C3S period, along with
shading that shows the sampling uncertainty. The RPC
scaling from the toy model broadly captures the relation-
ship between the actual RPC values calculated from the
hindcasts and the actual ENSO teleconnection strength
in the systems (note that, because the linear models are
normalised, 𝛽mem is equal to the correlation between
the EA index and Nino-3.4 over ensemble members). In
particular, the scaling highlights the expected nonlinear-
ity of the RPC with respect to teleconnection strength,
with consistent behaviour seen in the actual RPC val-
ues. The nonlinear scaling of the RPC in terms of tele-
connection strength also highlights a potential difficulty
in using RPC to discriminate between systems, as the
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F I G U R E 5 (a) Ensemble member correlation between the early winter (November–December, ND) East Atlantic (EA) index and the
Nino-3.4 sea-surface temperature (SST) index for each of the Copernicus Climate Change Service (C3S) systems (1993–2016). Also shown in
thick dashed lines are the equivalent correlation for the early winter EA index calculated from reanalysis data for an extended period
(1950–2020) and a shorter period that matches the C3S systems (1993–2016). The systems are separated into two subsets based on the
strength of this correlation, with systems greater than r = 0.25 corresponding to the “strong” subset (in red) and with systems less than
r = 0.25 corresponding to the “weak” subset (in blue). The lines show the 5–95% confidence interval of the correlation coefficients calculated
using a bootstrap resampling. (b) Relationship between the ratio of predictable components (RPC) and the EA index versus Nino-3.4
correlation—also equal to 𝛽mem in the linear El Niño–Southern Oscillation (ENSO) mode (see text). Curves of the scaling for a linear ENSO
model, 𝛽obs∕𝛽mem, are also shown for values of 𝛽obs from the European Centre for Medium-range Weather Forecasts Reanalysis v5 (ERA5)
data over an extended period (1950–2020, in black) and a shorter period that matches the C3S systems (1993–2016, in green). The shading
shows a 5–95% confidence interval for the green 𝛽obs∕𝛽mem curve, estimated using a Monte Carlo resampling (random bootstrapping with
replacement over years in the sample, repeated 10,000 times). [Colour figure can be viewed at wileyonlinelibrary.com]

expected RPC becomes more similar for systems as their
ENSO teleconnections approach the observed strength.
These difficulties are of course exacerbated by the sam-
pling uncertainties due to the short 24-year hindcast
period.

In this section I have shown that the C3S systems
have robust but varying hindcast skill for the early win-
ter EA index. However, the signals in the hindcasts, as
measured by the perfect model correlation rmm, are gen-
erally too weak in the systems, resulting in substantial
signal-to-noise errors (i.e., Figure 4). The ENSO telecon-
nection to the EA index is too weak in all the hindcasts but
shows substantial variability across the C3S systems. Fur-
ther analysis shows that systems with a weaker telecon-
nection generally exhibit larger RPC values and, therefore,
clearer signal-to-noise errors. Finally, I demonstrated that
a toy model of the ENSO teleconnection to the early winter
EA index can broadly explain the magnitude and RPC scal-
ing across the systems, depending only on the modelled
teleconnection strength.

3.3 Exploring causes of the weak ENSO
teleconnection in the C3S systems

In the previous sections we have seen that the weak ENSO
teleconnection is largely responsible for the signal-to-noise
errors observed in the early winter hindcasts. I now turn
attention to the causes of this weak ENSO teleconnection
to the North Atlantic in the early winter.

To begin, it is useful to revisit the mechanisms through
which ENSO influences the North Atlantic circulation
during the early winter. In a recent article, O’Reilly
et al. (2024) showed that the ENSO teleconnection to the
North Atlantic is largely through the modification of the
poleward jet excursions, which project onto the EA pat-
tern. The response of the North Atlantic jet is sensitive, on
both subseasonal and seasonal time-scales, to the jet and
storm track anomalies over the eastern North Pacific. A
schematic view of this is shown in the simple causal chain
diagram in Figure 6a—for example, following Kretschmer
et al. (2021). Such a model is likely an oversimplification;
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F I G U R E 6 (a) Schematic of the causal chain—for example,
following Kretschmer et al. (2021)—linking El Niño–Southern
Oscillation (ENSO) variability to the East Atlantic (EA) index
variability over the North Atlantic—based on O’Reilly et al. (2024).
Here, “ENSO” refers specifically to the normalised Nino 3.4 SST
index, “PacJet” refers to an index for the Pacific jet, defined as the
normalised U200 anomaly averaged over the eastern North Pacific
(shown by box in Figure 3), and “EA” refers to the normalised EA
index. (b) The circles show the linear regression coefficients
between the indices in the causal chain for each Copernicus
Climate Change Service (C3S) system, and the crosses indicate the
coefficients calculated from the European Centre for Medium-range
Weather Forecasts Reanalysis v5 (ERA5) dataset (green for the C3S
period 1993–2016 and black for the extended period 1950–2020).
The horizontal lines show the 5–95% confidence interval of the
correlation coefficients calculated using a bootstrap resampling. A
jitter has been added to the y-axis to aid visualisation of the
individual points. [Colour figure can be viewed at
wileyonlinelibrary.com]

however, explicitly stating the causal chain in this way
allows us to interrogate each step in the teleconnection
in the systems as well as reanalysis and to identify any
key differences. I define normalised indices for ENSO,
the Pacific jet, and the EA pattern and use linear regres-
sion between these indices to calculate the strength of
these connections in each C3S system and in ERA5; see
Figure 6b.

The C3S systems all exhibit strong relationships
between ENSO and the Pacific jet (green points), which
are all very similar to the value calculated from ERA5
data. However, the link between the Pacific jet and the

early winter EA index is much more variable across the
C3S systems (brown points), though all systems are sub-
stantially weaker than the link between the Pacific jet and
EA index calculated from ERA5 data. This simple analy-
sis suggests that the biggest differences in the total ENSO
teleconnection pathway stem from the deficiencies in the
response of the North Atlantic circulation to upstream
circulation anomalies over the North Pacific. This
conclusion is supported by the average C3S U200 telecon-
nection maps, shown in Figure 3, which show similar
anomalies to ERA5 over the North Pacific (and within
the C3S model range) but much weaker responses over
the North Atlantic. Analysis of the ENSO SST and pre-
cipitation anomalies in the Tropics reveals relatively
modest differences across the C3S models (Supporting
Information Figure S5). Taken together, these results
point to an extratropical deficiency in the teleconnection
pathway and are broadly consistent with the experimen-
tal results of Knight et al. (2022), which implicated the
extratropical dynamics as a cause of the signal-to-noise
errors in seasonal hindcasts of the (DJF) NAO in the
UKMO-GloSea5-GC2-LI system. The results from the
causal chain analysis (Figure 6) indicate that differences
in the ENSO teleconnection originate from differences
in the behaviour of the North Atlantic jet across the
C3S systems.

To explore the possible causes for the differences in
ENSO teleconnection strength over the North Atlantic, I
define two C3S system subsets based on the strength of
the correlation between the EA index and the Nino-3.4
index across all ensemble members (shown in Figure 5a).
The threshold was set at 𝛽mem = 0.25, since from visual
inspection (of Figure 5a) this provided the clearest sep-
aration of the systems; this threshold results in six sys-
tems in the “strong” model subset and 10 systems in
the “weak” model subset. To examine the differences
in model behaviour I first examine the climatologies
of the zonal wind in the C3S systems; the differences
between the strong and weak subsets and the aver-
age C3S system bias with respect to ERA5 are shown
in Figure 7.

There are some clear differences between the strong
and weak model subsets over the North Atlantic, with
the stronger models having stronger zonal winds over the
northern part of the basin (Figure 7a). Over the North
Atlantic, the midlatitude jet is generally too far south in
the C3S systems, with significantly weaker winds over the
northern part of the basin (Figure 7b). The strong subset
of models, therefore, have reduced biases over a northern
band of the North Atlantic basin (i.e., between the south-
ern tip of Greenland and Scotland). To compare the North
Atlantic jet in the C3S systems and observations further,
the early winter ENSO teleconnection strength (i.e., 𝛽mem)
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F I G U R E 7 (a) The composite U200 difference between the climatologies of the strong and weak subsets of Copernicus Climate Change
Service (C3S) systems (as defined in the text and Figure 5a). The C3S average climatology is shown in black contours every 5 m ⋅ s−1 from
20 m ⋅ s−1. (c) The C3S average climatological U200 bias with respect to European Centre for Medium-range Weather Forecasts Reanalysis v5
(ERA5; defined C3S minus ERA5). The ERA5 climatology (1950–2020) is shown in black contours every 5 m ⋅ s−1 from 20 m ⋅ s−1s. (b, d) As
in (a) and (c) but for blocking frequency (see Section 2.5); climatology is shown in black contours at 5%, 7.5%, 10%, 12.5%, 15%, 20%, and 25%.
Hatching shows where the 5–95% confidence interval of the difference/bias crosses zero; the confidence intervals are estimated using a
Monte Carlo resampling (random bootstrapping with replacement, repeated 10,000 times). (e) Scatter plot of the El Niño–Southern
Oscillation (ENSO) teleconnection strength (i.e., Figure 5a) against climatological North Atlantic jet latitude—defined as the latitude of the
maximum U200 zonally averaged over the jet extension region outlined in the red box in (a) and (c). (f) As in (e) but for the climatological
North Pacific jet latitude calculated over the region outlined in the blue box in (a) and (c). (g) As in (e) but for the climatological high-latitude
blocking frequency, averaged over the Canada–Greenland region–shown by the purple boxes in (b) and (d). The blue lines in (e), (f), and (g)
show the line of best fit across the C3S systems, and the shading shows the 5–95% confidence interval of the fit, calculated using a bootstrap
resampling (the associated correlation across the systems is also shown). The vertical lines in (e), (f), and (g) show the 5–95% confidence
interval of the correlation coefficients calculated using a bootstrap resampling. [Colour figure can be viewed at wileyonlinelibrary.com]

is plotted against the climatological North Atlantic jet lat-
itude in Figure 7e (where jet latitude is defined as the
latitude of the maximum of the zonal mean U200, averaged
over the jet extension region shown in red in Figure 7). It
is clear in Figure 7e that the latitude of the climatological

North Atlantic jet over early winter tends to be located
further south in the C3S systems and, moreover, the
strength of the ENSO teleconnection to the North Atlantic
seems to be clearly related to the climatological jet latitude
across the C3S systems (r = 0.59, Figure 7e).
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There are also substantial differences between the
strong and weak model subsets in the upper level jet
upstream over the North Pacific (Figure 7a), indicat-
ing a potential influence on the ENSO teleconnection to
the North Atlantic. In observational data, equatorward
shifts in the North Pacific jet and storm track tend to
reduce the frequency of the poleward jet shifts down-
stream over the North Atlantic, which are crucial for
shaping the early winter ENSO teleconnection (O’Reilly
et al., 2024). The North Pacific jet in the C3S systems
shows a strong and equatorward bias, with the jet extend-
ing further downstream than in reanalysis (Figure 7c),
and the climatological jet latitude seems to be clearly
related to the ENSO teleconnection to the North Atlantic
across the C3S systems (r = 0.59, Figure 7f). The cli-
matological North Pacific and North Atlantic jet lati-
tudes, interestingly, seem to be only weakly related across
the C3S systems (r = 0.28), and they both exhibit an
independent influence over the early winter teleconnec-
tion strength. Together, the analysis of the climatologi-
cal jets here suggests that a better model representation
of climatological North Atlantic and North Pacific jet
behaviour improves the fidelity of the early winter ENSO
teleconnection.

To further examine the differences in North Atlantic
jet behaviour across the C3S systems, we now analyse
distributions of the daily North Atlantic eddy-driven jet

latitude (see Section 2.6), shown for the C3S systems and
ERA5 in Figure 7a. The C3S systems clearly underestimate
the frequency of the poleward jet excursions, around
55–60◦ N, and generally overestimate the jet frequency fur-
ther south. This is consistent with the climatological mean
jets shown in Figure 8. The strong model subset exhibits
higher frequencies of poleward jet excursions on average,
and their behaviour is closer to that seen in the reanalysis,
compared with the weak model subset. The weak model
subset tends to more strongly overestimate the southern
jet frequency, around 35–40◦ N, compared with the strong
model subset.

A consistent picture that emerges from this jet
latitude analysis is that systems with a better represen-
tation of the poleward jet events generally have stronger
early winter ENSO teleconnections. To demonstrate
this more clearly I have plotted the difference between
the jet latitude between El Niño and La Niña years (in
Figure 8b). The ENSO teleconnection in observations
is strongly connected to changes in the occurrence of
poleward jet excursions, which occur more frequently
in La Niña years (O’Reilly et al., 2024). The C3S systems
that struggle to simulate these events often enough in
the climatology (i.e., Figure 8a) tend to be those systems
that show a smaller jet latitude frequency difference in
response to ENSO and, therefore, show a weaker ENSO
teleconnection.

F I G U R E 8 (a) Climatological eddy-driven jet latitude probability density functions (pdfs; see Section 2.6) shown for each individual
Copernicus Climate Change Service (C3S) system in light-coloured lines and for European Centre for Medium-range Weather Forecasts
Reanalysis v5 (ERA5) in black. The averages of these pdfs for the strong and weak subsets of models are shown in the thick red and blue lines
respectively. (b) As in (a) but for the difference in eddy-driven jet latitude pdfs between El Niño and La Niña years. The dotted thick red/blue
lines shows where the 5–95% confidence interval of the difference between the strong and weak subsets crosses zero; the confidence intervals
are estimated using a Monte Carlo resampling (random bootstrapping with replacement, repeated 10,000 times). [Colour figure can be
viewed at wileyonlinelibrary.com]
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The early winter ENSO teleconnection is strongly
linked to changes in large-scale blocking frequency near
the Iberian Peninsula in observations (i.e., Figure 3b;
O’Reilly et al. (2024)), so we will now examine the cli-
matological behaviour of large-scale blocking in the C3S
systems. The C3S systems generally have too little block-
ing over the Iberian Peninsula (Figure 7d); however, this
problem seems to plague all the systems and is only weakly
linked to the teleconnection strength (Figure 7b). The
clearest difference between the strong and weak models
is found further upstream, over the Canada–Greenland
region, where significantly more high-latitude blocking
occurs in the weak subset. On average, the C3S systems
exhibit too much blocking over this region (Figure 7d),
with the stronger subset of models demonstrating better
agreement with observations compared with the weaker
models. High-latitude blocking events over this region
are typically associated with southward shifts in the jet
(e.g. Woollings et al., 2010), so the higher blocking fre-
quency in weaker subsets of models is broadly consistent
with the equatorward North Atlantic jet bias in these sys-
tems (i.e., Figure 7a,e). To explore this further, Figure 7g
shows the climatological high-latitude blocking over this
Canada/Greenland region plotted against the ENSO tele-
connection strength. Although this relationship does not
fully account for the discrepancies between the C3S sys-
tems and observations, the systems with reduced biases in
high-latitude blocking generally have stronger teleconnec-
tions (r = −0.48). Climatological blocking frequency and
climatological North Atlantic jet latitude (i.e., Figure 7e)
are anticorrelated, r = −0.55, indicating that models with
reduced upstream high-latitude blocking biases tend to be
those models with a more realistic North Atlantic jet and
exhibit an improved ENSO teleconnection in the forecast
systems.

The results in this section demonstrate that, across
the C3S systems, the strength of the ENSO teleconnec-
tion is linked to the climatological behaviour of the
North Atlantic jet, as well as the upstream North Pacific
jet. Models that have a stronger ENSO teleconnection
tend to have stronger jets over the northern part of the
North Atlantic basin and more northerly climatologi-
cal jet positions, associated with an increased frequency
of poleward jet excursions. There is also a link to the
North Pacific, where the equatorward jet biases common
to the C3S systems are linked to weaker teleconnection
strength over the North Atlantic. The systems that have
a weaker ENSO teleconnection tend to exhibit stronger
biases in upstream high-latitude blocking, over the
Canada–Greenland region. These differences in dynam-
ical behaviour across the C3S systems motivate the need
for further work, including specific targeted experiments,
to interrogate the relationships between pervasive errors

in jet behaviour and the strength of the ENSO telecon-
nection to the North Atlantic. In the previous section,
we found that the weak ENSO teleconnection appears to
be an important source of signal-to-noise errors in early
winter hindcasts. The results here suggest that systematic
biases in the climatological behaviour of the North Pacific
and North Atlantic jets are contributing to the weak tele-
connection and associated signal-to-noise errors in the
C3S systems.

4 DISCUSSION

In this study I have focused on early winter Euro-Atlantic
predictability in an ensemble of state-of-the-art seasonal
forecasting systems. The majority of the systems analysed
show skill in the hindcasts of the extratropical large-scale
atmospheric circulation in early winter, which mostly
projects onto the EA pattern, consistent with the findings
of Thornton et al. (2023). The predictability is strongly tied
to the ENSO teleconnection to the North Atlantic, which is
generally skilfully captured but the teleconnection is typi-
cally too weak in the C3S systems (Thornton et al., 2023).
The hindcasts of the EA index generally exhibit a substan-
tial signal-to-noise error, with the signals being lower than
would be expected for the demonstrated level of hindcast
skill (i.e., RPC > 1), though there is a variation in this error
across systems. I demonstrate that the signal-to-noise error
is strongly linked to the strength of the ENSO teleconnec-
tion in the systems, with systems that exhibit a weaker
teleconnection displaying a larger signal-to-noise problem.
The dependency on ENSO teleconnection strength closely
follows a simple scaling relationship derived from a toy
model. Further analysis reveals that the strength of the
ENSO teleconnection in the systems is linked to clima-
tological biases in the behaviour of the North Atlantic
jet. Models that better represent the dynamics of the jet
over the northern part of the basin, with more frequent
poleward jet excursions and less frequent high-latitude
blocking events, are typically better at representing the
strength of the ENSO teleconnection to the North Atlantic
in early winter, with lower associated signal-to-noise
errors.

Our analysis has highlighted the weak ENSO telecon-
nection, as well as associated biases in the behaviour of
the North Atlantic jet, as being strongly linked to many
of the signal-to-noise errors seen in the early winter hind-
casts. It is worthwhile to compare how our findings fit with
previous theories on the origins of signal-to-noise errors.
One prominent theory, proposed in Scaife et al. (2019)
and further investigated in Hardiman et al. (2022), is that
deficiencies in the eddy feedbacks are responsible for the
weak predictable signal in models. Hardiman et al. (2022)
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F I G U R E 9 Ratio of predictable components (RCP) for the
early winter (November–December) East Atlantic index hindcasts
from the Copernicus Climate Change Service (C3S) systems plotted
against the eddy feedback parameter defined in Hardiman
et al. (2019) (and following (Smith et al., 2022)). Specifically, the
eddy feedback parameter is calculated as the area-weighted average
of corr(u,∇ ⋅ FH)2 between 20◦ N and 72◦ N (calculated at 500 hPa),
where FH is the horizontal quasi-geostrophic Eliassen–Palm flux, u
is the zonal mean zonal wind, and the correlation is calculated on
seasonally averaged data. Also shown are the values of the eddy
feedback parameter from the European Centre for Medium-range
Weather Forecasts Reanalysis v5 (ERA5) dataset, calculated over
both the C3S period and an extended period. The horizontal lines
show the 5–95% confidence intervals for the eddy feedback
parameters, calculated using a bootstrap resampling. The systems
are the same as those plotted in Figure 5b. The full latitudinal
variation of the correlation term, corr(u,∇ ⋅ FH), also shows very
good agreement across the systems and ERA5 (Supporting
Information Figure S6). [Colour figure can be viewed at
wileyonlinelibrary.com]

showed that, for winter (DJF) seasonal hindcasts of the
Arctic Oscillation and NAO indices, the RPC is correlated
with an “eddy feedback parameter”, which is a particular
measure of the feedback of the horizontal Eliassen–Palm
flux on the zonal mean jet (following Smith et al. (2022);
see caption of Figure 9 for specific definition). Moreover,
the strength of the winter (DJF) ENSO–Arctic Oscilla-
tion teleconnection was found to be better in systems that
exhibited a more realistic eddy feedback parameter. To
examine how well the eddy feedback parameter of Hardi-
man et al. (2022) explains the signal-to-noise errors in the
early winter EA index hindcasts, I computed the eddy feed-
back parameter and compared it with the RPC (shown in
Figure 9). Overall, the eddy feedback parameter for the C3S
systems analysed in this study is similar to the ERA5 value
over the extended 1950–2020 period or slightly lower than
over the equivalent C3S period—consistent with the high

sampling uncertainty in this parameter highlighted by
Saffin et al. (2024). Most notably, Figure 9 shows the varia-
tion in the eddy feedback parameter is not strongly related
to the RPC. The correlation between the eddy feedback
parameter and RPC is r = −0.22, which is small in mag-
nitude compared with the correlation between the ENSO
teleconnection strength and the theoretical scaling of the
RPC, r = 0.82 (i.e., Figure 5b).

Although we have seen that the specific eddy feed-
back parameter analysed in Hardiman et al. (2022) to be
not strongly linked with the signal-to-noise error over the
North Atlantic in these early winter hindcasts, this does
not mean that deficiencies in eddy feedbacks are not play-
ing a role. Transient eddy feedbacks are crucial in shaping
blocking events and shifts in the North Atlantic jet, and
these are important in determining the early winter ENSO
teleconnection in observations (O’Reilly et al., 2024). In
the preceding analysis, it was found that climatological
biases in the eddy-driven jet latitude distributions under-
lie the weak ENSO teleconnections, which does broadly
represent a deficiency in eddy feedbacks. However, it may
be more useful to consider the signal-to-noise errors to
stem from the systematic biases in the representation of
the North Atlantic jet—this will not necessarily directly
relate to a zonally averaged measure, as shown here for
the eddy feedback parameter. The biases in the jet lat-
itude distributions of the C3S systems here also exhibit
some consistencies with the regime hypothesis of Strom-
men and Palmer (2019); here, the frequency of the pole-
ward jet events, or regimes, are systematically under-
estimated by the systems and display a muted change
in frequency in response to predictable ENSO forcing
(e.g., Figure 8b).

Beyond this study, the approach applied here could
provide a useful framework for exploring the origins of
signal-to-noise errors in other seasons, regions, and over
different time-scales—broadly similar to the approach in
Hardiman et al. (2022). Specifically, the general process of
identifying important predictable drivers of large-scale cir-
culation anomalies and exploring how biases in the model
behaviour are undermining the predictable model signals.
Here, the dominance of the ENSO signal in early winter
motivates the use of a relatively simple conceptual model
of the processes driving the weak model signals, but other
instances are likely more challenging. For example, using
a similar approach to study the predictable signals of the
later winter NAO would be more complex because there
are multiple important drivers (e.g. Dunstone et al., 2016;
Folland et al., 2012) and hindcast skill levels are typi-
cally not as high (e.g. Hardiman et al., 2022). Nonetheless,
applying this process and identifying biases in the model
behaviour that are linked to the weak predictable signals
provides a practical approach towards developing further
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understanding of other signal-to-noise errors in coupled
climate models.
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ENDNOTE

1The full Pearson correlation coefficient between the two nor-
malised indices, r = corr(𝛽aN∗

34 + 𝜖a, 𝛽bN∗
34 + 𝜖b), simply reduces

to the covariance cov(𝛽aN∗
34 + 𝜖a, 𝛽bN∗

34 + 𝜖b). Expanding this
fully gives the correlation coefficient as r = cov(𝛽aN∗

34, 𝛽bN∗
34) +

cov(𝛽aN∗
34, 𝜖b) + cov(𝜖a, 𝛽bN∗

34) + cov(𝜖a, 𝜖b). The expected value
of the second, third, and fourth terms on the right-hand side of
this expression are all zero since they include covariance with a
random residual with zero mean, 𝜖. Therefore, the expectation
of the correlation coefficient reduces to r ≈ cov(𝛽aN∗

34, 𝛽bN∗
34) =

𝛽a𝛽b.
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