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The effects of scene heterogeneity  

on soil moisture retrieval from passive microwave data 
 

Ian J Davenport, Melody J Sandells, Robert J Gurney 

 

Abstract 

 

The Tau-Omega model of microwave emission from soil and vegetation layers is 

widely used to estimate soil moisture content from passive microwave observations. 

Its application to prospective satellite-based observations aggregating several 

thousand square kilometres requires understanding of the effects of scene 

heterogeneity. The effects of heterogeneity in soil surface roughness, soil moisture, 

water area and vegetation density on the retrieval of soil moisture from simulated 

single- and multi-angle observing systems were tested. Uncertainty in water area 

proved the most serious problem for both systems, causing errors of a few percent in 

soil moisture retrieval. Single-angle retrieval was largely unaffected by the other 

factors studied here. Multiple-angle retrievals errors around one percent arose from 

heterogeneity in either soil roughness or soil moisture. Errors of a few percent were 

caused by vegetation heterogeneity. A simple extension of the model vegetation 

representation was shown to reduce this error substantially for scenes containing a 

range of vegetation types. 

 

 

Index terms: passive microwave soil moisture heterogeneity roughness vegetation 

water 
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I. INTRODUCTION 

 

Until recently, two passive L-band microwave satellite-based instruments were 

planned with an appropriate configuration to measure soil moisture - the European 

Space Agency SMOS [1] and NASA Hydros[2]. These differ chiefly in the look 

angles at which data is acquired, Hydros would acquire data at 40 degrees from the 

vertical, whilst SMOS will acquire data at a range of angles between nadir and up to 

60 degrees, depending on the target-swathe geometry. Whilst development on Hydros 

is suspended at the time of writing, it is likely that a single-angle spaceborne L-band 

passive microwave system will be deployed in the future, so in the work here we 

compare multiple- and single-angle microwave systems. The most widely used model 

to predict microwave emission from vegetated soil, and the one planned for use in the 

soil moisture retrieval algorithms for both systems, is the τ-ω model [3,4]. We have 

previously [5] shown how, for homogenous scenes, the retrieval of soil moisture is 

dependent on uncertainty in the variables used in the model to describe the scene, 

such as surface temperature, soil surface roughness, and the vegetation optical depth 

and single scattering albedo. The wavelength of L-band radiation and technical 

limitations on space-based antenna will enforce a mean spatial resolution of the order 

of 50 km. Any single observation will therefore almost invariably enclose a region of 

the Earth’s surface with a range of each of the variables. In this paper we consider the 

effects of heterogeneity within a scene on a simple retrieval. In the case of a single-

angle sensor, we will need to estimate some surface variables to retrieve soil moisture. 

We consider how best to incorporate estimates of heterogeneous variables, and 

question whether simple averages are adequate. For multiple-angle sensors, there may 

be enough information within the brightness temperature curves to accommodate 

some heterogeneity. In the absence of any existing observations covering the spatial 

extent covered by a satellite-based passive microwave instrument, and because of the 

impracticality of making reliable measurements over such a special extent, we have 

approached this problem by generating synthetic scenes, assuming that the Tau-

Omega model is a realistic representation of microwave emission.  

 

Past work in this area, conducted in the context of earlier passive microwave 

instruments operating at higher frequencies such as SSM/I and AMSR-E, has included 

studies of the effect of soil texture variability [6] and of heterogeneity in specific 

areas, using hydrologic models to estimate the extent of local surface feature 

variability [7,8].  In this paper we take a more general approach, examining the direct 

effects of variation in features of the soil surface and vegetation cover without 

limiting the range of variation to that expected at a particular site. In Section II we 

describe the model used for the variable retrieval, the methodology used to assess the 

effects of heterogeneity, and describe the four sources of heterogeneity to be 

investigated. We consider the effects of heterogeneity in soil surface roughness by 

simulating a surface with a plausible range of roughnesses. We examine the effects of 

soil moisture, analysing the retrieval error for a soil surface with a known mean 

moisture, but a range of actual values. We look at the effects of waterlogging, coastal 

water and inland water bodies by assuming a proportion of the scene is standing 

water. We evaluate both the effects of ignoring standing water, and incorporating a 

water fraction estimate into the retrieval. By varying vegetation optical depth within a 

scene, we examine the effects of retrieving soil moisture from a pixel which contains 

either a mixture of bare soil and vegetation, or a range of vegetation density. We 

discuss the problem posed by the non-linear effect of vegetation on observed 
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microwave radiation through a heterogeneous canopy, and present a means of 

reducing this effect by extending the representation of vegetation within the model. 

Section III presents the results of the analyses, in Section IV we discuss the results, 

and in Section V we draw together the conclusions to compare the relative effects of 

the sources, and consider what measures can be taken to reduce the effects of 

heterogeneity. 

 

We do not present here any analysis of the effects of heterogeneity in temperature and 

vegetation single-scattering albedo. While any scene with a spatial extent of hundreds 

of square kilometres will exhibit some variability in these factors, this should have a 

negligible effect. Brightness temperature scales linearly with surface temperature, or 

more accurately the effective surface temperature, accounting for the optical depth of 

the surface, at any given look-angle when all other variables remain constant. Thus, 

the brightness temperature curve for a site comprised of a number of different soil 

temperature regions is identical to the brightness temperature curve for the mean 

temperature of the region. As long as the mean surface temperature is known, 

heterogeneity within it should contribute no error. Similarly, the dependence of 

brightness temperature on single-scattering albedo of vegetation within the model is 

also linear, and so whilst it is possible that in reality non-linearity may have an effect, 

this will be not evident from this modelling approach. 

 

 

II. METHOD 

 

A. Model description 

 

As in our previous work, we use a simple radiative transfer formulation, the τ-ω 

model [3,4], to describe the emission of microwave radiation from the soil surface. In 

the τ-ω model, the brightness temperature, TB, of a top layer (soil and vegetation) 

medium is the sum of three terms: the canopy attenuated soil emission, the direct 

vegetation emission and the vegetation emission reflected by the soil and attenuated 

by the canopy. A fourth term representing the soil-reflected and two way canopy-

attenuated down-welling sky brightness temperature is sometimes implemented, but is 

considered negligible here. Hence, the brightness temperature can be expressed as: 
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where εsoil is the soil emissivity, ω is the single scattering albedo within the canopy, 

τ is the optical depth of the canopy, α is the instrument look angle from nadir, Tsoil is 

the soil temperature and Tveg is the vegetation temperature, which in this case we 

assume to be the same as the soil temperature.  

 

The soil emissivity is calculated from the Fresnel equations, incorporating the 

dielectric permittivity of the soil which is derived from the Wang and Schmugge [9] 

model, assuming a soil texture of SAND=60%, CLAY=20%, incorporating the wilting 

point of soil [10] assuming a bulk density of 1.3 g·cm
-3

, and component relative 

dielectric permittivity of 3.2, 1 and 5.5 for bound water, air and soil particles 

respectively. The dielectric permittivity of water was derived by the modified version 
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of the Debye equation for the relative dielectric permittivity [11], the high frequency 

dielectric permittivity [12], the static dielectric permittivity of water as described by 

Klein and Swift [13] and the relaxation time of pure water [14].  

 

 

B. Methodology 

 

The effects of heterogeneity in soil surface roughness and soil moisture on retrieval 

accuracy are considered individually in the following sections. The brightness 

temperature curve produced by heterogeneity in each variable is simulated by 

combining brightness temperature curves produced by different values of the variable 

in the forward model. To simulate a multiple angle system, brightness temperature 

curves are generated at the angles 0,10,20,30,40,50 degrees from nadir at H and V 

polarisations, and for a single angle system, the brightness temperatures at 40 degrees 

from nadir are calculated at H and V polarisations. In each case, the retrieval then 

inverts the composite brightness temperature curves as described in [5] to recover the 

soil moisture content, vegetation optical depth and surface temperature, constraining 

the surface temperature to within 2K of the target, and using a single value of the 

heterogeneous variable. With observations at multiple angles, it is also often possible 

to retrieve a value for an additional unknown variable, so we also perform retrievals 

which attempt to retrieve a value for the heterogeneous variable. This becomes more 

difficult with a single-angle radiometer, which produces only two measurements, one 

at each of H and V polarisation. Since it is necessary to retrieve three variables, soil 

moisture content, vegetation optical depth and surface temperature, some constraint of 

the variables is necessary to produce solutions. It is commonly assumed that the 

surface temperature will be estimated to an accuracy of about 2 K for this purpose, so 

to simulate this we carry out a set of retrievals assuming a uniform range of surface 

temperatures within the 2K extent, and calculate error statistics based on these runs. 

Whereas a multiple-angle retrieval from a pair of brightness temperature curves will 

result in one unique best solution and a distinct error in each variable, a single-angle 

retrieval result will be based on a range of solutions based on the different surface 

temperature assumptions, and the range of possible solutions are included within the 

error statistics. 

 

C. Heterogeneity in surface roughness 

 

Soil roughness on the vertical scale of a centimetre can affect the microwave 

reflectivity, and consequently the emissivity of the surface, in a manner dependent on 

the look-angle [13]. This has an impact on the brightness temperature curves recorded 

by an observing system, and consequently the retrieval of the soil moisture, vegetation 

optical depth and surface temperature from these observations. Measurement of the 

soil surface roughness will in most cases be infeasible over the spatial scale of several 

hundreds of square kilometres covered by a satellite microwave radiometer (though a 

smaller scale technique is described in [14]). While this effect has a relatively minor 

influence on retrievals from a single-angle system in a homogeneous scene [5], 

accurate retrieval from a multiple-angle system relies upon allowing the algorithm to 

extract the roughness from the observations. This proves successful for a surface with 

a uniform roughness, however the soil surface over hundreds of square kilometres is 

likely to have a range of surface roughnesses.  
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The soil surface roughness modification to the τ-ω model suggested by Choudhury et 

al. [15] modifies the microwave reflectivity of the soil as per equation (2) … 

 

α2cos.

0

heRR −=  (2) 

 

where R0 is the reflectivity of flat soil, α is the look angle, h is the roughness factor 

given by  
2

2 2
4 







=
λ
π

σh  (3) 

 

 

where σ is the standard deviation of the surface elevation and λ is the microwave 

wavelength. h = 0.0 for flat, 0.3 at maximum, and typically on average 0.1. For the 

21 cm radiometer, the maximum 0.3 indicates a surface with σ = 9 mm, which is 

slightly lower than some freshly cultivated sites. Field measurements showed[16] that 

a field recently harrowed with a rotary cultivator gave a surface with a peak-trough 

range of 30 mm, and a standard deviation of 9.8 mm over a 1 m distance, and a 

recently-ploughed site with a peak-rough range of about 50 mm had an elevation 

standard deviation of 15.7 mm over 1 m. However, since these sites were cultivated 

only a few days before measurement, and would flatten quickly with weather 

conditions, the maximum of 0.3 was considered appropriate for this study. 

 

A number of test scenarios were generated by combining soil with a range of moisture 

between 0.10 and 0.40 m
3
m

-3
 with vegetation with a range of vegetation optical 

depths between 0.0 and 0.6. A soil surface with equal proportions of roughnesses 0.0, 

0.1, 0.2, 0.3, was simulated by taking the mean brightness temperature curves over the 

four roughness values for each scenario. We then attempted to retrieve soil moisture, 

vegetation optical depth and surface temperature from each of the curve pairs. The 

effect of independent surface temperature information was simulated by fitting the 

curves whilst restricting the retrieved surface temperature to fall within 2 K of the 

input value, which was kept at 293 K. For the single-angle system the retrieval 

assumed a mean value of soil roughness of 0.15. For the multiple-angle retrievals two 

techniques were attempted; firstly assuming a mean value of soil roughness and 

secondly, to use the greater number of observations in the multiple-angle data, 

retrieving the soil roughness as a fourth variable.  

 

D. Variation in soil moisture 

 

Soil moisture will not be uniform over the hundreds of square kilometres covered by a 

satellite radiometer footprint. If a fraction of the target area has significantly different 

moisture content, or there is substantial variation in the area, we need to know how 

this affects its retrieval accuracy. These variations can be caused naturally by any 

number of mechanisms such as flooding or non-uniform precipitation or drainage, or 

man-made, such as extensive areas of irrigation in otherwise arid areas.  

 

The six scenarios generated by combining vegetation optical depths 0.0, 0.2, 0.6 with 

soil moisture 0.1 and 0.4 m
3
m

-3
 were analysed here. To simulate areas with a range of 

soil moisture with a known mean, brightness temperature curves were generated 

around each scenario by taking the mean of curves with a spread in the soil moisture, 
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as indicated in Table 1. Intermediate spread extents were also similarly devised 

between these for the same two soil moisture values. Retrievals then attempted to 

recover the soil moisture, vegetation optical depth and surface temperature from the 

simulated observations.  

 

E. The presence of open water 

 

The different microwave behaviour of open water means that the presence of 

waterlogged areas, water bodies, rivers and coasts within a scene will alter the 

microwave radiation received from a scene, and this, if uncorrected in the retrieval, 

will cause errors in the retrieved soil moisture. We analyse two possible cases; firstly 

the presence of water in a scene when we assume that there is no open water, and 

secondly where we have a non-exact estimate of open water fraction within a scene. 

 

The microwave emission of water is calculated assuming that the surface is flat and 

the water fresh [15], and its brightness temperature curve is then combined with that 

of each of the six scenarios, covering vegetation optical depth 0.0, 0.2, 0.6 and soil 

moisture 0.1 and 0.4 m
3
m

-3
, to create composite curves for scenarios in which water 

covers a variable amount of the scene. Retrievals then attempted to recover the soil 

moisture, vegetation optical depth and surface temperature from the simulated 

observations, using the assumption that the scene does not have any water coverage.  

 

Additionally, in order to determine how much of the effect of water in a scene can be 

compensated for by prior information on water cover, we generated scenes for each 

soil moisture and vegetation optical depth scenario which included a known 

proportion of open water, and attempted to retrieve the soil moisture with a retrieval 

which assumed a water fraction with an error. So, for instance, where a set of 

brightness temperature curves for a certain case corresponded to 32% of the pixel 

being covered with water, we set up retrievals to account for the effect of the water 

based on the assumptions that water covered (i) 31.8% and (ii) 32.2% of the scene, to 

measure the effect of a 0.2% error in water fraction estimation. The same six soil 

moisture and vegetation optical depth scenarios described above are employed for this 

analysis, and water is modelled in the forward and inverse stages as flat fresh open 

water. 

 

F. Heterogeneity in vegetation density 

 

All vegetation types will show significant variation in density and therefore in 

microwave optical depth on the spatial scale of hundreds of square kilometres. Whilst 

we may be able to make an estimate of the mean vegetation cover for a given area, 

vegetation optical depth will rarely be uniform over this scale. Since a major effect of 

the vegetation layer is to exponentially attenuate the radiation emitted by the soil 

surface, brightness temperature curves will not scale linearly with τ. Therefore, a pixel 

containing areas with a range of vegetation optical depths will not have the same 

brightness temperature curve as a pixel with a single uniform optical depth with the 

same mean.  

 

In reality, vegetation cover will often be complex, with multiple layers of overlapping 

vegetation types with differing optical depth and albedo characteristics, for example 

trees, grass and undergrowth. It would clearly be very difficult to create a model 
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which accommodated such variation, with variables for the characteristics and extent 

of overlap of each layer, so we test here two simpler cases which assume that any one 

area has only one vegetation cover type. Firstly, we simulate an area which is a 

combination of bare soil and consistent vegetation. Secondly, we simulate a more 

mixed area with vegetation types with seven different optical depths. 

 

For the case where we consider a scene containing both bare soil and vegetation, the 

soil moisture and surface temperature are assumed constant across the scene. We 

consider six simple surface scenarios comprising the combinations of soil moisture 

θ=0.1 and 0.4 m
3
m

-3
, and vegetation optical depth τ =0.0, 0.2, 0.6. Test brightness 

temperature curves were devised by combining the curves for the two vegetated 

scenarios (τ = 0.2, 0.6) individually with the bare soil scenario (τ =0.0) for each of the 

soil moisture values θ=0.1 and 0.4 m
3
m

-3
. Scenes are synthesised which contain a 

range of areas of bare soil and vegetation by creating brightness temperature curves 

with different ratios of the vegetated and bare soil curves. We then attempt to retrieve 

the soil moisture, vegetation optical depth and surface temperature from the 

brightness temperature curves, constraining the surface temperature to within a 2 K 

range to simulate assimilation of surface temperature information. A similar analysis 

was carried out by Van de Griend et al [22] to simulate the effect of heterogeneity on 

retrievals from the SMOS instrument, however we also here propose and test two 

extensions to the retrieval model in an attempt to reduce the expected effect of the 

non-linear vegetation optical depth mixing. 

 

Since our representation of the multiple-angle dual-polarisation instrument yields 

eleven independent measurements simultaneously, it is possible that information 

about vegetation optical depth heterogeneity could be extracted from these 

measurements. We tested whether this is the case, and how much a more complex 

vegetation representation improves the soil moisture retrieval. Our enhancement of 

the inverse model allows the retrieval algorithm to assume that the scene is composed 

of two different cover types. To add just one more variable to the analysis, we devised 

a retrieval which assumed that the second vegetation type had an optical depth of 

zero, i.e. the scene is a linear mix of an unknown vegetation type, and bare soil. In this 

case, all the retrieval has to find in addition to the previous retrievals is the ratio 

between the areas of bare soil and covered soil. This is represented by equation (4), 

where p represents the proportion of the scene covered with vegetation. 

 

( ) soilsoil

vegsoil

vegsoilsoil

B Tp

eeT

eTeT
pT ⋅⋅−+

















−−−+

−−+
⋅=

−−

−−

ε

ωε

ωε

α
τ

α
τ

α
τ

α
τ

1

)·1·()·1)·(1(

)1·()·1(··

coscos

coscos

 (4) 



8 / 25 

 

 

A further refinement is to allow a second vegetation cover area, so that the scene is a 

mix of two vegetation types. This requires the retrieval algorithm to estimate three 

variables pertaining to the vegetation optical depth – two optical depths, and the ratio 

between the areas covered by them. This is represented by equation (5), where p now 

represents the proportion of the scene covered with the first optical depth τ1, and the 

rest of the scene is covered by vegetation with the second optical depth τ2. 
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Clearly, both models should cope with the area which is a simple mix of bare soil and 

vegetated soil, however we also tested how such a retrieval performs with a mixture 

of more vegetation optical depths, in the hope that allowing the retrieval to 

incorporate some simple vegetation heterogeneity would improve its performance in 

more complicated scenarios.  

 

To test the ability of a two- or three-variable τ retrieval as above to compensate for 

optical depth heterogeneity, we generated a test data set of 200 composite areas, 100 

areas with soil moisture 0.1 m
3
m

-3
 and 100 areas with soil moisture 0.4 m

3
m

-3
. Each 

area is a composite of the seven vegetation optical depths 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 

and 0.6, in randomly-selected proportions. The brightness temperature curves are thus 

weighted averages of the seven brightness curves, with the weights determined 

randomly. We then attempted to retrieve the soil moisture from each of these test HV 

curve pairs using the three possible vegetation optical depth representations – the 

basic single-τ inverse model, the two-variable model in equation (4) which retrieves τ 

and p, and the three-variable model in equation (5) which retrieves τ1, τ2 and p. We 

also tested the effect of this seven-τ cover on the single-angle retrieval, because there 

are insufficient measurements to retrieve additional variables. 
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III. RESULTS 

 

A. Heterogeneity in surface roughness 

 

Figures 1-3 show the effect of roughness heterogeneity on soil moisture retrieval 

errors. Figure 1 shows the effect of assuming a mean value of soil roughness using a 

single-angle system, compared to the homogenous retrievals in which the soil 

roughness is known as 0.0. Figure 2 shows the effect of assuming a mean value of soil 

roughness using a six-angle system. Figure 3 shows the effect of attempting to 

retrieve soil roughness from the six-angle data. Table 2 gives the statistics over all soil 

moisture and vegetation optical depth scenarios for each system and retrieval 

methodology. 

 

1) Single-angle system 

 

The retrieval errors are notably only marginally higher than the homogeneous 

retrieval error. The maximum error corresponds to the high soil moisture, high 

vegetation optical depth scenario. 

 

2) Six-angle system 

 

Using the roughness assumption of the mean value 0.15 for the six-angle system 

yields a mean error over all scenarios of 0.007 m
3
m

-3
, with a worst case 0.021 m

3
m

-3
 

for the high moisture and 0.4 vegetation optical depth scenario. In the homogeneous 

case, there is sufficient information in the brightness temperature curves to derive 

these variables exactly. 

 

Allowing the retrieval from the six-angle data to find the best value of roughness 

improves the retrieval of the soil moisture to a mean error of 0.003 m
3
m

-3
, with a 

worst case of 0.014 m
3
m

-3
, where the soil moisture is maximum, and the optical depth 

0.2. The value of soil roughness h retrieved by the algorithm has a mean of 0.139 with 

a standard deviation of 0.003, significantly and consistently lower than the mean of 

the constituent areas of 0.15.  

 

B. Variation in soil moisture 

 

The error in retrieving mean soil moisture from areas with a range of soil moisture 

values is shown in Figure 4. The single-angle retrieval errors increase very little as the 

spread increases, increasing in the worst case by 0.005 m
3
m

-3
. For the six-angle 

system, a spread in soil moisture of +/- 0.10 m
3
m

-3
 results in a worst case error of 

0.017 m
3
m

-3
.  

 

C. The presence of open water 

 

The effect of ignoring open water in soil moisture retrieval is shown in Figure 5.  

 

The single-angle system errors shown in Figure 5(a) are higher than the six angle 

errors shown in Figure 5(b) because of the lower amount of information in only two 

measurements. Also, the single-angle errors increase more quickly than the six-angle 

errors, and exceed 0.04 m
3
m

-3
 in the worst scenario (low soil moisture, high 
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vegetation cover) for only 2% water area, rising to 0.10 m
3
m

-3
 when about 4% of the 

scene is covered with water. 

 

For the six-angle system, Figure 5(b), the worst scenario (low soil moisture, high 

vegetation cover) error exceeds 0.04 m
3
m

-3
 when about 4% of the scene is covered 

with water. This is equivalent to a 2 km width of water along one edge of 50 km x 

50 km square pixel, or a 10 km x 10 km water body within the same pixel. It is 

notable, however, that in some cases even a 1% water area within the scene can give 

rise to a 0.01 m
3
m

-3
 error in soil moisture retrieval. This could correspond to a 500 m 

wide river passing through the scene, a 500 m error in delineating a land-sea boundary 

for a coastal pixel, or a 5 km x 5 km water body. 

 

In Figure 6 we show a plot of the soil moisture single-angle retrieval error for the case 

where we account for the effect of water, which shows an error up to 0.10 m
3
m

-3
 if we 

have a 0.2% water fraction error, and the water fraction is 50%. An error in water 

fraction estimation of 0.5% causes the same soil moisture retrieval error, but both 

retrievals are constrained by physical considerations, since we limit soil moisture to 

between 0.00 and 0.50 m
3
m

-3
. When the scenario giving rise to the maximum error 

reaches a constraint, as happens in both Figures 6(a) and 6(b) around 50% water 

cover, the maximum absolute error curve causes the odd discontinuities seen in the 

plots. For the single-angle error cases, the mean soil moisture retrieval error for a 50% 

water pixel is 0.24 and 0.25 m
3
m

-3
 for the 0.2 and 0.5% water fraction errors 

respectively. 

 

In Figure 7 we show the same analysis for the six-angle system. For a scene which is 

50% covered with open water, which might be a coastal zone scene, a 0.2% error in 

estimating the water fraction gives rise to a maximum error over all scenarios of 0.005 

m
3
m

-3
, whereas an error as high as 0.5% in water fraction can give rise to a maximum 

error of 0.013 m
3
m

-3
.  
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D. Heterogeneity in vegetation density 

 

Figure 8 shows the error in retrieved soil moisture for a pixel that is a mix of bare soil 

and soil covered with vegetation. The single-angle system is largely unaffected, with 

its mean soil moisture retrieval around the 0.01 m
3
m

-3
 level dictated by the surface 

temperature constraint of 2 K. The error is close to a linear mixture of the errors of the 

extreme cases, with the maximum absolute error in the mixed area only exceeding the 

completely vegetated case by 0.002 m
3
m

-3
 in the regime where about 5% of the pixel 

is bare. The single-angle system sensitivity to the simple scene, the bare soil/vegetated 

scene and the seven optical depth scenes is shown in Table 3. The mean error is 

largely unaffected by vegetation heterogeneity, and is marginal compared to the error 

induced by the estimation in surface temperature. 

 

The six-angle system is significantly affected by the mixture, however, because the 

shape of the brightness temperature curve does not correspond to a single-tau 

scenario, and so the other variables are distorted to match the composite curve. 

Consequently, any scene containing other than one uniform vegetation optical depth 

will be misinterpreted.  

 

The results of extending the inverse model to account for heterogeneous vegetation as 

described by equations (4) and (5) are given in Table 4. This indicates for example 

that the more complex representation of optical depth dramatically reduces the mean 

error caused by heterogeneity from 0.023 m
3
m

-3
 in the single optical depth 

assumption to 0.001 m
3
m

-3
 for the three-variable representation. 

 

 

 

IV. DISCUSSION 

 

A. Heterogeneity in surface roughness 

 

The effect of soil surface roughness heterogeneity on single-angle retrievals is 

negligible compared to the effect of surface temperature constraint, since at a single 

angle, the change in the brightness temperature is relatively small. The strong angular 

dependence of surface roughness on emissivity [5] does cause larger errors for the 

six-angle system, however, when forced to assume a value of roughness. As the 

retrieval attempts to fit observations between nadir and 50º off-nadir, the mistaken 

assumption of the roughness forces the other model variables to be perturbed to make 

a better fit to the model. Since the six-angle system, when allowed to retrieve 

roughness, yields a roughness value lower than the mean of the constituent areas, the 

combined effect of a number of areas with different roughnesses is not linear, as can 

also been seen from equations (2) and (3), and care needs to be taken if assimilating 

surface roughness data of a heterogeneous target area into a retrieval scheme. 

 

 

B. Variation in soil moisture 

 

The effect of within-scene variation in soil moisture has a small effect on retrievals 

from the single-angle data, whilst the effect is more marked in multiple-angle 

retrievals for what is a plausible spread in soil moisture over hundreds of square 
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kilometres. This can be seen from the relationship between soil moisture and 

dielectric permittivity, which is linear for small changes in soil moisture, but shows 

some deviation from the linear over a greater range, the extent of which depends on 

which of the many published relationships is used. Whilst there is some variation 

between the relationships, each of them increases in slope when soil dielectric 

permittivity is plotted against soil moisture, and this increase in slope is responsible 

for the integrating error. Because of the uncertainty in this relationship, the size of this 

error may not be exact, but the commonality between models suggests that it is 

approximately right. 

  

C. The presence of open water 

 

The effects of including fairly small areas of water within a detector field of view 

have a serious impact on retrievals both when the effect of water is ignored, and when 

it is accounted for inexactly. The size of soil moisture retrieval error caused by only a 

small error in water fraction estimation of 0.2 %, which would amount to a tidal 

movement of 100 m in a 50 km wide scene, suggests that inaccuracy in water fraction 

estimation could cause significant problems for soil moisture retrievals from single- 

and multiple-angle microwave radiometers. This is due to the very different 

emissivities of water and soil. This is a relatively difficult problem, as while some of 

the other sources of contamination analysed here distort the brightness temperature 

curves, and therefore may be at least identified, if not quantified, the presence of more 

or less open water than expected merely makes the curves represent the scene as if it 

is wetter or drier than it in fact is. The only way to address this problem is to improve 

our estimation of the open water content of the scene. 

 

D. Heterogeneity in vegetation density 

 

For the single-angle system, vegetation mixture does not seem to cause significant 

retrieval problems. In the case where a pixel contains two or more levels of vegetation 

cover, or is partially vegetated and partially bare, the soil moisture retrieval error is 

simply the weighted average of the errors for the extreme cases, proportional to the 

areas covered. 

 

The accuracy of retrievals from the six-angle system is significantly diminished if a 

single vegetation optical depth is assumed, as previously established by Van de 

Griend et al[22], since the simple representation of vegetation in the model does not 

allow brightness temperature curves of the shape seen with multiple vegetation types 

to be generated. Consequently the curves generated by the fit are poor matches 

generated by changing the other model variables, including soil moisture. An 

extension of the vegetation representation in the model can be used to incorporate 

vegetation optical depth variability, and substantially reduce this effect.  
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V. CONCLUSIONS 

 

Within-pixel heterogeneity is likely to be an issue in most retrievals from L-band 

passive microwave radiometers, but the size of the problem has not been investigated 

before, other than empirically. This study has investigated this issue by attempting to 

retrieve soil moisture from idealised heterogeneous cases. The relative sizes of errors 

caused by the sources of error considered here are summarised in Table 5.  

 

Soil roughness is possibly the most difficult of the parameters studied here to estimate 

on the required scale. While estimates might be made for large homogeneous areas, 

the variation caused by historic and current water flow, rainfall and different levels of 

vegetation growth and civilisation makes large scale accurate estimates unlikely. 

Fortunately, heterogeneity in soil roughness seems to have only a small effect on soil 

moisture retrieval from single-angle data. It affects multiple-angle data more 

seriously, but this error can be reduced by retrieving a representative value of soil 

roughness from the data. While the largest effect seen in the retrievals here is 

significant, the mean error is only 0.003 m
3
m

-3
. 

 

Reasonable spreads in soil moisture yield a similar magnitude of results, though 

uncertainty in the relationship between soil permittivity and moisture content makes 

the exact level unclear. It is not obvious how this can be mitigated. Most areas with a 

significant level of soil moisture will also have a significant range, particularly on the 

spatial scale of hundreds of square kilometres. Possibly modifications to the emission 

model could be made, to represent a heterogeneous emitting area, but it is unclear 

how retrievals from such a model might work. 

 

More seriously, small, unknown areas of water in the scene can potentially have a 

considerable effect on retrieval, with even small errors in water fraction able to cause 

substantial errors amounting to a significant fraction of the total SMOS/HYDROS 

instrumental error targets of 0.04 m
3
m

-3
. Clearly this effect needs accounting for in a 

system error budget, using auxiliary data. This is likely to be most difficult in areas of 

ephemeral surface water and flooding. Even accounting for the effect of static water 

bodies may well cause problems for retrievals, as precise and accurate global water 

body area information is surprisingly difficult to locate. Classified remote sensing 

data such the University of Maryland Database [18], or Europe’s CORINE [19][20] 

are too coarse to provide accurate estimates of water cover area, and will not 

incorporate dynamic water events such as tides and floods . Vector river databases 

such as the drainage feature in ESRI’s ‘Digital Chart of the World’ [21] dataset 

generally do not include information on river width, forcing us to generate water 

fractions based on river width estimates. This suggests to us that auxiliary water cover 

data of higher temporal and spatial resolution than is presently available will be 

necessary to accurately retrieve soil moisture from remotely-sensed L-band passive 

microwave data.  

 

The effect of vegetation optical depth heterogeneity would also appear to be 

significant, but in this case is manageable. Since the major effect of vegetation in the 

τ-ω model is to obstruct the target surface by exponential attenuation, it should not be 

a surprise that a simplistic implied additive representation of vegetation as used in the 

basic model proves inadequate. However, a minor modification to the model, 

representing vegetation as a weighted average of bare soil and vegetation, 
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significantly reduces the error induced by heterogeneity, and this should be 

considered for algorithms intending to retrieve soil moisture from heterogeneous areas 

using multiple-angle observations. Also, whilst this technique may prove useful in 

scenes with planar heterogeneity in vegetation cover, we have not, as indicated 

earlier, here extended the heterogeneity vertically, and considered scenes which have 

multiple simultaneous and overlapping vegetation layers, such as wooded areas with 

understories of grass and undergrowth. Clearly there are far more combinations of 

these types of scenes than we could consider here, and whilst we suspect that the 

vegetation type with the longest optical depth would tend to dominate, this area may 

warrant further study. 
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Mean soil 

moisture 
θ (m

3
·m

-3
)  

Soil moisture θ heterogeneity, maximum deviation from mean… 

0.10 m
3
·m

-3
 0.05 m

3
·m

-3
 0.01 m

3
·m

-3
 

θ values used for composite brightness temperature curve (m
3
·m

-3
) 

0.1 0.0, 0.05, 0.10, 0.15, 0.20 0.05, 0.075, 0.10, 0.125, 0.15 0.09, 0.095, 0.10, 0.105, 0.11 

0.4 0.30, 0.35, 0.40, 0.45, 0.50 0.35, 0.375, 0.40, 0.425, 0.45 0.39, 0.395, 0.40, 0.405, 0.41 

 

Table 1. Example heterogeneous soil moisture scenarios – the values of soil moisture 

content used to represent moisture heterogeneity. 

 

Source data Single-angle Six-angle 

Retrieval system Assume h=0.15 Assume h=0.15 Retrieve h 

Mean absolute error (m
3
·m

-3
) 0.011 0.007 0.003 

Maximum error (m
3
·m

-3
) 0.049 0.021 0.014 

 

Table 2. Soil moisture retrieval errors (mean and maximum) from an area 

heterogeneous in soil roughness h. 

 

 

 

Number of τ’s 

in test data 

Soil moisture retrieval error 

(mean / maximum) (m
3
m

-3
) 

1 0.010 / 0.042 

2 0.010 / 0.046 

7 0.011 / 0.033 

 

Table 3. Soil moisture retrieval from τ-homogeneous and heterogeneous regions, 

using a single-angle system. 

 

 

 Retrieval assumption about τ 

 

Single τ 

Vegetation / bare 

soil model, eq. (2) 

Two vegetation 

optical depths model, 

eq. (3) 

Number of τ’s 

in test data Soil moisture retrieval error (mean / maximum) (m
3
m

-3
) 

1 0 / 0 0 / 0 0 / 0 

2 0.018 / 0.061 0 / 0 0 / 0 

7 0.023 / 0.047 0.005 / 0.018 0.001 / 0.011 

 

Table 4. Soil moisture retrieval from τ-homogeneous and heterogeneous regions, 

using a six-angle system, and different assumptions of the τ composition. 
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Source of heterogeneity Range of source 

considered 

Largest likely effect (reduced) 

(m
3
m

-3
) 

Single angle Multiple angle 

Soil roughness 0.0 – 0.3 0.005 0.021 (0.014) 

Soil moisture 0.20 m
3
m

-3
 spread 0.005 0.017 

Open water 0.5% absolute error 

in area estimation 

0.100* 0.013* 

Vegetation optical depth Mixtures between 0.0 

and 0.6 

0.002 0.061 (0.011) 

* for scene 50% covered by water 

 

Table 5. Comparison of the effects of different error sources, including for some 

sources the errors reduced by the methods suggested in each section. 
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Figure 1. The variation in soil moisture retrieval error caused by a range of soil 

roughness and retrieving assuming the mean value, as a function of soil moisture for 

the single-angle system, compared to retrievals for the homogeneous equivalents. 
 

 

 

 

 

 
Figure 2. The variation in soil moisture retrieval error caused by a range of soil 

roughness, as a function of soil moisture for the six-angle system, assuming the 

average value of surface roughness. 
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Figure 3. The variation in soil moisture retrieval error caused by a range of soil 

roughness, as a function of soil moisture for the six-angle system, retrieving a single 

value of surface roughness. 
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(a) Single-angle retrievals 

 

 
 

(b) Six-angle retrievals 

 

Figure 4. The effect of soil moisture heterogeneity, statistics over six scenarios. 
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(a) Single-angle retrievals 

 

 
 

(b) Six-angle retrievals 

 

Figure 5. The effect of water bodies within scene on soil moisture retrieval 
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(a) 

 

 
(b) 

 

Figure 6. Soil moisture retrieval error caused by (a) 0.2% and (b) 0.5% errors in 

estimates of water cover fraction, using a single-angle system. 
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(a) 

 

 
(b) 

 

Figure 7. Soil moisture retrieval error caused by (a) 0.2% and (b) 0.5% errors in 

estimates of water cover fraction, using a six-angle system. 
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(a) Single-angle retrieval 

 

 
(b) Six-angle retrieval 

 

Figure 8. The error in retrieved soil moisture for a pixel which is a mixture of 

vegetation-covered and bare soil, using a retrieval which assumes a single value of 

vegetation optical depth. 
 


