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A B S T R A C T

Financial regulators and investors are increasingly concerned about the effects of climate change on investments 
and seek to capture the climate-related and environmental risks of investments. Whilst energy companies have 
attracted most of the attention due to the contribution of the Energy sector to environmental degradation, 
climate-related and environmental risks actually affect companies in every sector. In this paper, we propose 
novel measures termed as climate Value-at-Risk (VaR) and climate Expected Shortfall (ES) that capture the risk 
attributed to transition risk factors proxied by environmental scores. We compare the average ratio of climate 
VaR and ES to total risk in various equity sectors, which enables us to identify the sectors in which climate and 
environmental risk factors contribute most to the total risk. Our analysis considers different risk measurements 
and various significance levels. Our findings show heterogeneity in sensitivity to climate and environmental risk 
factors in various sectors. The Health Care sector is the least cost-effective in reducing climate-related and 
environmental risks, and the Energy sector benefits most from improving the firms’ environmental scores.

1. Introduction

As one of the most critical global challenges on this planet, climate 
change potentially impacts every individual, with health and social 
implications, but also affecting the economy and the financial system. 
Fossil fuels are a crucial input to production, and economic growth in
creases greenhouse gas emissions. The climate change attributes to those 
emissions and the literature shows that climate change has become a 
prominent risk that will potentially create substantial costs to the 
economy (Burke et al., 2015; Dietz et al., 2016; Lesk et al., 2016). 
Nonetheless, if the economic effects of climate change are as large as 
some studies have suggested, then, given that financial assets are ulti
mately supported by economic activities, the impact of climate change 
on financial assets could also be substantial.

Research on the interaction between climate change and financial 
economics is termed climate finance (Giglio et al., 2021). In this field, 
one of the important topics at the moment is to understand the effect of 
climate on various financial indicators. As highlighted by the Bank of 
England (2021), there is a research gap in incorporating climate risks 
into capital requirements. Additionally, the Basel Committee on Banking 
Supervision (2021) explores how climate-related risk factors arise and 
impact portfolios as well as levels of risk, providing the theoretical 
background on climate-related risk drivers and their transmission 

channels. From an EU perspective, the European Central Bank (2020)
expects the financial institutions to continuously monitor the effects of 
climate-related and environmental risk factors on their holdings and 
future investments. To act on that, the European Central Bank (2022)
put forward a framework for annual climate risk stress test. To address 
the research gap and meet regulatory demands, our study contributes to 
the climate finance literature that investigates the impact of 
climate-related and environmental risks on financial markets and firms.

We introduce new measures of climate-related and environmental 
risks, specifically climate Value-at-Risk and climate Expected Shortfall 
which capture the risk in equities that stems from climate-related and 
environmental risk factors proxied by environmental scores. Also, we 
compare the average ratios of climate Value-at-Risk and climate Ex
pected Shortfall to total risk in several equity sectors, and we identify the 
sectors in which climate-related and environmental risk factors 
contribute most to total risk.

In this study, we use the terminology “climate-related and environ
mental risks” following European Central Bank (2020) and Network for 
Greening the Financial System (2020, 2023) to capture the impact from 
climate change and environmental degradation in companies, and 
perform a comparative analysis of the various industry sectors. 
Climate-related and environmental impact has two main drivers, phys
ical risk and transition risk. The former refers to the mainly negative 
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impact of climate and weather-related events on business operations, 
society, and supply chains (Tankov and Tantet, 2019). There are two 
sub-categories within the class of physical risks: acute risk and chronic 
risk. Extreme weather events including extreme drought and 

precipitation, floods, hurricanes, heatwaves, and wildfires are defined as 
acute risks. Chronic risks are generally considered to include: rising sea 
levels, rising average temperatures, and ocean acidification. The latter 
refers to the risk associated with a path to a low carbon economy and all 

Table 1 
Summary statistics.

Sector Return (%) Environment Emission Innovation Resource Size M/B* ROE* Leverage* Investment NumComp

Basic Materials 1.061 42.591 41.739 44.426 44.950 7.837 2.652 0.029 1.423 4.231 62
Consumer Discretionary 1.107 49.103 44.379 45.990 50.110 8.609 4.608 0.050 1.531 4.671 125
Consumer Staples 0.972 48.954 43.753 45.655 53.314 8.873 7.192 0.068 1.690 4.608 61
Energy 0.989 63.171 57.855 53.369 56.901 8.761 1.126 0.001 0.558 5.472 28
Financials 1.403 53.045 52.106 41.627 49.021 9.298 5.905 0.066 1.444 2.895 65
Health Care 1.620 56.791 56.961 46.748 63.459 9.624 7.770 0.020 0.740 4.523 31
Industrials 1.238 43.642 38.535 45.510 42.599 8.258 5.316 0.054 1.764 3.942 188
Real Estate 1.018 51.928 53.844 43.738 51.257 8.467 2.497 0.019 1.374 0.738 74
Technology 2.089 52.050 52.124 52.157 54.933 9.008 4.670 0.032 0.446 4.200 88
Telecommunications 0.617 46.841 48.230 46.677 53.289 8.947 2.424 0.011 1.174 4.968 22
Utilities 1.200 49.931 56.083 44.952 49.158 8.827 2.015 0.025 1.263 6.038 58

Note: This table reports averages (for monthly frequency) of the variables employed in the regressions in this study reported for 11 different sectors listed in the first 
column. The sample period is from January 2003 to December 2019. Return represents average monthly return of the sector (in percentages). Emission, Innovation, and 
Resource indicate, respectively, the Emission score, Innovation score, and Resource Use score. Size is the natural logarithm of market capitalization in $ million. M/B 
denotes the market value of equity divided by its book value. ROE is the return on equity. Leverage is the total debt (long-term and short-term) divided by the total 
stockholders’ equity. Investment is the natural logarithm of the capital expenditures in $ million. NumComp represents the number of companies in the sector. Variables 
followed by * are winsorized at 1%.

Table 2 
Panel regression results for returns and environmental scores at various quantiles.

Quantiles
Variable 1% 5% 10% 30% 50% 70% 90% 95% 99%

Environment − 0.057*** − 0.032*** − 0.021*** − 0.008*** − 0.003** 0.004* 0.013** 0.015 0.021
(0.011) (0.006) (0.005) (0.002) (0.001) (0.002) (0.006) (0.010) (0.018)

Size 3.575*** 2.437*** 1.794*** 0.773*** 0.263*** − 0.249*** − 1.288*** − 2.077*** − 4.225***
(0.268) (0.181) (0.128) (0.057) (0.029) (0.053) (0.156) (0.223) (0.382)

M/B 0.027*** 0.010 0.001 0.002 0.000 0.000 − 0.002 − 0.001 − 0.003
(0.007) (0.006) (0.006) (0.003) (0.003) (0.002) (0.002) (0.003) (0.015)

ROE − 0.979** − 0.725 − 0.037 − 0.180 0.034 0.023 0.081 − 0.046 − 0.606
(0.420) (0.584) (0.375) (0.226) (0.188) (0.165) (0.132) (0.236) (0.514)

Leverage − 0.230** − 0.010 0.001 − 0.001 − 0.001 0.000 0.010 0.008 0.289*
(0.101) (0.028) (0.013) (0.008) (0.005) (0.003) (0.013) (0.034) (0.168)

Investment − 0.686*** − 0.492*** − 0.395*** − 0.250*** − 0.186*** − 0.119*** 0.024 0.157 0.379**
(0.144) (0.112) (0.098) (0.047) (0.030) (0.031) (0.076) (0.100) (0.193)

Note: This table presents the results of the quantile regression with penalized sector fixed effects for the panel data of returns and environmental pillar under the 
Refinitiv ESG scores during the sample period from January 2003 to December 2019. The quantiles considered are 1%, 5%, 10%, 30%, 50%, 70%, 90%, 95%, and 99%. 
All control variables are lagged by one month. The standard errors are reported in parenthesis, *, **, and *** denote statistical significance at 10%, 5%, and 1% levels, 
respectively.

Fig. 1. Effect of the environmental pillar under Refinitiv ESG scores on returns at different quantiles.
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related implications of fossil fuels and dependent sectors (Curtin et al., 
2019).1

Climate-related and environmental risks are growing concern for the 
financial sector, and they are affecting the prices of various assets, 
including stocks, bonds, real estate, and more (see Bernstein et al., 2019; 
Goldsmith-Pinkham et al., 2019; Hong et al., 2019; Baldauf et al., 2020; 
Painter, 2020; Bolton and Kacperczyk, 2021; Giglio et al., 2021). Also, 
they are long-term risks that pose significant challenges to investors, as 
it is often not effectively priced in financial markets (Andersson et al., 
2016; Bansal et al., 2016). To mitigate these risks, investors need to 
consider the potential impact of climate change on the returns of assets. 
The implementation of carbon pricing can play an important role in 
reducing CO2 emissions (Best et al., 2020), but it is also important to 
consider other factors, such as firm-level risk exposure to climate 
regulation (Seltzer et al., 2022), to climate change news shocks (Ardia 
et al., 2023), to the attention paid by market participants in earnings 
calls related to a firm’s climate risks (Sautner et al., 2023), and the ef
fects of weather conditions with abnormal temperatures 
(Anttila-Hughes, 2016; Kumar et al., 2019; Choi et al., 2020). On the one 
hand, companies with high carbon emissions are more likely to be 
exposed to climate-related and environmental risks, and their stock 
prices may be more likely to be affected by climate-related factors 
(Bolton and Kacperczyk, 2021). On the other hand, companies with 
higher environmental scores on ESG scores are likely to perform better 
when climate-related events occur (Engle et al., 2020; Huynh and Xia, 
2021). Furthermore, climate policy uncertainty is reflected in the option 
price and can influence the social cost of carbon, as well as affecting the 
stock prices of firms with high exposure to climate policy (Barnett, 2023; 
Barnett et al., 2020; Ilhan et al., 2021). The hot debate of the climate 
change also arises the concerns of the impact of climate change on the 
financial risk management. Dietz et al. (2016) propose a climate risk 
measure by taking into account effects of climate damages on the pre
sent value of global assets. Acharya et al. (2023) provide a climate risk 
measure exploring a climate stress testing characterization of risk for 
financial firms and banks.

Risk measures such as Value-at-Risk (VaR) and Expected Shortfall 
(ES) have been widely used in academics and practice. VaR is one of the 
most popular tail risk measures that is employed to assess and manage 
financial risk. VaR is an estimate of the quantile of the distribution of 
profit and losses, and it can be measured at different levels. Due to its 

conceptual simplicity, VaR has become a popular risk measure of market 
risk and is frequently investigated (see Duffie and Pan, 1997; Dowd, 
1998; Jorion, 2000; Dempster, 2002; Allen, 2012). However, since VaR 
ignores the shape and structure of the tail of the returns’ distribution and 
is not a coherent risk measure (i.e. it is not subadditive), ES, as an 
alternative, has been proposed (Artzner, 1997; Artzner et al., 1999). It 
measures the expected value of the observations provided that they 
exceed VaR and is a coherent risk measure (Roccioletti, 2015). Due to its 
favourable properties, ES has consistently increased in popularity (see e. 
g. Chen et al., 2012; Patton et al., 2019; Taylor, 2019; Gerlach and 
Wang, 2020). However, the measurement of ES is inherently dependent 
on the value of the VaR estimate. As such, ES is not elicitable by itself, 
and only the (VaR, ES) tuple is elicitable (Ziegel, 2016). There is no 
doubt that in recent years climate-related and environmental risks have 
become some of the most important components of total financial risks, 
as highlighted by the European Central Bank (2020) and the Network for 
Greening the Financial System (2020, 2023). One important question 
that arises is to what extent climate-related and environmental risks 
contribute to the total financial risks, and this is the central research 
question we address here. Additionally, it has been well documented 
that different sectors have heterogeneity in the climate and 
environmental-factors (e.g. Giese et al., 2021). Thus, we extend our 
analysis by investigating the relationship between market risks and 
climate-related and environmental risk factors in various sectors.

This paper makes three main contributions. First, we pioneer in 
investigating the relationship between stock returns and transition 
climate-related and environmental risk factors in different return 
quantiles. The existing literature focuses on the link between environ
mental risk factors and the stock returns in the mean (Giese et al., 2019; 
Cornell, 2021; Luo, 2022), without paying attention to possible varia
tions in the different quantiles of the stock returns. Based on firm-level 
environmental scores constructed by the ESG (“Environmental, Social, 
and Governance”) scores data provided by Refinitiv to proxy the firms’ 
climate-related and environmental risk exposure, we find a significant 
negative relationship between them in the lower quantiles of stock 
returns, implying that companies that face financial difficulties are 
affected negatively by the costs of improvements made to their envi
ronmental scores.

Our second contribution is to propose novel measures (climate VaR 
and climate ES) that capture the market risk attributed to climate- 
related and environmental risk factors proxied by environmental 
scores. Some institutions have proposed risk measures that they labelled 
“Climate Value-at-Risk” (e.g. MSCI, 2020). However, there is no publicly 
available documentation on how their measure is computed.2 In addi
tion, we introduce climate risk ratios for VaR and ES, which show the 
proportion of market risk which is due to climate-related and environ
mental risk factors. These novel measures can be useful tools for other 
researchers, investors and policymakers.

Our third contribution is to highlight how companies in various 
sectors respond to climate-related and environmental risks. As far as we 
know, there is no literature on sectoral analysis for climate VaR/ES. Our 
results indicate the heterogeneity in the sensitivity of different sectors to 
climate-related and environmental risk variables. In particular, com
panies in the Energy sector gain the most from improving environmental 
scores, whereas companies in the Health Care sector are the least cost- 
effective in decreasing their climate-related and environmental risk. 
Our results are robust to changes to the models used to capture risk and 
to the levels of risk significance.

The rest of the paper is organized as follows. Section 2 discusses the 
methodology to estimate the climate-related and environmental risk 

Table 3 
Summary statistics for VaR and ES estimates at 1% level.

Sector VaR ES Climate VaR Climate ES

Basic Materials − 27.998 − 37.971 0.377 0.577
Consumer Discretionary − 28.306 − 39.501 − 0.258 − 0.784
Consumer Staples − 22.031 − 31.454 2.217 3.186
Energy − 30.231 − 40.293 6.642 9.346
Financials − 21.000 − 27.844 0.372 0.201
Health Care − 21.370 − 30.283 − 4.928 − 7.134
Industrials − 25.150 − 34.762 − 0.583 − 0.684
Real Estate − 17.069 − 22.258 − 0.329 − 0.430
Technology − 27.349 − 38.528 2.040 2.797
Telecommunications − 28.696 − 41.374 − 1.656 − 2.368
Utilities − 16.920 − 22.357 1.210 1.681

Note: This table reports the average firm-month total VaR and ES as well as cli- 
mate VaR and ES (in percentages) for 11 sectors during the period from January 
2003 to December 2019. In columns 1 and 2, average VaR and ES estimates at 
1% level are presented. Average climate VaR and ES calculated using Eq. (6) are 
reported in columns 3 and 4. The negative coefficients of environmental scores 
in Tables 4 and 5 may lead to positive Climate VaR or ES estimates. A positive 
(negative) Climate VaR or ES means that the environmental scores contribute to 
a reduction (increase) in the total risk.

1 Also see Basel Committee on Banking Supervision (2021) for a regulatory 
perspective on climate-related risk drivers in the banking system.

2 The commercial product illustrated by MSCI (2020) reports the climate VaR 
spread by different sectors of activity found within a portfolio, whereas our 
study provides a new measure on climate VaR/ES based on the relationship 
between market risks and climate-related and environmental risk factors.

E. Lazar et al.                                                                                                                                                                                                                                   Journal of Environmental Management 373 (2025) 123393 

3 



measures. Section 3 introduces the firm-level data used in the empirical 
analysis. Section 4 presents the estimation results from panel data re
gressions. Section 5 reports the results of several robustness checks. 
Section 6 concludes. The online Supplemental Appendix contains addi
tional results.

2. Methodology

2.1. Risk measures

The downside risk is captured by the left tail of stock returns’ dis
tribution. Two prevalent measures are employed to identify such risk. 
The first measure, VaR, is an estimate of the quantile of the distribution 
of profit and losses and it can be measured at different levels. Due to its 
conceptual simplicity, VaR has become a popular risk measure of market 
risk. However, VaR ignores the shape and structure of the tail of the 
returns’ distribution and is not a coherent risk measure (i.e. it is not 
subadditive) (Artzner et al., 1999). Thus, a second risk measure has been 
introduced, ES, which measures the expected value of the observations 
provided that they exceed VaR; this is a coherent risk measure 
(Roccioletti, 2015).

VaR provides banks and financial institutions with an estimate of the 
minimum loss level that occurs in the worst outcomes at a given level 
α ∈ (0,1). Let FY(⋅|Ωt− 1) denote the cumulative distribution function of 
asset return Yt over a time horizon (such as one day or one week) con
ditional on the information set Ωt− 1. The VaR at level α can be written 
directly in terms of the inverse cumulative distribution function (Duffie 
and Pan, 1997): 

VaRα
t = F− 1

Y (α|Ωt− 1), (1) 

where VaRα
t denotes the α-quantile of the underlying return distribution 

at time t. As such, Following Ziegel (2016), Nolde and Ziegel (2017), and 
Chen (2018), the VaR at level α at time t can be defined as: 

VaRα
t = inf{Yt |FY(Yt |Ωt− 1)≥ α}. (2) 

ES measures the expectation of return conditional on its value being 
less than VaR. As a coherent risk measure and due to its superior 
properties, ES has become increasingly popular in the risk management 
of banks and financial institutions. Recently, the Basel Committee on 
Banking Supervision (2013) proposed a transition from VaR at 1% level 
to ES at 2.5% level motivated by the global financial crisis in 2008. ES at 
level α at time t can be formally defined as (see Acerbi and Tasche, 
2002): 

ESα
t =E

[
Yt
⃒
⃒Yt ≤VaRR

t ,Ωt− 1
]
. (3) 

Since the generalized autoregressive conditional heteroskedastic 
(GARCH) model of Bollerslev (1986) and its variants (Nelson, 1991) 
capture the time-varying volatility feature, they are widely used to 
forecast VaR and ES in the literature. We also employ the GARCH model 
with skewed t distribution of Hansen (1994) for our estimation of risk 
measures. The model is specified as follows: 

vt = μt + aσt , where a = F− 1
η (α),

et = μt + bσt , where b = E[ηt |ηt ≤ a],

Yt = σtηt , ηt ∼ iid Fη(0, 1),

σ2
t =ω + δσ2

t− 1 + γY2
t− 1 (4) 

where σ2
t is the conditional variance which follows a GARCH(1,1) pro

cess, ηt is the standardized residual that follows the skewed t distribution 
Fη(0,1) and Yt is the de-meaned daily returns. This model is based on a 
strong link between VaR/ES and equity returns, which has been widely 
discussed in the early literature (e.g. Duffie and Pan, 1997; Dowd, 
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1998). We transform the daily VaR and ES to monthly estimates by 
multiplying average daily risk measures in the given month by the 
square root of 21. There are many other ways to estimate VaR and ES. 
We provide the robustness checks using alternative estimation of VaR 
and ES in Section 5.

2.2. Climate VaR and ES

We employ the Environmental component (denoted as E-score) of 
the ESG score in our study, given that it is related to the environmental 
factors and captures the effects of climate-related issues on companies. 
The E-score is comprised of three sub-scores: the Emission score, the 
Innovation score, and the Resource Use score. Specifically, the Emission 
score reflects the extent to which a firm is committed to reducing 
environmental emissions in its production and operational processes; 
the Innovation score measures a firm’s capacity to create new market 
opportunities through environmental technologies and processes, or 
eco-designed products; the Resource Use score reflects a firm’s perfor
mance and capacity to reduce the amount of natural resources it uses 
and improve its supply chain management. Taken together, these sub- 
components provide a comprehensive view of a firm’s environmental 
performance and can help investors make informed decisions about the 
long-term sustainability and financial performance of a company. Thus, 
instead of directly revealing the link between this environmental pillar 
and the downside risks, we consider these three sub-components of the 
E-score in order to quantify the market risks attributed to the climate- 
related and environmental risk factors.

To determine the extent to which the risk presented by climate- 
related and environmental factors affects the VaR and ES of the equity 
returns, we begin our analysis by investigating the link between market 
risk measures and environmental scores in various sectors. For every 
sector, we estimate the following panel data regression: 

Downside Riski,t = β0 + β1Emissioni,t + β2Innovationi,t + β3Resourcei,t

+ β4Controlsi,t− 1 + δi + γt + ϵi,t , (5) 

where the Downside Riski,t represents one of the two risk measures (VaRi,t 

and ESi,t) of the firm i in month t at 1% level; Emissioni,t, Innovationi,t and 
Resourcei,t measure the Emission, Innovation and Resource Use scores, 
respectively, of firm i in month t; Controlsi,t− 1 is a vector of control 
variables that may affect downside risk, including size, M/B, leverage, 
ROE, and investment.3 We include firm fixed effect (δi) and year-month 
fixed effect (γt). We obtain ̂β1, ̂β2, and ̂β3, and these capture the effects of 
the climate-related and environmental risk factors on VaR and ES. Also, 
we report the heteroskedasticity-consistent standard errors of White 
(1980).

In the following, we provide the definition for Climate VaR and ES, 
which are the VaR and ES of the stock returns of a firm, attributed to 
environmental scores. Based on Eq. (5), the Climate VaR and ES of firm i 
in month t are calculated as: 

Climate Downside Riski,t = β̂1Emissioni,t + β̂2Innovationi,t + β̂3Resourcei,t .

(6) 

If the β is negative (positive), an increase in the Emission score, 
Innovation score, or Resource Use score increases (decreases) the risk.4

Additionally, we define the portion of VaR or ES attributable to envi
ronmental scores as follows: 
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3 Following the approach in Bolton and Kacperczyk (2021), we run these 
regressions for firm-months observations. The firm-level control variables are 
updated quarterly, so in our regressions, we use the most recent observation for 
these variables. The emission score variables are updated annually, and for 
these as well we use the most recent observations in our regressions.

4 The environmental scores are between 0 and 100, and the risk is typically 
expressed as a negative number.
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Climate Risk Ratioi,t =
Climate Downside Riski,t

Downside Riski,t
. (7) 

When the sign of the ratio is negative, the effort spent on the 
improvement of these three environmental scores reduces the riskiness 
of the firm. When it is positive, the cost associated with the improvement 

of the environmental scores leads to an increase in the firm’s downside 
risk.

Fig. 2. Heatmaps of the Statistical significance (left) and Economic significance (right) of the Emission score, Innovation score, and Resource Use score for VaR from 
11 sectors during the sample period from January 2003 to December 2019. The statistical significance is represented by the coefficients of environmental scores in 
Table 4. *, **, and *** denote statistical significance at 10%, 5%, and 1% levels, respectively. Economic significance is defined as the percentage change in total VaR 
associated with an increase of one standard deviation in the specified environmental score. In both heatmaps, red (green) boxes indicate that an improvement in the 
specified environmental score increases (decreases) risk.

Table 6 
Summary statistics of climate risk ratio for VaR and ES at 1% level.

Sector Mean Std Max Min

(1) (2) (3) (4) (5) (6) (7) (8)
VaR ES VaR ES VaR ES VaR ES

Basic Materials − 1.703 − 1.861 3.090 3.081 3.825 3.791 − 10.870 − 10.268
Consumer Discretionary 1.026 2.249 1.301 1.744 6.161 9.259 − 1.092 − 0.679
Consumer Staples − 12.382 − 12.771 7.997 8.515 − 1.240 − 1.217 − 32.989 − 36.480
Energy − 26.996 − 29.397 18.960 21.607 − 4.905 − 5.120 − 76.727 − 86.979
Financials − 1.896 − 0.805 4.032 4.084 6.510 9.748 − 11.419 − 10.604
Health Care 26.499 27.671 15.638 16.909 69.415 75.364 1.987 2.130
Industrials 2.585 2.223 2.139 2.020 9.570 8.892 − 2.476 − 2.753
Real Estate 1.879 1.900 3.590 3.660 10.070 10.118 − 8.939 − 8.909
Technology − 8.086 − 7.954 4.949 4.972 − 0.410 − 0.264 − 23.312 − 23.123
Telecommunications 7.141 7.382 8.882 9.614 29.765 33.169 − 9.396 − 9.684
Utilities − 7.776 − 8.314 3.672 3.997 − 1.459 − 1.606 − 15.918 − 17.169

Note: This table presents the summary statistics of the climate risk ratio for VaR and ES (in percentages) for 11 sectors from January 2003 to December 2019. The mean 
values and standard deviations of the ratio appear in columns 1–2 and 3–4, while the maximum and minimum values of the ratio appear in columns 5–6 and 7–8.
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2.3. Quantile regression with penalized fixed effect for panel data

In the recent literature, several environmental proxies have been 
shown to affect stock returns (Engle et al., 2020; Bolton and Kacperczyk, 
2021; Hsu et al., 2023). Here we employ the quantile regression pro
posed by Koenker (2004) using panel data to discover the relationship 
between stock returns and environmental scores at various quantiles. To 
determine how environmental scores influence returns at different 
quantiles of their distribution, we first investigate the following stan
dard linear panel regression model: 

yi,t = x⊤
i,tβ + δi + ϵi,t , t = 1,…,Ti, i = 1,…, n, (8) 

where yi,t indicates the firm’s stock return, xi,t is a vector of variables 
including the environmental pillar of the ESG score and the lagged one- 
month size, M/B, leverage, ROE, and investment. δi represents the firm 
fixed effect, and ϵi,t is the error term. The subscript i indexes the firm, 
while the subscript t indexes the time. The following model is then 
considered for the conditional quantile functions (at quantile) of the 
returns in month t of the ith firm yi,t: 

Qyi,t

(
τ|xi,t

)
= x⊤

i,tβ(τ) + δi, t = 1,…,Ti, i = 1,…, n, (9) 

To simultaneously estimate Eq. (9) for several quantiles, we perform 
the following optimization: 

min
(β,δ)

∑q

k=1

∑n

i=1

∑Ti

t=1
wkρτk

(
yi,t − x⊤

i,tβ(τk) − δi

)
, (10) 

where ρτ(ϵ) = ϵ(τ − I(ϵ< 0)) denotes the piecewise linear quantile loss 
function of Koenker and Bassett Jr (1978). The weights wk control the 
relative impact of the q quantiles 

{
τ1,…, τq

}
on the estimation of the 

parameters.
The estimation of β and the firm fixed-effect δi can be improved by 

reducing the unconstrained δi’s toward a common value. To achieve 
that, we employ the l 1 penalty, P(δ) =

∑n
i=1 |δi| in addition to Eq. (10). 

Then, we obtain the estimators by solving the penalized version of Eq. 
(10): 

Fig. 3. Climate risk ratio (in percentages) for 11 sectors at 1% level. The ratios for Var and ES are displayed in (a) and (b), respectively. The left and right boundaries 
of the error bar for each sector are the 5 percent and 95 percent quantiles of the ratio, while the coloured marker represents the mean value. The sectors in the panel 
are ordered in descending order of the average climate risk ratio.
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min
(β,δ)

∑q

k=1

∑n

i=1

∑Ti

t=1
wkρτk

(
yi,t − x⊤

i,tβ(τk) − δi

)
+ λ

∑n

i=1
|δi|, λ > 0, (11) 

where λ is the penalty term. For λ↦0 we obtain the fixed effects esti
mator described in Eq. (10), while as λ↦∞ the ̂δ↦0 for all i = 1,…, n and 
we obtain an estimate of the model with the fixed effects eliminated.

3. Data

In this section, we describe all datasets used in the empirical analysis. 
Detailed definitions of the variables are provided in Table SA.1 of the 
Supplemental Appendix. We focus on U.S. companies in this study. To 
avoid the potential structural break during the COVID-19 period, our 
primary database ranges from January 2003 to December 2019 and is 
primarily comprised of three datasets obtained from Refinitiv, Compu
stat, and CRSP. Refinitiv provides data on environmental scores, Com
pustat provides data on corporate fundamentals, and CRSP provides 
data on stock returns. We implement the matching using CUSIP as the 
main identifier, and the ultimate matching produces 802 unique firms 
and 58,290 firm-month observations.5

According to Section 2.2, we measure firm-level environmental 
performance using the Emission scores, the Innovation scores, and the 
Resource Use scores under the environmental pillar of the Refinitiv ESG 
scores. Calculated at the firm-quarter level, our control variables are 
defined as follows. Size is the natural logarithm of the firm’s market 
capitalization. M/B is the firm’s market capitalization divided by its 
book value. Leverage is the book leverage of the firm. ROE is the firm’s 
earning performance. Investment is the natural logarithm of the firm’s 
capital expenditure plus one (to avoid the natural logarithm of zero). To 
mitigate the impact of outliers, M/B, Leverage, and ROE are winsorized 
at 1% level. We note that firms in various sectors have diverse responses 
to environmental scores. Hence, we report the summary statistics of the 
sample with respect to the FTSE/DJ Industry Classification Benchmark 
(ICB) in Table 1. Telecommunications has the lowest average return 
with a value of 0.617%, while Technology has the highest average re
turn (2.089%), followed by Health Care (1.620%). The Energy sector has 
the greatest overall environmental score, Emission score and Innovation 
score, with respective values of 63.171, 57.855 and 53.339. The Health 
Care sector has the highest Resource Use score (63.459), but the lowest 
Innovation score (41.626). The lowest Emission and Resource Use scores 

are reported for Industrials, which are 38.535 and 42.599, respectively.

4. Results

4.1. Quantile regression results

We begin our analysis by investigating the relationship between 
stock returns in different quantiles and the environmental pillar of the 
Refinitiv ESG scores, by employing the quantile regression described in 
Section 2.3. Table 2 reports the panel regression results for quantiles τ ∈

{1%,5%,10%,30%,50%,70%,90%,95%,99%}, where all quantiles are 
assigned with equal weights when estimating using Eq. (11). For the 
quantiles below 95%, significant coefficients are observed for the 
environmental score.

The overall trend is that the effect is negative for lower quantiles and 
positive for higher quantiles and is more pronounced for lower quan
tiles. The signs of the control variables are generally consistent with the 
literature. Fig. 1 illustrates the values of the coefficient of the environ
mental score, for the above quantiles between τ = 1% to τ = 99%. At the 
1% quantile, the environmental scores have the most negative effect on 
the stock returns. This effect diminishes when the quantile reaches the 
50% quantile, at which point this effect switches to positive. When 
companies struggle, then the costs associated with improving their E- 
score bring additional burdens and so improving the E-score reduces 
overall returns. The effect is opposite when companies do well, in such 
instances improving the E-score increases company returns.

4.2. Climate VaR and ES results

The quantile regression results of Section 4.1 show that there is a 
differential effect of the environmental scores on the returns, depending 
on which quantile the returns falls into. This subsection examines the 
relationship between downside risk (VaR and ES) and environmental 
scores. We collect daily stock returns from January 2003 to December 
2019 using CUSIP from CRSP as described in Section 3. Then, the firm- 
month VaR and ES at 1% level are estimated using the specification in 
Section 2.1. We present the average monthly VaR and ES across several 
sectors in columns 1 and 2 of Table 3. Real Estate and Utilities are the 
sectors with the lowest average VaR and ES, whereas Energy is the sector 
with the highest total risk.

To reveal the effects of environmental scores on downside risk, we 
regress the VaR and ES at 1% level on the Emission score, the Innovation 
score, the Resource Use score, along with firm-level control variables. 
The results are presented in Table 4 and Table 5 for VaR and ES, 

Table 7 
The climate risk ratios and ratio rankings.

Sector Climate risk ratio Rank

(1) (2) (3) (4) (5) (6) (7) (8)

G-SKT GJR-G-SKT G-FZ CARE G-SKT GJR-G-SKT G-FZ CARE

Basic Materials − 1.703 − 0.410 1.351 3.031 6 6 7 7
Consumer Discretionary 1.026 1.951 1.265 2.361 7 7 6 6
Consumer Staples − 12.382 − 16.257 − 11.202 − 10.786 2 2 2 3
Energy − 26.996 − 28.556 − 27.457 − 17.976 1 1 1 1
Financials − 1.896 − 1.355 − 3.521 − 5.484 5 5 5 5
Health Care 26.499 27.649 20.652 17.795 11 11 11 11
Industrials 2.585 4.126 2.018 3.790 9 9 8 8
Real Estate 1.879 1.964 2.149 4.630 8 8 9 9
Technology − 8.105 − 8.248 − 7.668 − 7.601 3 3 4 4
Telecommunications 7.141 8.699 12.404 5.460 10 10 10 10
Utilities − 7.776 − 6.516 − 8.355 − 11.218 4 4 3 2

Note: This table presents the average climate risk ratios (in percentage) and the rankings for 11 sectors (the model with the lowest ratio is ranked 1 and the model with 
the highest ratio is ranked 11) based on the climate risk ratio for VaR estimates at 1% level from January 2003 to December 2019 for 3 risk model specifications. The 
negative (positive) ratio refers to a reduction (increase) in the total risk due to environmental scores. G-SKT, GJR-G- SKT, G-FZ, and CARE correspond to the GARCH 
model with skewed t distribution, the GJR-GARCH model with skewed t distribution, the GARCH model estimated with the FZ0 loss function from Fissler and Ziegel 
(2016), and the CARE model based on Taylor (2008), respectively.

5 The correlations of the environmental scores and control variables are re
ported in the Supplemental Appendix.
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respectively. The Energy and Utilities sectors have only positive co
efficients across all scores, indicating that an improvement in any one of 
these environmental scores of firms in these two sectors leads to a 
reduction in the total risk of the firms. Health Care, however, has solely 
negative coefficients on the environmental scores, which indicates that 
as the environmental scores increase, the firms’ total risks increase 
proportionally. In other words, the companies’ investments in 
improving their environmental scores reduce their total risk in the En
ergy and Utilities sectors, whilst it increases their total risk in the Health 
Care sector. This might be related to the link between medical services 
and emissions, as also argued by Pichler et al. (2019). Building low 
carbon strategies requires considerable effort, given the complexities of 
medical supply chains and health treatments, and can be very costly for 
health companies, which makes emission reductions hard to achieve. 
Other sectors have coefficients with mixed signs associated with the 
three environmental scores. Due to the differences of sectors, some 
sectors benefit from increases in the individual scores but are negatively 
affected by others. For instance, firms in the Industrials sector have their 
risk affected positively by their Emission score but negatively by their 
Innovation score and Resource Use score.

The left panel of Fig. 2 displays the heatmaps of the statistical sig
nificance of VaR with respect to the three environmental scores. Ac
cording to the value of the coefficients, sectors including Consumer 
Staples, Energy, and Utilities benefit from the improvement in all of the 
three environmental scores. The Innovation score has a positive and 
statistically significant effect on the total risk of the companies in these 
three sectors. This effect is also observed for Resource Use Score in the 
Consumer Staples and Energy sectors. However, the negative signs of the 
coefficients of the three environmental scores in the Health Care sector 
indicate that the additional expenditures made by companies to improve 
their environmental scores raise their total risk. The right panel of Fig. 2
reports the economic significance of the results. Several key observa
tions are worth noting.6 First, an one-standard-deviation increase in the 
Resource Use score of companies in the Energy sector leads to a wors
ening of 2.042% in their total risk. Second, companies in the Health Care 
sector suffer a deterioration of 1.490% in their total risk due to an one- 

Fig. 4. Expectile-based climate risk ratio (in percentages) for 11 sectors at 1% level. The ratios for expectile-based Var and ES are displayed in (a) and (b), 
respectively. The left and right boundaries of the error bar for each sector are the 5 percent and 95 percent quantiles of the ratio, while the coloured marker 
represents the mean value. The sectors in the panel are ordered in descending order of the average expectile-based climate risk ratio.

6 To our knowledge, there is no existing literature of performing such a 
sectoral analysis to compare our results against.
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standard-deviation increase in the Emission score. Third, an one- 
standard-deviation increase in the Resource Use score of companies in 
the Telecommunication sector is associated with a 2.392% improvement 
in their total risk. Lastly, companies in the Technology sector benefit an 
improvement of 1.159% in their total risk via an one-standard-deviation 
increase in the Emission score.

Climate VaR and ES are computed7 based on Eq. (6), and the results 
are presented in columns 3 and 4 in Table 3. In the Energy sector, the 
average Climate VaR (ES) is the most positive at 6.642% (9.346%), 
which implies that the environmental scores lead to a reduction of total 
VaR (ES). On the contrary, the VaR and ES of firms in Health Care 
attributed to environmental scores are the highest in absolute value. The 
cost associated with improving the environmental scores leads to an 
increase in the firms’ downside risk in this sector. A similar effect can be 
seen in the Telecommunication sector.

We employ the climate-related and environmental risk measure 
proposed in Eq. (7) to demonstrate the extent to which the 

environmental scores affect the total downside risk of the firms. The 
summary statistics of the climate risk ratio for VaR and ES for different 
sectors are reported in Table 6. A negative (positive) sign in the mean 
value of the climate risk ratio indicates that, on average, improvements 
in the environmental scores reduce (increase) the total risk of the firm. 
Sectors including Basic Materials, Consumer Staples, Energy, Financials, 
Technology, and Utilities benefit from the effort spent on increasing the 
companies’ environmental scores, and the proportion of total VaR 
reduced by environmental scores ranges from 1.703% to 26.996%. 
Sectors such as Consumer Discretionary, Health Care, Industrials, Real 
Estate, and Telecommunications are negatively affected by the increases 
in the companies’ environmental scores, but the effect on their total VaR 
is less than 7.2%, with the exception of Health Care, which is charac
terized by VaR increases of 26.499% on average, due to the companies’ 
environmental scores. Similar results can be found for ES.

To visually illustrate the fraction of VaR and ES that is attributable to 
the environmental scores, we display summary statistics of the climate 
risk ratio of VaR and ES in Fig. 3, and sort the climate risk ratio of 
different sectors in descending order in both panels. We would like to 
highlight three points. First, in four sectors (particularly the Energy 

Fig. 5. Summary statistics of the climate risk ratio (in percentages) for VaR at 2.5% (a) and 5% (b) levels for 11 sectors. The left and right boundaries of the error bars 
are the 5 percent and 95 percent quantiles of the ratio, while the coloured marker represents the mean value. The sectors in both panels are ordered in descending 
order of the average climate risk ratio.

7 As far as we know, there is no backtest for climate VaR/ES developed yet.
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sector), the climate risk ratio is negative, as expected, showing that 
climate-related and environmental risks are reduced when companies 
improve their environmental performance. In the Energy sector, the 
climate-related and environmental risk factors can reduce VaR or ES by 
about 28% on average and the 5% quantile of the ratio for VaR is 
− 65.294% and for ES it is − 71.872%. Second, the climate risk ratio in 
six sectors is not significant on average. The ranking of sectors including 
Health Care, Telecommunication, Consumer Staples, and Energy are the 
same in both Fig. 3(a) and (b). Third, the only outlier is the Health Care 
sector where the effect is inversed, which means by improving envi
ronmental performance, the VaR and ES of the companies increases.

In the Health Care sector, the climate-related and environmental risk 
factors contribute approximately 27% on average to the total VaR and 
ES, the 95% quantile of the ratio for VaR is 49.956% and for ES it is 
53.454%. In this sector, emissions can result from medical treatments 
and low emission alternatives are often expensive, making it difficult to 
reduce emissions, the priority being improvements in health and 
reducing the risks to the patients; see Pichler et al. (2019) for further 
deliberation.

5. Robustness checks

5.1. Asymmetric VaR and ES models

To account for the possibility of asymmetry in the volatility, we 
repeat our previously presented climate-related and environmental risks 
estimation methodology using the GJR-GARCH model (Glosten et al., 
1993) with skewed t innovations. Table 7 (column 2) depicts the climate 
risk ratios for the GJR- GARCH model. We notice that it yields similar 
but slightly different values for the climate risk ratio. When it comes to 
the ranking of the sectors based on the climate risk ratios (Table 7, 
column 6), there is a high degree of consistency, with the ratios 
remaining mostly unaffected.

5.2. Semi-parametric VaR and ES models

Recently, Patton et al. (2019) introduced semi-parametric models for 
VaR and ES. In the following, we check whether our results are affected 
if the risk measures are obtained via one of the semi-parametric models, 
namely the GARCH-FZ model. Table 7 (columns 3) shows the climate 
risk ratios obtained with this model, which is similar to the previous 
results. The ranking of the sectors based on the GARCH-FZ model 
(Table 7, column 7) is consistent with our earlier rankings.

5.3. Expectile-based climate VaR and ES

In this section, we explore expectile-based climate risk measures as 
an alternative. This is motivated by the fact that expectiles have a 
different dependence on the form of the distribution, as compared to 
quantiles. Whilst a change in the shape of the distribution will not alter 
the quantile, it will modify the expectile. Taylor (2008) developed the 
Conditional Autoregressive Expectile (CARE) model to compute 
expectile-based risk measures. Using the CARE model, we obtain the 
expectile-based VaR and ES, which is further used to calculate climate 
VaR and ES (as well as risk ratios). Fig. 4 shows the expectile-based 
climate risk ratios for various sectors. Table 7 (columns 4 and 8) pro
vides the expectile-based climate risk ratios as well as sector ranks. It can 
be noted that the results obtained from the expectile-based measures are 
in line with the quantile-based values reported in Section 4.2, demon
strating the robustness of our findings to expectile-based risk measures.

5.4. Alternative risk levels

After the 2007–2008 financial crisis, the Basel Committee on 
Banking Supervision (2013) proposed a transition from 1% VaR to 2.5% 
ES. In addition to VaR and ES at 1%, different risk levels are therefore 

explored in this robustness check. We employ VaR at 2.5% and 5% levels 
estimated from the GARCH model with skewed t distribution, as 
dependent variables in Eq. (5).8 Fig. 5 presents the summary of the 
climate risk ratio for VaR at 2.5% and 5% levels for the 11 sectors 
previously considered. Figs. 3 and 5 are similar, in that the ranking 
position of all sectors corresponds between the two figures. The 5% 
(95%) quantile of the climate risk ratio for companies in the Energy 
(Health Care) sector at 1% risk level is on average − 65.293 (49.956), 
and at the 5% risk level, it is − 60.268 (46.893). By shifting 1% risk levels 
to less extreme risk levels, the influence of environmental scores on 
downside risk is reduced, with the exception of companies in the Fi
nancials, Industrials, and Technology sectors, which have 5% risk levels 
on average more impacted by the companies’ environmental scores.

6. Conclusion

In this study, we propose new measures of climate downside risk that 
reveal to what extent the firm-level environmental scores influence the 
downside risk of the firms. We reveal the statistically significant nega
tive relationship between stock returns and environmental pillar of the 
Refinitiv ESG scores at low quantiles of the returns. We employ the 
Emission score, Innovation score, and Resource Use score of the envi
ronmental pillar to explain the downside risk of the firms in various 
sectors. Our definitions of climate VaR and ES capture the market risk 
components associated to climate-related and environmental risks. We 
document that there is heterogeneity in the sensitivity of the firm-level 
risk to environmental scores. Our framework shows that firms in some 
sectors, notably Energy and Utilities, can reduce their downside risk by 
improving their firms’ environmental scores, while for companies in 
sectors such as Health Care, improving the environmental scores is not 
cost-effective. These results are consistent with various risk assessments 
and levels of risk. These findings have important implications for in
vestors and business managers to capture sensitivities to climate-related 
risk factors. Future research could consider a more nuanced decompo
sition of climate-related and environmental risks, in addition to the 
investigation of the relationship between downside risks and physical 
risk factors (e.g. rising sea levels or hurricane-prone regions).
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