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Abstract

We investigate ocean circulation changes through the lens of data assimilation using a
reduced-order model. Our primary interest lies in the Stommel box model which reveals itself
to be one of the most practicable models that has the ability of reproducing the meridional
overturning circulation. The Stommel box model has at most two regimes: TH (temperature
driven circulation with sinking near the north pole) and SA (salinity driven with sinking near
the equator). Currently, the meridional overturning is in the TH regime. Using box-averaged
Met Office EN4 ocean temperature and salinity data, our goal is to provide a probability that a
future regime change occurs and establish how this probability depends on the uncertainties in
initial conditions, parameters and forcings. We will achieve this using data assimilation tools
and DAPPER within the Stommel box model with fast oscillatory regimes.

Keywords: Conceptual climate models, bistability, regime transition, data assimilation,
box-averaged Argo observations, non-autonomous systems
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1 Introduction
Thermohaline circulation is the global current driven by density variations in the oceans. Its branch
in the Atlantic ocean is known as the Atlantic Meridional Overturning Circulation (AMOC). In
the northern part of the Atlantic it transports warm, salty water from the subtropics to the Arctic.
Here it comes into contact with colder (sub)polar waters and sink forming the North-Atlantic Deep
Water and flows southward in the deep ocean [1]. It plays a crucial role in the climate system,
especially for the climate in northwestern Europe. Based on a simple two-box model, [2] suggested
that AMOC can be described as a bistable system characterized by two distinct equilibrium states:
TH (thermally-driven), representing the current circulation regime with sinking near the pole, and
SA (salinity-driven), signifying a reversed circulation with equatorial sinking. The existence of
multiple equilibria has since been confirmed by both reversal visible in the paleo-record as well as
more sophisticated climate models, see e.g. [3, 4, 5].
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In the region where sinking occurs, temperature and salinity exert opposing effects on density.
On one hand, heat exchange with the cold (sub)polar environment cools down the subtropical
water that are being advected northward, increasing its density. On the other, contact with melt
water freshens it, decreasing its density. Currently, the former effect dominates. However, it
is feared that climate change driven increases in temperature, ice melt and precipitation can tip
the balance to the latter, thus reversing the circulation. The transition between the circulation
regimes can occur through various mechanisms [6, 7, 8]. Beyond a critical point, parameter values
may lead to bifurcation-induced tipping (B-tipping). Alternatively, the rate of parameter changes
might trigger rate-induced tipping (R-tipping). Furthermore, system variability due to inherent
noise could result in noise-induced tipping (N-tipping). Previous research, as documented in
[9, 10, 11, 12, 13, 14, 15, 16], has established thresholds for tipping occurrence. In [17], the Stommel
box model is coupled to a sea-ice component in the polar box, and displays rate-induced tipping.

It is still an open question how close to such a tipping point the world is [9]. In 2023 alone, two
studies on the topic [18, 19] have received considerable attention in the press, but their results have
been criticised [20]. The aim of this study is twofold. First, to explore whether it is possible to
use observations of ocean temperature and salinity in combination with a reduced-order model
in a process called data assimilation to estimate model parameters. Second, determine how the
addition of forcing, both seasonal and climatological, to the Stommel model affects this probability
of an AMOC reversal.

It is important to note that while one might assume that a two-box model would have limitations in
fully describing tipping behavior, our approach, incorporating high-frequency oscillations, param-
eter variability, and data assimilation, brings us close to realistic scenarios. This methodology also
sheds light on the feasibility of assimilating data to further understand the qualitative dynamics of
our model. It offers a window of validity for our predictions, considering factors like the strength
of the forcing.

1.1 Leveraging Conceptual Models for Parameter Estimation and Predictive Analysis
The use of conceptual models, such as the Stommel box model, for parameter estimation and
prediction of complex systems like the AMOC is motivated by several important considerations.
Firstly, reduced-complexity models often provide clearer insights into the fundamental mecha-
nisms driving the system’s behavior, which can be obscured in more complex models [21, 22, 23].
This interpretability is vital for understanding the key processes governing AMOC dynamics.

In light of these advantages, our objective is to model the AMOC and examine its behavior
under various conditions. We aim to assess the feasibility of estimating temperature diffusivity,
salinity diffusivity, and advection parameters by assimilating ocean temperature and salinity data.
Additionally, we seek to forecast the probability of circulation regime changes. The simplicity
of the chosen conceptual model makes this analysis possible as we are able to initialize large
ensembles at low computational cost. It also serves as a baseline in complexity with more detailed
versions of the model available for further studies on higher order dynamics [24, 25].

Lastly, these models serve as useful benchmarks against which more complex models can be
evaluated, helping to assess whether increased complexity leads to improved predictive skill
[26, 27, 12, 28, 29]. While we acknowledge the limitations of conceptual models, their use in
conjunction with data assimilation techniques offers a powerful approach to understanding AMOC
dynamics and predicting potential tipping points.
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1.2 Outline of the Paper
The outline of the paper is as follows. First, we introduce the autonomous and non-autonomous
Stommel model in Section 2 and study the qualitative behavior of the solutions as time goes to
infinity. In Section 3, we explain our data assimilation method and the assimilated observations. In
Section 4, we conduct a twin experiment to investigate the potential of data assimilation to estimate
model parameters. In Section 5, observations based on the Met Office Hadley Centre EN4 data set
are assimilated in a non-autonomous Stommel model and the impact of the different forcings on
the tipping probability is investigated. In Section 6, we present and analyze the results of our data
assimilation experiments, examining the model’s behavior under various climate change scenarios
and assessing the likelihood of AMOC regime shifts. Finally in Section 7, we discuss our findings.

2 Mathematical Analysis of the Stommel box Model: Autonomous and
Non-Autonomous Perspectives

2.1 The Stommel Box Model
The Stommel model comprises two fully mixed water containers. One represents the region of
the North-Atlantic just north of the equator with temperature and salinity denoted as (Te∗,Se∗),
while the other symbolizes the polar region with temperature and salinity as (Tp∗,Sp∗). (The
asterisk subscripts here denote variables with a unit.) These containers are interconnected by both
a capillary tube and an overflow area, facilitating water circulation while preserving a constant
volume in each container. The relative salinities and temperatures of each box determine the flow
of water, and when the flow of water reverses, we consider that to be a regime change.

Figure 1: A conceptual depiction of how Henry Stommel modeled thermohaline circulation. The circulation between
the two connected bodies of well-mixed water in the Stommel model is driven by density gradients between the two
boxes.

Initially, then, this scenario is described with four equations which are listed below:
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∆x∆z∆ye
dTe∗

dt∗
=kT∆x∆ye(Ta

e − Te∗) + |Ψ∗|(Tp∗ − Te∗),

∆x∆z∆ye
dSe∗

dt∗
=kS∆x∆ye(Sa

e − Se∗) + |Ψ∗|(Sp∗ − Se∗),

∆x∆z∆yp
dTp∗

dt∗
=kT∆x∆yp(Ta

p − Tp∗) + |Ψ∗|(Te∗ − Tp∗),

∆x∆z∆yp
dSp∗

dt∗
=kS∆x∆yp(Sa

p − Sp∗) + |Ψ∗|(Se∗ − Sp∗) −m∗Sp∗,

(1)

with ∆z and ∆x being the depth and the zonal width of the boxes, ∆yp and ∆ye the meridional
width of the polar and equatorial box respectively, kT the temperature diffusion coefficient, and
kS the salinity diffusion coefficient. The model incorporates the exchange of heat and salt within
each box as a response to surface forcing, employing relaxation toward specified ocean surface
temperature and salinity values (Ta,Sa). Next to this, the model accomodates for the addition of
fresh water supply to the polar box at a discharge rate of m∗. In particular, this quantity represents
the melting of icebergs due to climate change and the release of additional fresh water that comes
from that.

The flow rate is given by the following equation:
Ψ∗ = γ∆x∆z(ρp∗ − ρe∗)/ρ0, (2)

where γ is the advection coefficient and ρ0 is a reference density. Since those are both constants,
the flow rate is linearly related to the difference in water density between the two boxes. We note
that if the flow is due to denser water in the polar box, as it is for the current TH regime, the flow
rate is taken to be positive.

The Stommel system also assumes the following linear equation of state
ρ∗ = ρ0(1 − αT(T∗ − T0) + αS(S∗ − S0)), (3)

where a “0” subscript indicates reference value, αT is the thermal expansion coefficient and αS the
haline coefficient.

But by instead looking only at the temperature and salinity relative to one another, we can reduce
this down to a two variable system by subtracting the equations for the pole box from the equatorial
box in the case that m∗ = 0:

dT
dt
=η1 − T(1 + |T − S|),

dS
dt
=η2 − S(η3 + |T − S|),

Ψ =T − S,

(4)

where

T =
∆zγαT

∆ykT
(Te∗ − Tp∗)

S =
∆zγαS

∆ykT
(Se∗ − Sp∗)

Ψ =
1

∆y∆xkT
Ψ∗

t =
kT

∆z
t∗

∆y :=
∆yp∆ye

∆yp + ∆ye
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.

Here, η1, η2, and η3 are parameters independent of the ocean state. Their full values are as follow:

η1 =
∆zγαT

∆ykT
(Ta

e − Ta
p) (5)

η2 =
kS

kT

∆zγαS

∆ykT
(Sa

e − Sa
p) (6)

η3 =
kS

kT
(7)

Setting dT
dt = 0, dS

dt = 0 in Equation (4), we get the following equilibrium solutions:

T =
η1

1 + |Ψ|
and S =

η2

η3 + |Ψ|
,

In the TH regime, we haveΨ = |Ψ|. In this case, the effect of the temperature difference dominates
the effect of the salinity difference and the system is thermally driven. We find that

η2 = −Ψ
2
− η3Ψ+ η1

(
η3 +Ψ

1 +Ψ

)
. (8)

On the other hand, in the SA regime, we have Ψ = −|Ψ|. In this case, the transport due to the
salinity difference dominates over the transport due to temperature difference. We find that

η2 = Ψ
2
− η3Ψ+ η1

(
η3 −Ψ

1 −Ψ

)
. (9)

The solutions from Equation (8) and Equation (9) for fixed η1, η3 can be shown together as a
function of the dimensionless transport. From this, it is clear that for a range of η2, three steady-
state solutions for the transport are possible , since the vertices of both parabolas described above
lie in the area where ψ > 0, meaning the TH regime provides two solutions for certain values of η2
and the SA regime provides one.

2.2 The Non-Autonomous Stommel Model
We extend the Stommel model to include seasonal variations, represented by periodic changes in
surface temperatures and salinities. We also know that any oscillatory behavior will not arise from
the autonomous Stommel model (see Appendix A) and thus will solely emerge due to the fact that
η1 and η2 are no longer constant in time but oscillate, i.e.

η1 =η1,auto + B sin(Ωt), (10)

η2 =η2,auto + B̂ sin(Ωt), (11)
with η·,auto representing the values used in the autonomous system in section 4. Here, B and B̂ are
distinct, but we define A = B − B̂ for future use. Using that, our definition of Ψ, and the overall
Stommel system, we can write:

d
dt
Ψ =

d
dt

(T − S) =
dT
dt
−

dS
dt

=(η1,auto + B sin(Ωt) − T(1 + |T − S|)) − (η2,auto + B̂ sin(Ωt) − S(η3 + |T − S|))

=η1,auto − η2,auto + η3S − T − (T − S)|T − S| + (B − B̂) sin(Ωt)
=η1,auto − η2,auto + η3S − T −Ψ|Ψ| + A sin(Ωt),
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then we substitute in S = T −Ψ, which ultimately gets us:
d
dt
Ψ =η1,auto − η2,auto + (T −Ψ)η3 − T −Ψ|Ψ| + A sin(Ωt),

d
dt

T =η1,auto + B sin(Ωt) − T(1 + |Ψ|).
(12)

for a system without climate change, i.e., a system in which m∗ = 0.

In order to get a full picture of the dynamics of Equation (12), it is thus fitting to analyze itsΨ-vs.-
η2,auto bifurcation diagram. It’s worth noting that the discontinuity surface Σ0 = {(T,S) ∈ R2

+|T = S}
give rise to a Non-Smooth Fold (NSF) bifurcation (marked by a black star in Figure 2), where the
stable equilibrium branch terminates at η2c ≡ η1η3.

Understanding NSF bifurcations can be helpful in predicting critical transitions or tipping points
in complex systems, aiding in risk assessment and management. This paper examines the non-
autonomous Stommel box model as a foundation for studying transitions in thermohaline circu-
lation, while providing insight into the dynamical impact of NSF bifurcations.

In the context of our model, the NSF arises when the unstable equilibrium solution (dotted blue
curve) and the focus (solid red curve) intersect with the discontinuity surface. This tipping point
corresponds to the rapid transition from solutions near the temperature-dominated branch of
nodes (solid blue curve) to the salinity-dominated branch of focus points.

For the non-autonomous Stommel model (Equation (12)), under high frequency forcing, we observe
amplification or attenuation of patterns inψwhich depends linearly on the amplitude-to-frequency
ratio (A/Ω). That is to say, solutions starting near the NSF bifurcation point may naturally shift
away towards higher values of η2, or be driven towards lower values under the effect of data
assimilation. The foundational work for this analysis can be found in a paper by Budd, Griffith, and
Kuske [30]. Their study provides valuable insights into the expected behaviors of the parameters
η1 and η2, as well as the equilibria, when incorporating seasonal variations. Building upon
their findings, we extend the investigation by introducing data assimilation techniques to further
enhance our understanding of these complex dynamics. By assimilating observational data into
the model, we aim to explore how the combination of seasonal variations and data assimilation
influences the system’s behavior and equilibria.

3 Inversion of the Stommel box model
The solution of the Stommel box model in 1 depends on the surface diffusion parameters kT and kS
as well as the advection parameterγ. Given the simplified nature of the Stommel box model it is not
possible to estimate appropriate values for these parameters from first principles. Data assimilation
allows to reconstruct plausible values for these parameters from comparisons between model
output and observations. In this section we will introduce the data assimilation methodology and
the assimilated observations. The described model and methodology are implemented in the DA
Python package DAPPER [31].

3.1 Ensemble Kalman filter
The true state of the system, which in our case consists of the temperature and salinity in the ocean
boxes as well as the advection and diffusion coefficients, is not known. However, based on e.g.
model output, it is possible to provide an estimate of the true value in the form of a probability
distribution. Data assimilation (DA) is a procedure that combines this a priori distribution with
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Figure 2: AΨ-vs.-η2,auto bifurcation diagram for the system in equation 12 with η1,auto = 3, η3 = 0.1, and A=B=0. The
solid red and blue lines are stable equilibria, while the dotted blue line represents an unstable equilibrium. The solid
black circle indicates the system’s saddle-node bifurcation, while the black star indicates the NSF bifurcation. The
dotted black line emphasizes the discontinuity set Σ0.

imperfect observations (see Section 3.2) to produce an a posteriori distribution with smaller spread
around the truth. The most-likely value for the truth based on the a priori distribution is referred to
as the forecast, while the most-likely value of the a posteriori distribution is known as the analysis.
In this work, we use a particular DA method known as the augmented ensemble transform Kalman
(ETKF) [32] in which both errors in the observations as well as the a priori distribution are assumed
to be Gaussian. The mean and covariance of the latter estimated from an ensemble of model runs.
A more detailed description of the augumented ETKF approach used can be found in appendix B.

3.2 Observations and Model Parameters
Geometry of the two boxes in the model, box-average temperature and salinity, observation error
variances and box-surface-averaged temperature and salinity necessary for the model’s forcing are
compiled based on the Met Office’s EN4 quality controlled objective analysis [33] with bathymetric
bias corrections [34]. The EN4 dataset is a dataset of several types of in-situ potential temperature
and salinity measurements interpolated onto a 1x1 degree grid of the globe at 42 non-equally space
depths on a monthly basis. From this dataset the vertical profiles in the North-Atlantic between
23.5 ◦N and 89.0 ◦N and between 90.0 ◦W and 90.0 ◦E that are at least 1.5 km deep are selected.
These boundaries were chosen such model includes the North-Atlantic north of the intertropical
convergence zone (5 − 15 ◦N) as well as Greenland and Norwegian . The southern boundary was
chosen because precipitation in the former leads to freshening of the ocean surface that the simple
Stommel box model geometry cannot accommodate. The northern boundary was chosen because
overflow from the Nordic sea over the Iceland-Schotland ridge has been to be shown to be the
dominant source for North-Atlantic Deep water (NADW) [35] which makes up the lower branch
of the AMOC circulation. Only the part of the profiles above a depth of 3.5 km is used as this
corresponds to the lower limit of occurrence of the NADW. Data from the period 2004-2022 are
used. This selection is based on the fact that during this period extensive subsurface measurements
were available thanks to the Argo program [36] as well as that they exclude a sharp spike of surface
temperatures at the beginning of the century probably caused by processes our simple Stommel
box model cannot represent.

The processes behind formation of North-Atlantic Deep Water (NADW) in the Artic that makes
up the deep-ocean part of the AMOC are numerous, complex and their relative importance is
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disputed. They include the overflow of intermediate waters formed during the winter from the
Nordic and Irminger seas over the Greenland-Scotland ridge [35, 37], downward convection in
the Labrador Sea driven by heat-loss [38] and compensation for wind-driven upward mixing in
the Atlantic [39, 40]. Of these only the former mechanism is incorporated in the Stommel model.
Therefore we divide the vertical profiles between the boxes as follows: those profiles in which
surface temperature drops below the depth-averaged temperature for on average 1 month per
year or more, and consequently convection due to heatloss can take place, are assigned to the polar
box. The other profiles are assigned to the equator box. This choice was not only motivated by the
physical formation process of NADW, but also on more practical grounds. The data assimilation
system needs to be able to reduce the average temperature of the deep ocean if it is found to exceed
observed values. This definition of the polar box ensures a mechanism to release heat from the
ocean is present. This choice is not entirely unproblematic (see section 7) and deviates from the
one used by [41, 42, 43]. Their boxes extend to 23◦S, cover the whole Artic ocean, not only the
Nordic seas. Furthermore, they simple define the equatorial box to be the part of the Atlantic
Ocean between 30◦S and 40◦N as they base deep-ocean temperatures and salinities on fit a to
long-term climate model output. Hence overestimation of deep-ocean temperature can be dealt
with by lowering initial deep-ocean temperatures and no heat release mechanism is necessary.
Furthermore, the fit in [43] is based solely on temperature and salinity differences between the
boxes and hence the box model does not need to provide a deep ocean heat release mechanism. In
other box model studies [44] no attempt is even made to match boxes and their values with actual
observations.

Polar Equator
∆x [km] 7274 7274
∆y [km] 324 2262
∆z [m] 3148 3148

Table 1: The zonal width, meridional width and depth of the two boxes used in the Stommel model based the EN4
data.

Volume V of each of the boxes is calculated by summing the volume of all grid cells in the box.
Similarly, surface area A is calculated by summing the area of the EN4 grid cells in the top layer
in both boxes. The depth of both boxes is then calculated as ∆z = Vp+Ve

Ap+Ae
. The cross-section Ac

between boxes is derived by summing the vertical area between profiles assigned to the polar box
and those assigned to the equatorial box. An example assignment is shown in Figure 3. From this
zonal and meridional size of the boxes is defined as ∆x = Ac

∆z and ∆yp =
Ap

∆x , ∆ye =
Ae
∆x . The values

resulting from this exercise are shown in Table 1.

Time-averaged obs. Obs. error std. dev.
Tp∗ [°C] 1.2 0.3
Te∗ [°C] 5.5 0.5
Sp∗ [ppt] 34.83 0.07
Se∗ [ppt] 35.15 0.07

Table 2: Time-average of the assimilated temperature and salinity observations together with the observational
standard deviation, i.e. the square-roots of the diagonal of Σd.
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Figure 3: An example of EN4 profile assignment in the year 2010. Green points signify profiles assigned to the
equatorial box, and blue points signify profiles assigned to the polar box.

For each month t and each of the two boxes the box-averaged temperature is calculated as

T·∗(t) =
(∑

i

ViTi,∗(t)
)(∑

i

Vi

)−1
, (13)

where i runs over all EN4 grid cells in the box below the surface layer, Vi is the volume of the grid
cell, σT,i is the uncertainty in temperature as specified in the EN4 data set. The variance in the
value is calculated as

σ2
T∗(t) =

(∑
i

Viσ
2
Ti,∗

(t)
)(∑

i

Vi

)−1
. (14)

These calculations are repeated for salinity S. The values after January 2004 are used to create
the observations to be assimilated in d(t) = [Tp∗(t),Te∗(t),Sp∗(t),Se∗(t)]T. The 4 × 4 observational
error covariance matrix Σd is assumed to be diagonal. The values on the diagonal are chosen to
be the maximal values for σ2

T∗(t) and σ2
S∗(t) in each box. The resulting time-average values for the

observations as well as the observational error standard deviation found this way are shown in
Table 2.

Field ·0 ·cos ·sin seasonal amplitude
Ta

p [°C] 1.5 -1.5 -1.1 1.9
Ta

e [°C] 16.7 -2.4 -2.3 3.4
Sa

p [ppt] 33.05 0.22 0.32 0.39
Sa

e [ppt] 35.77 0.04 0.05 0.07

Table 3: Regression coefficients found by fitting model Equation 15 to the surface observations for temperature a and

salinity a in polar ·p and ·e boxes. Also shown is the seasonal amplitude
√
·2cos + ·

2
sin

The calculations in Equation 13 and Equation 14 are repeated but now with i running over all grid
cells in the surface layer of a box. The signal is then represented as

Ta(t) ≈ Ta
0 + Ta

sin sin(
2πt
τ

) + Ta
cos cos(

2πt
τ

), (15)
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with τ = 1 year and T0, Tcos, Tsin determined by a weighted linear regression against the box-
averaged surface values using σ−2

T∗ (t) as weights. The regression coefficient for surface temperature
and their equivalents for surface salinity are given in Table 3.

dimensional scale nondimensional
Ω 2π rad yr−1 kT

∆z 3564
B 1.51 °C kT

αTγ∆z
∆yp∆ye

∆yp+∆ye
1.18

B̂ 0.32 ppt kT
kS

kT
αSγ∆z

∆yp∆ye

∆yp+∆ye
0.66

A - - 0.52

Table 4: Relation between the coefficients Ω, A, B, B̂ in [30] and the surface forcing obtained from the EN4 observation
data.

The regression coefficients in Table 3 can be related to the perturbations added to η1 and η2 in
Equation (10) and Equation (11). These relations can be found in Table 4.

Table 5: Parameters, forcings, initial conditions and their sources.

Data Values Source Details
Temperature (ocean temperature) Pole: T∗p = 1.23 ◦C, Equator: T∗e = 5.4 ◦C Initial values from EN4 data
Salt (ocean salinity) Pole: S∗p = 34.82 ppt Equator: S∗e = 35.15 ppt Initial values from EN4 data
temp diff (surface heat mixing coefficient) kT = 3.7 · 10−6 ms−1 equation 16
salt diff (surface salinity mixing coefficient) kS = 1.2 · 10−6 ms−1 equation 16
ρ0 (reference density) 1027 kgm−3 [45]
S0 (reference salinity) 35 ppt [45]
T0 (reference temperature) 10 ◦C [45]
αT (thermal expansion coefficient) 0.15 ◦C−1

ρre f
[45]

αS (haline expansion coefficient) 0.78 ppt−1

ρre f
[45]

Initial estimate Qoverturning (meridional overturning flux)) 18 Sv [46]
γ (advective transport coefficient) 2.0 ms−1 equation 16
Ta(t) Oscillates over time Calculated from EN4 dataset; see table 3
Sa(t) Oscillates over time Calculated from EN4 dataset; see table 3
V ice 2.9 × 106 km3

Greenland ice sheet melt period tmelt 10000 y [47, 48, 49]
Equatorial warming rate 0.03 ◦Cyr−1 [50, 51, 52]
Polar warming rate 0.06 ◦Cyr−1 [53, 52]
Model time step 1 month

The numerical scheme for Stommel model uses a finite volume approach with an explicit 4th-order
Runge-Kutta scheme with a time step of 1 month. Initial conditions for the ocean temperatures
and salinities in the different ensemble members are drawn from a Gaussian distribution having
the EN4 box-averaged temperatures and salinities for January 2004 as mean and Σd as covari-
ance. Initial values for the logarithm of the diffusion and advection parameters are estimated by
minimizing, using Scipy’s Nelder-Meat method,

(∆T∗ − ∆Teq)2

σ2
T,e + σ

2
T,p

+
(∆S∗ − ∆Seq)2

σ2
S,e + σ

2
S,p

+
(Q∗ −Qeq)2

(2.5 Sv)2 (16)

with ∆T∗, ∆S∗ the difference between equatorial and polar box’s initial ocean temperature and
salinity, σT,·, σS,· the observational standard deviations in the 3rd column of table 2, Q = 18 Sv
the observed meridional transport and ∆Teq, ∆Seq Qeq equilibrium values for temperature, salinity
difference and transport that depend on the model parameters. I.e. we pick parameters such that
our initial conditios are close to an equilibrium value. The logarithms are perturbed by adding
realizations from a Gaussian with a standard deviation of 0.26. This corresponds to the assumption
that the relative error in these model parameters is 30%. These model parameters are assumed
to be constant in time. More specifically, their values are held constant between DA corrections
during the prediction step (see appendix B. However, the parameters for each ensemble member
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might still change over time due to the DA corrections reflecting that the probability density
distribution for the true value of the model parameters is not necessarily stationary. Values for
the other parameters used in the model can be found in Table 5. Note that this table includes an
equatorial and a polar warming rate, and that the polar rate is twice the equatorial. The choice to
use two warming rates was made to account for Arctic amplification. Arctic amplification is the
name for an effect observed over many decades in which the Arctic warmed faster than other parts
of the globe[54]. The precise magnitude of the difference is disagreed upon, but many studies
report the poles warm around twice the global average [55, 56], so we used this ratio to inform our
model.

4 Twin Experiments
In this section we will evaluate whether the data assimilation system is capable of correcting ocean
temperatures and salinities as well as reconstructing the Stommel model parameters. In addition
to this we want to see what happens with the AMOC circulation if the effects of climate change are
added to the model. This is done by running an Observing System Simulation Experiment (OSSE),
or twin experiment [57]. In such an experiment one of the ensemble members is set apart as “truth”
and withheld from the DA system forming one of the twins. Artificial observations are created
from the “truth” by adding perturbations drawn from a Gaussian distribution with covariance Σd
with these perturbations mimicking observation errors. After assimilating these observations into
the experiment, the forecasts and analyses, making up the other twin, can be compared with the
“truth” to quantify performance of the DA system.

We conduct simulations under four distinct scenarios. In the first scenario initial conditions and
model parameters are perturbed in the different ensemble members but no data assimilation
is used. The second scenario mirrors the first but now ocean temperatures and salinities are
assimilated each month during the period 2004-2022. For the third scenario the effects of global
warming are taken into account. In this study we take two processes related to climate change
into account. First, that the average temperature increases faster near the pole (0.06

◦C
year for polar

box) than at lower latitudes (0.03
◦C

year for equatorial box). Second, that the Greenland ice sheets

melts add a constant rate m∗ = Vice
tice

with Vice and tice given in Table 5. In order not to interfere with
the DA, warming and melting only start after 2022, i.e. after the end of the DA period, and is
applied uniformly to all ensemble members. The fourth scenario matches the third and includes
data assimilation. The model time step is 1 month and DA is carried out monthly. Figure 4 shows
the model ocean temperatures and salinities over 100 years for 100 ensemble members together
with its most-likely value (the ensemble mean) and the artificial truth. For times at which an
update step is carried out (see appendix B) and two solutions are available, the solution after the
DA correction is shown. The timeseries obtained in this way is referred to as the forecast solution.
Temperatures and salinities in the 3rd column are non-dimensionalized using the scaling constants
in Section 2.1. Blue curves indicate the thermohaline (TH) regime, while red curves represent the
salinity-driven (SA) regime. As shown by (4), the solution to the Stommel equations can be written
solely as function of the difference in temperature and salinity between the equatorial and polar
box. Therefore the results in Figure 4 are depicted as function of these differences only.

As seen in Figure 4, none of the ensemble members predict a change in flow direction in the
experiment with no climate change and no data assimilation. This is notwithstanding the large
uncertainties in the model parameters. One can see that there is a significant spread between
trajectories in the time plots, but the ensemble remains monomodal, i.e. the ensemble members do
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Figure 4: Forecast time series of temperature and salinity differences between equatorial and pole boxes for 100
ensemble members, with corresponding dimensionless salinity-vs-temperature phase portraits. Green dots: initial
conditions; dashed blue line: TH-SA regime boundary; black paths: synthetic truth; orange paths: ensemble mode.
Rows show different experiments: a)-c) nCC-nDA, d)-f) nCC-yDA, g)-i) yCC-nDA, j)-l) yCC-yDA. (nCC: no climate
change, yCC: with climate change, nDA: no data assimilation, yDA: with data assimilation). Columns: temperature
difference, salinity difference, dimensionless temperature vs. salinity phase portrait.

12



Figure 5: Read left to right: a) temperature (κT), b) salinity (κS), and c) advective flux coefficients (γ) of the ensemble
plotted over the assimilation period for an experiment assimilating 18 years of synthetic data without any global
warming effects (the experiment with global warming is effectively identical). The red curve represents the ensemble
mode, while the green line represents the true coefficient value.

not form different clusters. This is a necessary condition for the EnKF to function properly. Com-
parison of Figure 4a,b,g,h with Figure 4d,e,j,k respectively shows that assimilating temperatures
and salinities for the period 2004-2022 reduces the spread bringing all ensemble members closer
to the truth. Trajectories become and stay tightly connected in the time and phase plots. This
indicates that DA is successful in correcting the temperatures and salinities. When the effects of
climate change are applied in Figures 4g,h,j,k the solutions no longer converges towards an equi-
librium value. Instead temperature and salinity keep increasing reflecting the introduced changes
in forcing. Apart from this, the results are qualitatively the same as in the first two scenarios: the
circulation remains in TH mode and the DA reduces the errors in the ensemble members.

In order to verify whether the DA system is capable of correcting the model parameters, temper-
ature diffusivity parameter, salinity diffusivity parameter and advection parameter are shown in
Figure 5 as function of time during the DA period together with their true value. We see that
the spread is sound as so far as the truth lies within the range of the ensemble. Comparing the
most-likely estimate with the truth (in green), we see that initially DA can increase the error in the
model parameters. However, by the end of the period errors have reduced to values below the
initial error.

To quantify the behavior of the ensembles in Figure 4 in more detail, the ensemble standard
deviation, or ensemble spread, and RMSE for the different experiments are shown in Figure 6 for
the different state variables. The first thing that stands out is that ensemble spread and RMSE after
the DA period generally stay constant or decrease, even in the absence of DA. The second noticeable
point is that DA is successful in reducing the error in the model parameters. Errors for the advection
parameter (Figure 6g) and temperature diffusion parameter (Figure 6e) are decimated while that
of the salinity parameter is reduced but not to the same extent (Figure 6f). This reflects that salinity
diffusion parameters is smaller. Consequently, it takes the system more time to equilibriate with
surface salinity forcing and consequently the DA is less sensitive to changes in the salinity diffusion
coefficient than in the advection and temperature diffusion coefficient. The fact that by the end of
the DA period the spread in the salinity diffusion parameter is still decreasing (Figure 6l), whilst
that in the temperature diffusion parameter (Figure 6j) and advection parameter ((Figure 6n) has
leveled off suggest that further RMSE reduction for the former could be achieved by extending
the DA period. Finally, for a properly calibrated ensemble Kalman filter the expectation value
of the ensemble spread and root mean-square error (RMSE) should be equal. Comparison of the
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Figure 6: Read left to right, top to bottom. (Black solid lines) RMSE and (blue pluses) ensemble standard deviation of
(rows) different variables as function of time for (columns) the four different experiments in Figure 4. For visibility
only every 6th month is shown. 14



Figure 7: Read left to right: a) temperature and b) salinity time series, as well as c) a phase portrait for an experiment
with yearly warming of 0.03 ◦C per year in the equator (0.06 ◦C per year at the pole) and a melt period of 1000 years
without DA. Trajectories turning red indicate a predicted flipping of flow direction. The black trajectories represent the
synthetic truth values, and the orange represents the ensemble mode.

RMSEs and ensemble standard deviations at the end of the DA period shows they are of similar
magnitude with the spread slightly overestimating the uncertainty. Thus confirming that DA is
performing as expected.

All ensemble members in Figure 4 are in the TH circulation mode. In order to see whether the
setup is capable of producing solutions with the SA circulation, the impacts of the climate change
are scaled up. More precisely, the warming rate in the equatorial box is increased to 0.07 ◦C per
year (the polar box warming rate is raised to 0.14 ◦C per year) and the melting period for the
Greenland ice sheet is reduced from 10,000 to 1,000 years. Once again, these climate change driven
effects are only switched on in 2022 otherwise the DA system would try to correct errors in the
forcing by modifying the model parameters. In Figure 7b salinity between-box difference in all
ensemble members increases due to the effects of climate change. This reduces the circulation
and temperature difference start to increase as consequence of the temperature difference present
in the surface. Eventually, Figure 7a,b show that depending on initial conditions and the model
parameters of the ensemble member, there is a rapid increase in the temperature and salinity
between-box difference resulting in a reversal of the AMOC circulation direction. So, the setup is
capable of producing solutions with a circulation change.

To summarize, in this section we tested the ability of our setup to predict the truth using a twin
experiment. We find that the setup produces an ensemble that covers the truth and can, with
the sufficient forcing, produce solutions both with the TH as well as the SA circulation. DA is
successful in reducing the spread and errors in both temperatures, salinities, diffusivity parameters
and advection parameter. The 18 year DA period used is sufficient to reduce the uncertainty in
temperature diffusivity and advection parameter to the lowest value attainable with this setup,
but the uncertainty in the salinity diffusivity could have been reduced further by extending the
DA period. Having established that our DA setup has the ability to recover the model parameters
from temperature and salinity observations, we will use those observations to find realistic values
for these parameters in Section 5.
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Figure 8: Read left to right: a) surface temperature (κT), b) surface salinity diffusivity (κS) and c) the advection flux
coefficients (γ) for the different ensemble members as functions of time. The red curves represents the ensemble mode.

5 Assimilating Box-Averaged observations in the Non-Autonomous
Stommel Model

In this section, we run simulations using (12) while assimilating box-average observations com-
piled from the EN4 dataset as described in Section 3.2. In this section we pursue a two-fold aim.
First, we attempt to find realistic values for the salinity diffusivity kS, temperature diffusivity kT
and advection parameter γ as well as the non-dimensional values η1, η2 and η3 which depend
on these parameters. Second, having found realistic values, we continue running the box model
forward in time to determine the likelihood of a circulation reversal happening in this century
both for the case with climate change and the case without.

5.1 Interfered Model Parameters
Parameter Most-likely 90%-confidence interval

kT [10−7ms−1] 1.8 [1.2, 2.9]
kS [10−7ms−1] 0.8 [0.5, 2.1]
γ [10−2ms−1] 8.5 [6.1, 13.9]

Table 6: Most-likely estimates of model parameters after assimilating monthly boxed-averaged temperatures and
salinities for the period 2004-2022 together with their 90%-confidence interval.

The three different model parameters are shown in Figure 8 as function of time. As the effects of
climate change are never applied during the DA period (see Section 4), the figure will look the
same for both experiments with and without climate change. Notice that we are still assuming that
within the conceptual constraints of the Stommel box model the true value of these parameters
is fixed in time. The time dependence reflects that the probability distribution for the truth is
changing as more and more observations get assimilated. Had we used the Rauch-Tung-Striebel
smoother [58] we would have been able to correct the parameters in the beginning of the DA
window using observations at the end of the window. However, as this would have not changed
the final estimate, i.e. the value for the model parameters at the end of the DA window used
to propagate the ensemble members forward, we have abstained from the additional effort. The
figure shows an initial overestimation of the value of all three coefficients: the mode of the ensemble
and all ensemble members exhibit a decreasing trend that starts to level off near the end of the
DA period. Similar to the twin experiment in Section 4 the salinity diffusion parameter is slower
to converge to its final value. The ensembles for all three parameters show a steadily decreasing
spread indicating that the uncertainty of the parameter’s true values decreases. The final estimates
for the parameters, i.e. their values at the end of the DA period, together with their 90% confidence
interval based on the ensemble spread are given in Table 6.
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Figure 9: The values of parameters η1 (Equation (10)), η2 (Equation (11)) η3 (Equation (7)) as function of time for the
experiment with climate change.

The values for the non-dimensional parameters η1, η2 and η3 as appearing in Equation 4 are shown
in Figure 9. The annual oscillations clearly visible in η1 and η2 are the result of seasonal cycle
imposed on the surface forcing as Equation (15). As climate change warms the polar box faster
than the equatorial one, the temperature difference between the two decreases over time resulting
in a decreasing slope in η1 after the DA period. The annually averaged values for the ensemble
mode of η1, η2 and η3 at the end of the DA period are 9.2, 4.2 and 0.5 respectively. These are about
double the values explored in other Stommel box model literature [59, 30]. The absence of certain
physical relevant processes for the AMOC and might explain difference. See also the discussion
of transport at the end of this section.

6 Future Circulation
The differences between the forecast temperature (forecast salinity) in the equatorial box and the
polar box for the 100 ensemble members for the experiment without climate change are shown in
Figure 10. It can be seen that during the DA period (first 18 years) both temperature and salinity
differences follow the trend in the observations. However, they fail to reproduce the multiyear
oscillation that is visible in the salinity and especially in the temperature observations. This is
because such multiyear oscillations are missing in the surface forcing. This results in the model
overestimating the salinity difference between equatorial and polar box thus underestimating the
transport between the boxes. As explained in Section 2.1, the autonomous solutions converge to
one of at most two possible stable equilibria each associated with a different circulation regime.
In the non-autonomous system, these equilibrium values will oscillate in time and the solution
always “chases” one of them or switches from chasing one to chasing the other. The figure shows
that in the absence of climate change the circulation remains in the TH regime for all ensemble
members until at least 2104. Furthermore, the solutions tend to values that are close to current
conditions: in the Stommel box model the solutions for the temperature differences lie above the
difference at the end of the DA period. However, the differences are still within the range of
contemporary temperature differences. The solutions for salinity differences are largersmaller at
end of the DA period than in 2104, partially offsetting the decreasing trend over the DA period.
The relative spread at the end of the century is also larger for the salinity differences than for the
temperature differences. This can be explained by our observation in Section 4 that the spread in
salinity diffusion parameter is larger than that in the temperature diffusivity parameter. The values
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Figure 10: Read left to right. Forecast time series starting in 2004 representing the equator-pole difference in a)
temperature and b) salinity for the different ensemble members as well as c) the ensemble trajectories in a
dimensionless temperature vs salinity phase portrait. The orange dots with bright yellow errorbars represent the
observed values and their standard deviation. Solutions with a TH circulation are shown in blue, those with a SA
circulation (if any) in red.

depend on the model parameters and consequently the uncertainty for future ocean salinities is
relatively larger than that in ocean temperatures.

The solutions in which after the DA period the polar surface temperature increases with 0.06 ◦Cy−1,
the equatorial surface temperature with 0.03 ◦Cy−1 and in which the Green land ice sheet melts
with a constant rate over 10 thousand years are shown in Figure 11. Compared to Figure 10b the
salinity differences increase after the DA period (Figure 11b). This is due to the ice melt. Next to
this, the temperature difference increase is smaller due to the differential increase in the surface
temperature between the two boxes (Figure 11a). Apart from these points, there are no qualitative
differences between the figures. In particular, none of the ensemble members changes circulation
regime.

The actual future rate of surface warming and ice melt will depend on, among other things, future
carbon emission and are consequently uncertain. Therefore the DA experiment has been repeated
several time for a range of plausible ice melting and between-box surface warming rate differences
[47, 48, 49, 52, 60]. The percentage of ensemble members in which the circulation regime changes
from TH to SA are shown in Figure 12. The figure shows that after DA the uncertainty in the
regime is small: either all ensemble members are in the TH regime or in the SA regime. Next to
this, the close-to-vertical slope of the boundary between the two regimes indicates that faster ice
melting is more influential in pushing the solutions to the SA regime than faster warming over
the pole than equator. Measured melt rates over the last decade vary between 286 to 487 Gty−1

which corresponds to a melt period of 7-12 thousand years [47, 48, 49]. This would place the
future climate firmly within the zone of Figure 12 in which circulation the AMOC does not reverse
direction.

The transport between the two boxes is shown in Figure 13. Transports are an order of magnitude
smaller than the typical observational transect estimates over this period that lie in the range
10 − −25 Sv [61]. The decrease is however not the result of climate change, but occurs during the
DA period. I.e. the DA is not capable of simultaneously correcting temperatures, salinities and
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Figure 11: As Figure 10, read left to right. Forecast time series starting in 2004 representing the equator-pole difference
in a) temperature and b) salinity for the different ensemble members as well as c) the ensemble trajectories in a
dimensionless temperature vs salinity phase portrait, but now climate change forcing is applied outside the
assimilation period. The orange dots with bright yellow errorbars represent the observed values and their standard
deviation. Solutions with a TH circulation are shown in blue, those with a SA circulation (if any) in red. End of the DA
period is marked by a vertical dashed line

Figure 12: Percentage of ensemble members that undergo circulation regime change. All runs use a similar setup to
the experiment with climate change and real data assimilation, but using different ice melt periods (x-axis) and
different warmings rates for the equator box (y-axis). The warming rate in the polar box is twice that of equator box.
Bright red denotes mostly flipping, while blue represents mostly remaining in the starting TH regime.
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Figure 13: The value of the between-box transport as function of time for the experiment with climate change. The
vertical dashed line marks the end of the assimilation period. The horizontal dashed line indicates observed current
transport [46].

transports. The source of this discrepancy might lie in our box definition. This will be discussed
in more detail in Section 7. The underestimation of current transports implies that the model is
closer to the tipping point than the real AMOC. Consequently, the ice melt and warming rates in
Figure 12 at which the circulation flips are in all likelihood an overestimation.

7 Conclusion and Discussions
We have applied the Stommel 2-box model to replicate the Atlantic meridional overturning circula-
tion and investigated its solutions, the feasibility of retrieving the temperature diffusivity, salinity
diffusivity and advection parameter by assimilating ocean temperature and salinity parameters
and to forecast the likelihood of circulation regime change in the 21st century.

We introduced seasonal variability and two of the effects of climate change into the model: warming
of the ocean surface at different rate for the pole and the equator and the melt of the Greenland ice
sheet. Qualitatively, the Stommel box model (4) mirrors certain aspects of the non-autonomous
Stommel box model (12) close to the NSF (by setting A = B = 0 in the non-autonomous case). The
former presents a relatively generic and simple model with a region of bistability of two stable
states that lose stability via a smooth saddle-node bifurcation while the latter undergoes an NSF
bifurcation. The non-autonomous Stommel box model presented provides a framework in which
we can develop critical (tipping) points by introducing high frequency oscillatory forcing.

Using the setup, we tested whether it would be possible to reconstruct the true value of the model
parameters by assimilating ocean temperature and salinity observation and use those parameters
to forecast the future circulation regime of the AMOC. Our twin experiments showed that the DA
method is indeed capable of reconstructing temperature diffusivity and the advection parameters
from observations. It also bring the salinity diffusivity closer to the truth, but the 18 year DA period
used is too short to convergence to the minimal obtainable error. Using observed temperature
and salinity from the EN4 dataset, the most-likely values of the model parameters have been
determined with the DA system indicating uncertainties of the same order of magnitude. In the
absence of climate change future temperature and salinity is expected to lie in the same range of
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temperatures and salinities that have already been observed in the period 2004-2022. With the
effects of climate, salinity differences between equatorial and pole box can move outside the current
range because of the freshening caused by the melting Greenland ice sheet. Running the model
with different climate change scenarios showed that this freshening is relatively more important to
the direction of the AMOC circulation than changes in surface temperature. In particular, with the
currently observed ice sheet melting rates, the model does not expect a reversal of the circulation
direction to occur.

Though an interesting proof-of-concept that data assimilation can help with reconstructing Stom-
mel model parameters, the forecasts produced in this study should be interpreted with some
care. The simplicity of the Stommel box model means that it cannot represent the wide range of
processes occurring in the North-Atlantic, nor can it represent the North-Atlantic geometry. In
particular, we have seen that our model underestimates the transports. In other box-based studies
[62, 41, 42, 43] the question of the transport is avoided by fitting temperature and salinity in boxes
to a GCM with realistic levels for the AMOC transport. Consequently, defiencies in the dynamics
of the Stommel model do not impact the parameter fit. In other multibox studies comparison with
observed values is not even attempted [44]. In [63, 39] it has been argued that not the buoyancy
forcing, but wind stresses are the primary driver behind the AMOC. And indeed [12] has shown
that the transport in a box-model increases strongly with increasing wind stresses. The fact such
wind forcing is entirely absent in the Stommel model might explain why our transport estimates
are an order of magnitude smaller than those observed. The omission of the southern Atlantic
ocean in our setup might be another contributing factor to the errors in AMOC transports. Our
two box model considers the North-Atlantic to be a closed system and does not account for the
southward transport of North-Atlantic Deep Water past the equator towards the Antarctic Cir-
cumpolar Current nor for the northward flow of Antarctic Bottom Water and waters from the
Angulhas current [1, sec. 14.2.14] which can increase transports by creating diapycnal mixing [64].
Accommodating these concepts requires more complex conceptual models like the Rooth model
[65] or full climate models. Finally, we noticed that the volume of the boxes can have profound
impact on the transports and this dependence deserves more attention in future box-model studies.

As a last note, the simplicity of the chosen reduced order model makes our analysis possible as
we are able to initialize large ensembles at low computational costs. This setup can serve as a
baseline in complexity with more detailed versions of the model available for further studies on
higher order dynamics.

A Lack of Periodic Solutions in the Stommel box model
In this appendix, we go over why we can rule out the existence of periodic solutions in the
autonomous Stommel box model. Doing so guarantees that in the non-autonomous model, when
we do the twin experiments and begin assimilating real data, the only oscillatory behavior will
come from the periodic forcing. The Poincaré-Bendixson theorem asserts that in a continuous
dynamical system, any confined solution will inevitably approach either a fixed point or a limit
cycle. In the next few paragraphs we will show that we get the former, not the latter in Equation (4),
where we take 0 < η3 < 1, η1 >

η3
1−η3

, with T,S ≥ 0.
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To start, we have that
dT
dt
= f (T,S) = η1 − T − T|T − S|

dS
dt
=g(T,S) = η2 − η3S − S|T − S|

We define our Dulac function ϕ(T,S) = 1. Applying Dulac’s criterion, we get:
∂(ϕ f )
∂T

+
∂(ϕg)
∂S

=
∂ f
∂T
+
∂g
∂S
= −1 − η3 − 3|T − S| (17)

This is always strictly negative, and so by the Bendixson-Dulac theorem, we get that there cannot
be any closed trajectories either entirely where T > S > 0, as well as in the area where S > T > 0.
However, there could be a closed trajectory which crosses between the two areas, over the line
T = S.

Now, assume we did have such a trajectory, a periodic solution C which enclosed a region D within
T,S ≥ 0, and let us call the part part of D where T > S, D1, and the part where S < T as D2, so that
∂D1 = C1 ∪ C3 and ∂D2 = C2 ∪ (−C3).
As Equation 17 allows for a continuous extension from D1 (D2) to its compact closure D1 (D2),∫ ∫

D1
( ∂ f
∂T +

∂g
∂S ) dT dS (

∫ ∫
D2

( ∂ f
∂T +

∂g
∂S ) dT dS) exists and is, as shown above, strictly smaller than zero.

Applying Green’s Theorem now gives:"
D

(
∂ f
∂T
+
∂g
∂S

)
dTdS =

"
D1

(
∂ f
∂T
+
∂g
∂S

)
dTdS +

"
D2

(
∂ f
∂T
+
∂g
∂S

)
dTdS

=

∫
C1∪C3

(−gdT + f dS) +
∫

C2∪(−C3)
(−gdT + f dS)

=

∫
C1

(−gdT + f dS) +
∫

C3

(−gdT + f dS) +
∫

C2

(−gdT + f dS) +
∫

(−C3)
(−gdT + f dS)

But rearranging this, the second and fourth terms simply cancel out. Furthermore, by definition,
we have that dT

dt = f (T,S) and dS
dt = g(T,S), so we get:∫ ∫

D
(
∂ f
∂T
+
∂g
∂S

) dT dS =
∫

C1

(−g dT + f dS) +
∫

C2

(−g dT + f dS)

=

∫
C

(−g dT + f dS)

=

∫
C

(−g
dT
dt
+ f

dS
dt

) dt

=

∫
C

(−
dS
dt

dT
dt
+

dT
dt

dS
dt

) dt

=

∫
C

0 dt

=0

But earlier we showed this was less than zero, so we have a contradiction, so no such loop C can
exist.

Thus, in the autonomous Stommel box model, it is impossible for a periodic solution to exist for
T,S ≥ 0.
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B Ensemble Kalman filter
Let

xt =[Te∗(t),Tp∗(t),Se∗(t),Sp∗(t), log
κT

κre f
, log

κS

κre f
, log

γ

κre f
]T

represent a possible state of the system at time t with κre f = 1 m2s−1 a reference values to nondi-
mensionlize the diffusion and advection coefficients. As this state does not only include the state
variables (Te∗(t),Tp∗(t), Se∗(t), Sp∗(t)) but also the model parameters κT, κS and γ, it is referred to
as the augmented state. Let

∫
X

p(x0) dx0 be the probability that the true state of the system at
the beginning of the model run lies in the set X. Using Bayes’ theorem and the chain rule for
probabilities it can be shown [66] that

p(xt|d0:t)︸   ︷︷   ︸
posteriori

∼ p(dt|xt)
∫

p(xt|xt−1)p(xt−1|d0:t−1) dxt−1︸                                 ︷︷                                 ︸
apriori

(18)

where ∼ indicates equivalence up to a normalisation constant, dt a vector with observations at
timestep t and d0:t a vector of all observations upto and including timestep t. Once the apriori is
specified for the initial timestep t = 0, equation 18 posteriori and apriori distributions for t > 0
can be constructed by induction using Equation 18. This occurs in two steps. The prediction step in
which the posteriori distribution at time t− 1 is transformed into the apriori distribution at time t,
and the update step in which the DA correction is applied to transform the apriori distribution at
time t into the posteriori distribution at the same time.

In an ensemble Kalman filter it is assumed that the apriori and posteriori distributions can be
approximated by a Gaussian with its mean µx,t =

1
M

∑M
m=1 x(m)

t and covarianceΣx =
1

M−1
∑M

m=1(x(m)
t −

µx,t)(x
(m)
t − µt)T estimated from an M-member ensemble of model runs {x(m)

t : 1 ≤ m ≤ M}. Each
ensemble member represents an equally likely realisation of these probability distributions. The
integral in the apriori distribution in Equation 18 is approximated using a Monte-Carlo method.
For each ensemble x(n)

t−1 an ensemble member x(m)
t is sampled according to p(xt|xt−1). In this work

the model is assumed to be without model error and hence p(xt|xt−1) = δ(xt −Mt−1→txt−1) with
δ the delta function and Mt→t−1 the model operator that propagates the ocean temperatures
and salinities from time t − 1 to t according to equations 1-3. Mt−1→t whilst keeping the model
parameters constant. I.e. model parameters are only changed during the update step.

The probability density distribution for the observations p(dt|xt) is assumed to be a Gaussian
with mean µd = Hµt,x and covariance Σd. In our case the observation operator H is such that
Hxt = [Tp∗(t),Te∗(t),Sp∗(t),Se∗(t)]T and Σd is assumed to be diagonal with its diagonal elements
(variances) given by Equation 14.

It can be shown that under these assumptions, the posteriori distribution is again a Gaussian with
mean µx̂,t =

1
M

∑M
m=1 x̂(m)

t and covariance Σx̂,t =
1

M−1 (x̂(m)
t − µx̂,t)(x̂

(m)
t − µx̂,t)T and

x̂(n)
t = x(n)

t + K(dt −Hµt,x) + AQΛ
1
2 QTê(n), (19)

with ê(n) the nth unit vector, A a matrix having x(n)
t − µt,x as its nth column and QΛQT the singular

value decomposition of I − ATHT((m − 1)Σd + HAATHT)−1HA [66] and K = AAT(HAATHT + (M −
1)Σd)−1 the Kalman gain.

The most-likely state, or mode, of the apriori and posteriori distributions are referred to as the
forecast and analysis respectively. As the ocean temperatures and salinities are assumed to follow
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Gaussian distributions, their forecasts and analysis coincide with their ensemble mean. For the
advection and diffusion parameters, however, we corrected their logarithms instead of the values
themselves. This so-called log-transform ensures that the parameters themselves remain strictly
positive. For a log-normal distribution, the mode is not given by eµp as naively might be expected,
but by eµp−Σp1 with µp the 3-dimensional vector containing the ensemble mean of the logarithms
of the model parameters and Σp the 3 × 3 matrix with their ensemble covariance [67]. I.e. µp and
Σp are the last 3-elements or 3 × 3-block of the µx and Σx respectively.

Data Availability
The MetOffice EN4 objective analysis temperature and salinity data with XBT and MBT cor-
rections used to create observations for assimilation as well as the surface forcing is avail-
able at https://hadleyserver.metoffice.gov.uk/en4/download-en4-2-2.html as the
EN.4.2.2.analyses.g10.XXXX.zip files. The hadley obs.py script used to process these observations
can be found in the inversion branch of the [68] GIT repository. Also included in this fork of DAP-
PER [31] are the code for the Stommel model (dapper/mods/stommel/ init .py) as well as the scripts
used to carry out the data assimilation (dapper/mods/stommel/experiment.py) using these observations
and the scripts for the twin experiments.
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Rigorous Evaluation of a Fraternal Twin Ocean OSSE System for the Open Gulf of Mexico.
Journal of Atmospheric and Oceanic Technology, 31(1):105–130, January 2014.

28

https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature-projections
https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature-projections
https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf
https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf


[58] H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear dynamic
systems. AIAA Journal, 3(8):1445–1450, 1965.

[59] Henk A. Dijkstra. Dynamical Oceanography. Springer Berlin,, Heidelberg, 1st edition edition,
2011.

[60] Aihong Xie, Jiangping Zhu, Shichang Kang, Xiang Qin, Bing Xu, and Yicheng Wang. Polar
amplification comparison among Earth’s three poles under different socioeconomic scenarios
from CMIP6 surface air temperature. Scientific Reports, 12(1):16548, October 2022.

[61] Gokhan Danabasoglu, Frederic S. Castruccio, R. Justin Small, Robert Tomas, Eleanor Frajka-
Williams, and Matthias Lankhorst. Revisiting AMOC transport estimates from observations
and models. Geophysical Research Letters, 48(10):e2021GL093045, 2021.

[62] S. Rahmstorf. On the freshwater forcing and transport of the Atlantic thermohaline circulation.
Climate Dynamics, 12(12):799–811, November 1996.

[63] Anand Gnanadesikan. A Simple Predictive Model for the Structure of the Oceanic Pycnocline.
Science, 283(5410):2077–2079, March 1999.

[64] Laura Cimoli, Ali Mashayek, Helen L. Johnson, David P. Marshall, Alberto C. Naveira Gara-
bato, Caitlin B. Whalen, Clément Vic, Casimir de Lavergne, Matthew H. Alford, Jennifer A.
MacKinnon, and Lynne D. Talley. Significance of diapycnal mixing within the Atlantic Merid-
ional Overturning Circulation. AGU Advances, 4(2):e2022AV000800, 2023.

[65] Claes Rooth. Hydrology and ocean circulation. Progress in Oceanography, 11(2):131–149,
January 1982.

[66] Geir Evensen, Femke C. Vossepoel, and Peter Jan van Leeuwen. Data Assimilation Funda-
mentals: A Unified Formulation of the State and Parameter Estimation Problem. Springer Nature,
2022.

[67] S.J. Fletcher. Mixed Gaussian-lognormal four-dimensional data assimilation. Tellus A: Dynamic
Meteorology and Oceanography, 62(3):266–287, January 2010.

[68] Ivo Pasmans. DAPPER/inversion, November 2023.

29


	Introduction
	Leveraging Conceptual Models for Parameter Estimation and Predictive Analysis
	Outline of the Paper

	Mathematical Analysis of the Stommel box Model: Autonomous and Non-Autonomous Perspectives
	The Stommel Box Model
	The Non-Autonomous Stommel Model

	Inversion of the Stommel box model
	Ensemble Kalman filter
	Observations and Model Parameters

	Twin Experiments
	Assimilating Box-Averaged observations in the Non-Autonomous Stommel Model
	Interfered Model Parameters

	Future Circulation
	Conclusion and Discussions
	Lack of Periodic Solutions in the Stommel box model
	Ensemble Kalman filter

