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Abstract
In-field trees are thought to buffer arable crops from climate extremes through the creation of microclimates that may reduce 
the impacts of heat, wind, and cold. Much less is known about how trees and their biotic interactions (e.g. with natural 
enemies of pests and wild understory plants) impact crop yield stability to biotic stresses such as crop pests and disease. Mod-
elling these interactions using conventional approaches is complex and time consuming, and we take a simplified approach, 
representing the agroecosystem as a Boolean regulatory network and parameterising Boolean functions using expert opinion. 
This allies our approach with decision analysis, which is increasingly finding applications in agriculture. Despite the naivety 
of our model, we demonstrate that it outputs complex and realistic agroecosystem dynamics. It predicts that, in English 
silvoarable, the biotic interactions of in-field trees boost arable crop yield overall, but they do not increase yield stability 
to biotic stress. Sensitivity analysis shows that arable crop yield is very sensitive to disease and weeds. We suggest that the 
focus of studies and debate on ecosystem service provision by English agroforestry needs to shift from natural enemies and 
pests to these ecosystem components. We discuss how our model can be improved through validation and parameterisation 
using real field data. Finally, we discuss how our approach can be used to rapidly model systems (agricultural or otherwise) 
than can be represented as dynamic interaction networks.

Keywords Agroforestry · Silvoarable · Crop yield · Agroecology · Boolean regulatory network

1 Introduction

The interaction of trees with arable crops (as seen in sil-
voarable agriculture) has largely been modelled as a pro-
cess of biophysical competition. Trees compete with crops 
for light, nutrients, and water and are usually thought to 
reduce crop yield while potentially buffering it against the 
impacts of extreme climate (Nasielski et al. 2015; Reyes 
et al. 2021). This is reasonable, but of equal or more interest 
to farmers and society generally are the living things that 
trees attract and interact with (the biotic interactions) and 
how these impact the dynamics and stability of the agro-
ecosystem. There have been empirical studies on this topic 
(Pumariño et al. 2015; Staton et al. 2019, 2021), but model-
ling investigations are lacking because of the complexity 
of the interactions between crop yield and the biological 
assemblages with which crops interact. Consider, for exam-
ple, the system we model here (Fig. 1 and 2) consisting of 
trees, their major biotic interactions in the agroecosystem, 
and the impacts of these interactions on arable crop yield. 
Modelling such a system by conventional means would 
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require the development of numerous field-parameterised, 
time-dynamic equations with each a complex function of 
several other ecosystem components. This is not impossible 
(see Dahood et al. (2020)) but a formidable empirical and 
analytical task, especially given the inherent stochasticity of 
most ecological systems, that limits the number of systems 
such techniques can be applied to (Luedeling et al. 2016).

Here, we make two major compromises to make the 
analysis of dynamic interaction networks more accessible, 
hopefully allowing the modelling of more real-world sys-
tems and providing analytical capacity to more people like 
farmers that depend on such systems. We firstly assume that 

each network component (or “node” to use graph theory ter-
minology) can only exist on one of two states: high or low, 
good or bad etc. Time dynamic relationships between nodes 
therefore become much simplified, and Boolean formulas 
are embodied in what are called truth tables (Kauffman 
1969, 1993). In their simplest non-probabilistic form, such 
networks are known as Boolean regulatory networks (Kauff-
man 1969, 1993). In their probabilistic form used here (see 
Methods Section 2.2 for more information), they are known 
as probabilistic Boolean regulatory networks (Shmulevich 
et al. 2002) and are amenable to Bayesian approaches, which 
we nevertheless do not use (see Methods Section 2.2 for 
explanation). The second major compromise we make is to 
allow experts to parameterise these much simplified Boolean 
formulas. The use of probabilistic, expert-driven approaches 
allies our technique with decision analysis which is begin-
ning to find application in agriculture (Hardaker and Lien 
2010; Luedeling and Shepherd 2016).

This paper is partly a showcase for the application of 
Boolean regulatory networks to agroforestry, agriculture, 
and wider real-life dynamical network systems. Thus, we 
keep network nodes generic (“crop disease” rather than 
“BYDV (barley yellow dwarf virus)” or Septoria tritici), 
and we show that ecological dynamics simulated by such 
simplified means can be complex and realistic. The paper 
also addresses a more specific issue of great relevance 
to agriculture under climate change: namely the issue of 
trees, their biotic interactions, and crop yield stability in 
the face of biotic disturbance. As introduced briefly above, 
trees, through their biophysical interactions with crops, are 
thought to increase crop yield stability, albeit at the expense 
of overall yield (Nasielski et al. 2015; Redhead et al. 2020; 
Reyes et al. 2021). This is assumed to be due to shade and 
favourable microclimatic effects in extreme heat or protec-
tion from frost in the cold (Lasco et al. 2014; Nasielski et al. 
2015; Reyes et al. 2021). Predicting patterns of biotic distur-
bance (e.g. crop pests and disease) of agroecosystems under 
climate change is extremely challenging, and it is difficult 
to generalise on the frequency and extent of extreme events 
in a way that can be done for numerous climatic variables. 
Nevertheless, crop pests and disease dynamics are likely to 
be different from current patterns, with geographic range 
expansions expected (Sutherst et al. 2011), and agricultural 
systems that are robust to these uncertain patterns of biotic 
disturbance are likely to be advantageous. Furthermore, even 
without climate change, agroecosystem resilience (of which 
yield stability is one component) is an important property, 
especially in organic agriculture which has fewer means to 
intervene during pest and disease outbreaks.

We hypothesise that the introduction of trees into arable 
cropping increases the stability of arable crop yield due to 
the numerous organisms (natural enemies, wild understory 
plants etc.) that they bring with them and the assumed 

Fig. 1  Oats growing between willow coppice at Wakelyns Agroforestry 
in Suffolk, England. An example of organic silvoarable agroforestry 
(Smith et al. 2024). ©Organic Research Centre

Fig. 2  A network diagram showing the agroecosystem modelled. 
Nodes contain the principal ecosystem components considered, and 
edges (arrows) show the influence of nodes on each other. Arrow-
heads show the direction of influence. The red arrow is the direct 
influence of trees on crop yield. This is the subject of major biophysi-
cal models of agroforestry and is systematically omitted from the cur-
rent model. Lettered edges were included only after studying the lit-
erature (see main text for more details on literature)
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relationship between biodiversity and ecosystem stability 
(McCann 2000; Dardonville et al. 2022). We wish to be 
explicit that we do not study “resilience” of the agrofor-
estry system here. Resilience is a whole system property 
and we only study one component of it: arable crop yield 
stability or arable crop yield at harvest following biotic 
disturbance. A system with high yield despite biotic chal-
lenge indicates a system with high yield stability. To test 
the hypothesis that agroforestry promotes higher crop 
yield stability, we develop a model of English, organic 
silvoarable, examine whether the model reproduces intui-
tively realistic dynamic interactions between ecosystem 
components, and compare the impact of biotic stress on 
yield in systems with and without trees. We carry out a 
sensitivity analysis to identify the most important com-
ponents driving crop yield. Finally, we propose ways in 
which our model can be validated and parameterised using 
field data and extended to other systems that can be repre-
sented as dynamic interaction networks.

2  Methods

2.1  Boolean regulatory network modelling (BRNM)

BRNM was first introduced in the 1960s by computer scien-
tist Stuart Kauffmann with the purpose of modelling the reg-
ulatory control and temporal dynamics of gene expression 
(Kauffman 1969), and use of this model has largely been 
restricted to this area ever since. Strictly speaking, however, 
BRNs are just very stripped back models of dynamic net-
works and seem amenable to applications outside genetics 
so long as network nodes (to use graph theory terminology) 
can reasonably be described in only two states (on-off, good-
bad, high-low, etc).

The networks represented in BRNM can be considered as 
consisting of a number of nodes (“genes” or “agroecosystem 
components” such as trees, weeds, and pests in the current 
application) and edges that represent the influence of nodes 
on each other. As just alluded to, a key feature of BRNMs is 
that nodes can only exists in one of two states at any given 
time. BRNMs operate algorithmically to model the tempo-
ral dynamics of network node expression state (Kauffman 
1969, 1993). In each time iteration of the model, each node 
is assessed in relation to the current state of all other nodes 
that influence it, i.e. through network edges. Each node has a 
“truth table” associated with it. This is a table of all possible 
states of other influencer nodes and the state that the focal 
node should assume for each possible combination in the 
next time iteration. All nodes are updated to enter the next 
time iteration, and the whole process is repeated over the 
specified number of time iterations of the model.

2.2  Special components and a general description 
of the current BRNM

The type of applications we consider here where BRNMs are 
applied to model systems outside gene regulatory modelling, 
we term generalised Boolean regulatory network modelling 
or GBRNM. There are three main areas where the current 
application differs fundamentally from the classic BRNM 
described in Section 2.1. Firstly, we use probabilistic truth 
tables. Thus, rather that stating: “if influencer node 1 is in 
state 1 and influencer node 2 is in state 0, I should assume 
state 0 in the next time iteration” (as in the classic BRNM 
model), we state “if influencer node 1 is in state 1 and influ-
encer node 2 is in state 0, I should assume state 0 in the next 
time iteration with a given probability”. This probabilistic 
Boolean regulatory network modelling approach is well 
characterised (see Shmulevich et al. 2002 for a mathemati-
cal description of probabilistic Boolean regulatory networks) 
and makes networks amenable to Bayesian approaches. 
Readers who are interested in knowing more about the 
similarities and differences between probabilistic Boolean 
regulatory networks and Bayesian networks should refer to 
Shmulevich et al. (2002) and Lähdesmäki et al. (2006). We 
do not undertake a classic static Bayesian network analysis 
here as we are interested in temporal network dynamics (not 
classically a concern of Bayesian modelling), and we analyse 
network behaviour after a relatively short number of time 
iterations (maximum 26, representing the 26 weeks of Eng-
lish Spring-Summer-Autumn crop growth) in a far-from-ter-
minal state. It should be noted, however, that time dynamic 
Bayesian networks have been developed and certain subsets 
of these behave similarly to probabilistic Boolean regulatory 
networks (Lähdesmäki et al. 2006). Thus, whether the cur-
rent model is described in the terminology of the dynamic 
probabilistic Boolean network or dynamic Bayesian network 
(e.g. “truth table” vs “conditional probability table”) may 
largely be down to the background and preferences of the 
author/s.

The probabilities alluded to above are determined by 
human experts in a process described further below in Sec-
tion 2.3.2. This use of carefully considered human opinion 
to allocate truth table probabilities relates to the second fun-
damental difference of our current application to the clas-
sic BRNM. Whereas Kauffman (1969, 1993) was careful to 
randomise system structure (he was interested in how gross 
biological system structure per se can generate behavioural 
order in that system), here we are highly systematic in order-
ing network edges and truth table structure to represent a 
specific ecological system. Details of this process are given 
below in Section 2.3.1 and Section 2.3.2.

Lastly, classic BRNMs give no consideration to the cur-
rent state of the focal node during the update process when 
determining that node’s next state. Here, however, we do 
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consider a focal node’s state during updating, and transition 
probabilities are calculated for nodes in both states. This 
was necessary due to specifics of the system (an agroecosys-
tem) we are modelling. In particular, processes such as plant 
disease seem particularly “asymmetric” in their dynamics: 
given the presence of a pathogen, plants can acquire that 
pathogen and it can spread relatively rapidly among the crop, 
but, once established, the likelihood of a pathogen dimin-
ishing in incidence without intervention to insignificance is 
relatively low. Future expression state of gene is not con-
sidered to be dependent on the gene’s current state, but it is 
likely that in many ecological networks, this assumption of 
independence of node temporal state will be untrue.

2.3  Specifics of the GBRNM agroecosystem model

2.3.1  The agroecological network

A network diagram of the system modelled is shown in 
Fig. 2. It shows the influence of in-field trees on arable 
yield, mediated through the biotic (living) components of the 
agroecosystem. We appreciate that “yield” is a late season 
phenomenon for many crops while we model and ask expert 
reviewers (see Section 2.3.2) to envision crop growth across 
the whole of the English spring-summer-autumn growing 
season. We use the term “crop yield” for convenience in the 
main text of this paper, while using the more encompassing 
term “crop growth/yield” in the data collection exercise with 
experts. The direct influence of trees on arable crop yield is 
well studied using major biophysical models of temperate 
agroforestry such as Yield-SAFE (van der Werf et al. 2007) 
and Hi-sAFe (Dupraz et al. 2019) and has the potential to 
obscure biotic effects in the current model. The direct influ-
ence of trees on arable crop yield is therefore systemati-
cally omitted from the current model. The effects of trees 
on crop yield demonstrated in this current study, therefore, 
represent effects that might be expected from trees and their 
biotic interactions in the artificially constructed absence 
of all biophysical competitive processes between trees and 
the arable crop (such as competition for light, water, and 
nutrients). Edges were omitted from the Diagram (Fig. 2) if 
an influence between nodes seemed tenuous to the authors 
from their knowledge, and they were included if they seemed 
obvious. A few edges lay between these extremes and were 
included only after careful study of the literature. In particu-
lar, the influence of crop disease on crop pest behaviour was 
only included after reviewing the evidence of Donaldson and 
Gratton 2007; Moreno-Delafuente et al. 2013; Su et al. 2015, 
and the influence of crop disease on natural enemies of pests 
was included following Gross (2016) who demonstrated 
that natural enemies of pests can respond to changes in leaf 
volatile profiles due to plant pathogen infection. It should be 
noted that in-field trees are assumed to influence numerous 

agroecosystem components but are not influenced by them 
in turn. This is a convenience to simplify the connective 
architecture of the network and so reduce expert effort in 
parameterizing the model (see below). However, it does also 
reflect the current tendency in agroforestry research to con-
sider trees as ecosystem service providers rather than service 
receivers. Another way of describing this convenience is that 
“in-field trees” is the only static node in the network whose 
state does not change during the course of simulations unless 
through manipulation by the modeler. Lastly, we decided to 
omit pollinators from the interactions network. Again, this 
was done partly to simplify the network but also because we 
wanted the system modelled to reflect as broadly as possible 
English arable agriculture, which is dominated by cereals 
that do not require insect pollinators. It should be borne in 
mind, however, that benefits of trees for arable crop yield 
shown in this paper are likely to be conservative relative 
to the benefits of trees and their understory in association 
with pollinator-dependent crops (Castle et al. 2019; Staton 
et al. 2019).

2.3.2  Parameterizing truth tables using expert opinion

There are models and methods of fitting specific ecologi-
cal systems to model interaction networks based on more 
conventional time-dynamic equation approaches (e.g. see 
Dahood et al. (2020)), but they are typically complex and 
require long-term datasets on the incidence of the organisms 
involved. The authors’ experience of interacting with farm-
ers and agricultural researchers and policymakers suggests 
to us that there are numerous agricultural systems where 
stakeholders could benefit from an easily and rapidly devel-
oped “brushstrokes” model of the dynamics of the system 
to assist in planning and decision-making. Here, we pro-
pose GBRNM with expert parameterisation of time-dynamic 
model elements as a potential framework to fill that gap. A 
key to this approach is the reduction of possible node states 
to two. All but the most accomplished mathematician would 
find it impossible to parameterise a multivariate differential 
equation linking future node state to current and influencer 
node state, but reducing possible node states to two makes 
this task of future node state prediction based on current 
states feasible. In the current network, the “crop weeds” 
node, for example, can exist in two states (“high or “low”), 
and it is influenced by four other nodes (Fig. 2) that can each 
also exist in two states. In the algorithmic implementation 
of our model, that means that  24 influencer node states in 
combinations with the two weed states (a total of 32 combi-
nations) must be assessed by experts to predict the state of 
weeds in the next model time step for any given combination 
of influencer and focal node states. By similar reasoning, 16 
combinations must be assessed for crop disease, 16 for yield, 
32 for crop pests, and 32 for natural enemies of pests: A total 
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of 128 system states that must be assessed by experts and 
future state (1 week, 2 weeks, and 1 month in the future) of 
focal nodes predicted.

Experts predicted different durations into the future (and 
subsequently ran models at these three different timesteps) 
because we felt that changes in different ecosystem compo-
nents are likely to occur on different timescales. For exam-
ple, many natural enemies of pest arthropods can smell the 
pests or the infested plants and will aggregate at the pest 
infestation rapidly. Such effects will operate at the relatively 
fine weekly timestep we use. Newly germinated weeds grow-
ing in a crop that is growing poorly, on the other hand, may 
still be relatively small and not considered serious issue in 
one week, but in a month, they are likely to be competing 
with the crop and considered serious. This type of dynamic 
would be more relevant to the monthly timestep used. Gen-
erally, we found that model network dynamics were quali-
tatively similar regardless of iteration period, with the long 
iteration model typically showing slightly larger effects 
when they existed (see Section 3). Most of our presentation 
in the main text focuses on the most conservative model run 
at weekly time iterations, but a full analysis of models is 
presented in the Supplementary Information.

The spreadsheets given to experts in this study in which 
these various combinations of agroecosystem components 
are represented are shown in Supplementary Dataset 1. 
Before this exercise could be completed by experts, however, 
there were numerous questions on the ecological system 
considered that needed to be clarified: What type of agri-
cultural system is it (high-input vs organic)? What type of 
agroforestry system is it when in-field trees are present and 
how is it managed? Where in the world is the agroecosys-
tem located? What do “high” and “low” mean when applied 
to agroecosystem component states? What are the precise 
definitions of each agroecosystem component? All these 
questions are addressed in a “setting the scene” passage of 
text that is presented to each expert in the spreadsheet before 
they begin to complete the predictive exercises. The passage 
is reproduced here:

“The tables below should be completed by imagining an 
English, organic, arable cropping system with and without 
agroforestry. Where agroforestry is present, it is in the form 
of a typical alley cropping system with in-field tree rows 
and crop strips in between. The crop within strips comprises 
only one crop species, and it is of the herbaceous, annual 
type typical of English agriculture. It can be assumed that 
this crop is not dependent on insect pollination. Tree rows 
can be assumed to have non-cropped understories that are 
maintained but not augmented in any way: Grasses and other 
wild plants grow as they establish. The system without agro-
forestry is of the same overall field dimensions, but trees and 
understories are no longer there and are replaced by crop, 
i.e. an organic monocropped field. Crop growth is assumed 

to occur during the English spring-summer-autumn grow-
ing season. “High” and “Low” in the tables below should 
be interpreted in terms of what would be satisfactory to the 
grower: a high level of crop disease or pests would be con-
sidered unsatisfactory to the grower, but a low level would 
be considered satisfactory. A high level of crop growth/yield, 
on the other hand, is considered satisfactory to the grower 
but a low value unsatisfactory. Assume the grower makes no 
intervention to address any pest, disease, and weed issues. 
Note that “Crop pests” (insects and other animals that eat the 
crop) are distinguished from “Crop disease” (crop ailments 
caused by microorganisms). “Crop” refers to the arable crop 
in between tree rows, not any “crop” that may be produced 
by the trees (timber, fruit, nuts, etc.).” 

Blocks of scenarios within spreadsheets were randomised 
for each expert as were rows within blocks. Column head-
ings of influencer nodes within blocks were also randomised 
between experts. All such measures were taken to ensure 
that effects such as expert fatigue did not impact particular 
treatments disproportionately. To feed into model simula-
tions, all transition probabilities produced by the four experts 
were averaged to produce a consensus dynamic network; 
however, specifics of expert predictions (including inter-
expert variation in opinion) were subject to statistical analy-
sis (see Section 2.3.3). Experts were asked to produce transi-
tion probabilities for each ecosystem component, 1 week, 2 
weeks and 4 weeks in the future.

The four experts who complete the truth table exercises 
were the authors of the current paper. TS and AC were com-
pletely naïve as to the purpose of the spreadsheet exercise 
and wider study at the time of completing spreadsheets. WS 
was partially naïve (CRT described the model he was work-
ing on in conversation), and CRT was fully aware of the pur-
pose of the spreadsheet and wider study. Short biographies 
of experts can be found in the Supplementary Information.

Future work will aim to include experts beyond the pro-
fessional agricultural research community, such as farmers 
themselves, and could potentially analyse impact of profes-
sional background on attitudes displayed within truth tables. 
Here, potential differences in the opinion of experts were 
analysed statistically as a random effect, as described in the 
next section. Spreadsheets took each expert several hours to 
complete. It should be noted by readers interested in using 
the modelling framework described in this paper to model 
their own system that systems with mores nodes than ours 
are likely to represent an unrealistic burden on expert time 
unless their network is of lower connective complexity (see 
Fig. 2).

2.3.3  Specifics of simulations and analysis

Simulations and their analysis The current application of the 
model investigated the indirect role of trees (realised through 
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biotic intermediates) on arable yield and arable yield stabil-
ity to biotic stress such as sudden increases in plant disease 
or pest incidence. Presence or absence of trees was therefore 
systematically manipulated. Excluding this factor, there were 
32 possible network starting states, and “crop yield perfor-
mance” was assessed for each starting state and summa-
rised across all 32 using means and 95% CIs, with treatment 
comparisons undertaken using independent sample t-tests. 
“Crop yield performance” was defined as the proportion of 
crop yields showing satisfactory/high (i.e. = 1) at 6 months 
or model time iteration 26 (1 week model time iteration), 
13 (2 week), and 6 (1 month), assessed over 1000 stochastic 
simulation repeats.

A sensitivity analysis was undertaken to determine which 
ecological component of the agroecosystem the GBRNM 
model was most sensitive to. A value of 0.05 was added to 
each transition probability for each agroecosystem compo-
nent in the model, and the impact on crop yield was ana-
lysed only for the 1-week time iteration model. (Note that the 
converse operation of subtracting 0.05 from each transition 
probability could not be undertaken due to the low absolute 
value of some probabilities.)

Expert opinion and its analysis Experts analysed a long 
list of combinations of agroecosystem components (“agro-
ecosystem components” are the nodes of Fig. 2), with each 
described as being in either a high or low state (present/
absent in the case of in-field trees). For each combination, 
they then looked at the current state of a different focal agro-
ecosystem component and predicted its likelihood of chang-
ing state within one week, 2 weeks, and 4 weeks’ time, given 
the current state of the other components of the agroecosys-
tem. As each focal agroecosystem component was assessed 
in both a high and low state, we produced two sets of data 
that were analysed separately: one for low to high transi-
tion probabilities of the focal agroecosystem component and 
one for high to low transition probabilities. These transition 
probabilities were analysed with a linear mixed model statis-
tical framework with presence/absence of in-field trees and 
agroecosystem component (crop weeds, crop disease, crop 
pests, natural enemies of pests—crop yield was not included 
as the direct influence of trees on it was removed from the 
network model) as fixed effects and the identity of the expert 
as a random factor. The interaction between fixed effects was 
also included in the model.

Expert opinion on transition probabilities of each of the 
network nodes was analysed using linear mixed models in 
R (Version 1.4.1717). Impacts of trees and agroecosystem 
component/node were analysed as main effects and in inter-
action, with expert identity considered a random effect. The 
significance of the random effect was assessed using the 
likelihood ratio test in R using the aforedescribed mixed 
effects model with random effect term, and the same model 

without the random effect term. Effect sizes were calculated 
as Hedge’s g which is preferrable to Cohen’s d in samples 
below 20 in size (Lakens 2013). The Supplementary_Data_2 
package accompanying this article contains all code and data 
used to run statistical tests. R code used to run the main 
Boolean model is included as Supplementary_Code_File_1.

3  Results

3.1  Some examples of the dynamics produced 
by a GBRNM model of an agroecosystem

Before we can use the GBRNM to generate predictions 
on how trees impact stability of arable crop yield to biotic 
shock, it is firstly necessary to demonstrate that the model 
outputs meaningful, intuitively reasonable dynamics. 
GBRNM is a new method for modelling ecological networks 
and has no prior record in this area. This issue may be par-
ticularly relevant for Boolean networks as the deterministic, 
rule-randomised form of these networks (not used here) dis-
plays strong attractors that could conceivably impact net-
work dynamics. Here, we analyse network dynamics over 
a number of relevant scenarios, but it should be noted that 
wider adoption of GBRNM will require comparison with 
other forms of systemic modelling, more extensive appropri-
ate sensitivity analysis, and field validation.

We chose one of a possible 32 starting scenarios for these 
simulations: a likely common starting scenario where all 
ecosystem components except crop yield/growth are at low 
levels. To make interdependencies easier to visualise, we 
additionally perturbed the system between weeks 8 and 12 
with a period of high crop pest and disease incidence (simu-
lated by assuming all simulations displayed high (=1) levels 
of these ecosystem components during that period). This 
“open” type of system where dynamics are subject to exter-
nal perturbations is examined further in subsequent sections. 
In-field trees were also assumed present.

Crop disease, crop weeds, and crop pests (and the natu-
ral enemies that prey on them) all increased from very low 
initial levels as would be expected in an English organic 
arable system at the start of the spring-summer-autumn 
growing season, and there was a concurrent drop in crop 
yield (Fig. 3A and B, weeks 1–7). With the introduction of 
a 4-week pest perturbation (landmark 1 in red in Fig. 3A), 
there was a rapid increase in natural enemy numbers (land-
mark 2, Fig. 3A) that prey on the pests and a small increase 
in plant disease (landmark 3), presumably due to a percep-
tion among the experts who parameterised the model of 
pests as vectors of plant disease. Due to landmarks 1 and 3, 
crop yield fell at an increasing rate when a pest perturbation 
was introduced (landmark 4) but tailed off at a low terminal 
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value as weeds and diseases asymptoted at their high ter-
minal value. It should be noted that, due to the build-up of 
natural enemies during the pest perturbation event, when the 
pest perturbation ended, natural enemies remained at high 
levels and pest numbers fell rapidly (landmark 5), presum-
ably elevating terminal crop yield above that expected in the 
absence of natural enemy proliferation.

When the system was perturbed with high levels of crop 
disease for four time iterations (Fig. 3B, landmark 1), there 
was a rapid and extensive drop in crop yield (landmark 2), 
suggesting the primacy of disease in the dynamics of this 
system (confirmed in later simulations, Section 3.5). This 
drop in crop vigour was such that it allowed weeds to prolif-
erate (landmark 3). Weeds and a continued high rate of plant 
disease after the end of perturbation (as might be expected 
if plant disease is left untreated, landmark 4) ensured that 
the crop arrived at a state of very low yield at the end of the 
growing season.

Therefore, while we have not used field data to construct 
the model and have not compared its dynamics to real data, 
many aspects of the model’s dynamics are intuitively sensi-
ble and, at the very least, the model represents an effective 
exploratory model for preliminary system manipulation and 
analysis.

3.2  The impact of the biotic interactions of in‑field 
trees on arable crop yield

Simulations with and without trees were run across all 32 
possible system starting states, and yield (n = 32 for means 
and 95% CIs) after 6 months or iteration 26 (1 week model 
time iteration), 13 (2-week time iteration), and 6 (1 month 
time iteration) was analysed (Fig. 4). Trees and their biotic 

interactions increased crop yield. In simulations run at 
weekly time iterations (Fig. 4A), this was not significant at 
α = 0.05 (P = 0.08), but it is clear that the size of this effect 
was depressed by the half of simulations where plant disease 
was high at the beginning of simulations and where crop 
vigour is expected to be depressed regardless of the state 
of other agroecosystem components. In the half of simu-
lations that did not start with high levels of plant disease 
(within the curly brackets of Fig. 4A), trees conferred a clear 
yield advantage. The statistical probability of tree vs no tree 
effects on crop yield across all starting states was below 0.05 
in simulations run at 2-week and 1-month time iterations 
(Fig. 4 B and C).

3.3  In‑field trees and arable crop yield stability 
to biotic shock

The model was subject to a pest perturbation between time 
iterations 8–12 (one week time iterations), and its ability to 
maintain crop yield in the face of this challenge was ana-
lysed as a measure of yield stability. This same scenario was 
investigated above (Section 3.1) for 1 of 32 model starting 
states in the presence of trees (Fig. 3A and B). Here, we 
expand this analysis across all possible 32 starting states of 
the model and all time iteration variants of the model and 
investigate dynamics with and without in-field trees.

Trees made no significant difference to the amount that 
crop yield performance fell when subject to a pest perturba-
tion (Fig. 5A3), and trees had little impact on the final value 
(iteration/week 26) of crop yield performance in the pres-
ence of pest perturbation (Fig. 5A4). In other words, trees 
did not increase crop yield stability to a biotic shock in the 
form of a crop pest.

Fig. 3  Dynamics of two example simulations run at weekly time 
iterations in which external crop pest (A) and crop disease (B) per-
turbations are introduced between weeks 8 and 12. Both simulations 
assume trees are present. Lines in the graph describe the state of each 
network node in Fig. 2, quantified as the number of 1000 simulations 
showing the 1 or “high” node state at each time interval. Only one of 
a possible 32 starting states for simulations are shown here, in which 

all ecosystem components except crop yield/growth start at low lev-
els. Numbers shown next to lines within plots describe landmarks 
in the dynamics of ecosystem components and are referred to in the 
main text (paragraphs 3 and 4 of Section 3.1). In both plots, “1” is the 
start of the 4-week artificially induced biotic stressor, and the other 
numbers are phenomena consequent of this action.
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Crop yield performance fell less in the absence of trees 
when the system was subject to a crop disease perturba-
tion over the same period as above (Fig. 5B3); however, 

this simply reflects the fact that crop yield performance is 
higher in the presence of trees (see previous section). Trees 
made no difference to the final level of crop yield with crop 

Fig. 4  Crop yield performance after 26 (1 week model time iteration) 
(A1–A2), 13 (2-week time iteration) (B1–B2), and 6 (1 month time 
iteration) time iterations (C1–C2) of the model with (orange) and 
without (blue) in-field trees. Yield means are quantified in A-C part 
2 across all 32 starting states of simulations as means and 95% CIs 
and analysed using t-tests. Simulation starting states are show by the 
binary grid with 1 representing “high” and 0 “low.” Agroecosystem 
components represented by each row in the grid are show in the first 

plot of (A). The y-axis “Crop yield performance” is the proportion 
of 1000 simulations that showed yield in a “high” state at the end of 
the simulation period. Curly brackets contain simulations that were 
not begun with high levels of plant disease. Note that the use of lines 
joining points in plots A1–C1 does not indicate a series. Data in plots 
A2–C2 are means ± 95% CIs, N = 32. A2 – t = − 1.77, df = 47.1, P 
= 0.0835. B2 – t = − 2.56, df = 48.2, P = 0.0138, C2 – t = − 3.49, 
df = 48.6, P = 0.00102.
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disease perturbation (Fig. 5B4). Again, trees do not appear 
to increase crop yield stability to biotic shock.

These analyses were repeated for simulations run over 13 
(2-week time iteration) and 6 (1 month time iteration) time 
iterations. Results are shown in the Supplementary Infor-
mation (Fig. S1 and Fig. S2). The findings were similar to 
those above but with larger effects as the number of itera-
tions decreased. In the case of simulations with 1-month 
time iterations, trees did result in a higher final yield perfor-
mance with pest perturbation (Fig. S2). This represents the 
only evidence that trees may improve crop yield stability 
to pest shock. There is no evidence that trees improve crop 
yield performance to crop disease perturbation. Overall, evi-
dence that trees increase stability of the arable crop yield to 
biotic shock is scant.

3.4  Analysis of expert predictions used 
to parameterise the model

Statistical findings are shown in pages 3-8 of the SI with a 
graphical presentation of the data in Figs. S3-S5.

The impact of trees on transition probabilities was not 
significant at the α = 0.05 level, and there was no interac-
tion of trees with agroecosystem component. Thus, the 
impact of trees was not generally more pronounced when 
applied to different agroecosystem components. The only 
term that was consistently significant at α = 0.05 was, 
unsurprisingly, agroecosystem component itself. So, for 
example, experts considered that natural enemies in a cur-
rently high state had a relatively high probability of being 
in a low state in a week. A diseased crop, on the other 

hand, is very unlikely to become un-diseased 1 week later 
in the absence of intervention (Fig. S3). There was gener-
ally little difference in opinion between experts. Four of 
six statistical tests of this random effect were insignificant 
at α = 0.05. However, expert identity was a significant fac-
tor for low to high transition probabilities predicted 2 and 
4 weeks in the future.

These findings mean that the statistically significant 
impacts of trees on crop yield and yield stability shown by 
the GBRNM are due to effects of small size amplified over 
numerous ecological components and time iterations. We 
considered it of value to analyse these small effects of trees 
in more detail using an effects size approach. In data where 
predictions were made one week into the future only, we 
firstly removed expert identity from the visual presentation 
by averaging across all experts, thus better reflecting the 
data inputted into the model. Figure 6 and its effects size 
inset shows that experts consider that trees in English sil-
voarable have their largest (but still statistically insignificant) 
effect on disease, followed by natural enemies, then weeds, 
and then pests. Effect sizes are bi-directional and somewhat 
predictable in all cases except disease. Here, the opinion of 
experts on the effects of in-field trees is unidirectional and 
negative in effect. In other words, experts feel that the transi-
tion from high to low crop disease state is less likely in the 
presence of trees, presumably reflecting a perception that 
trees and their understory may harbour disease. Experts also 
feel that disease is less likely to go from low to high in the 
presence of in-field trees, probably reflecting a perception of 
in-fields tree rows as a barrier to the spores and insects that 
carry disease from one part of the field to another.

Fig. 5  Crop yield performance after 26 (1 week model time iteration) 
time iterations of the model with and without in-field trees, where the 
system is additionally subjected to a crop pest and crop disease per-
turbation between iterations 8 and 12. Plot A1 shows the difference in 
yield performance with and without pest perturbation in the absence 
of in-field trees. A2 is equivalent but with in-field trees. Plot A3 
shows the average difference between with and without pest perturba-
tion (plots A1 and A2) in the absence and presence of in field trees. 

Shown are means ± 95% CI, N = 32. Plot A4 is the average yield per-
formance with pest perturbation, without trees and with trees. Shown 
are means ± 95% CI, N = 32. Plots B1–B4 are equivalent to A1–A4 
but show response to crop disease perturbation. Additional figure 
details are as Fig. 4. Note that the use of lines joining points in plots 
A, B, E, and F does not indicate a series. A3 – t = 1.48, df = 55.2, P 
= 0.144. A4 – t = − 1.53, df = 46.6, P = 0.133, B3 – t = 2.21, df = 
46.4, P = 0.0323.
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3.5  GBRNM sensitivity analysis

The findings of the sensitivity analysis are shows in Fig. 7. 
Modelled crop yield was overwhelmingly most sensitive to 
plant disease, followed by weeds then pests. The model was 
notably insensitive to the presence of natural enemies. The 
presence or absence of trees had little overall impact on the 
sensitivity of the model.

4  Discussion

4.1  Silvoarable and arable crop yield stability

While there are many studies showing that silvoarable can 
dampen negative environment extremes (Smith et al. 2013; 
Lasco et al. 2014), there are few studies that show significant 
effects of this dampening on arable crop yield, and fewer still 
that have characterised the relationship between mean yield 
and its variation through time (stability). It is therefore a 
priority to characterise the relationship between mean yield 
and yield stability for both biophysical and biotic compo-
nents of the agroforestry system because it potentially allows 
better predictive modelling of the response of arable yield 
to future environmental conditions. To our knowledge, only 
two studies have systematically described the relationship 
between mean arable yield and yield stability through bio-
physical mechanisms in silvoarable, and they both reach the 
same conclusion: Agroforestry decreases arable yield but 

increases yield stability to environmental extremes (Nasiel-
ski et al. 2015; Reyes et al. 2021).

The current study suggests that biotic interactions of 
in-field trees impact the arable yield - yield stability rela-
tionship in a different way to Nasielski et al. (2015) and 
Reyes et al. (2021). They increase arable yield but have 
no impact on stability. The current model and its findings 
need to be validated with field studies, but if these predic-
tions are true, it would then seem reasonable to determine 
if and how they vary year-on-year with climatic conditions 
in the field, recalling that climatic effects are not incorpo-
rated into the current model. Both positive and negative 
scenarios can be imagined with an increase or decrease in 
biophysically induced temporal stability and no, positive or 
negative change to overall yield. Determining the nature of 
these interactions seems a priority if we are to produce a 
more comprehensive predictive framework for the impact 
of agroforestry on the productivity of agricultural systems.

Whilst we found no relationship between biodiversity, 
in the form of in-field trees and their biotic interactions, 
and crop yield stability, a positive biodiversity-productivity 
relationship was demonstrated. This is contrary to some 
other studies in which biodiversity (of select taxonomic 
groups such as plants and microbes) is commonly associ-
ated with loss of crop productivity in agriculture, a finding 
that has been central to academic debates of the global value 
of organic agriculture, which typically promotes biodiver-
sity at the expense of yield (Gabriel et al. 2013; Gong et al. 
2022). The positive biodiversity-productivity relationship 

Fig. 6  Impacts of in-field trees on the probability of agroecosystem 
components transitioning from low to high and high to low states 
one week later. Results in (A) are shown for the consensus of expert 

predictions where probabilities have been averaged across the four 
experts. Shown are means ± 95% CI, N = 8 or 4 (crop disease). (B) 
Effect sizes (Hedges G) associated with tree-induced effects in (A).
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in our model presumably relates to the generally reduc-
tive impacts of trees on crop pests and disease predicted 
by experts (Fig. 6; however, note that experts also consider 
that agroforestry may harbour crop disease), with the model 
being reasonably sensitive to both ecosystem components 
(Fig. 7). Field testing of the validity of these predictions 
would, therefore, seem a priority.

A positive relationship between biodiversity and crop 
yield stability is commonly observed in arable agriculture 
(Snapp et al. 2010; Dardonville et al. 2022), contrary to the 
findings of the current study. It may be that situation of the 
current study in organic agriculture, which is usually more 
biodiverse than high-input farming (Hole et al. 2005), may 

have persuaded experts that organic monoculture already 
had sufficient functional biodiversity to maintain a reason-
able level of stability and that the addition of in-field trees 
would make little difference. Alternatively, it should be 
borne in mind that older syntheses of biodiversity-ecosystem 
functionality relationships in grasslands, from which cur-
rent applications in agriculture derived, were conspicuous in 
emphasising that the positive biodiversity-stability relation-
ship is an on-average response and that ecological networks 
whose members lack the necessary functional traits may not 
demonstrate this relationship (McCann 2000; Loreau et al. 
2001). There is no reason why this conclusion should not 
apply in some arable systems.

Fig. 7  Sensitivity of crop yield 
modelled using the GBRNM 
model to an 0.05 change in 
high to low and low to high 
consensus transition probabili-
ties associated with each of the 
agroecological components 
of the model. Simulations are 
run with (A) and without (B) 
trees. The first bar represents 
the unmanipulated model for 
comparison. Shown are means 
± 95% CIs, N = 32. Differences 
between means and bars for 
each component of the agroeco-
system show their importance 
to the dynamics of the GBRNM 
model.
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Our findings also need to be considered in the context of 
the whole agricultural system or farm. Tree biotic interac-
tions may add little to English arable crop stability but if 
the farmer makes those trees a significant additional source 
of income, for example, through fruit or nut harvesting, the 
losses to arable crops in extreme environmental conditions 
may be compensated by the relative stability of tree yield. 
For example, additional income from a high-value fruit 
crop can more than compensate for a minor reduction in 
cereal crop yield in agroforestry systems (Staton et al. 2022). 
Extending this line of thinking, if in-field trees become an 
integral part of the whole farm economy, as seen in many 
small-scale and subsistence farms, supplying food and fuel 
and building materials, then the relative stability and reli-
ability of trees become integral to maintaining whole farm 
resilience. It is by such mechanisms that small-scale agro-
forestry farmers in Cameroon strongly feel trees contribute 
to the ability of the household to withstand the challenges 
of changing climate (Nyong et al. 2020).

4.2  Importance of natural enemies in temperate 
arable agriculture and their augmentation 
through silvoarable agroforestry

One of the most interesting and provocative insights from 
Section 3 is the difference between expert predictions on the 
impact of natural enemies and their real impact in the model 
agroecosystem. Experts parameterising the GBRNM model 
feel that in-field trees have a relatively (not absolutely) large 
impact on natural enemies of crop pests and presumably feel 
that this could be a significant driver of the system mod-
elled. Sensitivity analysis, on the other hand, indicates that 
natural enemies have very little impact on the dynamics of 
the GBRNM model, with the model overwhelmingly most 
sensitive to crop disease.

Why was the initial expert estimation of the impact of 
natural enemies on crop pest so high, while the sensitivity 
analysis showed a negligible impact on crop yield? Part of 
the reason lies in the fact that the debate around ecosys-
tem service provision in England and Europe has become 
focused on the role of crop pollination, natural enemy aug-
mentation, and crop pest management (Fagerholm et al. 
2016; Staton et al. 2019, 2021) at the expense of other agro-
ecosystem components.

The data to address this issue on the relative importance 
of different biotic components of agroecosystems in Eng-
lish arable does not exist, but we can comment on studies 
across wider geographic areas and agricultural systems. 
Oerke (2006) quantified the relative importance of weeds, 
animal pests (arthropods, nematodes, rodents, birds, slugs, 
and snails), pathogens (bacteria and fungi), and viruses 
on wheat yield across 19 world regions. Without inter-
vention, weeds were the most important determinant of 

yield (23.0% loss, range 18–29), followed by pathogens 
(15.6% loss, range 12–20), then animal pests (8.7% loss, 
range 7–10), and then viruses (2.5% loss, range 2–3). 
Unfortunately, the author did not quantify the impact of 
natural enemies, but as they impact animal pests, which 
are already a relatively minor determinant of crop yield, 
it is likely that they in turn will be an even less significant 
determinant of yield. Incidentally, the lower importance of 
pathogens relative to weeds in Oerke (2006), which contra-
dicts our findings using the GBRNM, can presumably be 
attributed to the specific temperate silvoarable focus of our 
GBRNM in which pathogens (especially fungi) assume a 
greater importance in crop yield dynamics due to the wet-
ter, colder conditions (Fones and Gurr 2015).

Studies of natural enemy augmentation in agroecosys-
tems where impact on crop yield have been quantified 
can also help deduce the importance of natural enemies 
as a determinant of crop yield. However, few such studies 
focus on English arable systems, and research on conser-
vation biological control has primarily focussed on meas-
uring the abundance of pests and/or their natural enemies, 
while impacts on crop yield are more rarely quantified 
(Johnson et  al. 2021). In Argentinian soybean fields, 
an approximately 70% increase in arthropod predator 
abundance due to adjacent woodland lead to an increase 
in crop yield of around 30% (González et al. 2020). In 
Dutch winter wheat, flower-rich flower strips caused a 
14% increase in natural enemies of pests, but this had a 
negligible impact on crop yield (Mei et al. 2021). In New 
York State cabbage fields, augmentative release of natu-
ral enemies leading to a 47% increase in larval predation 
resulted in a 26% increase in crop biomass (Perez-Alvarez 
et al. 2019). Clearly, the impact of natural enemies on 
crop yield varies with the system under consideration, but 
these published findings suggest at least that if augmenta-
tive effect of trees or other features are high enough, this 
can have an impact on yield that is likely to be economi-
cally meaningful to the farmer.

To return specifically to English arable system and 
agroforestry, Staton et al. (2021) observed a doubling of 
natural enemy counts on apple trees due to the flower-rich 
understories of tree rows in English cereal agroforestry. 
Species richness of ground dwelling natural enemies in 
crop alleys was enhanced early in the growing season, and 
thrips were less abundant in crop alleys but there was no 
impact on five other crop pests, indicating that “bottom-
up” factors such as plant community diversity and struc-
ture can be more important determinants of pest popula-
tions than “top-down” natural enemy control (Gurr et al. 
2003). Staton et al. (2019), reviewing 12 studies of temper-
ate silvoarable, found that natural enemies are enhanced 
by around 24% and crop pests decreased by roughly the 
same amount, but no impacts on crop yield were reported.
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Therefore, to answer our initial questions, we believe that 
the recent focus on the benefits of agroforestry for natural 
enemy augmentation and pest control has not been mis-
guided. Given a sufficient augmentative effect of trees and 
their understory on natural enemies, significant impacts on 
crop yield can be expected. Mechanisms of natural enemy 
augmentation through floral nectar provision and the provi-
sions of natural enemy egg-laying substrate on and around 
trees are transparent and easy for farmers to appreciate, and 
there is a substantial literature on agroforestry and natural 
enemy augmentation and pest control (see references above 
and (Pumariño et  al. 2015)). Nevertheless, the current 
GBRNM and the review of Oerke (2006) discussed above 
indicate that natural enemies are but one biotic determinant 
of crop yield and not necessarily the most fundamental 
one. It would seem that a shift in the silvoarable ecosystem 
service narrative away from natural enemies and pests and 
towards more fundamental determinants of yield in arable 
agroecosystems such as weeds and crop disease is due.

4.3  Impact of trees on arable crop disease: what 
is known?

This modelling study indicates that crop disease is the 
most important determinant of crop yield in English 
arable systems and so is likely to be a particularly effec-
tive biotic factor to manipulate through in-field tree 
rows. Unfortunately, almost nothing is known about how 
trees impact arable crop disease. One intuitively senses 
that some conventional farmers view agroforestry and 
the agroforestry understory with suspicion as potential 
overwintering habitat for crop disease, which may spread 
the following year. However, there does not appear to be 
any evidence supporting this point of view. Beule et al. 
(2019) studied mycotoxin accumulation in German oil-
seed rape and cereal monoculture with in-field tree rows 
and found that there was no difference between systems 
in rates of infection of cereal with five Fusarium species 
and oilseed rape with the fungal pathogens Leptospha-
eria biglobosa, Leptosphaeria maculans, and Sclerotinia 
sclerotiorum. In fact, they found that colonisation of oil-
seed rape with Verticillium longisporum and wheat with 
the head blight pathogen Fusarium tricinctum was lower 
in agroforestry than in monoculture. Beule et al. (2019) 
discuss the relatively evident mechanisms of tree lines 
as “breaks” and “barriers” in reducing pathogen inci-
dence through reduced dispersal but also raise the inter-
esting possibility that tree lines could boost populations 
of soil-borne bacterial agonists of V. longisporum (see 
also (Ratnadass et al. 2012) for a discussion of the same 
mechanism and the role of intercrops in limiting dispersal 
of insect disease vectors). Trees may also impact micro-
climatic conditions that can impact the performance of 

pathogenic microorganisms (Ratnadass et al. 2012; Beule 
et al. 2019).

We propose, based on the findings of the current GBRNM 
model, that research on the role of in-field tree lines on tem-
perate arable crop disease be expanded and mechanisms of 
action of potentially beneficial effects identified.

4.4  A critique of the current GBRN model 

The preliminary and experimental nature of the model 
presented here demands caution in the interpretation of its 
outputs. The GBRNM approach is most similar to decision 
analysis modelling that has been used extensively in eco-
nomics and social science and which has recently found 
applications in agricultural decision-making (Hardaker 
and Lien 2010; Luedeling and Shepherd 2016; Do et al. 
2020). Both approaches seek ways to predict reliable sys-
tem dynamics in data-poor systems using expert opinion, 
and both emphasise retrospective analysis of the sensitivity 
of the system to standardised variation of component parts, 
thus targeting areas of further study to improve model reli-
ability. In this way, we have recommended in the current 
study that researchers should focus on the role of trees in 
crop disease and weed dynamics as the network model is 
particularly sensitive to these components. Improvement 
of the current model could also proceed in a more holistic 
way with little extra effort. If growers are involved in agree-
ing thresholds for high/low values, researchers or growers 
themselves could undertake regular field checks (“Are crop 
disease levels acceptable?”, “Is the crop developing at an 
acceptable rate?”, etc.), and in this way, the most common 
transition probabilities could doubtless be quantified across a 
few silvoarable systems in a single season. The model would 
then be implemented using field-derived transitional prob-
abilities for the most commonly encountered transitions in 
agroecosystem components, and less commonly encountered 
transitions could be parameterised, as before, by experts.

GBRNM is a versatile approach that can be applied to 
model any time-dynamic interaction network. We are cur-
rently applying the technique to analyse how trees, primarily 
used as farm input (e.g., through selling tree fruit in a farm 
shop or burning wood to heat the farmhouse), can impact farm 
economic viability in the face of farm input and commodity 
price volatility. Applications outside agriculture are equally 
valid; agriculture is simply the interest of this paper’s authors.

The technique is also simple, easy, and rapid to implement, 
contrary to complex predictive models, which are admirable 
and powerful but require time-consuming field or lab cali-
bration of continuous equations. We envisage that a skilled 
and knowledgeable modeller could characterise, analyse, and 
feedback on a system of comparable complexity to the cur-
rent application within a week given sufficient motivation on 
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the part of themselves and the set of participating experts. 
Thus, GBRNM models could help realise the dream of ana-
lytical provision for many systems and enterprises.

5  Conclusion

In this article, we describe a novel and easily implemented 
modelling framework called GBRNM that is used to describe 
the interactions of trees and arable crop yield mediated only 
through the biotic (living) components of the agroecosystem. 
Despite the model’s simplicity and the fact it is parameterized 
only using expert opinion, it produces persuasive ecosystem 
dynamics. The model predicts that trees and their biotic inter-
actions boost arable crop yield overall, but they do not increase 
stability of crop yield to biotic stress. We discuss how this new 
model can be parameterised using field data and explain how it 
can be extended to model other agricultural networks.
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