Gishan, M., Middya, P., Drew, M. G. B., Frontera, A. ORCID: https://orcid.org/0000-0001-7840-2139 and Chattopadhyay, S.
ORCID: https://orcid.org/0000-0001-7772-9009
(2024)
Synthesis, structural characterization, and theoretical analysis of novel zinc(ii) schiff base complexes with halogen and hydrogen bonding interactions.
RSC Advances, 14 (42).
pp. 30896-30911.
ISSN 2046-2069
doi: 10.1039/d4ra06217e
Abstract/Summary
In this article, we present the synthesis and characterization of three zinc(II) complexes, [ZnII(HL1)2] (1), [ZnII(HL2)2]·2H2O (2) and [ZnII(HL3)2] (3), with three tridentate Schiff base ligands, H2L1, H2L2, and H2L3. The structures of the complexes were confirmed by single-crystal X-ray diffraction analysis. DFT calculations were performed to gain insights into the self-assembly of the complexes in their solid-state structures. Complex 1 exhibits dual halogen-bonding interactions (Br⋯Br and Br⋯O) in its solid-state structure, which have been thoroughly investigated through molecular electrostatic potential (MEP) surface calculations, alongside QTAIM and NCIPlot analyses. Furthermore, complex 2 features a fascinating hydrogen-bonding network involving lattice water molecules, which serves to link the [ZnII(HL2)2] units into a one-dimensional supramolecular polymer. This network has been meticulously examined using QTAIM and NCIplot analyses, allowing for an estimation of the hydrogen bond strengths. The significance of H-bonds and CH⋯π interactions in complex 3 was investigated, as these interactions are crucial for the formation of infinite 1D chains in the solid state.
Altmetric Badge
Item Type | Article |
URI | https://reading-clone.eprints-hosting.org/id/eprint/118820 |
Item Type | Article |
Refereed | Yes |
Divisions | Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry |
Publisher | Royal Society of Chemistry |
Download/View statistics | View download statistics for this item |
Downloads
Downloads per month over past year
University Staff: Request a correction | Centaur Editors: Update this record