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Abstract 

Health information systems (HISs) manage healthcare data and support 

decision-making in order to improve the quality of health service. The 

nature of healthcare demands, particularly resulting from patient-centred 

care policies and evidence-based medicine, necessitates the efficient 

management and usage of healthcare resources. Given the benefits that 

technological advancements such as sensor-based technologies and 

ubiquitous computing environments give to healthcare services, the HIS 

faces various hurdles. The Interoperability across diverse information 

systems, particularly the complexity introduced by continuously 

increasing data sources, is one of the greatest obstacles. This research 

focuses on  the semantic ambiguity in information exchange processes 

and then proposes an ostensive information architecture based on the 

widely adopted international standard FHIR (Fast Health Interoperability 

Resources) to improve the semantic interoperability between healthcare 

information systems. 

The semantic interoperability concerns the capacity of systems to share 

and interpret the meaning of information exchanged in ecosystems. 

Motived by the semantic ambiguity generated in FHIR implementation, 

this research investigates the semiotic sources semantic ambiguity. It 

then proposes an ostensive information architecture to reduce ambiguity 

caused by applying FHIR specifications in various contexts for various 

objectives.  
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The FHIR specification specifies a collection of present information 

models referred to as resources, as well as four paradigms for exchanging 

these resources amongst heterogeneous health information systems. As 

the FHIR specification seeks to cover all medical service scenarios, its 

conceptual descriptions lean towards generality and universality. As a 

consequence, the FHIR specification is rather flexible and implementors 

are free to utilise FHIR resources. In this context, the semantic ambiguity 

resulting from differing implementers’ interpretations of the FHIR 

specification causes interoperability issues between systems. In order to 

decrease such ambiguity, this research introduces an ostensive method 

as an additional means of elucidating the semantics through the use of 

examples. 

An ostensive approach defines concept through direct example. This 

method is often applied in language and philosophy, and it is considered 

particularly effective in clarifying semantics. In this research, the 

ostensive approach shows how implementers employ FHIR resources to 

represent local healthcare data. Thus, one healthcare service can be 

explained by 1) explaining its lexical-semantic by the FHIR knowledge 

graph; 2) explicating the semantics through the explicit correspondences 

between FHIR and local data attributes, and 3) showing examples of these 

attributes by pointing to local dataset values. This research builds an FHIR 

knowledge graph-based Semantic Engine using Neo4j to provide semantic 

interpretation and examples. The proposed information architecture has 

been tested using MIMIC III and diabetes datasets. 

Overall, This study provides a semiotics-based information architecture 

approach to address semantic ambiguity and enhance the semantic 

interoperability. The suggested ostensive information architecture 
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naturally separates semantic explanation and data storage, ensuring data 

privacy and enhance data security. The final chapter discusses benefits 

and future research directions.  
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Chapter 1 Introduction 

This chapter explains the context and rationale of designing an information architecture for 

healthcare ecosystems. This study investigates interoperability between healthcare 

information systems as a result of the demand for sharing healthcare data and the 

development of IT technology. Research issues and questions are discussed from both a 

theoretical and an empirical perspective. Consequently, the purpose and objectives of the 

research are outlined. The structure of this thesis is sketched at the end of the chapter. 

1.1  Background and Motivation 

A health information system (HIS) consists of interconnected components that gather, 

analyse, store and disseminate healthcare data to support decision-making, coordination, 

control, analysis and visualisation in order to improve the quality of health services (Stair 

and Reynolds, 2020). In light of the benefits provided to healthcare services by advances 

such as sensor-based technology and the ubiquitous computing environments for multiple 

HIS users, including physicians, patients, funders of healthcare, and regulatory bodies (He 

et al., 2019), the HIS faces multiple challenges (Haux, 2006). How to efficiently manage and 

employ healthcare resources to provide quality care is one of the greatest difficulties. The 

nature of healthcare demands, particularly resulting from patient-centred care policies 

(Stewart, 2001, Håkansson Eklund et al., 2019) and evidence-based medicine (Sackett, 

1997, Martini, 2021), requires the efficient data exchange across domains.  

As the HIS landscape has significantly expanded, with its complexity increasing 

exponentially, in response to increased levels of connectivity and stakeholder demand, 

HISs are evolving into healthcare ecosystems (Liu and Guo, 2021); facilities of this nature 

should have the capacity to content with multiple domain knowledge (Blobel, 2019), 

particularly heterogeneous data collected by novel medical devices or sensors (Kankanhalli 

et al., 2016, Ristevski and Chen, 2018). In this context, system interoperability, which 

facilitates intercommunication and enables data sharing across disparate information 
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systems (Geraci, 1990, Mouttham et al., 2012, Lehne et al., 2019b) is a major concern for 

enhancing the efficiency of health data usage.  

The diversity of datasets generated by information obtained from wearable devices, 

telehealth, and digital therapeutics (Aungst and Patel, 2020, Li et al., 2015) requires 

exchangeability, not only of the data but also the information they contain. Consequently, 

both academia and industry are paying increading attention to the issue of the 

interoperability of digital ecosystems (Grimson et al., 2000, Lehne et al., 2019b). According 

to the survey, the lack of interoperability across medical devices costs $ 35 billion annually 

(West Health Institute, 2013). Therefore, there is a need to enhance the interaction of 

complex systems in healthcare domain, particularly facilitate health data sharing from 

disparate HISs or data sources. 

From information network connectivity to application interaction, interoperability can be 

categorised into three forms, specifically: technical, syntactic, and semantic (Joshi et al., 

2017, Tolk et al., 2007). In the dimensions of technical and syntactic interoperability, 

consensus solutions have, to some extent, been developed; for example, information 

exchange protocols such as REST (Resource Representational State Transfer) API 

(Application Programming Interface) and the unified data formats are, in practice, 

becoming more widely adopted. However, there remain significant challenges for semantic 

interoperability (Ashrafi et al., 2018, Geraci et al., 1991, HIMSS, 2014); this concerns the 

capacity of systems to interpret the meaning of the exchanged information within 

ecosystems. Because the applications of artificial intelligence, advanced data analytics and 

wearable technologies are becoming increasingly common within healthcare ecosystems 

(Rehman et al., 2022, Knight et al., 2021), the subject of interaction between 

heterogeneous applications and systems has attracted the interest of many academics. 

Therefore, the motivation of this research is to explore the meaningful information 

exchange between two or more entities within a healthcare ecosystem at the semantic 

level (Ouksel and Sheth, 1999, Liu and Li, 2015).  

Due to the complex nature of health information representations, international standards 

have been produced to achieve their semantic interoperability, such as HL7 v2 and v3 (HL7 

International, 1987), open EHR (open EHR, 2003) and CEN/ISO 13606 (ISO). Although these 

standards claim to answer the problem of semantic exchange, they are implemented at 
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different levels of interoperability, namely syntactic, semantic and pragmatic from the 

perspective of information exchange (Liu and Li, 2015). However, the semantic ambiguity 

continues to exist (Jiang et al., 2015, Jiang et al., 2016, Dolin et al., 2018). In the background, 

FHIR (Fast Healthcare Interoperability Resources) is adopted as a research foundation to 

investigate the semantic ambiguity in the application of this specification because its high 

adoption in industry (Information Technology Industry Council, 2018). 

As FHIR is still in the process of continuous development, numerous scholars and 

practitioners have highlighted semantic ambiguity difficulties for FHIR implementation 

(Kubick, 2016, Dolin et al., 2018, Kraus, 2018, Beale, 2019). This research devoted to 

enhancing the semantic operability for FHIR. The current solutions to reduce semantic 

ambiguity can be roughly classified into three categories: 1) improving the harmonisation 

of FHIR resource usage through review processes (McClure et al., 2020, Tute et al., 2021) ; 

2) developing detailed usage specifications on the FHIR according to the characteristics of 

local health data (Rosenau et al., 2022, NHS Digital, 2021); 3) automatic FHIR specification 

conversion for specific databases (Pfaff et al., 2019, Sayeed et al., 2020). However, these 

solutions are limited by high development costs in terms of time and manpower, as well as 

a restricted application scope. Regarding the research gap, this research examines the 

semantic interoperability of FHIR from semiotics perspective and investigate a cost-

effective and easily implementable solution.  

This research is not concerned with establishing a new health information system to satisfy 

demand, but rather about with optimising the existing solution. In addition to the FHIR-

based semantic interoperability, the research will investigate an appropriate research 

strategy that can expand the FHIR’s adoption boundaries. 

1.2 Research Problems and Questions 

Given the necessity to explore the healthcare information architecture to respond to the 

requirements of healthcare data users and the importance of semantic interoperability 

between heterogeneous healthcare information systems, this research firstly investigates 

the interoperability challenges in health information systems; therefore, the first research 

question of this study is: 
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Q1. What is the current state of health information systems and the interoperability 

challenges they face? 

Within the context of multi-system interaction, semantic interoperability is investigated in 

depth, with a primary focus on gaining a knowledge of the obstacles currently faced by 

health information systems and how those obstacles might be overcome. Thus, the second 

question of this research is:  

Q2. How to improve the semantic interoperability regarding to the multidisciplinary and 

cross-organisational healthcare delivery? 

After comparing the healthcare interoperability standards released by various international 

standards organisations from the perspective of supporting information exchange, Fast 

Healthcare Interoperability Resources (FHIR) is chosen as the basis of the study. From a 

literature review, the limitations of FHIR in terms of supporting semantic interoperability 

are identified. Regarding the semantic ambiguity generated in FHIR implementation, the 

semiotics theory is adopted to facilitate understanding the root cause of semantic 

ambiguity. Thus, the third question of this study is: 

Q3. How to enhance semantic interoperability of FHIR? 

Considering the urgent requirements of using healthcare data for high-quality service or 

academic research, the fourth question of this research is: 

Q4. How can FHIR-underpinned healthcare information platform integrate data from 

heterogeneous local systems with a unified schema for multiple purposes? 

These three questions concern the semantic interoperability in healthcare ecosystems from 

the information system architecture point of view and the perspective of implementation 

to respond to the requirements of healthcare data use. 

1.3 Research Aims and Objectives 

The aim of this research is to improve the semantic interoperability of digital healthcare 

ecosystems on the basis of FHIR, aiming to support patient-centred care (Stewart, 2001) 
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and evidence-based medicine (Sackett, 1997). 

In order to achieve this aim, this research targets to propose an optimised information 

architecture based on FHIR to enable the collaboration between heterogeneous local 

health information systems. The proposed information architecture could synergy 

dispersed health information systems, including the microdata sources such as wearable 

devices and monitors, in a collaborating way of working. To align with the research aims, 

the specific objectives of this research are: 

1. To comprehend the complexity of healthcare ecosystem, which is driven by 

sophisticated technology and the demands for optimal utilisation of health data. 

2. To examine the existing interoperability solutions for health information systems and 

understand their limitations.  

3. To investigate the underlying source of semantic ambiguity generated by FHIR 

implementation. 

4. To develop an information architecture for HIS based on the identified underlying 

causes of semantic ambiguity and an assessment of the literature on multi-agent 

information architecture. 

5. To validate the efficacy of proposed information architecture in decreasing semantic 

ambiguity and facilitating health data exchange from heterogeneous data sources. 

1.4 The Expected Outcome 

Due to the fact that the FHIR design based on the Internet protocol has rapidly gained a 

large number of adoptions, this research will maximally retain the benefits of the current 

design to the greatest extent possible; therefore, this research will not alter the structure 

of FHIR but will instead explore a solution from a broader perspective in terms of a new 

information architecture. 

Since this ecosystem will continue to increase in complexity and is still in the process of 

developing naturally, it will surely continue to receive new data sources from a variety of 
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sources. Therefore, the anticipated information system architecture can reconcile disparate 

data sources; in other words, it can manage dynamically heterogeneous data sources. This 

system architecture will reduce the amount of effort necessary for data migration and 

system installation by taking into consideration the diversity and complexity of existing 

systems. 

1.5 Thesis Outline 

This thesis is structured and follows the falsification research process. The nature of this 

research has resulted in the subscription of falsification as its logical reasoning approach to 

guide the development of the ostensive information architecture for healthcare 

information systems. The falsification process enables researchers to propose a solution 

that solves the limitations of existing solutions while inheriting the advantages of existing 

solutions. In Figure 1, chapters are organised according to research activities to address 

research aims. 

 

Figure 1 Thesis outline 

Chapter 2 reviews the relevant literature about digital healthcare ecosystems. In the 

beginning, this chapter addresses the complexity of the healthcare ecosystem and the 

impacts of emerging technologies on healthcare services. Then the chapter reviews the 

state-of-the-art health information systems from the perspective of their goals and 
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challenges. After that, this chapter introduces the concept of health informatics and 

particularly emphasises the interoperability challenges of health information systems, 

which provides an antecedent for understanding the importance of interoperability to high-

quality health care. Following with the present of the interoperability of the healthcare 

ecosystem from the perspective of the levels of information exchange and summarises the 

interoperability levels of existing international standards in the healthcare domain. Finally, 

based on the interoperability level, this chapter selects two specifications for semantic 

interoperability for a detailed comparison and then chooses one as the basis for this study. 

Chapter 3 illustrates the philosophical stance of this research. Firstly, this chapter explains 

the author’s empirical observations and philosophical position derived from the 

observations. Then the chapter studies the mainstream research paradigms and compares 

falsificationism with others. From the comparison, falsificationism can be identified as it 

provides research philosophy and methods for innovating existing theories, which can 

guide the research of information system design. As sign/language is one of the critical 

aspects influencing the interaction between participants and information systems, which 

could generate semantic ambiguity in some circumstances, this research particularly 

explores the language used as a sign system in information system design. In the last, this 

chapter introduces the research design of the present thesis, which is carried out according 

to the falsificationist research process. 

Chapter 4 identifies the fundamental course of semantic ambiguity generated in the FHIR 

(Fast Healthcare Interoperability Resources) implementation through a semiotic analysis of 

information interaction. The first section lays the groundwork for proposing a novel way to 

decrease semantic ambiguity. The following sections introduces FHIR including its 

evolutionary history and distinctions from previous HL7 versions. Following a detailed 

introduction of how FHIR applies in the healthcare information systems and the FHIR 

compliance challenges caused by semantic ambiguity. The subsequence sections then 

investigate the limitation of FHIR. The following section reviews the related works to 

improve FHIR compliance. As the ontology technique is typically used to promote the 

information exchange between multiple domains, the final section examines the ontology-
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related work employed in healthcare information systems.  

Chapter 5 presents an ostensive information architecture, which enhances semantic 

interoperability and decreases semantic ambiguity during the process of FHIR 

implementation. Firstly, this chapter introduces the MSA (Micro-Services Architecture) in 

modern information system design and explains how the knowledge graph reflects the 

design idea of MSA in this research. Then, this chapter depicts the federated architecture 

of information systems, which is the infrastructure model adopted in this study. After that, 

this chapter demonstrates how federated architecture and MSA contribute to the 

deliberation of the ostensive information architecture through the descriptions of each 

technique and steps to construct a Semantic Engine and mapping the local clinical data to 

the Semantic Engine. 

Chapter 6 validates the capacities of the ostensive information architecture through two 

case studies. The first shows how semantics are enhanced through the ostensive approach 

facilitated by the Semantic Engine; the second shows how the Semantic Engine works in 

the heterogeneous data exchanging situation to facilitate semantic interoperability 

between MIMIC III (Medical Information Mart for Intensive Care version III) datasets and 

diabetes datasets. The last section of this chapter describes the applications of the 

Semantic Engine in terms of supporting computational and analytical tasks. 

Chapter 7 provides a summary of this research’s contributions from theoretical, 

methodological, and practical viewpoints, as well as its answers to the four research 

questions.  

Chapter 8 summarises this research from the perspective of knowledge accquisition. In the 

section that follow, the limitations of this study and their implications for future research 

are discussed. In the final section, a brief reflection of this research journey is presented. 
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Chapter 2 Literature Review 

The literature review of this thesis will be undertaken from the perspectives of digital health 

information systems, information system architecture and semiotics at different stage of 

study. As seen in Error! Reference source not found., the three domains are paired to 

conduct in-depth research on different perspective of semantic interoperability in HIS. The 

integration of information system architecture and digital HIS allows for an architectural 

understanding of interoperability difficulties within digital HIS. On the basis of identified 

interoperability concerns, a review of the semiotics domain helps to comprehend the use 

of signs in information systems, hence facilitating the investigation of the underlying causes 

of communication barriers in information exchange. The integration of semiotics with 

information system design facilitates the resolution of recognised semantic problems.  

 

Figure 2 Literature review structure  

In Chapter 2, health information systems are examined in order to comprehend the present 

state of digital HIS and the available solutions for semantic interoperability. In Chapter 4 

and 5, the architecture and semiotics of information systems are examined, along with the 
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process of identifying a solution to semantic interoperability. 

In the beginning of Chapter 2, the complexity of the healthcare ecosystem is addressed, 

particularly in the context of health information system transformation driven by advanced 

technologies, such as Bigdata, AI, and Cloud computing, as well as by the demands of 

precision medicine, ubiquitous monitoring, and wearable devices. The direction of 

expanding the capacity of healthcare information systems through the use of advanced 

technologies can be identified, and the external needs for digital healthcare information 

systems also can be clarified. Section 2.2 examines state-of-the-art healthcare information 

systems, including the goals and challenges of healthcare information system. Section 2.3 

examines the breadth of health informatics and the issues of interoperability. Section 2.4 

addresses the classification of interoperability from the information systems perspective 

and examines the published standards for semantic interoperability. Based on sorting out 

the interoperability level of existing protocols, Section 2.5 selects two widely adopted 

international standards at the semantic interoperability level and compares them from the 

perspective of technology architecture, openness, scalability, flexibility, and portability. 

FHIR is selected as the foundation of this research to discuss semantic interoperability in 

healthcare information systems. 

2.1 The Complexity of Healthcare Ecosystem 

The healthcare ecosystem is profoundly changed by an explosion of innovation in digital 

technologies (illustrated in Figure 3), which enhance the understanding of patient health in 

both temporal and spatial dimensions (Mamom and Daovisan, 2022, Kaushik et al., 2021), 

renovate the interaction between the healthcare providers and patients (Thornton, 2010, 

Sink et al., 2022), and reshape the practices of diagnosis (Firouzi et al., 2018, Li et al., 2022), 

and even impact on the medical research paradigm (Practice, 2006, Kidholm et al., 2021).  
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Figure 3 The complexity of digital healthcare ecosystem  

From the onset of digital health, the “unquenchable needs for more and greater access to 

healthcare consumers” (Wen and Tan, 2003) are released and, in turn, promote the 

development of health information technology (HIT). Digital health shifts the paradigm of 

healthcare provision aiming at a more efficient, cost-effective, and time-saving mode. 

Empowered by digital health technologies, patients can make better-informed health 

decisions about their personalised health status, such as disease prevention and chronic 

conditions management outside traditional healthcare settings. In addition to providing 

such a personalised and integrated healthcare experience, HIT is also perceived as a 

strategic necessity for increasing provider productivity, engaging formal and informal 

caregivers, and improving equity and affordability. HIT is the booster to drive the evolution 

of the digital health ecosystem.  

In this research, the digital health ecosystem is defined as a set of services and capabilities 

that benefit all participants in the healthcare value chain from the multi-dimensional data 

sharing enabled by a virtual data backbone (McKinsey&Company, 2019) . The following 

content discusses the components of the virtual data backbone and their implicit impact 

on health care.   

A virtual data backbone is a general concept that refers to the infrastructure of the telecom 

network and the IT capabilities it carries. It is named a virtual data backbone because it is 
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not a physical network, but a logically integrated network composed of multiple networks 

or communication technologies. From the data management point of view, the virtual data 

backbone comprises the data collection layer, data transmission and exchange layer, data 

security and privacy layer, data storage and analysis layer, and the top layer of human-

machine interaction. As data are collected from various layers of a health ecosystem, its 

hierarchical structure must be considered, as each layer emphasises distinct data sources 

and application scenarios. Table 1 lists the emerging technologies in each layer.  

Table 1 The promising technologies in the hierarchical model of data existing in network 

Purpose and functions Technology and means 

Human-Machine interaction Digital health 
(mobile APP, VR, AR and MR) 

Data security and privacy Blockchain 

Data storage and analysis  Cloud, edge computing, AI, and Machine Learning 

Data transmission and exchange 5G 

Data collection IoT, IoMT 

• Data collection layer 

At the level of data collection, underpinned by the development of sensor technologies, 

IoMT (Internet of medical things), sometimes referred to as IoT (Internet of things) in 

healthcare, brings diverse data sources into the healthcare ecosystem. IoMT enables 

wireless and remote devices to collect health and relevant data, such as environmental data, 

and communicate over the Internet, which is the primary dimension for personalised and 

integrated care.  

IoMT reshapes the healthcare service fundamentally, and the changes in service provision 

can be seen most notably when deploying IoMT on-body, in-home, in the community, and 

in-hospital (Al-Turjman et al., 2020). IoMT devices provide real-time and personalised data 

to support flexible medical data analysis and diagnosis decisions, particularly in health 

condition management, independent ageing, epidemic management, and chronic health 

condition management.  
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IoMT is a new category of data generation source for dynamic monitoring of personal 

healthcare (Mohapatra and Sahoo, 2022, Alemdar and Ersoy, 2010), and the more 

advanced product modes, such as smart pills, are capable of providing very precise personal 

health data. Technological and business innovations in this area are constantly emerging. 

According to the survey of a market research firm, the overall investment in IoMT market 

is expected to reach $185 billion by the end of 2028 (Data Bridge Market Research, 2022)  

This collection of medical devices becomes an essential part of the heterogeneous profile 

of a patient, and it enables plenty of possibilities for improving the quality of care (Gubbi et 

al., 2013, Pustokhina et al., 2020). Chamola et al. (2020) summarised the role of IoMT in 

contact tracing, measuring respiratory rate, and telemedicine during the COVID-19 

pandemic. However, the various data sources located in a large number of IoMT isolated 

systems bring the complexity of data standardisation, integration, and interaction. Thus, 

the interoperability issue is more prominent (Jabbar et al., 2017, Ullah et al., 2017, Ganzha 

et al., 2017) in the IoMT embedded health information systems. 

• Data transmission and exchange layer 

The wireless network plays a decisive role in the Internet of Things (IoT) ecosystem. 

Commissioned by the Global System for Mobile Communications Association (GSMA), a 

report by PwC in 2015 estimates that digital health could save a potential €99 billion in 

healthcare costs in the European Union resulting from the increasement of connectivity 

through wireless networks (PwC, 2015). 

The fifth generation (5G) mobile network, in particular, aims to address the limitations of 

previous cellular standards in terms of downlink and uplink data rate, bandwidth, the 

connectivity of machine-type devices, and end-to-end network latency. 5G becomes a key 

enabler for future IoMT by the capacities of eMBB (enhanced mobile broadband), mMTC 

(massive machine type communications) and URLLTC (ultra-reliable low latency 

communications). Telemedicine, remote monitoring, thermal imaging, and remote surgery 

(Chen et al., 2017, Magsi et al., 2018, Lacy et al., 2019, Chamola et al., 2020) such products 

and service forms, gain tremendous potential under the empowerment of 5G networks. 

Chettri and Bera (2019) explain the massive opportunities for IoMT through 5G new 
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technologies, such as new radio (NR), multiple-input-multiple-output antenna, and mm-

wave. 5G sits in the middle of IoMT and Cloud, supporting data transmission and exchange; 

therefore, in addition to fixed-line Internet, the diversity of future healthcare services 

brought by the 5G wireless network should be considered.  

• Data storage and analysis 

Cloud is another vital enabler of IoMT to make ubiquitous and on-demand data access 

possible and promote collaborative consultation through sharing data across organisations 

(Hoang and Chen, 2010, Thota et al., 2018). Wan et al. (2022) review the related work in 

IoMT data analysis, emphasise the importance of fast, comprehensive, and accurate health 

data to quality healthcare services, especially in COVID-19 prevention and control, and 

discuss the Cloud, fog, and edge computing architecture for IoMT. Cloud is regarded as a 

distributed repository, providing the fundamental capacity in terms of storage and 

computing. Cloud and IoMT amalgamation provide an efficient solution for data and 

information exchange between heterogeneous devices and handling ever-increasing data 

demands in healthcare applications.  

Artificial intelligence (AI) brings a paradigm shift to the healthcare domain. The algorithm-

enabled analysis archives remarkable results in medical data analysis (Kooi et al., 2017, 

Karimi et al., 2020, Heller et al., 2021, Liu and Guo, 2020). For example, Jiang et al. (2017a) 

discussed AI applications in early stroke detection, diagnosis and treatment. Yu et al. (2018) 

systematically reviewed AI applied in medical practice regarding clinical decision support, 

medical imaging, and integrated healthcare from the technical breakthrough perspective.  

• Data security and privacy 

Blockchain is one of the most disruptive technologies in the IT domain. Although it 

empowers a few controversial applications in different fields, the adoption of blockchain in 

healthcare is accelerated by its characteristics of decentralised mechanism to ensure the 

security of data and the appropriate flexibility in using privacy data (Wood et al., 2016, Agbo 

et al., 2019). The use of blockchain technology in healthcare information systems has many 

potential application scenarios and is of high practical value (Mettler, 2016). For example, 
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blockchain can be used to provide access to medical data (Azaria et al., 2016), control 

privacy (Yue et al., 2016), and track the changes in patients’ medical history records (Zhang 

et al., 2018). Aloini et al. (2022) review the related work and summary the opportunities of 

blockchain in healthcare process innovation. 

• Human-Machine interaction 

The immersive technologies, such as augmented reality (AR), virtual reality (VR), and mixed 

reality (MR), provide real-life simulations to enable the user to practice different actions in 

a safe and controlled environment. Such immersive technologies are gradually being 

adopted more and more in two mainstream applications (Yeung et al., 2021). One is to 

alleviate symptoms related to ageing and neurodegenerative problems, such as Parkinson’s 

disease (PD), stroke, depression and PTSD (post-traumatic stress disorder); another one is 

in the domain of surgical visualisation and education (Pottle, 2019), such as surgical training 

(Kneebone, 2003), image-guided surgery, virtual patient, and robotic surgery (Zendejas et 

al., 2013, Yeung et al., 2021).  

From the above discussions, it can be seen that due to the development of connection 

technology, communication technology, data storage and computing technology, the forms 

of medical services have been diversified (Rodrigues et al., 2018, Manogaran et al., 2018, 

Iyawa et al., 2016), and they are still rapidly proliferating, and there is no sign of 

convergence at present. This kind of innovation using ecosystem synergy will continue for 

a long time, so the complexity of the medical ecosystem will continue to increase. In this 

context, it is necessary to discuss the challenges of health information systems from a 

holistic and harmonised viewpoint.  

In the following sections, firstly, the state of the art of health information systems in the 

environment of new technology outbreaks will be reviewed, and then the current work 

related to semantic interoperability in the digital healthcare ecosystem will be discussed. 

2.2 State of the Art of Health Information Systems  

The health information systems (HIS), as one of the typical systems for information 
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management, represents a wide range of information systems challenges that directly 

influence business decisions and quality of work, particularly the quality of healthcare 

(Haux, 2006). HIS is expected to have social and economic benefits by leveraging the 

information technologies for patients, healthcare providers, researchers and policymakers 

(Jennett et al., 2003). Furthermore, there is considerable interest in exploring the optional 

of HIS (Currie and Finnegan, 2011). 

HIS is recognised as the cornerstone of achieving quality of care, multi-party access and 

healthcare equity. The importance of HIS has been addressed by academia and industry 

(Haux, 2006, WorldHealthOrganisation, Sligo et al., 2017). The goals of HIS can be briefly 

summarised as follows:  

Table 2 The goals of HIS (based on Eysenbach’s seminal work (Eysenbach, 2001)) 

No The goals of HIS The 10 e’s in "e-health" 

1 improve the quality of 
medical services 

enhancing quality of care  

evidence based - proven by rigorous scientific evaluation 

ethics - e-health involves new forms of patient-physician 
interaction and poses new challenges and threats to ethical 
issues  

equity  

2 reduce the cost of operation efficiency - thereby decreasing costs 

3 empower patient to involve in 
healthcare or treatment 
process and to decide about 
the use of their data 

empowerment of consumers and patients  

encouragement of a new relationship between the patient and 
health professional 

4 safely and effectively use 
medical cases and data for 
multiple purposes such as 
scientific research, education, 
and service quality 
improvement 

education of physicians through online sources and 
consumers  

5 standardise information 
exchange and commutation in 
an extendable scope of 
healthcare ecosystem 

enabling information exchange and communication in a 
standardized way between health care establishments. 

 

extending the scope of health care beyond its conventional 
boundaries 

Haux (2006) identifies seven directions of HIS development over time. They are: (1) to shift 

from paper-based processing and storage to digital-based; (2) to evolve from local to global 
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information system architectures; (3) to include patients as target users of HIS; (4) to extend 

HIS data serving scope from primary patient care to healthcare planning, and data-enabled 

clinical research; (5) to move the focus from technical aspects to strategic information 

management of HIS; (6) to broadly involve new types of data in diagnosis and research; (7) 

to keep steady track on new technologies and their application in the medical field, even as 

yet unseen. 

Well-functioning healthcare, such as patient-centred care (Little et al., 2001, Stewart, 2001), 

requires the healthcare information are efficiently managed and utilised. The advent of 

rapid technological development and the demands for ubiquitous environments from 

multiple users of HIS, including physicians, patients, healthcare payers and regulatory 

bodies (He et al., 2019), make the HISs more complex in adopting various emerging 

technologies. In response to the increased connectivity and demand from multiple 

stakeholders, HIS are evolving into healthcare ecosystems. Such healthcare ecosystems are 

capable of coping with multiple domain knowledge (Blobel, 2019), especially the 

heterogenous data collected by emerging medical devices or sensors. From the use and 

management of healthcare data point of view, in order to support advanced analytics, the 

availability, accessibility, flexibility, and quality of healthcare data are demanded by 

innovators in the healthcare domain. 

HIS is a typical social technology to cope with clinical, technical, and cultural issues under 

different laws and regulations (Chaudhry et al., 2006). In the face of rapidly expanding 

healthcare ecosystems, increasingly stringent supervision and regulation, and continuous 

improvement in the quality-of-care services, many technologies have been deployed. For 

example, in response to the widely recognised security and privacy issues of patient data, 

distributed storage, and federated learning (Yang et al., 2019) working together can 

maximize the value of clinical data while ensuring data security and protecting user privacy. 

The support of these technologies means that heterogeneous medical information systems 

do not necessarily need to be physically integrated in order to exchange information. 

However, after decades of development, digital health technologies cannot fulfil all the 

requirements of the stakeholders within the healthcare ecosystem because the digital 
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healthcare ecosystem is a social technology network, which is dynamic and synergetic 

complex. As addressed by the healthcare ‘iron triangle’ (Kissick, 1994), including three 

competing elements: access, quality and cost containment in the healthcare ecosystem, 

cannot be improved at any angle without compromising the other two. The adoption of IT 

in healthcare is particularly slow and has been lagging behind that of the leading industry 

for around 10-15 years (Goldschmidt, 2005). This result is mainly attributable to the failure 

of HIS implementation (Heeks, 2006) and resistance to using new technologies by 

healthcare professionals (Blumenthal and Tavenner, 2010). Tummers et al. (2021) 

summarise the obstacles to the low adoption rate of HISs in five points. (1) The technical 

issues caused by the mediocre design of HISs are attributed to the inadequate 

infrastructure of information and communication technologies. (2) The poor system 

usability results from low user satisfaction and lack of training on new systems. (3) The 

interoperability problems block HISs adoption and use on a scale. (4) The operational 

functionality provided by HISs cannot meet user demands due to the rapid evolvement of 

Internet technologies and the increasing complexity of health care. (5) The system 

maintenance and support issues are caused by the lack of professionals and poor 

documentation of HISs. Based on the statistics (Tummers et al., 2021), nearly two out of 

three low adoptions of HISs are related to technical issues and poor system usability. 

Therefore, there is a significant gap between the state-of-the-practice and the state-of-the-

art.  

This paper aims a better design of the architecture of HIS, echoing the first obstacle 

identified by (Tummers et al., 2021), to establish a unified information exchange and 

communication platform. 

2.3  Health Informatics and Interoperability Challenges 

Health informatics is a field of science and engineering that aims at applying information 

technologies for the acquisition, processing, analysis and study of health data to support 

diagnosis and clinical decision-making (Imhoff, 2002). Health informatics is a wild spectrum 

of multidisciplinary fields that includes studying the design, development and applications 
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of computational innovations to improve health care (Nadri et al., 2017). Accordingly, 

health informatics can be considered a discipline that studies applied technologies rather 

than gains new knowledge.  

In the early 1960s, Electronic medical record systems (EMRs) came out for the first time in 

the Health Information System (HIS) created by IBM in Akron Children’s Hospital, and then 

the ambulatory electronic medical record systems outside hospitals were deployed in the 

late 1960s. The two cases are regarded as the earliest adoption of health informatics in 

practice (Braunstein, 2018). Another crucial early adoption is the clinical decision support 

system (Shortliffe, 1976). With the rapid development of computer technology, health 

informatics is a fertile domain in academia and industry.  

As multiple entities are involved in the clinical data exchange, health information exchange 

(HIE) is designed to enable clinical information can be moved among disparate healthcare 

information systems and consolidated and accessed on demand. Kuperman (2011) 

describes the primary rationale for HIE is to address the critical healthcare problems that 

‘siloed’ healthcare information systems do not solve. Thus, healthcare data sharing and 

information exchanging can be regarded as the foundation for improving the quality and 

efficiency of healthcare services from the perspective of applying health informatics.  

Underpinned by HIE, ideally, all patient-related data can be organised around this patient. 

The relevant workflows connect multiple organisations, like a social network, but the 

patient is in the centre of the web. Baker (2001) points out the differences between the 

traditional and patient-centric healthcare from the following eleven perspectives.  

Table 3 The comparison between traditional and patient-centred healthcare models (based on Institute 
of Medicine 2001 (Baker, 2001, Benson and Grieve, 2016)) 

Aspect Traditional healthcare Patient-centred healthcare 

Focus of care 
Discrete visits/episodes 
Clinician makes diagnoses 
independently on what investigations 
and treatment to order  

Continuous healing relationships  
Health care system should be always 
responsive (24 hours/7days) 

Variation mainly 
due to 

Professional autonomy Patient needs and values 
Have the capability to respond to individual 
patient choices and preferences 

The controller in 
Professionals Patients 

Health information systems accommodate 
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Aspect Traditional healthcare Patient-centred healthcare 

treatment differences in patient preferences and 
encourage shared decision making 

Information 
sharing 

Partially shared  Fully shared 
Unfettered access 

Decisions based 
on 

Professionals’ training and experiences 
Care may vary illogically 

Evidence-based decision making 
Care is consistency 

Safety Individual responsibility A system property 

Transparency  Partially Fully Transparent subject to patient privacy 

Reactivity React to patient needs Anticipate patient needs 

Operational focus Decrease cost Eliminate waste 

Collaboration Demarcation Cooperation 

System 
architecture 

Silos Interoperability 

The patient-centred healthcare describes the evolving direction of HISs, and the 

fundamental prerequisite is system interoperability (INTEROP NoE, 2007). Janett and 

Yeracaris (2020) present the challenges of a single EMR in U.S. primary care and stress the 

importance of interoperability to enable disruptive technologies and applications in 

healthcare information systems. Noon et al. (2021) point out that the lack of 

interoperability among disparate EMRs is one of the identified challenges of HISs applied in 

scale and interoperability is a crucial application scenario for blockchain solutions. Kruse et 

al. (2018) conducted a systematic literature review with 55 primary studies on how 

electronic health records support public health and identified that interoperability is listed 

as the second top barrier following clinical data missing. Because the interoperability issue 

prevents stakeholders from accessing patients’ records, thereby increasing operational 

costs (Iroju et al., 2013). Moreover, medical errors could be caused by inadequate 

availability of patients’ information (Walker et al., 2005).  

West Health Institute (2013), a non-profit medical research organisation, specifically 

scanned the interoperability between medical devices and patient data repositories and 

device-to-device interoperability in U.S. hospitals. They estimated in 2013 that the 

problems caused by the lack of medical device interoperability cost $35 billion annually. For 
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example, the medication errors in drug ordering, order transcription, drug dispensing and 

administration accounted for around $400 million. Such adverse events, including 

diagnostic errors and failure to prevent injury, costs a potential $2 billion in total. In addition, 

the redundant testing resulting from inaccessible information costs $3 billion; increasing 

clinician productivity and capacity of the treatment to shorten the length of stay can save 

$ 12 billion and $18 billion, respectively. 

2.4  Interoperability of Healthcare Ecosystem 

With the introduction of ambient intelligence in healthcare, digital environments are more 

adaptive and responsive to making self-care and precision medicine a reality. Significantly 

as ambient intelligence (AmI), mainly represented by IoMT, is growing tremendously and 

promising the pervasive diffusion of intelligence in our surrounding environment, the 

complexity of the healthcare ecosystem grows exponentially. The need for robust data 

pipelines to communicate across disparate health systems and devices is becoming 

increasingly urgent. This chapter will review healthcare ecosystems' interoperability 

standards, especially semantic interoperability. 

2.4.1  Interoperability Standards  

According to the definition of interoperability standards made by the healthcare 

information and management systems society (HIMSS), there are four levels of 

interoperability in the healthcare domain. The foundational level establishes the inter-

connectivity requirements for securely exchanging data between applications and systems 

or among systems. The structural level defines the format, syntax, and organisation of data 

with the interpretations at the data field level. The semantic level provides standard 

underlying models and codifications of data, upon which consensus has been reached so 

that the users could share understandings and meanings of data through them. The 

organisational level sets up operational rules to facilitate secure, seamless, and timely data 

exchange within or between organisations, entities, and individuals. The operating rules 

include data governance, data usage policy, and social, legal and organisational 

considerations (HIMSS, 2022). These four levels of interoperability reflect the 
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understanding of how clinical data is organised in healthcare information systems from the 

application perspective. As a result, various interoperability standards have been 

formulated by different organisations driven by the need for diversified clinical data 

application scenarios. According to HIMSS, there are over 40 standards development 

organisations (SDOs) in the health IT arena. Some SDOs develop standards, such as health 

level seven (HL7), systematized nomenclature of medicine (SNOMED) international, and the 

clinical data interchange standards consortium (CDISC). Other SODs develop specific 

functions or use cases as complementary standards over these fundamental standards, 

which promote the adoption of the fundamental standards. In the following sections, HL7 

and its promulgated standards will be introduced in detail. 

The fundamental standards developed by different SDOs have varying compositions and 

processes to meet the specific industry or market requirements yet generally follow the 

design principle of public standards. From the application perspective, these standards can 

be divided into five categories, including vocabulary/terminology standards, content 

standards, transport standards, privacy and security standards, and identifier standards 

(HIMSS, 2022). These standards unify medical terminologies, specifications for medical 

records, interaction methods and related management specifications for using these 

medical records. However, from the perspective of information systems, the fundamental 

standards mix the syntax, semantics, and even pragmatics of clinical data. For example, the 

clinical document architecture (CDA) intends to specify clinical documents’ encoding, 

structure, and semantics for exchange, providing a framework for defining the full 

semantics. The framework contains terms related to medical activities, e.g., allergies, care 

team, encounters, family history, functional status, health concerns, immunizations, 

interventions, and medical equipment, used to describe the medical practice in detail. 

According to the HIMSS classification, the CDA belongs to the content standard. While from 

the perspective of informatics, the CDA unifies both the syntax (the format of data, e.g., 

string, integer, float) and the semantics (the meaning of concept). The syntax used for data 

interaction in information systems is relatively straightforward and has little ambiguity, 

while semantics is context-dependent, and the ambiguity often appears in the use process. 

As addressed by Liu et al. (2009), the code/value pairs of the observation element may have 
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many different meanings depending on the context of the usage. The following sections will 

review the clinical standards from the information systems perspective to distinguish their 

applications at the syntax, semantic and pragmatic levels, respectively. 

2.4.2  Clinical Standards of Semantic Interoperability 

Regarding the request for collaboration between multiple dispersed health information 

systems, the semantics exchange turns out to be one of the fundamental requirements for 

health information exchange. Semantic interoperability (Geraci et al., 1991, HIMSS, 2014) 

ensures the seamless information exchange in terms of interpreting the data in the same 

manner across any system or device regardless of its proprietary architecture. Semantic 

interoperability plays a vital role in the healthcare ecosystem, which enables the ubiquitous 

forms of information shared among disparate systems.  

Semantic interoperability is the pre-condition of adopting advanced medical information 

technology (Lehne et al., 2019a) to improve healthcare quality. For instance, health sensing, 

big data analytics and cloud computing, these three categories are promising technologies 

in future health information systems summarised by Yang et al. (2015). All of these require 

data and information exchange without ambiguity. However, the standard which is 

supposed to address the issue of semantic interoperability amongst heterogeneous 

systems of the digital ecosystem still remains uncertainty (El-Sappagh et al., 2018). 

Currently, several fundamental standards are proposed by different SDOs with concerns 

from various perspectives. For instance, OpenEHR (openEHR, 2002) specifies the 

information system architecture required for interoperable communications between 

systems and services. SNOMED-CT (Systematized Nomenclature of Medicine Clinical Terms) 

unifies a glossary of clinical vocabulary used in EHR across medical institutes. The logical 

observation identifiers naming and coding (LOINC) system is an international coding system 

for identifying health measurements and clinical observations, which provides a precise 

clinical vocabulary to make data portable across health systems. The HL7 V3 clinical 

document architecture (CDA) defines the structure and semantics of clinical documents 

between hospital and patient. In addition, the clinical information modelling Initiative (CIMI) 

is a shared repository of detailed clinical information models defined by the HL7 workgroup 
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to improve the interoperability between health systems.  

In detail, the standards like SNOMED-CT and LOINC are ontologies of reality, which describe 

the clinical terminologies’ independence on any information system. The others describe 

the ontologies of clinical information, which are organised by different approaches 

reflecting the various application scenarios. Most of them are mutually overlapping or 

exclusive to some extent. In summary, the ontologies of reality can be employed by any 

ontology of information. However only one ontology of information is normally adopted by 

a single information system. 

Even though the standards mentioned above all claim that they are developed for semantic 

interoperability, they describe more than one level of interoperability defined by semiotics 

(Liu and Li, 2015). 

2.4.3  The Levels of Semantic Interoperability 

When the healthcare ecosystem is treated as an integrated information system, the level of 

interoperability can be explained by the framework of the semiotic ladder (Liu and Li, 2015). 

According to the theory of semiotics, Charles Peirce interpreted objects by the triadic world 

method (Pierce, 1998), which uses a tuple (Signified, Interpretant, Object) to define an 

object with its contextual information. Applying this philosophical approach to investigate 

the semantic interoperability information system, we can assume that Ii and Ij are two 

independent health systems that will communicate semantic information about the two 

objects Oi and Oj presented by the signs Si and Sj respectively. The ambiguity that might 

happen during the process of communication between Ii and Ij are: 

1. Empirical ambiguity: The format of information sent by Ii cannot be translated by Ij. 

Therefore, the two health systems cannot exchange information due to the absence of 

information. 

2. Syntactic ambiguity: There are two possibilities here leading to ambiguity. a) Two 

syntactically equivalent signs signify different objects. AcronymFinder (AFwebpage) 

provides 34 expansions of the acronym “BT” in the context of Science and Medicine, 

including Bacillus Thuringiensis, Behaviour Therapy, Blood Transfusion, Blood Test, Blood 
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Type, Bleeding Time (test of blood), Borderline Tuberculoid etc. b) The signs, Si and Sj, for 

the same objects are different. Examples can be found in the use of different languages 

(English and Chinese) or in different narrative medicine systems (Western medicine and 

Chinese medicine). 

3. Semantic ambiguity: Two syntactically equivalent signs signify the same object but have 

different meanings within different contexts. For example, a child’s heart beats faster than 

an adult’s. Thus, judging whether a heart rate reading is in the normal range depends on 

the test subject’s age. 

4. Pragmatic ambiguity: In an information system, pragmatic interoperability refers to a 

system that can process and understand the information sent by another system and 

respond to the query with correct information. Pragmatic ambiguity arises when a medical 

diagnosis model has been established, but the diagnosis results fail to be obtained by 

entering relevant parameters. 

 

Figure 4 The interoperability levels of clinical standards 

As shown in Figure 4, this study classifies the published standards in healthcare domain 

according to the level of interoperability. From left to right, the horizontal axis indicates the 

operability level gradually increasing, from empirics to pragmatics.  

The definition of data format is concerned with interoperability at the level of empirics. 

Standards such as HTML, XML, RDF and JSON provide formats which can be used in the IT 

industry for data interchange, which are located on the far left of the horizontal axis. The 

level of syntactic defines the clinical terminologies, including the anatomical therapeutic 
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chemical (ATC), LOINC, and SMOMED-CT, which are the coding systems to indicate organs, 

drugs, or symptoms. At the semantic level, the standards are used to describe the clinical 

operations or the healthcare services, which are context-dependent and with more 

ambiguities than the standards at the syntax level. HL7 series standards and OpenEHR are 

located at this level. At the pragmatic level, the OpenEHR, HL7 CDA and HL7 V3 provide 

some functions of the medical diagnosis model. Therefore, these three standards cross the 

semantic level and pragmatic level. 

This study focuses on semantic interoperability, and as FHIR (Fast Health Interoperability 

Resources) is the latest version of HL7, the following section compares the FHIR and 

OpenEHR with the purpose of identifying a research base. 

2.5  OpenEHR vs FHIR 

OpenEHR and FHIR are two mainstream standards adopted in the industry. Both are 

designed for full interoperability of the digital health and social care ecosystem. FHIR and 

OpenEHR have massive open-source implementations and a strong supportive community 

for implementors, which may make them possible to become the universal standard of the 

future medical industry. 

2.5.1  Introductions of OpenEHR and FHIR 

The OpenEHR specification defines a completed architecture of EHR, including the format 

of data structure, the canonical information model, the query language, and the APIs for 

external applications regarding the increasingly complex healthcare ecosystem. In contrast, 

FHIR (HL7, 2022b) has a narrow scope, specially designed for semantic interoperability. 

The core idea of the OpenEHR specification is to separate the medical domain knowledge 

from the specific clinical information through a two-level modelling approach. This 

approach divides models into the archetype model (AM) and the reference model (RM).  

The RM defines the stable and unchanging concepts in the information system, and the 

basic data types and structures required for information expression. The AM includes 

archetypes and templates. The archetype defines clinical content and expresses domain 



Chapter 2. Literature Review  

 49 

knowledge by adding constraints to the RM; the template meets practical application 

requirements by constraining and customizing the archetype. By separating the RM and the 

AM, the dependence of the information system on the domain knowledge is effectively 

reduced so that the system based on OpenEHR can adapt to the changes of the domain 

knowledge and has the characteristics of reusability, scalability, and easy maintenance.  

The separation of RM and AM seemed to be aspirational because developers and clinicians 

found themselves could work together regarding both clinical and technical concerns 

through modelling the RM and designing AM. The architecture of OpenEHR is a best-of-

breed framework that aims for all forms of interoperability in incumbent systems. However, 

its implementation, particularly in large-scale projects, is challenging and complicated 

because modelling the domain knowledge was too complex to adapt to various end-users 

(Christensen and Ellingsen, 2016). 

FHIR alternatively selects another approach to handle this issue, which aims to simplify the 

implementation process without losing information integrity. FHIR starts from an engineer’s 

point of view to consolidate all possible categories of data by leveraging the existing models. 

FHIR also provides a widely adopted IT mechanism (RESTful interface) for exchanging health 

data between healthcare applications.  

FHIR can be regarded as a shared schema with rich data representation in the digital 

healthcare ecosystem. It works as a communicational protocol for the systems and devices 

to exchange healthcare data. Therefore, the entities can understand each other only if they 

follow the protocol defined by FHIR. Hence, FHIR fills the semantic interoperability gap 

between heterogeneous healthcare entities, through which the systems or the devices in 

the ecosystem can understand each other. 

2.5.2 Comparison between OpenEHR and FHIR 

The significant difference between OpenEHR and FHIR reflects in the design philosophy. 

OpenEHR takes a top-down approach, which solves the problem of semantic 

interoperability from the perspective of system architecture. In comparison, FHIR offers an 

alternative approach starting from the bottom, starting with data already in the ecosystem 
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and specifying the data schema to support exchange between health systems (McNicoll et 

al., 2019). The two distinguished design philosophies determine different ways of adoption 

in the industry. 

From the statistics of the number of published papers, it can be identified that FHIR has 

received significantly more attention than OpenEHR (Lehne et al., 2019a). The reason is 

that FHIR is more practical and has less impact on existing systems. The following (Table 2) 

will compare the two standards from the following five aspects: technology architecture, 

openness, scalability, flexibility and portability (Blobel et al., 2006). 

Table 4 The comparison between OpenEHR and FHIR 

                  Standards 

Aspects 
OpenEHR FHIR 

Technology architecture 
Complete and comprehensive 
system architecture; a top-down 
approach 

Data schema for information 
exchange between systems; a 
bottom-up approach 

Openness 

RM (Reference Model) is 
compatible with any clinical data 
model, and CDR (Clinical Data 
Repository) is flexible to any 
language and database. 

Internet-based standard; Providing 
standard RESTful API as an 
interface for Web services. 

System architecture, software stack 
and its applications are closed 
source. 

Scalability SOA architecture, dealing with 
semantic scalability by defining RM  

Leave 20% extension of resources 
to deal with semantic scalability  

Flexibility 
CDR can be easily exchanged 
among different vendors regardless 
of the database or language in use 

RESTful API + OAuth2 for all web 
services and mobile applications 

Portability High portability, embedded with 
specific query language (ADL) 

High portability, without query 
language 

1. Technology architecture 
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OpenEHR is a typical standard that adopts model-driven development (MDD) approach 

(Selic, 2003, Raghupathi and Umar, 2008). All architecture specifications of OpenEHR are 

presented as a set of abstract models with UML notations. The medical concepts in 

OpenEHR are defined by RM and AM hierarchy, which is called the two-level modelling 

approach (Beale, 2002). RM defines data types and structures, and AM describes medical 

concepts through RMs. For instance, RM defines “Quantity” with numbers and “Text” with 

strings. The medical concept “Blood pressure” can be expressed with four “Quantity” terms 

- systolic, diastolic, mean arterial pressure and pulse pressure, and one “Text” term to 

indicate the name of this terminology - comment. The RM/AM design method meets the 

basic idea of Service-Oriented Architecture (SOA) (Arsanjani, 2004), which is broadly 

adopted by IT companies and has been proven to be a successful architecture. Accordingly, 

it shows the consistency of OpenEHR as a digital transformation standard for medical 

systems and mainstream IT design ideas.  

Similarly, the previous version of FHIR, the HL7 V3, did follow the top-down MDD design. 

However, it failed to scale because of its high complexity and high cost of implementation 

(Bender and Sartipi, 2013). In order to be more practical and implementable, HL7 FHIR (HL7 

International, 2011a) intentionally adopted an incremental and iterative approach to 

transforming industry best practices into standards. Easy implementation is the critical 

reason for FHIR becoming the leading standard (Lehne et al., 2019a) for interoperability. In 

Section 4, FHIR is discussed in detail. 

In summary, from the architecture design point of view, the OpenEHR standard is advanced 

in system design and converges with Internet best practices. In comparison FHIR is easy to 

implement and is widely adopted by the industry.  

2. Openness 

The openness of the OpenEHR standard is polarized. On the one hand, it is incredibly open. 

The Reference Model (RM) supports and is compatible with any OpenEHR clinical data 

model or archetype. Also, the clinical data repository (CDR) can be described in any 

computer language, stored in any type of database, and defined by any vendor, as long as 

it complies with RM specification defined by the OpenEHR (McNicoll et al., 2019) 
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Furthermore, the CDRs can be easily swapped between any CDR vendor systems without 

data migration implementation (Atalag et al., 2016). On the other hand, it has obvious 

limitations; the OpenEHR clinical system and its applications, as well as the software stack, 

are not open-source to the implementor.  

FHIR is a repository of medical resources, which appears as a communication format for 

organising data. It can be adopted by any system or device, and therefore, FHIR is usually 

used as an intersystem communication protocol in the digital healthcare ecosystem. For 

instance, FHIR can be used to bridge the OpenEHR and non-OpenEHR systems (McNicoll et 

al., 2019). In order to increase openness, FHIR adopts RESTful (Resource Representational 

State Transfer) API (HL7 International, 2011b) to communicate with other systems and 

applications. RESTful is widely used in Web services, through which FHIR can flexibly 

interconnect with any application on the Internet. SMART (Substitutable Medical 

Applications, Reusable Technologies) on FHIR (SMART, 2009) is an excellent example to 

show the openness of FHIR. Based on FHIR, SMART enables healthcare providers to utilise 

more apps underpinned by the existing digital healthcare systems and empowers software 

developers to create more apps to meet the needs of a wider audience (Mandel et al., 2016). 

Furthermore, a few third parties deploy FHIR on the cloud for test and sandbox 

implementations (HL7 International, 2019b) to engage broader developers and cultivate 

the innovation environment. To summarise, in the aspect of openness, the FHIR standard 

does better than the OpenEHR. 

3. Scalability 

Scalability refers to the capacity of a system that can gracefully grow to manage the 

increased demand. The OpenEHR standard offers a genius architecture, two-level modelling 

(openEHR, 2007), which separates data instances from the clinical domain knowledge and 

guarantees the flexibility to face the demands of medical development and software 

development. The architecture of OpenEHR is hierarchical modelling within a service-

oriented software framework ensuring enough scalability to handle the services at different 

granularities (Khan, 2010). 

FHIR is designed with the 80/20 rule to describe the clinical resources. Extensions and 
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customizations are allowed to exist in the FHIR profile to adapt to the needs of specific use 

cases. Also, the RESTful API of FHIR ensure the system’s horizontal scalability from the angle 

of system architecture design (HL7, 2011a). 

The comparison shows that OpenEHR has a structured advantage and fundamentally solves 

the scalability problem. FHIR takes a relatively simple approach; extensions and RESTful API 

guarantee system scalability. 

4. Flexibility 

OpenEHR’s flexibility is guaranteed from the level of design philosophy, which allows CDR 

to be easily communicated among different vendors regardless of the database or language 

used.  

Form release 3, FHIR started to support RESTful API and concurrently brought OAuth2 into 

use, which means the FHIR healthcare system can authorize apps through the SMART 

protocol on a large scale (Alterovitz et al., 2015, Wagholikar et al., 2017). OAuth2 + a 

standard API provides sufficient flexibility for developers of medical applications (Mandel 

et al., 2016, Warner et al., 2016, Bloomfield Jr et al., 2017, Wagholikar et al., 2017). 

In short, the OpenEHR and FHIR are comparable in the flexibility perspective. 

5. Portability 

The path mechanism of OpenEHR defines an archetype-based X-path compatible syntax, 

which enables the health information to be queried by Archetype Definition Language 

(ADL). This mechanism is one of the distinguishing features of OpenEHR. However, FHIR 

focuses more on information exchange and lacks a systematic view to solve the semantic 

issues through a complete system architecture.
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Chapter 3 Research Methodology and Design 

This chapter elaborates on the research paradigm and the methodology adopted, with a 

particular focus on the philosophical stances of this research. The gap between the 

observed world and the laws revealed via scientific activities motivates the author to 

rethink the approach to gaining knowledge in the domain of information systems. The 

characteristics of information systems are studied and analysed from the perspective of the 

theory of signs, i.e., semiotics. Furthermore, as the dependence of information systems on 

context and culture, the research approaches adopted by different IS research are 

compared and discussed. Lastly, this chapter details the adopted paradigm, approaches, 

methods, and techniques in this research. 

3.1  Empirical Observations 

Scientific research aims to explore the observed world and discover the laws and theories 

that can explain and predict natural or social phenomena (Horrobin, 1969). This process 

also can be defined as knowledge acquisition that gradually improves as people deepen 

their understanding of the observed world. However, due to the distance between our 

understanding and the observed world, the theories or laws we use to understand or 

predict phenomena should only be reckoned as postulate theories or working hypotheses. 

The suitable premises of theories and laws may change because people’s understanding of 

the observed world may differ with the changes in scale and dimensions of observation. It 

occurs not only in the field of social sciences but also in natural sciences. For instance, 

classical mechanics based on the foundational works of Sir Isaac Newton can describe the 

motion status of physical bodies at the macroscopic level (Stump, 1990). The basic 

assumptions of classical mechanics are that space is continuous and time is absolute; while 

the effects of gravity on the fabric of space-time must be considered when studying 

extremely massive objects according to Einstein’s theory of general relativity (Sciama, 1964). 
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The general theory of relativity made a quantitatively minor modification to Newton’s 

theory but qualitatively changed people’s view of time and space. 

Conversely, only quantum mechanics applies if studying the physical properties of nature 

at the scale of atoms and subatomic particles. Currently, the Grand Unified Theory (Ellis, 

1986) is trying to use a unified theory to explain the observed world at a large and micro-

scale. Still, the Grand Unified Theory is a hypothesis, and there is no experimental evidence 

to support this theory yet. Thus, the scale of the physical space where the research object 

is located is the vital premise in physics research. 

In the domain of social science, the study objects are highly connected with cultural and 

contextual settings and more objective understanding involved. Thus, the research 

conclusions in social science are heavily dependent on their research premises. Both 

positivism and interpretivism will inevitably introduce subjective understanding into 

research. For instance, in positivist research, distinguishing dependent and independent 

variables, qualitative data collection and experimental controls all entail certain subjective 

understandings. Comparatively, interpretivist research investigates multiple realities 

through interactions between researchers and participants. Due to the fact that  

information systems are highly intertwined with social contexts (Chaudhry et al., 2006), 

multi-reality unquestionably exists in the research of information system domain. 

Consequently, there is no universally applicable solution in the design of information 

systems. Continuous development based on the best solution available could be a more 

feasible strategy for IS continuous improvement. 

In addition, the understanding of culture and the background of research questions are 

subjectively influenced by the language researcher used. Especially in the field of social 

science research, the impact of language on scientific research should be re-evaluated as 

language is a sign system for communication where semantic ambiguity inhabits. Hence, 

there is no entirely objective scientific research activity; therefore, scientific research 

results may only be viewed as workable hypotheses within current cognitive settings, and 

there is always room for improvement. In other words, each existing information system 

solution has the potential to be enhanced. These empirical observations on philosophical 
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issues motivate me to examine the philosophical stance of my research. 

3.2  Research Paradigms 

Research paradigms are different philosophical ways of thinking (Kuhn, 1962) reflected by 

a set of commonly held beliefs, values, assumptions and practices within a research 

community (Johnson and Christensen, 2019). This whole set of philosophical stances 

significantly affect the manner of conducting research. For a specific research problem, it 

can be understood or interpreted from numerous perspectives, and its relevant research 

points can also be addressed from different angles. The adopted research paradigm can 

precisely reflect the way of researcher’s understanding of knowledge acquisition, the angle 

of addressing the research question and the relationships between the research problem 

and existing theories.  

A research paradigm is defined as an intellectual structure and its underlying assumptions 

upon which research and development in a field of inquiry are based (Kuhn, 1962). A 

paradigm constitutes a world view that structures the research approach and influences 

how a research community perceives their field of study. The underpinned beliefs and 

assumptions can be characterised by three philosophical concerns: ontology, epistemology, 

and methodology (Guba, 1990). 

Ontology is a philosophical study of the nature of reality and aims to identify the 

specifications of concepts and the relations among them (Smith, 2012). Epistemology 

addresses the nature of valid knowledge and how people communicate knowledge to each 

other (Burrell and Morgan, 2017). Methodology is the systematic study of methods to guide 

the implementation of research within a discipline. In Summary, ontology and epistemology 

create a holistic view of how knowledge is extracted from this world and how ourselves in 

relation to this knowledge; the methodology is the strategy to discover knowledge. These 

three philosophical stances help researchers: 1) to define how the world works, how 

knowledge is extracted from this world, and how one is to think, write, and talk about this 

knowledge; 2) to define the types of questions to be asked and the methodologies to be 

used in answering; 3) to decide what is published and what is not published; 4) to structure 
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the world of the academic worker; 5) to provide its meaning and its significance (Dills and 

Romiszowski, 1997). 

3.2.1  Positivism and Interpretivism Paradigms in IS 

The discipline of Information Systems (IS) focuses on solving problems in businesses 

through the use of information and communication services. IS is established in social 

organisations and is significantly impacted by social science (Mingers, 2004). The IS research 

underpinned by different research paradigms addresses various concerns (Goldkuhl, 2012). 

Some research aim for technology development to promote the reuse of solutions for 

various requirements; or for the understanding of ‘existing meaning systems shared by the 

actors’ (Orlikowski and Baroudi, 1991) and the social and historical context of this system; 

or for the intervention and change (Braa and Vidgen, 1999). In IS research, positivism and 

interpretivism are the two mainly adopted paradigmatic views (Chen and Hirschheim, 2004). 

In positivism, social phenomena can be quantifiably measured by variables and possibilities. 

The purpose of positivist research is to reveal the inherent causal relationships and explain 

the cause of behaviour (Orlikowski and Baroudi, 1991). However, interpretivism reckons 

social phenomena is intentional, which depends upon meaningful actions of individuals. 

Interpretivist seeks the meaning of actions (Davoudi, 2020). As IS seats in the middle of 

social and natural sciences, the debates of research methods are located in positivism and 

interpretivism. The comparison between positivism and interpretivism from the ontological, 

epistemological, and methodological perspectives has been shown in the following table. 

Table 5 Comparison between Positivism and Interpretivism Paradigm, Adapted from (Chen and 
Hirschheim, 2004, Vaishnavi and Kuechler, 2004)  

Philosophical 
assumption Positivism Interpretivism 

Ontological  

A single reality 
Existing objectively and independent 
from human experiences 
Knowable 
Logical reasoning 
Probabilistic 

Multiple realities 
Socially constructed 
Containing subjective meanings and can be 
constructed or reconstructed through a 
human and social interaction process 
(Burrell and Morgan, 2017) 

Epistemological  

Objective 
Dispassionate 
Sensory experience 
Detached observer of truth 

Subjective 
Values and knowledge emerge from 
researcher-participant interaction by which 
the subjective meaning of the reality is 
constructed (Walsham, 1995) 
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Philosophical 
assumption Positivism Interpretivism 

Concerns with the hypothetical- 
deductive testability of theories  

Methodological  

Observation 
Quantitative 
Statistical 
Replicable 

Qualitative 
Interpretive knowledge 
Need to engage in the social setting 
investigated and learn how the interaction 
takes place from the participants’ 
perspective by adopting qualitative 
research (Howe, 1988)  
Focusing on the transferability instead of 
generalisation 

Positivism believes knowledge can be obtained from observational data interpreted by 

scientific methods. Knowledge value-neutrally exists, and any subjective factor cannot 

intervene in investigations (Henderson, 2011). They believe truth is an independent part of 

the whole and understand factual accounts of phenomena from possibilities calculation. 

Accordingly, the quantitative, cross-sectional, and survey-oriented methods are adopted by 

the positivist approach to measuring the social world. Positivist IS researchers assume the 

physical and social world exists objectively and is independent of human experiences. As 

such, its nature can be apprehended, identified, and measured. When a set of descriptive 

studies has been identified in the positivist tradition, the problematic nature of the studied 

phenomena is hard to be recognised. That is why the positivism approach is criticised for 

ignoring the complexity of a social system Buttery and Buttery (1991). Positivist IS 

researchers are attempting to restore a social system by a limited number of variables and 

describe it through the relationships between variables. The most important thing is that 

positivist IS researchers neglect the adaptability of the social system, which is driven by the 

learning ability of the participants in social organisations. The results delivered by the 

positivist approach often lack the ability to accommodate the changing facts. Furthermore, 

the implicit assumption of positivist IS research is the ideal environment in which positivist 

researchers can abstract laws that can be widely applied to many phenomena. In short, the 

positivists are committed to identifying time- and context-free generalisations or 

nomothetic statements that can be multiply applied (Keat and Urry, 2011, McKenna et al., 

2011). However, in social science, the static and ideal environments never exist, and the 

prescriptions cannot be multiply applied. 
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Conversely, interpretive research is based on the assumption that the social reality is not 

singular or objective but rather shaped by culture, social context, the use of language, and 

human activities. Interpretive researchers examine the phenomenon of interest within 

cultural and contextual situations, and thus various subjective interpretations can be 

reconciled in their socio-historic context. Rather than seeking to determine the time- and 

context-free generalisations, the interpretivist seeks to determine meanings and reasons in 

time- and context-bound (Geertz, 2008) to restore the complexity of human “sense-making” 

in social activities. 

Information system (IS) is a typical multi-paradigmatic research discipline. With the 

evolution of information technology, the term IS has been dramatically changed. IS started 

primarily as a dependent system that automates repetitive work and gradually evolved into 

a part of a social system that penetrated all aspects of daily life. In this context, IS can be 

considered a socio-technical system that heavily involves the interactions between human 

behaviour and technology in social groups. The emergence of adopting interpretivism in IS 

can be traced back to the 70s (Boland Jr, 1979), and Zuboff (1988) emphasises the social 

implications of IS. After that, interpretivist researchers gradually occupy a significant 

proportion of the field of IS research (Orlikowski and Baroudi, 1991, Walsham, 2006, Sarker 

et al., 2013). IS reflects the designer’s understanding of the world through computer-based 

systems, in which new conversations, connections and commitments are produced 

(Walsham, 1995). One IS reflects one perspective of the multiple realities which is mentally 

perceived by a designer. Therefore, the use, design and study of IS can be understood as a 

hermeneutic process (Boland Jr, 1979, 1985) of applying information technologies in human 

society, in which the creation and interpretation of symbols are involved. The functionalities 

of language and symbols in IS will be discussed in the next section.  

To summarise, the difference between positivism and interpretivism in IS lies in the 

philosophical assumptions adopted by IS researchers. Positivist researchers believe an IS 

can be abstracted from realities and applied to multiple scenarios. They aim for 

generalisability and replicability. While interpretivist researchers believe an IS is a time-and 

context-bound reality. They focus on the in-depth understanding of the phenomenon 
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examined from a multidimensional view and acknowledge the reality of multiple realities. 

3.2.2 Inductivism and Falsificationism 

The interpretivist researchers often qualitatively adopt inductive reasoning in research 

(Denzin and Lincoln, 1995) in IS to explore and understand the system requirements in 

organisational, social and cultural contexts. They try to develop wider generalisations from 

specific observations, and the process of research is to detect the patterns and regularities 

led by tentative hypotheses (Williams, 2000). The inductive method emphasises the 

accurate knowledge acquisition from a great number of observations, and as the number 

of observed cases approaches infinity, the tentative hypothesis is more likely to be accepted 

as a general (Russell, 2001). However, David Hume (1711-1776) challenges the basis of 

inductive inferences as confirmatory evidence cannot provide full certainty, which is 

commonly known as a logical fallacy and exemplified by an example of black swans. 

Thereafter, Karl Popper, as a major critic of inductivism, refutes the classical positivist 

account of the scientific method by replacing induction with the falsification principle. The 

following two figures feature the research processes of the inductive method (Figure 5) and 

the falsificationist method (Figure 6). 

As shown in Figure 5, inductive researchers start from a large number of observations or 

experiments regarding particular phenomena, identify the patterns by data analysis, and 

make generalisations that account for every instance. The extraction of generalisation from 

evidence is the target of inductivist research. From the view of inductivism, knowledge may 

be obtained by this method. 
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Figure 5 Inductive research process (Pietsch, 2021) 

Karl Popper was one of the critics of the inductive research process. He accepted that 

Hume’s problem could not be circumvented and proposed criteria of demarcating scientific 

statements from other forms of intellectual inquiry, which is named falsification.  

Falsificationism argues the philosophy of science about the validity of induction as no 

amount of positive evidence can ensure that negative instances may be found. From the 

view of the falsificationist, there are no theories that can be considered as correct eternally, 

merely the least wrong. All scientific knowledge is provisional and conditional, and a 

scientist can only attempt to approach the truth with bounded context and never can assert 

what the truth is. In other words, if a theory is to be considered scientific, it must be able 

to be tested and conceivably proven false. Thus, fallibility is regarded as a criterion for 

demarcating science from non-science.  

Based on Popper’s theory of falsification, Magee (1973) developed a process of 

falsificationist research, shown in Figure 6. It suggests that scientific research should start 

from deductive reasoning to identify the flaw or limitation of the existing theory and aim 

to address the flaw or limitation, and then propose a new postulate which should be 

testable. The third step is to articulate the testable proposition and then test. The last step 

is to select the least-wrong theory based on reasonable inferences from competing theories. 

Table 6 compares inductivism and falsificationism from the five perspectives, which reflect 

the key differences between the two research paradigms for conducting scientific research. 

More and more researchers argue the appropriateness of applying inductivism in IS science 

and are inclined to adopt falsificationism (Farhoomand, 1987, Chen and Hirschheim, 2004, 

Salovaara and Merikivi, 2015, Lee and Hubona, 2009). Falsificationism emphasises that 

scientific knowledge is provisional and context-bound. Lee (1989) addresses information 

systems are context sensitive and expresses a similar understanding of the falsificationist 

approach to Magee (1973). Lee (1989) summarises four steps of applying falsificationism in 

the case study research in information systems. Gregor (2006) also discusses the 

applicability of falsificationism in information systems design. Falsificationism seeks the 

boundary of existing theories and increases knowledge by re-examining published studies. 
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This objective of falsificationism can meet the aim of reusing software architecture in IS 

domain (Garlan et al., 1995). Thereby falsification as a scientific research method is 

increasingly adopted in the study of information systems or software system design 

(Salovaara and Merikivi, 2015, Lee, 2004, Lee and Hubona, 2009). 

 
Figure 6 Falsificationist research process (Magee, 1973) 

 

 

 

 

Table 6 Comparing inductivism and falsificationism from the five perspectives 

Features Inductivism Falsificationism 

Key assumption 
Inductivist methodology assumes that 
the group of true statements yield a 
general universal statement 

Scientific knowledge is provisional;  
Truth is only ever to be approached and 
never be claimed absolutely 
we cannot obtain general theories that 
are universally true 

Purpose of scientific 
inquiry Extract generalisations from evidence attempt to disprove a theory thereby 

improve scientific theory 
Validation Context free Context bounded 

Key distinction No general justification A scientific theory must be able to be 
tested and conceivably proven false 
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Contribution to 
scientific research Revolutions Science vs. Non-science 

Constant improvement 

As an IS reflects the needs of participants for business operations, in addition to technical 

considerations, the interactions between participants and information systems account for 

a significant part of IS research. For all IS studies, there is a key assumption that an IS should 

be effectively viewed as a carrier medium for social interaction, not just a model that 

reflects reality (Stamper, 1991, Goguen and Burstall, 1992, Ngwenyama and Lee, 1997, 

Ulrich, 2001, Liu and Li, 2015). Hence, the use of sign, language and their representations 

are critical to a successful information system. 

3.3  Sign, Language, Representation and Research Paradigm 

Signs have been widely applied to every facet of human society, enabling communications 

and information exchange. The use of signs marks the birth of human civilisation and is also 

the primary carrier for the continuation of human civilisation (White, 1940). A sign is the 

smallest unit of meaning; anything can be a sign as long as it denotes, signifies and 

represents something (Liu and Li, 2015). A sign can be simple or complex, persistent or 

transient, and static or dynamic. There are three forms of signs: symbolic, iconic and 

indexical (Peirce, 1931). Words are one of the typical symbolic signs, and language is a 

typical signifying system deploying signs. Words, phrases, and characters are used to convey 

meanings and emotions and produce actions in symbolic sign systems. Language can be 

observed to change across space and social groups and also varies across time. Therefore 

language is a socially constituted system of signs varying over time (Holdcroft, 1991). 

In order to understand how language is employed in information systems, broadly accepted 

as ‘technical systems with social implications’ (Lyytinen, 1985), semiotics divides the use of 

signs in IS into three divisions: syntactic, semantics and pragmatics (Liu and Li, 2015). 

Syntactics concerns the structure of signs and the rules to compose complex signs. From 

the use of language perspective, syntactics can be understood as grammar. In IS, syntactics 

or grammar is the data format in terms of type and length. Semantics decodes meanings 

from data through mapping signs onto objects they denoted. When interpretants have 

reached a shared consensus, the meanings of signs can be perceived. Otherwise, semantic 
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ambiguity is generated. Pragmatics concerns the behaviour of the agents after receiving 

signs, which is underpinned by the shared common knowledge and assumptions. From the 

three levels of using signs as the carrier for information exchange, we can tell that more 

ambiguity develops as the level rises. The informative nature of signs decides the 

complexity of communications between agents, based on the sign production, reception, 

and circulation in all forms. 

Language is a sign system that needs to be built on a shared consensus, and shared contexts 

and assumptions help decrease ambiguity in communication. The idea that language can 

reshape perception and thought can be traced back to the 1930s, the hypothesis of the 

“Language Relativity” (Leavitt, 2010). The hypothesis holds that language is not only the 

basic expression of thought, but also has a profound impact on it, and even determines the 

formation of our worldview. Empirical evidence (Ahearn, 2021) shows a positive 

relationship between language usage and people’s thoughts and decisions. The categories 

of describing things or reality in a language system are unique, and different from those in 

other language systems. Hence, a language represents a nation, reflects the thinking, 

beliefs and attitudes of speakers of the languages (Berger, 1967, Halliday, 1973), and can be 

treated as social semiotics (Halliday, 2014). In social life, language is used in different ways 

for different purposes. As language keeps changing across social groups, space, and time, 

ambiguity is pervasive at syntactic, semantic, and pragmatic levels. Piantadosi et al. (2012) 

conclude this is due to the informative context and the re-use of words. Aiming for effective 

communication, Bassham (2011) proposes the elements of language expression shown in 

Table 7. 

Table 7 Elements of language expression to reduce ambiguity, adapted from (Bassham, 2011) 

Elements of language expression Explanation 

Clarity Avoid faulty assumptions 
Reduce uncertainty (Chartier, 1981) 

Precision 

Use exactly the correct words to convey the intended 
thoughts 
Depends on the native ability of a certain language in 
terms of the number of different words and 
grammatical structures that are available to use to 
convey intentions (Mason, 2019) 
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Elements of language expression Explanation 

Accuracy 

Related to the ability to use language in terms of 
choosing words, phrases, and sentences that convey 
ideas, which is impacted by the cultural lexicon (Mason, 
2019) 

Relevance 

Expression fits audience and matches purpose 
The words, phrases are correct or suitable for a 
particular purpose 
The sentences are connected with what is happening or 
being discussed 

Consistency 

Logical consistency: saying or believing are consistent in 
language expression 
Practical consistency: words and deeds are consistent 
with each other 
(Bassham, 2011) 

Logical correctness 
Same conclusion can be deduced by audiences from 
the premises and assumptions which the representor 
provided (Bassham, 2011) 

Completeness 
All facts and all relevant key elements have been 
included to prevent the need for further 
communication, amending and elaborating  

Fairness Free of distorting biases and preconceptions (Bassham, 
2011) 

Bassham (2011) discusses the standards of effective expression to reduce ambiguity in the 

use of language. However, ambiguity still exists because of the different cognitive 

backgrounds of the recipient (Chandler, 1994). Therefore, effective information exchange is 

a dual form of communication that is decided by the informative nature of signs.  

The semiotic principles (particularly Peircean semiotics), as discussed above, lend it 

naturally to the philosophical and methodological selection in this research. This selection 

can be characterised by subjectivity in ontology, abductive reasoning in the research 

process, and falsificationism in research validation. As can be seen in the research design, 

these characteristics will influence the whole process of this PhD research. 

3.4  Research Design 

Semiotics in this research is adopted as a scientific approach to deal with semantic 

interoperability. More importantly, it is also being adopted as a philosophical paradigm (Liu 

and Li, 2015, Houser, 2020) in research design. 

This research will address the semantic ambiguity in healthcare information systems, so 
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understanding the signs used in the domain of healthcare is the primary task. Since there 

is no strict rule for using signs that the healthcare industry has agreed upon, the 

interpretivism paradigm is adopted to direct this research to understand the existing sign 

systems in the healthcare field and the problems researchers address.  

The sign system mentioned in this research refers to the communication protocols which 

aim to provide information exchange standards for the entire healthcare domain. However, 

there is no perfect communication protocol in practice, and improvement room for each 

communication protocol always exists because of the informative nature of signs. Therefore, 

the falsificationist research process (Magee, 1973) is deemed more appropriate for 

addressing problems in order to get closer to the perfect communication protocol at the 

philosophical level. This research is devoted to improving the existing protocols to make 

them closer to perfect ones. The following sections will detail the method of identifying the 

research target and determining the research questions and process. 

3.4.1 Understanding the Use of Signs from the Perspective of Interpretivism 

The research questions posited in this thesis require the researcher to 1) understand the 

use of signs in health information systems; 2) identify the reason for semantic ambiguity 

from the perspective of the use of signs; 3) apply the research process to develop 

information architecture; 4) justify the information architecture by ambiguity reduction. 

This research has indicated that problems in existing communication protocols caused by 

the subjective understanding of the use of signs in the development of information systems 

are critical for this research to identify the limitation of existing theory/protocols. Then a 

solution or new protocol is expected to be proposed underpinned by a comprehensive 

understanding of the use of signs from an individual’s perspective. 

This research adopts the interpretivism paradigm to study the use of signs in the healthcare 

ecosystem. As interpretivism assumes reality is socially constructed by individuals, the use 

of signs reflects the individual’s understanding of the context of healthcare activities. The 

aim of this research is to decrease semantic ambiguity in healthcare information systems 

that use FHIR. The FHIR specification is regarded as a consensus agreement in healthcare 

information systems; the semantic ambiguity is generated from the diverse understandings 
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of users on the sign system of FHIR. According to the theory of semiotics, different users 

interpret the same sign differently, influenced by their perceptions of context or 

experiences (Blumer, 1986). As human language is the most well-developed sign system (De 

Saussure, 2011), such ambiguity is common in specifications expressed in language. Thence, 

the stance on interpretivism, which recognises the existence of multiple understandings, 

enables the researcher to understand the causes of semantic ambiguity from different 

participants’ perspectives, which is the foundation for the researcher to propose the 

solution to improve the use of FHIR in healthcare information systems. Table 8 illustrates 

the philosophical assumptions of adopting interpretivism as a research paradigm from the 

ontological, epistemological, and methodological points of view of this research.  

Table 8 Philosophical Assumptions of this Research 

Philosophical Assumptions Descriptions 

Ontological  

The information used in healthcare ecosystems is socially constructed 
and highly associated with the actions or the demands of 
participants/stakeholders. The nature of information in healthcare 
ecosystems should be studied under the premise of fully considering 
its context and usage scenarios and be conducted from the perspective 
of users. 

Epistemological 

Information is represented by signs in healthcare information 
systems to be exchanged between dispersed information 
systems, and between users and systems. Knowledge is gained 
from the understanding of the use of signs in the context of these 
interactions. The obtained knowledge is applied to improve 
semantic interoperability and decrease semantic ambiguity during 
the healthcare information exchanging process in this study. 

Methodological 

Qualitative research methods will be dominantly adopted in this 
research, and the falsification research process will be applied to 
lead the research conduction and the structure of this thesis. This 
process will be further discussed in the next section. 

3.4.2  Falsification Research Process 

This research aims to increase the semantic interoperability between healthcare 

information systems that employ FHIR as a communication protocol by decreasing semantic 

ambiguity. Regarding the research objectives, the falsification research process is adopted 

as a cornerstone of research methodology in this study to guide the research design. Before 

discussing the details of the falsification research process, the author would like to discuss 
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the relationships between the falsification research process and other traditional research 

processes. 

Inductive and deductive reasoning are two general approaches researchers adopt in 

scientific research. Inductive reasoning seeks to establish generalisations based on the 

observations of specific instances; deductive reasoning seeks to examine generalisations 

with particular cases. Most often, interpretivism follows an inductive process and acquires 

knowledge from the qualitative investigation. Some scholars also discuss the deductive 

reasoning in qualitative research to test a theory by the “pattern matching” approach (Hyde, 

2000). In addition, some recent research shows that interpretivism is intertwined with 

abduction (Muggleton et al., 2014, Petty et al., 2012, Lukka and Modell, 2010). Abductive 

reasoning is adopted in the scientific inquiry (Peirce, 1931) persistently seek evidence that 

confirms or refutes the existing theoretical propositions. Figure 7 shows the deductive, 

inductive, and abductive research processes.  

 
(a) Deductive research process 

 
(b) Inductive research process 
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(c) Abductive research process 

Figure 7 Deductive, inductive and abductive research processes (Kovács and Spens, 2005) 

Deductive research 1) derives theoretical conclusions from prior literature and generates 

hypotheses and propositions; 2) tests the hypotheses and propositions by empirical 

research; 3) corroborates or abandons the theoretical conclusions. The logical order of 

deductive research is from theory to practice to results (Danermark et al., 2019). Inductive 

research follows the opposite logical order: starting from the observations and then 

generalising theoretical frameworks, which follows the pattern of practice-result-theory 

(Danermark et al., 2019). In contrast, abductive research is substantially different from 

deductive and inductive research processes. Abductive reasoning has five steps: 1) derives 

conclusions from prior theoretical knowledge; 2) observe the instances in real life; 3) match 

the observation facts with existing theory; 4) suggests new theory when not exactly match; 

5) apply the new hypotheses or propositions into empirical settings. Abductive reasoning 

emphasizes the “theory matching” (Dubois and Gadde, 2002), which is a process to search 

for a suitable theory to an empirical observation (Kovács and Spens, 2005). An abductive 

approach is concerned with the particularities of a specific instance that deviate from the 

general structure of such situations (Danermark et al., 2019). Most researchers employ 

abduction to examine the applicability of the generalised theory with situational 

environmental factors, especially in social science research. The "theory matching" process 

helps researchers distinguish which aspects of the application scenarios can be generalised 

when applying these theories and which aspects are only relevant to the specific situation 

itself (Liu et al., 2014, Tan et al., 2018). The purpose of abductive research is to propose a 

new matching framework or extend the prior theory to a new phenomenon (Andreewsky 

and Bourcier, 2000). Compared with inductive reasoning and deductive research 
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approaches, the abductive research process is more appropriate for information 

architecture study because developing a software system architecture is not only about 

theories but is more critical to understanding the needs of stakeholders and the business. 

To a certain extent, the development of the system architecture can be understood as the 

matching process of the existing technical architecture and the needs of social activities. 

Knowledge is acquired from extending the application boundaries of existing technical 

architecture. 

As information systems are context-bounded, there is always room for improvement and 

optimisation. Falsificationism provides a method to constantly improve the existing 

technical architecture by challenging flaws or limitations of existing solutions. In general, 

the falsification research process can be regarded as subsequent actions of mismatching 

between current theories and observations. A new postulate theory aiming to reconcile the 

deviation will be proposed and tested to ensure that the new postulate theory expands the 

explanation of mismatching beyond what was explained by the original theory. In short, the 

essence of the falsification research process is to describe how to improve existing theories 

through scientific practice and bring better explanations of the observed world. Figure 8 

transforms falsification research processes proposed by Magee (1973) into a swim-lane 

diagram in the theoretical and practical fields. 

 

Figure 8 Falsification research processes (Magee, 1973) 

Table 9 compares abduction and falsification from five perspectives. The similarity of the 

two research processes is significant. In most of research practices, abduction is used as a 

basic form of logical reasoning (Minnameier, 2010), and falsification is usually used to 
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validate a theory. The method of attempting to disprove a theory, thereby improving 

scientific theory, is the essence of falsificationism. As the falsification research method is 

gradually accepted and adopted by the research in the IS field (Lee, 2004, Lee and Hubona, 

2009, Salovaara and Merikivi, 2015), IS can be gradually improved through continually 

examining the boundary conditions of existing software architecture and extending the 

boundary by developing new software architecture. 

Table 9 Abduction and falsification 

Features Abduction Falsification Sources 

Logic 
Propose hypotheses 
that explain more 
practical observations 

Falsify a theory or propose 
more generalised 
hypotheses that explain 
more practical observations 

(Lopez, 2013, Salovaara 
and Merikivi, 2015, 
Magee, 1973) 

Data analysis 
Start from theory to 
data to propose new 
hypotheses 

Start from theory to data to 
abandon existing theory or 
propose new hypotheses 

(Yu, 1994, Salovaara and 
Merikivi, 2015) 

Mode of 
discovery Theory-informed Theory-informed 

(Kovács and Spens, 2005, 
Magee, 1973, Gregor et 
al., 2013) 

Knowledge 
generation Yes Yes 

(Kovács and Spens, 2005, 
Magee, 1973, Popper, 
2013) 

Possibility of 
human 
creativity 

High High 
(Kovács and Spens, 2005, 
Popper, 2013) 

In this research, the aim is to improve the semantic interoperability between healthcare 

information systems by solving the limitation of FHIR in implementation. To adapt the 

falsification research process proposed by Magee (1973) and combine with the abductive 

reasoning, this research will be formulated into the process as shown in Figure 9.  

In Figure 9, the vertical flow chart on the left side of the figure is falsification research 

process which combines the proposing test propositions and testing of Figure 8 into one 

step. Consequently, this research is divided into four phases, with several sub-steps in each. 

This thesis’s research steps are depicted in the swim lane diagram on the right side of the 

figure.  
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Figure 9 Research design based on abductive reasoning and falsificationism 

Address limitation of existing theory 

The first stage of this research is to identify the limitation of the existing widely adopted 

communication protocol in healthcare information systems. This stage consists of three 

sub-steps. The first sub-step is to identify one communication protocol that stresses the 

sematic interoperability as the research object of this study (Section 2.4 and 2.5). An 

extensive literature review is conducted because there are many protocols in the domain 

of healthcare information systems that claims to support semantic interoperability. The 

second sub-step is to identify limitations of selected communication protocol of semantic 

interoperability from the literature review (Section 4.3). And the last sub-step of this phase 

is to verify the limitations that are addressed in literature through applying selected 

communication protocol to imperial data (Section 4.3). 

Propose a trial solution 

After identifying the limitations of the existing solution in the first stage, an extensive 

literature review of the related work helps to develop the proposed solution for the 

specified constraints. The first step is to explore the reason for the restrictions (Section 



Chapter 3. Research Methodology and Design 

 74 

Chapter 5). Based on the identified root causes for the limitations, the second step is to 

conduct literature review of IS theories (Section 5.3 and 5.2) aiming to solve the problems. 

The third step is to develop a new information architecture to solve the problems in the 

existing solution (Section 5.4 and 5.5) 

Test the proposed information architecture and validation 

This stage is to design test cases for the proposed architecture against the limitations of the 

existing solution. In this research, there are test cases are conducted. The first one is to 

verify the capacity of the proposed architecture in terms of decreasing semantic ambiguity 

through show the examples (Section 6.1). The second case is used to demonstrate the 

capacity of the proposed architecture to handle the information exchange between 

disperse systems (Section 6.2). The last step in this stage is to discuss the proposed 

architecture and compare it with the existing solutions (Section 6.3 and 6.4). 

New theoretical proposition with established boundaries 

When the proposed solution has been tested and validated, the theoretical proposition for 

this new solution can be addressed (Chapter 7). Furthermore, the limitations and 

implications for future research are discussed at the end to present a complete view of this 

research outcome. 

3.4.3 Summary 

This chapter has discussed the critical aspects of the research framework that provides the 

research paradigm, approaches, and methods for this research. In addition to conventional 

research paradigms, this research particularly discussed falsificationism and its applicability 

of this research. Regarding the research topic, this chapter explored the capacity of a sign 

system in information system design. Through the sign system, users interact with 

information systems, and it is precisely in the middle of this interaction that semantic 

ambiguity is generated, which affects semantic interoperability. The context-dependent 

property of a sign system makes its applicability have clear boundaries. This research aims 

to extend the boundaries of an international specification of semantic interoperability by 

addressing its limitation, which presents the validity of falsificationism in this research. The 
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research activities are also structured with the guide of the falsification research process.





Chapter 4. Investigation of FHIR and its limitations  

 77 

Chapter 4 Investigation of FHIR and its limitations 

This chapter investigates the FHIR specification from the following aspects: the evolution of 

HL7 series specifications, the design ideas of FHIR, the interoperability paradigms, the FHIR 

architecture patterns and its limitations. This chapter provides a comprehensive 

understanding of FHIR in order to take full advantage of FHIR’s design benefits and propose 

improvements to its limitations. 

4.1 FHIR chosen as the research platform  

On the basis of the comparative analysis of OpenEHR and FHIR in Section 2.5, the OpenEHR 

design paradigm (openEHR, 2002) can be summarised by three "separations": ontological 

separation, separation of responsibilities and separation of viewpoints (The OpenEHR 

foundation, 2003), which have been discussed from the five aspects. However, it is 

challenging to deploy OpenEHR on outdated systems because the entire system must be 

changed. OpenEHR's industry appeal is impeded by its expensive implementation, 

particularly for large projects. FHIR, on the other hand, is rapidly adopted in the health care 

industry due to its easy-to-start features and usage of Internet interface protocols as its 

external interfaces. Although FHIR’s architecture is still needs to be improved, its easy-to-

operate allows it to be rapidly adopted by industry applications and swiftly occupy most of 

the market share. Consequently, the benefits of FHIR in industrial applications is substantial. 

The Google trend depicted in Figure 10 and 11, as well as the industry discussions from 

ALCIDION ( 2022 ), echo the results of comparative analysis in Section 2.5. In the 

consideration of industry acceptance, this study employs FHIR as its research foundation. 
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Figure 10 Interest by region-FHIR & OpenEHR 

 

Figure 11 Interest in UK- FHIR & OpenEHR 

4.2 Fast Healthcare Interoperability Resources (FHIR) 

Fast Healthcare Interoperability Resources (FHIR) is proposed by HL7 International to 

improve the interoperability of systems in the healthcare domain and to facilitate 

information exchange between the stakeholders of healthcare ecosystems. FHIR is an open 

suite of software specification and implementation, comprising two elements: information 

models entitled ‘resources’, and a specification for the exchange of these resources. The 

goal of FHIR is to render all health data accessible to large-scale analytics in order to 

improve the quality of healthcare services. FHIR distinguishes itself from the previous 
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versions of HL7 standards (HL7 v2, HL7 v3 and CDA) because of the better leveraging of 

modern web technologies. In this chapter, HL7 series standards are reviewed in the first 

subsection in order to explore the evolution of interoperation standards and the driven 

factors. Then the FHIR standard is discussed in detail in the following subsection because it 

is expected to overcome the limitations of previous versions. As the basis of this research, 

FHIR architectural patterns and the limitations of FHIR are discussed in the last two sections. 

4.2.1 Health Level 7 (HL7) and its Evolution 

Health Level Seven International is a non-profit ANSI-accredited (American National 

Standards Institute) standards development organisation, which was founded in 1987 and 

has published a set of international standards for the transfer of clinical and administrative 

data between healthcare organisations. Health level seven international is abbreviated as 

HL7. This name is derived from the 7th level of the OSI (Open System Interconnection) model, 

shown in Figure 12. HL7 produces the international standards for healthcare 

interoperability widely adopted globally. The following will introduce HL7 Version 2, HL7 

Version 3, HL7 Clinical Document Architecture (CDA) and FHIR, which are the four primary 

standards developed by HL7. The series of the four standards reflect the evolving history of 

HL7 protocols. 
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Figure 12 The interoperability levels of clinical standards based on OSI model 

(International Organization for Standardization, 1994) 

• HL7 v2 

The initial goal of HL7 is to develop grammars for messaging and standardise vocabulary. 

So, Health Level version 2 (HL7 v2 ) was developed in 1989, which adopts a pragmatic 

approach to define a set of specifications for clinical messages, mainly covering 

administrative and clinical systems. HL7 v2 is a pure message communication protocol 

without any underlying model. It defines a standard data structure to describe clinical 

events by pre-defined segments, fields, and data types, which consists of a message 

header and the content of clinical information partitioned by delimiter symbols like | or 

^. Figure 13 shows an example of laboratory results.  

 

Figure 13 HL7 v2 example 

In Figure 13, MSH (Message Header segment) is the message header; PID (Patient ID 

segment)identifies the patient, including the information of name and date of birth; 

OBR (Observation Request segment) is used to transmit information specific to an 

order for a diagnostic study or assessment; OBX (Observation/Result segment) carries 

information about observations in report messages. The standardised message can be 

easily identified by the information system through the pre-defined codes. As no other 

standards were available at the time, HL7 v2 grew rapidly when healthcare 

organisations and industry vendors realised the benefits it offered. By now, over 90% 

of American hospitals and many other countries have adopted HL7 v2 in message 
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exchange (HL7, 2022c).  

• HL7 v3 

Based on the interoperability of message exchange provided by HL7 v2, HL7 v3 aims at 

a firmer and context-rich standard, which is expected to support healthcare workflows 

through data exchange. Therefore, HL7 v3 produces shared reference information 

models (RIMs) to enable more reuse, standardisation and format consistency. Unlike 

the HL7 v2 message, the HL7 v3 adopted XML to present clinical information with a 

semi-structured format, shown in Figure 14, which is a human-readable document.  

 

Figure 14 HL7 v3 example 

HLR v3 is not an incremental version of HLR v2 but a decided departure. HL7 

Development Framework (HDF) is introduced by HL7 v3 as a development process to 

employ RIMs to develop clinical information models for various scenarios. The Clinical 

Document Architecture (CDA) is one of the proposed RIM standards, a widely adopted 

application of HL7 v3 for exchanging electronic documents that define the format and 

the shared meanings of clinical documents (Dolin et al., 2001). This top-down Model 

Driven Architecture is expected to generate the messaging artefacts automatically; 
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however, the implementation of HL7 v3 is complex, and a customer compiler is usually 

needed to match RIMs with local specific models in most scenarios (Bender and Sartipi, 

2013).   

In short, HL7 v3 provides interoperability through both message and document. 

Messages are generally used to support an ongoing process in real-time, while 

documents are used to process ‘static’ content. Comparing the broad adoption of HL7 

v2, the adoption of HL7 v3 is limited. The first reason is that the adoption cost is high 

with a long adoption cycle as RIM model is over complex to implement (Worden and 

Scott, 2011, Benson and Grieve, 2016). The second reason is that HL7 v3 is not 

compatible with v2, which leads to two versions coexisting in the same system and also 

indirectly causes the problem of high maintenance costs  (Mead, 2006). 

• FHIR 

FHIR was introduced in 2014 and is compatible with all previous versions, including HL7 

v2, v3 and CDA. FHIR achieves interoperability through four levels: API (RESTful 

interface), message (similar to HL7 v2), document (similar to CDA) and Service. In the 

following subsections, FHIR will be introduced in detail. In summary, HL7 v2, v3 and FHIR 

are in an iterative relationship (Figure 15). The original intention of HL7 is to replace the 

old standard with a new one. However, due to practical issues such as implementation 

costs, multiple standards co-exist in practices. 

From Figure 15, FHIR can be regarded as the latest standard developed by HL7, 

inheriting previous versions’ merits. The following subsection will introduce FHIR in 

detail. 
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Figure 15 HL7 standards 

4.2.2  HL7 FHIR Standard 

FHIR is the next-generation interoperability standard of HL7, aiming for seamless and on-

demand information exchange between heterogeneous healthcare systems. In order to 

improve the adoption, facilitate the mobility of healthcare data, and promote application 

innovation based on healthcare data, FHIR simplifies implementation complexity without 

sacrificing information integrity and thereby reduces integration costs. The birth of FHIR 

mainly stems from the lack of implementation of the HL7 v3 benefiting from the project 

named “fresh look task force”. This project is to examine how to improve HL7 messaging 

standards. Therefore, FHIR adopts a new approach to healthcare information exchange and 

then draws on the mature architecture of internet technology widely adopted in the 

industry. This approach is based on RESTful (Fielding, 2000), an open Internet standard 

widely used to engage applications running on mobile devices or web browsers. HL7 claims 

that HL7 v3 has not been abandoned but that FHIR was born because of learning HL7 v3. 

The philosophy behind FHIR is to focus on implementers, leverage cross-industry 

technologies and make the healthcare information readable and freely available. Therefore, 

FHIR adopts a modern, internet-based approach to connect the discrete healthcare 

elements represented by a set of predefined ontological models. The following subsections 

will introduce the characteristics of FHIR in detail, starting with the introduction of these 

ontological models. 

4.2.2.1 FHIR Resources 

The fundamental units of FHIR representing clinical information are resources, which are 
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information models featuring a set of predefined properties for a specific aspect of the 

domain. For example, the resource representing an individual patient has attributes 

including name, gender, address, and date of birth. Effectively, a resource can be identified 

as a schema which describes all the relevant attributes of a conceptual entity. Then HTTP-

based RESTful API is developed to access these resources. 

FHIR divides various resources into the following five categories (Figure 16), mapping to 

different layers of applications. With the FHIR release 4, there are 146 resources defined, a 

number that grows with every release. FHIR resources include Foundation (30), Base (26), 

Clinical (39), Financial (16), and Specialized (35), consolidating all categories of data with 

these predefined resources, which have already been in use or will be used in the healthcare 

information systems. FHIR, as a sign system, offers a defined lexical space in which clinical 

concepts, healthcare services, and FHIR resources are utilised. 

These predefined resources currently cover 80 per cent of data elements used in existing 

healthcare systems, which are the common requirements of data usage scenarios. The 

remaining 20 per cent less used data elements are left to developers to define, known as 

extensions. This 80/20 rule avoids the proliferation of numerous, overlapping, and 

redundant resources. 

A resource is the basic unit of interoperability, which can be likened to an alphabet as 

resources can be combined into a profile, just like alphabets forming words. When a single 

resource is not enough to represent the data needed for a certain application scenario, FHIR 

allows multiple resources bundled together to describe a complex concept. The profiling 

process refers to the combination of resources or resources and extensions. Thus, the 

profiling process involves subjective understanding, especially when resources describe 

clinical behaviours, such as workflows, updates, and services.  
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Figure 16 FHIR Resources 

FHIR resources can be flexibly connected based on the structure of medical services. For 

example, the conceptual map of medication prescription services can be illustrated as 

Figure 17. The FHIR protocol is compatible with numerous medical terminology codes, 

including SNOMED CT, LOINC, and UCUM, among others (HL7, 2022a). In the example given 

below, the pharmaceutical code often uses SNOMED to represent the substance's name. 

As shown in Figure 15, the graph in which concepts are connected through different 

relationships exemplifies the basic connection of Knowledge Graph, making it feasible to 

convert the FHIR definition into a Knowledge Graph format. 
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Figure 17 Health services related to medication 

An example of the FHIR resource below (Figure 18) is about a patient. The key parts of this 

resource include four parts: Metadata, narrative, extension and elements.  

1. Metadata 

Metadata is an optional part of a resource, a set of information describing the technical and 

workflow context of the resource. In FHIR, Metadata contains the literal identity in the form 

of a URL and the date where the resource was last updated. 

2. Narrative 

The narrative provides the context and the content of essential clinical or business 

information for the resource in a human-readable expression. For instance, the narrative 

for a Medication Request (a resource of FHIR) cloud includes a summary regarding the 

referenced patient, prescriber and medication. 

3. Elements and Extension 

Elements and Extensions are the two types of data modules in FHIR, representing all 

necessary information regarding each resource. The Elements are a normative part of in 

FHIR standard, while the Extensions can be built individually by developers, vendors or 

interested parties developing their dedicated domain information and applications.  
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As shown in Figure 18, a resource contains a set of elements defined in a strict hierarchy. 

Elements either have child elements or a primitive value. Every element can have 

extensions containing either a value or other extensions. Figure 18 demonstrates the 

resource represented in XML format. Other formats, such as UML, JSON and Turtle, are 

naturally supported by FHIR.  

As shown in Figure 19, the UML format of resource (patient) clearly shows the graphical 

properties of the healthcare data model expressed by nodes and relationships. It is for this 

reason that this study chose to use a graph database to describe FHIR resources and their 

relationships. 

Besides the predefined content models, FHIR defines exchange specifications to facilitate 

information exchange, which herein are named interoperability paradigms. 

 

Figure 18 Example FHIR Resources – Patient in XML format  (HL7, 2022b) 
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Figure 19 Resource-Patient in UML format  

4.2.2.2 Interoperability Paradigms 

As mentioned in the earlier subsection, FHIR establishes interoperability with four 

paradigms, including API, messaging, documents, and service. Strictly speaking, these four 

paradigms belong to two categories.  

• API paradigm 

To be precise, the API paradigm in FHIR refers to the RESTful interface, which conforms to 

the constraints of REST architectural style and enables interactions for web services. As a 

RESTful specification, FHIR is organised around the concept of a repository, which is a list of 

resources of a particular kind. For example:  

http://myfhirserver.com/patient/122735 

This URL consists of three parts structurally: [server-address]/[type]/[id], which indicates 

the record of patient 122735 is stored in the server of myfhirserver.  

In contrast to the RESTful interfaces used in other typical scenarios in the IT industry, the 

RESTful in FHIR is a general specification and is used to carry multiple types of information 

exchange. In general, there are three types of FHIR services underpinned by the RESTful 

interface: 1) instance service: allows clients to retrieve, update, delete and see the 
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modification history of a resource; 2) type service: allows clients to create instances of a 

resource and search all existing resources, 3) system service: allows clients to determine 

which functions are available regarding specific use cases (Benson and Grieve, 2016). As 

described above, RESTful API employs pre-defined operations to deal with the small and 

light-weight exchanges between low coupling systems, especially suited for Mobile services.  

• API enabled paradigm 

Underpinned by RESTful API, messages, documents, and services are allowed to be 

exchanged with RESTful web services.  

1) Message exchange 

A message consists of multiple resources in a single exchange and is exchanged 

between applications when a specific event occurs. The message interoperability 

paradigm is requested to complete complex operations than CRUD (Create, Read, 

Update and Delete) on multiple resources. A message is used to handle 

asynchronous communication scenarios and is employed to request or respond to 

a workflow. The structure of an FHIR message includes the message header and 

content. The message header describes the information of the message sender and 

receiver, and the content is comprised of one or multiple resources. Figure 20 shows 

a message consisting of a message header and three resources of FHIR.  

 

Figure 20 Example of FHIR message consisting of multiple resources  
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2) Documents exchange 

The document interoperability paradigm is used to communicate multiple resources 

from source data whose content is ruled by authentications but without workflow 

involved. In the context of healthcare information exchange, a document refers to a 

set of fixed healthcare information packages that can be exchanged for storage for 

later use (Shown in Figure 21). 

Document paradigm adopts when a group of information which contains a 

composition and supporting resources are requested to transport with persistence 

and testability. However, when the data is dynamically requested by a client or is 

used to respond to a workflow request, the document paradigm is not fit for such 

scenarios. 

 

Figure 21 Example of document exchange  

3) Service exchange 

Service refers to a set of functions that one healthcare information system can 

provide externally defined based on its data and users’ requirements. Especially 

when all previous paradigms don’t fit exchange requirements, the service paradigm 

is invoked. For example, the workflow is more complex than a simple 

request/response, which is beyond the scope of the message paradigm can handle. 

4.2.2.3 The Roles of FHIR in Enterprise Architectures 

Enterprise architecture (EA) is widely adopted for leading enterprise responses to a 
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dynamic business environment by carefully selecting technologies to align with the 

business context toward desired business vision and outcomes. EA is a discipline that 

provides a set of methods to define an organisation’s structure and interrelationships and 

their interactions between critical business domains, such as business, technical, physical, 

or organisational (Dedić, 2021). In the context of business digital transformation, EA is 

employed as an architectural tool to help enterprises proactively and holistically establish 

a convergence strategy of business and technology. The TOGAF (The Open Group 

Architecture Framework) (The Open Group, 2018) and the Zachman Framework (Zachman, 

1999) are the two enterprise frameworks that got massive and markable attention from 

academia and the industry, as shown in Figure 22. This sub-sector discusses the positions 

of FHIR in the two widely adopted EAs in order to understand the FHIR’s facilitating in 

establishing IT systems to support business operation, particularly in the digital 

transformation. 

In the left half of Figure 22, from the TOGAF perspective, FHIR specifications provide the 

definitions of resources fitted within the information systems architecture domain (circled 

with a red ring) to address the information models from an architecture viewpoint; the FHIR 

APIs for data exchange addresses aspects of application architecture. When a party in the 

healthcare ecosystem, for example, a hospital, has chosen to undertake a large-scale 

architecture transformation to adopt FHIR in the incumbent healthcare information 

systems, it is crucial to understand and address data management issues. A comprehensive 

data management approach is essential to capitalize on its competitive advantages 

reflected in the effective use of healthcare data. FHIR is the data management approach to 

define healthcare data and their relevant applications via FHIR resources and FHIR APIs.  

In the right half of Figure 22, from the Zachman framework viewpoint, FHIR explains 

healthcare data models, how they exchange through various interoperability paradigms, 

and what capabilities they have through API definitions. Therefore, FHIR fits within the 

dimensions of What and How within the Zachman framework to address the technical and 

implemental concerns of architects, engineers and technicians.  

The addressed FHIR positions in TOGAF and Zachman framework provide the technicians 
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with the total consideration that hybrids the services and technology requirements when 

involving the digital transformation process for local healthcare information systems. 

  
Figure 22 The positions of FHIR specification in information architectures 

4.2.3 FHIR Architectural Patterns 

FHIR is not only a set of healthcare data models and web-standard-based APIs to facilitate 

healthcare data exchange and enable healthcare services; it also provides flexible solutions 

to fit with various incumbent system architectures. Fundamentally, FHIR is regarded as a 

‘platform specification’ from the perspective of constructing a health information system. 

FHIR offers solutions to the challenges encountered in health data usage, such as describing, 

sharing, and managing to respond to the numerous healthcare data needs. Because of the 

complex context of data applications, the developers are often required to make deliberate 

design decisions when adopting FHIR as a data communication standard over the 

incumbent health information systems. This sub-section discusses the common adopted 

architectural patterns for integrating FHIR with different local existing systems. 

FHIR is flexible to fit different system architectures in order to serve specific purposes. For 

example, FHIR can be adopted as a lightweight client to deal with data requests from mobile 

apps in front of local health information systems or a heavyweight client for a robust 

analytics healthcare data solution to deal with multiple local health information systems 

and provide system interoperability. FHIR can either fit in a centralised server architecture 
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or a peer-to-peer data sharing solution depending on the information systems' scale and 

the autonomy requirements. In general, there are three architecture patterns in the 

approach of FHIR-enabling an existing solution. 

This first architectural pattern is the ‘interoperability wrapper’. In most implementations, 

FHIR is adopted as an interoperability interface, where FHIR sits on top of existing systems 

and interacts directly with clients. The interoperability interface architecture, shown in 

Figure 23, is widely adopted to wrap EHR recordings and clinical terminologies to enable 

their data users to access healthcare data in consensus information models (Saripalle et al., 

2019, Curran et al., 2020, Gøeg and Hummeluhr, 2018). This architecture could be regarded 

as an FHIR-compliant API, which can be employed by other parties in the healthcare 

ecosystem to improve the data harmonies in a healthcare computing environment.  

In this architecture, the data access layer explains the structures of proprietary clinical 

databases it connected to the requests of data accessing; the FHIR adapter translates 

clinical data from the proprietary database to FHIR resources; and FHIR API supports 

information exchange in the paradigms if RESTful, Message, Document or Services (detailed 

explanation of these paradigms in section 4.2.2.1). When requests need to interoperate 

with multiple clinical databases, the FHIR is employed to achieve code reuse and health 

information portability between clinical databases. In some cases, this system architecture 

has a proprietary API adapter parallel with the FHIR API adapter to satisfy specific business 

requirements.  
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Figure 23 FHIR as an interoperability interface   

The second architectural pattern is the ‘broker adapter’, shown in Figure 24. In the 

healthcare ecosystem, healthcare data resides in many different systems and are required 

by other organisations in a variety of formats. For example, health organisations are needed 

to send data to payers’ systems or syndromic surveillance public health agencies for 

business and management purposes. In another scenario, lab results are required to 

integrate into other information systems; this architecture is also employed to transform 

the data formats.  

Such format exchange requirements that improve the healthcare ecosystem’s 

interoperability are usually fulfilled by interoperability vendors exclusively. They provide 

operational support and usually do not persistently store those data. To facilitate healthcare 

data exchange, the broker system adopting FHIR resources as the underlying domain 

models can greatly simplify the broker system’s design (Rinner and Duftschmid, 2016, 

Deppenwiese et al., 2021, Dolin et al., 2021). The high demand for such format conversion 

is that the healthcare information systems are extremely complex, and multiple versions of 

standards coexist in the incumbent information systems. In particular, the two widely 

adopted standards, HL7 v2 and HL7 v3, often coexist. 

 

Figure 24 FHIR as a broker adapter 

The third architectural pattern is the ‘FHIR-based clinical data repository’, shown in Figure 

25. In order to promote innovations in healthcare services, the neutral health data 

repository is one of the commonly adopted solutions, which integrates health data from 

dispersed information systems and realise unified data storage and management (Ulrich et 
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al., 2016, Gruendner et al., 2020, Shi et al., 2021). The neutral clinical data repository is 

regarded as a health data warehouse to support computing and analytic demands. FHIR is 

adopted as a consensus standard to facilitate data transformation from various formats and 

standards to unified information models. The extension and profiling capacity of FHIR 

satisfy the transformation requirements.  

 

Figure 25 FHIR-based clinical data repository 

In the above three architectural patterns, FHIR flexibly integrates with the incumbent 

information systems to support various healthcare innovations by playing different roles in 

health data provisioning. In contrast, the challenge the three architectures have in common 

is that they all require converting industry-standard healthcare data formats or proprietary 

formats to FHIR resource models. Due to the flexible design of FHIR itself and the fact that 

the FHIR resource models do not cover all healthcare data usage scenarios, the 

implementors are granted considerable freedom to decide how to map local data with FHIR 

resources. The diversity and even incompleteness of local medical data deteriorate the 

uncertainty of such data mapping. Even with the same local data, different implementors 

have inconsistent understandings of the FHIR resource models and their constraints, which 

also leads to inconsistent data mapping. Section 4.3 will discuss the inconsistent 

understanding of FHIR specifications in detail, and Chapter 5 will explore the fundamental 

cause of this issue.  
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4.2.4 Technical Factors Popularising FHIR  

As the applications, such as telehealth, are rapidly growing in the industry, the need for 

information exchange based on commonly used Internet interfaces has driven the 

widespread adoption of FHIR in the industry. In contrast to the earlier standards of HL7 v2, 

v3 and CDA, FHIR is likely to rapidly gain attention from the industry because it actively 

embraces Internet technologies and offers advantages such as agility, fast iteration, and low 

learning costs (Bender and Sartipi, 2013, Zong et al., 2021, Xu et al., 2020, Leroux et al., 

2017), with additional support for mobile applications (Mandel et al., 2016, Bender and 

Sartipi, 2013, Sayeed et al., 2020). Moreover, FHIR adopts a RESTful API to enable 

interactions and represents data in the currently popular JSON (JavaScript Object Notation) 

format instead of the EDI and XML format proposed by the earlier standards. FHIR provides 

a set of standards with established patterns to improve interoperability among a wide range 

of systems and devices which transcend EHR (Electronic health record) systems. FHIR to 

heterogeneous healthcare information systems is akin to the TCP/IP standard to the 

Internet. FHIR significantly reduces the difficulty of the transformation of incumbent 

information systems, and its implementation compared to OpenEHR and the previous 

versions of HL7 (Bender and Sartipi, 2013) is significantly simplified.  

In addition to the RESTful interface, FHIR resources can be exchanged through the 

paradigms of Document, Messaging and Services; these comprise the three types of 

resource collections serving different purposes (McKenzie, 2016). For current solutions, 

FHIR is usually adopted as a front-end server, expressing the local healthcare data with the 

term ‘resources’; it provides an HTTP/REST interface for applications by developers to 

access data (Saripalle et al., 2019). Heterogeneous databases mutually communicate 

through their front-end servers. These FHIR servers are oriented toward each other, 

establishing an unimpeded network of intercommunication through RESTful API at the 

technical and syntactical levels. The semantic interoperability between heterogeneous 

databases is theoretically ensured by FHIR resources, which constitute unified information 

models to ensure that all agents communicate via the same discourse system.  

In 2018, six Internet giants, namely Amazon, Google, IBM, Microsoft, Oracle and Salesforce, 
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jointly committed themselves to the elimination of interoperability barriers in healthcare 

by adopting FHIR as an exchange standard (Information Technology Industry Council, 2018). 

FHIR is selected as the basis of this research because it has been adopted as the national 

standard across all hospitals in the United Kingdom (UK) (NHS, 2020) and has also been 

widely adopted in other sectors. 

Due to the increasing availability of new health data and the advent of the "app" economy, 

consumers and physicians must now be able to share information in a way that is both 

lightweight and real-time, utilising current internet technologies and industry-standard 

protocols. In this context, FHIR is a reaction to requests for a way that can share a huge 

amount of health data more efficiently, promptly, and easily. As FHIR is built on Internet 

standards that are widely used in industries other than healthcare, by utilising existing 

standards and technologies that are already familiar to software developers, FHIR 

dramatically reduces the entry barriers for new software developers to meet healthcare 

demands. In conclusion, FHIR standardises the procedure through which information can 

be represented and sent across multiple organisations and parties. 

4.3 Limitations of FHIR 

The widespread adoption of FHIR has led to an increased debate on the limitations of 

semantic interoperability; Kubick (2016) and Kraus (2018) discuss the semantic ambiguity 

introduced by the implementors due to different combinations of FHIR resources being 

used to explain the same healthcare service. When FHIR is adopted as an ‘interpretation 

wrapper’ in a healthcare ecosystem for information exchange, all parties to it are able to 

choose FHIR resources to represent their healthcare services. In consequence, different 

institutions may not be able to interoperate due to the inconsistencies in the use of FHIR 

resources; semantic ambiguity in communication is introduced and amplified by the 

interactive process. This chapter will explore semantic ambiguity from two perspectives. 

The first concerns the rigour of FHIR specifications, and the second explores the semantic 

ambiguity due to FHIR’s flexible architecture. 
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4.3.1 Insufficient Consistency of FHIR Specification Description 

Three types of semantic ambiguity have been identified in FHIR implementation, with the 

first caused by the insufficient rigour of the FHIR specification. Beale (2019) contends that 

the inconsistency in definition of FHIR produces semantic ambiguity. The following 

examples have been found in FHIR v4.3.0: 

• The same semantic with the different lexical name 

Dosage in Medication Statement has the same meaning as Dosage Instruction in 

Medication Dispense (Figure 26). The three elements, Location.hoursOfOperation, 

HealthcareService.availabletime, and Slot.start, are different names although they appear 

to designate the same thing (Figure 27). 

 

Figure 26 Dosage vs Dosage instruction 
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Figure 27 Hours of operation vs available time vs start 

• The same lexical name with the different semantic 

The ‘substitution’ in Medication Request and Medication Dispense describes two different 

actions (Figure 28). 

 

Figure 28 Different meanings of same lexical name 

• The same lexical name and semantics but different data structure 

The ‘status reason’ in Medication Request is defined as a Single-valued attribute; in 

Medication Administration, it is a container attribute, and in Medication Dispense, it 
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includes two sub-elements. 

 

Figure 29 Same lexical name and semantics but different data structure 

These imprecise definitions inevitably lead to misuse or inconsistency in the 

implementation of FHIR; further, the FHIR specification involves terminology in a variety of 

fields and is relatively complicated. The lexical definitions do not have the capacity to guide 

implementers to precisely match FHIR resources to idiosyncratic local databases because it 

is impossible for the FHIR specification to describe all mapping scenarios; this is an inherent 

flaw of the lexical approach, which is discussed in Chapter 5 will from a theoretical 

perspective. 

4.3.2 Semantic Ambiguity Introduced by FHIR Profiling 

The second type of semantic ambiguity is introduced by FHIR extensions. As the 80/20 rule 

of FHIR resources (HL7 International, 2019a) is adopted to avoid overlap and redundant 

definition of resources, lesser-used terms can be freely defined by implementors in the 

format of extension of resources, which accounts for 20% of clinical terminologies. Because 
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FHIR unifies healthcare resources but lacks explicit contextual constraints, the 80/20 rule 

enables an institution to define its own extensions for the same healthcare service. An issue 

of this nature both causes barriers to information exchange and also obstructs medical 

discoveries based on cross-institutional data analysis (Dolin et al., 2018). Semantic 

interoperability particularly deteriorates when extensions of resources are used to deal 

with specialist health data. 

4.3.3 Semantic Ambiguity Introduced by FHIR Flexibility 

The third type of semantic ambiguity is due to the freedom and flexibility FHIR offers to 

implementers; they can employ FHIR resources, or combinations of them, in order to 

interpret healthcare services, even though some may not be mature and/or stable, which 

leads to semantic ambiguity. FHIR v4.3.0 defines 139 resources, of which 100 belong to 

non-clinical categories. The number, which increases with every release, grants a 

substantial degree of freedom to implementers to use these resources. For example, in 

Figure 30, the resources of ‘observation’ can be combined with other resources to 

represent laboratory results, imaging study findings, diagnostic test results, vital signs, and 

other physical examination findings. These are the combinations of FHIR resources 

suggested by HL7 (https://www.hl7.org/fhir/resourceguide.html). The potential misuse of 

resources occurs when healthcare data is beyond the scope of HL7-suggested combinations. 

Additionally, FHIR implementers can tailor FHIR integrations to specific business needs, as 

shown in Appendix-1, resulting in multiple customised resource collections occurring 

between different systems (Dolin et al., 2018, Jiang et al., 2016). The interoperability issue 

caused by diversified FHIR collections is recognised by HL7 International (2022). 



Chapter 4. Investigation of FHIR and its limitations 
 

 102 

 
Figure 30 An example of correspondence between clinical actions and FHIR resources 

HL7 also addressed such issues on the webpage of the FHIR specification (HL7, 2022b). Hl7 

recognised that the lack of rules to prohibit resources from duplicating used leads to the 

resource inconsistency issue. The variations in size, complexity and comprehensiveness of 

the existing FHLR resources result in the resource granularity issue. Regarding these issues, 

the implementer’s safety check list (HL7, 2022d) and the FHIR resource considerations 

(Lloyd McKenzie, 2020) could help for achieving the consistency of both resource content 

and granularity to some extent, however, these actions are not enforced to implementors 

and the criteria for test the consistency are unclear.  

An irreconcilable relationship always exists between the design and the practice, 

particularly when the designer pursues the architectural virtue and flexibility of the design 

architecture. The data discrepancies, inconsistencies, and the different context constraints 

of data bring a severe difficulty to the design of describing all the scenarios in practice. 

Furthermore, the inconsistency is amplified when FHIR is applied in the practice of 

healthcare across different organisations and practitioners because various organisations 

adopt different granularity of concepts in the healthcare ecosystem.  

Since FHIR is still an emerging standard, HL7 subjectively avoids excessive constraints and 

rigour to maximise initial adoption rates; and HL7 considers further improving the 
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consistency when FHIR approaches a final normative standard because the resource 

consistency and granularity catch considerable attention in practice as well as in academia. 

4.4  Recent Development in FHIR Compliance Solutions 

Regarding the semantic ambiguity introduced by FHIR profiling (Section 4.3.2), HL7 

launched an office website (http://hl7.org/fhir/registry/) to manage the extension 

publication. Once an extension defined by implementers is approved by HL7, it is shared 

with all FHIR users through an official channel; this centralised management method 

effectively unifies and standardises custom extensions. However, the use of extensions 

nevertheless faces the problem of interoperability caused by implementers’ contrasting 

understandings of lexical definitions. McClure et al. (2020) propose a framework to guide 

harmonisation among multiple FHIR users in terms of terminology, data elements, measure 

clauses, and measure concepts. Tute et al. (2021) take a similar approach, proposing a data 

quality assessment method for the support of collaborative governance.    

The approach of ensuring FHIR conformity through review processes is usually costly in 

terms of time and labour. Sayeed et al. (2020) take an alternative approach, proposing an 

application which automatically merges patient-generated health data, represented by 

FHIR resources, into EHR. This approach is effort-effective but its scope is limited to patient-

generated health data and it does not cover electronic health records, which is the most 

complex aspect of healthcare ecosystems. Pfaff et al. (2019) contribute mapping scripts for 

the interpretation of  medical data with FHIR resources; in their study, the data from the 

Integrating Biology & the Bedside (i2b2), the Patient-Centred Outcomes Research Network 

(PCORnet), and the Observational Medical Outcomes Partnership are automatically 

encapsulated by the FHIR. However, the script compatibility issues caused by the 

idiosyncrasies of local data sources persist. In their framework, the adaption of a local 

database to the mapping script is allocated at the local database layer, therefore, the 

inconsistency of using FHIR resource caused by different implementers remains unresolved.  

Another approach is to leverage the national effort to harmonise the FHIR resources for 

medical data representation across hospitals. The Medical Informatics Initiative (MII) and 
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local data integration centres (DICs) in Germany collaborate to standardise COVID-19 data 

in FHIR profiles through another set of models, i.e., the German Corona Consensus Dataset 

(GECCO). Using FHIR, GECCO defines 83 data elements, and has been extended to all 

hospitals nationwide (Rosenau et al., 2022). The United Kingdom adopts the same 

approach and proposes FHIR UK core (NHS Digital, 2021) to enable consistent information 

flows across borders. However, the disadvantage of this approach is the lack of agility and 

the high cost of upgrading. 

In industry, a more straightforward approach is adopted; a developer collaboration and 

publishing platform (Firely, 2015) plays the role of coordinator and facilitator among 

developers to improve the conformance of FHIR, constituting a loosely-regulated approach. 

The above approaches have their own advantages and disadvantages; this research seeks 

to develop a low-cost and high-efficiency method by which to ensure FHIR conformity. 

Table 10 summarises the benefits and constraints of existing FHIR compliance solutions in 
terms of cost, efficiency, implementation difficulty, and application breadth. The 
suggested ostensive information architecture has clear advantages over current solutions. 

Table 10: Comparison between FHIR Compliance Solutions 

Solution Time 
and 
cost 

Efficiency to 
decrease 
ambiguity 

Easy to 
Implement 

Scope of 
application 

HL7 official website (http://hl7.org/fhir/registry/) Low Low Easy Wide 

A framework for harmonisation  

(McClure et al., 2020, Tute et al., 2021) 

High High Hard Wide 

Automatic tools 

(Pfaff et al., 2019, Sayeed et al., 2020) 

Low High Easy Narrow 

FHIR resources harmonisation national wide 

(NHS Digital, 2021, Rosenau et al., 2022) 

High High Easy Wide 

A developer collaboration and publishing platform  

(Firely, 2015) 

Low Low Easy Wide 

An ostensive information architecture Low High Easy Wide 

 

In view of the necessity for FHIR to use a consensus-based approach, this study considers 
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the related work of ontology used as an artefact by which to promote the harmonisation of 

health information systems. Ontology artefacts play a critical role in the fields of medical 

terminology unification, cross-medical protocol interoperability, and information exchange 

between heterogeneous systems for healthcare services. 

4.5 Ontology in Healthcare Information Systems 

The term ‘ontology’ originates from philosophy, which is defined as ‘an account of being in 

the abstract’ (Bailey, 1969). “Ontology is the study of the categories of things that exist or 

may exist in some domain” (Sowa, 1983). With knowledge representation and reasoning 

becoming one of the promising domains of Artificial Intelligence (AI), ontology is widely 

adopted as its sophisticated method for knowledge acquisition, sharing and reusing (Gruber, 

2009, Liu et al., 2008) and decision support (Gua and Liu, 2019). From the recent work in 

the fields of AI and information systems, an ontology is employed as content-specific 

agreements in knowledge engineering for sharing and reuse or adopted as a tool to solve 

the interoperability issue between systems (Schriml and Mitraka, 2015). Similar cases of 

using ontology can be found in the domain of Health Information Systems (HIS).  

In HIS, multiple systems such as hospitals, clinics, laboratories, pharmacies, telemedicine, 

and biosensors have disparate objectives and processes presented by different granular 

medical information. That results in semantic heterogeneity (Ahmadi et al., 2019). 

Therefore, semantic interoperability is complex and fundamental in health information 

system integration. As the requirements of domain knowledge representation, ontology is 

recognised as a promising approach to building interoperable information systems (Daraio 

et al., 2016). In general, two types of ontology-based methods are usually practised in 

handling interoperability. Sharing a consensus terminological ontology among all 

applications is the first type of solution, which is normally used in a specific domain with 

clear boundaries. Ontology matching techniques are used to align the difference between 

the internally used terminology of applications and the terminology of the standard. The 

second type aims at multiple terminology systems. A logic-based ontology is constructed as 

an interlingua to enable these heterogeneous systems to communicate in an unambiguous 
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fashion. The semantic relationships of the dispersed systems are specified by the logic-

based ontology; therefore, the two-way semantic mapping can be automatically calculated.  

According to the survey conducted by Wache et al. (2001)on how ontology is used in the 

integration of information systems, Wache et al. concluded three types of approaches 

based on the role ontology played in system integration. They are the single ontology 

approach, the multiple ontology approach and the hybrid ontology approach, which 

depend on the degree of semantic heterogeneity. Diaz et al. (2017) implement a 

comprehensive review on the purposes of adopting ontologies in health information system 

integration and categorises them into four types: information share, diagnostic processes 

improvement, clinical systems integration, and management process optimisation, which 

systematically summarised the functionalities of ontology from information acquisition, 

information exchange, to information integration. It provides readers with a comprehensive 

perspective to understand the role of ontology in HIS. Ontology mapping techniques used 

for enabling interoperability are systematically reviewed by Choi et al. (2006), and these 

techniques have been widely employed in various works (Blobel, 2011, Dhombres and 

Bodenreider, 2016). 

Considering the characteristics of medical data and the incumbent clinical standards, this 

research examines the ontology used in HIS from the information system architecture point 

of view. Gradually upward from the leaf nodes, the healthcare ontology can be regarded as 

consisting of medical terminology, clinical concept and healthcare services. Accordingly, 

ontology plays the role from the unification of medical terminology to enable inter-

exchange between systems with different standards, where a cross-system clinical concept 

is born, up to the top level to underpin the information exchanged among heterogeneous 

systems with the purpose of supporting healthcare services. 

• Ontology for terminology: representing terminological and taxonomic aspects of 

medical knowledge 

Ontology has been used to unify the medical professional interpretation in order to 

establish an agreement on medical terminologies in diverse clinical systems, such as 
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LOINC and SNOMED-CT. From this perspective, terminology ontologies are the pre-

defined agreements designed to standardise the language of a domain, providing each 

term with a precise meaning and a specific granularity. Therefore, terminology 

ontologies lay the foundation for the exchange of medical information. 

• Ontology as a bridge between two systems: representing the relationships between 

terminology ontologies 

Regarding the clinical concepts that comprise the medical terminologies defined by 

different standards, ‘bridge’ ontologies are adopted to facilitate information exchanges 

between terminology ontologies, and are employed to unify the definitions of clinical 

concepts. Ryan (2006) interconnects HL7 v3 and SNOMED-CT through ontology 

matching, and Bodenreider (2008) uses the same method to enable SNOMED-CT to 

understand the laboratory test result coded in LOINC. Those similar operations 

facilitate semantic interoperability between heterogeneous coding systems and also 

support the integration of dispersed health information systems (Plastiras et al., 2014).  

• Domain ontology: providing a common knowledge base for healthcare ecosystems 

As the clinical historical data, latest laboratory results and demographic data are all 

dispersedly stored, a call for a unified repository for all relevant data is urgent to obtain 

a comprehensive picture of a patient’s health status. There is an enormous amount of 

work to be done in this field. In general, the relevant works can be divided into two 

categories.  

The first category is constructing a novel domain ontology to enable the information 

exchange between heterogeneous health systems. Kataria and Juric (2010) propose a 

hierarchical ontology, which elaborates the categorization of taxonomy and relevant 

assertions from the perspective of the use of data to support healthcare services to 

enable interoperability of clinical data structured in different formats and stored in 

dispersed repositories. This method can only interpret ontological concepts and their 

relationships at a high abstract level. It is difficult to cover the ontological concepts at 

a lower level, for example, clinical concepts. Thus, this solution is not universal and 
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requires multiple ontology mapping calculations when it is used in different systems. 

The second category is leveraging the published international standards in healthcare 

domain, such as FHIR. Compared to the healthcare domain ontology proposed by 

individual researchers or national institutions, the FHIR-based ontology has evident 

international influence and the advantage of wide promotion. To encourage FHIR’s 

adoption, the following studies propose methods for the transformation of healthcare 

data into the corresponding HL7 FHIR structure (Kiourtis et al., 2019, Jiang et al., 2017b). 

A significant amount of research effort has been devoted to the improvement of FHIR 

coverage scenarios. Beredimas et al. (2015) propose an OWL (Web Ontology Language) 

ontology that defines the primitive and complex data types of the FHIR framework and 

the validation rules to enable FHIR to express data information externally to traditional 

medical databases. 

El-Sappagh et al. (2019) extend FHIR to the telehealth scenario, introducing real-time 

sensor data into the historical EHR medical data, with the aim of providing more 

comprehensive patient data to clinical decision support systems. Similar works have 

been carried out by Peng and Goswami (2019), combining data generated from the 

Internet of Things (IoT)-empowered smart home devices to EHR; meanwhile, 

Mavrogiorgou et al. (2019) collect multi-dimensional data reflecting patients’ health. 

This type of research (Wagholikar et al., 2017, Moreira et al., 2018) extends the 

application of FHIR to a broader range of medical data, promoting the wider adoption 

of FHIR 

Although there is so much research work to promote FHIR as a common standard, 

especially the use of FHIR-ontology to strengthen the ability of semantic 

interoperability. It has been difficult to find a similar work that deals with the 

limitations of FHIR (Kubick, 2016, Kraus, 2018).  

This section provides evidence that ontology artefacts are widely adopted, with the aim of 

improving data harmonisation and accessibility, and FHIR-based ontology is a mainstream 

approach to contend with the ever-increasing complexity of healthcare ecosystems. 
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Thereby, this research can explore the FHIR conformity solution on the basis of FHIR 

ontology artefact. The next section delves into the root cause of semantic ambiguity in FHIR 

implementation.
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Chapter 5 An Ostensive Approach to Elaborate 

Semantics 

Concerning the semantic ambiguity in FHIR implementation, this research investigates a 

novel information architecture that satisfies the data and process requirements of 

healthcare data stakeholders and adapts to incumbent health information systems. This 

chapter begins by examining how information interacts within information systems. To 

appreciate the fundamental reasons of semantic ambiguity, semiotics gives a methodology 

for understanding the link between sign and the meaning it expresses. Then, the 

development of the ostensive information architecture will be described in depth. In 

Section 5.2, micro-services and service-oriented architecture are discussed, establishing 

the groundwork for the Semantic Engine. The design concepts of these two architectures 

provide theoretical support for the deployment of healthcare terminologies of various 

granularity to satisfy the needs of data analysis and healthcare applications. After 

introducing the federated architecture, Section 5.3 elaborates on the design philosophy 

used to create the ostensive information architecture. Section 5.4 describes the suggested 

ostensive information architecture, whereas Section 5.5 describes the development 

process for an ostensive information architecture based on FHIR. 

5.1 Information Interaction through Lexical and Ostensive 

Approach 

This section examines the semantic ambiguity generated by FHIR implementation from the 

perspective of the interaction between information systems and their users. This section 

first discusses the use of signals in human communication and then compares lexical and 

ostensive approaches for reducing semantic ambiguity. 
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5.1.1 Signs in Communication 

By investigating the practice of information management and human communication, this 

research recognises that the fundamental cause of semantic ambiguity lies in the use of 

signs to represent objects. When implementers want to apply the FHIR standard to their 

own complex and heterogeneous local databases, their understanding of the FHIR standard 

will naturally be affected by the characteristics of the local data, resulting in possible 

inconsistencies in the application of FHIR. Thus, this chapter will examine the problems with 

the theory of the using signs in communication. 

A sign can be anything which is taken as substitution for something else’ (Eco, 1979), 

particularly in human communication. In semiotics, researchers examine information 

interaction through the study of signs and their effect on the human actors involved. 

Multiple semiotic theories hold different stances of epistemology and have laid different 

cornerstones in communication. They profoundly impact the fields of informatics (Liu et al., 

2010, Liu and Li, 2015, Liu and Tan, 2014), information systems(Baxter et al., 2018, Brödner, 

2019, Liu et al., 2014, Liu, 2005), knowledge management (Holzinger et al., 2014) and 

artificial intelligence (Targon, 2018, Chartier et al., 2019, Staab, 2019). 

Saussure’s theory of sign was initiated from the thought of a dichotomy (Figure 31). He 

believed that a sign links signifier and signified, which may exist in a material form and 

concept. The signifier in his theory is something that explicitly exists and can be 

distinguished by the human senses (Leeds-Hurwitz, 1993). In comparison, Peirce reckoned 

that the existence of an interpretant is critical and must be introduced in the process of 

making sense of a sign, which he terms as a semiosis. An interpretant directly connects a 

sign and an object, while the sign and the object are dotted linked (Figure 32) in Peirce’s 

triadic model. The dotted line in the figure indicates that the correspondence between the 

sign and the object is not objectively determined but dependent on the context and 

purpose of the communication and hence subject to personal interpretation. The 

interpretant can be regarded as the effect of such a sense-making process (Chandler, 2017) 

through the use of signs in different contexts or for different purposes (Liszka, 1990, Savan, 

1987). Therefore, between a sign and an object, there is no strict one-to-one 
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correspondence as suggested in Saussure’s model; although most specifications of 

information sharing adopt the Saussurean model of static mapping between lexicons and 

objects, including FHIR. 

 
Figure 31 Saussurian dyadic model of sign (Chandler, 1994) 

Peircean semiotics emphasises the effect of using signs in the context (Staab, 2019). By 

emphasizing the subjectivity in the mapping between the sign and the business context in 

which the sign is used, the triadic model of semiosis offers a theoretical basis for an 

ostensive approach to pinpoint the meaning of the sign (i.e., semantics) and its effect of the 

sense-making of the sign (i.e., pragmatics).  

Peirce’s triadic model is particularly useful in examining the reason for semantic ambiguity 

which may be generated in the implementation. When each implementor intends to apply 

FHIR to his local health information system, the sense-making process, using FHRI resources 

to explain healthcare data in a heterogeneous local database, may differ. 

 
Figure 32 Peirce’s triadic model (Peirce, 1958) 

FHIR specification uses the lexical approach to explain the definitions of resources. In other 

words, FHIR interprets the meanings of resources in language, which can be understood as 

the ‘sign’ (as illustrated in Figure 32). In the context of FHIR implementation, different 

implementers may have contrasting understanding of FHIR definition, leading to the same 

FHIR resource being used to explain different clinical data. Semantic ambiguity is created 

when many interpreters illustrate the same concept with contradicting signs. The ambiguity 
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of "same semantic with different lexical names" is depicted in Figure 33. Similarly, the 

ambiguity of ‘same lexical name with different semantics’ occurs when the same sign is 

mapped to multiple objects by different interpretants. Just as Dolin et al. (2018) addressed, 

the primary challenge of FHIR adoption is to transform multiple distributed local datasets 

into consistent FHIR formats.  

 

Figure 33 Peirce’s triadic model to explain semantic ambiuity 

The semantic ambiguity in FHIR implementation addresses the limitation of the lexical 

approach in communication. This problem severely hinders the exchange of healthcare data 

across organisations. The following section will explore the improved semantic 

interoperability brought by an ostensive approach to supplement the lexical approach. 

5.1.2 Lexical and Ostensive Approach to Information Exchange 

An ostensive approach in philosophy refers to denoting the meaning of a concept by 

offering examples of things to which the concept applies (Wittgenstein, 2019). When a 

semantic meaning passes between people, the concept can be defined verbally and also 

can be demonstrated by an example. It is more intuitive and effective to directly denote an 

example for things that are abstract or not easy to describe in language, such as sapphire 

blue. 

In a case where one FHIR resource is mapped to different clinical data, revealing the 

mapping relationships helps implementors determine the meaning of localised semantics. 

For example, the mapping relationship shows which attribute in which local database 

corresponds to which parameter of FHIR. From such an approach, the semantic ambiguity 
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caused by a symbol corresponding to multiple objects can be resolved. This approach, 

which shows the correspondences between FHIR and local databases as examples to 

facilitate semantic communications, is named an ostensive approach in this research. The 

examples further clarify the understanding of FHIR specifications by implementors and 

reduce semantic ambiguity, especially when complex signs such as FHIR are involved. 

Based on the above exploration, this research study recognises the limitations of the lexical 

approach to the resource as defined in FHIR and extended with an ostensive treatment in 

the use of the resources. As the JSON format of FHIR naturally gains the advantages of 

graph-based knowledge representation, this research considers building a centralised FHIR-

based ontology to illustrate the meaning of resources. When FHIR is employed as a 

healthcare ontology, the medical terminology, clinical concept, and healthcare services 

defined by FHIR are represented by nodes and their relationships in healthcare ontology. 

In order to further clarify the understanding of implementors for the FHIR resource, the 

healthcare data in local databases can be retrieved as examples to show the sign-object 

correspondence. Thus, the FHIR-based ontology and mapping data can simultaneously 

provide users with semantic explanations and data examples. 

The following chapter will focus on building an ostensive architecture for dispersed 

healthcare information systems using the FHIR knowledge graph. 

5.2 MSA Inspired FHIR Knowledge Graph 

HIS are complex because they are highly dependent on the context of domain knowledge 

(Mainzer, 2007), surrounded by subjective norms (Kannampallil et al., 2011), and employed 

by multi-stakeholders for multiple purposes (Plsek and Greenhalgh, 2001). More and more 

personal health analysis devices, such as wearable sensors and telerehabilitation, are 

gradually accepted as a new paradigm for personal healthcare. In such a ubiquitous 

environment, multiple HIS users require an information architecture to support massive 

data exchange and various data analytic tasks. In the healthcare ecosystem (Figure 34), 

numerous stakeholders collaborate as accounts of both data users and providers. The data 

they provided describe the healthcare status from different dimensions, and the 
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information they requested serves various analytics purposes, leading to the data being 

abstracted at different levels (Blobel et al., 2006). 

The requests for data at different levels of abstraction desire cooperation between the 

various entities in the healthcare ecosystem. As the challenge of increasing complexity in 

the healthcare ecosystem, the architecture of healthcare information systems needs to be 

evolved.  

 

Figure 34 Multi stakeholders in healthcare ecosystem 

Appendix-2 provides a comprehensive review of the evolution of information architecture 

for large-scale software systems. Through the review, it is certain that micro-services 

architecture (MSA) MSA is an effective solution for large-scale systems that can quickly 

process external requests. The essence of Microservices design is dividing a whole service 

provisioning into multiple individually deployable services. The single responsibility 

principle (Dijkstra, 1974), performing a single task as a suite of small services, enables task 

distribution in large-scale systems; the ‘loosely coupled, highly cohesive’ design principle 

(Stevens et al., 1974, Myers, 1978) provides feasible guidance for the division of service 

modules. Thus, MSA makes it possible for large-scale software systems to respond quickly 

to business processing needs. 
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This research adopts FHIR to facilitate message exchange at the semantic level. When 

applying MSA design philosophy to FHIR, FHIR specification can be regarded as a set of 

healthcare terminologies composed of different level granularities. The following will 

discuss the multi-hierarchical nature of FHIR fitting with MSA, including how healthcare 

concepts are organised in FHIR and the FHIR knowledge graph inspired by MSA. 

In healthcare information systems, raw data about patients’ health are collected in the 

format of event logs. In order to support the secondary uses, raw data need to be compiled 

and synthesised. As shown in Figure 35, healthcare concepts are located at different levels, 

and the hierarchical abstraction of words’ meanings can be used for different purposes of 

data use.  

In Figure 35, the concept of PCR (polymerase Chain Reaction) test is a laboratory technique 

to identify whether a patient is infected with the Covid-19 virus. This concept is usually 

adopted by patients or doctors to understand the Covid positive or negative. At the lower 

level, there are three concepts that connect the PCR test. They are DNA polymerase, Taq 

polymerase and PCR primers. Hospitals or research institutions need the values of DNA 

polymerase, Taq polymerase and PCR primers to identify the validation of the PCR test. The 

combined result of these three values is the test result of a PCR test. In the context of 

doctor-patient communication, all three concepts are shielded. While at the top level, the 

public health centres only care about the statistical results of sampling PCR tests in a certain 

area, and the individual test results are not vital for disease control. Therefore, the 

abstraction level of data for disease surveillance and strategic decision-making services is 

higher than that of data used for individuals’ health diagnoses. 

This example shows semantics for different purposes mapping to various levels of data 

abstraction. Engaging data at varying levels of abstraction masks irrelevant details and 

promote data reuse. Thus, data use is related to the level of data abstraction. The right side 

of Figure 35 indicates that entities with different purposes use the data at different levels 

of abstraction. 
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Figure 35 Semantic structure of PCR test 

In this example, atomic concepts, such as DNA polymerase, Taqpolyme rase and PCR 

primers, are the basic nodes that cannot be subdivided further without losing their senses 

and functionalities. The nodes establish the semantic structure at various levels of 

granularity and the composition rules for medical information models and healthcare 

services. 

This research adopted the FHIR specification to explain healthcare concepts, so that the 

healthcare concepts defined by FHIR can be represented in hieratical relationships for 

flexible data requirements. This research divides healthcare concepts into three categories: 

medical terminologies, clinical concepts, and healthcare services from the bottom to the 

top level. Each healthcare concept can be represented as a node, and the links between 

nodes reflect the hieratical relationships. Each note is loosely coupled with others, but its 

semantics are highly cohesive as its relationships with its subordinating nodes are relatively 

stable. Therefore, each node can be regarded as a Microservice entity to meet the demands 

of different data-use purposes. Besides the basic node, all nodes can be self-evolving in 

semantics by adding, deleting, or changing their subordinating nodes. The basic nodes have 

to change the name of the node in order to change their semantics. 

Based on this already formed expression of nodes and their relationships, the Knowledge 

Graph (Ehrlinger and Wöß, 2016) is adopted to illustrate medical terminologies, clinical 
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concepts, and healthcare services at various levels. In order to better fulfil the data access 

requirements, this research employs Neo4j to build an FHIR knowledge graph because its 

rich built-in functions can support semantic computing and reasoning, which can be 

leveraged by the semantic queries at different granularities. In summary, aiming for 

semantic queries from various stakeholders in the healthcare domain, the FHIR knowledge 

graph is selected to respond dynamically to the queries of healthcare concepts by showing 

the node-edge topology. 

The FHIR knowledge graph only contains healthcare concepts and is used to handle 

semantic queries; therefore, the FHIR knowledge graph can be regarded as a consensus 

ontology in the healthcare domain. As discussed in Section 4.5, the FHIR domain ontology 

provides the knowledge base for a healthcare ecosystem and can be used to integrate 

dispersed information systems. The next will discuss the federated architecture, which 

connects the FHIR knowledge and multiple geographically isolated health information 

systems. 

5.3 Federated Architecture in Healthcare Domain 

A healthcare ecosystem is complex, which has multiple stakeholders and dimensional 

healthcare data dispersed in various autonomous or semi-autonomous information 

systems. Sharing data across institutions is a significant challenge because of the concerns 

regarding data privacy, confidentiality, and safety, as well as the distribution, heterogeneity, 

and autonomy of these health information systems. 

The most straightforward solution for the effective sharing of data is to create a vendor-

neutral archive (VNA) system (Figure 25) to allow different users to access the shared data 

repository. The benefits of NVA are significant, particularly in supporting patient-centred 

care (Sirota-Cohen et al., 2019, Pantanowitz et al., 2018) or evidence-based medicine (Sox 

and Greenfield, 2009, VanLare et al., 2010) from a data provisioning perspective. However, 

the challenges faced by NVA are enormous. Concerns about data privacy and VNA 

management issues lead to numerous challenges and problems in VNA implementation 

because each entity exhibits varying levels of autonomy and heterogeneity. Sirota-Cohen et 
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al. (2019) summarised ten points to address these problems, which indicates that VNA 

architecture is feasible for small-scale data sharing within an individual organisation, such 

as sharing medical image data across systems. Still, it is difficult to implement large-scale 

systems across organisations. 

Considering the limitations of NVA architecture, this research explores federated 

architecture (FA) as a solution to take both data sharing and data privacy needs into account. 

FA is adopted extensively where multiple heterogenous systems need to be integrated 

while respecting the security and compliance requirements of each distinct system (Sheth 

and Larson, 1990). 

Federated architecture is a pattern in enterprise architecture that aims to reconcile the 

needs for data integration among decentralised databases. FA usually is adopted to 

cooperate with a collection of autonomous and possibly heterogeneous databases, 

balancing organisational autonomy with application needs (Heimbigner and McLeod, 1985). 

The architecture of a federated database system is shown in Figure 36. 

 

Figure 36 A federated database systems (Sheth and Larson, 1990) 

FA aims to achieve cooperation among existing heterogeneous and autonomous 

information systems. As shown in Figure 36, an FDBMS (federated database management 

system) connects with dispersed local database systems. Healthcare data are stored on 

geographically distributed information systems in a healthcare ecosystem. Each of them is 
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heterogeneous from the other mainly due to technical differences, for example, the 

difference in hardware or software solutions. Therefore, data structure, contextual 

constraints and even the data query languages in each information system are diverse. Each 

one exhibits different levels of autonomy to fit with its service provisioning and system 

management demands. In order to enable these systems to share data with each other 

while retaining their respective existing data management models, and to reduce the cost 

of system integration systems, FA is an ideal choice. FDMBS is added on the top of the logical 

structure and connects with the dispersed local information systems with different levels 

of data schema.  

The schema architectures include three-level (Tsichritzis and Klug, 1978), four-level 

(Templeton et al., 1987) and five-level (Sheth and Larson, 1990) data description 

architectures addressing the understanding of logical data layers with various emphasises. 

This section draws on a five-layer model to understand how to connect multiple existing 

health information systems. 

Figure 37 exhibits the method of integrating local databases through layer-by-layer data 

schema abstraction. The bottom layer is the local schema expressed in the native and 

customised data model. The component schema translates the local schema into a common 

data model to facilitate upper-level data integration. The export schema is a subset of the 

component schema to reconcile the component schema to the federated schema. 

Introducing the component schema is to adapt the accessing demands for specific 

federation users and facilitate control of association autonomy. Thus, as shown in Figure 37, 

the mapping relationship between the export schema and the federation schema is M to N. 

The federated schema integrates multiple export schemas to support the needs of various 

groups of users or applications. The top layer is the external schema, defined as the data 

schema from a class of users’ or applications’ points of view. To better facilitate 

user/application access to data in specific contexts, the external schema can be flexibly 

designed to cater to the needs of adding additional constraints and access control. 

Figure 37 shows the M-to-N relationships among the export schema, the federated schema, 

and the external schema, reflecting the architectural adjustments made by the databases 
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to suit different users and applications. As addressed by Sheth and Larson (1990), the 

redundancy between external and federated schemas usually happens in practices. 

External schemas can be merged into federated schema to simplify the implementation. In 

the context of this research, FHIR is the consensus of health data representation, which 

reconciles the various needs of users and can be regarded as the combination of the 

federated and external schema. Accordingly, the dispersed local health information systems 

contain the customised export, component, and local schema, respectively.  

 

Figure 37 A five-level schema architecture (Sheth and Larson, 1990) 

The Five-level schema architecture provides the methodology to develop a federated 

architecture either adopting a bottom-up or top-down approach (Sheth, 1988) which 

includes the design from local databases and gradually integrated by different granularity 

data schemas up to the top level. Another approach to achieving the federated architecture 

is to simply add a layer of software above existing databases.  

This research will adopt the extra-layer approach to maximise the preservation of existing 

medical systems and reduce integration costs. FHIR will be adopted as the combination of 

federated and external schema to integrate dispersed health information systems in this 
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research. Therefore, FHIR knowledge graph is the top layer in a federated architecture to 

provide the domain knowledge in terms of unified health concepts definitions. The 

dispersed heterogeneous health information systems exchange information with FHIR 

defined formats. By now, the full picture of the federated architecture has been revealed.  

In summary, the FHIR knowledge graph is the top logical layer to explain the semantics of 

healthcare concepts through the node-edge format in this federated architecture. All 

semantic queries are processed by the FHIR knowledge graph. The healthcare data and the 

mapping relationships between local data and FHIR resources can be retrieved from the 

dispersed local information systems as an example when further denoting the semantic 

meaning is needed. Therefore, the semantic ambiguity introduced by FHIR implementors 

can be further clarified by mapping relationships and data through this ostensive approach. 

When the implementor’s understanding of FHIR specification is shown through the 

mapping relationships and local data, the semantic ambiguity introduced by the different 

understanding of applying FHIR to local information systems is reduced. The next section 

will introduce the ostensive information architecture in detail. 

5.4 An Ostensive Information Architecture 

This research study adopts FHIR as the grounds on which to explain the concepts in the 

healthcare domain. In response to the limitations of FHIR, an ostensive approach is 

proposed, which provides clinical data as examples to further explain the semantics defined 

by FHIR, along with the understandings of different implementors.  

In this research, a knowledge graph is constructed on the basis of FHIR, and the FHIR 

knowledge graph is extended to connect attributes stored in local databases; this is termed 

the ‘FHIR-centric knowledge graph of the Semantic Engine’, enabling semantic elaboration 

and reasoning, and the clinical data stored in heterogeneous local information systems can 

be retrieved by the Semantic Engine. In summary, as shown in Figure 38, the core Semantic 

Engine is the FHIR knowledge graph; the peripheral consists of attribute nodes in the local 

datasets. The correspondents between the FHIR resources nodes and local attribute nodes 

are connected by ‘maps’ lines. The attribute nodes are defined by local implementors, 
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which can be modified and may be immature. 

 

Figure 38 The components of Semantic Engine 

The query statements sent by clients to the Semantic Engine reflect their understanding of 

the FHIR specification through the lexical approach. The data in response to the request 

ostensibly exhibits the data providers’ understanding of FHIR specifications. If there is 

mismatching between the clients and data providers in terms of the understandings of FHIR, 

the data in the response can help the user to comprehend the gap. In summary, the 

proposed information architecture helps users to comprehend the semantic ambiguity 

produced by the lexical approach through the ostensive examples. 

In general, the Semantic Engine is responsible for the processing of all semantics-related 

tasks. For example, the meaning of a node can be elaborated by the nodes connected with 

it and their relationships; effectively, the topology graph of this node discloses the node’s 

meaning. Semantic reasoning can be conducted through analysis of the relationships 

between nodes, for example, the shortest path between two of them. 

This paper proposes this semantics-data separated architecture for HISs to support 

semantic interoperability (Figure 39). The key purpose of this design is to employ FHIR in a 

computational method that leverages the advantages of the knowledge graph to process 

semantics and takes privacy and security concerns into account. The separation of semantic 
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processing and data storage can reduce the problem of data privacy leakage caused by the 

unified storage of data, and access mechanisms based on authorisation further guarantee 

data privacy; this is discussed in Chapter 6 

 
Figure 39 A semantics-data separated information architecture 

In summary, the Semantic Engine has two main functions:  

1) the enhancement of semantic interoperability across dispersed health information 

systems by feeding back the JSON file to show the semantic definitions in FHIR along with 

the understandings by implementors, and: 

2) the elimination of semantic ambiguity by providing corresponding examples in the 

form of data stored in different local health information systems. 

5.5  Developing an Ostensive Information Architecture  

On the principle of separating semantic processing and data storage, this study positions 

FHIR in health information systems. In contrast to the use of FHIR as a standard protocol for 

the transformation of local databases for information exchange (the patterns discussed in 

4.2.3), FHIR is abstracted from the front-end of each local information system and unified 

at the logical top level of the entire health information system (Figure 40).  

This study’s proposal simplifies the architecture of health information systems by 

centralising the semantic interpretation layer in order to avoid the ambiguity caused by 
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different interpretants of FHIR, which means that the correspondence between the data 

provided by the specified primary database and FHIR resources is a system-wide standard, 

and other systems which differ from the standard definitions should follow the semantic 

interpretation of the primary system. For example, patients’ names and addresses could 

come from multiple clinical systems, but the patient registration system is usually taken as 

the primary system. When a query requires the ICU (intensive care units) information of a 

patient to be provided by the Semantic Engine, this will feed back with the name and 

address from the patient registration system and the relevant ICU information from the 

intensive care information system, with the information of name and address of this patient 

stored in the intensive care information system in different formats being ignored. The 

centralised semantic interpretation layer can be deployed on the cloud to solve the problem 

of access bottlenecks caused by multiple requests. 

Through setting the master-slave relationships between dispersed systems, the system-

wide semantics are now unified; in other words, regarding a piece of data to describe a 

certain patient attribute, there is only one mapping relationship between FHIR and local 

clinical information systems within an entire ecosystem, even though there are multiple 

databases storing the same patient attributes. When two peer hospitals make inconsistent 

use of resources, the two different mapping methods are represented as two external 

graphs to the FHIR knowledge graph. The local implementers of both hospitals can establish 

a consensus by comparing and selecting.  

The architecture of the proposed HISs is shown in Figure 40. To support data retrieval, the 

Semantic Engine comprises two main elements: FHIR knowledge graph and transformation 

components. 

This architecture contains three layers, in order to respond to the FHIR queries; the 

semantic interpretation layer is a FHIR knowledge graph which provides an explanation of 

semantics in lexical definition by nodes and their relationships. The transformation layer 

works with local health information systems to provide the semantics by example, 

constituting the data stored in heterogeneous local systems. The mapping connector in the 

transformation layer matches data with FHIR resources, generating conflict alerts if and 
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when data inconsistencies are detected. For example, an alert occurs if a date of birth has 

been assigned to two data sources through schema matching (Section 5.5.3), or the same 

concept has been interpreted by different FHIR resources. Therefore, the mapping 

connector consists of several sub-components.  

 
Figure 40 An ostensive architecture of healthcare information systems 

An explanation is provided in Section 6.2.2. of the functions that convert the data from two 

data sources into a unified FHIR-defined format in the record linker, which combines the 

records of the same patient from different databases. For example, the record linker can 

recognise the records for a patient in a hospital’s billing systems and the claim management 

system of an insurance company, associating the two records. The querying processor 

translates queries from the Semantic Engine and obtains data from local databases. The 

bottom layer represents the local healthcare information systems where the clinical data 

are stored. 

Figure 41 illustrates the processes of a semantic engine dealing with the semantic query. 

The FHIR knowledge graph plays a critical role as a user interface and semantic interpreter. 

Ten internal steps (shown in Figure 41) include redirecting user queries to different local 
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databases, generating query statements, and collecting query results, and merging them to 

return responses to users. Nie and Roantree (2019) address the question of how to merge 

the records of different aspects of the same object when they are stored in multiple 

databases. In this study, the patient profile can be taken as a key variable by which to 

conduct the record linkage. 

 

Figure 41 Semantic query processing flow 

5.5.1 Semantic Engine  

As previously mentioned, the core of the Semantic Engine is an FHIR knowledge graph; this 

study uses Neo4j for its development. In order to facilitate data exchange between 

dispersed information systems, the local data require connection to the Semantic Engine. 

This research transforms the properties of local data into these property nodes; values of 

local data are retrieved as examples to further render the semantics explicit. This Semantic 

Engine can support semantic interpretation, semantic computing, and semantic reasoning. 

This research study focuses on the function of semantic interpretation, which explains 
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concepts to the queries. The details of how the Semantic Engine is structured based on FHIR 

schema are shown below, along with how local data connections to the Semantic Engine 

are implemented.  

5.5.2 The Construction of an FHIR Knowledge Graph 

The JSON representation of an FHIR schema is used to construct the knowledge graph with 

each defined entity becoming an Entity node. Each property of the defined entities 

occupies Property nodes. Relationships between entities that are defined within the JSON 

schema become edges within the knowledge graph. Figure 42 details the construction of a 

knowledge graph from the FHIR JSON schema.  

 
Figure 42 FHIR – Graph mapping 

For example, the following Cypher command (Command box 1)can convert resources 

‘Patient’ from JSON format (Figure 43) to node-relationship format (Figure 44). In this 

research study, the FHIR knowledge graph is constructed by the Cypher command (Lal, 2015) 

automatically. The software to generate the knowledge graph is available here (Guo, 2023). 

Command box 1: Query attributes of ‘Patient’ 

 
Neo4j $ match (a:Table {table_name: ‘FHIR.Patient’}) – [r:PROPERTY_OF]-(b:Column) return a,b,r 
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Figure 43 JSON format of patient defined by FHIR 

 
Figure 44 The knowledge graph of patient 

Similar Cypher commands can be used to convert other resources. Since the resources are 
interconnected, the FHIR knowledge graph can be constructed.  
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5.5.3 Schema Matching 

This step is designed to clarify the correspondence between FHIR resources and local data. 

The knowledge graph of the Semantic Engine comprises a set of nodes, N, and a series of 

edges, 𝐸. This knowledge graph contains not only the low-level mappings for individual data 

sources but further abstractions of these data providing the capacity to semantically reason. 

For the remainder of this section, this paper focuses on the schema-matching and schema-

mapping components, which are used to provide a basis of interoperability between 

healthcare systems. To map data stored in dispersed systems correctly to the Semantic 

Engine, each individual source must be understood in detail; this requires a graph model 

which can capture the complexity of this individual source. 

Figure 45 shows on a high level the nodes and edges required to effectively provide a means 

of schema mapping. Nodes in the graph represent sources, properties, and mappings while 

edges are used to denote relations between these. Within the graph there are four node 

types: source, entity, property and mapping. 

 

Figure 45 Graph Structure 

Source denotes a particular data source, identifying the system from which the data are 

obtained. This node contains the connecting information for an individual source to 

facilitate communication with a particular mapping connector. Entity relates to a particular 

entity from a data source; within a DBMS (database management system), these may 

correspond to tables. Property refers to an entity’s attribute such as the name of a patient, 

which corresponds to columns within an RDBMS (relational database management system); 

there is a ‘one-to-many’ relationship between a property and an entity. Finally, Mapping 
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denotes the way in which two properties between local data sources and the semantic 

engine may be related.  

5.5.4  Mapping Data to FHIR 

This study uses MIMIC III (https://mimic.physionet.org/about/mimic/) and a diabetes 

dataset (https://archive.ics.uci.edu/ml/datasets/Diabetes) as two local health information 

databases. In the process of mapping the data with corresponding FHIR resources, it is often 

the case that a concept defined by FHIR requires data from multiple MIMIC data tables for 

ostensive interpretation. Because MIMIC datasets are focused on intensive care medicine, 

many concepts defined by FHIR cannot be fully explained by MIMIC data, although it can 

be the case that two data records need to be amalgamated to match an attribute of an FHIR 

resource, or a data record needs to be split into two segments to match the attributes of 

the FHIR resource. There is also a conflict between the index relationship between the 

MIMIC database and the FHIR resource, which occurs when querying the health 

information of an individual patient. Restrictions such as data types should follow the 

definition of FHIR and be guaranteed by the implementer. 

When all datasets within a health ecosystem are matched with FHIR resources, it can be 

said that the health information relating to patients has been semantically connected. By 

this stage, any stakeholder of health ecosystems can theoretically access all health 

information relating to a specific patient, therefore patient-centred diagnosis, evidence-

based medical research, medical insurance services, public health policy development, and 

such other associated healthcare related services can be supported by this system. 

In order to map data to FHIR, the structural mapping information of the data source, a set 

of contextual mappings, and a series of transformation functions are all required. 

Structural information links entities and their properties within the graph, with each entity 

and property representing a node. The structural information is either derived from a 

supplied schema such as an RDBMS or, for flat files, manually supplied by a user. Once the 

structural information is converted into the graphical format, it can be mapped to the FHIR 

knowledge graph using the ‘Cypher’ command for batching processing. This is required in 
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order to overcome differences in terminology and structural differences where one entity 

in FHIR may be composed of two or more entities within the local data source. This 

challenge resulted from the semantic ambiguity described in Section 4.3 and is the reason 

why this study sought to expose the inconsistency of the use of FHIR between its 

implementers. 

The contextual mappings denote the context in which a specific data source is to be used; 

for example, the FHIR schema contains the concept of an “observation”, referring to medical 

observation, such as body weight or bone density. While this entity has wide usage due to 

its generic nature, specific data sources may focus only on a specific measurement. For the 

diabetes dataset, while it is an observation within the FHIR schema, it should only be 

queried if the user is requesting blood glucose levels.   

This requires a mapping which can determine context; it can be achieved by embedding the 

semantics of the mapping within a mapping node. When mapping across data sources, data 

may require semantic augmentation in order to ensure accuracy. An example is data which 

provide values for the same entity, such as blood glucose levels, but are represented by 

differing units of measurement. These inconsistencies are overcome by the use of 

transformative functions embedded within the mapping nodes linking two properties. 

In this research, the MIMIC data was firstly converted into a graphical format using the 

relational schema; it was then supplemented with manual mappings to FHIR supplied in 

CSV format for batch processing with Cypher. The diabetes data are a series of flat-files; this 

representation therefore does not contain the necessary structural information, which was 

provided by a domain expert. In addition, the diabetes dataset has low dimensionality, 

requiring the provision of additional contextual mappings in order to accurately map the 

data to FHIR. The schema- and data mapping are performed manually in this research, 

whereas in industry, developers can use tools to convert local data into the FHIR format in 

batches (Kiourtis et al., 2019). Regardless of the method used by the implementer, the 

purpose of this step is to illustrate the corresponding relationships between FHIR and local 

data in node-edge format. 
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Chapter 6 Application and Validation of the 

Semantic Engine 

In this section, two case studies are conducted in order to validate that the proposed 

ostensive information architecture can: (1) decrease semantic ambiguity by showing the 

data value and its context, and (2) synthesise data from disparate systems with the aim of 

achieving the patient-centred diagnosis. In section 6.1, there is semantic ambiguity due to 

the citing of data sources with similar interpretations. This semantic uncertainty can be 

cleared out by describing the detailed reference paths stored by the Semantic Engine. 

Section 6.2 demonstrates how the Semantic Engine translates data from two datasets with 

distinct formats into the FHIR-defined format, thereby facilitating data interchange. 

The applications of the Semantic Engine are discussed in Section 6.3, which shows the 

benefits of the knowledge-graph-based Semantic Engine to support data analysis and 

management. Section 6.4 discusses the latest solution for FHIR compliance and the 

summary of the advantages of the proposed information architecture. 

6.1 Ostensive Approach to the Enhancement of Semantic 

Interpretation 

FHIR v4 defines 146 types of resources to describe the concepts within the healthcare 

domain; all resources are represented in JSON format and have naturally have sufficient 

feasibility to be presented by a knowledge graph. Because Neo4j enables semantic 

searching and reasoning, the meaning of a concept such as ‘Patient’ can be easily 

understood through the property node and its relationships. For this reason, the FHIR 

knowledge graph is termed a ‘core Semantic Engine’. The lexical definition can be searched 

on the Semantic Engine, while the ostensive examples can also be retrieved by it. The 

following example illustrates the way in which the ostensive approach supports the 
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reduction of semantic ambiguity.   

In FHIR, for example, one of the properties of ‘patient’ is ‘DeceaseDateTime’. Because FHIR 

has not clearly defined the concept of date of death with context, the possibility of the 

introduction of semantic ambiguity occurs. In MIMIC datasets, two tables reflect the 

content of ‘death time’. There are three relevant columns in the patient table (Figure 46): 

DOD, DOD_HOSP and DOD_SSN. 

DOD_HOSP indicates the date of death stored in the hospital database, and DOD_SSN refers 

to the date of death in a social security database. The screenshot to the right of Figure 46 

shows that the values of DOD_HOSP and DOD_SSN are different. From the screenshot to 

the left of Figure 46 it can be deduced that DOD is the combination of records of DOD_HOSP 

and DOD_SS, and DOD_HOSP has a higher priority for adoption if both values exist. 

There is also a DEATHTIME in the Admission Table (Figure 47). Comparison demonstrates 

that records of death times in the two tables are inconsistent; for example, in Patient table, 

the death time of HADM_ID=9 is 11/14/49 0:00; while in Admission table, the record is 11 

/14/49 10:15. As the times in all records in the Patient table are 0:00, it is assumed that the 

record in the Admission table is more accurate.  

Thus, on the basis of the above observations, semantic ambiguity is generated if the data 

source has not been shown to data users; this leads to misjudgements during data analysis. 

Semantic ambiguity, a typical type of data quality problem that occurs often, has been 

identified as the cause of such issues because FHIR specification cannot enumerate all 

matching situations for local databases.  

The ostensive approach has the capacity to reduce this type of ambiguity by providing the 

sources of data. The source of DOD_HOSP, DOD_SSN and DEATHTIME can be found by 

retrieving the table, property, and source attributes from the knowledge graph, as a similar 

process to a ‘reverse lookup’. 

The following query would return all sources and tables by initially searching for all 

mappings which link to the FHIR Patient attribute ‘deceasedDateTime’ 

Command box 2: Query the links to “deceasedDateTime”  
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In order to identify the source, a query must be run on that source dataset to identify 

matching values. Such operation is for data users to figure out how the corresponds 

designed by FHIR implementer, which is beneficial for the data users to use data correctly. 

For example, for a datetime x and patient ID y this would be converted into the following 

queries. 

Command box 3: Query the sources of “deceasedDateTime” 

 

In summary, the Semantic Engine performs the lexical- and ostensive approach through 

semantic searching facilitated by the FHIR knowledge graph, retrieving data and its context 

as examples from local clinical systems. Furthermore, specifying primary data sources in 

local datasets through the construction of mapping relationships can avoid data conflicts in 

data exchange processes. 

 

Figure 46 Patient table in MIMIC data sets 

MATCH (src:Source)-(tab:Table)-(prop:Property)-(map:MAP)-(eprop:Property) 

WHERE eprop = “deceasedDateTime” RETURN src, tab; 

SELECT * FROM Patient where SUBJECT_ID = y and DOD_HOSP = x; 

SELECT * FROM Patient where SUBJECT_ID = y and DOD_SSN = x; 

SELECT * FROM Admission where SUBJECT_ID = y and DEATHTIME = x; 
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Figure 47 Admission table in MIMIC data sets 

6.2 Querying Blood Glucose Levels in FIHR Defined Format 

In this section, an example is used to explain how data can be retrieved from multiple 

institutional EHRs in FHIR format. 

This case study queries blood glucose levels from MIMIC and diabetes datasets in FHIR 

format by use of the Semantic Engine; the query is posed to the system using FHIR 

terminology. In this instance, all observations related to a patient which are blood glucose 

measurements are the object of the research. Command box 4 details the query in SQL 

format. The observation in FHIR is used to model the result of medical observations, while 

the coding property of FHIR is used to denote the type of test. For this example, it is 

assumed that LOINC codes (McDonald et al., 2003) are used to code medical observations. 

Within an observation, ‘subject.reference’ refers to the patient with ID 1. 

Command box 4: Query to view all blood glucose levels for patient with ID=1 

 

SELECT *  

FROM Observation 

WHERE coding.code = “2339-0” and subject.reference =1 
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Using the query SQL format, the next step is to query the Semantic Engine in order to 

determine what sources are required in order to fulfil the query. This is achieved by 

examining all mapping nodes connected to an FHIR observation. 

 
Figure 48 Mappings for FHIR Observation 

Figure 48 details the mappings for an FHIR observation of both the MIMIC data and the 

diabetes datasets. The FHIR knowledge graph sits at the centre of the Semantic Engine and 

remains stable unless FHIR evolves to a new version. The MIMIC and diabetes datasets are 

connected to the FHIR knowledge graph through schema mapping (Section 5.5.3) and data 

mapping (Section 5.5.4). When a new data source is connected to the FHIR knowledge 

graph, the Semantic Engine is updated.  

6.2.1  Query Processing  

After identification of what source(s) are required to fulfil the query, in this case the 

diabetes data and the MIMIC dataset, the next step is to translate the query into a format 

that can be read by each mapping connector.  

The diabetes data are a single-source dataset, thus in this instance manual mappings 

provided by domain expert are required to match FHIR entities to the dimensions within 

the diabetes dataset schema. This is achieved by examination of the mapping nodes 

between the diabetes dataset and FHIR shown in Table 11. 
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Table 11 Mappings for the diabetes dataset 

column map 

{"column_name”: diabetes.data.Patent1}  
{“condition”:STATIC, “from”:FHIR.Observation-1.identifier, “map_condition”: 
code=”2339-0” AND subject.reference = “1”}lines 

{"column_name”: diabetes.data.value} 
{“condition”:STATIC, “from”:FHIR.Observation-1.identifier, “map_condition”: 
code=”2339-0” AND subject.reference = “1”} 

{"column_name”: 
diabetes.data.datetime} 

{“condition”:STATIC, “from”:FHIR.Observation-1.identifier, “map_condition”: 
code=”2339-0” AND subject.reference = “1”} 

From these mappings it can been observed that the ‘patient’ attribute is a STATIC value 

embedded within the mappings, the attribute ‘value’ from ‘observation’ maps directly to 

the column ‘value’ within the diabetes dataset and that the FHIR attribute ‘issued’ maps to 

the ‘datetime’ attribute within the diabetes dataset.  The STATIC value represents an 

annotation to the source data to supply required semantics in order to achieve integration. 

In this instance as the source dataset only contains the dimensions datetime and value 

annotated information such as the Patient is required as a static annotation to the source 

dataset. An example of the dataset with semantic annotations can be seen in Table 15. 

Examining these mappings which describe the source data, a comparative SQL query to 

extract the data from its respective source can be seen in Command box 5. 

Command box 5: Translated query for the diabetes dataset 

 

The MIMIC dataset shows that an observation in FHIR is represented by the tables Lab 

events, Admissions, Patients and D_Labitems within MIMIC. A query for this data requires 

a join across these tables necessitating knowledge of the MIMIC schema. The knowledge 

graph can be queried to identify these internal joins to translate the query (Figure 49); a 

tabular representation of these joins is presented in Table 12 where entity refers to FHIR 

entity, and property  relates to property of the entity. Each row of the table represents a 

mapping across entities within FHIR and the properties which join the above-mentioned 

entities. 

SELECT datetime,value  

FROM diabetes.data; 
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Figure 49 MIMIC internal mappings 

 

Table 12 Tabular representation of MINIC internal mappings presented in Figure 49 

Entity Property 

Labevents MIMIC.labevents,itemid 

Labevents MIMIC.labevents,hadm_id 

Labitems MIMIC.labitems.itemid 

Admissions MIMIC.admissions.hadm_id 

By examining these relationships, the query can be translated into a similar one which can 

query data in the MIMIC schema (Command box 6).  
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Command box 6: Translated MIMIC query 

 

The query is now translated and can be passed to the local clinical database for the retrieval 

of data according to the mapping relationships. 

6.2.2  Combining Data from Multiple Data Sources 

Each query passed to the local clinical database returns a csv file. The data returned from 

the MIMIC and diabetes can be seen in Table 13 and Table 14 respectively. The next steps 

are to convert these files into FHIR format and to integrate them in order to return a unified 

view.  

Table 13 Data returned from MIMIC 

Subject
_ID 

HADM
_ID 

ITEM
ID 

CHARTT
IME 

VAL
UE 

VALUEN
UM 

VALUEU
OM 

FLAG 
LABE
L 

FLUD
ID 

CATEG
ORY 

LOINC_C
ODE 

1 1 
5080
9 

20/10/20
18 20:04 

265 265 mg/dL 
abnor
mal 

Gluc
ose 

Blood 
Blood 
Gas 

2339-0 

1 1 
5080
9 

20/10/20
18 21:51 

267 267 mg/dL 
abnor
mal 

Gluc
ose 

Blood 
Blood 
Gas 

2339-0 

1 1 
5080
9 

21/10/20
18 00:42 

299 299 mg/dL 
abnor
mal 

Gluc
ose 

Blood 
Blood 
Gas 

2339-0 

1 1 
5080
9 

21/10/20
18 01:46 

294 294 mg/dL 
abnor
mal 

Gluc
ose 

Blood 
Blood 
Gas 

2339-0 

In the case of sparse data sources, these may not contain sufficient information to correctly 

integrate data into FHIR. For example, the diabetes data (Table 14) contains only two 

columns, i.e., datetime and value. These data require annotation with static semantic data 

in order to be integrated with FHIR; these semantic annotations are embedded within the 

mapping nodes with the static identifier. These STATIC mappings are used in conjunction 

with the mappings derived from the source to facilitate semantic integration within the 

knowledge graph. 

SELECT * 

FROM labevents 

 JOIN d_labitems ON labevents.itemid = d_labitems.itemid 

 Join admissions ON labevents.hadm_id = admissions.hadm_id 

Where d_labitems.loinc_code = “2339-0” AND admissions.subject_id = 1 
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Table 14 Data returned from diabetes 

DATETIME VALUE 

23/10/2018 08:00 354 
23/10/2018 18:00 275 

For the diabetes dataset, the static data requiring annotation are patient id, the LOINC code, 

and the unit of measurement. This produces an intermediate csv file, as shown in Table 15. 

Table 15 Diabetes data after annotation 

DATETIME VALUE 
FHIR.Observation.subject.ref
erence 

FHIR.Observation.coding.code 
FHIR.Observation.
Unit 

23/10/2018 08:00 354 1 2339-0 mg/dL 
23/10/2018 18:00 275 1 2339-0 mg/dL 

The next step of the process is the re-examination of the mappings in order to transform 

each attribute into FHIR. This is achieved by re-examining the mappings to determine how 

attributes returned map to FHIR, and application of any transformations embedded within 

the mapping nodes. Any attributes which contain no mappings are disregarded. The MIMIC 

data and diabetes data after this re-mapping are shown in Table 16 and  

Table 17 respectively.  

Table 16 MIMIC data after re-mapping 

FHIR.Observation.subject.r
eference 

FHIR.Observation.i
ssued 

FHIR.Observation.
value 

FHIR.Observatio
n.Unit 

FHIR.Observation.codi
ng.code  

1 20/10/2018 20:04 265 mg/dL 2339-0 
1 20/10/2018 21:51 267 mg/dL 2339-0 
1 20/10/2018 00:42 299 mg/dL 2339-0 
1 20/10/2018 01:46 294 mg/dL 2339-0 

 

Table 17 Diabetes data after re-mapping  

FHIR.Observation.i
ssued 

FHIR.Observation.
value 

FHIR.Observation.subject.r
eference 

FHIR.Observation.codi
ng.code 

FHIR.Observatio
n.Unit 

23/10/2018 08:00 354 1 2339-0 mg/dL 
23/10/2018 18:00 275 1 2339-0 mg/dL 

Finally, the two datasets require integration. A previous work (Scriney et al., 2019) proposes 

a methodology for the determination of an integration strategy by examining the common 

datasets for each source in order to design a common data model, although for this study 

the common data model is the FHIR JSON schema. Using this methodology, the row-append 

method is selected to produce the unified data mart shown in Table 18. 
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Table 18 FHIR Observation response of diabetes data 

FHIR.Observation.subject.r
eference 

FHIR.Observation.i
ssued 

FHIR.Observation.
value 

FHIR.Observatio
n.Unit 

FHIR.Observation.codi
ng.code 

1 20/10/2018 20:04 265 mg/dL 2339-0 

1 20/10/2018 21:51 267 mg/dL 2339-0 

1 20/10/2018 00:42 299 mg/dL 2339-0 

1 20/10/2018 01:46 294 mg/dL 2339-0 

1 23/10/2018 08:00 354 mg/dL 2339-0 

1 23/10/2018 18:00 275 mg/dL 2339-0 

6.3 The Applications of the Semantic Engine 

The main functionalities and applications of the semantic engine can be summarised in the 

following four points: 

1. Semantic reasoning  

Underpinned by Neo4j, the concepts or the resources defined in FHIR are explained through 

the connected properties of nodes and their relationships. This schematised FHIR data 

naturally develops the capacity for semantic reasoning between clinical concepts. 

The steps for general semantic reasoning are summarised as follows. 

Data acquisition: 

A query enters the system in FHIR format. From this query, a list of entities is obtained, 

represented as e and their properties as ep which are required to deliver the query. 

Data source (src) which can satisfy this query are discovered through a traversal of the 

knowledge graph identifying mapping nodes (m) which link to these properties:  

𝒔𝒓𝒄 = ∃𝒎∀𝒆𝒑 ∈ 𝒆 

The following query (Command box 7) identifies any mappings for a given property (ep) and 

returns the data source (src), the relevant entity (tab) and the property required (prop). 
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Command box 7: Query the relationships of a given property 

 

For each mapping the data source (src) is queried in order to return the defined properties 

(prop). The data obtained from the source systems are then converted back into FHIR 

format (as specified in Section 6.2.2). 

2. Patient-centric data organisation 

The organisation of data into a patient-centric approach is the premise of the achievement 

of patient-centric care. From the perspective of the stakeholders of the healthcare 

ecosystem ranging from clinicians to carers, legal practitioners, and taxpayers, a wide range 

of individuals seek to obtain a holistic view of every individual patient’s case. The benefits 

and the challenges of this have been addressed by academics from many different fields 

(Pelzang, 2010), with the organisation of patient data used in a patient-centric approach 

representing the first step towards the elimination of the silos between the health systems. 

To facilitate semantic interoperability, the Semantic Engine organises the circulation of 

clinical data relating to patients and reflects the logic of diagnosis and treatment (as shown 

in Figure 50). Therefore, in addition to the provision of holistic patient health information 

which can be presented via the Semantic Engine, the patient him/herself can be 

empowered to authorise which data can be accessed and used by which organisations and 

agencies. This function can be achieved by the use of an extra module of data authority 

management, which is not discuss in detail in this paper. Moreover, patients may not be 

aware of the consequences of their own choices, which is an issue worthy of further 

exploration from the perspective of healthcare management. 

MATCH (src:Source)-(tab:Table)-(prop:Property)-(map:MAP)-
(eprop:Property) WHERE eprop = ep RETURN src, tab, prop, eprop; 
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Figure 50 Patient-centric data organisation 

3. Enhancing semantic interoperability 

In addition to the definition and interpretation of medical terms, the Semantic Engine can 

retrieve data from disparate local databases to further clarify the meaning of definitions by 

provision of examples. Through this ostensive approach, the ambiguity caused by lexical 

definition can be minimised. 

In the process of designing the verification scenarios, this study identifies a problem with 

unclear data sources, which potentially poses challenges for subsequent data analysis 

processes. The same FHIR resource, observation, has been used to interpret data collected 

from patient-worn monitoring equipment and clinical equipment in hospital settings. On 

consideration of the level of data reliability to support patient-centred diagnosis, it is clear 

that patient-worn monitoring equipment is less reliable than clinical equipment used in a 

clinical setting. Therefore, in practice, physicians should carefully review the laboratory 

reports and only use the data provided by the monitoring equipment for reference. In order 

to provide a firm foundation for an information-assisted clinical diagnosis system, the 

limitations of this study and suggestions for future research are discussed. 

4. Applicability in other fields 
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This proposed information architecture processes semantics and data separately to avoid 

privacy and security issues arising from centralised data storage, while support information 

can be exchanged across heterogenous databases. This architecture can be applied in other 

domains which require information exchange and communication between dispersed 

systems. The construction of a consensus knowledge graph is the premise of the application 

of this semantics-data separated architecture. 

6.4 Discussion and Summary 

Regarding FHIR compliance issues, the current solutions (discussed in Section 4.4) have 

some limitations on implementation cost or effectiveness. Interestingly, during the thesis 

writing up, FHIR released the latest version (FHIR v4B released on 28th May 2022), which 

discusses the issue of conformality. In the new release, FHIR v4.3.0 introduces a 

conformance layer (HL7 International, 2022) to mitigate the interoperability problem 

caused by the inconsistent use of FHIR specifications by different applications, which aims 

to the third type of semantic ambiguity discussed in Section 4.3.1. The conformance layer 

is a statement provided by implementers about how the resources and their exchange 

paradigms are used to solve particular use cases, comprising a value set, a structure 

definition, a capability statement, and an implementation guide. The conformance layer is 

similar to the extension publishing management, which can improve the FHIR conformality, 

but challenges nevertheless remain. 

Different from the existing solutions that ensure FHIR consistency through working 

processes or computer tools, this study targets large-scale health information systems and 

reconciles manual workloads with computer-automated workloads, avoiding high 

implementation costs and effectively addressing inconsistency problems. This research 

broadens the scope of the application of FHIR in healthcare ecosystems. The data from 

heterogeneous sources, such as smart devices, can be interchanged with clinical data via 

the Semantic Engine. 

The proposed ostensive architecture is validated by the prototype of the Semantic Engine 

to enable data exchange and improve semantic interoperability. The work has been partially 
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tested in a project supported by the Government of the Republic of Ireland in 2021, which 

involved multiple data sources for COVID-19 data analytics; a relational database was 

constructed to interpret semantics, and acts as the Semantic Engine.  

In summary, in order to enhance the semantic interoperability of FHIR, and also to consider 

the data privacy issues and regulatory requirements for data sharing, an ostensive 

information architecture is proposed, which separates semantic processing and clinical data 

storage. There is a deliberate separation of semantics schema and underlying data, with the 

aim of improving flexibility and scalability. The centralised FHIR knowledge has the capacity 

to reduce the cost of the application of FHIR to multiple disparate clinical systems and is 

also flexible in its evolution. This study summarises the benefits of the semantics-data 

separated architecture into three principal points, as follows: 

1. The centralised deployment of FHIR can reduce the costs incurred by its separate 

deployment in individual local systems, alleviating the impact of its evolution. The 

proposed ostensive information system is a federated architecture where queries 

are first to run on their respective sources and the data returned is mapped and 

integrated using the Semantic Engine returning a unified view of the data. As we do 

not envisage incremental updates to the Semantic Engine, it is possible to alleviate 

potential time costs within the integration and mapping steps by hosting multiple 

instances of the FHIR knowledge graph within the cloud. 

2. This architecture acquires horizontal scalability through the maintenance of the 

distributed storage of clinical data and deployment of the centralised FHIR 

knowledge graph layer in the cloud cluster. This architecture supports vertical 

scalability in terms of handling the complex semantic reasoning and the evolution 

of FHIR. 

3. The abstract semantic layer provides patients with the capacity to gain a complete 

view of their healthcare from dispersed data sources, enabling them to precisely 

decide the degree and extent of information exposure by managing the access 

permissions which can be embedded in the Semantic Engine. The Semantic Engine 
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executes the role-based accessed management tasks without exposing the FHIR 

knowledge graph to patients.
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Chapter 7 Discussion  

This chapter responds to the four research questions by reviewing the study and discussing 

its contributions. Section 7.1 discusses the findings and results in response to the study's 

research questions. The contributions from theoretical, methodological, and practical 

perspectives are discussed in Section  7.2 .  

7.1 Responses to the Four Research Question 

The ever-increasing complexity of the medical ecosystem and the rapidly growing demand 

for health data usage have placed urgent capacity requirements on the health information 

system architecture. One of the most vital requirements is to increase interoperability 

between heterogeneous information systems in order to create healthcare data 

accessibility for all stakeholders and to improve the data sharing quality for healthcare 

services in healthcare ecosystems. System interoperability has a broad reach, including 

empiric, syntactic, semantic, and pragmatic aspects. This research focus on the semantic 

interoperability and formulates four research questions: (1) what is the current state of 

health information systems and the interoperability challenges they face? (2) how to 

improve the semantic interoperability regarding to the multidisciplinary and cross-

organisational healthcare delivery? (3) how to enhance semantic interoperability of FHIR? 

(4) How can FHIR-underpinned healthcare information platform integrate data from 

heterogeneous local systems with a unified schema for multiple purposes? The findings and 

outcomes of this research now readily answer this research questions.  

To be able to successfully carry out this research, one must first have an understanding of 

the existing health information systems (research question 1) in terms of what factors make 

the health ecosystem so complex, what types of data are collected and made available, 

what are the expected capacities the health ecosystem should support, and what 

interoperability challenges exist. Section 2.1 examines the complexity of the health 
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ecosystem from the structure of technology network and further to explore the data 

availability for quality-of-care services. Section 2.2 investigates the goals of HIS from 

stakeholders’ perspective and the difficulties HIS faces from technological and social 

aspects. Section 2.3 identifies the cost of interoperability difficulties from a financial 

perspective; the annual cost of the lack of medical device interoperability is $35 billion. In 

addition, the technical and operational obstacles of transforming traditional healthcare into 

patient-centre healthcare.  

Section 2.4 describes semantic interoperability before investigating its solution (research 

question 2). To enable semantic interoperability, agents, services, and applications must 

share the same mutually agreed vocabulary or create correspondences/mappings between 

their different vocabularies. International standard organisations have released several 

standards for the healthcare domain. Section 2.4 reviews these existing global standards 

through the lens of semiotics theory and classifies them according to their interoperability 

levels. OpenEHR, FHIR, HL7 CDA, and HL7 v3 fall into the category of semantic 

interoperability. As FHIR is the evolved version of H7 CDA and HL7 v3, a comparison 

between OpenEHR and FHIR has been made. FHIR offers a considerable advantage over 

Open HER in terms of technology architecture, openness, scalability, flexibility, portability, 

as well as adoption rate. Therefore, FHIR is a viable choice for enabling semantic 

interoperability in interdisciplinary and cross-organisational healthcare delivery. 

The next step is to improve semantic interoperability of FHIR, such that Chapter 4 reviews 

four interoperability paradigms to comprehend the capacity of FHIR to enable information 

exchange between heterogeneous systems. FHIR actively embraces Internet technologies 

and delivers benefits such as agility, fast iteration, and low learning costs; as a result, FHIR 

archives widespread industry adoption. However, semantic ambiguity that occurred in the 

FHIR implementation has garnered more attention and has been addressed in a number of 

studies. After exploring the semantic ambiguity introduced by FHIR profiling and the 

inherent features of FHIR, Chapter 5 investigates the fundamental source of these semantic 

ambiguities and identifies the use of signs to represent objects as the cause. Peirce’s triadic 

model illustrates the interpretant’s role in the semantics between signs and objects.  
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Person-to-person variation in sign interpretation may result from diverse contexts and 

purposes of using signs. Consequently, during FHIR implementation, different 

implementers may have divergent interpretations of FHIR definition, resulting in the usage 

of the same FHIR resource to explain distinct clinical data. An ostensive approach, specifying 

an example to further elucidate the semantics, is particularly useful when complex signs 

are involved in reducing such contrasting sense-making. On the basis of the effectiveness 

of the ostensive approach, Chapter 6 provides an ostensive information architecture to 

enhance semantic interoperability by introducing an ostensive approach during FHIR-based 

information exchange to answer the third research question. 

Chapter 6 builds the Semantic Engine with a federated architecture in order to implement 

FHIR in a large-scale healthcare ecosystem and to integrate data from heterogeneous local 

systems for supporting multiple objectives (research question 4). The Semantic Engine 

adopts the MSA design philosophy to satisfy the need for dynamic semantic queries from 

diverse agents with various purposes of using healthcare data. In a federated architecture, 

heterogeneous and autonomous dispersed information systems collaborate with the 

Semantic Engine to communicate with one another. Chapter 7 provides a study case to 

integrate MIMIC III data and diabetes data in the format of the FHIR resource to respond to 

the patient-centred data query, which demonstrates the FHIR-based Semantic Engine can 

integrate data from heterogeneous local systems with a unified schema for multiple 

purposes. 

7.2 Research Contributions  

This research explores the information architecture from semiotic perspective and 

recognises the reason of semantic ambiguity by the theory of semiotics. The contributions 

of this research can be judged from developing research methodology, applying an existing 

theory in a new domain of research, and bringing insights for practice. The following 

sections summaries the contributions from the theoretical, methodological and practical 

perspectives.  



Chapter 7. Discussion  
 

 154 

7.2.1 Theoretical Contributions 

This research makes theoretical contributions to the field of information system 

architecture, which applies the theory of semiotics in the field of information architecture 

design.  

In order to increase the interoperability of health information systems, international 

organisations have released many standards, some of which claim to enhance semantic 

interactivity. However, most standards target syntactic rather than semantic 

interoperability from the information systems point of view. This research reviews the 

existing standards and categorises them from low to high interoperability by labelling 

empirics, syntax, semantics, and pragmatics. This research further points out that only 

OpenEHR and FHIR provide semantic interoperability from the information exchange 

perspective.  

In addition, regarding the most adopted international standard, this research explores the 

FHIR in implementation and identifies the issues of FHIR compliance. After reviewing 

current solutions for FHIR compliance, this research points out their limitations in terms of 

the practical scope and implementation cost. This thesis provides another research 

perspective to scrutinise the underlying causes of FHIR conformity. Semiotics, a study of 

sign processes (semiosis) and meaning making (Liu and Li, 2015), is adopted in this research 

to understand the communication between user and system, and identifies the possible 

semantic ambiguity caused by the lexical approach. Then this research proposes an 

ostensive approach as a supplementary method to reduce semantic ambiguity.  

Lastly, in this research, an ostensive information architecture has been proposed based on 

the federation architecture. The proposed architecture can be regarded as a collaboration 

between MSA-inspired Semantic Engine and heterogeneous and autonomous local health 

information systems to achieve information sharing with a unified format defined by FHIR. 

The ostensive information architecture reflects the essence of information exchange by 

combining the lexical- and ostensive approaches to illustrate the semantics of the 

information exchange process. Specifically, in this research, the Semantic Engine elaborates 

the lexical definitions of concepts; local data are requested as examples to decrease the 
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semantic ambiguity led by lexical definitions. This combination of lexical- and ostensive 

approaches alleviates the semantic ambiguity that occurred in the information exchange.  

In theory, the proposed ostensive architecture provides a new perspective to understanding 

FHIR implementing issues and provides a cost-effective and implementable architecture for 

large-scale healthcare ecosystems.  

7.2.2 Methodological Contributions 

This research contributes methodologically by asserting the falsification research process 

(Magee, 1973) can be used as a logical reasoning approach in developing information 

architecture for digital healthcare ecosystems. The four phrases of falsification reasoning 

(see Section 3.4.2) encourages researchers to break through the limitations of existing 

theories. 

Following the falsification research process, this research starts by addressing the 

limitations of the current solution for semantic exchange between healthcare information 

systems (see Chapter 4). Regarding the identified limitations, this research proposes a new 

solution to enhance the semantic interoperability of FHIR (see Chapter 6) on the basis of 

investigating the causes of semantic ambiguity (see Chapter 5). The proposed architecture 

is examined to prove the capacity to decrease semantic ambiguity and facilitate the 

exchange between dispersed local information systems. The process of falsification 

research has significant implications to extend the boundaries of existing 

theories/frameworks/specifications. In addition to the field of information architecture 

design in this research, the falsification research process is also helpful for scientific 

research in other fields. Based on existing theories, the latest research can focus more on 

the flaws or limitations in order to extend the established boundaries and better explain 

the observed world. 

The realisation of system architecture design ideas by transforming software tools is 

another contribution of this study to research methodology. In the design of the Semantic 

Engine, Microservice philosophy from information systems has been applied to construct 

the FHIR ontology with the format of node-edge. Furthermore, drawing on the idea of a 
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successful large-scale system, federated architecture has been used in the Semantic Engine 

design to gain the processing capability for a large volume of semantic queries. Moreover, 

instead of using common ontology languages, such as OWL and RDF, this research adopts 

Neo4j to implement the FHIR knowledge graph, which further leverage the benefits of 

existing tools in another domain. The built-in functions of Neo4j make the realisation of 

semantic reasoning more convenient; the developer communities of Neo4j provide flexible 

implementations of the FHIR knowledge graph. 

7.2.3 Practical Contributions 

This research has significant practical implications as the research question arises from the 

FHIR implementation and the research objective is to resolve these issues.  

With the increasing adoption of FHIR in the industry, primarily when FHIR is used as a 

unified terminology ontology across systems, FHIR compliance has become an increasingly 

prominent issue in practice. The ostensive information architecture exhibits the 

correspondents between FHIR resources and local healthcare data attributes to further 

clarify the implementors’ understandings of FHIR resources, thus harmonising the FHIR 

understanding across information systems. The proposed information architecture is easy 

to implement and has the capacity to handle large-scale systems with low implementing 

costs. In this research, MIMIC III datasets are employed to verify the effectiveness of the 

ostensive information architecture and a good demonstration effect on the use of other 

databases (see Chapter 7). MIMIC III datasets are de-identified health-related data in critical 

care units of the Beth Israel Deaconess Medical Centre between 2001 and 2012. 

Another practical contribution posited in this research is the “semantics and data 

separation” design. The proposed ostensive architecture separates semantic explanation 

and reasoning from the healthcare data and echoes the requirements of data privacy and 

security management. This design avoids the legal and ethical issues (Ashok et al., 2022) 

associated with sharing healthcare data across systems in practice. Individual healthcare 

systems can share data with others through a federal architecture while remaining 

autonomous, which is what these healthcare organisations need. 
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Furthermore, this research describes constructing a Semantic Engine in detail, providing 

implementors with an instruction guide. Particularly in Chapter 7, the integration of MIMIC 

III and diabetes datasets demonstrates how heterogeneous information systems 

collaborate through the Semantic Engine. These detailed descriptions bring implications to 

FHIR implementation and potentially drive the FHIR adoption rate. 

Lastly, this research deeply considers the potential difficulties of FHIR implementation in 

practice and the negative impact of its implementation costs on adopting FHIR. The 

ostensive information architecture follows the design idea of the federated architecture, 

which does not just consider the autonomy needs of each organisation, but also considers 

how to integrate with heterogeneously incumbent databases at low cost. 

In summary, the most important aspect of the proposed ostensive architecture lies in that 

the new architecture inherits the essence of FHIR’s design and alleviates the limitation of 

the semantic ambiguity that occurred in the FHIR implementation.
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Chapter 8 Conclusion 

 This chapter's focus is on drawing conclusions., as contrast to the previous chapter's 

emphasis on discussions. This chapter also examines the study's limitations and their 

implications for future research. 

8.1 New Knowledge Gained from this Research 

The primary acquired knowledge is the ostensive approach derived from this research. The 

ostensive information architecture improves the semantic interoperability of FHIR by 

providing a comprehensive understanding of the information interaction between users 

and systems. The separation of semantic and data can increase the flexibility of FHIR's 

evolution as well as protect the confidentiality of patient data. In addition, the ostensive 

information architecture is easy to implement and can improve FHIR compliance, hence 

facilitating a greater rate of adoption. This research demonstrates the effectiveness of 

ostensive approach in IS research. 

In addition, the significance of falsificationism in the field of information systems is 

confirmed by this study, which is another contribution to the body of knowledge. Due to 

the fact that an information system is a medium that reflects and varies in accordance with 

social and cultural diversity. Consequently, there is no universally applicable solution in the 

design of information systems. Continuous development based on the best solution 

available could be a more feasible strategy for IS continuous improvement. This study 

demonstrates the efficacy of falsificationism for continual improvement in the realm of IS 

research. 

8.2 The Limitations of the Study 

This research adopts FHIR as domain knowledge to construct a Semantic Engine for the 
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interpretation of the meanings of clinical concepts. It is observed that FHIR does not 

distinguish between the different levels of data reliability. When this ostensive information 

architecture is brought into use, consideration should be given to the level of data reliability 

and the conflicts caused by of multiple data sources being used for the same indicator. This 

problem can potentially be solved by specification of the primary database, although due 

to the limited availability of medical data, this study does not provide an in-depth discussion 

of this issue. 

This research focuses on semantic interoperability but does not explore the relationship 

between semantics and operational process, such as patient pathways or clinical 

procedures. The context of the data is an extremely important factor concerning its 

semantics, and this may vary in the context of different processes, which is not explored in 

depth by this study. 

The ostensive information architecture proposed by this study is applicable to the entire 

medical ecosystem, therefore, it is evident that there is a serious problem of record linkage, 

specifically in terms of detecting, identifying, matching, and merging records across 

heterogeneous databases which related to the same patient (Reyes-Galaviz et al., 2017). 

For example, two systems may refer to the same patient but use different identity codes to 

correctly identify a patient across systems. Manual data entry compounds this problem 

when spelling errors and formatting inconsistencies limit an automatic means of 

identification of patient records across systems. To overcome these issues, this study 

proposes a model of record linker in the transformation layer; this is similar to the method 

proposed by Nie and Roantree (Nie and Roantree, 2019) which seeks to produce a 

probabilistic means of identifying patients during the re-mapping process. The difficulty for 

this research study of obtaining data on patients’ profiles from multiple systems precludes 

the conduct of a case study to demonstrate how the record linker works. 
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8.3 Implications for Future Research 

This proposal of the ostensive information architecture simply represents the first step 

towards the achievement of patient-centric diagnosis. The following are directions worthy 

of further exploration: 

• In the current Semantic Engine, the properties for edges are limited, which indicates 

the affiliation between nodes. In further research, richer semantic properties could 

be added to the edges. For example, data from a wearable device could be given 

low priority if there is data for the same measurement from a medical device. The 

richer semantic properties can support the Semantic Engine in the construction of 

a diagnostic graph which has the capacity to reason and prioritise the level of data 

reliability according to its sources. 

• Breakthroughs in the medical field and the discovery of new diseases mean that the 

definitions of clinical concepts are in constant evolution; this underlines the fact that 

a gap between the Semantic Engine and the data examples is likely to persist. 

Therefore, the function of tracing and managing the changes of FHIR resources 

becomes essential to ensure the rigour in the mapping of relationships. Blockchain 

technology offers an optional solution to this challenge; it can be used to record the 

evolutionary history of FHIR whilst also tracking the changes in patients’ medical 

history records (Zhang et al., 2018). The use of blockchain technology in healthcare 

information systems has many potential application scenarios and is of high 

practical value (Mettler, 2016). For example, blockchain can be used to provide 

access to medical data (Azaria et al., 2016) and privacy control (Yue et al., 2016). 

Overall, the proposed ostensive information architecture provides a foundation for 

HISs; additional research work, including organisation, patient pathway and clinical 

processes mapping to the Semantic Engine, is required prior to the completion of a 

comprehensive HIS proposal. 
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8.4 Reflection of Research 

This is my first experience conducting scientific research. This extensive path towards 

scientific discoveries has taught me the rigours of scientific investigation. Beginning with a 

comprehensive literature review and gradually reducing the area of the research, I was able 

to identify a research gap. My supervisor exhibits considerable patience in permitting me 

to explore different academic fields in the interim. While my efforts and time were not 

wasted, they did expand my knowledge my understanding in the vertical and horizontal 

dimensions of my studies. Thank you to my supervisor for assigning me this ‘difficult’ 

literature review process, which has transformed me into a thorough scientist. 

The main benefit of this scientific research is that I now comprehend the distinction 

between a software project and scientific research in the field of software engineering. My 

supervisor's theoretical guidance from a lofty vantage point has illuminated the direction 

of my scientific research in the subject of information systems. Only solid research logic and 

theoretical support can confer academic merit on software engineering advancements. I 

now recognise the importance of multidisciplinary studies and the significance of scientific 

theories. 

Research data accessibility is the most significant feature of academic research. Due of the 

difficulty of obtaining data for scientific research, I altered the industry of my investigation. 

This was made possible by the unselfish sharing of the scientific community and the 

industry's support for scientific research. I am fortunate to have gotten MIMIC III datasets 

managed by the MIT Laboratory for Computational Physiology, which enabled my research 

to proceed smoothly.  

This research experience to me is priceless to me. It changed my perspective and prepared 

me to go from an industry expert to a scientific researcher.  
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Appendix-1 Mapping MIMIC III Data into FHIR 

This study presents some MIMIC data using the FHIR specification. As shown in the 

following matrixes, most of attributes defined in the FHIR cannot find corresponding values 

in MIMIC III. The main reason is that FHIR is dedicated to describing the whole scenarios of 

healthcare services and MIMIC III data is only ICU-related data; the second is that the data 

about user profiles in MIMIC III are masked. The flexibility of FHIR provides a freedom to 

implementors to using FHIR resources to describe the local data. In this practice, the two 

FHIR resources, Patient and Encounter, are adopted to reinterpret ICU-related data. A total 

of three encounters are used here, which represent the health of the patient at the time of 

admission, the situation in the emergency room, and the situation in the ICU ward. These 

three encounters correspond to three different start and end times respectively.  

However, rather than employ three encounters, other implementor may nested logic to 

express the relationship between these three scenarios, such as using the partOf attribute 

to connect admission records and emergency records, as shown in Line 52 of 

FHIR.encounter-1. Therefore, in the face of flexible FHIR specifications and highly 

differentiated local databases, the matching work of FHIR is endowed with the subjective 

judgment of many implementers. Since the matching process between FHIR and local data 

is a black box to the data user, the data that users access according to the definition of FHIR 

may not be what they expect. This is a typical semantic ambiguity for data consumers 

introduced by different implementers. 
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Appendix-2 Information Architecture for Large-scale 

Systems 

The major challenge in information architecture development is to tackle large-scale 

complex software systems. This challenge can be dated back to the 1970s when computer 

scientists firstly applied the ancient and proven technique, namely ‘divide and conquer’, 

into software architecture (Gauthier and Ponto, 1970) which divided a complex problem 

into feasible minor issues. This design paradigm allows applications to be built out of 

independently deployable modules, thus improving the efficiency of software development. 

Subsequently, the concepts of ‘Modularity and Information hiding’ are introduced by 

Parnas (1972) to describe a mechanism for decomposing a system into modules to improve 

flexibility and comprehensibility. Software modularity herein refers to the process of 

decomposing a program into smaller programs with standardised communication 

interfaces; information hiding is to hide design decisions that are taken inside a module. 

The purpose of this design is to improve the flexibility of the whole system and shorten the 

software development time.  

Later, based on modularity, Dijkstra (1974) introduces the concept of Separation of Concern, 

emphasising that each distinct software module separated from applications can only 

address one particular concern. After that, the idea of software system modularisation is 

expanded by Stevens et al. (1974) and Myers (1978). They propose a pair of concepts: 

Cohesion and Coupling. Coupling describes the relationships between software modules, 

represented by the degree to which a single unit is independent of others. Cohesion 

describes the relationships within modules, characterised by the degree to which a part of 

a codebase forms a logically single unit/service function. The works of Parnas, Dijkstra, 

Stevens, Myers and others lead to the rise of modular software development in the 1970s 

and forms the fundamental design principle for large-scale and complex software systems: 

‘loosely coupled, highly cohesive’. ‘Loosely coupled’ means that software modules in a 
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system or a network should depend on each other to the most minor extent, and ‘highly 

cohesive’ means that one module should focus on a single functionality. This design 

philosophy lays the foundation of the software design paradigm shifting from monolithic to 

composable architecture. 

In the earlier stages of software architecture development, monolithic architecture is the 

mainly adopted pattern, which integrates a full breadth of functionalities into a single 

software system. As shown in Figure 51, the user interface, business logic and database are 

consolidated into a single program. The monolithic design philosophy tends toward 

performance perfectionism because the integrated program curtails cross-cutting concerns 

to the most significant extent. Thus, less operational overhead is needed. Furthermore, the 

shared database in monolithic architecture also minimises the latency of data access by 

different services, which is simple to scale horizontally and supported by a load balancer. 

This design philosophy is suitable for small and straightforward logic applications to fully 

leverage the advantages of being simple to develop, test and deploy. However, the 

drawbacks of monolithic architecture are significant. As all counterparts are encapsulated 

into one signal application, services cannot be deployed separately nor scaled 

independently. Especially when the application becomes complex, and the organisation 

grows in size, the drawbacks of monolithic architecture become increasingly significant 

(Lewis and Flower, 2014, Richardson, 2018) : 

• High complexity of software development; The logic of the application can be 

challenging to understand and modify. Consequently, the new requirements are 

fulfilled in a more extended development period. So, the monolithic modifications 

are slow and costly. 

• Continuous deployment is complex; Lack of flexibility for changes: a tiny 

modification could lead to the entire monolith system being rebuilt and deployed. 

• Scaling the application is difficult; As a single logical executable, each application 

instance accesses all of the data, which leads to low system effectiveness, high 

memory consumption, and CPU intensive.  
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• Requires a long-term commitment to a technology stack; A monolithic application 

can be difficult to incrementally adopt newer technology.  

 
Figure 51 The evolution of IS architecture design paradigm 

Monolithic applications consist of interdependent and indivisible units. To avoid the above 

limitations brought by monolithic architecture, Service Oriented Architecture (SOA) break 

the entire application into loosely coupled independent Services. As shown in Figure 51, 

Service in SOA refers to a reusable software functionality that can be invoked by various 

business logic to fulfil users’ requirements (Cerny et al., 2017). Each Service executes a 

specific function, for example, user authentication and top-up account. These Services are 

loosely coupled with each other, meaning each Service is internal cohesion and provides 

interfaces to external components. Ideally, the only connection between Services is their 

service contract (Brown et al., 2005), a binding relationship reflecting business processes. 

Because of this modular architecture, development teams can develop software in parallel, 

and the services can be reused across business processes, so the development cycle will be 

significantly shortened. In Figure 51, above the Services is Enterprise Service Bus (ESB), a 

set of rules and principles that reflects business logic for integrating numerous applications 

over a bus-like infrastructure. The following content will discuss ESB’s advantages and 

disadvantages in SOA in detail.  

In summary, SOA encapsulates data and application functionality into a service container 

(Erl, 2005) to improve the system’s flexibility and agility and the value stream in 

organisations (Hirschheim et al., 2010). Compared to the monolithic architecture, SOA is 
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characterised by: 1) modularity, which referrers the partially autonomous subsystems 

following module or component design principles (cohesive) (McGovern et al., 2003); 2) 

loose coupling, which means the logical dependencies between services are as low as 

possible (Papazoglou and Van Den Heuvel, 2007); 3) interface standards, which is used to 

ensure the interoperability in heterogeneous environments and to guarantee seamless 

integration. (March et al., 2000). This design paradigm suggests decomposing systems into 

Services available over a domain and integrating them across heterogenous platforms 

(Cerny et al., 2017). The first advantage is to increase business agility. In the collection of 

Services, the Services can easily be assembled and reused in a manner that allows firms to 

respond to functional changes flexibly Second, SOA standardises resources for sharing and 

cooperative purposes. The self-independent Services can be regarded as capabilities of the 

whole domain and can be shared between divisions. The connections of Services bridge 

business processes and IT solutions. Third, SOA facilitates software reuse. IT engineers, 

rather than developing from zero, can easily reuse the ready-made Services to fulfil the new 

requirements. In turn, reuse decreases developing costs, shortens the leading time, and 

reduces risk. Fourth, SOA supports incremental development with lower costs. New 

functions can be implemented by reassembling existing services, or they can be 

independently developed in parallel without affecting the use of existing functions. Finally, 

SOA increases operational flexibility (Hirschheim et al., 2010).  

Another composable design paradigm is Micro-Services Architecture (MSA) (Lewis and 

Flower, 2014, Newman, 2015, Nadareishvili et al., 2016). In Figure 51, MSA decomposes 

Services into smaller granularity than SOA does. The most significant difference lies in that 

Microservices in MSA are embedded with business logic; thus, Microservices can 

communicate with each other without ESB help. Figure 52 depicts the difference between 

SOA and MSA. ESB, a centralised control centre, facilitates the interactions between 

Services in SOA. This pattern of interaction is orchestration. In comparison, MSA does not 

have a centralised element for service composition; Microservices exchange messages by 

service choreography.  
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Figure 52 Services interaction in SOA and MSA 

Service orchestration requires a centralised business process coordinating activities over 

different user requests, which could be a bottleneck in dealing with communication 

overhead or distributed transactions when the whole system needs to scale up (Xiao et al., 

2016). In SOA, ESB takes on services orchestration function and integrates business 

processes inside, which is the backbone for SOA. Through ESB, business logic can be flexibly 

reconfigured. Therefore, the integration platform of SOA is smart also complex. That is why 

SOA is referred to as a ‘simple service and smart pipe’ (Kratzke and Quint, 2017). In contrast, 

Microservices can work independently but coordinate with each other through a 

predefined set of cues or events. Each Microservice is an independent and autonomous 

program that can fulfil only one task. Programs can work together and have a universal 

interface for user invoking (Wolff, 2016). In Figure 51, each Microservice connects its own 

database, which is different from the shared database adopted by SOA. Hence, each 

Microservice can be treated as a container that encapsulates data storage technology, 

dependencies, and programming platform. Furthermore, a shared database in SOA means 

the data share the same context, while in MSA, the data employed by Microservices have 

their own context.  

Compared with SOA, the vital distinctive characteristics of MSA are 1) Microservice is at a 

smaller granularity of service than the Service defined in SOA; 2) MSA introduces the new 

concept of bounded context to define the scope of where a service can be meaningfully 

adopted; 3) each Microservice is operationally independent (Dragoni et al., 2017), which 

means each Microservice can be customised, scaled, and deployed independently.  
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In summary, MSA is more flexible to system evolution, which is the foundation of agile 

development. Moreover, MSA provides a method to build distributed and independent 

services that interact through a shared fabric. That is why Cloud-native systems embrace 

MSA for constructing modern applications. Therefore, the industry is in the shift toward 

MSA. However, MSA is not considered the next-generation system architecture following 

SOA in academia. Regardless, Adrian Cockcroft at Netflix describes the MSA approach as 

‘fine-grained SOA’ pioneering based on the web at scale; MSA is not born to address the 

limitations of SOA (Lewis and Flower, 2014). Both of them have their limitations. Cerny et 

al. (2017) summarise the differences and limitations in the following table.  

Table 19 MSA and SOA comparation (Cerny et al., 2017) 

concern MSA SOA 
Deploy Individual service deploys Monolithic deploy, all at once 
Teams Microservices managed by individual 

teams 
Services, integration, and user interface 
man- aged by individual teams 

User interface Part of Microservice Portal for all the services 
Architecture 
scope 

One project The whole company/enterprise 

Flexibility  Fast independent service deploy Business process adjustment on top of 
services 

Integration 
mechanism 

Simple and primitive integration Smart and complex integration 
mechanism 

Integration 
technology 

Heterogenous if any Homogeneous/Single vendor 

Cloud-native Yes No 
Management/ 
governance 

Distributed Centralised 

Data storage Per unit Shared 
Scalability Horizontally better scalable. Elastic Limited compared to MSA. Bottleneck in 

the integration unit or a message 
parsing over- head. Limited elasticity. 

Unit Autonomous, un-coupled, own 
container, independently scalable 

Shared Database, units linked to serve 
business processes. Loosely coupled. 

Mainstream 
communication 

Choreography Orchestration 

Fit Medium-sized infrastructure Large infrastructure 
Service size Fine-grained, small Fine or coarse-grained 
Versioning Should be part of architecture, more 

open to changes 
Maintaining multiple same services of 
different version 

Administration 
level 

Anarchy Centralised 

Business rules 
location 

Particular service Integration component 

 


