Search from over 60,000 research works

Advanced Search

Aircraft engine dust ingestion at global airports

[thumbnail of Open Access]
Preview
nhess-24-2263-2024.pdf - Published Version (3MB) | Preview
Available under license: Creative Commons Attribution
[thumbnail of Dust-Aviation paper - accepted not typeset.pdf]
Restricted to Repository staff only
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Ryder, C. L. orcid id iconORCID: https://orcid.org/0000-0002-9892-6113, Bézier, C., Dacre, H. F. orcid id iconORCID: https://orcid.org/0000-0003-4328-9126, Clarkson, R., Amiridis, V., Marinou, E., Proestakis, E., Kipling, Z., Benedetti, A., Parrington, M., Rémy, S. and Vaughan, M. (2024) Aircraft engine dust ingestion at global airports. Natural Hazards and Earth System Science, 24 (7). pp. 2263-2284. ISSN 1684-9981 doi: 10.5194/nhess-24-2263-2024

Abstract/Summary

Atmospheric mineral dust aerosol constitutes a threat to aircraft engines from deterioration of internal components. Here we fulfil an overdue need to quantify engine dust ingestion at airports worldwide. The vertical distribution of dust is of key importance since ascent/descent rates and engine power both vary with altitude and affect dust ingestion. We use representative jet engine power profile information combined with vertically and seasonally varying dust concentrations to calculate the “dust dose” ingested by an engine over a single ascent or descent. Using the Copernicus Atmosphere Monitoring Service (CAMS) model reanalysis, we calculate climatological and seasonal dust dose at 10 airports for 2003–2019. Dust doses are mostly largest in Northern Hemisphere summer for descent, with the largest at Delhi in June–August (JJA; 7.5 g) followed by Niamey in March–May (MAM; 4.0 g) and Dubai in JJA (4.5 g). Holding patterns at altitudes coincident with peak dust concentrations can lead to substantial quantities of dust ingestion, resulting in a larger dose than the take-off, climb, and taxi phases. We compare dust dose calculated from CAMS to spaceborne lidar observations from two dust datasets derived from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP). In general, seasonal and spatial patterns are similar between CAMS and CALIOP, though large variations in dose magnitude are found, with CAMS producing lower doses by a factor of 1.9 to 2.8, particularly when peak dust concentration is very close to the surface. We show that mitigating action to reduce engine dust damage could be achieved, firstly by moving arrivals and departures to after sunset and secondly by altering the altitude of the holding pattern away from that of the local dust peak altitude, reducing dust dose by up to 44% and 41% respectively. We suggest that a likely low bias of dust concentration in the CAMS reanalysis should be considered by aviation stakeholders when estimating dust-induced engine wear.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/117035
Item Type Article
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher European Geosciences Union
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar