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Abstract 

 

Buildings in densely populated urban areas may be at higher risk of overheating due to 

the canopy layer urban heat island, especially in hot-humid climates like Sri Lanka when 

there is limited use of air-conditioners. Previous efforts to combine a building energy 

simulation (BES) tool with neighbourhood-scale urban-canopy models do not adequately 

account for all neighbourhood factors, notably the modelling of longwave radiation and 

natural ventilation with urbanised wind speeds are not well addressed. As a result, 

influences of urban neighbourhood characteristics are not well understood when using 

BES tools to assess the risk of indoor overheating. 

This thesis uses the urban land surface model, Surface Urban Energy and Water Balance 

Scheme (SUEWS), and BES tool EnergyPlus to assess the indoor overheating risk of 

neighbourhood buildings in urban areas. An iterative approach is proposed for 

EnergyPlus longwave radiation simulations. Up to 60 % difference in nocturnal 

overheating degree-hours is found compared to the default method, clearly demonstrating 

improvement. Modifications are made to wind pressure coefficients to improve the 

EnergyPlus natural ventilation calculation for urban buildings. 

The new method is applied in different multi-scale case studies. The natural ventilation 

potential is assessed in idealised neighbourhoods across Chinese climate zones, 

suggesting it is influenced by the combined effects of regional climate, neighbourhood-

scale climate and time of the year.  

The spatial and temporal distribution of the population to heat exposure during a 

heatwave in Colombo, Sri Lanka are accounted for. Analyses undertaken for a typical 

Colombo dwelling in different neighbourhoods highlights the urban and neighbourhood 

influences on indoor overheating risks and mitigation measures.  

Findings of this thesis extend current understanding of influences of urban factors on 

indoor thermal environment. The methods, datasets, and models created in this thesis can 

be used in future research and to assist policy making. 
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Chapter 1 Introduction 

1.1. Motivation 

Since the 1950s, with climate change extreme heat events have been observed to occur 

more often and last longer, and this trend is projected to continue and/or increase in the 

future decades (IPCC, 2014). Heat exposure may cause thermal discomfort to heat-

related fatal diseases (Kovats and Hajat, 2008), with heatwaves causing a large number 

of deaths worldwide in recent years. For example, the August 2003 European heatwave 

resulted in 15000 excess deaths in France and over 2000 excess deaths in England, with 

the vast majority being elderly (Public Health England, 2015). Heatwaves periods lead to 

severe heat exposure impacts in both outdoor and indoor environments.  

With 55% of the world’s population living in urban areas (in 2018), and a probable 

increase to 68% by 2050 (United Nations, 2018), urban areas have higher heat exposure 

risks than rural areas exacerbated by periods with large canopy layer urban heat island 

(CL-UHI) intensities (Kovats and Hajat, 2007; Oudin Åström et al., 2011). Heatwaves 

can enhance CL-UHI magnitude under certain conditions related to increased solar 

radiation, more anthropogenic heat emissions from air conditioning systems, enhanced 

evaporation in rural areas and increased heat storage (Kong et al., 2021; Li and Bou-Zeid, 

2013; Ramamurthy and Bou-Zeid, 2017). Thus, during extreme heat events, more 

densely populated urban areas have higher overheating risks. 

Urban characteristics influence indoor overheating in many ways (Mills, 2006; Oke et al., 

2017). Densely built urban morphology can block solar radiation, reducing indoor solar 

heat gain, but increase longwave radiation receipt given the large view factors of warm 

surrounding buildings (cf. cooler sky). Reduced wind speed weakens natural ventilation 

cooling effect and reduce heat convection from building surfaces. With heavyweight 

building materials, the release of daytime stored heat at night increases the nocturnal 

overheating risks. The impervious surfaces reduce the source of moisture for evaporative 

cooling. Intense human activities in cities release anthropogenic heat and expels warm 

air. All these factors should be considered when assessing the indoor overheating risk of 

urban buildings.  
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Building energy simulation (BES) tools are used to dynamically simulate the building 

thermal characteristics, heating/cooling loads and operation energy consumption (Clarke, 

2001). They are also useful for predicting and assessing the indoor overheating risk. In 

recent years, various BES tools have been developed, including the free, open-source 

software EnergyPlus (U.S. Department of Energy, 2020a) which is well evaluated and 

widely used to assess both building energy performance (Chan, 2011; Liu et al., 2015; 

Ciancio et al., 2018; Yang et al., 2019) and overheating risks (Demanuele et al., 2012; 

Mavrogianni et al., 2012; Oikonomou et al., 2012; Virk et al., 2015; Hwang et al., 2017). 

However, BES tools like EnergyPlus originally (and typically) treat buildings as being 

isolated, using weather data input acquired from meteorological stations located in open 

country. When modelling urban buildings, using rural weather data as input will cause 

biases. In existing studies using EnergyPlus to simulate indoor overheating risks, the 

influence of urban climate is often ignored. Previous studies have made efforts to address 

this issue by combining EnergyPlus with urban climate models (Bueno et al., 2011; 

Miller et al., 2018; Yang et al., 2012), but none of these studies fully considered urban 

impacts on buildings mentioned above, especially neglected the urban wind field and the 

longwave radiation.  

South Asia countries are strongly affected by climate change. For example, the 2015 

heatwave caused around 3500 deaths (ESCAP, 2015), and April 2022 the hottest in South 

Asia since 1900 affected more than a billion people (Mogul et al., 2022). Amongst the 

largest temperature changes in the region in recent decades have occurred in Sri Lanka 

(Sharma et al., 2022) but there is little residential air conditioning available (5% of 

single-storey houses, 10% of multi-storey houses in 2018) (Sri Lanka Ministry of 

Environment, 2019). Measurements and surveys find Sri Lankan buildings can have high 

indoor overheating risks without air-conditioners. For example, in Colombo office 

buildings air temperatures of up to 42 ℃ measured on a typical hot sunny day in 2017 

(Rajapaksha, 2020). This suggests many households in Sri Lanka need to rely on passive 

cooling measures to protect them from the overheating risk. The limited Sri Lankan 

indoor overheating research has not considered urban impacts when assessing indoor 

overheating.  

This thesis aims to assess the indoor overheating risk of urban buildings while taking 

urban climate into account with the capital city of Sri Lanka, Colombo, taken as a case 
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study. Methods are proposed to improve EnergyPlus’ ability to simulate inter-building 

longwave radiative exchange and natural ventilation rate for urban buildings. The set of 

methods is applied in idealised and real urban scenarios, respectively. In idealised 

scenarios, the natural ventilation potential of a simplified building is assessed in different 

neighbourhood and climate settings. In real scenarios, the spatial and temporal 

distributions of population heat exposure during a heatwave period in 2020 is mapped for 

Colombo, Sri Lanka. Indoor overheating risks and effects of passive cooling 

interventions are assessed for a typical dwelling in selected neighbourhoods. 

1.2. Objectives and thesis structure 

The specific objectives of this PhD thesis are: 

 To improve existing indoor overheating risk assessment by accounting for the urban 

impacts via combining an urban land surface model [Surface Urban Energy and 

Water Balance Scheme (SUEWS)] and building energy simulation tool [EnergyPlus] 

 To propose a new approach to enhance the inter-building long-wave radiation 

calculation in EnergyPlus 

 To improve the existing approach in EnergyPlus determining wind-driven natural 

ventilation especially for urban buildings 

 To apply the new building-urban climate modelling framework to investigate the 

impacts of local-scale climate on indoor overheating risks of naturally ventilated 

dwellings using Colombo, Sri Lanka as a case study 

To achieve these objectives, the PhD is structured in the following way: 

Chapter 2 gives the detailed background of the research topic and reviews of current 

understanding in the literature. 

In Chapter 3 1 an approach to improve EnergyPlus’s ability to account for longwave 

radiation from surrounding buildings on the external facets of a building of interest is 

 

1 Published as:  
Xie, X., Luo, Z., Grimmond, S., Sun, T., Morrison, W., 2022. Impact of inter-building longwave radiative 

exchanges on building energy performance and indoor overheating. Build. Environ. 209, 108628. 
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proposed, and assessed considering impacts of these changes on building indoor thermal 

environment and overheating risks in different building densities and climates.  

In Chapter 4 1 current problems of natural ventilation calculation in EnergyPlus are 

identified that are due to incorrect use of wind pressure coefficients. Modifications are 

proposed to improve the accuracy of EnergyPlus’s natural ventilation simulation, 

especially for buildings in urban settings. 

In Chapter 5 2 the approaches from Chapter 3 and 4 are used together with the 

neighbourhood-scale model SUEWS to investigate the natural ventilation potential of 

buildings in idealised neighbourhoods, considering different building densities and 

climates. 

In Chapter 6 2 SUEWS is used to map the spatial (in 500 m resolution) and temporal 

(hourly) distribution of population outdoor heat exposure in Colombo, Sri Lanka during a 

heatwave in 2020, and assesses effects of urban-scale cooling strategies for a 2035 

projection scenario. 

In Chapter 7 2,  SUEWS-EnergyPlus are used to investigate indoor overheating risks and 

effects of different passive cooling interventions of a typical Colombo dwelling in 

different neighbourhoods during the heatwave period. 

 

 

 

1 Published as:  
Xie, X., Luo, Z., Grimmond, S., Blunn, L., 2022. Use of wind pressure coefficients to simulate natural 

ventilation and building energy for isolated and surrounded buildings. Build. Environ. 230, 109951. 
2 In form of papers. 



 

6 

 

Chapter 2 Background and literature review 

This thesis addresses both indoor and outdoor processes relative to buildings and 

overheating. 

Section 2.1 provides an overview of the definition and current approaches used to assess 

indoor overheating risks. Section 2.2 summarizes the factors that contribute to indoor 

overheating at both urban and building scales. In Section 2.3, existing methods of 

building energy simulation in the urban context are reviewed, with a particular focus on 

the neighbourhood and building-scale models used in this thesis. Finally, Section 2.4 

summarizes the research gaps and outlines the overall research design of this thesis. 

2.1. Indoor overheating assessment 

The human body generates heat through metabolism, and gains or loses heat from the 

environment due to convection, radiation and sweat evaporation. However, the 

physiological function of the human body requires that the body temperature must be 

kept approximately constant to ensure the functions of the body stay normal, i.e. the vital 

organs require the ‘core temperature’ to be relatively constant (Nicol et al., 2012). 

Despite this there is no uniform definition of the term ‘overheating’, with it interpreted as 

either thermal discomfort or heat stress in different contexts (Beckmann et al., 2021; 

Holmes et al., 2016; Rahif et al., 2021), so both are summarised here. 

2.1.1. Thermal discomfort assessment 

When the ambient temperature changes, thermal sensation changes much faster than 

body temperature (Gagge et al., 1967). Hence, increased ambient temperature can 

quickly cause thermal discomfort. ASHRAE Standard 55 (ANSI/ASHRAE, 2013a) 

defines thermal comfort as the condition of mind that expresses satisfaction with the 

thermal environment and is assessed by subjective evaluation. Thermal discomfort can 

negatively impact productivity (Lan et al., 2011; Mohamed and Srinavin, 2005; Schellen 

et al., 2010).  

The assessment of thermal comfort can be categorised into steady-state heat balance and 

adaptive approaches.  
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The most representative steady-state heat balance approach is Fanger’s Predicted Mean 

Vote (PMV) (1970), which is to describe the relationship between the thermal load and 

the thermal sensation on the ASHRAE scale (Table 2.1). The PMV model is developed 

based on thermal comfort experiments in climate chambers with stable indoor 

environmental variables. It considers variables including the air and radiant temperature, 

air velocity, humidity, clothing insulation and metabolic rates (ANSI/ASHRAE, 2013a). 

The PMV represents the average thermal feeling in the certain environment, hence can be 

used to evaluate whether it is comfortable. As individual differences PMV may not 

represent the feelings of all people, the Predicted Percent Dissatisfied (PPD) describes 

the percentage of people who are dissatisfied with the thermal environment (Fanger, 

1970). The Fanger’s (1970) relation between PMV and PPD is adopted by ISO 7730 

(1984). 

If people are in naturally ventilated buildings, both the indoor and outdoor 

meteorological variables will by dynamic. As in naturally ventilated conditions actual 

thermal sensation survey results can differ from PMV (de Dear and Brager, 2002; Fanger 

and Toftum, 2002; Humphreys and Nicol, 2002), ‘adaptive thermal comfort’ is proposed 

(de Dear and Brager, 2002; Nicol and Humphreys, 2002). This assumes occupants do not 

passively accept a given thermal environment but recognizes there is a complex 

interaction between occupants and the indoor environment. Occupants can use 

psychological, behavioural and physiological adaptation measures to minimise the 

influence of factors causing discomfort and to improve their thermal comfort (de Dear 

and Brager, 1998; Nicol et al., 2012). Hence, the actual sensation to the thermal 

environment is different from the heat balance described by the steady-state model.  

The first adaptive thermal comfort model used around 21000 field survey - measurement 

data sets collected from four continents and a broad spectrum of climatic zones  to link 

indoor comfort (or thermal neutral) operative temperature (Tcomf) with the monthly mean 

outdoor air temperature (de Dear and Brager, 1998). The provided linear regression 

equation, is adopted by ASHRAE 55 (ANSI/ASHRAE, 2013a). Similarly, the adaptive 

model for the European climate (Nicol and Humphreys, 2002)) is adopted by the 

European standard EN 15251 (CEN, 2007). Other adaptive models have been developed 

for different both countries and climates, with some adopted in international building 

codes (Table 1 of de Dear et al. (2020), Table 4 of Rahif et al. (2021)).  



 

8 

 

Despite limitations the adaptive model has become the mainstream approach to reflect 

the realistic thermal requirements for the occupants of built environments (de Dear et al., 

2020). A key criticism of adaptive models is there ‘black box’ nature of giving a comfort 

temperature without the behavioural and physical causes (Nicol et al., 2012). Second, it 

uses outdoor air temperature as the input variable without considering other factors 

influencing indoor thermal comfort (e.g. indoor air velocity and humidity) (Nicol, 2004; 

Vellei et al., 2017). Third, it provides comfort zones rather than thermal sensation. 

Fourth, it has a relatively short history (cf. the steady-state model) so further work is 

needed to improve it (de Dear et al., 2020).  

Both too cool and too warm temperatures can cause thermal discomfort. Here 

overheating refers to discomfort from high temperatures. The sense of discomfort 

essentially gives us information about skin temperature, providing warning of conditions 

that might pose a danger to the core temperature (Nicol et al., 2012). Therefore, thermal 

(dis)comfort approaches are usually used to assess the indoor overheating risk for 

residential buildings by various international standards and national building codes (de 

Dear et al., 2020; Rahif et al., 2021).  

Here we summarise frequently referenced standards in indoor overheating studies and 

their indoor overheating assessment criteria (Table 2.2). Critical thresholds are either 

fixed or calculated from adaptive thermal comfort models. Fixed thresholds provide a 

‘light-touch’ risk assessment option, which may be preferable for the housing industry, 

but only applicable to particular combinations of indoor thermal and occupant conditions 

(Pathan et al., 2017). Fixed thresholds are more applicable in steady conditions (e.g. air-

conditioned buildings) while for naturally ventilated buildings the adaptive model is 

recommended (Rahif et al., 2021). With temperature thresholds, the overheating risks are 

often quantified as the number of hours and degree-hours exceeding the thresholds. Older 

standards (e.g. CIBSE Guide A (2006)) only consider overheating hours, which measure 

the occurrence of overheating but not the severity. Nicol et al. (2009) suggest that a 

building exceeding the discomfort threshold temperature by 5 ℃ for 3 hours would be 

considered more serious than exceeding by 1 ℃ for 20 hours to a larger proportion of 

building occupants. The newer CIBSE TM52 (2013) standard now has both overheating 

hours and degree-hours criteria. 

The adaptive model used in CIBSE TM52 is (Nicol and Humphreys, 2010): 
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𝑇௖௢௠௙ = 0.33 × 𝑇௥௠ + 18.8          (2.1) 

where the running mean outdoor temperature Trm is (Nicol and Humphreys, 2010): 

𝑇௥௠ = (1 − 𝑘)(𝑇௢ௗିଵ + 𝑘𝑇௢ௗିଶ + 𝑘ଶ𝑇௢ௗିଷ ⋯ + 𝑘଺𝑇௢ௗି଻)                   (2.2) 

where k is a constant between 0 and 1, with 0.8 used as recommended (Nicol and 

Humphreys, 2010), Tod-n is the daily mean outdoor temperature n days ago (℃).  

The maximum acceptable temperature Tmax is defined as 3 ℃ above Tcomf, which 

corresponds to the PPD ≤ 10% (90 % satisfaction) according to EN 15251 (CEN, 2007): 

𝑇௠௔௫ = 0.33 × 𝑇௥௠ + 21.8          (2.3) 

Of three criteria, if a building fails two or more, CIBSE TM52 deems it to be at 

unacceptable risk of overheating: 

 Hours of Exceedance: a limit of 3% of occupied hours when the operative 

temperature exceeds Tmax during a typical non-heating season (i.e. 1 May to 30 

September). 

 Daily Weighted Exceedance: weighted sum of daily degree-hours exceeding Tmax 

should ≤ 6 

 Upper Limit Temperature (Tupp): absolute maximum acceptable temperature for a 

room should not exceed: Tupp = Tmax + 4 

These criteria cover the duration and severity of overheating and extreme conditions and 

provide examples of overheating risk quantification. In applications, these criteria may 

not be all used, but both overheating hours and degree-hours are often used to compare 

overheating risks with different combination of influencing factors (Di Perna et al., 2011; 

Figueiredo et al., 2016; Hamdy et al., 2017; Makantasi and Mavrogianni, 2016; Stazi et 

al., 2015; van Hooff et al., 2014). Although CIBSE TM52 is for the UK climate, similar 

approaches are used in different climates (de Dear et al., 2020; Rahif et al., 2021).  

In summary, for natural ventilation buildings, using adaptive thermal comfort models 

with metrics of overheating hours and/or degree-hours is the mainstream method of 

overheating assessment. 

Table 2.1: The ASHRAE scale of thermal sensations (ANSI/ASHRAE, 2013a). 
Descriptor Cold Cool Slightly cool Neutral Slightly warm Warm Hot 
Code -3 -2 -1 0 1 2 3 
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Table 2.2: Commonly indoor overheating criteria standards of the year released. Top: operative temperature, 
T: air temperature. 
Standards Indoor 

variable 
Criteria of 
overheating 

Threshold Metric Studies applying the criteria 

CIBSE Guide 
A (2006) 

Top For dwellings: 
Living areas: 
1% annual occupied 
hours over 28 °C 
Bedroom: 
1% annual occupied 
hours over 26 °C 

Fixed Hours (Makantasi and 
Mavrogianni, 2016; 
Mavrogianni et al., 2014; 
McLeod et al., 2013; Ridley 
et al., 2014) 

Housing Health 
and Safety 
Rating System 
(2006) 

T Temperatures 
exceeding 25°C 

Fixed - (McLeod and Swainson, 
2017; Morgan et al., 2017) 

The passive 
house planning 
package 
(PHPP) (2007) 

T Temperatures 
exceeding 25°C for 
more than 10% of the 
year 

Fixed Hours (Morgan et al., 2017; 
Ridley et al., 2014) 

Standard 
Assessment 
Procedure 
(SAP) (2012) 

T < 20.5°C: not 
significant; 
20.5°C to 22.0°C: 
Slight; 
22.0°C to 3.5°C: 
medium; 
≥ 23.5°C: high 

Fixed - (Tillson et al., 2013) 

CIBSE TM52 
(2013) 

Top Adaptive thresholds 
based on the equation 
of Nicol and 
Humphreys (2010) 

Adaptive Hours 
and 
degree 
hours 

(Fletcher et al., 2017; 
McGill et al., 2017; 
Mulville and Stravoravdis, 
2016; Ridley et al., 2014; 
Tabatabaei Sameni et al., 
2015; Vellei et al., 2017; 
Virk et al., 2015) 

CIBSE Guide 
A (2015) 

Top Not exceeding 25 °C 
for more than 5% of 
occupied hours and 
28°C for more than 
1% of occupied hours 

Fixed Hours (Morgan et al., 2017; 
Mulville and Stravoravdis, 
2016) 

 As CIBSE TM 52 

 

2.1.2. Heat stress assessment 

When body temperature increases, the central regulation of human body will increase 

heat dissipation by transporting some portion of venous blood that stores excess 

metabolic heat to the skin to induce sweating (Lim, 2020). However, in hot environments 

and particularly during physical work, the function of central regulation of body 

temperature will be challenged, and may be eventually lost as it moves to 

uncommendable heat stress (Cheung et al., 2000; Taylor, 2000). Clinical syndromes due 

to heat stress include heat stroke, heat exhaustion, heat syncope, and heat cramps, which 

can lead to death if not treated properly (Kilbourne, 1996; Kovats and Hajat, 2008).  
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Various heat stress indices are developed to combine the complex environmental 

variables into single indices, and quantify the stress of the thermal environment on the 

human body (Beshir and Ramsey, 1988). In general, heat stress indicators can be 

empirical and analytical (or rational) indices (Beshir and Ramsey, 1988; Brake and 

Bates, 2002). Empirical indices are developed from field experiments and generally 

expressed in terms of some environmental parameter (e.g. temperature-like indices) 

instead of physiological parameters (Brake and Bates, 2002). While analytical indices are 

physiological parameters (e.g. sweat rate and core temperature) obtained by analysing the 

heat balance of the human body. Examples of the empirical indicator and analytical 

indicator are the Wet-bulb globe temperature (WBGT) used in ISO 7243 (2017) and 

predicted heat strain (PHS) used in ISO 7933 (2004). Although criticised as 

oversimplified, empirical indices are widely used in studies assessing the heat stress, 

especially climate or building modelling studies as empirical indices only require 

commonly available environmental parameters (Buzan et al., 2015; Oleson et al., 2015). 

Heat stress indices are developed for conditions with risk of heat-related disorders, e.g., 

mines, factories and military training (Macpherson, 1962). However, with the climate 

change and increase in deadly extreme heat event, heat stress indices are gradually 

gaining attention for residential use (Holmes et al., 2016). Currently, heat stress indices 

are less commonly used for indoor overheating assessments compared to thermal comfort 

approaches, and usually focus more on extreme cases, e.g. power outages during 

heatwaves (Baniassadi et al., 2018; O’lenick et al., 2020; Phadke et al., 2019). Heat stress 

indices usually come with thresholds to define different warning levels, e.g., WBGT has 

thresholds at which the core temperature will reach 38 ℃ (ISO, 2017). With these 

thresholds, the indoor overheating risk can be also assessed with the same overheating 

hours and degree-hours approach as used with thermal comfort thresholds (Baniassadi et 

al., 2018). Additionally, the resiliency to extreme heat of the building can be assessed 

with the number of hours it takes from power outage to the first time reaching the heat 

stress threshold (Baniassadi et al., 2019) 

It should be noted that most indices have been developed for use within certain 

combinations and ranges of environmental and other factors, and should not be used 

uncritically in environments and contexts for which they were not intended (Budd, 2008; 

Macpherson, 1962). Considering that like the steady-state thermal comfort model, most 
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heat stress indices are developed with experimental data from climate chambers, they can 

have the same limitation that the indicator may not be suitable for naturally ventilated 

buildings and different climates. 

2.2. Factors influencing indoor overheating 

2.2.1. Urban impacts on buildings 

The local climate condition surrounding the building directly influence the indoor 

thermal environment. For common naturally ventilated buildings, ways of heat transfer 

between indoor and outdoor include the conduction through the building envelope, 

convection at the building surfaces, ventilation through openings and radiation between 

the building and external surfaces. The heat conduction is influenced by the heat 

exchanges on the outside building surface, including the short- and long-wave radiation 

and convective flux exchange with outside air (U.S. Department of Energy, 2020b). And 

the natural ventilation can be driven by wind or buoyancy, which are influenced by the 

outdoor wind speed and indoor-outdoor air temperature differences.  

Due to the different land covers and high-intensity human activities, the climate in the 

urban area is largely different from it in the rural area, and the climate can vary among 

neighbourhoods inside the city. Buildings in urban areas experience different risks of 

indoor overheating based on neighbourhood climate, building construction, and socio-

economic factors of the residents. Urban factors influencing indoor thermal environment 

are summarised in Fig. 2.1 (Oke et al., 2017; Tang et al., 2021): 

 Street geometry: the urban morphology affects the radiation and airflow. Due to the 

overshadowing from surrounding buildings, the solar heat gain on urban buildings is 

smaller than isolated buildings. However, the larger view factors to surrounding 

buildings with high surface temperatures can lead to more trapped longwave 

radiation. In the dense urban area, the average canopy wind speeds are lower than the 

rural area, which leads to lower wind-driven natural ventilation rate for buildings and 

less convention heat loss on building external surfaces. 

 Building fabric: common building materials like the cement, asphalt and bricks are 

impervious and have high heat capacities. These will lead to larger heat storage and 

less evaporation, and lead to higher night temperatures than rural areas, and can 

increase nocturnal indoor overheating risks. 
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 Human activities (e.g. traffic and space heating/cooling): the intense human 

activities in cities release anthropogenic heat, and lead to higher air temperatures.  

 
Fig. 2.1. Influences of urban factors on the indoor thermal environment. 

 

2.2.2. Building factors in the urban context 

The indoor overheating is a direct result from various sources of heat gain and ways of 

heat release. As mentioned in the previous section, sources of heat include the short- and 

long-wave radiation on the building facets, solar gain though windows, high outdoor air 

temperatures and internal heat gains. Thermal resistance of the building envelope can 

influence the processes of indoor-outdoor heat transfer (Fosas et al., 2018; McLeod et al., 

2013; Porritt et al., 2011). Ventilation and other building characteristics, like the 

orientation and location (e.g. top floor), can also influence the indoor thermal 

environment (Dengel et al., 2016). Here we summarise the major factors considered to 

influence the indoor thermal environment and hence overheating risks based on literature 

(Fosas et al., 2018; Mavrogianni et al., 2014; McLeod et al., 2013; Taylor et al., 2014). 

Also, we consider the urban impacts on the effects of building factors. 

2.2.2.1. Natural ventilation 

Sensitivity study by Fosas et al. (2018) shows that natural ventilation is the most 

important factor related to indoor overheating. It is commonly agreed that limited 

ventilation rate could largely increase the indoor overheating risk, no matter what criteria 

were applied (Chvatal and Corvacho, 2009; Di Perna et al., 2011; Mavrogianni et al., 

2014; Porritt et al., 2011; Psomas et al., 2016). European studies found that when 

windows were closed during the whole day, the maximum indoor operative temperature 
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would rise around 5 ℃ to 8 ℃ and the mean indoor operative temperature would 

increase around 1 ℃ to 3 ℃ (Hamdy et al., 2017; Mavrogianni et al., 2014), while the 

percentage of overheating hours during summer can be up to 60 % higher than dwellings 

with always-open windows  (Chvatal and Corvacho, 2009; Di Perna et al., 2011). Psomas 

et al. (2016) simulated dwellings located in four European cities with fixed ventilation 

rates and found reducing the air change rate from 1.5 to 0.5 would increase the 

overheated hours by 8% to 20%, depending on the climate, construction types and 

thresholds. 

Although higher ventilation and infiltration rates are preferred in mild climates for 

passive cooling, it is reported by Baniassadi et al. (2018) that for very hot climates (e.g. 

Phoenix, US in their case), increased infiltration rate for buildings would further 

exacerbate overheating. The main reason is the continuously high outdoor temperature 

during both daytime and night-time. As the infiltration is uncontrolled, this highlights the 

importance of applying adaptive ventilation strategies, as the cooling effect of always-

open windows largely depends on the climate.  

To make full use of the passive ventilation cooling, most studies considered window 

rules in building simulations, which allow windows to be open under the outdoor 

temperature is low (e.g. at night). Multiple studies have suggested that night ventilation is 

one of the most effective passive cooling strategy for buildings in hot-humid climates 

(Doctor-Pingel et al., 2019; Gamero-Salinas et al., 2021; Jamaludin et al., 2014; Kubota 

et al., 2009; Ran and Tang, 2018; Zune et al., 2021). In hot climates where daytime 

outdoor air temperature is high, closing window may improve the indoor thermal 

comfort. For example, Ratnaweera and Hestnes (1996) found that during a typical hot 

day in Sri Lanka, closing windows during daytime could reduce the maximum air 

temperature by 1.7 ℃. 

Natural ventilation largely depends on the variable outdoor climate and the resultant 

changing driving forces. Hence, it needs to be assessed in different conditions. The 

natural ventilation potential of urban and rural areas also varies with the local-scale 

climate. Considering these impacts, assessing buildings in the urban environment using 

rural weather data will cause biases. A detailed review of natural ventilation potential 

assessment is given in Chapter 4, which suggests that there is a need for improving 
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approaches to calculate natural ventilation potential when considering the local-scale 

climate. 

2.2.2.2. Radiative heat exchange 

Solar radiation is one of the main sources of indoor heat gain, therefore solar control 

measures are important to mitigate the indoor overheating. Common solar control 

measures include external and internal shading (e.g., overhang, external shutters, internal 

blinds, curtains) and reflective building envelope (e.g. solar reflective paint on roof and 

walls, solar control glazing) (Porritt et al., 2012). Overhangs above windows could 

reduce the peak indoor air temperature by 0.6 °C on a typical hot day according to 

simulation by Ratnaweera and Hestnes (1996). Cool roof are found to be more effective 

in tropical climates in reducing the indoor cooling energy demand than in other climates 

(Rawat and Singh, 2022), and modelling by Zingre et al. (2015) suggests that white paint 

(albedo = 0.74) on roof and walls could reduce the peak indoor air temperature by 2.4 ℃ 

on a typical sunny day in Singapore. Singh et al. (2008) found that for buildings in 

Mumbai, using solar control glazing windows with reflective film coating could reduce 

the predicted percentage of dissatisfied (PPD) of indoor thermal comfort by 47% 

compared to clear double-glazing windows. Here we consider the overhang, white paint 

on the roof and walls, and solar control glazing with low solar heat gain coefficients 

(SHGC) as measures related to solar control. 

Buildings in the urban environment are usually surrounded by other buildings, which 

provides solar shading. Li and Wong (2007) found that for a surrounded building, the 

annual cooling energy use can be reduced by 7.3% compared to an isolated building. 

Pisello et al. (2014) reported that the solar gain through windows of the lower floors for 

the surrounded building could be 78% less than the isolated building. Taylor et al. (2014) 

suggested that shading effect from surrounding buildings statistically contributed to the 

larger differences in indoor overheating risks between climates due to different solar 

altitudes. Therefore, the solar shading from surrounding building cannot be ignored when 

assessing the indoor overheating risks for urban buildings. 

In addition to short-wave radiation, the urban buildings also have larger longwave 

radiation exchanges with surrounding buildings (Oke et al., 2017), However, the impact 

of longwave radiation on building thermal environment is usually ignored or 

approximated (see detailed review in Chapter 2), which can cause biases. In this thesis 
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we will investigate the calculation of longwave radiation and their impacts on indoor 

overheating risks. 

2.2.2.3. Insulation 

Insulation can be installed in roof or external walls to prevent heat transferring between 

indoor and outdoor spaces. For air-conditioned buildings, envelops with good thermal 

resistance could prevent heat loss in winter and/or heat gain in summer, thereby reduce 

energy consumption. However, the impact of insulation on free-running buildings can be 

bi-directional and influenced by other factors, since it may prevent heat releasing to 

outdoor environment as well. For example, Chvatal and Corvacho (2009) found that for 

building in Évora, Portugal, decreasing external wall U-value from 0.91 W m-2K to 0.2 

W m-2K would increase the indoor overheating hours in summer if the window solar heat 

gain coefficient (SHGC) is larger than 0.32 but decrease if SHGC < 0.32. Baniassadi et 

al. (2018) compared the impact of updated version of local building codes in different 

U.S. cities, and found that higher insulation and air tightness levels could exacerbate 

indoor heat stress for buildings in relatively cooler cities like Albuquerque and Boise 

during summer power outages, but mitigate the heat stress in very hot climate like 

Phoenix. Studies by Fosas et al. (2018) and Makantasi and Mavrogianni (2016) 

highlighted the importance of sufficient ventilation in preventing increased overheating 

risks due to added insulation. Porritt et al. (2012) compared the internal and external 

insulation of walls and found that internal insulation could increase the overheating 

degree-hour by 14% and external insulation could decrease it by 49% during a nine-day 

heatwave in London. These indicate that the effect of insulation is linked to other factors 

including the climate, solar control, ventilation and thermal mass. Insulation can work 

better as a passive cooling intervention in hot climates as it prevents the inward heat 

conduction through building envelopes. However, precautions should be taken to 

minimise the heat gain for the indoor space, e.g. solar heat gain through windows. For 

buildings in tropical climate, it is suggested that less wall insulation should be used 

compared to buildings in cold climate to reduce the cooling energy use (Zune et al., 

2021). Nevertheless, Ratnaweera and Hestnes (1996) found that for a Colombo dwelling 

on a typical day in December, adding 100 mm thick polystyrene to the asbestos roof 

could reduce the maximum air temperature by 0.2 °C as it prevented heat on the roof 

transferred to the interior.  
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Considering the impacts of different factors on the effect of insulation, how would 

insulation influence the indoor overheating risks in different local-scale climates needs 

further studies. 

2.2.2.4. Other factors 

Building types and the window orientation are also influencing the indoor thermal 

environment. According to prior studies, the building type with the lowest indoor 

overheating risk is the ground floor of multi-storey buildings like flats, as results of the 

low ground temperature and less area exposed to the sun (Hamdy et al., 2017). While 

those building types that have large roof area, like single-facing top floor flats without 

cross ventilation and single-storey bungalows, have higher overheating risk than other 

building types (Gupta and Gregg, 2013; Mavrogianni et al., 2012; Oikonomou et al., 

2012). The north orientation is widely accepted as having the lowest indoor overheating 

risk for rooms in northern hemisphere (Figueiredo et al., 2016; Psomas et al., 2016), but 

there is no consensus for other orientations (Makantasi and Mavrogianni, 2016; Porritt et 

al., 2011). It should be noted that there is a large number of diversities existing in 

building designs, e.g. the building size, the arrangement and area of each room, etc. Thus, 

the normalisation of building types and orientation is challenging. 

2.3. Building energy simulation in the urban context 

The emergence of building energy simulation (BES) is for use to appraise options for 

change in terms of relevant issues from human health and comfort, through energy 

demand reduction, to sustainable practices (Clarke, 2001). In recent years, there are 

various BES tools developed (e.g. EnergyPlus (U.S. Department of Energy, 2020a), 

TRNSYS (TRNSYS, 2009), DeST (Yan et al., 2008), IES-VE (Integrated Environmental 

Solutions, 2018)) to dynamically simulate the building thermal characteristics, 

heating/cooling loads and operation energy consumption.  

Considering differences between urban and rural climates, when modelling urban 

buildings, the urban impacts should be considered. In current studies, there are different 

approaches to consider urban climate in building simulation. EnergyPlus is a free BES 

tool that is well evaluated and widely used to assess building energy performance (Chan, 

2011; Liu et al., 2015; Ciancio et al., 2018; Yang et al., 2019) and overheating risks 
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(Demanuele et al., 2012; Mavrogianni et al., 2012; Oikonomou et al., 2012; Virk et al., 

2015; Hwang et al., 2017). As an open-source tool, EnergyPlus has been combined with 

different urban climate models to simulate the urban impacts on building performance. 

Bueno et al. (2011) coupled EnergyPlus and a urban canopy model Town Energy 

Balance (TEB) (Masson, 2000) by providing external building surface temperature to 

EnergyPlus, but did not consider influence of urbanised wind speed on ventilation. Yang 

et al. (2012) coupled EnergyPlus with a computational fluid dynamics (CFD) based 

microclimate model Envi-met (Bruse, 2004), which provides outdoor variables including 

air temperatures and relative humidity, and calculated radiation and convection fluxes to 

EnergyPlus. However, the impact of urbanised wind was only considered in external 

building surface convection, but not building ventilation. Also, the CFD-based model can 

be computationally expensive (e.g. 3-day run taking 168 hours on PC). Ramponi et al. 

(2014) modelled the natural ventilation potential of a urban building by using the 

urbanised air temperature and modified wind pressure coefficients, but did not consider 

full urban impacts on the building like the longwave radiation exchanges. Miller et al. 

(2018) coupled EnergyPlus with a urban energy model CitySim (Robinson et al., 2009), 

which only estimated the heat emission from surrounding buildings to modify outdoor 

temperatures, but did not consider the wind and radiation components. Therefore, there is 

a need for an approach to consider the complete urban impacts in building energy 

simulation while balancing the computational cost. 

Since the processes of urban characteristics contributing to the surface energy balance is 

complex, the best way to study these processes individually is by using urban land 

surface models (ULSMs) (Best and Grimmond, 2015). There are many ULSMs existing, 

ranging from simple bulk representations of the surface to those considering the complete 

energy balance at various levels within the urban canyon (e.g. Fig. 1 of Best and 

Grimmmmond (2015)). Comprehensive comparisons of these models had addressed gaps 

of lacking well-modelled latent heat flux, and suggested that having multiple models 

combined could give more accurate results (Grimmond et al., 2011, 2010). To fill the 

gap, the Surface Urban Energy and Water Balance Scheme (SUEWS) was therefore 

developed (Järvi et al., 2011). 

In this study, the state-of-art model SUEWS (Järvi et al., 2011; Sun et al., 2020; Sun and 

Grimmond, 2019; Tang et al., 2021; Ward et al., 2016) is combined with EnergyPlus in 
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this study to predict the indoor overheating risks for urban buildings. SUEWS uses 

surface characteristics and climate forcing data to simulate both energy and water fluxes, 

and then derive local-scale environmental parameters (Järvi et al., 2011; Ward et al., 

2016). SUEWS is selected to be used in this study is because of its main advantages 

(Järvi et al., 2011, 2014; Ward et al., 2016; Ao et al., 2018; Kokkonen et al., 2018): 1) it 

provides vertical profiles of outdoor climate variables that can be used in EnergyPlus; 2) 

it only requires limited input data that can be relatively easily obtained; 3) it is a 

combination of multiple sub-models based on parameterisation to achieve balance 

between accuracy and computational cost; 4) it has been evaluated across different 

climates globally (e.g. Järvi et al. 2011, Ward et al. (2016), Table 3 of Lindberg et al. 

(2018), Tang et al. (2021). However, as a one-dimensional model that only account for 

vertical variations of variables, SUEWS simplifies some features of the building 

geometry. Therefore, the combination of SUEWS and EnergyPlus needs some work to 

better account for the impact of urban characteristics on buildings. 

2.4. Summary 

Based on the literature review, following research gaps are addressed: 

 Indoor overheating risks of residential buildings have been extensively studies around 

the world, but few studies have sufficiently considered the impact of urban climate. 

Impacts of some building factors on indoor overheating may be influenced by the 

local-scale climate. For example, it is found that the effect of insulation on indoor 

thermal environment largely depends on the outdoor climate. Similarly, urban areas 

may have lower or higher natural ventilation potential compared to rural areas due to 

differences in the air temperature and wind speed. 

 BES tools are typically developed for isolated building simulations. When modelling 

urban buildings, different urbanised variables should be considered, including the 

outdoor air temperature, humidity, wind speed, short- and long-wave radiations. 

Previous studies have made efforts to combine EnergyPlus with urban-scale models, 

but none of them have fully considered all urban impacts on buildings. In 

particularly, the calculation of longwave radiation exchange between buildings and 

natural ventilation affected by urban wind fields are lacked in most studies. In 

addition, among these approaches, CFD-based models like ENVI-met can provide 
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more accurate results but are computationally expensive, therefore not suitable for 

modelling in large spatial and temporal scales. There is a need of an approach that 

can fully consider urban impacts in BES, while balancing the computational cost. 

To fill the gaps, this work combines the urban-scale model SUEWS and building-scale 

model EnergyPlus to assess the indoor overheating risks for urban buildings with 

improved methods of longwave radiation and natural ventilation calculation. Fig. 2.2 

summarises the workflow of the thesis.  

 

Fig. 2.2. Workflow of the thesis. T2: 2 m air temperature; RH2: 2 m relative humidity; U10: 10 m wind 
speed. 
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Chapter 3 Impact of inter-building longwave radiative exchanges on 

building energy performance and indoor overheating 

This chapter proposes a novel 'spin-up' approach for calculating inter-building longwave 

radiation in EnergyPlus, and investigates its impact on building energy performance and 

indoor overheating.  

This chapter has been published as a journal paper: Xie, X., Luo, Z., Grimmond, S., Sun, 

T., Morrison, W., 2022. Impact of inter-building longwave radiative exchanges on 

building energy performance and indoor overheating. Building and Environment, 209, 

108628.  

I conducted the research, wrote the first draft, and created the figures. Z. Luo and S. 

Grimmond provided guidance on the conception and structure of the paper, interpretation 

of the findings, and editing of the text. Additionally, W. Morrison provided observation 

data for model evaluation. 

 

Nomenclature 

F   View factor with subscripts (e.g. boi→a: boi to air)  
subscripts 

a  air 
adj  adjacent 
boi   building of interest   
g  ground 
sky   sky 

T  Temperature (K)  
subscripts  

a  Typical meteorological year (TMY) air temperature  
adj  external surface of adj buildings 
boi  external surface of boi 
iso  external surface of isolated building  
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op  indoor operative (mean of air and radiant) temperature 
α  albedo - external building facet  
λP  plan area fraction 

3.1. Introduction 

The indoor thermal environment and cooling/heating energy consumption of buildings 

are affected by the local microclimate, including changes in longwave radiation from the 

surroundings. Longwave radiative exchange plays an important role in the urban heat 

island (Oleson et al., 2011), the urban energy balance (Oke, 1982), and in turn influences 

building energy performance (Santamouris et al., 2001). Ignoring longwave radiative 

exchanges with the surroundings in building energy simulations, can cause energy 

consumption to be overpredicted in winter and underpredicted in summer in mid-latitude 

cities (Bouyer et al., 2011).  

Typically, building energy simulation (BES) tools are developed for isolated buildings 

and focus on the internal rather than external longwave radiation exchange (Allegrini et 

al., 2012; Evins et al., 2014) as obtaining both the external surface temperatures of the 

surroundings and the view factors in real urban areas is challenging (Yang et al., 2012; 

Evins et al., 2014). BES longwave radiative exchanges between buildings are either pre-

calculated using an urban climate model (e.g., TEB (Bueno et al., 2011), ENVI-met 

(Yang et al., 2012) and CitySim (Miller et al., 2018)), or indoor radiation schemes have 

been applied to surrounding external facets (so-called “false zone”, e.g. Vallati et al. 

(2018) and Allegrini et al. (2016) in TRNSYS). Both approaches have been restricted to 

simple geometries (e.g. symmetric and low-rise street canyons) (Evins et al., 2014).  

Commercial software (e.g. TRNSYS) by definition has more restricted availability than 

open-access software. Free, open-source BES tools (e.g. EnergyPlus) tend to be well 

evaluated and widely used to assess building energy performance (Chan, 2011; Liu et al., 

2015; Ciancio et al., 2018; Yang et al., 2019) and overheating risks (Demanuele et al., 

2012; Mavrogianni et al., 2012; Oikonomou et al., 2012; Virk et al., 2015; Hwang et al., 

2017). Urban climate studies using EnergyPlus have addressed different sources of air 

temperature (e.g. Chan, 2011; Ciancio et al., 2018; Salvati et al., 2017; Yang et al., 

2019), but very few consider longwave radiative exchanges from adjacent buildings 

(Evins et al., 2014; Luo et al., 2020).  
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Three approaches are used to address longwave radiative exchanges between buildings 

with EnergyPlus according to our mini-review (Table 3.1). By default (#1, Table 3.1), the 

surface temperature of both the ground and adjacent buildings are assumed to be equal to 

the air temperature from weather data input. However, typically, air temperature has a 

smaller range than surface temperatures. In practise, roofs have the largest range 

(Morrison et al., 2020, 2021) and walls are warmer during both the day and night (e.g. 

summer in London: south wall peak 15 °C warmer (cf. canopy air temperature peak), 

minimum 3 °C warmer (Morrison et al., 2020, 2021)). Also, the timing of the peak 

temperatures differs with air being later than facet surface temperatures apart from the 

east facet (e.g. peak air temperature around 4 hours later than the south wall peak surface 

temperature on a summer day in London (Morrison et al., 2020, 2021)). Hence, using air 

rather than facet surface temperatures to derive longwave radiation is biased. This 

method assumes the view factors of the ground and adjacent buildings are equal to the 

residual of the sky (and further split into sky and air) view factors. 

A second method (Evins et al. (2014), #2, Table 3.1) assigns surface temperatures of the 

building of interest (boi) to adjacent (adj)buildings. All buildings are assumed to have the 

same height. First, the boi wall temperatures are determined assuming it is isolated (iso). 

Second, these are assigned to the corresponding adj building (e.g., east-facing wall → 

east-facing wall). This neglects radiative exchanges for adjacent buildings.  

In the third method (#3, Table 3.1), a new EnergyPlus sub-module allows view factors 

and adj facet surface temperatures to be supplied from an external source. Luo et al. 

(2020) assume the adj is isolated, therefore ignore the building density (i.e. plan area 

fraction) influence on surface temperature. They account for the real setting view factors 

by using Monte Carlo ray tracing. Although, the siting assumptions and view factors (e.g. 

values, methods) can be changed between applications, a more fundamental constraint is 

that the surface temperature data are a static time series that does not dynamically 

respond during the simulation. 

Here, our aims are:  

(1) to improve EnergyPlus’ ability to account for longwave radiation from surrounding 

buildings impact on the external facets of a building of interest, 
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(2) to assess the impacts these model changes to simulated building surface temperature, 

building heating/cooling demand and indoor thermal environment (indoor 

overheating hours and degree-hours), 

(3) to assess if these impacts are influenced by building density and/or climate, 

(4) to assess if the impacts are sufficient to be regarded as an improvement to EnergyPlus 

simulation outcome. 

Table 3.1: Methods used in EnergyPlus (E+) to calculate longwave radiation. View factor (F) are 
determined using ray-tracing with #3 using the Monte Carlos method (section 3.2.2 and Appendix 1). The 
temperatures of the ground (Tg) are assigned the Typical meteorological year (TMY) air temperature (Ta) 
in all three cases but the external surface of adj buildings (Tadj) are assigned different temperature between 
the three. 
 
# Urban 

geometry 
View factors (F) 
considered 

Tadj Remarks References 

1 boi with adj 
buildings 

Fboi→sky; Fboi→a  
Fboi→g + Fboi→adj 
= 1 – (Fboi→sky + 
Fboi→a) 

Ta default   Kesten et al. (2012), Oikonomou et al. (2012), Ramponi 
et al. (2014), Gracik et al. (2015), Han et al. (2017), 
Salvati et al. (2017), Vartholomaios (2017), 
Martinopoulos et al. (2018), Lima et al. (2019), 
Boccalatte et al. (2020) 

2 Street 
canyon 

Fboi→sky and slope 
of the building 
surface 
Fboi→adj for the 
street canyon 

Tboi, 

iso 
Needs:  
Fboi→adj, 
Tadj 

Evins et al. (2014) 

3 A real case Fboi→adj 

1 –  Fboi→adj = 
Fboi→sky + Fboi→a 
+ Fboi→g 

Tadj, 

iso 
Needs:  
Fboi→adj, 
Tadj 

Luo et al. (2020) 

 

3.2. Methods 

To compare inter-building longwave radiative exchange using the available methods in 

EnergyPlus, the building of interest (boi) is simulated assuming either it is isolated (iso) 

or with adjacent (adj) buildings at different densities and climates. To undertake this 

work, we use an idealised neighbourhood (3 × 3 aligned single-zone-buildings). 

EnergyPlus Version 9.4 (U.S. Department of Energy, 2020a) is used. 

3.2.1. Building energy simulation setup in EnergyPlus 

In this study we use the reference building BESTEST Case 600 from ANSI/ASHRAE 

Standard 140-2011 (ANSI/ASHRAE, 2011) for the analyses. This lightweight 

construction building (thermal properties are summarized in Table 3.2) is 8 m wide x 6 m 

long x 2.7 m tall, with no interior partitions, and two 2 m x 3 m windows on the south-
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facing wall. An ideal load system is assumed with a winter heating setpoint of 20 °C and 

summer cooling setpoint of 27 °C. The ventilation rate is 0.5 air change per hour (ACH). 

The internal heat load is constant at 200 W and assumed to be 100% sensible heat. To 

compare indoor overheating risks, the free-running building BESTEST Case 600 FF is 

used. Unlike Case 600, there is no mechanical heating or cooling system but everything 

else is the same (e.g. ventilation rate remains 0.5 ACH).  

When the boi has adjacent buildings, they are all identical (Fig. 3.1). Given its 

replicability and generalisability, this idealised building has been widely used in 

neighbourhood-scale building energy simulation studies (e.g. #1, Table 3.1) (Liu et al., 

2015). Building densities, characterised by the plan area fraction (λP), are varied (0.1, 0.3, 

0.6) to cover a range found in real cities (Grimmond and Oke, 1999a). The adj buildings 

modify the radiative exchanges. View factors (F) between the boi surfaces and adj 

surfaces are calculated with Monte Carlo ray-tracing method (Howell et al., 2010) 

(Section 3.2.2). TMY (typical meteorological year) data (ASHRAE, 2001) for three cities 

with similar longitude but different latitudes are chosen, hence different daylengths and 

climates are investigated: London (51.15° N, 0.18° W),  Aberdeen (57.20° N, 2.22° W) 

and Marseille (43.45° N, 5.23° E). The 10-min timestep simulations are used to assess 

convergence of the surface temperature but hourly sample are analysed. 

Table 3.2: Main features of construction elements from ANSI/ASHRAE (2011), with the normal incidence 
window albedo given modified by incident angle (Arasteh et al., 2009). 

Element Materials U-value α ε 
Walls Plasterboard, fiberglass quilt, wood siding 0.514 0.4 0.9 
Roof Plasterboard, fiberglass quilt, roof deck 0.318 0.4 0.9 
Floor Timber flooring, insulation 0.039 0.4 0.9 
Windows Double-pane glass 3.0 0.078 0.9 

 

 

Fig. 3.1.  Building of interest (boi) is in the centre of eight adjacent buildings (adj, purple), with different 
plan area fractions (λP): (a) 0.1, (b) 0.3, and (c) 0.6. 
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3.2.2. Inter-building longwave radiation exchange 

The longwave radiative exchange between surfaces depends on surface temperature, 

spatial relations between surfaces and surroundings, and material properties of the 

surfaces (U.S. Department of Energy, 2020c). In the absence of more detailed 

information, the EnergyPlus default setting assumes (U.S. Department of Energy, 2020c): 

the ground is flat;  the external surface temperature is equal to air temperature in the 

weather data input; all surfaces (including the ground) are opaque grey bodies; have 

isotropic emissivity; have uniform surface temperatures; no longwave reflection occurs; 

and across a sphere the total view factor (=1) from a building surface consists of only sky, 

ground, and buildings (U.S. Department of Energy, 2020b). 

Previously, EnergyPlus obtains surface temperature data for an adjacent building (Tadj) 

from (Fig. 3.2): (1) TMY air temperature (Ta) (#1, Table 3.1), or (2) calculated surface 

temperatures for an isolated building (Tiso) (#2,3, Table 3.1). However, neither represents 

conditions where adj buildings are also influenced by other buildings in the 

neighbourhood. In this study, we determine the adj surface temperature using the Luo et 

al. (2020) sub-module. However, as Luo et al. (2020) originally used static surface 

temperatures, we investigate the impact of building surface temperatures used on model 

spin-up on the results as this is important in urban areas (Best and Grimmond, 2014). Luo 

et al. (2020) uses static surface temperature time series of which does not update after 

each iteration. In our new method, we spin-up the model by updating the building surface 

temperature from the previous run, until the EnergyPlus convergence criteria are met. 

Since EnergyPlus cannot calculate the external ground surface temperatures, they remain 

equal to TMY air temperatures (i.e. the default setting in EnergyPlus). 

For example, if the building of interest (boi) surface temperatures are obtained from an 

adj building that is isolated (Tiso) after i iterations (indicated as boiadj←iso,i), this involves 

the following steps (Fig. 3.2): (1) EnergyPlus is run for the entire year to obtain boiiso 

(isolated building of interest) surface temperature Tiso at each time step; (2) Tiso is 

assigned to the adj buildings to initialise them by facet (e.g. surface temperature of N 

wall of boiiso is assigned onto the N wall of adj buildings as a yearlong EnergyPlus 

schedule file in csv format, and so as for other three facets.) All buildings are identical; 

(3) EnergyPlus is re-run to obtain the surface temperatures of boiadj←iso for the year; (4) 

Repeat Step (2), surface temperatures of boiadj←iso are assigned to boiadj←iso,1 as Tadj; and, 
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(5) so on for each i with convergence assessment made for each wall facet. For external 

surface temperatures of each facet, this convergence criteria is 0.01 °C (Winkelmann, 

2001). Iteration stops when the annual mean bias error (MBE, Section 3.2.4) between the 

current and previous iteration of each facet is within ±0.01 °C. Similar procedures are 

applied for boiadj←a,i with Ta used for initialisation.  

In these simulation, although other variables (e.g. air temperature, wind) that are also 

impacted by the surroundings (Tang et al., 2021), they do not vary from their original 

TMY values at each time step. 

 

 

Fig. 3.2. Simulation workflow for different cases with Tiso or Ta used as the initial Tadj. In subsequent 
iteration Tadj is used to calculate Tboi, and Tboi used for Tadj in the next simulation. 
 

If Ta is assigned to adj buildings (boiadj←a), the default EnergyPlus view factor 

calculation method is used. As ground and adj buildings are assumed to have the thermal 

characteristics of air (U.S. Department of Energy, 2020c), the boi surface to non-sky 

surfaces view factor is obtained by subtracting the sky view factor from 1. It is assumed 

that the sky longwave radiance distribution is isotropic.  

When surrounding buildings exist, EnergyPlus calculates the sky view factor for 144 

points (6 zeniths x 24 azimuths) evenly distributed across the sky dome. The view factor 

is the fraction of building external surfaces receiving points (4 points per facet, the 

rectangular area is defined by its length and width) relative to the 144 sky dome points 

(U.S. Department of Energy, 2020d).  

For the boiadj←iso  we follow Luo et al. (2020) and use a Monte Carlo ray-tracing 

approach from the building surface (Howell et al., 2010): 
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𝐹ଵ→ଶ =
஺మ

௡
∑

ୡ୭ୱ ఏభ ୡ୭ୱ ఏమ

గ௥మ
௡
௜ୀଵ 𝐻௕௟௢௖௞           (3.1) 

where n is the number of pairs of randomly points on surfaces 1 and 2,  A2 the area of 

surface 2, r the ray length, θ is the angle between the ray and the surface normal, Hblock 

indicates if the ray is blocked by other surfaces (= 0, obstructed) or not (= 1). In this 

study, we find n = 3000 to be sufficient by comparing the Monte Carlo method to 

analytical results (Appendix 1).  

With view factors to adj building surfaces determined, the sky and ground view factors 

are given by the residual (1 – ∑ Fadj). As all buildings in the neighbourhood are the same 

size, Fboi→g and Fboi→sky are equal. To reduce computational cost, we assume each adj 

building facet has uniform surface temperatures independent of material variations (e.g. 

glass, concrete) (Evins et al., 2014; Luo et al., 2020). Impact of this simplification has 

been analysed and the surface temperature difference is suggested to be smaller than 

0.2 °C (Appendix 2). 

3.2.3. Building heating/cooling load and overheating risk 

Heating and cooling loads are calculated for Ideal Loads Air System with 100% 

efficiency (U.S. Department of Energy, 2020e) and setpoints of 20 °C for heating in 

winter and 27 °C for cooling in summer. The indoor overheating risk within free-running 

buildings is assessed based on the degree hours (Zhang et al., 2006; Porritt et al., 2011, 

2012) exceeding indoor operative temperature thresholds of CIBSE Guide A (CIBSE, 

2006) (28 °C for the living area and 26 °C for the bedroom). Given the single-zone boi, 

we split the day based on occupancy into night (‘bedroom’, 23:00 to 7:00) and day 

(‘living room’, 07:00-23:00) (Porritt et al., 2012). The CIBSE overheating thresholds, 

determined for the UK climate, may not be directly applicable to other climates, however, 

we use them in all climates (i.e. including Marseilles) for consistency in the comparisons. 

3.2.4. Analysis metrics 

Mean absolute error (MAE) and mean bias error (MBE) are used to assess the difference 

in surface temperatures between iterations: 

𝑀𝐴𝐸 =
ଵ

ே
∑ ห𝑦௝ − 𝑥௝หே

௝ୀଵ              (3.2) 

𝑀𝐵𝐸 =
ଵ

ே
∑ ൫𝑦௝ − 𝑥௝൯ே

௝ୀଵ             (3.3) 
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where yj and xj are data from two cases at instance j, and N is the number of values 

analysed (e.g. a year with 10-min timestep, N = 52560). The distribution of hourly 

surface temperature variances between iterations is analysed in Section 3.3.1. 

The normalised mean bias error is used in multiple guidelines for uncertainty analysis of 

building energy simulation programmes (Ruiz and Bandera, 2017): 

𝑛𝑀𝐵𝐸 =
ଵ

ே

∑ ൫௬ೕି௫ೕ൯ಿ
ೕసభ

௫̅ೕ
× 100%            (3.4) 

In this study, we use nMBE to compare the hourly load variance between different cases. 

The ASHRAE Guideline 14 (ASHRAE, 2014) sets the uncertainty limits for building 

energy simulation programmes as nMBE within ±10% for hourly data. 

For annual energy demand and overheating degree hour comparisons, the percentage 

difference is calculated as the ratio of difference between cases to the base case. 

3.2.5. Evaluation of longwave radiative exchange with observations 

To evaluate the longwave radiative calculations, surface temperature observations 

(Morrison et al., 2021, 2018) conducted at the Comprehensive Outdoor Scale Model 

(COSMO) test site (Kanda et al., 2007) are used. The 100 m × 50 m site has 32 × 16 

aligned arrays of 1.5 m cubic concrete blocks (0.1 m wall thickness, λP = 0.25). The long 

axis is oriented 49° west of true north.  

Surface brightness temperatures were measured with two Optris PI160 LWIR cameras 

(Optris GmbH, Germany) facing north (Fig. 3.3a) and south. The measurements for a 

predominantly clear-sky day (2nd August 2014) are selected for evaluation. The 

experimental setup is reproduced in EnergyPlus consists of 3 × 3 array of concrete cubes 

all with the same size and thickness (0.1 m dense concrete wall, conductivity = 1.63 W 

m-1K-1, density = 2300 kg m-3, specific heat = 1000 J kg-1K-1 (CIBSE, 2006)). EnergyPlus 

simulations of brightness temperatures are compared to the observations (Fig. 3.3b,c) by 

treating the concrete blocks as blackbodies (i.e. by assuming emissivity = 1 in 

EnergyPlus simulations). The weather data used in the EnergyPlus simulations are 

measured at the site or nearby (Morrison et al., 2021, 2018). 
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Fig. 3.3. Comprehensive Outdoor Scale Model (COSMO) test site in Japan (a) view near the north-viewing 
longwave infrared camera location, (b) brightness temperature (Tb)  from the north-viewing camera at 2nd 
August 2014 10:00 local standard time, (c) model geometry used in EnergyPlus. Sources (a,b): Morrison et 
al. (2018). 

3.3. Results 

3.3.1. Impact of iteration on surface temperature 

First, we assess if using an iterative approach (model spin up) to obtain external building 

surface temperature of surrounding buildings could impact the model surface temperature 

(Fig. 3.4). In all test cases, the mean bias error (MBE) indicates that there is a difference 

in surface temperature (i.e. MBE is not 0 °C) between the first and second iteration.   

As neighbourhood density impacts both the shortwave and longwave radiative 

exchanges; for example, shadows and receipt of longwave radiation are very different 

with adjacent buildings (cf. isolated building), we assess if the impact of interactions 

varies with plan area fraction (λP). The number of iterations needed to meet the surface 

temperature convergence criteria (<0.01 °C) increases with urban density. At the lowest 

building density considered (λP = 0.1, Fig. 3.1) only two iterations are needed, increasing 

to three for λP = 0.3, and five when λP = 0.6 (Fig. 3.4). This is expected as the building of 

interest (boi) becomes increasingly influenced by the surroundings. At λP = 0.6, both the 

south-facing and north-facing walls of boiadj←iso,i require more iterations to converge than 

other facets as they have largest difference between the initial and final surface 

temperatures. In addition to MBE, the distribution of surface temperature differences 

between boiadj←a,4 and boiadj←a,5 at λP = 0.6 are shown in Fig. 3.5. For the north-facing 

wall with the largest difference, there are 93.6% of time steps within the convergence 

criteria of ±0.01°C, while for other facets the fraction is higher than 99%. 

Second, we consider the impact of source of the initial surface temperatures values (i.e. 

boiadj←iso.i and boiadj←a.i). The difference between the two sources is large for the first 

iteration, up to 1.15 °C in the dense neighbourhood (λP = 0.6), but negligible in the low-
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density neighbourhood (λP = 0.1). Obviously, with each iteration their difference 

decreases (Fig. 3.4, 3.6) indicating that by updating Tadj it can modify an initial common 

value independent of the initial surface temperature chosen. As boiadj←iso,5 and boiadj←a,5 

have very similar surface temperatures, hereafter three representative cases are analysed:  

(i) boiadj←a using the default EnergyPlus method (‘base’);  

(ii) boiadj←iso following Luo et al. (2020) (no iteration); and  

(iii) boiadj←a,5 the most realistic case with initialisation from TMY air temperature 

and five iterations. 

 
Fig. 3.4. Annual mean bias error (MBE, section 3.2.4; 10-min timestep, N=52560) determined using the 
external building surface temperature of the previous iteration (Fig. 3.2) for different facets (colour) in 
London with three plan area fractions (λP) (marker) and two initial adj surface temperatures (columns) with 
convergence criteria (0.01 °C, dashed line). Seasonal MBE and annual MAE are shown in section 
Appendix 3. 
 

 
Fig. 3.5. Distribution of facet surface temperature differences (10-min timestep, N=52560) between 
boiadj←a,5 and boiadj←a,4 at λP = 0.6 with interquartile range (box), median (horizontal line) and 5th and 95th 
percentiles (whiskers). 
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Fig. 3.6. As Fig. 3.4, but with different initial surface temperatures for different facets (colour) and plan 
area fractions (λP) (marker). Iteration 0 is boiadj←iso → boiadj←a. Seasonal MBE and annual MAE are shown 
in Section Appendix 4. 
 

3.3.2. Evaluation of simulated brightness temperatures with observations 

The EnergyPlus simulated brightness surface temperatures using the above three methods 

can capture the main trend of observed diurnal pattern in an urban context (λP = 0.25, Fig. 

3.3) (Fig. 3.7). The proposed improvement (boiadj←a.5) results are more similar to the 

observations than the default method (boiadj←a). boiadj←a,5 brightness temperatures are 

slightly larger (0.1 °C in average) than boiadj←iso in this area because of the relatively low 

λP. It is expected that such difference will be much obvious when λP is high. This will be 

discussed in section 3.3.3.  

The simulated surface temperatures are impacted by the ground surface temperature 

being set to the same as air temperature, whereas it will have a larger range: warmer 

during the day and depending on view factors cooler/warmer at night (e.g. summer in 

London: impervious ground peak 10 °C warmer (cf. canopy air temperature peak), 

minimum 3 °C warmer (Morrison et al., 2020)). Therefore, assigning the air temperature 

to the ground can potentially underpredict the longwave radiation received by building 

external walls, and hence underpredict the wall surface temperatures. 
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Fig. 3.7. Comparison of simulated (assuming emissivity = 1, 10-min) and observed (hourly median, line) 
brightness temperatures (5th and 95th percentiles: shading) at the COSMO site (Fig. 3.3) on 2nd August 
2014. Observations are data from Morrison et al.'s Fig. 10c (2018). 
 

3.3.3. External wall (opaque part) surface temperature in London 

The longwave radiative calculation method selected (Section 3.3.1) changes the external 

building surface temperature diurnal cycle by facet orientation (Fig. 3.8a-f: north facing 

wall, g-x: south-facing wall - non-glass part). As expected, peak differences occur near 

solar noon, and when external surface temperatures are warmer than air temperature 

(Morrison et al., 2020, 2021).  

The neighbourhood density impacts the boi external building surface temperatures. The 

smallest differences between methods occurs for the lowest-density (λP = 0.1) 

neighbourhood. These differences are smaller at night (0.8 °C) than during the day (3 °C) 

in summer (Fig. 3.8c), and varies less in the winter (night=1 °C; day=1.5 °C, Fig 8f) for 

the north-facing wall. The south-facing wall surface temperature differences are smaller, 

but the median difference at midday is still as large as 2 °C in summer (Fig. 3.8i) and 1.2 

°C in winter (Fig. 3.8l). This suggests the default method (boiadj←a, #1, Table 3.1) in 

EnergyPlus introduces biases to the surface temperature in dense urban areas at London’s 

latitude. As the external building surface temperature is an important variable in 

EnergyPlus-related coupling (Zhang et al., 2013), such biases can result in further 

uncertainties.  
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The diurnal temporal pattern differs among the three methods, for example, timing of the 

surface temperature peak. In winter the north-facing wall (λP = 0.6) surface temperature 

assigned from isolated building to adj buildings (boiadj←iso; cf. boiadj←a) peaks later than 

the one after five iterations using the air temperature initially (boiadj←a,5; cf. boiadj←a) 

(Fig. 3.8f). The south-facing wall of the iso building is heated by the sun, surface 

temperatures continue to increase for a longer period after noon, and leads to more 

longwave radiation exchange for the boi north-facing wall. While for boiadj←a,5, south-

facing wall of the adj building becomes shaded around noon, so the longwave radiation 

starts to decrease earlier than for boiadj←iso. 

Daytime in winter, the north-facing wall surface temperature difference between 

boiadj←iso and boiadj←a is higher than for the other facet orientations for the denser areas 

(λP = 0.3 and 0.6; Fig. 3.8e, f). With the lower solar altitude in winter, much less direct 

solar radiation is received by the south-facing wall in denser neighbourhoods. Thus, the 

difference in south-facing wall (non-glass area) surface temperature between shaded and 

isolated buildings becomes much larger and further influences the longwave radiation 

calculated. This difference is more evident on days with larger fluxes (e.g. 75th 

percentile) than the median (Fig. 3.8f), because of the high frequency of winter cloudy 

periods (in the London TMY data) which reduces the solar radiation differences between 

isolated and surrounding buildings. Whereas on a clear winter day (30th December, i.e. at 

the 75th percentile), a large diurnal cycle of boiadj←iso occurs (Fig. 3.9). During the 

midday hours, the boiadj←iso surface temperature is greater than boiadj←a,5 by 2 °C. This 

does not occur for the south-facing wall, as the opposite adj north-facing walls are less 

influenced by the solar radiation compared to adj south-facing wall.  

The night-time surface temperature from the boiadj←iso method is cooler overall than when 

the boiadj←a,5 method is used, because of the lack of nocturnal longwave trapping. The 

underprediction is largest when λP = 0.6. These surface temperature differences are up to 

0.6 °C.  

View factors calculated by the EnergyPlus default method (i.e. as in boiadj←a) and Monte 

Carlo ray-tracing method (i.e. used in the following iterations) may introduce 

uncertainties. To address such impact, similar comparisons (as Fig. 3.8) are made in Fig. 

3.10 but with surface temperatures of boiadj←a simulated with the updated method (input 

Tadj and view factors independently). Results suggest that comparing with the updated 
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view factor calculating method for boiadj←a, the default method by EnergyPlus tends to 

underpredict surface temperatures of boiadj←a. Such underpredictions are greater at λP = 

0.3 and 0.6, which are up to 0.3 °C and 0.5 °C in median, respectively. The increase in 

surface temperatures of boiadj←a hence reduces difference between it and the other two 

cases (boiadj←iso and boiadj←a,5), especially at night due to the relatively smaller 

differences, but variations between spin-up (boiadj←a,5) and non-spin-up (boiadj←iso and 

boiadj←a) methods still exist. 

In summary, the boiadj←iso method causes large differences in wall surface temperatures 

compared to the method with the most iterations/spin-ups (boiadj←a,5). These differences 

are most evident at night and in the winter near noon.  

 
Fig. 3.8. Median diurnal cycle (lines) and inter-quartile ranges (shading) of (a-f) north-facing and (g-l) 
south-facing wall (non-glass part) surface temperature differences (hourly) using boiadj←iso and boiadj←a,5 or 
boiadj←a in summer (JJA) and winter (DJF) in London for plan area fractions (a,d,g,j) λP=0.1, (b,e,h,k) 
λP=0.3, (c,f,i,l) λP=0.6. 
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Fig. 3.9. London (λP = 0.6) clear winter day (30th December) diurnal differences in hourly north-facing wall 
surface temperature relative to boiadj←a when using boiadj←iso and boiadj←a,5. 
 

 
Fig. 3.10. As Fig. 3.8, but with boiadj←a calculated with updated view factors. 
 

3.3.4. Impact of longwave radiation method on building energy demand in London 

Choice of longwave radiative exchange method (Table 3.1) impacts the annual cooling 

and heating energy demands.  Simulations for London neighbourhoods with different λP 

show differences in energy demand, relative to base case (boiadj←a), to increase with λP 

(Table 3.3). The annual cooling energy demand is predicted to be larger using boiadj←iso 
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(cf. boiadj←a) by 12.4% (13% for boiadj←a,5), whereas annual heating energy demand is 

lower (cf. boiadj←a) by 3.1% (5% for boiadj←a,5) at λP = 0.6.  

These differences are large compared to previous studies. For example, Evins et al.(2014) 

's  study in Geneva (unspecified λP) predicts a 5.1% increase in cooling energy and 3.5% 

decrease in heating energy (boiadj←a to boiadj←iso). Similarly for Chicago (λP unknown), 

Luo et al. (2020) report a 0.2% - 3.2% increase in cooling energy and 0.2% - 3.6% 

decrease in heating energy (#1 to #3, Table 3.1). While Bouyer et al. (2011) model 

longwave radiation in an urban context (unspecified λP) in Lyon using a CFD-

thermoradiative coupling with their own building energy model. They obtain a larger 

impact (19.1% increase in building cooling energy and 9.3% decrease in heating energy) 

possibly due to the different simulation methods, building models and settings (e.g., 

building of interest - 7-stories located in a dense neighbourhood with large window-to-

wall ratio - 66.7% glazing area on all facets). Also by using CFD, the local wind can be 

modified by the neighbourhood, which will further influence the surface temperatures 

and building energy consumption. While in our study the influence of neighbourhood on 

wind is not considered in this study, but is included in other work of us (Tang et al., 2021 

, Chapter 5 and 7). 

This suggests neglecting neighbourhood characteristics’ (λP) influence on inter-building 

longwave radiation simulations (Table 3.3) may result in important differences in energy 

demand predictions. The EnergyPlus default longwave radiative exchange method is 

suitable for buildings in areas with λP < 0.1 as the longwave radiation from adj buildings 

is relatively small, but not if simulating building thermal energy performance in a 

relatively denser urban area (e.g., λP > 0.3). The boiadj←iso method tends to underpredict 

the annual cooling demand but overpredict the heating demand. 

Diurnal cycles of cooling and heating loads difference are shown in Fig. 3.11. Consistent 

with the building external surface temperature pattern (Fig. 3.8, 3.9), the peak cooling 

load of boiadj←a is the smallest and the heating load the highest. Similarly, peak load 

differences between the other two methods and the default method increase with λP. The 

heating load differences in the afternoon are closer to 0 at λP = 0.1 and 0.3 (Fig. 3.11b, d), 

because the more open neighbourhoods receive more solar radiation allowing the indoor 

air temperature to be above the heating setpoint (no heating is required). When λP = 0.6 

(Fig. 3.11f), heating is needed during the whole day in winter in all cases, creating larger 



 

38 

 

differences. In the densest neighbourhood (λP = 0.6), the peak cooling load difference 

between boiadj←a,5 and boiadj←a could be as high as 4 W m-2
 in summer (median), which is 

comparable to the internal heat gain of 4.17 W m-2 used in these simulations. In winter, 

the median difference is larger than 1 W m-2. Here, the nMBE (see section 3.2.4) is 

calculated with the hourly differences of cooling/heating load of boiadj←iso and boiadj←a,5 

(cf. boiadj←a). When λP = 0.6, hourly cooling load of both boiadj←iso and boiadj←a,5 nMBE 

are around 12% in summer (not shown), and for winter heating load are -4% and -2%, 

respectively. The summer values clearly exceed the ASHRAE 10% uncertainty limits 

(section 3.2.4). Hence, using the EnergyPlus default longwave radiative exchange 

method could introduce a non-negligible bias into the simulated loads.  

Table 3.3: (a) Annual cooling and heating energy demand and (b) percentage variation comparing with 
boiadj←a; (c) nMBE (section 3.2.4) of hourly load comparing with boiadj←a in London for different λP. 
  

λP 
(a) Energy demand (kWh)  (b) Percentage variation (%)  (c) nMBE (%) 

 boiadj←a boiadj←a.5 boiadj←iso  boiadj←a.5 boiadj←iso  boiadj←a.5 boiadj←iso 
 0.1 55.4 55.9 55.9  0.9 0.9  1.0 1.0 
Cooling 0.3 46.0 47.8 47.7  3.8 3.6  4.0 3.9 
 0.6 24.9 28.1 28.0  13.0 12.4  12.3 12.0 
 0.1 94.6 94.2 94.2  -0.5 -0.4  -0.3 -0.3 
Heating 0.3 96.9 95.0 95.3  -2.0 -1.6  -1.4 -1.2 
 0.6 107.3 101.9 104.0  -5.0 -3.1  -3.7 -2.3 
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Fig. 3.11. Median diurnal cycle (lines) and inter-quartile range (shading) of hourly cooling load differences 
in summer (JJA) and heating load differences in winter (DJF) from boiadj←a (default method) in London for 
plan area fraction (a,b) λP=0.1, (c,d) λP=0.3, (e,f) λP=0.6. (e) internal load (red dashed line) provides a 
reference for comparison. (b,d) winter for  λP = 0.1 and 0.3. All differences are < 0 because indoor 
temperatures are warmer than the setpoint, so heating system is not used. 
 

3.3.5. Indoor overheating risk in London 

To assess the impact on indoor overheating risk, we use the annual overheating degree 

hours above 26 °C and 28 °C (section 3.2.3) as the metric for our reference building in 

free-running condition in London (section 3.2.1). A building in a low-density 

neighbourhood (λP = 0.1) receives more shortwave radiation (than denser 

neighbourhoods) and therefore the overheating degree hours are larger (Table 3.4) given 

the other meteorological parameters (i.e., TMY weather data) are the same.  

In the densest neighbourhood (λP = 0.6), the predicted overheating degree hours for 

boiadj←a,5 are higher during the both the day (18 %, time period defined in section 3.2.3) 

and night (43%, Table 3.4) when using the boiadj←a,5 (cf. boiadj←a). These biases are large 

and comparable to effects of increasing external wall insulation (Porritt et al. 2012). 

Porritt et al. (2012) identified increasing external wall insulation as one of most effective 

interventions for mitigating overheating, as it could reduce the degree hours for living 

rooms (> 28°C) by 20-22% and bedrooms (> 26 °C) by 49–51% in the UK climate. The 

boiadj←iso method tends to underpredict the overheating risk (cf. boiadj←a,5), especially at 

night (12% less when λP = 0.6) as it cannot capture the effect of nocturnal longwave 

radiation trapping between buildings. 

Another overheating criteria, maximum indoor operative temperature (Top) (section 

3.2.3), set by BS EN 15251 (BSI, 2007) and CIBSE TM52 (CIBSE, 2013), can be 

assessed based on diurnal cycles (Fig. 3.12). The median differences in Top (boiadj←a,5 cf. 

boiadj←a) are 1.3 °C in summer. These are as large as the overheating risk assessment 

classes defined in BS EN 15251 (BSI, 2007) of  1 °C. Thus, the choice of longwave 

radiation method may lead to an overheating risk level misclassification. With night-time 

differences reaching 0.8 °C, and this period of the day overheating will become more 

critical than daytime for free-running buildings if occupants are indoors and unable to 

take adaptive interventions (e.g., open windows) when sleeping (Anderson et al., 2013).  
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As the discrepancy between existing methods (boiadj←a and boiadj←iso) is large, it is 

especially critical to use the iterative/spin-up inter-building longwave calculating method 

when assessing indoor overheating risk in cities. 

Table 3.4: London with different λP. simulated (a) annual overheating degree hours and (b) percentage 
variation (cf. boiadj←a, defined in section 3.2.4). Day (7:00 to 23:00, defined in section 3.2.3) and night 
(23:00 to 7:00) and indoor operative temperature thresholds are 28 °C (day) and 26 °C (night) (CIBSE, 
2006). 

 λP (a) Overheating degree hours  (b) Percentage variation (%) 
  boiadj←a boiadj←a.5 boiadj←iso  boiadj←a.5 boiadj←iso 
 0.1 16949 17147 17144  1.2 1.1 
Day 0.3 14261 15045 14990  5.5 5.1 
 0.6 7948 9398 9191  18.2 15.6 
 0.1 602 619 619  2.8 2.8 
Night 0.3 506 575 567  13.6 12.0 
 0.6 314 450 411  43.3 31.0 

 

 
Fig. 3.12. As Fig. 3.11, but indoor operative temperature Top differences. 
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3.3.6. Impact of latitude 

To consider if these results vary with latitude and therefore solar altitude, we simulate a 

transect North (Aberdeen) and South (Marseille) of London. As the densest 

neighbourhood (λP = 0.6) has the largest differences, we only present the simulations for 

λP = 0.6. 

3.3.6.1. North-facing wall surface temperature 

As the north-facing wall surface temperature is most influenced by the increased inter-

building longwave radiative exchange (section 3.3.3, Fig. 3.8), we select this for analysis. 

The surface temperature differences (Fig. 3.13) are generally larger for lower latitudes 

(i.e., Marseille > London > Aberdeen). The median midday simulated surface 

temperature using boiadj←a,5 are 2 °C warmer (cf. boiadj←a) in Aberdeen and 3 °C in 

Marseille in summer; whereas in winter these increases are slightly smaller (1.2 and 2.4 

°C, respectively). The nocturnal surface temperature differences are smaller between 

methods.  

Thus, latitudinal variations in shortwave radiation impact the inter-building longwave 

exchange. As lower latitudes can have higher solar altitudes, the adj south-facing wall 

receives more solar radiation allowing higher surface temperature at noon. Therefore, the 

directly opposite boi north-facing wall receives more longwave radiation, increasing its 

surface temperature.  

In winter, there is a large increase in midday surface temperatures for the boiadj←iso 

method used for London and Marseille, as the shortwave radiation at lower latitudes 

increases the difference between south-facing wall surface temperature of the isolated 

building (used as Tadj of boiadj←iso) and air temperature (used as Tadj of boiadj←a) (Terjung 

and O’Rourke, 1981).  
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Fig. 3.13. As Fig. 3.8, but north-facing wall surface temperature differences (hourly) in three locations: (a,b) 
Aberdeen, (c,d) London, (e,f) Marseille for λP = 0.6.  
 

3.3.6.2. Cooling/heating demand 

As the latitude decreases, annual cooling energy demand difference between the 

boiadj←a,5 and boiadj←a methods decreases (17% to 9%, Table 3.5) while difference in 

heating demand increases (4% to 6%). Whereas, the trend in absolute difference in 

energy demand is the opposite (Table 3.5: annual cooling demand increases from 1.7 

(Aberdeen) to 5.8 kWh (Marseille) and heating decreases (5.2 to 3.7 kWh). Relative 

differences in energy demand are commonly compared (e.g. Evins et al., 2014; Luo et al., 

2020), but as absolute consumption impacts both cost and carbon emission, it should not 

be neglected. 

Diurnal median peak cooling load differences between methods (boiadj←a,5 and boiadj←a) 

occur in around the mid-day and increase with decreasing latitude from 3 to 4.5 W m-2 

(Fig. 3.14) and the equivalent peak heating load differences are also larger (0.8 to 1.2 W 

m-2) and appearing during the similar period (except Marseille). In Marseille, a 
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fluctuation near mid-day impacts the heating when the indoor air temperature exceeds the 

heating setpoint (no heating is required). These trends of differences are consistent with 

diurnal cycle of cooling and heating loads, and hence are potentially influences by 

building-related settings. For instance, lowering the cooling setpoint and raising the 

heating setpoint can expand the period of HVAC system operation and may potentially 

increase the absolute differences in energy demand. Orientation of windows affect the 

time period when the indoor space is exposed to direct sunlight as well as the intensity, 

therefore influences the cooling/heating loads (Raftery et al., 2014). Other building 

envelope features (e.g. insulation, thermal mass and wind-to-wall ratios) will have an 

impact but are beyond the scope of this study. 

As shown in Table 3.5, summer hourly cooling load nMBE for boiadj←a.5 and boiadj←iso 

(cf. boiadj←a) in both Aberdeen and London are exceeding the ASHRAE ±10% 

uncertainty limit (section 3.2.4). This demonstrates the bias of simulated cooling 

(heating) load with EnergyPlus default longwave radiative exchange method is larger for 

higher (lower) latitudes. 

 
Table 3.5: As Table 3.3, but for locations at three latitudes. Percentage variation is related to the base value 
(cf. boiadj←a). 
 
  (a) Energy Demand (kWh)  (b) Percentage 

variation (%) 
 (c) nMBE (%) 

 λP = 0.6 boiadj←a boiadj←a.5 boiadj←iso  boiadj←a.5 boiadj←iso  boiadj←a.5 boiadj←iso 
Cooling Aberdeen 10.0 11.7 11.7  17.1 17.3  15.3 15.4 
 London 24.9 28.1 28.0  13.0 12.4  12.3 12.0 
 Marseille 61.2 67.0 66.6  9.4 8.8  8.3 7.8 
Heating Aberdeen 129.2 124.0 125.7  -4.1 -2.7  -2.7 -1.7 
 London 107.3 101.9 104.0  -5.0 -3.1  -3.7 -2.3 
 Marseille 59.8 56.1 57.6  -6.2 -3.7  -5.4 -3.5 
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Fig. 3.14. As Fig. 3.13 but cooling/heating load differences. In winter, Marseille’s differences are all less 
than 0 because of indoor temperatures being warmer than the setpoint, so heating system is not used. 
 

3.3.6.3. Overheating risk 

The annual overheating degree hours (Table 3.6), have a similar trend to the cooling 

energy demand (Table 3.5) with larger relative differences in Aberdeen because of the 

lower base value (60% at night, cf. 43% in London, 20 % in Marseille). The absolute 

difference in overheating degree hours is the largest in Marseille (Table 3.6). Diurnal 

median operative temperature differences (Fig. 3.15) indicate the default method tends to 

underestimate the peak, especially at lower latitudes. Summer median difference in peak 

increase from 1 °C in Aberdeen to 1.35 °C in Marseille (Fig. 3.15). As a bias of 1 °C can 

cause overheating risk misclassification (section 3.3.4), even in Aberdeen the default 

method underestimation should not be ignored. 

Table 3.6: As Table 3.4, but for three locations. Percentage variation is related to the base value (cf. 
boiadj←a).  

  (a) Overheating degree hours  (b) Percentage variation (%) 
  boiadj←a boiadj←a.5 boiadj←iso  boiadj←a.5 boiadj←iso 
Day Aberdeen 2491 3102 3050  24.5 22.4 
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 London 7948 9398 9191  18.2 15.6 
 Marseille 22258 25093 24666  12.7 10.8 
Night Aberdeen 39 62 619  60.1 46.5 
 London 314 450 411  43.3 31.0 
 Marseille 2814 3387 3216  20.4 14.3 

 

 
Fig. 3.15. As Fig 3.12, but indoor operative temperature differences (hourly) in three locations: (a,b) 
Aberdeen, (c,d) London, (e,f) Marseille for λP = 0.6.  

3.4. Discussion 

Prior work documented the importance of considering external longwave radiation in 

building energy simulations (Bouyer et al., 2011; Evins et al., 2014; Luo et al., 2020), but 

did not assess plan area ratios of different neighbourhoods. We apply an iterative/spin-up 

approach to the widely-used building energy simulation tool (i.e., EnergyPlus) to better 

determine the impacts of longwave radiative exchanges between buildings and further 

improve usability of the tool. One advantage of our proposed approach is that it does not 
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require extra external data inputs apart from the supply of view factors, which can be 

calculated in a variety of ways (e.g., Howell et al., 2010). Thus, the approach can be 

easily and widely applied to assess the impact of the urban setting on building internal 

and external thermal conditions and energy performance. 

Our findings extend current understanding of external longwave radiation on buildings 

by considering changes in urban plan area density and latitude. As denser 

neighbourhoods have larger building view factors, rather than sky, the longwave 

radiative fluxes between buildings are greater. Solar altitudes are larger for lower 

latitudes, which causes less shading on external building surfaces and higher surface 

temperatures, hence emitting greater longwave radiation. Therefore, differences in all 

metrics (e.g. energy demand and indoor overheating risk) compared to the default 

EnergyPlus option are found to be more evident in denser neighbourhoods. This indicates 

that the benefits gained from the updated approach may be particularly important for 

buildings located in dense neighbourhoods and low latitudes. As the urban population 

growth is expected to be greater at lower latitudes (United Nations, 2019) with increasing 

neighbourhood densities, our approach has a large potential to ensure more sustainable 

designs in these regions if taken into account. 

However, in our present work we use idealised neighbourhoods with identical buildings. 

In many neighbourhoods that may be reasonable but where there is a heterogenous mix 

of buildings, the surface temperature of adjacent buildings could be calculated by treating 

them as isolated individuals (Luo et al., 2020), as we find this bias to be smaller than the 

EnergyPlus default option. However, further improvement is needed for dense 

heterogenous neighbourhoods in low latitudes. Currently, the ground surface temperature 

is not updated (i.e. remains the same as air temperature from TMY inputs), this should be 

further explored in the future. Furthermore, we only consider one building type, many 

design options will have an impact (e.g. envelope features, building heights) on the 

outdoor variables and feedback to the indoor thermal environment in various ways, 

therefore could also be explored in future research. 

3.5. Conclusions 

Using EnergyPlus, the surface temperature for an adjacent building can be simulated 

using the air temperature provided (e.g. TMY) or from an isolated building if simulating 
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inter-building longwave radiative exchange. If these air temperature data are observations 

are based on standard WMO rural climate settings, they will not represent the urban 

climate properly (Tang et al., 2021; WMO, 2018). We conclude that none of the existing 

EnergyPlus methods allow realistic simulations if the building of interest (boi) is within a 

neighbourhood surrounded by other buildings. Here, we propose a model spin-up 

approach to account for adjacent buildings surface temperatures. When compared to 

existing methods to determine inter-building longwave radiative exchange, the surface 

temperature, building energy demand and overheating risks in various plan area fractions 

and climates are impacted. Key conclusions are: 

 At least five iterations/spin-up are needed when simulating the inter-building 

longwave radiative exchange in EnergyPlus, especially in dense neighbourhoods (λP 

= 0.6). With sufficient iterations, the initial adjacent building surface temperature 

chosen no longer matters. 

 Comparing the default EnergyPlus longwave radiative exchange method (assigning 

air temperature to adjacent building surfaces) to the spin-up method we propose: 

o Differences in metrics are small for low density neighbourhoods (λP = 0.1) but 

increase to unignorable for denser neighbourhoods (λP = 0.3 and 0.6). 

o Median external building surface temperature is underpredicted by up to 3 °C, 

which could become even larger with lower latitudes. 

o Annual cooling energy demand is underpredicted (up to 17%) and heating 

energy demand overpredicted (up to 6%) varying with climates when λP = 0.6. 

For lower latitudes, the absolute difference in peak cooling and heating loads 

are larger. 

o Annual overheating degree hours are underpredicted in the day (up to 25%) 

and night (60%) (λP = 0.6). Lower latitudes have larger absolute differences, 

but the relative differences tend to decrease. The median indoor operative 

temperature is underestimated, with larger impacts at lower latitudes (up to 

1.4 °C). 

 Using isolated building surface temperatures for adjacent buildings in a 

neighbourhood, nocturnal wall surface temperature is underpredicted (up to 0.6 °C). 

The winter north-facing wall temperature is largely overpredicted (~2 °C). Annual 



 

48 

 

cooling demand is underpredicted (up to 0.6%) and heating overpredicted (up to 

2.5%). Overall, indoor overheating risk is underpredicted, especially at night (up to 

13.6%). 
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Chapter 4 Use of wind pressure coefficients to simulate natural 

ventilation and building energy for isolated and surrounded 

buildings 

This chapter explores the issue of incorrectly used wind pressure coefficients in building 

energy simulations, and evaluate the resulting biases in various scenarios. Methods for 

modifying wind pressure coefficients in these scenarios are also proposed.  

This chapter has been published as a journal paper: Xie, X., Luo, Z., Grimmond, S., 

Blunn, L., 2022. Use of wind pressure coefficients to simulate natural ventilation and 

building energy for isolated and surrounded buildings. Building and Environment, 230, 

109951.  

I conducted the research, wrote the first draft, and created the figures. Z. Luo, S. 

Grimmond, and L. Blunn provided guidance on the paper's structure, interpretation of the 

findings, and editing of the text. 

 

Nomenclature 

A  Opening area (m2) 
Cd  Discharge coefficient of the opening 
Cp  Wind pressure coefficient 
Cpl  Wind pressure coefficient based on the (local) opening height 
Cpr  Wind pressure coefficient based on the (reference) roof height 
H  Roof height (m) 
qw  Wind-driven ventilation rate (m3 s-1) 
Pw  Wind pressure (Pa) 
U  Wind speed (m s-1) 
z  Opening height (m) 
α  Wind profile exponent 
δ  Height where a constant mean gradient wind speed is assumed to occur (m) 
λP  Plan area fraction 
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ρ  Outdoor air density (kg m−3) 
 
subscripts 

ref   Reference in the wind tunnel experiment 
EP   EnergyPlus 
free   Free stream wind 
met   Reference in the meteorological observation site 
r   Undisturbed rural wind 
u   Disturbed urbanised wind 
WT   Wind tunnel 

4.1.  Introduction 

Wind pressure coefficients (Cp) are key inputs for natural ventilation calculation in 

building energy simulations (BES) and multi-zone airflow models (e.g. AirflowNetwork 

(AFN) in EnergyPlus (EnergyPlus-AFN) (U.S. Department of Energy, 2020f), MacroFlo 

in IES-VE (Integrated Environmental Solutions, 2018), CONTAM and COMIS linkages 

with TRNSYS (TRNSYS, 2009)). Cp is the nondimensional ratio of wind pressure on the 

building surface to the dynamic pressure in the upstream undisturbed flow (Akins and 

Cermak, 1976) but is defined differently depending on the height of free stream dynamic 

pressure (Akins et al., 1979):  

𝐶௣௥(𝑧) =
௉ೢ (௭)

଴.ହ ఘ ௎೑ೝ೐೐
మ (ு)

                     (4.1) 

where H is a reference height (m, building roof/eave height), and alternatively the local 

opening height z (m) is used (Akins et al., 1979):  

𝐶௣௟(𝑧) =
௉ೢ (௭)

଴.ହ ఘ ௎೑ೝ೐೐
మ (௭)

                       (4.2) 

where Pw(z) is the wind pressure (Pa) measured on the building facet at height z (m), Ufree 

is the wind speed (m s-1) in the upstream undisturbed flow at H or z, and ρ is the outdoor 

air density (kg m-3) which is assumed constant. Typically, Cp is calculated as the average 

value across the entire building facet facing the flow (i.e. surface mean). 

Cp is widely applied in studies of natural ventilation potential (Costanzo et al., 2019; Luo 

et al., 2007; Tan and Deng, 2017; Yang et al., 2005), cooling energy savings (Lim et al., 

2017; Park and Lee, 2020; Ramponi et al., 2014b; Schulze and Eicker, 2013), indoor 

thermal comfort and overheating (Heracleous and Michael, 2018; Mavrogianni et al., 

2014; Schünemann et al., 2021; Stazi et al., 2017), and other applications like the solar 

chimney (Sung et al., 2013) and windcatcher (Sadeghi et al., 2020). Commonly the Cp 
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data sources used in BES (Table 4.1) are from (Cóstola et al., 2009): primary sources 

(e.g., full-scale experiments, wind tunnel experiments and CFD simulations for a specific 

building of interest); and secondary sources (e.g. databases with generic building 

archetypes derived often from wind tunnel experiments). In databases (Table 4.1), Cpr 

rather than Cpl data are provided and are the default values used in BES.  

Cp data, together with the reference wind conditions, are regarded as the major sources of 

uncertainties in multi-zone airflow models (Axley, 2007; Belleri et al., 2014). Therefore, 

applying Cp data correctly is important for more accurate estimation of natural ventilation 

rates. Cp data are dependent on many factors including the height of free stream dynamic 

pressure measured and the vertical wind profile which is modified by the surrounding 

buildings (Liddament, 1986; Swami and Chandra, 1987). However, these dependencies 

are often overlooked in BES, which could cause biases. Here we focus on EnergyPlus, as 

it is one of the most widely used open-source BES tools. Our aim is to critically explore 

potential biases of EnergyPlus-AFN simulation in three comparative Cp application 

scenarios (Fig. 4.1). 

Scenario 1: In EnergyPlus the surface averaged Cpr (𝐶௣௥
തതതത) data are usually used with wind 

speed at the opening height Ufree(z). This is inconsistent (Eq. 4.1 cf. Eq. 4.2) and can 

cause biases since Ufree(z) should be used with the surface averaged Cpl (𝐶௣௟
തതതത) (Fig. 4.1a). 

EnergyPlus options allow the use of either provided (Akins et al., 1979; Swami and 

Chandra, 1987) or user-supplied Cp data. In the latter case, the user also needs to indicate 

the height the Cp values are for (i.e., opening or reference), with the EnergyPlus default 

(i.e., if not modified) being the opening height (U.S. Department of Energy, 2020g). If 

the provided default Cp values are used, the opening height will be used (not explicitly 

stated in U.S. Department of Energy (2020b) but found in the source code (EnergyPlus, 

2022) and mentioned by Gimenez et al. (2018), Schulze and Eicker (2013) and Toesca et 

al. (2022). Hence, the provided 𝐶௣௥
തതതത value is used with wind speed at the opening height 

(z) instead of the reference roof height (H). This inconsistency between 𝐶௣௥
തതതത and 

freestream wind speed will cause biases in the wind pressure calculations if not 

corrected. Given this, we review current studies for choosing Cp if modelling natural 

ventilation in buildings using EnergyPlus-AFN (Table 4.2). Typically, if the detailed Cp 

settings are not mentioned, the supplied default 𝐶௣௥
തതതത values are assumed to be used. Of the 

studies stating the Cp settings (fully or partly), only four (Albuquerque et al., 2020; 
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Belmans et al., 2019; Bre and Gimenez, 2022; Toesca et al., 2022) of 27 (Table 4.2) use 

the correct combination of Cp and free stream wind speed (i.e. 𝐶௣௥
തതതത with Ufree(H) or 𝐶௣௟

തതതത 

with Ufree(z)). The other studies (where both Cp and Ufree are clear) all use 𝐶௣௥
തതതത with 

Ufree(z). Thus, this common bias (23 of 27 studies) caused by using 𝐶௣௥
തതതത with Ufree(z) 

needs to be assessed.  

Scenario 2: 𝐶௣௥
തതതത is defined using pressure and wind profiles from wind tunnel or CFD 

studies. If the wind profile in building energy models have systematic differences 

compared to the wind profile used to derive the pressure coefficients, then using the 

unmodified 𝐶௣௥
തതതത data will cause systematic errors in predicted pressure values (Fig. 4.1b). 

𝐶௣௟
തതതത is calculated with the wind speed at the same height as the wind pressure, so is not a 

function of the wind profile (Akins and Cermak, 1976; Swami and Chandra, 1987), and 

is directly applicable in BES with a different wind profile from the one used to derive 𝐶௣௟
തതതത 

in the wind tunnel or CFD study. However, this does not apply to 𝐶௣௥
തതതത because it is based 

on the wind speed at a reference height (Fang and Sill, 1995; Yang et al., 2008). For 

example, it is possible for different wind profiles to have the same wind speed at the 

reference height H. Neglecting differences in vertical wind profiles can cause biases. 

Potentially, this is a large problem as 𝐶௣௥
തതതത is widely used (Table 4.1, 4.2), and wind 

profiles in BES are normally different from the Cp source experiment wind profiles 

especially when using the secondary sources (11 of 27 studies in Table 4.2). When the 

wind profiles for both the 𝐶௣௥
തതതത source and the BES are known, the 𝐶௣௥

തതതത data can be 

modified appropriately. 

Scenario 3: If BES are combined with urbanised wind speed from urban canopy models, 

the free stream wind Cp values should be also accounted for the influence of the 

surrounding buildings (Fig. 4.1c). With increasing attention on urbanization and the 

impact of urban climate on building performance, efforts have been made to integrate 

BES with urban land surface or canopy models, such as combining EnergyPlus with 

Surface Urban Energy and Water Balance Scheme (SUEWS) (Järvi et al., 2011; Tang et 

al., 2021) and the Vertical City Weather Generator (VCWG) (Moradi et al., 2022). Urban 

canopy models can modify meteorological variables to better account for the impact of 

buildings on local climate which will influence wind pressure calculation. For example, 

SUEWS provides a mean neighbourhood vertical profile of wind speed (Tang et al., 
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2021; Theeuwes et al., 2019). This differs from the undisturbed wind used in Eq. 4.1 and 

4.2 which are default weather data inputs in EnergyPlus. In this case, Cp values need to 

be corrected if the local wind speed is used (Fig. 4.1c). This has been largely overlooked 

in existing urban-building coupling energy simulation studies (e.g., use of Cp for 

surrounded case and disturbed local wind speed as reviewed by Johari et al. (2020)). 

The objectives of this study are to: (1) quantify the bias arising from using inconsistent 

reference height and wind pressure coefficient combinations; (2) assess the bias arising 

from the inconsistence of approaching wind profiles between BES and the source 

deriving the wind pressure coefficients; and (3) discuss the correction of wind pressure 

coefficients when combining building energy simulation tools and urban climate models. 

 

 
 
Table 4.1: Summary of commonly used databases (DB#) of wind pressure coefficients (Cp) in building 
energy simulations (BES) either using reference height (Cpr) or the local height (Cpl). 𝐶௣௥

തതതത and 𝐶௣௥
തതതത refer to 

surface averaged Cpr and Cpl data, respectively. *Cpl data are also calculated but not used in ASHRAE 
Handbook of Fundamentals (ASHRAE, 2005) and EnergyPlus (U.S. Department of Energy, 2020f). In 
places information is not given (NG). Examples of where the data source are used in a BES tool as a 
default. Modified after Cóstola et al. (2009).  
DB# Cp Source Type Wind profiles in 

wind tunnel 
experiments 

Sheltering effects BES Default 

1 Akins et al. 
(1979) 

𝐶௣௥
തതതത 
and 
𝐶௣௟
തതതത* 

Provided Isolated EnergyPlus for high-rise 
buildings 

2 AIVC by 
Liddament 
(1986) 

𝐶௣௥
തതതത  NG Isolated, semi-exposed 

or sheltered (λP are not 
given) 

IES-VE and 
DesignBuilder 
(DesignBuilder, 2022) 

3 Swami and 
Chandra (1987) 

𝐶௣௥
തതതത NG Isolated, correction 

coefficients for 
ventilation rate 

EnergyPlus for low-rise 
buildings 

4 TPU (2007) 𝐶௣௥
തതതത Provided λP from 0.1 to 0.6 Used as external source 
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Table 4.2: Summary of types of Cp data and wind speed height used in EnergyPlus and Airflow Network 
(AFN) studies. All Cp values are surface averaged values. Following Cóstola et al. (2009), sources are 
either primary (1°) from wind tunnel (WT) experiments and computational fluid dynamics (CFD) 
simulations, or secondary (2°) from published databases (DB, with references to Table 4.1 indicated by #) 
or analytical tools for generic building archetypes. EnergyPlus-AFN studies that do not indicate the Cp 
method used, are assumed to use pre-provisioned Cpr values with wind speed at the opening height z. H 
refers to the reference building height. Sometimes information is not given (NG). 
Reference Cp 𝐶௣௥

തതതത or 
𝐶௣௟
തതതത 

Free stream wind 
speed height Source  Type 

Botti et al. (2022) 2° DB#3  𝐶௣௥
തതതത z 

Bre and Gimenez (2022) 1° CFD 𝐶௣௥
തതതത H 

Guo et al. (2022) 1° CFD NG NG 
Toesca et al. (2022) 2° UrbaWind (2022) 𝐶௣௥

തതതത H 
Dogan and Kastner (2021) 1°, 2° CFD, DB#3 𝐶௣௥

തതതത z 
Saif et al. (2021) 2° DB#2 𝐶௣௥

തതതത NG 
Sakiyama et al. (2021) 2° DB#3 𝐶௣௥

തതതത z 
Song et al. (2021) 1° WT 𝐶௣௟

തതതത NG 
Albuquerque et al. (2020) 1° CFD 𝐶௣௥

തതതത H 
Raji et al. (2020) 1° WT NG NG 
Sadeghi et al. (2020) 1° WT 𝐶௣௥

തതതത NG 
Bayraktar and Ok (2019) 1° WT NG NG 
Belmans et al. (2019) 1° CFD 𝐶௣௟

തതതത z 
Gimenez et al. (2018) 1° CFD 𝐶௣௥

തതതത z 
Kim et al. (2018) 2° DB#3 𝐶௣௥

തതതത z 
Short et al. (2018) 1° CFD NG NG 
Southall (2018) 2° DB#3 𝐶௣௥

തതതത  z 
Van Nguyen and De Troyer (2018) 2° Cp Generator (Knoll et al., 

1996) 
𝐶௣௥
തതതത  NG 

Bre et al. (2016) 2° DB#3 𝐶௣௥
തതതത  z 

Sorgato et al. (2016) 2° Cp Generator (Knoll et al., 
1996) 

𝐶௣௥
തതതത  NG 

Belleri et al. (2014) 1° WT NG NG 
Ramponi et al. (2014b) 1° WT 𝐶௣௥

തതതത  NG 
Joe et al. (2013) 1° CFD 𝐶௣௥

തതതത  NG 
Schulze and Eicker (2013) 2° DB#2 𝐶௣௥

തതതത  z 
You et al. (2013) 1° CFD 𝐶௣௥

തതതത  NG 
Carrilho Da Graça et al. (2012) 1° CFD NG NG 
Olsen and Chen (2003) 1° CFD 𝐶௣௥

തതതത NG 
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Fig. 4.1. Three scenarios (Section 4.1) to determine wind pressure coefficients (Cp ) all assume they are 
surface-averaged (𝐶௣௟

തതതത or 𝐶௣௥
തതതത) but with different wind profiles (U): (a) Scenario 1 are calculated with free 

stream wind speed at the opening height (Ufree(z)), (b) Scenario 2: 𝐶௣௥
തതതത is derived from wind tunnel (WT) 

wind profile (𝐶௣௥,ௐ்
തതതതതതതത) or from the EnergyPlus (EP) building energy simulation (𝐶௣௥,ா௉

തതതതതതതത); and (c) Scenario 3: 
𝐶௣௟
തതതത is based on disturbed urbanised (u) wind speed (𝐶௣௟,௨

തതതതതത) rather than an undisturbed free stream wind 
speed (𝐶௣௟,ௐ்

തതതതതതതത). 

4.2.  Methods 

To analyse the use of wind pressure coefficients in building energy simulation (BES), we 

use the BES tool EnergyPlus v9.4 (U.S. Department of Energy, 2020a) with Airflow 

Network (AFN) for ventilation rate calculation, and urban land surface model SUEWS 

(Järvi et al., 2011; Ward et al., 2016) to simulate urban wind profiles. The wind pressure 

coefficient (Cp) data are obtained from the Tokyo Polytechnic University’s aerodynamic 

database for low-rise buildings (TPU, 2007) under isolated and surrounded scenarios. 

A two-storey reference building (Fig. 4.2a) based on ASHRAE Case 600 

(ANSI/ASHRAE, 2011) is simulated for the Shanghai weather conditions in 2018 

(SUEWS outputs forced with ERA5 (Hersbach et al., 2020) for three settings:  

(1) a rural, isolated (Fig. 4.2a) 

(2) a neighbourhood with plan area fraction λP = 0.3 (Fig. 4.2b) 

(3) a neighbourhood with plan area fraction λP = 0.6 (Fig. 4.2c).  

Each floor of the building has a 3 m × 2 m window on the north and south facing walls, 

of which the upper 1/3 area hinged and openable to 20° for cross ventilation. For 

consistency with weather data, the building envelope thermal characteristics are set using 

the current local Shanghai building code (MoHURD, 2015). This has overall heat 
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transfer coefficients (U-values) of 0.39 W m-2 K-1 for the roof, 0.54 W m-2 K-1 for the 

external wall, 0.46 W m-2 K-1 for the floor, and 1.77 W m-2 K-1 for the windows. All 

windows are assumed to have 15% openable area and a discharge coefficient (Cd) of 

0.61.  

We calculate the natural ventilation rate, indoor overheating risk and energy saving 

potential. For the naturally ventilated mode, all windows are always open. The 

overheating risk is assessed using the Category II Chinese adaptive thermal model 

comfort corresponding to 75% satisfaction (MoHURD, 2012). For the southern zone 

(i.e., applicable for Shanghai) the upper (Tmax) and lower temperature limits (Tmin) are 

(MoHURD, 2012): 

      ൜
𝑇௠௔௫ = 0.73𝑇௥௠ + 12.72     (18℃ ≤ 𝑇௠௔௫ ≤ 30℃)

𝑇௠௜௡ = 0.91𝑇௥௠ − 3.69        (16℃ ≤ 𝑇௠௜௡ ≤ 28℃)
                  (4.3) 

where the running mean outdoor temperature Trm is: 

𝑇௥௠ = (1 − 𝑘)(𝑇௢ௗିଵ + 𝑘𝑇௢ௗିଶ + 𝑘ଶ𝑇௢ௗିଷ ⋯ + 𝑘଺𝑇௢ௗି଻)                   (4.4) 

where k is a constant between 0 and 1, with 0.8 used as recommended (Nicol and 

Humphreys, 2002), and Tod-n is the daily mean outdoor temperature n days ago (°C).  

The air-conditioning mode follows the Code for Thermal Design of Civil Building 

recommendation of heating (18 °C) and cooling (26 °C) setpoints (MoHURD, 2016). 

Windows can be open if air-conditioning is off and outdoor temperature is lower than 

indoor temperature. The cooling energy saving is calculated as the difference between the 

energy demand in hybrid mode (natural ventilation together with air conditioning) and 

fully air-conditioned mode. 

The indoor overheating metrics are hours and degree hours exceeding the upper limits of 

temperatures (Tmax) (Porritt et al., 2012). Local outdoor weather data required for 

EnergyPlus simulations for the two neighbourhoods are generated using SUEWS with 

the vertical profiles option of air temperature, relative humidity, and wind speed (Tang et 

al. (2021). Air temperature and wind profiles evaluations using observations at three sites 

have reasonable accuracy (Tang et al., 2021; Theeuwes et al., 2019). For the 

neighbourhood cases, solar shading and inter-building external longwave radiative 

exchanges are also considered (Chapter 3).  
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The normalised mean bias error (nMBE) assessment metric is used to compare two cases 

(x; y) for each of the three scenarios (Section 4.1, Fig. 4.1):  

𝑛𝑀𝐵𝐸 =
ଵ

ே

∑ (௬೔ି௫೔)ಿ
೔సభ

௫ഢഥ
∙ 100%    (4.5) 

where xi is the results from a consistent combination of Cp and level of U, and yi is the 

results from the inconsistent combination of these for each hour i in the year (total of N = 

8760 hours). The ASHRAE-14 Guideline (ASHRAE, 2014) acceptable uncertainty limits 

for building energy simulation programmes is set as the nMBE needs to be within ±10% 

for hourly data. 

 
Fig. 4.2. A reference building (8 m (L) × 8 m (W) × 6.4 m (H)) is simulated using EnergyPlus in: (a) a 
rural (isolated) site, and in neighbourhoods with a plan area fractions λP = (b) 0.3 and (c) 0.6. 

4.3.  Results 

4.3.1. Cpl & Ufree(z) vs Cpr & Ufree(z) for an isolated building 

First, we need to derive a relation between surface averaged 𝐶௣௟ (𝐶௣௟
തതതത) and 𝐶௣௥ (𝐶௣௥

തതതത). To 

obtain the surface averaged Cp over the facet one can either calculate Cp at several 

locations and average, or define 𝐶௣௟
തതതത as the constant value that gives the correct total wind 

pressure over the facet (Akins and Cermak, 1976). The latter is analogous to Santiago 

and Martilli's (2010) approach used for vertically distributed drag modelling of urban 

canopies, where the surface-averaged drag coefficient is the value giving the correct total 

drag over the building facet.  

Akins and Cermak (1976) suggested the differences between these two techniques are 

minimal, so we assume surface averaged Cp calculated with both methods are the same. 

We take the correct total wind pressure approach, which is defined by rearranging Eq. 4.1 

or 4.2 for 𝑃௪(𝑧) and integrating over the facet. For the pressure coefficient defined with 

velocity at the local opening height (Eq. 4.2) one finds: 



 

58 

 

𝐶௣௟
തതതത =

∫ ௉ೢ (௭)ௗ௭
ಹ

బ

∫ ଴.ହఘ௎೑ೝ೐೐
మ (௭)ௗ௭

ಹ
బ

   (4.6) 

and for the pressure coefficient defined with velocity at the building height (Eq. 4.1) one 

finds: 

𝐶௣௥
തതതത =

భ

ಹ
∫ ௉ೢ (௭)ௗ௭

ಹ
బ

଴.ହఘ௎೑ೝ೐೐
మ (ு)

   (4.7) 

By only integrating over height it has been assumed that Cp variations in the horizontal 

can be neglected or that 𝑃௪(𝑧) has first been horizontally averaged across the facet. The 

approach is practical since velocity profiles in building energy models normally have 

vertical variation, so horizontal variation of Cp is not included. 

To get the same average wind pressure over the building facet 
ଵ

ு
∫ 𝑃௪(𝑧)𝑑𝑧

ு

଴
, one can 

combine Eq. 4.6 and 4.7 so that: 

𝐶௣௟
തതതത ∙

ଵ

ு
∫ 0.5𝜌𝑈௙௥௘௘

ଶ (𝑧)𝑑𝑧
ு

଴
= 𝐶௣௥

തതതത ∙ 0.5𝜌𝑈௙௥௘௘
ଶ (𝐻)    (4.8) 

which after rearranging becomes: 

𝐶௣௟
തതതത = 𝐶௣௥

തതതത ∙
଴.ହఘ௎೑ೝ೐೐

మ (ு)

భ

ಹ
∫ ଴.ହఘ௎೑ೝ೐೐

మ (௭)ௗ௭
ಹ

బ

= 𝐶௣௥
തതതത ∙

௎೑ೝ೐೐
మ (ு)

భ

ಹ
∫ ௎೑ೝ೐೐

మ (௭)ௗ௭
ಹ

బ

    (4.9) 

To find 𝐶௣௟
തതതത , values for 𝐶௣௥

തതതത and an equation for the wind speed are required. 𝐶௣௥
തതതത data 

from the TPU (2007) database are used. Commonly in wind tunnel experiments (e.g. 

TPU (2007)), a power law is used to describe the undisturbed wind speed at height z: 

𝑈௙௥௘௘(𝑧) = 𝑈୰ୣ୤ ቀ
௭

௭౨౛౜
ቁ

ఈ

    (4.10) 

where Uref is the reference wind speed at height zref defined within the experiment, and 

the exponent α is an empirically derived coefficient. The vertically averaged wind speed 

is given by:   

ଵ

ு
∫ 𝑈௙௥௘௘

ଶ (𝑧)𝑑𝑧
ு

଴
=

ଵ

ு
∫ ቀ𝑈୰ୣ୤ ቀ

௭

௭౨౛౜
ቁ

ఈ

ቁ
ଶ

𝑑𝑧 =
௎౨౛౜

మ ுమഀ

୸ೝ೐೑
మഀ (ଶఈାଵ)

ு

଴
    (4.11) 

Substituting Eq. 4.10 and 4.11 into Eq. 9: 

𝐶௣௟
തതതത = 𝐶௣௥

തതതത
௎౨౛౜

మ ൬
ಹ

೥౨౛౜
൰

మഀ

ೆ౨౛౜
మ ಹమഀ

౰ೝ೐೑
మഀ (మഀశభ)

= 𝐶௣௥
തതതത(2𝛼 + 1)       (4.12) 
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Using Eq. 4.12 with 𝐶௣௥
തതതത data from the TPU database (vertical profiles of original Cpr data 

are shown in Supplementary Material Fig. A5.1a), the results for an isolated reference 

building are given in Table 4.3, as are the 𝐶௣௟
തതതത data. EnergyPlus is used with the power 

law velocity profile that is the same as in the wind tunnel experiment in the TPU 

database assuming a suburban terrain and an exponent α of 0.2. EnergyPlus simulations 

are conducted for Shanghai in 2018 under naturally ventilated and mechanical 

cooling/heating modes as described in Section 4.2. The normalised mean bias errors 

(nMBE) for the ventilation rate, indoor overheating risks and cooling/heating energy 

demand are calculated between 𝐶௣௟
തതതത & 𝑈௙௥௘௘(𝑧) and 𝐶௣௥

തതതത & 𝑈௙௥௘௘(𝑧). 

The 𝐶௣௥
തതതത with 𝑈௙௥௘௘(𝑧) underpredicts the annual air change per hour (ACH) ventilation 

rate (Fig. 4.3), with a nMBE of -15.5% (i.e., exceeding the ASHRAE-14 acceptable limit 

of ±10%). The annual overheating hours and degree hours are overpredicted by 11.9% 

and 12.9%, respectively. Such differences in overheating are found to largest during three 

consecutive heatwave days (13 to 15 July 2018, Fig. 4.4). During this period the 𝐶௣௥
തതതത & 

Ufree(z) case overpredicts the overheating hours and degree hours by 19.5% and 12.4%, 

respectively. Given the smaller ventilation rate, the nMBE in cooling energy saving is -

10.5%, again exceeding the ASHRAE-14 limit. This suggests confusing 𝐶௣௟
തതതത with 𝐶௣௥

തതതത 

should be avoided when modelling ventilation rates and indoor overheating risks of 

naturally ventilated buildings, as well as the resultant cooling energy saving.  

Table 4.3: Surface-averaged wind pressure coefficients based on the reference height H (𝐶௣௥
തതതത) and opening 

height z (𝐶௣௟
തതതത) by wind angle related to the facet (0° is when wind is normal to the facet). 𝐶௣௥

തതതത is obtained 
from the TPU (2007) database. 𝐶௣௟

തതതത is calculated by substituting 𝐶௣௥
തതതത into Eq. 4.12. 

 0° 45° 90° 135° 180° 
𝐶௣௥
തതതത 0.66 0.35 -0.57 -0.56 -0.28 

𝐶௣௟
തതതത 0.92 0.49 -0.80 -0.79 -0.40 
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Fig. 4.3. Distribution of annual ACH (air change per hour, N = 8760) calculated with surface averaged 
wind pressure coefficients based on the opening height z (𝐶௣௟

തതതത) and reference height H (𝐶௣௥
തതതത), with 

interquartile range (box), median (orange line) and 5th and 95th percentiles (whiskers). 
 

 
Fig. 4.4. Diurnal changes during three-day heatwave (13 - 15 July 2018) period in Shanghai for the upper 
floor (Fig. 4.2a) (a) indoor air temperatures, and (b) ventilation rates in ACH when calculated using the 𝐶௣௟

തതതത 
and 𝐶௣௥

തതതത. i.e., 𝐶௣௟
തതതത & 𝑈௙௥௘௘(𝑧) vs 𝐶௣௥

തതതത & 𝑈௙௥௘௘(𝑧). 

 

4.3.2. Cpr with wind profiles: wind tunnel vs outdoor  

Swami and Chandra (1987) and Akins et al. (1979) suggest 𝐶௣௟
തതതത is not a function of the 

wind profile given it is based on the wind at the opening height z, which is the same as 

pressure measurement height. After further testing (section Appendix 6), the results 

suggest that 𝐶௣௟
തതതത  independence on wind profile exponent α is acceptable.  

However, 𝐶௣௥
തതതത obviously depends on the wind profile. Therefore, when the wind profile 

in the building energy simulation is different from the wind tunnel experiment where the 

Cp data are derived, 𝐶௣௟
തതതത can be used directly without further corrections. If only 

undisturbed wind speed at height H is available (e.g., TMY (typical meteorological year) 

wind speed data at 10 m), the 𝐶௣௥
തതതത values should be corrected. The EnergyPlus outdoor 
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wind profile module determines the approaching wind speed profile U(z) as (ASHRAE, 

2005): 

𝑈(𝑧) = 𝑈௠௘௧ ቀ
ఋ೘೐೟

௭೘೐೟
ቁ

ఈ೘೐೟

ቀ
௭

ఋ
ቁ

ఈ

    (4.13) 

It is calculated with the wind speed measured at a meteorological station Umet (i.e., 

weather data input). Standard World Meteorological Organisation (WMO) wind speed 

measurement height (zmet) is 10 m above ground level (WMO, 2017). δ refers to the 

height where the vertical gradient of wind speed is assumed to become constant (Tang et 

al., 2021). Typical values are given in ASHRAE (2005) for different terrain types  For an 

isolated building in open country terrain α = αmet = 0.14 and δ = δmet = 270 m.  

Following Eq. 4.8, assuming 𝐶௣௟
തതതത data from the TPU database can be used directly (i.e. 

𝐶௣௟,ௐ்
തതതതതതതത = 𝐶௣௟,ா௉

തതതതതതത) the average wind pressure on the building facet (Fig. 4.4) is calculated 

as  

ଵ

ு
∫ 𝑃௪(𝑧)𝑑𝑧

ு

଴
= 𝐶௣௟,ௐ்

തതതതതതതത ∙
଴.ହఘ

ு
∫ 𝑈ா௉

ଶ (𝑧)𝑑𝑧
ு

଴
= 𝐶௣௥,ா௉

തതതതതതതത ∙ 0.5𝜌𝑈ா௉
ଶ (𝐻)   (4.14) 

and upon rearranging one finds 

𝐶௣௥,ா௉
തതതതതതതത = 𝐶௣௟,ௐ்

തതതതതതതത ∙
భ

ಹ
∫ ௎ಶು

మ (௭)ௗ௭
ಹ

బ

௎ಶು
మ (ு)

   (4.15) 

And similar to Eq. 4.12: 

𝐶௣௟,ௐ்
തതതതതതതത = 𝐶௣௥,ௐ்

തതതതതതതത(2𝛼ௐ் + 1)   (4.16) 

𝐶௣௥,ா௉
തതതതതതതത =

஼೛೗,ೈ೅തതതതതതതതതത

ଶఈಶುାଵ
= 𝐶௣௥,ௐ்

തതതതതതതത ∙
ଶఈೈ೅ାଵ

ଶఈಶುାଵ
   (4.17) 

where 𝐶௣௥,ா௉
തതതതതതതത and 𝐶௣௟,ா௉

തതതതതതത are used with the EnergyPlus wind speed (UEP), and 𝐶௣௥,ௐ்
തതതതതതതത and 

𝐶௣௟,ௐ்
തതതതതതതത are obtained in the wind tunnel experiment.  

To quantify the bias from neglecting the impact of vertical wind profile on Cpr, we model 

the isolated reference building in EnergyPlus, and calculate the ventilation rate, indoor 

overheating risks and cooling energy demand with both modified 𝐶௣௥,ா௉
തതതതതതതത and unmodified 

𝐶௣௥,ௐ்
തതതതതതതത obtained from the TPU database directly (Table 4.4). In the TPU database the 

wind profile exponent is αWT = 0.2. The default EnergyPlus wind profiles exponents (αEP) 

are 0.14, 0.22 and 0.33, for open, rough and urban terrain (ASHRAE, 2005), 

respectively.  



 

62 

 

Results (Fig. 4.5) show there are biases if unmodified 𝐶௣௥,ௐ்
തതതതതതതത is used along with varying 

αEP. When αEP < αWT, 𝐶௣௥,ௐ்
തതതതതതതത is smaller than 𝐶௣௥,ா௉

തതതതതതതത, hence the ventilation rate is 

underpredicted when using 𝐶௣௥,ௐ்
തതതതതതതത. At αEP = 0.14, the nMBE in ACH is -4.5%, which is 

within the acceptable range of ASHRAE-14. The annual indoor overheating hours and 

degree hours are overpredicted by 2.3% and 3.7%, respectively. During the heatwave (13 

to 15 July 2018) the overpredictions slightly increase to 8.0% and 4.4%. nMBE in 

cooling energy saving is -3.3%. With αEP = 0.22 and 0.33, the ventilation rates are 

overpredicted resulting in underpredicted overheating risks and overpredicted cooling 

energy saving (Fig. 4.5). Although all the biases are smaller than the ±10% ASHRAE-14 

limit, they would increase in rougher terrain as the wind profile exponent increases.  

 
Table 4.4: Surface-averaged wind pressure coefficients from the wind tunnel experiment (𝐶௣௥,ௐ்

തതതതതതതത) (TPU, 
2007) and corrected with Eq. 4.17 (𝐶௣௥,ா௉

തതതതതതതത). The wind angles are related to the surface (0° refers to wind 
blowing perpendicular to the facet). 

 α 0° 45° 90° 135° 180° 
𝐶௣௥,ௐ்
തതതതതതതത 0.2 0.66 0.35 -0.57 -0.56 -0.28 

𝐶௣௥,ா௉
തതതതതതതത 0.14 0.72 0.38 -0.62 -0.61 -0.31 

0.22 0.64 0.34 -0.55 -0.54 -0.27 
0.33 0.56 0.30 -0.48 -0.47 -0.24 

 

 
Fig. 4.5. Normalized mean bias errors (nMBE) linked to using unmodified 𝐶௣௥,ௐ்

തതതതതതതത from the wind tunnel 
experiment compared to modified 𝐶௣௥,ா௉

തതതതതതതത for three EnergyPlus wind profiles exponents (αEP) for (a) 
ventilation rate in ACH, (b) difference in annual overheating risks and (c) cooling energy saving. 
 

4.3.3. Wind pressure coefficients for urban climate models 

When local outdoor weather data are derived from urban climate models, the influence of 

the neighbourhood buildings are considered, but when calculating building facet wind 

pressure an ‘undisturbed’ flow is assumed in Eq. 4.1 and 4.2. For example in SUEWS, 

the horizontally averaged neighbourhood wind speed is calculated for the roughness 

sublayer (RSL) based on a modified MOST (Monin–Obukhov similarity theory) 
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approach (Theeuwes et al., 2019). Similar methods are used in other models like the 

Vertical City Weather Generator (Moradi et al., 2022). The advantages of using RSL 

wind are in calculating convective heat transfer on building surfaces and single-sided 

ventilation. But the cross-ventilation calculation will be biased if the urbanised wind 

speed is not used with corrected Cp values.  

In SUEWS, the undisturbed wind profile can be modelled with an open rural setting (Ur), 

and the disturbed RSL wind profile can be modelled using different urban settings (Uu). 

To get the average wind pressure across the building facade: 

ଵ

ு
∫ 𝑃௪(𝑧)𝑑𝑧

ு

଴
= 𝐶௣௟,ௐ்

തതതതതതതത ∙
଴.ହఘ

ு
∫ 𝑈௥

ଶ(𝑧)𝑑𝑧
ு

଴
= 𝐶௣௟,௨

തതതതതത ∙
଴.ହఘ

ு
∫ 𝑈௨

ଶ(𝑧)𝑑𝑧
ு

଴
   (4.18) 

𝐶௣௟,௨
തതതതതത = 𝐶௣௟,ௐ்

തതതതതതതത ∙
∫ ௎ೝ

మ(௭)ௗ௭
ಹ

బ

∫ ௎ೠ
మ(௭)ௗ௭

ಹ
బ

   (4.19) 

where 𝐶௣௟,௨
തതതതതത is the corrected wind pressure coefficient for use alongside with the RSL 

wind (Uu) assuming the vertical profiles of Uu and Ur have the power law format of Eq. 

4.13. Details of obtaining power law vertical profiles of Uu and Ur applicable for use with 

EnergyPlus are given in Tang et al. (2021). Eq. 4.19 can be re-written as: 

𝐶௣௟,௨
തതതതതത = 𝐶௣௟,ௐ்

തതതതതതതത ∙
௎ೝ

మ(ଵ଴)ுమഀೝఋೠ
మഀೠ(ଶఈೠାଵ)

௎ೠ
మ(ଵ଴)ுమഀೠఋೝ

మഀೝ(ଶఈೝାଵ)
   (4.20) 

Since the RSL wind have lower velocities than the undisturbed wind, 𝐶௣௟,ௐ்
തതതതതതതത values need 

to be scaled to larger magnitudes (𝐶௣௟,௨
തതതതതത) to obtain the same wind pressure. To quantify 

the biases of using the disturbed RSL wind speed Uu with Cpl,WT, we consider two 

idealised neighbourhoods with aligned buildings in EnergyPlus with plan area fractions 

of λP = 0.3 and 0.6, with the surface-averaged Cp values given in Table 4.5 (original 

Cpr,WT  vertical profiles are shown in Fig. A5.1b, c).  

For the neighbourhood with a λP of 0.3, using 𝐶௣௟,ௐ்
തതതതതതതത with the RSL wind Uu(z) largely 

underpredicts the ventilation rate, with an annual nMBE of -19.0%, exceeding the 

ASHRAE-14 acceptable uncertainty limits. The annual indoor overheating hours and 

degree hours are overpredicted by 5.9% and 13.2%, respectively. During the heatwave 

(13 to 15 July 2018), the indoor overheating hours difference is 0, because in both cases 

the indoor air temperature exceeds the maximum temperature threshold throughout (Fig. 
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4.6a), but the overprediction in degree hours increases to 18.4%. The nMBE in cooling 

energy saving is -14.0%.  

Additionally, the ventilation rate is simulated with 𝐶௣௟,ௐ்
തതതതതതതത and the free stream wind Ur(z) 

to evaluate Eq. 4.18. Results (Fig. 4.7), as expected, suggest that using 𝐶௣௟,ௐ்
തതതതതതതത with Ur(z) 

and 𝐶௣௟,௨
തതതതതത with Uu(z) give very similar results (nMBE = 0.8%). The small differences are 

possibly due to the buoyancy-driven ventilation dominating, since the wind speed input 

to EnergyPlus is also used for calculations of both convection and indoor air temperature. 

Generally for the λP = 0.6 neighbourhood, the biases are slightly smaller (cf. λP = 0.3) 

because of the lower wind speeds. The nMBE for the ventilation rate is -16.2%, while the 

annual indoor overheating hours and degree hours are overpredicted by 4.7% and 9.0%, 

respectively. However, during the heatwave (Fig. 6b) when ventilation rates are small, 

differences in overheating hours become 20.3%. The nMBE in cooling energy saving is -

9.6%.  

In summary, when modelling naturally ventilated buildings using urbanised wind speeds, 

correcting the Cp data correspondingly is important. Increasing λP can lead to slightly 

smaller annual biases, but during heatwaves when the natural ventilation rates are small, 

larger biases can be seen. 

 

Table 4.5: Surface-averaged wind pressure coefficients from the wind tunnel experiment (𝐶௣௥,ௐ்
തതതതതതതത) (TPU, 

2007), calculated with Eq. 4.12 (𝐶௣௟,ௐ்
തതതതതതതത) and corrected with Eq. 4.20 (𝐶௣௟,௨

തതതതതത) for urbanised wind (Uu) for two 
plan area fractions (λP = 0.3 and 0.6) for different wind angles (0° refers to wind blows perpendicular to the 
facet). 

  0° 45° 90° 135° 180° 
λP = 0.3 𝐶௣௥,ௐ்

തതതതതതതത 0.15 0.05 -0.22 -0.24 -0.16 

𝐶௣௟,ௐ்
തതതതതതതത 0.21 0.07 -0.31 -0.34 -0.22 

𝐶௣௟,௨
തതതതതത 0.34 0.11 -0.51 -0.55 -0.37 

λP = 0.6 𝐶௣௥,ௐ்
തതതതതതതത -0.13 -0.09 -0.17 -0.20 -0.21 

𝐶௣௟,ௐ்
തതതതതതതത -0.18 -0.13 -0.24 -0.28 -0.29 

𝐶௣௟,௨
തതതതതത -0.66 -0.46 -0.86 -1.02 -1.07 
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Fig. 4.6. As Fig. 4.4, but using surface-averaged wind pressure coefficients from wind tunnel experiments 
(𝐶௣௟,ௐ்
തതതതതതതത) (TPU, 2007) and corrected with Eq. 4.20 (𝐶௣௟,௨

തതതതതത) at for two neighbourhoods when λP is (a, c) 0.3 
and (b, d) 0.6, for (a, b) air temperature and (c, d) ventilation rate in ACH. 

 

 
Fig. 4.7. As Fig. 4.3, but for modelling ventilation rate (as ACH) with three combinations of 𝐶௣௟

തതതത and U(z). 
𝐶௣,ௐ்
തതതതതതത & 𝑈௥(𝑧) and 𝐶௣,௨

തതതതത & 𝑈௨(𝑧) give the similar results but vary slightly due to differences in buoyancy-
driven ventilation, whereas assuming 𝐶௣,ௐ்

തതതതതതത & 𝑈௨(𝑧) is inconsistent and therefore biased. 

4.4.  Discussion 

There are various assumptions and approximations made for Cp to simplify the 

calculation of wind pressure on building facets that can cause various uncertainties. Some 

of these have been assessed previously, such as those linked to the surface averaged 

values and different data sources (Cóstola et al., 2010; Ramponi et al., 2014a). Most 
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common sources of Cp data provide surface averaged values based on the reference 

height (𝐶௣௥
തതതത), rather than being based on the opening height (𝐶௣௟

തതതത). Given the definition 

(Eq. 4.7), 𝐶௣௥
തതതത data needs to be corrected in some circumstances, but this appears to have 

been overlooked in most existing studies. In this study we explore three scenarios to 

quantify biases from inconsistent combination of Cp value and wind speed. 

In each scenario we find critical differences, which impact the resulting predictions 

especially of ventilation rates and indoor overheating risks for naturally ventilated 

buildings. These findings confirm that natural ventilation rate calculations are sensitive to 

the Cp and wind data used. Notably, we revise the relation between the 𝐶௣௥
തതതത and 𝐶௣௟

തതതത that 

has often been neglected in building energy simulations. Our results demonstrate the 

importance of modifying Cp data for wind conditions, including the wind speed height, 

wind profile and terrain surface type (e.g. extensive grass – ‘undisturbed’, 

neighbourhoods at different λP – ‘disturbed’ or ‘urbanised’).  

There are limitations in our work. Although surface averaged Cp data are widely used, 

their errors (cf. local Cp data) are assumed relatively smaller if openings are located in 

the facet centre instead of edges where extreme values occur (Cóstola et al., 2010). 

Hence, we only consider windows located in the centre of each facet. We consider only 

one climate type, but expect that relative results should be similar across different 

climates, as found by Ramponi et al. (2014a). Future work could evaluate a wider range 

of climates and different building geometries (e.g., gable and hip roofs). 

4.5.  Conclusions 

Wind pressure coefficients are widely used in building energy simulations (BES) to 

calculate the ventilation rate. However, wind pressure coefficients may be used 

inappropriately given their assumptions and simplifications. Users obtain them from 

datasets that most commonly have a fixed reference height H (hereafter Cpr) but some 

use a local opening height z (hereafter Cpl). From analysis of three typical scenarios, we 

conclude these impacts are critical especially when simulating natural ventilation rates, 

indoor overheating and cooling energy saving. By using surface averaged Cpr (𝐶௣௥
തതതത) data 

in BES directly in Shanghai climate, biases can potentially lead to: 

(1) if using free stream wind speed at z in EnergyPlus, rather than the velocity at H 
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 nMBE = -15.5% in predictions of ventilation rate, 11.9% for indoor overheating 

hours and 12.9% for overheating degree hours, and -10.5% for cooling energy 

saving 

(2) if using wind profiles that differ from the wind tunnel and CFD studies used to derive 

the pressure coefficients 

 relatively small errors (nMBE of ventilation rate of up to 8.4%), but these may 

increase when there are greater differences between wind tunnel experiment and 

BES wind profile exponents 

(3) if using urbanised wind speeds, but 𝐶௣௥
തതതത is calculated based on free stream wind 

speeds 

 large errors in ventilation rates (nMBE of up to -19.0%), indoor overheating risks 

(differences in annual hours and degree hours of up to 5.9% and 13.2%, 

respectively) and cooling energy saving (nMBE of up to -14.0%) when two 

different neighbourhoods (λP = 0.3 and 0.6) are considered. 

Furthermore, all of these biases increase during heatwave periods. 

Clearly these biases should be considered when simulating the impact of natural 

ventilation using building energy simulation tools. To improve the accuracy of natural 

ventilation rate prediction in BES we recommend: 

 Cp data should be used with the free stream wind speed at a consistent height, i.e. 

reference height H for 𝐶௣௥
തതതത, or local opening height z for 𝐶௣௟

തതതത. For power law wind 

profiles, 𝐶௣௥
തതതത and 𝐶௣௟

തതതത can be interconverted with Eq. 4.12. 

 As the wind profile in BES could be different from the ones in wind tunnel and CFD 

studies where 𝐶௣௥
തതതത are derived, care is needed with which Cp data are used.  𝐶௣௟

തതതത this 

can be used directly, but not for 𝐶௣௥
തതതത data. The latter should be corrected based on 

wind profiles in the BES and the wind tunnel/CFD studies (e.g., Eq. 4.17). 

 When BES use urbanised wind speed (i.e., not ‘undisturbed’), Cp data should be 

corrected to account for the relation between undisturbed free stream and urbanised 

wind (Eq. 4.19). 

 



 

68 

 

Chapter 5 Predicting natural ventilation potential in idealised urban 

neighbourhoods across Chinese climate zones 

Building energy simulations typically use rural weather data, which is not representative 

of urban areas where most buildings are located. In the previous two chapters, methods 

were proposed to improve EnergyPlus's ability to simulate urban buildings. This chapter 

demonstrates the application of the improved SUEWS-EnergyPlus method in idealised 

scenarios, specifically predicting natural ventilation potential (NVP) in buildings located 

in three urban neighbourhoods in five Chinese cities with different climate zones. The 

aim is to highlight the importance of considering the neighbourhood or local-scale 

climate when assessing NVP and to demonstrate a method to improve the accuracy of 

NVP predictions using EnergyPlus in urban areas. 

This chapter is written in the format of a journal paper, with Xie, X., Luo, Z., Grimmond, 

S., Sun, T. as authors. As the primary author, I conducted the research, wrote the first 

draft, and created the figures, while Z. Luo, S. Grimmond, and T. Sun provided guidance 

on the conception and structure of the paper, interpretation of the findings, and text 

editing.  

 

5.1. Introduction 

The Paris Agreement calls on countries to cut carbon emissions to meet the target of 

limiting global warming to preferably 1.5 °C compared to pre-industrial levels (UN, 

2015). In 2019, carbon emissions from the operation of buildings accounted for 28% of 

total global energy-related carbon emissions (UNEP, 2020). Although in China building 

operation contributes to 21.6 % of national carbon emissions (CABEE, 2021), China's 
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building energy consumption is expected to continue to rise with urbanisation and 

climate change. Thus, it is important but challenging to improve energy efficiency. 

Natural ventilation is a key passive cooling strategy used to achieve low-carbon building 

design. It reduces energy consumption, and improves occupants’ health, comfort, and 

productivity (Emmerich et al., 2001). As the effectiveness of natural ventilation depends 

on the outdoor weather conditions, these impacts need to be assessed. 

Natural ventilation potential (NVP) is defined as the possibility (or probability) of 

achieving acceptable indoor thermal comfort and air quality through natural ventilation 

alone (Luo et al., 2007). It has been studied worldwide using different methods and 

metrics (Table 5.1), but assessing NVP can be difficult due to its sensitivity to factors 

such as weather, climate, building design, and the surrounding environment (Yin et al., 

2010).  

Climate-based approaches provide broad geographic NVP variations using outdoor air 

temperature and wind speed (Wang and Malkawi, 2019), for use in the early design stage 

when detailed building information is unavailable (outdoor data analysis, Table 5.1). For 

example, Chen et al.'s (2017) global analysis using typical meteorological year (TMY) 

data found temperate climates (e.g. subtropical highland, Mediterranean) tend to have 

larger NVP compared to more extreme climates (e.g. tropical, subarctic). Humidity has 

also been identified as being important when assessing NVP in hot-humid climates 

(Causone, 2016). 

Using building energy simulation tools (e.g. EnergyPlus (U.S. Department of Energy, 

2020a), TRNSYS (2009), DeST (Yan et al., 2008), IES-VE (Integrated Environmental 

Solutions, 2018)) NVP assessments can account for building design elements (building 

simulation, Table 5.1) including impacts such as the internal heat gain, building 

envelope, occupancy schedule and ventilation pattern. Building energy simulation tools 

have proven ability to accurately simulate indoor thermal environments, if detailed and 

accurate input data are provided (Anđelković et al., 2016; Royapoor and Roskilly, 2015).  

Originally (and typically) building energy simulation tools treat buildings as being 

isolated, using weather data input acquired from meteorological stations located in open 

country. However, the climate in urban areas is known to differ from surrounding rural 

areas due to various aspects of the urban environment potentially affecting natural 
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ventilation (Oke et al., 2017a). Under wind-driven ventilation conditions the airflow 

pattern is influenced by surrounding buildings modifying the wind pressure on building 

facades (van Hooff and Blocken, 2010; Yang et al., 2008; Zhang et al., 2005). Whilst 

buoyancy-driven ventilation is affected by warmer outdoor air temperatures caused by 

the canopy layer urban heat island effect (WMO, 2023), which is a result of the building 

fabric affecting heat storage and waterproofing (Grimmond et al., 1986; Grimmond and 

Oke, 1999a), anthropogenic heat release from human activities (Allen et al., 2011; Sailor, 

2011), trapped longwave radiation (Xie et al., 2022) and reduced wind speed (WMO, 

2023). 

Considering these impacts, assessing buildings in the urban environment using rural 

weather data will cause biases. Some have accounted for urban climate in building 

energy simulation (Frayssinet et al., 2018; Johari et al., 2020), with most assessing urban 

buildings NVP using  computational fluid dynamic (CFD) models (Table 5.1) to obtain 

air flow (Toparlar et al., 2017). However, CFD methods are dependent on the 

meteorological boundary conditions and the building morphology details, and their high 

computational costs make them unsuitable for long-term and large-scale simulations. 

Long-term modelling using EnergyPlus has accounted for urban climate, by modifying 

weather data using a simple urban heat island scenario that considers the air temperature 

only, so natural ventilation cooling energy savings can be simulated (Ramponi et al., 

2014). However, their urban heat island prediction only considers a fixed UHI 

magnitude, which does not account for neighbourhood density (or plan area fraction), 

and thus may not fully represent the local climate. Tong et al. (2017) accounted for local 

atmospheric conditions on NVP for super high-rise buildings using Monin-Obukhov 

similarity theory (MOST) approach. However, MOST applies in the inertial sublayer (a 

layer that begins 2 to 5 times above the mean canopy height) if present but not in the 

roughness sublayer (Grimmond and Oke, 1999b; Theeuwes et al., 2019). Also, the 

analysis did not consider inter-buildings impacts such as radiation and canopy layer 

urban heat island.  

In this study, we propose a more practical method to simulate natural ventilation 

potential (NVP) of buildings in urban settings that combines the urban land surface 

model SUEWS (Järvi et al., 2011) and the building simulation tool EnergyPlus (U.S. 

Department of Energy, 2020a). The objectives are to: (1) improve EnergyPlus’s ability to 
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predict NVP in the urban environment, (2) analyse impacts of urban climate on the NVP, 

and (3) investigate how NVP changes with neighbourhood plan area fraction of buildings 

and climate. 
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Table 5.1: Summary of studies on natural ventilation potential (NVP) by date. Weather data source: open - standard rural meteorological station; urban - on-site observation 
or CFD modelling. NVP Metric: NV-hours - natural ventilation hours; PDPH - pressure difference Pascal hours; NVCE – natural ventilation cooling effectiveness (Yoon et 
al., 2020), ratio of actual ventilation heat loss rate to required ventilation heat loss rate. NV criteria: T - air temperature, U -wind; RH - relative humidity. Method of NVP 
calculation: OutMet – outdoor meteorological data, BS - Building simulation, OuInMet - Outdoor/indoor data analysis. 
City Location NVP Method Effective NV criteria BS tool Weather 

data 
NVP Metric Urban 

Met  
Reference 

T U RH Others 
Townsville, 
Australia 

OutMet √ √ √  - Open Number of occasions  (Aynsley, 1999) 

Multiple China BS √ √   Own model Open PDPH  (Yang et al., 2005) 
Athens, Greece OutMet √ √  Noise, 

pollution 
- Urban No metrics - Method 

development 
T, U (Ghiaus et al., 2006) 

Multiple China BS √ √   Own model Open NV-hours, PDPH  (Luo et al., 2007) 
Basel, Switzerland OuInMet  √ √  Noise, 

pollution 
- Urban NV-hours T, U (Germano, 2007) 

Multiple China BS √    Own model Open NV-hours  (Yao et al., 2009) 
Multiple China BS √ √ √  Own model Open NV-hours  (Yin et al., 2010) 
Vejle, Denmark BS √    EnergyPlus Open NV-hours  (Oropeza-Perez and Østergaard, 

2013) 
Multiple Europe OuInMet √ √   - Open NV-hours  (Faggianelli et al., 2014) 
Multiple China BS √  √  DeST and CFD Urban Mean ventilation rate T, RH (Li and Li, 2015) 
Multiple India  BS √ √   TRNSYS Open PDPH  (Patil and Kaushik, 2015) 
Multiple US  BS √    EnergyPlus Open Target air change rate  (Hiyama and Glicksman, 2015) 
State College, US BS √ √   IES-VE Open NV-hours  (Cheng et al., 2016) 
Multiple Global OutMet √  √  - Open NV-hours  (Causone, 2016) 
Multiple China BS √  √ Pollution EnergyPlus Open NV-hours  (Tong et al., 2016) 
Multiple US  OutMet √ √ √  - Urban NV-hours T, U, RH (Tong et al., 2017) 
Multiple Europe BS √   Pollution EnergyPlus Open NV-hours  (Martins and Carrilho Da Graça, 

2017) 
Multiple Global  OutMet √ √   - Open NV-hours  (Chen et al., 2017) 
Multiple Australia  BS √    TRNSYS Open NV-hours  (Tan and Deng, 2017) 
Multiple Spain BS √  √  DesignBuilder Open NV-hours  (Pesic et al., 2018) 
Multiple North 
America 

BS √    Own model + CFD Open NV-hours  (Cheng et al., 2018) 
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Boston, US BS √ √   Own model + CFD Urban NV-hours T, U (Wang and Malkawi, 2019) 
Multiple China BS √    EnergyPlus Open NV-hours  (Chen et al., 2019) 
Chongqing, China BS √   Pollution EnergyPlus + CFD Urban NV-hours T (Costanzo et al., 2019) 
Multiple US BS √ √   EnergyPlus Open NVE  (Yoon et al., 2020) 
Chambéry, France BS √ √   EnergyPlus Open NV-hours  (Sakiyama et al., 2021) 
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5.2. Methods 

To study the impact of urban climate on building natural ventilation potential (NVP), we 

couple the local-scale land surface model Surface Urban Energy and Water Balance 

Scheme (SUEWS) v2021a (SuPy v2021.11.20) (Järvi et al., 2011; Sun et al., 2020; Sun 

and Grimmond, 2019; Tang et al., 2021; Ward et al., 2016) and the building energy 

simulation tool EnergyPlus v9.4 (U.S. Department of Energy, 2020a). Representative 

cities from five different climate zones in China are selected to consider the climate 

variations.  

5.2.1. Urban microclimate modelling 

The urban surroundings could affect the natural ventilation of a building of interest (Fig. 

5.1) in multiple ways (Fig. 5.2) by directly impacting the driving potential of NV 

(buoyancy force and wind-driven force). Specifically, the street geometry in urban areas 

can result in a decrease in wind speed, leading to a reduction in wind-driven natural 

ventilation rate. The urban heat island can lead to smaller temperature differences 

between indoor and outdoor air, which can reduce the buoyancy-driven natural 

ventilation rate. Here we use an urban wind profile,  which requires the use of modified 

wind pressure coefficients based on differences between free-stream and urban wind 

profiles in Energy Plus (Xie et al., 2023).  

SUEWS is used to model three idealised neighbourhoods (Fig. 5.1) that have different 

plan area densities but the same initial climate forcing data. The simulated energy and 

water balance fluxes are used to diagnose local-scale meteorological variables for the 

three neighbourhoods which are provided to EnergyPlus as the weather data for the 

building energy simulations. SUEWS performance has been extensively evaluated and 

applied in different climates globally (e.g. Table 3 of Lindberg et al. (2018); Table 1 of 

Sun and Grimmond (2019)).  

SUEWS allow each neighbourhood to have varying amounts of seven land cover types: 

paved, buildings, deciduous trees/shrubs, evergreen trees/shrubs, grass, bare soil and 

water. This allows realistic intra-city land cover variations, between different cities. For 

simplicity, here we assume neighbourhoods consist of buildings and grass (i.e., two 

typical but  contrasting surface types), so vegetation’s influence (e.g., evapotranspiration) 
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is considered but more complicated impacts, such as trees/shrubs influence on wind 

(Kent et al., 2018) and radiation (Morrison et al., 2018) are not included. Our three 

neighbourhoods are:  

(a) rural (Fig. 5.1a): is a large area covered with 100% grass, hence the isolated 

building area is negligible 

(b) medium density (Fig. 5.1b): has buildings covering 30% of the area (plan are 

fraction λP = 0.3) and grass covering 70% 

(c) high density (Fig. 5.1c): has λP =0.6 and grass in the remaining 40% of the area 

The SUEWS neighbourhood population density is consistent with the EnergyPlus 

building occupancy (Section 5.2.2).  

The Design Standard for Energy Efficiency of Public Buildings (MoHURD, 2015) splits 

China into five climate zones (Table 5.2). Using European Centre Reanalysis version 5 

(ERA5) (Hersbach et al., 2020) meteorological data is available globally with a spatial 

resolution of 0.125° and temporal resolution of a hour.  As natural ventilation cooling for 

buildings is particularly important during hot periods, we select 2018, the year with the 

warmest Northeast Asia summer (JJA) mean near-surface air temperature between 1979 

and 2018 (Xu et al., 2019) for simulation. The three neighbourhoods are simulated in one 

city for each of the five climates (Table 5.2), assuming human activities do not vary 

between the regions. One ERA5 grid located in centre of the city is used. Note the ERA5 

data do not account for urban land cover in the reanalysis but do assimilate 

meteorological data with cities (Tang et al., 2021). The vegetation cover assigned to the 

grid is representative of local conditions (Hersbach et al., 2020). 

To drive SUEWS the meteorological data in the inertial sub layer or constant flux layer 

are needed. This layer is located above the roughness sub layer (RSL). Within the RSL 

individual roughness element influences the air flow, while above that it becomes 

blended and provides a neighbourhood or local scale response. The RSL extends from 

ground to a depth of approximate 2 to 5 times of mean roughness element height (i.e. 

buildings and trees) (Oke et al., 2017b), where the building are located and most human 

activities occur. Thus, SUEWS requires a forcing height of at least 32 m above ground as 

the mean building height is 6.4 m. ERA5 data at this height is obtained with 

environmental lapse rates assumed, as detailed in Appendix B in Appendix B of Tang et 
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al. (2021). However, since the ERA5 data may have different altitudes from the actual 

city centre, the forcing heights for each climate are different, ranging from 32 m to 108 m. 

The forcing height is determined by the city's altitude, with higher altitude cities having a 

larger forcing height. For example, Kunming has an altitude of 1892 m, but the lowest 

available ERA5 data altitude is 2000 m. 

Building energy simulation of natural ventilation potential, requires wind speed U, 

temperature T and relative humidity RH in the RSL. Here we use the SUEWS-RSL 

module to obtain the environmental variables. SUEWS-RSL calculates vertical profiles 

of these variables with a RSL corrected MOST (Monin-Obukhov Similarity Theory) 

approach (Harman and Finnigan, 2008, 2007; Theeuwes et al., 2019), while accounting 

for varying atmospheric stability, roughness characteristics and turbulent heat fluxes 

(Tang et al., 2021; Theeuwes et al., 2019). Evaluation of the SUEWS-RSL U and T 

profiles against observations in three global cities, suggest an acceptable accuracy (Tang 

et al., 2021; Theeuwes et al., 2019). 

The SUEWS-RSL generated local weather data, includes T and RH at 2 m above ground 

(T2 and RH2), U at 10 m (U10), and vertical profiles of T and U within the RSL (Fig. 5.2). 

The supplied T2, RH2 and U10 as well as other climate data (e.g., incoming solar radiation 

from ERA5) are formatted as a EnergyPlus weather file (.epw). The SUEWS-RSL wind 

profile is passed to EnergyPlus via input files (.idf) by replacing the power law 

coefficients with values derived from the SUEWS-RSL data.  

In EnergyPlus solar shading from adjacent buildings (purple, Fig. 5.1) are simulated as 

‘shading objects’. The longwave radiative exchanges between the reference building and 

adjacent buildings are calculated with an iterative approach (Chapter 3). Impacts of other 

urban factors like the heat storage and the anthropogenic heat are simulated with SUEWS 

and reflected in the outdoor air temperature (Fig. 5.2). 

 

Fig. 5.1. Reference building (8 m × 8 m × 6.4 m) is simulated (EnergyPlus) after the weather data is 
simulated (SUEWS) for three neighbourhoods: (a) a rural (isolated), and two city neighbourhoods with 
plan area fractions (λP) of (b) 0.3 and (c) 0.6. 
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Fig. 5.2. SUEWS-EnergyPlus (a) overview of the workflow integration (Tang et al., 2021), and (b) urban 
factors influencing the natural ventilation and modelling methods. 

5.2.2. Building characteristics 

To compare the NVP, a two-storey building model (Fig. 5.1a) based on ASHRAE Case 

600 (ANSI/ASHRAE, 2011) is developed in EnergyPlus. The 8 m wide × 8 m long × 6.4 

m tall, building has no interior partitions. There are two windows on each floor, one on 

the south-facing and one on the north facing-wall to provide natural ventilation. All four 

windows are 2 m × 3 m. A simplified residential occupancy (2 people on each floor, 

125.6 W person-1, occupied all-day) and internal heat gain (lighting: 6 W m-2, equipment: 

4.3 W m-2) are assumed (Xiong et al., 2019). The simulated reference building is 

assigned the Design Standard for Energy Efficiency of Public Buildings (MoHURD, 

2015) thermal characteristics appropriate for each climate zone (Table 5.2).  

For the NVP analysis, we consider both cross and single-sided ventilation (only south-

facing windows open). All windows are assumed to have 15% openable area and 

discharge coefficient (Cd) of 0.61. For the cooling energy savings calculation, an ideal 

load system is assumed with a heating setpoint of 18 °C and cooling setpoint of 26 °C 

based on the recommendation of the Code for Thermal Design of Civil Building 

(MoHURD, 2016). 

Table 5.2. Building thermal characteristics and specific city simulated in each climate zones in China. 
SHGC: solar heat gain coefficient. Modified from Tong et al. (2016). 

City Climate zone U-value (W m-2 K-1) SHGC 
Roof  External wall Ground floor Window Window  

Harbin Very cold 0.25 0.35 0.25 1.76 0.68 
Beijing Cold 0.39 0.46 0.46 1.77 0.37 
Shanghai Cold winter hot summer 0.39 0.54 0.46 2.3 0.32 

Kunming Temperate 0.44 0.72 1.32 2.4 0.2 
Guangzhou Warm winter hot summer 0.44 0.72 1.32 2.4 0.2 
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5.2.3. Natural ventilation models 

To simulate the cross ventilation the Airflow Network (AFN) model within EnergyPlus 

is used (U.S. Department of Energy, 2020b). The AFN has been evaluated and widely 

used for natural ventilation calculations (Johnson et al., 2012). The AFN airflow rate is 

calculated using the pressure difference across openings, with the standard orifice flow 

equation. The wind-driven ventilation rate Vw is (Awbi, 2003): 

𝑉௪ = 𝐶ௗ𝐴ට
ଶ∆௉ೢ

ఘబ
    (5.1) 

where Cd is the discharge coefficient of opening, A is the effective opening area (m2), ρ0 

is the outdoor air density (kg m−3) and ∆Pw is the wind pressure difference across 

opening (Pa). The wind pressure at the opening height is (Awbi, 2003): 

𝑃௪ = 0.5𝜌଴𝐶௣𝑈௙௥௘௘
ଶ     (5.2) 

where Cp is the surface-averaged wind pressure coefficient, and Ufree is the upstream 

undisturbed flow at the opening height.  

As Cp values are influenced by the building geometry, surrounding conditions and wind 

profile and direction (Grosso, 1992), it is important to use the appropriate Cp values as it 

impacts the accuracy of the building natural ventilation simulation in an urban 

environment. In this study, TPU Aerodynamic Database of Non-isolated Low-Rise 

Buildings (TPU, 2007) Cp data from wind-tunnel experiments for buildings with different 

geometries and surrounding conditions are used. As the TPU Cp database is for free-

stream wind measured in wind tunnel experiments, we modified these using the SUEWS-

RSL wind speeds and profile as shown in Xie et al. (2023). 

Although it is widely accepted that cross ventilation usually achieves much larger 

ventilation rate, it is less practical than single-sided ventilation for urban buildings where 

isolated rooms are common (Zhong et al., 2022). The single-sided ventilation model, 

based on the mixing layer theory (Warren, 1977; Warren and Parkins, 1984), is used. 

This has been evaluated in wind-tunnel and full scale experiments (Gough et al., 2020; 

Yamanaka et al., 2006). The wind-driven ventilation rate (Vw, m3 s-1) is calculated with:  

𝑉௪ = 0.1𝐴𝑈                (5.3) 

From Bernoulli principles, the buoyancy-driven ventilation rate (Vb) is calculated with: 
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𝑉௕ =
஼೏஺

ଷ
ට𝑔ℎ௢௣௘௡௜௡௚

∆்

்
                 (5.4) 

where g is the gravitational acceleration, hopening the height of the opening, ΔT 

temperature difference across the opening. The total ventilation rate (Vt) is the quadrature 

sum of the wind and stack air flow components (U.S. Department of Energy, 2020c): 

𝑉௧ = ඥ𝑉௪
ଶ + 𝑉௕

ଶ                 (5.5) 

5.2.4. Analysis metrics 

In this study, the natural ventilation hours (NV-hour) and the cumulative air change rate 

(ACH-hour) are used to quantify the natural ventilation potential (NVP).  

The NV-hour, the most common NVP metric (Table 5.1), is the number of hours per year 

when natural ventilation can fulfil both the air quality and thermal comfort requirements 

(Luo et al., 2007; Yin et al., 2010). ASHRAE Standard 62.1 (ANSI/ASHRAE, 2013) 

defines the required minimum outdoor airflow rate (VR) for a residential space as a 

function of the number of people occupying (Np) the floor area (Af , units: m2) as: 

𝑉ோ = 0.0025𝑁௣ + 0.0003𝐴௙               (5.6) 

In this study, as each floor has Np = 2 and Af = 64 m2, VR = 0.0242 m3 s-1 (≈ 0.425 ACH). 

For free-running building thermal comfort assessment, we use the Chinese adaptive 

thermal comfort models provided in the Evaluation Standard for Indoor Thermal 

Environment in Civil Buildings (MoHURD, 2012) for 75% satisfaction (or Category II). 

These specify an upper (TUL) and lower indoor operative temperature limit (TLL) by zone, 

with the northern (very cold, cold, Table 5.2): 

ቊ
𝑇௎௅,ே = 0.73𝑇௥௠ + 15.28     ൫18℃ ≤ 𝑇௎௅,ே ≤ 30℃൯

𝑇௅௅,ே = 0.91𝑇௥௠ − 0.48        ൫16℃ ≤ 𝑇௅௅,ே ≤ 28℃൯
                 (5.7) 

and southern zones (cold winter hot summer, temperate, warm winter hot summer, Table 

5.2): 

ቊ
𝑇௎௅,ௌ = 0.73𝑇௥௠ + 12.72     ൫18℃ ≤ 𝑇௎௅,ௌ ≤ 30℃൯

𝑇௅௅,ௌ = 0.91𝑇௥௠ − 3.69        ൫16℃ ≤ 𝑇௅௅,ௌ ≤ 28℃൯
                  (5.8) 

This uses a seven day (n = 7) running mean of the outdoor air temperature (Trm): 

𝑇௥௠ = (1 − 𝑘)(𝑇௢ௗିଵ + 𝛼𝑇௢ௗିଶ + 𝛼ଶ𝑇௢ௗିଷ ⋯ + 𝛼଺𝑇௢ௗି଻)                   (5.9) 
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where k is a constant between 0 and 1, with 0.8 as recommendation (Nicol and 

Humphreys, 2010), and Tod-n is the daily mean outdoor air temperature for n days ago 

(°C). 

As higher ventilation rates may prevent sick building syndrome symptoms and reduce 

potential airborne infection risk (Sundell et al., 2011), we also determine the ACH-hour, 

or cumulative air change rate during the NV-hour period. This is similar to pressure 

difference Pascal hours (PDPH) (Yang et al., 2005). Although both aim to quantify 

availability of natural driving forces, ACH-hour is more directly linked to amount of 

ventilation.  

Cooling energy saving (Qsaving) is also determined (Tong et al., 2016): 

𝑄௦௔௩௜௡௚ = 𝑄௪௜௡ௗ௢௪_௖௟௢௦௘ௗ − 𝑄௪௜௡ௗ௢௪_௢௣௘௡    (5.10) 

The is the difference in energy demand between a fully air-conditioned building (i.e. 

windows always closed, 𝑄௪௜௡ௗ௢௪_௖௟௢௦௘ௗ) and a hybrid-controlled building with windows 

open (𝑄௪௜௡ௗ௢௪_௢௣௘௡) when the indoor air temperature can vary between the heating and 

cooling set points (18 to 26 °C) while the air conditioning system is turned off. The air-

conditioning system setting are given in section 2.1. 

In summary (Fig. 5.3), three metrics are determined from analysis of simulations for five 

climates and for three neighbourhoods with different plan area fractions (λP) and two 

ventilation types. Thus, a total of (5 × 3 × 2 =) 30 cases are simulated.  

We use mean the bias error (MBE) to assess the difference between SUEWS-RSL and 

modified EnergyPlus wind profiles (Eq. 5.12, Table 5.3 coefficients): 

𝑀𝐵𝐸 =
ଵ

ே
∑ (𝑦௜ − 𝑥௜)

ே
௜ୀଵ     (5.11) 

where yi and xj are EnergyPlus and SUEWS-RSL wind speeds at each timestep, and N is 

the number of values analysed (i.e. a year with hourly timestep, N = 8760). 

 
Fig. 5.3. Variables and metrics analysed in this study. See Fig. 5.1 and Table 5.2 for more details. 
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5.3. Results 

5.3.1. Outdoor climate 

First, we assess differences in modelled local environmental variables for the 

neighbourhoods with different plan area fractions (λP) and in different climate zones (Fig. 

5.3).  

Modelled outdoor air temperature at 2 m (T2) in denser neighbourhoods (larger λP, green 

Fig. 5.4) have warmer monthly values and greater variation than at the rural site in all 

five climates (blue, Fig. 5.4). Annual mean differences in T2 between cases with λP of 0.6 

and 0 vary between 0.8 ℃ in Guangzhou and 1.6 ℃ in Kunming. This difference is 

indicative of the canopy layer urban heat island effect.  

Whereas the monthly variation of SUEWS-RWL modelled wind speed at 10 m (U10) 

decrease as λP increases (Fig. 5.5). The annual mean differences (ΔλP 0.6→0) are smallest 

in Beijing (0.6 m s-1) to and larges in Harbin (1.1 m s-1). These results are qualitatively 

similar to previous CFD studies considering outdoor velocity and λP (e.g. Mei et al. 

(2017)).  

Vertical wind profiles (Fig. 5.6) derived SUEWS-RSL are used to calculate the 

EnergyPlus power-law parameters (δ, α, Table 5.3)(ASHRAE, 2005): 

𝑈௭ = 𝑈ଵ଴ ቀ
ఋೝ೐೑

ଵ଴
ቁ

ఈೝ೐೑

ቀ
௭

ఋ
ቁ

ఈ

                   (5.12) 

where the meteorological station boundary layer depth (δref) and exponent (αref) are 

obtained as the default settings in EnergyPlus for open terrain (U.S. Department of 

Energy, 2020d).  

To assess the mean bias error (MBE) for the EnergyPlus wind profiles when using the 

Table 5.3 coefficients (hereafter EP-RSL profiles), we use the original SUEWS-RSL 

vertical wind profiles data which varying because of the different forcing heights; (5 to 8 

vertical levels for λP = 0; 9 levels at λP = 0.3 and 0.6) as the baseline (Fig. 5.7). As the 

SUEWS-RSL wind profile does not assume a power law and varies with stability (Tang 

et al., 2021; Theeuwes et al., 2019), biases still exist in EP-RSL profiles. The biases are 

larger for climates with stronger wind speeds (e.g. Harbin). When λP = 0, the EP-RSL 

profiles underpredicts the median wind speeds by up to 0.35 m s-1, especially around 2 m 

above ground level. For λP = 0.3 the EP-RSL MBEmedian are smaller (≤ 0.2 m s-1), as are 
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λP = 0.6 cases. As the MBEmedian become better (smaller) with height within the canopy 

layer (> 3.2 m), we focus analysis on the upper floor natural ventilation potential and 

energy saving. Future work could directly use the RSL wind profile within EnergyPlus 

after rewriting the appropriate code. This is beyond the scope of this study. 

 
Fig. 5.4. Monthly distribution (hourly) of modelled outdoor air temperature at 2 m agl for three plan area 
fraction of buildings (λP, Fig. 5.1; colours) and five climates (Table 5.2), with interquartile range (box), 
median (horizontal line) and 5th and 95th percentiles (whiskers). 
 

 
Fig. 5.5. As Fig. 5.4, but wind speed at 10 m agl. 
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Fig. 5.6. Vertical wind profiles for three different λP and five climates (colour) calculated with annual 
median 10 m wind speeds and coefficients (Table 5.3) derived from the SUEWS-RSL results (EPRSL) 
within the canopy layer (building height= 6.4 m). 
 
Table 5.3: Wind power law (Eq. 5.12) coefficients derived from SUEWS-RSL model output for each 
climate and neighbourhood. 
 Exponent α Boundary layer depth δ (m) 
λP Harbin 

(VC) 
Beijing 
(C) 

Shanghai 
(CWHS) 

Kunming 
(T) 

Guangzhou 
(WWHS) 

Harbin 
(VC) 

Beijing 
(C) 

Shanghai 
(CWHS) 

Kunming 
(T) 

Guangzhou 
(WWHS) 

0 0.31 0.28 0.31 0.27 0.28 40.41 37.88 37.34 46.62 46.93 
0.3 0.16 0.25 0.17 0.22 0.17 380.44 125.28 322.01 149.76 320.19 
0.6 0.67 1.02 0.68 0.86 0.68 25.96 16.16 25.11 16.65 24.87 
 

 
Fig. 5.7. Annual mean bias error (MBE) for wind speed calculated at hourly timestep but vertical 
resolution (Δz) that varies (from 0.13 m with varying Δz for λP = 0; from 0.64 m with Δz= 0.64 m for λP = 
0.3 and 0.6) to 6 m above ground level; where SUEWS-RSL (x, Eq. 5.11) and EP-RSL wind profiles (y, Eq. 
5.11; using Eq. 5.12, and Table 5.3 coefficients) for three λP (colour) and five climates. 
 

5.3.2. Natural ventilation potential (NVP) 

5.3.2.1. Natural ventilation hours (NV-hour) of cross ventilation 

Cross ventilation monthly percentage of NV-hours across the five climates (Table 5.2) 

and three λP classes (Fig. 5.1) are generally larger for upper floor room (Fig. 5.8). With 

windows always opened, the minimum ventilation rate requirement of 0.425 air change 

per hour (ACH) (section 2.4) can be fulfilled during most of the year (Fig. 5.8). Although 
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the Beijing neighbourhood with λP = 0.6 has the lowest wind speeds, there are only 23 

hours within the year that do not meet the ventilation rate criteria. Thus, differences in 

NV-hours are mostly influenced by the thermal comfort criteria. As a result, warm 

climates (Guangzhou, Kunming, Shanghai) have more annual total NV-hours than cold 

climates (Harbin, Beijing), since there is very limited NV potential for cold climates in 

winter (Fig. 5.8).  

Influences of λP on NV-hours vary across climates (Fig. 5.8). In terms of the annual total, 

the building in the λP = 0 rural neighbourhood has the most annual NV-hours in hot 

climates like Guangzhou. While for low-medium density λP = 0.3, warm winter hot 

summer climates like Shanghai have the most annual NV-hours. Dense urban 

neighbourhoods (λP = 0.6) have the most annual NV-hours in cold northern zones 

including Harbin and Beijing, and the mild climates like Kunming. This can be explained 

by the air temperature distribution (Fig. 5.5) as dense neighbourhoods (λP = 0.6) tend to 

have higher outdoor temperatures (in their regional climate), which is beneficial in cool 

climates for thermal comfort, and vice versa. The annual differences in NV-hours 

between λP = 0 and λP = 0.6 is largest in Kunming (1545) which is more than twice the 

difference to the next largest (Harbin, 753). The others are smaller again Guangzhou 

(587), Shanghai (254), and smallest in Beijing (201).  

The λP has a greater impact on nocturnal NV-hours than daytime (Fig. 5.8), linked to the 

larger night-time temperature differences (Fig. 5.4). During cool months there are larger 

proportion of daytime NV-hours, but the nocturnal NV-hours increases with λP to a 

greater extent (e.g. nocturnal NV-hours increase by 33.9% while daytime increase by 

13.2% from λP = 0 to 0.6 during March in Kunming). While in warm months, nocturnal 

NV-hours are reduced more with the increase of λP (e.g. nocturnal NV-hours decrease by 

35.3% while daytime increase by 16.3% from λP = 0 to 0.6 during July in Guangzhou).  

Generally, the dependence of NV-hours change with λP is highly related to climate and 

seasons (Fig. 5.9). In summer, very cold climates (e.g. Harbin) have an increase in NV-

hours with λP (10% λP = 0.6 c.f. λP = 0), while the opposite occurs in hot summer 

climates regions (-43% λP = 0.6 c.f. λP = 0 in Guangzhou). Whereas in the temperate 

climate (e.g. Kunming) λP has negligible impact on NV-hours, as temperatures have both 

small variations and are usually pleasant for indoor thermal comfort (Fig. 5.8). In winter, 

NV-hours increase with λP in all regions due to cooler outdoor air temperatures, but the 
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increase is small in regions with cold winter and little natural ventilation potential 

including Harbin, Beijing and Shanghai. During the spring/autumn transition seasons, the 

NV-hours tend to increase with λP in most climates associated with the relatively mild 

outdoor climate except Guangzhou, where the warm climate causes the indoor air 

temperature to exceed the upper limit of thermal comfort in late spring (May) and early 

autumn (September) (Fig. 5.8).  

 

 
Fig. 5.8. Upper floor cross ventilation as percentages of NV-hours (relative to total hours in the period for 
five climates (columns), three neighbourhoods (λP colours, blue: 0; green: 0.3; red: 0.6) and different time 
intervals (rows: monthly and annual, time of day (pie chart half): left daytime (7:00 to 19:00), right night-
time (19:00 to 7:00)).  
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Fig. 5.9. Seasonal upper floor with cross ventilation (percentage of possible hours) in five climates (colour) 
for three λP (marker). 

 

5.3.2.2. ACH-hours of cross ventilation 

The air exchange rates can enhance the NV benefits for air quality purposes. The annual 

variability in ACH (hourly) during NV period (Fig. 5.10) is the largest when buildings 

are sited in open areas (λP = 0) because of the higher variability of wind speed (Fig. 5.5, 

5.7), with median ACH between 10.8 (Beijing) and 20 (Harbin). As λP increases the 

median ACHs become smaller (λP = 0.3: 4.9 (Beijing) and 10.1 (Harbin); λP = 0.6: 2.6 

(Beijing) and 3.0 (Harbin)). 

The annual cumulative ACH-hours differs from NV-hours with λP variations. As ACH-

hours largely depend on wind speeds and ACH-hours decrease with λP in all climates 

(Fig. 5.11), the inter-climate variations are smaller (Fig. 5.11). Given the large number of 

annual NV-hours, buildings in areas with a λP of 0 and 0.3 in Guangzhou and λP = 0.6 in 

Kunming have the most ACH-hours (cf. to buildings in the same λP neighbourhoods but 

different climates). While Beijing has the least annual ACH-hours for all λP due to low 

both ventilation rate and NV-hours. 

The seasonal variations in ACH-hours are also influenced by both NV-hours and 

ventilation rates (Fig. 5.12). In transition seasons (spring/autumn), Guangzhou’s climate 

has the largest ventilation potential in both ACH-hours and NV-hours (Fig. 5.9) 
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benefiting from appropriate air temperatures and wind speeds, while Kunming’s ranking 

drops due to the low ventilation rates. In summer, high wind speeds and mild summer 

temperatures make Harbin the climate with the most ACH-hours. The ranking of ACH-

hours in winter remains consistent with the NV-hours. 

 
Fig. 5.10. Annual variability in air changes per hour (ACH) when the upper floor cross ventilation (NV-
hour >0) through the year for five climates and three λP (colours) with interquartile range (box), median 
(horizontal line) and 5th and 95th percentiles (whiskers). 
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Fig. 5.11. Annual cumulative ACH-hours of the upper floor with cross ventilation across different climates 
(colour) and λP (line style). 
 

 
Fig. 5.12. As Fig. 5.9, but ACH-hours. 
 

5.3.2.3. Single sided ventilation 

To assess NVP differences between cross ventilation and single-sided ventilation we 

focus on Shanghai as similar conclusions are drawn for the other cities. Ventilation rates 
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are largely less for single-sided ventilation (cf. cross ventilation) (Fig. 5.13) with annual 

median ACH reducing from 15.1/8.2/2.7 (cross ventilation) to 3.9/2.9/2.1 (single-sided 

ventilation) across the three plan area densities (λP = 0/0.3/0.6). This also implies that the 

single-sided ventilation is as effective as cross ventilation for buildings located in dense 

urban areas. Although the ventilation rates are reduced, the annual minimum ventilation 

rate for the single-sided ventilation building even for λP = 0.6 (0.59 ACH), still meets the 

requirement of indoor air quality. Therefore, in Shanghai the natural ventilation potential 

is mainly influenced by thermal comfort criteria only. However, we do not consider the 

impact of outdoor air pollution (i.e., assuming outdoor air is unpolluted). 

The reduced ventilation cooling potential with single-sided ventilation causes median 

indoor air temperature to increase by 0.9/0.8/0.2 °C for λP = 0/0.3/0.6 (Fig. 5.13). The 

seasonal percentage of NV-hours with single-sided ventilation therefore increases by up 

to 10.6 % (λP = 0) during spring and autumn, but decreases by up to 14.7 % (λP = 0.3) in 

summer (cf. cross ventilation) (Fig. 5.14). The ACH-hours are higher with cross 

ventilation in all conditions due to the higher ventilation rate, and differences between 

ventilation modes decreases as λP increases (Fig. 5.15).  

Generally, the single-sided ventilation leads to lower ventilation rates across λP, and 

reduce the natural ventilation potential in magnitude. The changing pattern of NVP with 

λP is similar to cross ventilation. 

 
Fig. 5.13. As Fig. 5.10, but for Shanghai for two ventilation modes and (b) upper floor indoor air 
temperature.  
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Fig. 5.14. As Fig. 5.9, but for two ventilation modes in Shanghai. 
 

 
Fig. 5.15. As Fig. 5.14, but in ACH-hours. 

5.3.3. Cooling energy saving 

The cooling energy saving is calculated as the difference in cooling energy demand 

between a building with air-conditioning only and hybrid ventilation (air-conditioning 

plus natural ventilation). Therefore, the cooling energy saving amount is linked with the 

effectiveness of natural ventilation cooling (Eq. 5.10). Cooling energy saving is expected 

to be larger for climates and neighbourhoods with lower outdoor air temperatures and 

higher wind speeds. Hence, in all climates the cooling energy saving decreases as λP 

increases (Fig. 5.16). For cross ventilation, such decreases are smallest in Kunming, as 

the climate is mild and temperature variation is small, making natural ventilation cooling 

available most of the time. For the other climates the cooling energy saving between 

building densities (λP) are similar (Harbin: 8% to Beijing: 12.5%).  
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Our results differ slightly from Ramponi et al. (2014)’s nocturnal ventilation cooling 

energy saving study of three European cities. They suggest inter-λP differences are 

largely influenced by the climate, with natural ventilation cooling energy saving 

dropping by 20% in cool but windy Amsterdam, while in warmer less windy Milan (2 %) 

and Rome (13 %) reductions are less. Differences may arise from their different approach, 

as their outdoor air temperatures and wind speeds are independent of λP (only Cp values 

changed), and longwave radiative exchanges are not considered. The last may be critical 

as increased λP can result in more trapped longwave radiation, increasing building 

cooling demand (Xie et al. 2022). Our work highlights the importance of a holistic 

consideration of the complex interaction between urban climate and building 

performance.  

Compared to cross ventilation, single-sided ventilation has less cooling energy savings 

due to lower wind speeds. The trends across climates are similar, despite slightly smaller 

inter- λP variations (6.5% to 8.1% excluding Kunming). 

 
Fig. 5.16. As Fig. 5.9 but for annual cooling energy saving (Eq. 5.10, percentages) for two ventilation 
modes. 

5.4. Discussion and conclusions 

Although NVP across China’s climate zones has been assessed previously, given the 

large dependence on research approach, climate data and building model used, the results 

vary (Luo et al., 2007; Tong et al., 2016; Yang et al., 2005; Yao et al., 2009). The effects 

of urban climate are rarely fully considered due to data availability, or use of 

computationally expensive CFD limiting conditions analysed. In this study we combine 

the urban land surface model SUEWS and building energy simulation tool EnergyPlus to 
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assess the natural ventilation potential of buildings in different Chinese climate zones and 

neighbourhoods with different plan area fractions (λP). Our approach (cf. CFD) has 

practical advantages, including both simpler model set-up and lower computational cost. 

The SUEWS model only requires some commonly available surface characteristics and 

meteorological forcing data. A year long run for one neighbourhood normally takes 

around 1 minute (PC) which is around 1 million times less than CFD-based approaches 

(e.g. 3-day run taking 168 hours on PC by Yang et al. (2012)). Therefore, our approach 

can be applied for quick estimates of natural ventilation potential and cooling energy 

saving in larger scales (e.g. intra-city neighbourhoods) for longer time periods. Also, the 

outputs by SUEWS can be used as boundary conditions for CFD simulation. 

We find that climate, plan area fraction and season combine to impact the NVP. Our 

findings improve current understanding and design of NVP of urban buildings from a 

local climate perspective. Local climate in denser areas have been shown to reduce NVP 

due to warmer outdoor air temperatures on several summer days in Basel (cf. the rural 

area) (Germano, 2007) and reduced wind speeds from increasing λP (0 → 0.2) reducing 

annual mean wind-driven ventilation rate by up to 35% (Li and Li, 2015). Given these 

studies, our findings further suggest that under different conditions, increasing the λP can 

either increase or decrease the NVP. For example, in summer, when the λP increases from 

0 to 0.6, NV-hours increase by around 10% in Harbin (very cold) but decrease by around 

43% in Guangzhou (warm winter hot summer). However, a critical disadvantage of 

urban areas is the low wind speeds, which leads to lower ventilation rates (e.g. Harbin: 

annual median ventilation rate reduced by 50% at λP =0.3 and 85% at λP =0.6). Hence, 

we should consider both NV-hours and ACH-hours. It is also found that single-sided 

ventilation can be as effective as cross ventilation in dense urban areas due to the low 

wind speed regardless of the metric used. 

Our approach offers a quick assessment of NVP for buildings in the urban environment. 

We model idealised neighbourhoods with simplified building models based on relevant 

observations and standards, although we acknowledge that real cities are more complex. 

Our findings should be representative of similar climates and neighbourhoods, but future 

studies could focus on more detailed information on neighbourhoods in real cities where 

the variance in NVP might be greater. Existing evaluations suggest that the SUEWS 

model has acceptable accuracy, although the Cp values should be changed with building 



 

93 

 

geometry. We have only considered buildings and grass in our study and have ignored 

the impact of trees, which could modify the wind field (Kent et al., 2018) and radiative 

fluxes (Morrison et al., 2018) and affect the natural ventilation of nearby buildings. 

Although trees can be modelled in SUEWS and considered as shading objects in 

EnergyPlus (e.g. Hsieh et al., 2018), to modify wind pressure coefficients on nearby 

building facets, measurements or CFD simulations are still necessary. Therefore, our 

approach can be extended with additional data. Additionally, air and noise pollution, 

which could be high in dense urban areas, may further reduce NVP (as noted in Table 

5.1), but this is beyond the scope of this study and could be considered in future work. 
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Chapter 6 Temporal and spatial population-based heat exposure in 

Colombo, Sri Lanka: impact of 2035 urban development 

plan and mitigation strategies 

The previous chapter discussed the use of SUEWS and EnergyPlus to simulate the 

natural ventilation cooling potential in idealised neighbourhoods in different Chinese 

climate zones and highlighted the importance of considering local-scale climate for 

building energy simulation. This method also forms the basis for this and subsequent 

chapters, where we extend our understanding of the impact of local-scale climate on 

outdoor and indoor overheating risks in real world scenarios. 

This chapter specifically examines the effect of local-scale climate on outdoor 

population-based heat exposure in Colombo, Sri Lanka, using SUEWS. The objectives of 

this chapter are to: (1) understand the spatial and temporal patterns of population heat 

exposure across Colombo and its surrounding areas, (2) investigate changes in heat stress 

for a future urban development scenario, and (3) evaluate the effectiveness of mitigation 

measures in reducing heat stress. 

This chapter is written in form of a paper. I performed the research, wrote the first draft, 

and prepared all the figures. The co-authors, Z. Luo and S. Grimmond (supervisors), 

provided advice on structuring the paper, interpreting findings, and editing the text. The 

anthropogenic heat data used in SUEWS modelling is submitted for review as: Blunn, L., 

Xie, X., Grimmond, S., Luo, Z., Sun, T., Perera, N., Ratnayake, R., Emmanuel, R., 2022. 

Spatial and temporal variation of anthropogenic heat emissions in Colombo, Sri Lanka. 

Submitted to Urban Climate, Oct 2022. In this submission, I contributed to creating the 

land cover data of Colombo, which is also used for SUEWS modelling in this and 

subsequent chapters. 
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6.1. Introduction 

Research interest regarding heat exposure in South Asia has grown rapidly in recent 

years, spurred by a series of deadly heatwaves, such as the 2015 event that caused around 

3500 deaths in the region (ESCAP, 2015). More recently, in 2022, India and Pakistan 

experienced their hottest April since 1900, affecting over a billion people (Mogul et al., 

2022). South Asia is projected to experience increasingly frequent and intense heatwaves. 

In particular, Sri Lanka has experienced some of the largest temperature changes in the 

region in recent decades (Sharma et al., 2022). By the end of the century (cf. 1990) 

projected  changes in Sri Lanka include: increase in annual mean air temperature of 3.7 

℃; increase in number of heatwave days per year from 25 days to around 250 days 

(WHO, 2016); and maximum wet-bulb temperature exceeding the survivability threshold 

of 35 ℃ (and over most of South Asia) (Im et al., 2017). These changes are predicted to 

increase heat-related mortality among individuals over the age of 65 by about 20 times 

(WHO, 2016). 

The proportion of Sri Lanka's population living in urban areas was 18.5% in 2018, with a 

projected increase to 31.6% by 2050 (United Nations, 2018). However, urban areas 

typically have higher heat exposure risks than rural areas, particularly during periods of 

intense canopy layer urban heat island (CL-UHI) effects (Kovats and Hajat, 2007; Oudin 

Åström et al., 2011). Heatwaves can exacerbate this phenomenon, with factors such as 

increased solar radiation, greater anthropogenic heat from air conditioning systems, 

enhanced evaporation in rural areas and increased heat storage (Kong et al., 2021; Li and 

Bou-Zeid, 2013; Ramamurthy and Bou-Zeid, 2017). Therefore, during periods of 

extreme heat, densely populated urban areas face greater risks than rural regions. 
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High temperatures during extreme heat events (Green et al., 2019; Oudin Åström et al., 

2011; Rocklöv et al., 2014) and intense UHI (Heaviside et al., 2016; Huang et al., 2020; 

Tan et al., 2010; Taylor et al., 2015) can increase heat-related morbidity and mortality. 

Exploring potential impacts of the CL-UHI on human health can assist decision makers 

with developing policies and measures to mitigate the health hazards faced by urban 

residents. This requires a understanding of the actual thermal patterns of heat exposure 

for the population, which cannot be achieved solely by analysing the distribution of 

canopy layer air temperature (Dong et al., 2020). 

In Sri Lanka, a regional-scale early warning system of heatwave risk is operated by the 

Disaster Management Centre (Disaster Management Centre, 2022). However, to address 

the health risks faced by vulnerable populations and develop effective community-level 

action plans, it is important to understand the spatial pattern of heat exposure risk within 

cities. While studies have assessed outdoor thermal comfort in Sri Lanka cities like 

Colombo (Johansson and Emmanuel, 2006; Simath and Emmanuel, 2022), these studies 

rely on on-site weather observations and do not provide a comprehensive understanding 

of the intra-city heat exposure pattern. In fact, studies on intra-city population heat 

exposure in tropical and South Asian cities remain limited (Chew et al., 2021; Kong et 

al., 2021). Therefore, our study aims to narrow this gap by analysing the neighbourhood-

scale heat exposure risks and linking them to the population in Colombo. The 

methodology we develop in this study can be applied to other cities facing similar 

challenges. 

In the field of outdoor thermal environment and heat exposure risk analysis, climate 

models at various scales are frequently used (Kong et al., 2021). In this study, we employ 

the land surface model SUEWS to simulate the microclimate at a local scale in Colombo, 

Sri Lanka, and evaluate the risks of heat exposure for the population. Our objectives are: 

(1) to understand the spatial and temporal pattern of population heat exposure across the 

city of Colombo and surrounding areas; (2) to explore the changes in heat stress for a 

future urban development scenario; and (3) to assess the impact of mitigation measures 

on heat stress. 
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6.2. Methods 

This study is focused on the city of Colombo (6°55’N, 79°51’E), which is the 

commercial capital and largest city in Sri Lanka with a population of approximately 1 

million (Patankar, 2017). Colombo is located on the west coast of Sri Lanka (Fig. 6.1) 

and has a tropical rainforest climate (Köppen climate type Af) (Beck et al., 2018). It has 

no seasonal variations in air temperature or humidity, with rainfall year-round (Perera 

and Emmanuel, 2018), and low wind speed during March to April and October to 

November (Emmanuel and Johansson, 2006).  

In this study we use SUEWS-RSL (Tang et al., 2021) to simulate the heat exposure 

pattern across the study area (section 6.2.1). Model outputs are evaluated with 

observations from the Colombo meteorological station (WMO code: 43466, CLB in Fig. 

6.1) and Ratmalana meteorological station (WMO 43467, RML in Fig. 6.1). 3-hourly 

temperature/moisture/wind data from the NOAA Integrated Surface Database (ISD) 

(Smith et al., 2011) are available for both sites, and daily maximum/minimum air 

temperatures from Global Historical Climatology Network daily (GHCNd) (Menne et al., 

2012) are available for CLB.  

Schoetter et al. (2015) defines a heat wave as at least three consecutive days with daily 

maximum temperatures exceeding the 98th percentile based on long-term temperature 

records. Using this definition, we focus on a 6-day heatwave from Feb 23 to 28, 2020 

based on ERA5 data (see section 6.2.1.2) of 2010-2020, during when heat alerts have 

been issued by the Disaster Management Centre of Sri Lanka (Disaster Management 

Centre, 2022). 
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Fig. 6.1. Sri Lanka (inset) with location Colombo shown, and the local climate zones (LCZ) (100 m 
resolution) (Perera and Emmanuel, 2018) for the Colombo Municipal Council (CMC) (black boundary) 
and the surrounding area. Two World Meteorological Organization (WMO) stations (red) are located in 
this region (Colombo: WMO 43466; Ratmalana: WMO 43467). Locations of focused neighbourhoods 
(Section 3.2) indicated in blue. Definitions of LCZs can be found in Table 2 of Stewart and Oke (2012). 
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6.2.1. Urban climate modelling 

6.2.1.1. Model overview 

We use the Surface Urban Energy and Water Balance Scheme (SUEWS) v2021a/SuPy 

2022.8.5 (Järvi et al., 2011; Sun et al., 2020; Sun and Grimmond, 2019; Ward et al., 

2016) to model the climate variables across Colombo. SUEWS uses seven surface types: 

paved, buildings, evergreen trees/shrubs, deciduous trees/shrubs, grass, bare soil and 

water.  

The model calculates surface energy exchanges of multiple grids at the 

neighbourhood/local scale constrained by the surface energy balance (Oke, 1987): 

𝑄∗ + 𝑄ி = 𝑄ு + 𝑄ா + ∆𝑄ௌ     (6.1) 

where Q* is the net all-wave radiation, QF is the anthropogenic heat flux, QH and QE are 

turbulent sensible and latent heat fluxes, and ΔQS is the net storage heat flux. One major 

advantage of SUEWS is the balance between the simplicity and accuracy (Järvi et al., 

2011, 2014; Ward et al., 2016; Ao et al., 2018; Kokkonen et al., 2018). The model only 

requires commonly measured meteorological variables and surface cover characteristics 

that can be relatively easily obtained. From the sub-models options, we use the Net All-

wave Radiation Parameterization (NARP) for radiative fluxes (Loridan et al., 2011; 

Offerle et al., 2003), Objective Hysteresis Model (OHM) for storage heat flux estimation 

(Grimmond et al., 1991; Grimmond and Oke, 1999b, 2002), the Penman-Monteith 

equation adjusted for urban areas for latent heat flux calculation (Grimmond and Oke, 

1991), and the roughness sublayer (RSL) module for near-surface wind, temperature and 

humidity profiles diagnostics (Tang et al., 2021; Theeuwes et al., 2019). The model has 

been extensively evaluated in different climates globally (Table 3 of Lindberg et al. 

(2018); Table 1 of Sun and Grimmond (2019)), and reported to provide generally 

acceptable outputs. 

Here we use the surface diagnostics of air temperature, moisture and wind speed from the 

SUEWS-RSL module. In this application it assumes horizontally homogeneous surfaces 

both above and below the roughness sub-layer (RSL). It uses Monin-Obukhov Similarity 

Theory (MOST) (Brutsaert, 2005) above the RSL (i.e. within the inertial sub-layer, ISL) 

and a modified-MOST RSL parametrisations (Harman and Finnigan, 2008, 2007; 

Theeuwes et al., 2019) to calculates the diagnostic profiles in the surface layer based on 
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the climate forcing data above the blending height. The conventional MOST approach is 

only applicable to models exchanges of momentum and scalars in the ISL above the RSL 

(Roth and Oke, 1995; Wood et al., 2010). Corrections are required within RSL. The 

SUEWS-RSL module, near-surface diagnostics are calculated assuming MOST only 

when the RSL is very shallow (e.g. open grass) otherwise the RSL parametrisations are 

applied. Theeuwes et al. (2019) evaluated the SUEWS-RSL approaches with 

observations in central areas of Basel and Gothenburg, reporting reasonable wind profile 

predictions. More recently, Tang et al. (2021) evaluate the temperature profile at an 

urban site in central London, suggesting an slight underestimation in mean absolute error 

(MAE) of 0.93 ℃. Since the SUEWS-RSL module assumes a homogeneous area and 

provides horizontally averaged outputs, such bias is considered acceptable. 

6.2.1.2. Land cover characteristics 

Land cover data are needed for SUEWS modelling. The spatial analysis (Fig. 6.2) is 

undertaken to obtain six land cover types (building, paved, trees, grasses, bare soil and 

water) fractions and morphology (Table A7.1). 

An iterative process is employed which first uses the Semi-Automatic Classification 

Plugin (SCP) (Congedo, 2021) in QGIS (QGIS Development Team, 2022) and a clear 

sky Sentinel-2 multiband (20 m resolution) satellite image (ESA, 2018) taken on 20 

February 2020 covering the study area (Fig. 6.1). The SCP algorithm training involved 

visual inspection of high-resolution satellite imagery (Google, 2022) at 60 samples across 

the Sentinel-2 image, allowing SCP to generate the first version of a land cover map 

(LCv1). 

To improve LCv1 additional data are used: 

 Buildings – Colombo Municipal Council (CMC) building footprints and number 

of storeys (Blunn et al., 2022a) are used to derive the volumes with heights 

obtained by assuming the 3 m minimum storey height regulation (UDA, 2018) 

plus 1 m to account for roof height. 

 Roads (paved) – To determine the area of roads the OpenStreetMap 

(OpenStreetMap contributors, 2021) roads are used. By inspection of Google 

Earth imagery (Google, 2022) at 10 random locations per road class (24 classes) 
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the road width of each class is estimated. To avoid areal overestimation, the class 

minimum width is used with the OpenStreetMap line features. 

 Trees and grass – OpenStreetMap’s 16 vegetation types in Colombo do not 

include scattered vegetation (e.g. street trees). After inspecting imagery (Google, 

2022) the 16 classes are assigned to our two classes (Table A7.2). The SCP 

identified scattered vegetation is retained. 

 Bare soil – OpenStreetMap railways are classified as bare soil. 

 Water – OpenStreetMap has ‘large open water’ (e.g. lakes, rivers, and pools) 

polygons, and narrow waterways (e.g. canals and streams) as lines. To obtain 

areas for the latter, the same approach as roads is used. 

These data are used to update the LCv1 based on the following order of assumed 

accuracy: (1st) buildings, (2nd) land cover derived from OpenStreetMap, and (3rd) SCP 

LCv1 results. Paved fraction is equal to the sum of road fraction and the remaining 

unclassified areas, based on visual inspection of ESA. This version is LCv2. 

To improve the estimate of building fraction beyond the CMC area, within the CMC area 

bootstrapping is applied to obtain a plan area fraction relation between CMC building 

footprints and SCP data (Appendix 8). This relation is applied to correct the SCP data 

outside the CMC. To extend the building height information beyond the CMC, within the 

CMC mean building heights are calculated for local climate zones (LCZs), as mapped by 

Perera and Emmanuel (2018) (Fig. 6.1), and assigned beyond the CMC using the LCZ 

map (Blunn et al., 2022b). Definitions of LCZs can be found in Table 2 of Stewart and 

Oke (2012). 
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Fig. 6.2. Land cover fraction calculation (a) example outputs and (b) procedures. 
 

6.2.1.3. Input data preparation 

The daytime and night-time divisional population data are obtained from the divisional 

secretariats’ census in 2012 (Department of Census & Statistics, 2012) and downscaled 

into 500 m grids based on the building volume calculated from land cover data in Section 

6.2.1.2 (Fig. 6.3). During weekdays the population is assumed to linearly change between 

04:00–10:00 and 16:00–22:00 based on timing of trips to and from work in the Western 

Province (Fig. 3.1.23 of JICA (2014)). It is assumed that no commuting occurs on 

weekends, so the population density remains equal to the night-time population. The 

population and land cover data are used to calculate the anthropogenic heat diurnal 

profiles for each grid and input to SUEWS. More details of population data processing 

and anthropogenic heat calculation can be found in Blunn et al. (2022b). 

To force SUEWS, climate data above the roughness layer is required to exclude the local 

influence. Here we use data of European Centre Reanalysis version 5 (ERA5) (Hersbach 

et al., 2020), available at 0.125° × 0.125° resolution at hourly intervals for 1979 to 

present, downscaled to the model time-step (5-min). The inverse distance weighting 
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approach (Shepard, 1964) is used to downscale ERA5 data to SUEWS grids, as shown in 

Fig. 6.4. The forcing data show spatial distribution of higher air temperatures in the north 

and lower in the south because of mountainous areas to the east and southeast (Lobelia, 

2022). 

Model spin-up is important for land surface models to initialise the soil moisture state, 

which can have a substantial impact on urban land surface model performance (Best and 

Grimmond, 2014). The model spin-up usually requires multiple years’ run prior to the 

period of interest. However, in our study there are nearly 3000 grids in total, and 

performing spin-up for each grid can be very time-consuming. Therefore, we bin the 

built-up fractions and vegetation fractions with the interval of 0.1 for all grids, and 

categorise them into 28 groups. From each group we select one grid that with built-up 

and vegetation fractions closest to the median values in the group. SUEWS is run from 

2010 for all selected grids, allowing nine years’ spin-up prior to the study periods in 2020. 

The initial conditions of soil moisture and vegetation states are assigned to grids in the 

same group. The remaining non site-specific parameters, e.g. heat storage, surface 

conductance and albedo related variables are obtained from Ward et al (2016) and 

Omidvar et al. (2022). 

 
Fig. 6.3. Population (grid cell resolution 500 m) at three different local times on weekdays (a)14:00, (b) 
23:00 (c_ 07:00 and 19:00. Modified from Blunn et al. (2022b). 
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Fig. 6.4. Colombo region 23 – 28 February 2020 mean air temperature, relative humidity and wind speed 
from ERA5 (spatial resolution: 0.125°) (Hersbach et al., 2020) forcing data downscaled to SUEWS grid 
resolution of  500 m.  
 

6.2.2. Heat exposure indices 

In addition to air temperature, there are numerous indices for assessing heat stress (e.g. 

Epstein and Moran's (2006) Fig. 3,  Buzan et al.'s (2015) Fig. 1). These require various 

meteorological variables and are applicable for different situations. Here, we consider 

indices: (1) developed for outdoors; (2) have heat stress thresholds for public guidance; 

(3) regarded to be reliable (physiologically and/or epidemiologically); and (4) feasible 

meteorological variables (e.g. SUEWS output: air temperature, humidity, wind speed). 

The following three indices meet these criteria, with recommendations in literature 

reviews and comparative studies (Auliciems and Szokolay, 2007; Barnett et al., 2010; 

Blazejczyk et al., 2012; Buzan et al., 2015; d’Ambrosio Alfano et al., 2011; Epstein and 

Moran, 2006; Roghanchi and Kocsis, 2018):  

First, the Heat Index (IH units:°C), a temperature-like index, is one of the most used heat 

exposure indicators globally (Brooke Anderson et al., 2013), including both the Sri 

Lankan Department of Meteorology (Disaster Management Centre, 2022) and the US 

National Weather Service (2022) for heat alert. Rothfusz's (1990) polynomial fit to 

Steadman’s apparent temperature table (Steadman, 1979a) which models the human body 
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heat balance. The adult (either sex) is assumed to be 1.7 m tall, weigh 67 kg, be wearing 

long trousers with a short sleeve shirt, and be  walking outdoors in a shaded area at 1.4 m 

s-1 (Steadman, 1984, 1979a, 1979b) with a wind speed of 2.57 m s-1 (5 knots) (Rothfusz, 

1990). The equation (Blazejczyk et al., 2012): 

𝐼ு = cଵ + cଶ𝑇 + cଷ𝑅𝐻 + 𝑐ସ𝑇 ∙ 𝑅𝐻 + 𝑐ହ𝑇ଶ + 𝑐଺𝑅𝐻ଶ + c଻𝑇ଶ𝑅𝐻 + c଼𝑇 ∙ 𝑅𝐻ଶ +

𝑐ଽ𝑇ଶ𝑅𝐻ଶ  (6.2) 

requires the pedestrian level (i.e. 2 m) air temperature (T; ℃), relative humidity (RH; %) 

and constants (ci Table A9.1). Corrections are made under certain circumstances (e.g., if 

RH < 15 % or RH> 85 %). Absolute thresholds exist for heat-health alerts based on the 

effect on the human body (Fig. 6.1) (Disaster Management Centre, 2022; National 

Weather Service, 2022).  

Discomfort Index (ID; units ℃) has been in use for one of the longest periods (Epstein 

and Moran, 2006). It is the average between T and wet-bulb (Tw units ℃) temperature 

(Israel Meteorological Service, 2022; Tennenbaum et al., 1961): 

𝐼஽ = 0.5𝑇 + 0.5𝑇௪  (6.3) 

The Tw  can be determined using T and RH using (Stull (2011): 

𝑇௪ = 𝑇 ∙ tanିଵ(0.151977 ∙ (𝑅𝐻 + 8.313659)଴.ହ) + tanିଵ(𝑇 + 𝑅𝐻) − tanିଵ(𝑅𝐻 −

1.676331) + 0.00391838 ∙ 𝑅𝐻ଵ.ହ × tanିଵ(0.023101 ∙ 𝑅𝐻) − 4.686035  (6.4) 

Combining dry- and wet-bulb temperatures (Eq. 6.3) originates from the US air-

conditioning industry’s cooling degree days calculation (Thom, 1959). The Israeli 

Defence Forces modified it to measure heat load (Tennenbaum et al., 1961) and is used 

by the Israel Meteorological Service (2022) and European climate services (Gidhagen et 

al., 2020). The heat load thresholds (Fig. 6.1) are based on field and clinical observations 

of exertional heat stroke patients in Israel (Shapiro and Seidman, 1990). Israel 

Meteorological Service (2022) defines the discomfort intensity as the difference between 

the actual ID and the threshold of 22 ℃. The index is valid both physiologically (linked to 

sweat rate (Tennenbaum et al., 1961)) and epidemiologically (correlated with summer 

mortality (Tout, 1980)). It has been used to assess the heat exposure risks in warm-humid 

climates (e.g. Atlanta, US (Baniassadi et al., 2019),  Putrajaya, Malaysia (Md Din et al., 

2014)). Although a relatively simple index, it is correlated with the more advanced wet-



 

106 

 

blub globe temperature (WBGT) (Epstein and Moran, 2006) index adopted as an ISO 

standard 7243 (ISO, 2017).  

Humidex (IHD, units: ℃), used by Meteorological Service of Canada for heat warnings 

(Environment and Climate Change Canada, 2019), is a modification of ID (d’Ambrosio 

Alfano et al., 2011) by Masterson and Richardson (1979) with the intent of representing a 

perceived equivalent temperature for the average person: 

𝐼ு஽ = 𝑇 + 0.5555 ቌ6.11𝑒
൭ହସଵ଻.଻ହଷ×ቆ

భ

మళయ.భఱ
ି

భ

మళయ.భఱశ೅೏೛
ቇ൱

− 10ቍ   (6.5) 

where e is the Euler's number (≈ 2.71828) and the dewpoint temperature (Tdp, units: ℃) 

here determined using Lawrence (2005): 

𝑇ௗ௣ =
ଶସଷ.଴ସ×ቀ௟௡ቀ

ೃಹ

భబబ
ቁା

భళ.లమఱ×೅
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ೃಹ

భబబ
ቁି

భళ.లమఱ×೅

మరయ.బరశ೅

    (6.6) 

This index agrees well with the comfort zone of human body especially at high humidity  

(i.e. > 60%) (Roghanchi and Kocsis, 2018) but it may underestimate heat stress risk in 

hot-dry conditions (i.e., T > 36 ℃ and specific humidity < 10 g kg-1 (RH < 27.25%))  

(d’Ambrosio Alfano et al., 2011). Barnett et al. (2010) epidemiological analysis of 107 

US cities mortality data for 1987–2000 found this index performed better than others, 

especially in the humid subtropical south-eastern region. These suggests it is suitable for 

heat stress assessment in hot-humid climates, and can provide different warning levels 

(Table 6.1). 

The differences in humidity impacts on the heat stress indices are evident, as are their 

critical health thresholds (Fig. 6.5). When T is constant (e.g. 30 ℃), an increase in RH 

(e.g. 30 to 40 %) IH increase is smaller (i.e. 1 ℃) than for the same size RH increase at 

high values (e.g. 70 to 80 % leads to a 3 ℃ increase in IH). IH becomes more sensitive at 

higher T and RH. However, the impact of RH increases on ID are smaller as RH increases 

(i.e. less sensitive to high humidity). Given its development in a hot-arid climate, further 

study is needed to determine its suitability for hot-humid climates like Sri Lanka. ID has 

only three thresholds (Table 6.1), which may be linked to its original application (i.e.  

military training) with assumed higher intensity activity. The IHD ‘feels-like’ temperature 

index, has a similar range to IH (Table 6.1), but is more sensitive to changes in RH at 
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lower T (cf. IH) but unvarying with RH for a fixed T. For example, as 10 % change in RH 

is increases IHD by 2 ℃ when T is 26 ℃ (cf. IHD by 3 ℃ when T is 34 ℃). The first heat-

health thresholds are similar for IHD and ID, suggesting caution once T is 25 ℃ if RH 

reaches 60 %. But the thresholds differ between next two levels with a T of 35 ℃ and 

RH = 30 % classified as caution for IHD but extreme caution for IH. Whilst the danger 

thresholds are similar (Table 6.1), with T of 31 (33) ℃ and RH of 80 (60) %. 
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Table 6.1: Levels of warning for three indexes used with threshold values (units: ℃). Colours show the 
levels of comparable thresholds of different indices based on their health outcomes (Blazejczyk et al., 2012; 
Schwingshackl et al., 2021). 
Thresholds  Levels Warning  
 Caution Heat Index IH  (Disaster Management Centre, 2022; National Weather 

Service, 2022) 
27-32 Caution Fatigue possible with prolonged exposure and activity. Continuing activity 

could result in heat cramps. 
32-41 Extreme Heat cramps and heat exhaustion possible.  
41-54 Danger Heat cramps and heat exhaustion are likely; heat stroke possible. 
>54 Extreme 

danger 
Heat stroke imminent 

  
Heat load 

Discomfort Index ID (Epstein and Moran, 2006; Shapiro and Seidman, 1990; 
Tout, 1980) 

22-24 Light Slight feeling of heat. 
24-28 Moderate Caution needed during physical work outdoors. Physical work performed with 

some difficulties 
> 28 Severe Dangerous to engage in physical effort outdoors. Body temperature cannot be 

maintained during physical work. High risk for heat illness. 
 

Discomfort 
Humidex IHD (d’Ambrosio Alfano et al., 2011; Environment and Climate 
Change Canada, 2019; Masterson and Richardson, 1979) 

30-40 Some Tone down or modify certain types of outdoor exercise 
40-45 Great Reduce all unnecessary physical activity. Avoid exertion. 
45-54 Dangerous Heat stroke possible. 
>54 Heat stroke Imminent 
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Fig. 6.5. Heat stress values with air temperatures and relative humidity for (a) Heat Index IH, (b) 
Discomfort Index ID and (c) Humidex IHD . Bold horizontal lines show Table 6.1 thresholds. 
 

6.2.3. Urban development scenarios 

The Colombo Core Area Development Plan (CCADP) (Rathnayake et al., 2020) for 2035 

has development scenarios for the Colombo Municipal Council (CMC). It is assumed 

that the urban local climate zones (LCZs) become more developed by 2035 with LCZ 1 

to 3 becoming LCZ 1 (compact high-rise), LCZ 4 to 10 becoming LCZ 3 (compact low-

rise), and the non-urban LCZs remain unchanged (Fig. 6.6) (Scenario #1,Table 6.2). 

Land cover fractions, mean building heights and anthropogenic heat fluxes (Blunn et al., 
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2022b) for each LCZ type in CMC are based on 2020 data, and projected to 2035 

scenario. The 100 m × 100 m LCZ grids are resampled to 500 m × 500 m for SUEWS 

simulations. Scenario #1has changes in urban morphology but no changes in climate.  

We also consider two Colombo potential mitigation approaches (Simath and Emmanuel, 

2022) (Table 6.2): (1) increasing the albedo of paved surfaces from 0.10 to 0.27 and 

building albedo from 0.12 to 0.35 (i.e. with light colour paint) (Jandaghian and Berardi, 

2020; Kalkstein et al., 2022; Oke et al., 2017); and (2) increasing tree cover extent by 25 

% with a corresponding reduction in paved surfaces (Grimmond, 2007; Heaviside et al., 

2017; Kalkstein et al., 2022). Note here we only assume the idealised condition, as in 

reality paved areas like roads cannot be fully removed. 

 
Fig. 6.6. Local climate zones of  CMC (Fig. 6.1) in current (Perera and Emmanuel, 2018) and 2035 
(Rathnayake et al., 2020). Definitions of LCZs can be found in Table 2 of Stewart and Oke (2012). 
 
Table. 6.2: Modelling scenarios for the CMC 2035 development (Jandaghian and Berardi, 2020; Kalkstein 
et al., 2022; Oke et al., 2017). 
# Scenario Changes made 
1 2035 base case LCZ 1-10: → LCZ 1 and 3. LCZ A-G: unchanged 
2 Increase albedo Albedo: Building : 0.12 → 0.35;  Paved: 0.10→  0.27 
3 Replace paved with tree cover  Tree cover increase 25% by paved surface reduction. Per grid-cell 
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6.3. Results 

6.3.1. Model evaluation 

The modelled weather variables and heat exposure metrics are compared to observations 

at two meteorological stations (CLB, WMO 43466; RML, WMO 43467; Fig. 6.1) for the 

heat wave period (Fig. 6.7). The daily maximum and minimum air temperatures are well 

captured (Fig. 6.7a), but the nocturnal air temperatures tend to be underpredicted by up to 

1.5 ℃ in the median at night. Modelled diurnal patterns with a large inter-quantile range 

are highly dependent on the forcing data, which differs from local observations. 

Generally, air temperatures are underpredicted (MAE ≤1.1 ℃ at both sites, Fig. 6.2) with 

results similar to a London evaluation (Tang et al., 2021) (MAE = 0.93 ℃). Modelled 

relative humidity (Fig. 6.7b) generally agree with observations. Modelled wind speeds 

(Fig. 6.7c) diurnal patterns are dependent on the forcing data but capture differences 

between the two sites.  

Modelled heat-health indices agree well with observations (i.e. derived values using 

observations) in the morning but are more biased in the afternoon and at night. However, 

as the minimum and maximum air temperatures are well modelled (Fig. 6.7a) the indices 

biases at these times are expected to be smaller. Also, differences between the 

meteorological variables of the two sites are calculated to show the biases in inter-site 

variations. (Fig. 6.3). MAEs in ΔIH, ΔID and ΔIHD are 0.86 ℃, 0.49 ℃ and 0.87 ℃, 

respectively, and MBEs are all within ±0.1 ℃. These suggest that modelled relative 

differences between different sites have smaller errors compared to modelled variables at 

each individual site. 

These errors may arise from uncertainties of model parameters due to lack of local 

coefficients for surface conductance coefficients and heat storage. We do not account for 

variability of tree height (5 m). These will impact the SUEWS-RSL temperature and 

wind speed modelling. Simulations will capture local-scale climate but lack details of 

individual point sensors which are at a smaller scale, which is acceptable.
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Fig. 6.7. Comparison for 23 to 28 February 2020 of modelled (MOD, hourly) and observed (OBS, 3-hourly) median and interquartile range of (a) air temperature at 2 m 
above ground level (agl) (forcing data (ERA5), hourly), (b) relative humidity at 2 m agl, (c) wind speed at 10 m agl, (d) 2 m heat index, (e) discomfort index and (f) humidex 
determined for  (g) Colombo meteorological station (CLB, WMO 43466, Fig. 6.1)) and Colombo International Airport Ratmalana meteorological station (RML, WMO 43467, 
Fig. 6.1) (g)  500 m × 500 m grid cell simulated with SUEWS (Imagery: July 2020 Source: Esri, (2022)). Source of observations: 3-hourly - NOAA Integrated Surface 
Database (Smith et al., 2011), CLB daily maximum/minimum air temperatures - Global Historical Climatology Network daily (Menne et al., 2012). 
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Table. 6.3: Mean absolute error (MAE) and mean biased error (MBE) between modelled and observed 
hourly (N = 46) variables at two sites 23 to 28 February 2020 (N = 46). Differences between the 
meteorological variables of the two sites are calculated to show the biases in inter-site variations. 

Site  T (℃) RH (%) U (m s-1) IH (℃) ID (℃) IHD (℃) 
CLB MAE 1.10 6.59 0.61 2.00 0.80 1.85 

MBE -0.63 0.41 -0.43 -1.64 -0.58 -1.20 
RML MAE 1.03 5.42 1.13 1.96 0.85 1.81 

MBE -0.74 0.79 1.00 -1.55 -0.64 -1.23 
  ΔT (℃) ΔRH (%) ΔU (m s-1) ΔIH (℃) ΔID (℃) ΔIHD (℃) 
CLB - RML MAE 0.53 4.82 1.44 0.86 0.49 0.87 

MBE 0.11 0.38 -0.67 -0.09 -0.04 0.06 

 

6.3.2. Spatial distribution of heat stress indices 

The variability of heat indices during the diurnal cycle of the heatwave period (23 to 28 

February 2020) is analysed at four specific times: (a) 07:00 when people begin their 

morning commute; (b) 14:00 when peak air temperature is expected; (c) 19:00 when 

people are commuting home; and (d) 23:00 when people are going to bed (Blunn et al., 

2022a). 

The spatial distributions of air temperature and relative humidity at these times (Fig. 6.8) 

are controlled by the forcing data (Fig. 6.4) and local characteristics. Despite the warmer 

air temperatures in the north (Fig. 6.4), the more built-up coastal areas tend to be warmer 

(~0.3 ℃) than the northeast rural area (Fig. 6.1) at 7:00 and 23:00. However, this 

nocturnal urban heat island intensity (UHII) between the CMC and inland rural areas is 

relatively smaller when compared to other hot-humid cities, e.g. nocturnal UHII around 2 

℃ during a heatwave in Singapore (Chew et al., 2021), which is due to the lower 

background forcing temperatures (around 1 ℃ lower in average in the CMC) (Fig. 6.4) 

and relatively small anthropogenic heat compared to other low-latitude cities (annual 

average 11.7 W m-2 for LCZ 1 in CMC (Blunn et al., 2022a), compared to annual 85 W 

m-2 for commercial area in Singapore (Quah and Roth, 2012)). At 14:00, rural and 

suburban areas in the north and northeast have higher air temperatures with the largest 

difference of around 1.8 ℃ across the study area. At 19:00, the temperature distribution 

largely follows the forcing pattern (Fig. 6.8) and the variations in local scale are small, as 

founded in the model evaluation (Fig. 6.7). The spatial distribution of relative humidity 

generally follows the forcing data with some variations due to local scale climates. 

The heat stress indices at these times (Fig. 6.9) have similar spatial distributions to air 

temperature (Fig. 6.8), but with some obvious differences among indices. At 7:00, all 
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three indices have similar distributions with higher values in the south, with differences 

up to around 0.7 ℃ (IH), 0.4 ℃ (ID) and 1.0 ℃ (IHD) compared to the north. At 14:00, the 

spatial variations are the largest, which are 1.2 ℃ (IH), 0.8 ℃ (ID) and 0.9 ℃ (IHD) across 

the whole study area. IH and ID have similar patterns as the air temperature, while IHD is 

more sensitive to the relative humidity, therefore higher in the south. Such differences are 

more obvious at 19:00, when IHD is high in the south coast and lower in the northwest. 

The differences are up to 0.5 ℃ (IH), 0.3 ℃ (ID) and 0.8 ℃ (IHD). This shows differences 

in the weighting of humidity component in heat stress indices. At 23:00, all three indices 

show similar patterns with CMC and southern coastal areas have higher values, with 

differences of 0.6 ℃ (IH), 0.4 ℃ (ID) and 1.2 ℃ (IHD). This suggests that air temperature 

alone is not a good indicator for assessing heat stress in the hot-humid climate. Variations 

between the sensitivity of different heat stress indices to humidity are also reported in 

other studies. For example, Oleson et al. (2015) found that during summer middays 

Huston (hot-humid) had higher IHD than Phoenix (hot-arid) but lower IH and ID. Although 

without validation one cannot determine which index is superior, this shows the 

importance of selecting index suitable for the climate. 

Thresholds of different heat stress indices should be comparable based on their health 

outcomes (Fig. 6.1) (Blazejczyk et al., 2012; Schwingshackl et al., 2021). Spatial 

distributions of these heat stress warning levels (Fig 6.10) show large differences among 

indices. IH has the largest variation in warning levels during the day. At 7:00 the 

suburban and rural areas in the northeast have no heat stress risks, and at 14:00 the whole 

study area is beyond the level of extreme caution. At 19:00, only CMC and surrounding 

urban areas are still at the extreme caution level. And at 23:00 the whole region is at the 

level of caution. It should be noted that IH assumes a pedestrian level wind speed of 2.57 

m s-1, which is generally higher than the observed and modelled wind speeds (Fig. 6.7), 

therefore the actual heat stress may be underestimated. ID, however, identifies the study 

area with higher risks during the day. At 7:00 the most areas are already classified as 

extreme caution, and at 14:00 it is raised to danger, suggesting high risks for heat illness. 

In contrast, IHD has the smallest variation in warning levels. During the day all areas are 

beyond the level of caution, but at 14:00 only some areas with high air temperatures and 

relative humidity are classified as in extreme caution.  
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In summary all three indicators suggest the entire study area is at risk of heat stress 

during the heat wave period. The highest risk occurs during the daytime when air 

temperatures are high, especially areas inside the CMC and its east related to high both 

temperatures and relative humidity. In these areas people may experience heat related 

cramps and exhaustion, with the recommendation exertion from outdoor physical 

activities should be avoided. In the evening, heat stress risk levels are lower except in the 

built-up CMC area, where similar risks as at midday continue. Heat stress risk at night is 

further reduced, with rural areas no longer at risk (based on IH), while built-up areas may 

experience thermal discomfort. 

 
Fig. 6.8. Spatial distribution of modelled mean 2 m (a-d) air temperature (T) and (e-h) relative humidity 
(RH) during the heatwave (23 to 28 February 2020) at four local times (a, e) 07:00. (b.f) 14:00, (c,g) 19:00, 
and (d,h) 23:00. 
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Fig. 6.9. As Fig. 6.8, but heat stress indices. 
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Fig. 6.10. Spatial distribution of warning levels of each heat stress index at different time of the day based 
on Fig. 6.9. Definitions of thresholds are in Table 6.1. 
 

6.3.3. Population exposed to heat 

It is critical to account for the population to understand the heat stress risks faced by 

citizens and provide targeted warnings and guidance. The hotspots in the study area, with 

both high heat stress risks (> caution level) and dense population (Fig. 6.11), are similar 

for the most critical areas in the CMC and the densely populated coastal areas, but 

spatially vary by time of day. The higher risk areas are in the south in the morning, move 

northward during the day, and back southward at night. Hence, the highest daytime 
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combined population and heat exposure risk occurs in the northern less populated areas, 

although most of the population works in the CMC, while at night and early morning 

when there are fewer people in the warmer urban area when the heat exposure is highest. 

To better understand the level of heat stress risks faced by citizens, the percentage of the 

population in the study area at the different heat stress levels for each index by time of 

the day (Fig. 6.12) is explored. Although 40% of the area is not within a critical IH 

threshold (Fig. 6.9), 80% is exposed to the caution threshold. At 19:00, IH extreme 

caution covers 11% of the area (Fig. 6.9), but mostly the CMC with 35% of the 

population. At 14:00, the IHD extreme caution linked to high temperatures or high 

humidity simultaneously covers a large area, including the less urbanized east, with only 

13% of the population. 

The six heatwave days' total degree-hours exceeding the minimum heat stress threshold 

(Fig. 6.13) indicate IH and ID have similar hotspot spatial distributions across the CMC 

and surrounding populated areas, both north and south. While the IHD hotspots are mainly 

in the south linked to the higher IHD values. For all three, the degree-hours increase with 

building fraction (Fig. 6.13b), despite IHD being lower in areas where building cover is 50 

to 60% because these are mostly in the northern CMC, with lower RH and therefore IHD 

values. 
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Fig. 6.11. Spatial distribution of population (cyan) and number of degrees exceeding the lowest threshold 
of different heat stress indices in Table 6.1 (pink) in percentile at different time of the day during the 
heatwave (23 to 28 February 2020). Areas not exceeding heat stress thresholds are grey. 

 
Fig. 6.12. Percentage of population as a function of heat stress indices at different time of the day during 
the heatwave (23 to 28 February 2020). 
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Fig. 6.13. (a) As Fig. 6.11, but total degree-hours exceeding the minimum thresholds during the heatwave 
(23 to 28 February 2020), and (b) total degree-hours as a function of plan area building coverage (blue) and 
population (grey bars) at (left to right) 7:00, 14:00, 19:00, 23:00. 
 

6.3.4. Densely populated neighbourhoods 

We explore three areas with population > 75th percentile of the region at daytime (14:00) 

and nocturnal (23:00) and their IH values (Fig. 6.1). 

The “central” CMC neighbourhood has mostly low-rise commercial and residential 

buildings (mean building height = 6.6 m) that cover 72% or the plan area (Fig. 6.14a). It 

is warm during both the day and night (IH > 75th percentile at 14:00 and 23:00). The 

“suburban” Kadawatha neighbourhood in northeast Colombo (Fig. 6.14b) has small 

business, industrial and residential buildings (mean building height = 6.3 m) that only 

cover 13% of the plan area, whilst vegetation cover is large (78%). Here is high IH during 

the day (IH > 75th percentile at 14:00) but low at night (IH < 25th percentile at 23:00). A 

CMC mid- to high-rise commercial and residential buildings (mean building height = 

14.6 m) neighbourhood has 45 % plan area with building (Fig. 6.14c) is cooler during the 

day but warm at night (IH < 25th percentile at 14:00 and > 75th percentile at 23:00). 
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Diurnal variability is driven by the background forcing data and local-scale influences. 

The central neighbourhood has consistently warmer air temperatures linked to typical 

urban influences: large buildings reducing the wind speed and the albedo, but storing 

more heat during the day (and releasing it at night), and emitting more anthropogenic 

heat. The suburban neighbourhood has a warmer background forcing data (Fig. 6.4), but 

the low heat storage and high evapotranspiration make it cooler at night. For the coastal 

neighbourhood, the urban effects also exist, but the influence of heat storage is more 

significant, leading to lower daytime temperatures and higher nocturnal temperatures.  

The central neighbourhood is always beyond the IH caution level at night and exceeds the 

IHD extreme caution level during the daytime. It has continuously higher cumulative 

degree-hours of heat stress indices compared to the other two sites (Fig. 6.16). As the 

suburban neighbourhood has the lowest RH, it has lower heat stress indices, especially 

IHD. The high RH at the costal neighbourhood makes it to have higher heat stress indices 

and surpass the dense neighbourhood in IHD at night. Therefore, residents of the central or 

dense urban areas should be more cautious about nocturnal heat stress than suburban 

residents. While in the daytime, people work or live in the suburban area should also pay 

close attention to the influence of high temperatures as those in the dense urban area. 
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Fig. 6.14. Details of (a-c) three neighbourhoods (red box 500 m x 500 m) and (d) land cover. Note for the 
coastal land cover the ocean is excluded. Source: Imagery July 2020 (Esri, 2022). 
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Fig. 6.15. Three neighbourhoods 6 days heatwave (23 to 28 February 2020) average hourly (a) 2 m air 
temperature (b) 2 m relative humidity, (c - e) Heat Index, Discomfort Index and Humidex at 2 m. 

 
Fig. 6.16. Three neighbourhoods (Fig. 6.14) 6 days heatwave (23 to 28 February 2020) cumulative degree-
hours exceeding minimum thresholds (see Table 6.1) for (a) Heat Index, (b) Discomfort Index and (c) 
Humidex at 2 m. 

6.3.5. Future scenarios and mitigation 

Beyond current conditions, it is important to prepare for future conditions such as 

expected urban development by 2035 (section 6.2.3). Heat stress indices are expected to 

increase (cf. 2020 under heat wave conditions) by up to around 0.8 ℃ (Fig. 6.17) with 

median increases in 0.14 ℃ (IH) to 0.07 ℃ (ID) in the CMC area (Fig. 6.18). These 

increases will lead to larger percentage of population in the study area exposed to higher 

heat stress. For IH - caution, 5% more are exposed (i.e. to 97 %) at 7:00, and IH-extreme 

caution increases from 70 % to 97 % at 19:00. Similarly, IHD - extreme caution increases 

from 10 % to 45 % at 14:00.  
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To help reduce these effects by increasing the albedo of built-up surfaces (including all 

building and paved areas) can reduce the net all-wave radiation and air temperature. 

Compared to the 2035 base case, increasing albedo will reduce the median of the heat 

stress indices by 0.03 ℃ (ID) to 0.06 ℃ (IH). At midday when the shortwave radiation is 

the largest, the air temperature can be reduced by up to 0.23 ℃, and heat stress indices 

median reduced by 0.15 ℃ (ID) to 0.26 ℃ (IH). These are consistent with Geletič et al.'s 

(2020) increase of built-up surface albedo (+0.25) in Prague and Brno reducing daily 

mean air temperature by 0.2 ℃. In this study, the increases in albedo will reduce the heat 

stress exposure risks especially during the daytime, resulting in the population in extreme 

caution decrease from 45 % to 25 % with IHD at 14:00 (Fig. 6.19). 

Increasing tree cover by 25 % (at the expense of paved areas) increases the median of the 

heat stress indices by 0.006 ℃ (ID) to 0.03 ℃ (IHD). Indices with temperature-humidity 

indices, are impacted by evapotranspiration from adding trees as the dry-bulb 

temperature is lowered (median: ≤0.05 ℃) but the relative humidity increases (median: ≤ 

0.5 %). This is consistent with Kalkstein et al.'s (2022) air temperature 0.4 ℃ reduction 

but dewpoint temperature increase ~3.2 ℃ (≈ 5 % RH) at midday during a Los Angeles 

heatwave assuming a 150% increase in tree cover (replaced land cover type is not given). 

As Los Angeles has a hot-dry climate, IH is less sensitive to humidity. As expected, trees 

are not a sensible mitigation approach in hot-humid climates. However, it trees provide 

micro-scale shade (McPherson et al., 1997; Simath and Emmanuel, 2022; Tan et al., 

2016), which is not captured in this neighbourhood (or local-scale) study. Radiative 

modelling at the pedestrian scale level can provide heat stress indices such as mean 

radiant temperature (Thorsson et al., 2007) and the Universal Thermal Climate Index 

(UTCI) (Blazejczyk et al., 2012). 
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Fig. 6.17. As Fig. 6.9, but increases in heat stress indices in 2035 CMC development scenario (Fig. 6.5) 
compared to 2020 scenario. 
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Fig. 6.18. Variability of heat stress indices differences (averaged during the 23 to 28 February 2020 
heatwave period across the 291 grids) between 2035 development scenarios compared to 2020 (current) 
scenario with interquartile range (box), median (horizontal line) and 5th and 95th percentiles (whiskers). 
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Fig. 6.19. As Fig. 6.12, but for CMC in three future scenarios. 2035: 2035 base scenario, 2035-alb: 
increased albedo scenario, 2035-tree: increased tree cover scenario (Table 6.2).  

6.4. Discussion 

Global warming combined with the UHI make urban dwellers likely to be at higher risk 

of heat exposure especially during extreme heat events. Understanding the intra-city 

spatial and temporal variation of population heat exposure can help with creating more 

targeted community level warnings and action plans. However, currently these are very 

limited in the global South tropical cities (e.g., Colombo, Sri Lanka and neighbouring in 

South Asia) where data and resource are scarce. In this study we use SUEWS to model 

the local-scale climates in Colombo to analyse outdoor population-based heat exposure 

risks. SUEWS requires easy-to-obtain input data and has relatively low computational 

cost, making it widely usable for different locations and scenarios (actual or planned) or 

coupled with models at different scales. 

Our findings extend the current understanding of heat exposure patterns in tropical cities, 

and highlight the importance of including the influence of humidity in heat stress 

assessments for the hot-humid climate. The spatial and temporal dynamics of heat stress 

indices and population help to identify hotspots that require special attention during 

extreme heat events. It can also be combined with the individual’s daily locations for 

personalised assessments. For example, a person working in a neighbourhood that is hot 

by day and cool by night and living in a neighbourhood that is warm by night will 

experience higher risks than those who stay in the same neighbourhood for the whole 

day. Analyses of future urban development scenarios can support long-term urban 

planning. Widely proposed mitigation approaches such as increasing albedo is found to 

help reduce the heat stress risks, but increasing tree covers is not ideal at the 

neighbourhood scale but may have net benefit at the micro-scale from shading effect. 

This could be further studied through more detailed simulations of canopy layer radiation 

in the future (Stretton et al., 2022). Climate change may increase heat exposure risks 

results reported in this work. Analysing the effectiveness of different mitigation measures 

can help reduce costs. 

The three heat stress indices have different spatial distribution and threshold definitions, 

with the Discomfort Index (ID) being less sensitive to high humidity but narrower 

thresholds. The Humidex is more sensitive to humidity even at lower air temperatures 
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and has a large range between caution and extreme caution thresholds. Without local 

health data, we cannot determine which index is superior, but using a climate- and 

purpose-suitable heat stress index is critical (Brake and Bates, 2002; Cheng et al., 2019; 

Di Napoli et al., 2019; Schwingshackl et al., 2021). The temperature-humidity indices 

used are easy to use but, unlike UTCI and WBGT, which use more meteorological 

variables (i.e., wind speed and radiation) that act synergistically (Katavoutas and Founda, 

2019). This could be also achieved through improved radiation modelling as mentioned 

above and could be done with SUEWS modelling in future works. 

6.5. Conclusions 

Using SUEWS, the local-scale temporal and spatial patterns of heat exposure of the 

population during a heatwave period in Colombo, Sri Lanka, are explored using three 

heat stress indices: Heat Index (IH), Discomfort Index (ID) and Humidex (IHD). The 

largest spatial difference is found at 14:00 (local time) varying between 1.2 ℃(IH) and 

0.8 ℃ (ID), at night (23:00) the spatial range is 1.2 ℃ (IHD) when the relative humidity is 

high. Although differences occur between indices threshold, during most of the heat 

wave period the study region is above the lowest heat stress warning. ID classifies 98 % 

of the population to be exposed to “danger” level at midday (cf. up to the lower “extreme 

caution” for the other indices). Hotspots are evident in areas of large population, notably 

in the Colombo Municipal Council and surrounding coastal urban areas. Some inland 

areas can be overheated during the day but overall cooler at night.  

Simulating the Colombo Municipal Council in 2035 development scenario, evidence of 

increases in heat stress indices (≤ 0.8 ℃) suggest an additional 35 % of population will 

experience higher risks at midday with the higher IHD index. Increasing the built-up 

(building and paved) surface albedo can reduce this 2035 risk by 15% (i.e. only 15 % net 

population exposed). Increasing tree cover by 25 % increases humidity and therefore heat 

stress risk so is inappropriate in a hot-humid climates. Note microscale shading effects 

from trees are not considered but would need to be balanced between scales as the 

humidity effect would remain.  

This highly resolved tempo-spatial heat stress mapping of a South Asian tropical cities 

can provide guidance for urban planners, policy makers as well as individuals to deal 

with extreme climate conditions. The experience can be used by other cities with similar 
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climates and development status. Future work could include: using more detailed 

population data to understand the heat exposure of specific vulnerable groups; use of 

SUEWS coupled to meso-scale weather model (e.g. WRF) to give feedbacks allow better 

forecasts and early warnings, and EnergyPlus for indoor heat exposure assessment. 
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Chapter 7 Indoor overheating risks of residential buildings in different 

neighbourhoods in Colombo, Sri Lanka 

Building on the previous chapter's use of SUEWS to evaluate outdoor heat exposure in 

Colombo, this chapter extends the analysis by using the improved SUEWS-EnergyPlus 

method to assess indoor overheating risks in a typical Colombo urban dwelling during a 

heatwave period. The study considers various neighbourhood-scale climates and 

occupancy profiles, and evaluates passive cooling interventions under different 

conditions. The aim is to highlight the importance of considering local-scale climate and 

in building energy simulation for mitigating indoor overheating risks. 

The chapter is presented in the form of a paper, with me as the primary author 

responsible for conducting the research, drafting the paper, and creating the figures. My 

co-authors, Z. Luo and S. Grimmond, provided guidance on structuring the paper, 

interpreting the results, and editing the text. 

 

 

7.1. Introduction 

The average temperature increase in South Asian countries is projected to exceed 2 ℃ by 

2050 compared to 2000 (Ahmed and Suphachalasai, 2014), which will increase the risk 

of heat exposure. In Sri Lanka, air-conditioners are popular in purpose-built apartments 

(90% AC ownership in 2018), but rare in houses (5% AC ownership for single-storey 

houses and 10% for multi-storey houses) that account for 85% of the total dwellings (Sri 

Lanka Ministry of Environment, 2019). Measurements and surveys indicate that Sri 

Lankan buildings without air-conditioners can have high indoor overheating risks. For 
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example, air temperatures in office buildings in Colombo were measured up to 42 ℃ on 

a typical hot sunny day in 2017 (Rajapaksha, 2020). This suggests that most households 

in Sri Lanka need to rely on passive cooling measures to protect themselves from 

overheating risks. 

Colombo (6°54’N, 79°52’E) is the commercial capital and most populated city of Sri 

Lanka (Department of Census & Statistics, 2012). It is located in a tropical rainforest (Af) 

Köppen climate (Beck et al., 2018) or an ASHRAE extremely hot-humid (0A) climate 

(ANSI/ASHRAE, 2019), with high air temperature and humidity throughout the year and 

little seasonal variation (Emmanuel and Johansson, 2006). Dwellings in these areas are at 

higher risk of indoor overheating due to the canopy layer  urban heat island (Hwang et 

al., 2020). Therefore, improving the indoor thermal environment of naturally ventilated 

dwellings in urban areas requires consideration of the urban setting.  

Indoor overheating risks for naturally ventilated dwellings in different tropical regions 

have been extensively studied (Gamero-Salinas et al., 2021; Kubota et al., 2009; Tong et 

al., 2019; Zune et al., 2021). However, research on indoor overheating and passive 

cooling strategies for Sri Lankan dwellings considering the urban neighbourhood 

microclimate is limited. A TRNSYS modelling study of a typical Colombo dwelling 

room found the roof insulation, overhang and enhanced natural ventilation could help to 

reduce the indoor air temperatures (Ratnaweera and Hestnes, 1996), but without 

considering the outdoor microclimate. The modelled impact of a courtyard on a 

dwelling's natural ventilation suggests that with a warmer air temperature in the 

courtyard than outside, airflow through the building from outside to the courtyard could 

provide better cooling than airflow in the opposite direction (Rajapaksha et al., 2003). To 

extend the current understanding of Sri Lankan indoor overheating risks, we assess the 

indoor overheating risks of a single-family archetype dwelling in two Colombo 

neighbourhoods (central and suburban) by combining the urban land surface model 

SUEWS and the building energy simulation tool EnergyPlus. Our objectives are to: (1) 

assess overheating risks in a typical Colombo urban dwelling during a heatwave period, 

considering different neighbourhood-scale climates and occupancy profiles; (2) compare 

and evaluate passive cooling interventions for these dwellings in different conditions. 
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7.2. Methods 

To assess the indoor overheating risks and mitigation approaches in different Colombo 

neighbourhoods, an archetype dwelling is simulated in different neighbourhood settings 

by combining the local-scale land surface model Surface Urban Energy and Water 

Balance Scheme (SUEWS) v2021a/SuPy 2022.8.5 (Järvi et al., 2011; Sun et al., 2020; 

Sun and Grimmond, 2019; Tang et al., 2021; Ward et al., 2016) and the building energy 

simulation tool EnergyPlus v9.4 (U.S. Department of Energy, 2020a).  

7.2.1. Urban climate modelling 

SUEWS is used to simulate the city of Colombo and surrounding regions (Fig. 7.1a) with 

a spatial resolution of 500 m during a heatwave period (23 to 28 February 2020) (Chapter 

6). Two neighbourhoods with a midday air temperature above the 75th percentile during 

the heatwave period for the entire study area are chosen for indoor overheating 

simulations. The 'central' neighbourhood has a building percentage of 64% and an 

average building height of 6.46 m. The 'suburban' neighbourhood has a building fraction 

of 13% and an average building height of 6.28 m (refer to Section 6.3.4). Section 6.2.1 

presents the SUEWS model setup and evaluation. 

The SUEWS roughness sublayer module (SUEWS-RSL) generates air temperature, 

relative humidity, and wind speed vertical profiles, which are then provided to 

EnergyPlus. The SUEWS-EnergyPlus simulation workflow is described in detail in 

Section 5.2. The 2 m air temperature (T2) and relative humidity (RH2) and the 10 m wind 

speed (U10) are provided to EnergyPlus via the weather input (.epw) file. The SUEWS-

RSL vertical wind profile is incorporated into EnergyPlus via input files (.idf) by 

substituting the power law coefficients with values derived from the SUEWS-RSL data. 

The EnergyPlus wind profile equation, as defined by ASHRAE (2005), is used in this 

process: 

𝑈௭ = 𝑈ଵ଴ ቀ
ఋೝ೐೑

ଵ଴
ቁ

ఈೝ೐೑

ቀ
௭

ఋ
ቁ

ఈ

                   (7.1) 

where the meteorological station boundary layer depth (δref) and exponent (αref) are the  

EnergyPlus default for open terrain (U.S. Department of Energy, 2020b). To obtain the 

equivalent site values (δ, α) for the central and suburban neighbourhoods, the SUEWS-

RSL wind profile results are fitted to Eq. 7.1. Here the fitted values for the central 
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neighbourhood values are α = 0.43 and δ = 100.3 m, while for the suburban 

neighbourhood they are 0.30, and 64.3 m, respectively (Fig. 7.2b). 

During the heatwave period of 23 to 28 February 2020, the median diurnal cycle of T2 

was modelled for the central and suburban neighbourhoods. The results indicate that the 

suburban neighbourhood was 0.4 ℃ warmer during midday and 0.6 ℃ cooler at night 

compared to the central neighbourhood, which demonstrates the influence of both 

neighbourhood- and regional-scale climates. More information about this can be found in 

Section 6.2.1.3. 

Wind pressure coefficients (Cp) from the Tokyo Polytechnic University database (TPU, 

2007) are used to simulate natural ventilation with EnergyPlus-AFN. The TPU database 

provides data for buildings in neighbourhoods with different plan area fractions (λP). To 

ensure consistency with the TPU database, λP values of 0.6 (central) and 0.1 (suburban) 

are used in EnergyPlus simulations (Fig. 7.3). The simulation accounts for the differences 

in view factors (Chapter 3) and wind pressure coefficients for the building facets 

(Chapter 4, Appendix 11). 

 
Fig. 7.1.  Colombo region (a) locations of the two neighbourhoods (blue) on local climate zone map (Table 
2 of Stewart and Oke (2012)) (data source: Perera and Emmanuel (2018). (b, c) aerial view July 2020 of 
the two neighbourhoods (red box) (sources: Esri (2022), and (d) land cover percentages (see section 6.3.4).  
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Fig. 7.2. Heatwave period (23 to 26 February 2020) condition for two neighbourhoods (Fig. 7.1) (a) hourly 
median (lines) and inter-quartile range (shading) T2, and (b) median vertical wind profiles using 
coefficients derived from the SUEWS-RSL layer (building height= 6 m). 
 

 
Fig. 7.3. Building archetype simulated (EnergyPlus) using (SUEWS) weather data for two neighbourhoods: 
(a) central (plan area fraction λP = 0.6) and (b) suburban (λP = 0.1). 

7.2.2. Dwelling archetype simulation 

The typical Sri Lankan dwelling is a single-family detached house (Department of 

Census & Statistics, 2012), which we simulate in this study (Fig. 7.4) with building 

geometry adapted from Halwatura and Jayasinghe (2007). The house has three bedrooms, 

which is the most common configuration in Sri Lankan households (about 30%) 

(Department of Census & Statistics, 2012). The building materials are based on the 

Census of Population and Housing 2012 (Department of Census & Statistics, 2012), 

which indicates that brick walls (53.1%), cement floors (72.5%), and asbestos roofs 

(64.6%) are the most prevalent in Colombo. We obtained detailed information on the 

construction and thermal characteristics of the building envelope (Table 7.1) from 

various sources (ASHRAE, 2005; Emmanuel, 2004; Ratnaweera and Hestnes, 1996; Sri 

Lanka Sustainable Energy Authority, 2021). 

Two occupancy patterns are considered in this study: (1) a family with two working 

adults and two children, and (2) an elderly couple. The family leaves the house at 7:00 on 

weekdays for work or school and returns at 17:00, based on a survey by Pathirana and 
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Halwatura (2020). During weekends, the family stays at home for the entire day. The 

elderly couple is assumed to be at home all the time. As no detailed room-wise 

occupancy data is available, schedules and heat gains are assumed based on previous 

studies (Mavrogianni et al., 2014; Porritt et al., 2012) and presented in Appendix 10. 

Internal heat gains from lighting and equipment are assumed to be 5 W m-2 (Pathirana et 

al., 2019) and 4 W m-2 (Liu et al., 2017), respectively.. 

Surveys report that 85 % of households in Sri Lanka tend to close windows at night 

(Halwatura and Jayasinghe, 2007), which is traditional and practised for security reasons 

(Ratnaweera and Hestnes, 1996). However, there is no detailed information on window 

opening during the daytime. In Hyderabad, India, a survey during the monsoon season in 

2008 showed that more than 50% of households closed windows during the daytime 

when the outdoor air temperature was high (Indraganti, 2010). Therefore, it is assumed 

that windows are closed during the daytime when no one is home. The effective openable 

area of all windows is assumed to be 25%, in accordance with local regulations (Urban 

Development Authority of Sri Lanka, 2020), while all doors except bedroom and 

bathroom doors remain open. Natural ventilation is simulated using the AirflowNetwork 

(AFN) module of EnergyPlus. For this archetype with brick walls, an infiltration rate of 1 

ACH is assumed, based on previous studies (Bandara et al., 2011; Ratnaweera and 

Hestnes, 1996). 

 
Fig. 7.4. (a) Dwelling archetype and (b) layouts of ground (left) and first (right) floor. 
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Table 7.1: Building envelope construction material and U-values. Data are from various sources 
(ASHRAE, 2005; Emmanuel, 2004; Ratnaweera and Hestnes, 1996; Rawat and Singh, 2022; Sri Lanka 
Sustainable Energy Authority, 2021). SHGC: solar heat gain coefficient. U-value: overall heat transfer 
coefficient. 
 Construction (inside to outside) U-value 

(W m-2 K-

1) 

External wall 12.5 mm plasterboard, 200 mm brick (albedo = 0.3, emissivity = 0.9) 3.29 
Internal wall 12.5 mm plasterboard, 100 mm brick, 12.5 mm plasterboard 3.69 
Roof 20 mm ceiling tile, air gap, 6 mm dark coloured asbestos-cement sheet 

(albedo = 0.2, emissivity = 0.9) 
1.91 

First floor 40 mm cement screed, 100 mm concrete, air gap, 20 mm ceiling tile 1.31 
Ground floor 40 mm cement screed, 200 mm concrete 4.67 

Windows Double glazing with 6 mm clear glass and 12 mm air gap (timber frame). 
SHGC = 0.73 

2.95 

Doors (external) 25 mm insulation board with metal surface cover 1.20 

Doors (internal) 25 mm wood 6.00 

 

7.2.3. Indoor overheating metrics 

Currently there is no consensus definition for indoor overheating. International standards 

state the risk of indoor overheating can be assessed either with adaptive thermal comfort 

models (ANSI/ASHRAE, 2013a; CIBSE, 2013) or heat stress indices (ISO, 2017, 2004). 

Adaptive thermal comfort equations provide indoor comfort temperatures derived based 

on field surveys of thermal comfort and measurements of indoor and outdoor 

temperatures (Nicol et al., 2012). The overheating thresholds for adaptive equations are 

usually determined based on 80% occupant acceptability (ANSI/ASHRAE, 2013a; 

CIBSE, 2013). However, such thresholds are for thermal comfort, not heat-related health.  

Heat stress indices can be categorised into empirical and analytical indices. Empirical 

indices (e.g. wet bulb globe temperature (WBGT) (ISO, 2017)) are developed based on 

experiments, while analytical indices (e.g. predicted heat strain (PHS) (ISO, 2004)) are 

derived from thermal balance equations of the human body.  

As the adaptive thermal comfort is the most used approach for indoor overheating 

assessment in international standards (ANSI/ASHRAE, 2013a; CIBSE, 2013; MoHURD, 

2012), in this study we consider the adaptive thermal comfort equation for the local 

climate to assess the risk of indoor overheating. Since there are no adaptive thermal 

comfort equations specific to Sri Lanka, we will refer to studies in southern India, which 

has a similar hot-humid climate and is geographically close. The adaptive thermal 
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comfort equation developed by Indraganti et al. (2013) is based on field studies in 

naturally ventilated buildings in Chennai and Hyderabad (in southern India): 

𝑇௖௢௠௙ = 0.26𝑇௥௠ + 21.4   (7.2) 

where the running mean outdoor temperature Trm is (Nicol and Humphreys, 2010): 

𝑇௥௠ = (1 − 𝑘)(𝑇௢ௗିଵ + 𝑘𝑇௢ௗିଶ + 𝑘ଶ𝑇௢ௗିଷ ⋯ + 𝑘଺𝑇௢ௗି଻)                   (7.3) 

where k is a constant between 0 and 1, with 0.8 used as recommended (Nicol and 

Humphreys, 2010), Tod-n is the daily mean outdoor temperature n days ago (℃).  

The overheating threshold of adaptive thermal comfort equations is usually based on the 

percentage who indicate “satisfactory”. For example, the UK standard (CIBSE, 2013) 

defines the overheating threshold as the indoor operative temperature at which 80% of 

occupants feel comfortable, and the Chinese standard defines it as 75% satisfaction 

(MoHURD, 2012). For Eq. 7.2, Indraganti et al. (2013) reported that 70% satisfaction 

was found at 2 ℃ higher than Tcomf. Therefore, we take Tcomf + 2 ℃ as the overheating 

threshold (Tmax): 

𝑇௠௔௫ = 0.26𝑇௥௠ + 23.4   (7.4) 

7.2.4. Interventions for passive cooling 

Passive cooling approaches for buildings can be classified into two categories: solar and 

heat protection, such as shading and reflective coating, and heat dissipation techniques, 

such as heat sinks and natural ventilation (Santamouris et al., 2007; Santamouris and 

Kolokotsa, 2013). However, some of these methods may not be practical due to cost or 

the hot-humid climate in Colombo (Bhamare et al., 2019). In this study, we focus on 

practical approaches that are relatively easy to apply in Colombo dwellings, including 

solar control, natural ventilation, and insulation (Ratnaweera and Hestnes, 1996). 

Solar radiation is high in low-latitude regions, making solar control measures important. 

External and internal shading, such as overhangs, external shutters, internal blinds, and 

curtains, and reflective building envelope, such as solar reflective paint on roofs and 

walls and solar control glazing, are common solar control measures (Porritt et al., 2012). 

Overhangs above windows, which are common in Sri Lanka, have been shown to reduce 

peak indoor air temperature by 0.6 °C on a typical hot day (Ratnaweera and Hestnes, 

1996). Cool roofs are more effective in tropical climates than in other climates in 
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reducing the indoor cooling energy demand due to the high solar angles (Rawat and 

Singh, 2022). White paint on roofs and walls with an albedo of 0.74 has been simulated 

to reduce peak indoor air temperature by 2.4 ℃ on a typical sunny day in Singapore 

(Zingre et al., 2015). In Mumbai, solar control glazing with a reflective coating is 

estimated to reduce indoor thermal comfort, measured as 'predicted percentage 

dissatisfied' (PPD), by 47% compared to clear double-glazing windows (Singh et al. 

(2008). In this study, we simulate three solar control measures: overhang, white paint on 

roofs and walls, and solar control glazing with low solar heat gain coefficients (SHGC). 

Night ventilation is a widely recommended passive cooling strategy for buildings in hot-

humid climates (Doctor-Pingel et al., 2019; Gamero-Salinas et al., 2021; Jamaludin et al., 

2014; Kubota et al., 2009; Ran and Tang, 2018; Zune et al., 2021). However, in hot 

climates with high daytime outdoor air temperature, closing windows during the day may 

improve indoor thermal comfort. For example, Ratnaweera and Hestnes (1996) suggest 

that closing windows during the daytime could reduce the maximum air temperature by 

1.7 ℃ on a typical hot day in Sri Lanka. 

Insulation is not typically considered a passive cooling solution (Santamouris and 

Kolokotsa, 2013), but it can help reduce indoor overheating risk under certain conditions. 

Insulation can be applied to the roof and/or external walls to prevent heat transfer 

between indoor and outdoor spaces. Good thermal resistance of building envelopes can 

help save energy by reducing heat loss in winter and heat gain in summer for air-

conditioned buildings. However, the impact of insulation on free-running buildings can 

be bi-directional and influenced by other factors, since it may prevent heat from releasing 

to the outdoor environment as well. For instance, Chvatal and Corvacho (2009) estimated 

that reducing the external wall U-value from 0.91 to 0.2 W m-2 K in Évora (Portugal) 

would increase the indoor overheating hours in summer if the window solar heat gain 

coefficient (SHGC) is larger than 0.32, but decrease if SHGC < 0.32. Updated local 

building codes in different U.S. cities suggest that higher insulation and air tightness 

levels can exacerbate indoor heat stress for buildings in relatively cooler cities like Boise 

during summer power outages but mitigate heat stress in very hot climates like Phoenix 

(Baniassadi et al., 2018). Fosas et al. (2018) and Makantasi and Mavrogianni (2016) 

highlight the importance of adequate ventilation in preventing increased overheating 

risks resulting from adding insulation. Porritt et al. (2012) compared the effects of 
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internal and external insulation of walls during a nine-day heatwave in London and found 

that internal insulation could increase overheating degree-hours by 14%, while external 

insulation could decrease it by 49%. Therefore, the effect of insulation is linked to 

several factors such as climate, solar control, ventilation, and thermal mass. Insulation 

can be more effective in hot climates as it prevents inward heat conduction through the 

building envelope, but precautions should be taken to minimize heat gain by the indoor 

space, such as solar heat gain through windows. In tropical climates, it is suggested that 

less wall insulation should be applied to reduce cooling energy use (Zune et al., 2021). 

However, Ratnaweera and Hestnes (1996) found that adding 100 mm thick polystyrene 

to the asbestos roof of a Colombo dwelling reduced the maximum air temperature by 0.2 

°C on a typical day in December, as it prevented heat transfer from the roof to the 

interior. Therefore, in this study, we only consider roof insulation as a potential passive 

cooling measure. 

In summary, we assess passive cooling interventions (Table 7.2) in two different 

neighbourhoods. This includes both accepted and debatable options for hot-humid 

climates. 

Table 7.2: Passive cooling interventions simulated  using the materials and thermal characteristics based 
on various sources (Halwatura and Jayasinghe, 2008; Porritt et al., 2012; Singh et al., 2008).  
Intervention Description 

Overhang Overhang above windows – 1 m deep 
White paint White colour paint on roof and walls (albedo = 0.74) 
Solar control (SC) 
glazing 

Solar-control glazing with reflective film coated (SHGC = 0.1, U-value = 
1.95) 

Night ventilation Windows opened at night (21:00 to 5:00) 
Roof insulation Roof insulation – 100 mm expanded polystyrene 

 

7.3. Results 

7.3.1. Indoor overheating risks of the base cases in different neighbourhoods 

We focus on the overheating risk analysis in different conditions, in the two rooms 

occupied for the longest duration during the day (living room) and night (bedroom). As 

bedroom 2 on the first floor with a west-facing wall is found to be warmest among the 

three bedrooms in the archetype building (Fig. 7.4), we select this bedroom for analysis. 



 

140 

 

During a heatwave period, diurnal changes of indoor operative temperatures (average of 

air and mean radiant temperatures) in the two rooms with the working family occupancy 

profile show that the suburban building is warmer than the central building during the 

day (Fig. 7.5). This is because the outdoor air temperatures are warmer during daytime 

(Fig. 7.2) and there is less solar shading from surrounding buildings (Fig. 7.3). The 

maximum Top in the living room occurs at 17:00 when occupants just return home 

(except Sunday 23 Feb), with peak values of 33.2 ℃ (central building) and 34.1 ℃ 

(suburban building). The unoccupied upper floor bedroom reaches even hotter 

temperatures, with peak values of 38.7 ℃ and 39.3 ℃ in the central and suburban 

buildings, respectively. 

When occupied, the upstairs bedroom's Top increases by up to 0.4 ℃ from 21:00 due to 

heat release from the brick walls and concrete floor, even with windows closed (Fig. 7.5). 

This thermal mass-related temperature increase is even more significant in the ground 

floor living room, with values of up to 0.8 ℃ in the central neighbourhood building and 

1.1 ℃ in the suburban neighbourhood building. 

Diurnal changes of Top are similar with an elderly occupancy profile, but there are some 

differences (Fig. 7.6). The peak living room Top is slightly cooler with windows opened 

during the daytime occupancy (central = 33.1 ℃ and suburban = 33.9 ℃). However, 

natural ventilation through the south-facing window of the living room is not effective in 

cooling the indoor space during high outdoor air temperatures. The elderly occupants are 

at a higher risk of overheating due to longer occupied periods. Although the peak 

bedroom Top is reduced to 38.1 ℃ (central) and 38.7 ℃ (suburban) with daytime natural 

ventilation, the maximum Top during bedroom occupancy is still high at 35.1 ℃ (central) 

and 35.4 ℃ (suburban). This suggests that the elderly occupants experience a cooler 

indoor environment compared to a working family occupancy, but still face the risk of 

overheating. 

During the heatwave period, both occupied rooms exceed the adaptive thermal comfort 

(Tmax) overheating thresholds for most of the time. The suburban building has 5.0% more 

degree-hours exceeding Tmax during occupied periods compared to the central building, 

mainly due to larger daytime heat gains under the family occupancy profile. The 

suburban living room has 62.5% more degree-hours exceeding Tmax, while the bedroom 

has 6.3% less. Under the elderly occupancy profile, the central and suburban buildings 
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have 11.9% and 16.2% more total overheating degree-hours, respectively, compared to 

the family occupancy. This is mainly due to the longer occupied period of the living 

room and the insufficient cooling provided by natural ventilation during the daytime. 

These findings suggest that elderly occupants are at higher risk of overheating, 

particularly during the daytime. 

 
Fig. 7.5. Indoor operative temperature (Top) during a heatwave in two neighbourhoods (Fig. 7.1) when 
occupied (grey) by the working family schedule in the (a) living room and (b) bedroom (Fig. 7.4). 
 

 
Fig. 7.6. As Fig. 7.5, but elderly occupancy. 
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Fig. 7.7. Degree-hours above the adaptive thermal comfort threshold (Tmax) in different rooms and 
neighbourhoods for buildings with (a) working family and (b) elderly occupancy profiles.  

7.3.2. Effects of interventions: Bedroom 

The study models the impacts of interventions (listed in Table 7.2) on overheating 

degree-hours for both neighbourhoods and two occupancy profiles. The suburban 

neighbourhood receives more solar radiation, which results in larger passive cooling 

effects from solar control-related interventions. Among all the interventions, the 

application of reflective white paint on walls and roofs causes the greatest reduction in 

both Top and indoor overheating degree-hours in all conditions (as seen in Table 7.3, Fig. 

7.9, and 7.10). As heat transfer through the roof is the primary source of overheating in 

the bedroom, this intervention reduces overheating degree-hours by 89-92% in the 

suburban neighbourhood and 71-74% in the central neighbourhood, compared to the base 

case (Table 7.3). The reduction in overheating degree-hours is more significant for the 

family occupancy, as there is no daytime natural ventilation, and peak Top drops during 

occupied periods from 21:00 to 5:00, by 2.7 ℃ (central) and 3.5 ℃ (suburban). 

However, modifications related to north-facing bedroom windows are less effective. The 

replacement of solar control glazing from SGHC 0.73 to 0.1 reduces overheating degree-

hours by approximately 10% in the suburban neighbourhood and less than 3% in the 

central neighbourhood (Table 7.3). The overhang intervention only reduces overheating 

degree-hours in the bedroom by around 1% as it only blocks diffuse solar radiation, 

which is not a major heat gain source.  
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Night ventilation is more effective when outdoor wind speeds are stronger and there is 

less surrounding building sheltering, as shown in Fig. 7.2. The suburban bedroom 

experiences a mean nocturnal ventilation rate of 3.8 ACH, while the central bedroom is 

2.9 ACH. During the occupied period, both the maximum and average Top are reduced 

more in the suburban building (0.6 ℃, 1.1 ℃, respectively) than for the central building 

(0.5 ℃, 1.0 ℃, respectively). Night ventilation is the second most effective intervention, 

reducing bedroom overheating degree-hours for the family profile by up to 39%. 

However, for the other occupancy profile which already has open windows during other 

periods, the effect of night ventilation on overheating is slightly smaller. 

Roof insulation has limited impact on reducing overheating for the family profile and 

even has a negative effect for the elderly profile. While roof insulation can reduce the 

daytime peak Top by up to 3.3 ℃ by preventing heat conduction into the indoor space, it 

can trap heat inside the room at night when windows are closed, leading to an increase in 

Top (Fosas et al., 2018). This is evident in the higher Top observed between 21:00 to 23:00 

and the slower decrease after 23:00 until morning, indicating that roof insulation alone is 

not an effective solution for night-time passive cooling if there is no other means to 

release heat to the outside except by conduction through the building envelope. 

In summary, the most effective intervention to reduce the risk of sleeping overheating is 

the application of white paint, followed by night ventilation. Interventions related to solar 

control for windows, such as the use of an overhang and glazing with lower SGHC, are 

more effective during the daytime but have a reduced effect at night. However, roof 

insulation should be used with caution as it can trap heat when windows are closed. 
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Fig. 7.8. Impact of five interventions in reducing degree-hours above the adaptive thermal comfort 
threshold (Tmax) for two rooms in building in two neighbourhoods with (a-e) working family and (f-j) 
elderly occupancy profiles. 
 
Table 7.3: Degree-hours reduction of interventions (percentage reduction compared to the base case in 
parentheses) in different conditions. 

Intervention Bedroom Living room 
 Family Elderly Family Elderly 

 Central Suburban Central Suburban Central Suburban Central Suburban 
Overhang 1.5 

 (1.0%) 
1.8  
(1.3%) 

1.2 
(0.9%) 

1.5  
(1.1%) 

2.2 
(7.7%) 

2.3  
(5.0%) 

5.0 
(9.3%) 

5.3  
(6.6%) 

White paint 107.5 
(74.2%) 

125.1 
 (92.2%) 

98.9 
(70.5%) 

116.6 
(89.4%) 

17.5 
(61.4%) 

32.4 
(70.0%) 

28.0 
(51.9%) 

50.8 
(62.8%) 

SC glazing 4.1 
(2.8%) 

14.0  
(10.3%) 

3.7 
(2.6%) 

12.1 
(9.3%) 

3.9 
(13.7%) 

7.0 
(15.1%) 

7.7 
(14.3%) 

14.1 
(17.4%) 

Night 
ventilation 

53.8 
(37.1%) 

52.4  
(38.6%) 

51.6 
(36.8%) 

49.7 
(38.1%) 

4.2 
(14.7%) 

5.2 
(11.2%) 

8.3 
(15.4%) 

10.3 
(12.7%) 

Roof 
insulation 

2.4  
(1.7%) 

0.7 
 (0.5%) 

-2.7  
(-1.9%) 

-3.7  
(-2.8%) 

5.0 
(17.5%) 

3.6  
(7.8%) 

7.1 
(13.1%) 

5.1  
(6.3%) 
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Fig. 7.9. Mean hourly Top during the heatwave period (23 to 28 February 2020) for five interventions 
(Table 7.2) and the based case for the (a,c) central and (b,d) suburban neighbourhood located buildings 
with (a,b) family (c,d) elderly occupancy profiles with occupied periods (shading). 
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Fig. 7.10. Percentage reduction in overheating degree-hours exceeding the adaptive thermal comfort 
threshold (Tmax) during occupied periods with different interventions. 

 

7.3.3. Effects of interventions: Living room 

As the occupied periods of living rooms are predominately in the evening (family) or 

daytime (elderly), the impacts of interventions on overheating are slightly differently 

from the bedroom (section 7.3.2).  

The ground floor living room receives less solar radiation than the first-floor bedroom, 

resulting in smaller reductions in overheating degree-hours. However, the albedo change 

(or white paint) remains the most effective intervention, reducing Top during occupied 

periods by up to 1.3 ℃ in the suburban neighbourhood. The overhang and solar control 

glazing have larger effects compared to the bedroom facing north, especially with a 

south-facing window in the living room. For elderly occupants, the overhang reduces the 

living room Top by up to 0.2 ℃ in the afternoon. Although the numbers of overheating 
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degree-hours reduction are higher for the suburban neighbourhood (Table 7.3), the 

percentage reduction is smaller than that of the central neighbourhood (Fig. 7.12). Solar 

control glazing reduces Top during occupied periods by up to 0.4 ℃ for the suburban 

neighbourhood with elderly occupants. The percentage reduction in overheating degree-

hours by solar control glazing at the central neighbourhood is similar to that of night 

ventilation. In contrast, at the suburban neighbourhood, the cooling effect of solar control 

glazing is greater than that of night ventilation, making it the second most effective 

intervention for the living room. 

Since the effect of night ventilation on the living room is less direct than on the bedroom, 

the expected reductions in overheating degree-hours are smaller. Specifically, for the 

elderly profile, a reduction in Top in the morning of 0.4 to 0.5 ℃ is expected in the central 

and suburban neighbourhoods, respectively. However, if windows are open during the 

day, the temperature differences from the base case are smaller, resulting in maximum 

Top reductions of around 0.2 ℃ for both neighbourhoods. For the family profile, the 

average Top reduction during occupied periods is around 0.1 ℃. 

Since roof insulation does not directly affect the living room envelopes, it has a smaller 

effect in reducing peak temperatures compared to the bedroom. The effect of roof 

insulation is more significant in the central neighbourhood compared to the suburban 

neighbourhood due to the lower daytime heat gain from solar radiation and hot outdoor 

air, which is consistent with previous studies (Chvatal and Corvacho, 2009). For the 

elderly profile, roof insulation reduces Top by 0.3 ℃ at 15:00 for the central 

neighbourhood and 0.2 ℃ for the suburban neighbourhood. The reduction in overheating 

degree-hours in the central neighbourhood ranges from 13.1% to 17.7%, which is about 

twice the reduction in the suburban neighbourhood. 

In summary, solar control interventions are more effective for the living room, especially 

for the elderly occupancy and the suburban building. Night ventilation can also reduce 

Top, especially in the morning. While roof insulation can help reduce the peak daytime 

Top, it is less effective for the suburban building due to the larger heat gain through 

windows and walls. 
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Fig. 7.11. As Fig. 7.9, but for living room. 
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Fig. 7.12. As Fig. 7.10, but for living room. 

7.3.4. Combined interventions 

To explore the minimization of indoor overheating risk, we consider the optimal 

combinations of interventions. Combining all interventions results in more effectiveness 

for the suburban building, as shown in Fig. 7.13. This leads to a reduction of up to 3.8 ℃ 

in peak bedroom Top during the occupied period and up to 3.6 ℃ in mean Top for the 

working family profile. For the elderly occupancy profile, the peak living Top is reduced 

by up to 2.0 ℃, and for the family profile, the reduction is 2.2 ℃. In terms of 

overheating degree-hours, the bedroom overheating degree-hours are reduced by up to 

97.5 % for the suburban building (Fig. 7.15, 7.16). Due to the warmer outdoor air 

temperature, the reduction in overheating degree-hours is up to 76.8% for the central 

building. The living room overheating degree-hours in all cases are reduced by at least 

93.9%, indicating the high effectiveness of the combined measures. 



 

150 

 

 
Fig. 7.13. As Fig. 7.9, but for combined interventions. 
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Fig. 7.14. As Fig. 7.11, but for combined interventions. 

 
Fig. 7.15. Reduction in (a) overheating degree-hours with combined interventions and (b, c) percentage for 
the family occupancy profile. 
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Fig. 7.16. As Fig. 7.15, but for the elderly occupancy profile. 

7.4. Discussion 

In this study, we used a combination of SUEWS and EnergyPlus to model the indoor 

overheating risk of a typical Colombo dwelling in two different neighbourhoods. Our 

results show that the suburban building is more susceptible to indoor overheating due to 

higher daytime outdoor air temperatures and less solar shading from surrounding 

buildings. The different neighbourhoods are affected by regional-scale climate patterns, 

with lower air temperatures in the coastal regions where the city centre is located, and 

warmer air temperatures in the northeast of the city (Fig. 6.4). Furthermore, local-scale 

conditions modify the forcing meteorological data, resulting in the suburban 

neighbourhood being around 1 ℃ warmer than the central neighbourhood. Despite 

occasional warmer conditions in the central neighbourhood, the regional forcing data and 

the suburban neighbourhood tend to be warmer during the daytime. These findings 

underscore the importance of selecting the appropriate reference rural site when 

determining urban heat island for a city (Anderson et al., 2018; Hawkins et al., 2004).  

This study extends the current understanding of the impact of neighbourhood-scale 

climates on the effectiveness of passive cooling interventions. Solar radiation related 

interventions, such as increasing the albedo (e.g. white paint), overhangs, and solar 

control glazing, are found to be more effective for the suburban building. Additionally, 
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the suburban building benefits more from nocturnal ventilation due to lower outdoor air 

temperatures and higher wind speeds. Although roof insulation performs well in reducing 

heat gain from the roof, it can trap heat at night when there are limited ways to release 

heat, especially for the suburban building with larger daytime solar radiation gains. These 

findings are consistent with previous studies that suggest the effectiveness of insulation 

in reducing indoor overheating can depend on other factors related to indoor heat gain 

and release (Chvatal and Corvacho, 2009; Fosas et al., 2018; Makantasi and 

Mavrogianni, 2016). 

Our assessment of indoor overheating was based on operative temperature, which 

considers only air temperature and radiation components. However, in hot-humid 

climates such as Colombo, high humidity can also impact indoor overheating (Budd, 

2008). Therefore, incorporating a humidity-related indicator in future studies would 

provide a more comprehensive assessment of indoor overheating in such climates. 

Conclusions drawn from interventions depend on the assessment metric used. For 

example, Kubota et al. (2009) found differences between nocturnal and daytime-only 

ventilation assessments in terms of daily mean indoor air temperature (1.5 ℃ higher) and 

relative humidity (7% lower), which are likely linked to air temperature rather than 

specific humidity. Furthermore, while we one-way coupled SUEWS-EnergyPlus (i.e., 

providing outdoor climate data to the building scale), understanding the feedback from 

buildings to the neighbourhood-scale climate would provide additional insights. 

7.5. Conclusion 

Sri Lanka residents are likely to have high indoor overheating risk due to the hot-humid 

climate and low usage of air-conditioning, but understanding of local-scale outdoor 

climate on indoor overheating risks of Sri Lankan dwellings are limited. Here we use 

SUEWS combined with EnergyPlus to model the indoor overheating risk of a typical 

Colombo dwelling in two neighbourhoods with different climates and with two 

occupancy profiles to assess the effects of common passive cooling measures in different 

conditions during a heatwave period (23 to 28 February 2020). 

The dwelling modelled has high indoor overheating risks throughout the day and night, 

particularly in the suburban neighbourhood, which experiences higher outdoor air 

temperatures and less solar shading from surrounding buildings during the daytime. This 
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leads to up to 9% more total overheating degree-hours than in the central neighbourhood. 

Moreover, occupancy profiles with individuals who stay at home indoors during the 

daytime (such as the elderly) are at a higher risk of overheating, with up to 16% more 

overheating degree-hours than in a profile where residents are away during the working 

week. These findings emphasize the importance of paying attention to vulnerable groups 

during extreme heat events. 

The study finds that among the five interventions considered, reflective white paint is the 

most effective, reducing indoor overheating degree-hours by up to 92% across all 

conditions. Interventions on windows, including overhang depth and low SHGC glazing, 

are also effective during daytime for the living room, with reductions in indoor 

overheating degree-hours of 9% and 17%, respectively, but are not as effective for the 

bedroom. Night ventilation is found to be more effective for the bedroom in the suburban 

neighbourhood, with reductions of up to 39% linked to lower outdoor air temperatures 

and higher ventilation rates. While roof insulation can reduce the daytime peak 

temperature of the living room by up to 18%, it can have a negative effect on bedroom 

overheating due to heat trapping. Combining all interventions can significantly reduce 

indoor overheating risks by up to 98%. 

Our study highlights the importance of considering the neighbourhood-scale climate in 

indoor overheating analysis. Future research could focus on enhancing the SUEWS-

EnergyPlus simulations by exploring the interaction between the building and local 

climate to achieve two-way coupling. 
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Chapter 8 Conclusions 

Indoor overheating is gaining more attention as climate changes. Exposure to heat can 

lead to thermal discomfort, heat disorders, reduced productivity and even death in severe 

cases. Exacerbated by the canopy layer urban heat island, buildings in densely populated 

urban areas may be in higher risk of overheating.  In hot-humid climates such as Sri 

Lanka, dwellings can have high risks of indoor overheating when there is limited use of 

air-conditioners.  

Although building energy simulation (BES) tools are widely used for predicting and 

assessing indoor overheating risk, typically an isolated building is modelled without its 

neighbourhood context. The surrounding buildings can have solar shading effects but 

will increase the longwave radiation. The reduced wind speed lowers both natural 

ventilation and heat convection rate. Building materials with large heat storage leads to 

changes in the diurnal cycle of both indoor and outdoor air temperatures. The impervious 

surfaces reduce evaporative cooling. Heat emission from human activities will increase 

the air temperature. Using the BES tool alone cannot take account of all these influences. 

Previous efforts to combine a BES tool with neighbourhood-scale urban-canopy models 

do not adequately account for all these neighbourhood factors, notably the modelling of 

longwave radiation and natural ventilation with urbanised wind speeds are not well 

addressed. As a result, influences of urban neighbourhood characteristics are also not 

well understood when using BES tools to assess the risk of indoor overheating.  

This thesis uses the urban land surface model, Surface Urban Energy and Water Balance 

Scheme (SUEWS), and BES tool EnergyPlus to assess the indoor overheating risk of 

neighbourhood buildings in urban areas. To address the lack of proper longwave 

radiation simulations in BES, an iterative approach is proposed for EnergyPlus and 

analysed in different neighbourhood densities and climates. Modifications are done for 

wind pressure coefficients to improve EnergyPlus’s ability in calculating the natural 

ventilation rate with urbanised wind speeds. The new method is applied in both idealised 

and real-world case studies. In the idealised case study, the natural ventilation potential 

of a simplified building is modelled in different neighbourhood densities and climates. In 

the real-world case study, the spatial and temporal distribution of the population to heat 
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exposure during a heatwave in Colombo, Sri Lanka are accounted for. Analyses are 

undertaken of the indoor overheating risk for a typical Colombo dwelling in different 

neighbourhoods.  

8.1. Main findings and contributions 

Findings of this thesis extend current understanding of influences of urban factors on 

indoor thermal environment. The methods, datasets, and models created in this thesis can 

be used in future research. The following sections give detailed findings and 

contributions in this thesis arising from the four thesis objectives (Section 1.2): 

 To improve existing indoor overheating risk assessment by accounting for the urban 

impacts via combining an urban land surface model [Surface Urban Energy and 

Water Balance Scheme (SUEWS)] and building energy simulation tool [EnergyPlus] 

 To propose a new approach to enhance the inter-building long-wave radiation 

calculation in EnergyPlus 

 To improve the existing approach in EnergyPlus determining wind-driven natural 

ventilation especially for urban buildings 

 To apply the new building-urban climate modelling framework to investigate the 

impacts of local-scale climate on indoor overheating risks of naturally ventilated 

dwellings using Colombo, Sri Lanka as a case study 

8.1.1. Modelling of inter-building longwave radiation 

SUEWS provides data of outdoor air temperatures, relative humidity, wind speeds and 

their vertical profiles to EnergyPlus. In EnergyPlus, geometry of surrounding buildings 

can be modelled to consider the solar shading effect on the target building. However, the 

longwave radiation exchanges between the target building and surrounding buildings are 

simplified in EnergyPlus by assigning air temperatures to surrounding buildings as 

surface temperatures, which will cause biases.  

This thesis proposes an iterative (or spin-up) approach to calculate the inter-building 

longwave radiation, which can be used for idealised neighbourhoods that consists of 

identical buildings. The target building is firstly simulated as isolated, and the building 

wall surface temperature data are output and assigned to surroundings buildings for the 
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next round of simulation. This process is repeated until convergence is achieved (i.e. 

differences in wall surface temperatures from the last simulation meets the criteria set).  

It is found for simulating buildings in denser neighbourhoods more iterations are needed 

to achieve convergence. Plan area fraction (λP) is used to characterise the 

neighbourhoods. For a low-density neighbourhood (λP =0.1) only one iteration is 

required, but five iterations are needed at λP = 0.6. This approach is evaluated using 

observations. The results show improvements compared to the default method (assigning 

air temperatures to surrounding building surfaces).  

Simulations are done for three different λP and three climates to analyse their impacts on 

the inter-building longwave radiation. It is found that impacts of inter-building longwave 

radiation on the indoor overheating risk are larger in the denser neighbourhoods and 

climates at lower latitudes. At λP = 0.6, when comparing the default method to the 

iterative method, the annual overheating degree hours are underpredicted by up to 25% 

during the day and 60% at night. The indoor operative temperature is underpredicted by 

up to 1.4 ℃. Clearly these impacts are large and cannot be ignored in the urban settings. 

The proposed approach is used in Chapters 5 and 7. 

8.1.2. Wind pressure coefficients for BES in the urban context 

BES tools like EnergyPlus use wind pressure coefficients (Cp) to calculate the wind 

pressure on building facets and natural ventilation rates. As BES tools are typical 

developed for isolated buildings, the default Cp data they use are not suitable for 

buildings in urban neighbourhood settings. Although Cp data of surrounded buildings can 

be obtained from external databases, there are still problems. 

Firstly, from reviewing the literature, it is found most studies use an incorrect 

combination of wind speeds and Cp data in BES. Cp data are usually derived from wind-

tunnel experiments. Given its definition, Cp should have height consistency between the 

wind-tunnel experiments vertical wind profile and the wind speed height used in the BES 

calculations. Using Cp data in BES with different heights of wind speed and vertical wind 

profiles will cause biases. This study proposes methods based on the relationship 

between wind conditions in the BES and wind-tunnel experiment to modify the Cp data, 

so as to make them consistent with the wind conditions used in the BES. The incorrectly 

used Cp data are compared with modified Cp data in different scenarios. Results suggest 
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that in most cases the biases in predicted natural ventilation rates exceed the ±10% limit 

of ASHRAE-14 (ASHRAE, 2014), highlighting the importance of the modifying 

approaches proposed in this study. 

Secondly, the Cp data given in various databases are all based on the undisturbed wind 

speed. While in this study, SUEWS provides the urbanised (therefore ‘disturbed’) wind 

speed to EnergyPlus. Therefore, this study proposes modifications to the Cp data to make 

them consistent with the SUEWS urbanised wind conditions. This approach is used in the 

SUEWS-EnergyPlus simulations in Chapter 5 and 7. 

8.1.3. Natural ventilation potential in different neighbourhoods and climates 

Natural ventilation is a common passive cooling measure, but it depends largely on the 

outdoor climate and different driving forces (i.e., wind- and buoyancy-driven). Often the 

natural ventilation potential (NVP) is assessed with BES tools, but the impacts of urban 

climate are rarely considered. Some studies combine BES tools with CFD modelling, but 

their complexity makes them unsuitable for long-term and large-scale simulations. This 

study combines SUEWS and EnergyPlus, together with methods proposed in Chapter 3 

and 4, to assess NVP in different idealised neighbourhoods using different Chinese 

climate zones as an example. NVP has been extensively assessed in different Chinese 

climate zones (Table 5.1), but there is a lack of understanding of the impact of urban 

climate. In this regard, this study can provide useful insights. 

This study considers idealised neighbourhoods with λP from 0 to 0.6, and the 

representative city from each climate zone, ranging from the ‘very cold’ zone to ‘warm 

winter and hot summer’ zone. Conventionally, urban buildings have been considered to 

have a lower NVP than rural buildings due to lower outdoor wind speeds, but this study 

finds that the climate, λP and time of year in combination impacts the NVP. Also, such 

impacts can vary for different metrics used to assess NVP. This study uses two metrics: 

the natural ventilation hours (NV-hours) that measures the available duration of natural 

ventilation providing acceptable indoor air quality and thermal comfort, and the natural 

ventilation air change rate hours (ACH-hours) that measures the ventilation rate based on 

NV-hours. When using NV-hours, it is found that increasing λP can increase NV-hours in 

cold climates (e.g. by 6% in Harbin, ‘very cold’) but decrease NV-hours in warm 

climates (by around 57% in Guangzhou, ‘warm winter hot summer’). This shows the 

positive role of urban heat islands in cold climates. However, a critical disadvantage of 
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urban areas is the lower wind speeds, which lead to lower ventilation rates (e.g. Harbin: 

annual median ventilation rate reduced by 50% at λP =0.3 and 85% at λP =0.6). When the 

natural ventilation ACH-hour is used as the metric, in all climates the natural ventilation 

potential decreases in denser neighbourhoods. Therefore, both NV-hours and ACH-hours 

should be considered in NVP assessments. Besides, it should be noted that air and noise 

pollution may prevent urban dwellers from opening windows. In this study only the 

physical atmospheric conditions are considered, and other factors can be further study in 

future works. 

8.1.4. Outdoor and indoor overheating in Colombo, Sri Lanka 

The improved urban neighbourhood-building climate modelling framework developed by 

this study is applied in Colombo to assess the outdoor and indoor overheating risks. 

Land cover data for the Colombo region are required at neighbourhood-scale (500 m in 

this study) for SUEWS modelling. In this thesis multiple sources are used to create the 

land cover dataset, including building footprints, OpenStreetMap, and supervised 

classification of remote sensing images. The dataset is available online (Blunn et al., 

2022a) and can be used for climate models. 

The spatial and temporal population heat exposure map of the city of Colombo and 

surrounding areas during a heatwave in February 2020 is produced with SUEWS 

simulation and local population data. Three different heat stress indices considering both 

temperature and humidity are used to measure the heat exposure risks. Results suggest 

that during most of the heatwave period (including nights) the study region is above the 

lowest heat stress warning of all indices, although there are some differences in spatial 

distribution between indices. Hotspots are evident in areas of large population, notably in 

the Colombo Municipal Council (Colombo central area) and surrounding coastal urban 

areas. Some inland areas can be overheated during the day but overall cooler at night. 

A development scenario simulated for the Colombo Municipal Council considers 

expected the changes in land cover and population by 2035. Results suggest with a 35 % 

increase in population, higher risks at midday will be experienced (cf. current or 2020 

conditions). Two mitigation approaches are analysed for the 2035 scenario. It is found 

that increasing the built-up surface albedo can reduce this 2035 risk by 15%. Increasing 

tree cover increases humidity and therefore leads to higher heat stress risk so this 
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intervention is inappropriate in a hot-humid climates, although it may have some micro-

scale from shading benefits. This needs to be studied in the future. 

BES are performed to assess indoor overheating risks in two neighbourhoods (central 

neighbourhood: λP ≈ 0.6; suburban neighbourhood: λP ≈ 0.1). Both neighbourhoods are 

found to have high outdoor heat stress risks due to regional- and local-scale climates 

from the previous urban-neighbourhood-scale modelling. A Colombo dwelling archetype 

model is created based on local surveys and previous studies, which can be used in other 

future Colombo studies. 

It is found that the modelled dwelling has high indoor overheating risks during both the 

day and night, especially in the suburban neighbourhood because of higher outdoor air 

temperatures and less solar shading from surrounding buildings during the daytime (up to 

9% more total overheating degree-hours than the central neighbourhood). Occupancy 

profiles for those who stay at home indoors during the daytime (e.g. elderly) are at higher 

risk (up to 16% more overheating degree-hours than a profile where residents are away 

during the working week), highlighting the need to pay attention to vulnerable groups 

during extreme heat events. Different commonly used passive cooling interventions are 

modelled. It is found that effects of interventions can vary with the neighbourhood, 

highlighting the urban influences on indoor overheating mitigation measures.  

This highly resolved multi-scale overheating risk assessment of a South Asian tropical 

city can provide guidance for urban planners, builders, policy makers as well as 

individuals to deal with extreme climate conditions. The experience of overheating 

assessment and mitigation can be used by other cities with similar climates and 

development status. Approaches of outdoor and indoor overheating modelling, land 

cover dataset creation and building archetype creation can be widely applied in different 

cities globally. 

8.2. Recommendations for future research 

Based on the findings and contributions presented in this thesis, recommendations for 

future work are summarized by topic. 

Simulation of urban buildings 



 

161 

 

 The iterative approach proposed in this thesis for longwave radiation simulation is for 

neighbourhoods with identical buildings. Biases are foreseeable when applied in 

heterogeneous neighbourhoods, but still smaller compared to the EnergyPlus default 

method of assuming air temperatures can represent the surrounding building surfaces. 

Future work could evaluate the biases of different methods in real-world 

neighbourhoods where there is a heterogeneous mix of buildings. 

 Here SUEWS and EnergyPlus are one-way coupled (i.e. SUEWS provides outdoor 

variables to EnergyPlus) but the heat emission from buildings simulated by SUEWS 

as part of anthropogenic heat are estimated independent of EnergyPlus. Future work 

could explore feedbacks from EnergyPlus to SUEWS simulations (i.e. two-way 

coupled). 

 Here SUEWS is forced by available climate reanalysis data. Future work could 

couple SUEWS to a meso-scale weather model (e.g. Weather Research and 

Forecasting Model (WRF)) to consider city- to regional-scale feedbacks, to improve 

forecasts. If run in real-time it could be used to provide early warnings of outdoor and 

indoor overheating risks. 

Overheating assessment 

 It is critical to select proper indices and metrics when assessing overheating risks, as 

they have different assumptions and serve different purposes. This study follows the 

common approaches to use temperature-humidity heat stress indices for outdoor 

overheating assessment, and the adaptive thermal comfort model for indoor 

overheating assessment. In the outdoor study, differences are found between the three 

selected indices, although they use the same variables. Therefore, further works are 

needed to compare different indices and determine which is suitable in the given 

conditions. Also, more advanced indices considering the impact of wind and radiation 

can be used in future studies. For the indoor overheating assessment, the thermal 

comfort model uses operative temperature as the indicator, which only uses air and 

radiant temperatures. Considering the hot-humid climate in Colombo, the high 

humidity can also contribute to indoor heat stress. Thus a heat stress indicator with 

humidity included could be used in the future. 
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 When mapping the outdoor heat exposure in Colombo, only the general population 

distribution is considered. However, specific vulnerable groups have higher risk of 

overheating (e.g. elderly). Using more detailed population data would improve the 

understanding of the heat exposure of specific vulnerable groups, allowing hotspots 

requiring early warning and medical attention to be identified. 

 Here indoor overheating risk assessment is performed in two Colombo 

neighbourhoods. Building simulations could be undertaken for the entire region to 

map indoor overheating risk, but will require appropriate building models for the 

different neighbourhoods. Considering proposed future development and expected 

climate data would allow prediction of indoor overheating risk and assessment of the 

effects of passive cooling measures. 
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Appendix 1: Assessment of view factors calculated with Monte Carlo 

ray-tracing method 

The fundamental expression of view factors between two finite surfaces (F1→2) is 

(Howell et al., 2010): 

𝐹ଵ→ଶ =
ଵ
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                     (A1.1)    

where surfaces 1 and 2 have areas of A1 and A2 (m2) and have their normal at angle θ1 

and θ2 (rad) to the line of length r12 (m) between them. 

The view factor between the boi north-facing wall and adj south-facing wall in the 

neighbourhood with λP = 0.1 (Fig. A1.1) calculated with the Monte Carlo ray-tracing 

method (Eq. 3.10) are compared to the result calculated with Eq. A1.1. With 3000 rays 

the view factor difference between the Monte Carlo ray-tracing result and Eq. A1.1 is < 1 

x 10-5 (Fig. A1.2). 

 
Fig. A1.1. Two surfaces selected for view factor calculation indicated by red boxes. 
 

 
Fig. A1.2. View factors calculated with Monte Carlo method and Eq. A1.1. 
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Appendix 2: Impact of simplification of adjacent building modelling 

Adjacent building facets are assumed to be isotropic during the simulation to save 

computational cost. The impact of this simplification has been analysed by comparing the 

simplified detailed facet modelling of the case boiadj←a,5 with λP = 0.6. The north-facing 

wall (which directly faces windows on adjacent buildings) surface temperature 

differences are shown in Fig. A2.1. The median difference in north-facing wall surface 

temperature due to windows simplification is up to 0.2 °C. For other walls, this 

difference is much smaller (not shown) as they are not facing windows directly. 

 
Fig. A2.1. Median diurnal cycle (lines) and inter-quartile ranges (shading) of north-facing wall surface 
temperature differences (hourly) using boiadj←a,5 (simplified model – detailed model) during the year in 
London for plan area fractions λP=0.6. 
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Appendix 3: Differences of external building surface temperatures 

between iterations – extended 

 
Fig. A3.1. Summer (JJA) and winter (DJF) mean bias error (MBE, section 3.2.4; 10-min timestep, 
N=52560) in external building surface temperature (cf. previous iteration, Fig. 3.2) for different facets 
(colour) in London with three plan area fractions (λP) (marker) and two initial adj surface temperatures 
(rows) with the convergence criteria (0.01 °C, dashed line). Annual MBE are shown in Fig. 3.4. 
 

 
Fig. A3.2. Annual mean absolute error (MAE, section 3.2.4; 10-min timestep, N=52560) in external 
building surface temperature (cf. previous iteration, Fig. 3.2) for different facets (colour) in London with 
three plan area fractions (λP) (marker) and two initial adj surface temperatures (rows) with the convergence 
criteria (0.01 °C, dashed line). MBE are shown in Fig. 3.4. 
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Appendix 4: Differences between surface temperatures simulated with 

different sources of initial surface temperature values at each iteration– 

extended 

 
Fig. A4.1.  Impact of different initialisations (Fig. 3.2; i.e. iteration 0 refers to boiadj←iso - boiadj←a) on 
external building surface temperature (metric MBE between results, section 3.2.4; 10-min timestep, 
N=52560) for different facets (colour) in London with three plan area fractions (λP, marker) for (a) summer 
(JJA) and (b) winter (DJF). Annual MBE are shown in Fig. 3.6. 
 

 
Fig. A4.2.  Annual mean absolute error (MAE, section 3.2.4; 10-min timestep, N=52560) in external 
building surface temperature between iterated results with different initialisations (Fig. 3.2; i.e. iteration 0 
refers to boiadj←iso - boiadj←a) for different facets (colour) in London with three plan area fractions (λP, 
marker). Annual MBE are shown in Fig. 3.6. 
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Appendix 5: Cpr,WT vertical profiles from the TPU database 

Fig. A5.1 shows the Cpr,WT for buildings with various plan area fractions (λP). The Cpr,WT 

values are larger for isolated than sheltered buildings. As λP increases, the different flow 

types in in the neighbourhood influence the Cpr,WT values. With a λP of 0.3 the 

surrounding buildings modify the wind field, reducing the wind speed close to the target 

building and therefore lowering the wind pressure. If λP = 0.6, the windward facet has 

negative Cpr,WT values associated with the skimming flow in the high-density 

neighbourhood.  

 
Fig. A5.1. Vertical profiles of Cpr,WT on the target building facet with different both incident wind angles 
and  plan area fractions. 0° refers to wind blowing perpendicular to the facet. Data are from the TPU 
database (TPU, 2007). 
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Appendix 6: Evaluating independence of 𝐂𝐩𝐥
തതതത on the wind profile 

To evaluate the assumption that 𝐶௣௟
തതതത is not a function (i.e. independent) of the wind 

profile, we calculate 𝐶௣௟
തതതത with Eq. 4.12 using the Lim et al. (2016) Cpr data at different 

heights. They used power law wind profiles. Their Cpr data are for a vertical central line 
of the windward facet of an isolated building (Table SM.1). We calculate the 𝐶௣௥

തതതത as the 

mean of Cpr data on the vertical central line and calculate 𝐶௣௟
തതതത with Eq. 4.12. Results show 

that although not exactly equal, 𝐶௣௟
തതതത values still have much smaller variations at different 

wind profile exponent α compared to 𝐶௣௥
തതതത. Therefore, it is reasonable to assume that 𝐶௣௟

തതതത is 

not influenced by α.  

Table SM.1: Vertical profile of Cpr for the central line of the windward facet of a cube with different α. 
Data are from Fig. 12 of Lim et al. (2016). Here 𝐶௣௥

തതതത and 𝐶௣௟
തതതത are averaged over the vertical central line. 

z/H 0 1/7 2/7 3/7 4/7 5/7 6/7 1 𝐶௣௥
തതതത 𝐶௣௟

തതതത 
𝐶௣௟
തതതത differences 
from α = 0.07 

α = 0.07 0.51 0.49 0.62 0.71 0.78 0.81 0.8 0.44 0.65 0.74 0% 
α = 0.22 0.4 0.34 0.46 0.56 0.65 0.72 0.74 0.44 0.54 0.78 5.4% 
α = 0.39 0.31 0.22 0.32 0.43 0.53 0.62 0.69 0.44 0.45 0.79 6.8% 
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Appendix 7: Land cover data processing 

Table A7.1: Land cover and population datasets used. 
Type Dataset  Reference 
Building Number of storeys (2018) CMC Building GIS data (Urban Development Authority, Sri 

Lanka prepared by Survey Dept. of Sri Lanka) (Blunn et 
al., 2022a) 

Building CMC building footprint 
(2014) 

CMC Building GIS data (Urban Development Authority, Sri 
Lanka prepared by Survey Dept. of Sri Lanka) (Blunn et 
al., 2022a) 

Road Area  OpenStreetMap contributors (2021) 
 Width  Google (2022) 
Water Area  OpenStreetMap contributors (2021) 
 Width (narrow waterways)  Google (2022) 
Bare soil Area  Sentinel-2 multiband satellite data (ESA, 2018) 
 
Table A7.2: OpenStreetMap (OSM) vegetation classes are reassigned to fewer classes and converted to 
land cover fractions. Determination of land cover fractions of each class is based on SCP classification 
results (LCv1, Fig. 6.6.2) and visual inspection of Google Earth high-resolution satellite (Google, 2022). 
 
OSM vegetated area classes Unified class Land cover assumptions 
Golf course, graveyard, zoo, cemetery, recreation 
ground 

Park 50% tree, 50% grass 

Forest, scrub, nature reserve, orchard Forest 80% tree, 20% grass 
Farmland, farmyard Grassland 80% grass, 20% soil 
Wetland Wetland 30% water, 40% tree, 30% grass 
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Appendix 8: Details of bootstrapping – building fractions outside of the 

CMC    

Linear regression models are developed to minimise bias in the SCP building fraction 

prediction outside of the CMC. Cross-validation methods are used to develop the models, 

evaluate their predictive performance, and provide aggregated model outputs (building 

fraction predictions). The CMC area is divided into 195 grids for cross validation. Each 

grid has a building fraction based on the CMC building footprint (true value) and a SCP 

building fraction (predicted value). For each resampling, the original dataset containing 

195 pairs of true and predicted building fractions are divided into a training sample and a 

test sample for model evaluation. The resampling is iterated multiple times to obtain 

more representative results 

The model performance of three cross-validation methods is compared – the 10-fold 

cross validation (Efron and Tibshirani, 1986; Molinaro et al., 2005), bootstrapping (Efron 

and Tibshirani, 1986), and Monte Carlo cross validation (Xu and Liang, 2001). Results 

(Table A8.1) show that with 10000 iterations models developed with bootstrapping have 

better performance in terms of both bias and standard deviation. This agrees with Kim 

(2009), who suggests that bootstrapping is recommended for small original dataset sizes 

(< 200 samples). Bootstrapping is therefore used as the cross-validation method. 

As an alternative to using SCP building fraction outside of the CMC, the Global Human 

Settlement (GHS) built-up dataset (Florczyk et al., 2019) is considered. However, a 

larger MAE (7.55%) is found compared to the corrected SCP (Table A8.1). 

To evaluate the bootstrap corrected SCP prediction outside of the CMC, three grids 

representing high-, mid- and low-density areas outside the CMC are selected. To get the 

‘true’ land cover fractions, 500 dots are placed randomly in each grid, and the underlying 

land cover type is recorded for each dot, based on visual inspection of Google Earth 

high-resolution satellite imagery (Google, 2022). The corrected SCP results are 

compared with visual estimation results and show reasonable accuracy (Fig. A8.1). 

Table A8.1: Comparison of building fraction mean absolute error (MAE) and standard deviation (SD) with 
different cross validation (CV) approaches 

 100 iterations 10000 iterations 
MAE (%) SD (%) MAE (%) SD (%) 

10-Fold CV 5.32 0.93 5.32 1.01 
Bootstrapping 5.72 0.19 4.00 0.27 
Monte Carlo CV 5.41 0.77 5.32 0.75 
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Figure A8.1: Comparison of observed (visual inspection of dots) and predicted (corrected SCP results) 
land cover fractions in three 500 m grids. The colour of each dot corresponds to the underlying land cover 
identified via visual inspection. Image source: Google Earth (Google, 2022). 
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Appendix 9: Coefficients used in the Heat Index (units ℃)  

Table A9.1: Coefficients of the Heat Index (IH) in ℃ for Eq. 6.2. 
c1 -8.784695 c4 -0.14611605 c7 2.211732 × 10-3 
c2 1.61139411 c5 -1.2308094 × 10-2 c8 7.2546 × 10-4 
c3 2.338549 c6 -1.6424828 × 10-2 c9 -3.582 × 10-6 
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Appendix 10: Occupancy schedule and internal heat gains for the 

Colombo dwelling archetype 

Table A10.1: The two occupancy schedules (Mavrogianni et al., 2014; Porritt et al., 2012) simulated (a) 
family four and (b) two stay-at-home adults. The different behaviours on weekends and elderly behaviours 
are given in parentheses. 
 Adult occupants (family weekend and elderly in 

parentheses) 
Children occupants 

Time Room Activity Heat gain  
(W) 

Room Activity Heat 
gain  
(W) 

00:00 Bedroom Sleeping 72 Bedroom Sleeping 54 

01:00 Bedroom Sleeping 72 Bedroom Sleeping 54 

02:00 Bedroom Sleeping 72 Bedroom Sleeping 54 

03:00 Bedroom Sleeping 72 Bedroom Sleeping 54 

04:00 Bedroom Sleeping 72 Bedroom Sleeping 54 

05:00 Bathroom 1 Shower 108 Bathroom Shower 81 

06:00 Kitchen /dining room Cooking/eating 108 Dining 
room 

Eating 81 

07:00 -
16:00 

Away 
(living room) 

Away 
(relaxing) 

0  
(108)  

Away 
(living 
room) 

Away  
(relaxing
) 

0 
(81) 

17:00 Dining room Eating 108 Dining 
room 

Eating 81 

18:00 Living room Relaxing 108 Study room Studying 81 

19:00 Living room Relaxing 108 Study room Studying 81 

20:00 Living room Relaxing 108 Study room Studying 81 

21:00 Bedroom Sleeping 72 Bedroom Sleeping 54 

22:00 Bedroom Sleeping 72 Bedroom Sleeping 54 

23:00 Bedroom Sleeping 72 Bedroom Sleeping 54 
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Appendix 11: Wind pressure coefficients for Colombo dwelling natural 

ventilation calculation 

Table A10.2: Wind pressure coefficients for the Colombo dwelling archetype (Fig. 7.4) in different 
neighbourhoods (Fig. 7.1). Calculated with methods in Section 4.3.3. 

Neighbourhood Facet orientation 0° 45° 90° 135° 180° 
Central S/N facet -2.43 -2.59 -3.4 -3.89 -3.4 

E/W facet -2.92 -3.08 -3.24 -3.73 -3.24 
Suburban S/N facet 1.18 1.11 -1.04 -1.34 -0.84 

E/W facet 1.11 -0.84 -1.34 -2.08 -0.57 
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