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Key Points:11

• The performance of several existing solar wind propagation models at the orbit12

of Jupiter is measured for multiple spacecraft epochs.13

• A flexible system is developed to generate an ensemble of multiple propagation14

models in order to best leverage each input model’s strengths.15

• Over the epoch tested, the multi-model ensemble outperforms individual input mod-16

els by 7%− 110% in forecasting the solar wind flow speed.17
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Abstract18

How the solar wind influences the magnetospheres of the outer planets is a fundamen-19

tally important question, but is difficult to answer due to the lack of consistent upstream20

monitoring of the interplanetary medium (IPM) and the large-scale dynamics internal21

to the magnetosphere. This makes it very challenging to link external drivers with the22

magnetospheric dynamics measured by a single orbiting spacecraft. To compensate for23

the relative lack of in-situ data, solar wind propagation models are often used to esti-24

mate the ambient IPM conditions at the outer planets for comparison to remote obser-25

vations or in-situ measurements. This introduces another complication: the propaga-26

tion of near-Earth measurements of the solar wind introduces uncertainties in both tim-27

ing and magnitude which are themselves difficult to assess. Here, we present the Multi-28

Model Ensemble System for the outer Heliosphere (MMESH) to begin to address these29

issues, along with the resultant multi-model ensemble (MME) of the solar wind condi-30

tions near Jupiter as a means to assess the system. MMESH accepts as input any num-31

ber of solar wind models together with contemporaneous in-situ spacecraft data. From32

these, the system characterizes typical uncertainties in model timing, quantifies how these33

uncertainties vary under different conditions and time periods, attempts to correct for34

systematic biases in the input model timing, and composes a multi-model ensemble (MME)35

with uncertainties from the results. For the case of the Jupiter-MME here, three solar36

wind propagation models were compared to in-situ measurements from near-Jupiter space-37

craft spanning diverse spacecraft-Sun-Earth alignments and phases of the solar cycle, amount-38

ing to more than 23,000 hours over four decades. The resulting MME produces the most-39

probable near-Jupiter IPM conditions for times within the tested epoch. Finally, we will40

discuss how the work presented here can be extended towards more robust character-41

ization of solar wind parameters and time-dependent propagation of solar wind condi-42

tions at other planetary magnetospheres.43

1 Background44

The solar wind is a continuous stream of plasma emanating from the Sun in all di-45

rectionswhich evolves as it travels through the heliosphere, interacting with every plan-46

etary magnetosphere in the solar system along the way. Near the Earth, the typical val-47

ues of the solar wind flow speed umag,⊕(324−584 km/s), proton density n⊕(2.2−12.7 cm−3),48

dynamic (ram) pressure pdyn,⊕(0.86−3.92 nPa), and interplanetary magnetic field (IMF)49

magnitude Bmag,⊕(3.1−9.7) nT have all been statistically characterized by the expan-50

sive OMNI dataset (King & Papitashvili, 2005; Papitashvili & King, 2020), with values51

here spanning the start of OMNI2 to the start of 2023 (1963/11/27 – 2023/01/01) and52

characterizing 80% (10th − 90th percentiles) of all measurements. The OMNI dataset53

is a composite of many near-Earth observations encompassing some 19 total spacecraft54

over its full time domain, including most recently Wind (Lepping et al., 1995; Kasper,55

2002; King & Papitashvili, 2005) and ACE (D. J. McComas et al., 1998; Smith et al.,56

1998; King & Papitashvili, 2005).57

While fewer in-situ heliospheric data are available in the outer solar system, the58

average solar wind conditions have still been constrained by the various spacecraft to visit59

the outer planets, whether during planetary flyby or approach. At Jupiter, the most-visited60

of the outer planets, the solar wind has been characterized during the flybys of Pioneers61

10 and 11, Voyagers 1 and 2, Ulysses, Cassini, and New Horizons (e.g. Slavin et al., 1985;62

J. D. Richardson et al., 1995; Ebert et al., 2014; Hanlon et al., 2004; Ebert et al., 2010).63

Compared to flybys, orbiter missions, including Galileo and Juno at Jupiter, generally64

provide fewer in-situ data: these missions have close-in orbits to best study the planet65

itself, thus setting them deep inside the planet’s magnetosphere and shielding them from66

the solar wind. As a result, they only sample the wind during the planetary approach67

phase prior to orbital insertion and occasional excursions into the solar wind near apoap-68

sis. The polar solar orbiter Ulysses gives the best single-spacecraft characterization of69
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the average near-Jupiter solar wind owing to its 18-year lifetime: 80% of Ulysses mea-70

surements span 380−520 km/s in solar wind flow speed umag, 0.05−0.55 cm−3 in plasma71

density n, 0.02−0.20 nPa in dynamic pressure pdyn, and 0.22−1.5nT in IMF magni-72

tude BIMF (Ebert et al., 2014). Despite a large number of measurements, these reported73

distributions are only approximate due to the polar orbit of the Ulysses spacecraft; Ulysses74

samples the solar wind in the ecliptic plane periodically, and these numbers were drawn75

from two non-consecutive spans at different phases of the solar cycle– one with a slower,76

cooler, and denser average solar wind than the other (Ebert et al., 2014).77

The highly dynamic nature of the solar wind is not captured by these average val-78

ues. Singular events, such as the eruption of coronal mass ejections (CMEs), and their79

propagation through the heliosphere as interplanetary coronal mass ejections (ICMEs),80

are a major source of short timescale variation in the measured solar wind (Palmerio et81

al., 2021, and references therein). In terms of the quantities already discussed, interplan-82

etary coronal mass ejections (ICMEs) show expansion, which manifests in measurements83

as an increase in umag at the leading edge and a decrease at the trailing edge, large drops84

in n, and an enhancement in BIMF magnitude but decrease in BIMF variance (Zurbuchen85

& Richardson, 2006; M. J. Owens, 2018). Beyond these events, the ambient solar wind86

is dynamic due to the presence of two different streaming plasma populations originat-87

ing in different regions of the solar corona: a comparatively fast, hot, and tenuous stream88

and a comparatively slow, cool, and dense stream (Crooker et al., 1999). These streams89

are essentially bimodal during solar minimum, with fast streams originating at high he-90

liolatitude and slow streams originating nearer the solar equator (D. J. McComas et al.,91

1998, 2000); during solar maximum, these streams are markedly less ordered (D. J. Mc-92

Comas et al., 2003). From solar cycle to solar cycle, the bulk parameters of the fast stream93

in particular can change dramatically (D. McComas et al., 2008; Ebert et al., 2009; D. J. Mc-94

Comas et al., 2013; Ebert et al., 2014). As different regions of the sun rotate underneath,95

corotating interacting regions (CIRs) are formed where a fast flow catches up to a slow96

flow; this process is common throughout the heliosphere (I. G. Richardson, 2018) and97

drives significant interactions with planetary magnetospheres, including at the Earth (Crooker98

et al., 1999; Gosling & Pizzo, 1999; Tsurutani et al., 2006; Borovsky & Denton, 2010)99

and at Jupiter (D. J. McComas et al., 2003; Hanlon et al., 2004; Ebert et al., 2014).100

In-situ-data-driven statistical studies of the time variable solar wind at specific lo-101

cations within the outer heliosphere (e.g. at Jupiter) are hampered by the limited tem-102

poral coverage of visiting spacecraft; there is no continuous composite model like OMNI103

for any outer planet. Such statistical studies often instead have solar wind data supple-104

mented by solar wind propagation models, which attempt to reproduce the time-varying105

solar wind at one location from measurements at another location at which the solar wind106

is known. Many of these models have been employed in the outer heliosphere, includ-107

ing, but not limited to, the model of Tao et al. (2005) (“Tao+”, hereafter), ENLIL (Odstrcil,108

2003), mSWiM (Zieger & Hansen, 2008), HUXt (Barnard & Owens, 2022; M. Owens et109

al., 2020), and MSWIM2D (Keebler et al., 2022). These models all differ in their dimen-110

sionality, the simplifications made to the magnetohydrodynamics (MHD) equations un-111

derlying them, and the source of the input solar wind conditions used to initialize the112

model. By virtue of modelling solar wind conditions for times and locations where no113

in-situ spacecraft measurements are available, the outputs of these models cannot be di-114

rectly compared to data in typical usage scenarios. Generally, solar wind propagation115

models are instead compared to in-situ spacecraft measurements at times and locations116

where they are available in order to approximate the model errors– generally, shock ar-117

rival time (or “timing”) errors– prior to being used to supplement the data (Tao et al.,118

2005; Zieger & Hansen, 2008; Keebler et al., 2022). Measured timing uncertainties can119

be as high as ±4 days and often trends with other physical parameters of the system,120

such as with Target-Sun-Observer (TSO) angle (Tao et al., 2005; Zieger & Hansen, 2008;121

Keebler et al., 2022) or with phase of the solar cycle (Zieger & Hansen, 2008).122

–3–

vy902033
Highlight
Might be best to avoid the term "model" to describe OMNI, it might confuse.



manuscript submitted to Enter journal name here

These resulting time-varying timing uncertainties introduce a challenge in inter-123

preting the results of these models and performing statistical analyses, particularly be-124

cause the characterizations of timing uncertainty in each propagation model are often125

not measured by the same methods, and thus are not directly comparable to one another.126

Timing uncertainties can be measured by manually identifying shocks and shock-like struc-127

tures in both modeled and measured solar wind time series and comparing their occur-128

rence times (e.g. Tao et al., 2005) or by offsetting one time series relative to the other129

and maximizing the resulting prediction efficiency, or Pearson correlation coefficient (e.g.130

Zieger & Hansen, 2008). Measuring uncertainties with the latter method implies that131

a single timing uncertainty characterizes the model over the full time period inspected.132

An alternative to this is to employ dynamic time warping to explicitly allow for time-133

varying timing uncertainties (e.g. Samara et al., 2022). If these model uncertainties134

were quantified in a cross-model-consistent manner, the time-varying uncertainties could135

be accounted for and partially mitigated. For instance, as propagation model output un-136

certainties are known to trend with physical quantities, each individual model’s outputs137

could be de-trended with sufficient characterization of the uncertainties. Alternatively,138

a multi-model ensemble (MME) could be composed by cross-comparison of the models139

in order to mitigate uncertainties. An MME is, in essence, a weighted average of differ-140

ent model outputs (Murray, 2018); the weighting scheme can be adjusted based on met-141

rics of the models performance (or “skill”) during intervals where in-situ data are avail-142

able (Murray, 2018; Elvidge et al., 2023). Ideally, fully-independent models would be used143

in an MME, so that they would be expected to have independent random errors which144

would thus tend to cancel, rather than add (Hagedorn et al., 2005; Riley et al., 2018).145

If all input models capture the same physics, outperform one another in different param-146

eter spaces, and have independent errors, a MME of these models should describe the147

underlying physical system more accurately than any individual input.148

Here we present the Multi-Model Ensemble System for the outer Heliosphere (MMESH):149

a framework to quantify and mitigate timing uncertainties in solar wind propagation mod-150

els and produce a single prediction by combining all of these approaches. This system151

allows for the automatic quantification of model timing uncertainties, trending of tim-152

ing uncertainties with physically relevant parameters, de-trending of the original model153

timing, and combination of distinct models into a single MME. MMESH is designed to154

flexibly compare any combination of input solar wind propagation models and contem-155

poraneous in-situ data in order to create an MME. To demonstrate this concretely, here156

we construct an MME of the solar wind conditions at Jupiter during the Juno era.157

Thus prior to discussing MMESH itself, we first discuss the in-situ spacecraft datasets158

to be used for comparison (Section 2.1) and give some introduction to the specific so-159

lar wind propagation models considered here (Section 2.2). We then introduce the MMESH160

framework in Section 3, beginning with a description of the statistical techniques and161

tools used to compare models, including the MME, to contemporaneous data and mea-162

sure their performance (Section 3.1. In Section 3.2 we discuss the methods available to163

characterize the model timing uncertainties relative to the in-situ time series: constant164

time offsetting (Section 3.2.1) and dynamic time warping (DTW, Section 3.2.2). We then165

proceed to describe how trends in the empirical timing uncertainties are characterized166

and estimated for epochs without contemporaneous in-situ data (Section 3.3) before dis-167

cussing the composition (Section 3.4) and performance (Section 3.4.1) of the multi-epoch168

MME composed of the de-trended models. Having described MMESH, we then present169

the MME of the solar wind conditions at Jupiter for the first 7 years of the Juno mis-170

sion, spanning 2016/7/4− 2023/7/4, for use in future statistical analyses (Section 4),171

prior to concluding.172
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Table 1. In-situ measurements of solar wind parameters near Jupiter’s orbit.

Mission Coverage Range Heliolatitude Measurements
[yyyy/mm/dd] [AU] [deg] [hr]

Ulysses 1991/12/08 – 1992/02/02 4.90− 5.41 −6.10 – +6.10 1,344
1997/08/14 – 1998/04/16 4.90− 5.41 −6.10 – +6.10 5,878
2003/10/24 – 2004/06/22 4.90− 5.41 −6.10 – +6.10 5,801

Juno 2016/05/15 – 2016/06/29 5.27− 5.44 −5.76 – −5.23 1,080

2 Inputs173

2.1 Solar Wind Data174

The present aim for the MME framework discussed here is to find the most accu-175

rate combination of solar wind models in the near-Jupiter region of the outer heliosphere.176

As such, limiting the data included for comparison to the input and ensemble models177

to that which is representative of conditions at Jupiter is essential. Including too large178

a range of radial or helio-latitudinal in-situ measurements risks including different regimes179

of solar wind properties which the models are not, and should not be, expected to re-180

produce. This is particularly an issue in choosing a useful range of heliolatitude– too nar-181

row a range and the amount of data available shrinks, but too large a range and the faster182

solar wind flows at higher heliolatitudes are included erroneously. This issue primarily183

relates to data acquired by the Ulysses spacecraft, which is a solar polar orbiter. Pre-184

vious Ulysses measurements show that, during solar minimum when the latitudinal struc-185

ture of the solar wind is well-ordered, the equatorial slow solar wind zone may extend186

to ±20◦−±30◦ about the solar equator (D. J. McComas et al., 2003). Ebert et al. (2014)187

further restricts this range in surveying near-Jupiter solar wind conditions measured with188

Ulysses and selects for data ±10◦ about the solar equator.189

Here, the near-Jupiter outer heliosphere is defined as the region of the heliosphere190

spanning 4.9 AU < r < 5.5 AU for spherical distance from the Sun r and −6.1◦ ≤191

θ ≤ 6.1◦ for heliolatitude θ. Jupiter’s perihelion and aphelion (5.04 and 5.37 AU, re-192

spectively) fit entirely within this range, which includes padding of ∼ 0.15 AU, or ap-193

proximately 50%, on either end to increase the number of observations included. The194

heliolatitude range selected represents the maximal range of Jupiter’s location in heli-195

olatitude without any padding in order to avoid unrealistic sampling of the high latitude196

fast solar wind flows.197

Several spacecraft have transited this region, including Pioneers 10 and 11, Voy-198

agers 1 and 2, Ulysses, Galileo, Cassini, New Horizons and Juno. Here, just data from199

just the Ulysses and Juno missions are used; the remaining spacecraft are not used in200

this analysis either due to being discontinuous at temporal resolutions of 1 hour (Galileo,Cassini,201

and New Horizons) or due to a lack of coverage in all or some of the models to be dis-202

cussed in Section 2.2 (Pioneers 10 and 11 and Voyagers 1 and 2 ). A brief overview of203

the used spacecraft trajectories and data is included in Table 1 and the durations of the204

visits of these spacecraft to the near-Jupiter outer heliosphere is illustrated in Figure 1205

relative to the solar cycle, as measured by F10.7 radio flux derived from observations at206

the Dominion Radio Astrophysical Observatory (DRAO) and adjusted to account for207

variations in the Earth’s distance from the Sun. While the majority of these spacecraft208

passed near Jupiter, the Ulysses spacecraft, as a polar orbiter, transits through the near-209

Jovian outer heliosphere away from the planet itself after its initial Jupiter flyby. The210

relevant orbital components for all the spacecraft in Table 1 are shown in Figure 2, which211

highlights the rarity of near-Jupiter outer heliosphere measurements made far from Jupiter212

itself and the comparative evenness of coverage in Target-Sun-Earth angle.213
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Figure 1. The (a) spans during which each spacecraft used in this analysis was measuring the

near-Jupiter solar wind compared with the (b) solar F10.7 cm radio flux, a proxy for the phase of

the solar cycle, over the period 1990-2023. Spacecraft coverage spans the ascending and descend-

ing phases of the solar cycle, but largely excludes solar minimum and solar maximum. These

spacecraft have been selected for the frequency of their plasma and magnetic field measurements,

which are generally hourly or better.

All of the spacecraft referenced in Table 1 have both magnetometers and plasma214

instruments, and thus provide sampling of the interplanetary magnetic field (IMF) BIMF ,215

the solar wind ion number density n, and the magnitude of the solar wind flow speed216

umag, which is itself dominated by the radial component of the outward flow of the so-217

lar wind. As the proton density np is measured in all cases and protons are the domi-218

nant ion component of the solar wind (Ebert et al., 2014, e.g.), the total density of the219

solar wind is approximately equal to the proton density (n ≈ np) and is assumed to220

be exactly equal in calculating the solar wind dynamic pressure pdyn = mpnu
2
mag, where221

mp is the proton mass. Detailed descriptions of these instruments, including their her-222

itages, limitations, and data products, are discussed in their respective instrument pa-223

pers (Balogh et al., 1992; Bame et al., 1992; Connerney et al., 2017; D. J. McComas et224

al., 2017). Pre-processed data was obtained from the Goddard Space Flight Center (GSFC)225

Space Physics Data Facility (SPDF) COHOWeb archives, with the exception of Juno226

plasma data which was instead obtained from Wilson et al. (2018).227

2.2 Solar Wind Models228

While several solar wind propagation models for the outer heliosphere are avail-229

able, three were chosen for detailed study and inclusion in the MME: the Tao+ (Tao et230

al., 2005), ENLIL (Odstrcil, 2003), and HUXt (M. Owens et al., 2020; Barnard & Owens,231
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Figure 2. Histograms showing the spatial coverage of all the spacecraft used here, including

the (a) Target-Sun (TS) distance, (b) Target-Sun-Jupiter (TSJ) longitude angle, (c) TSJ latitude

angle, (d) Target-Earth (TE) distance, (e) Target-Sun-Earth (TSE) longitude angle, and (f) TSE

latitude angle. The angles are measured in the Sun’s inertial reference frame, such that longi-

tude measures distance along the solar equator and latitude measures perpendicular distances

along the sphere of the Sun. The majority of spacecraft measurements occur very near Jupiter,

with minimal separation in TSJ longitude or latitude angles. The unique coverage of the polar-

orbiting Ulysses spacecraft stands out, and provides even coverage across TSJ, and to a lesser

extent TSE, latitudes. Taking all spacecraft into consideration, the spatial coverage relative to

the Earth’s location is fairly even.

2022) models. These models in particular are ideal for inclusion in a MME due to their232

differing input parameters, dimensionality, and approaches to propagating the solar wind233

beyond the Earth, as is summarized in Table 2 and will be discussed further here.234

Fundamentally, most models propagate solar wind conditions outwards by solving
the system of equations which constitute MHD, these being: the continuity equation, the
momentum equation, the equation of state, and several physical laws necessary to close
the system (Faraday’s, Ohm’s, and Ampère’s laws). Propagation models differ primar-
ily in their treatment of the momentum equation. For a single-species plasma composed
of protons, this is:

∂(mpnu⃗)

∂t
+ ρ(u⃗ · ∇)u⃗ = − ∇p︸︷︷︸

pressure

+ j⃗ × B⃗︸ ︷︷ ︸
Lorentz

− GM⊙ρ

r2
r̂︸ ︷︷ ︸

gravity

+ ν∇2u⃗︸ ︷︷ ︸
collision

(1)

where mp is the proton mass, n is the plasma number density, u⃗ is the plasma flow ve-235

locity, p is the total plasma pressure, j⃗ is the plasma current density, B⃗ is the ambient236

magnetic field, G is the gravitational constant, M⊙ is a solar mass, r is the radial dis-237

tance in a heliocentric spherical frame with the r̂ direction pointing radially outward,238

and ν is a collisional frequency. In Equation 1, the right-hand-side terms are labelled cor-239
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Table 2. Descriptive parameters of solar wind propagation models as used in this study.

Model Type Inner Boundarya MHD Termsb Inputa Outputc

[AU] (P, L, G, C) type (source) (n, umag, pdyn, BIMF )

ENLIL 3D MHD ∼0.1 (P, L, G) remote (WSA) (n, umag, pdyn, BIMF )
HUXt 1D HD ∼1 – in-situ (OMNI) (umag)
Tao+ 1D MHD ∼1 (P, L, G) in-situ (OMNI) (n, umag, pdyn, BIMF )

a Inner boundaries and input types are reported for the versions of the models used here. The
models are not necessarily limited to these inner boundaries and input types only, as described
in the text.
b The (P)ressure, (L)orentz, (G)ravitational, and (C)ollisional terms of the governing MHD
momentum equation (Eqn. 1).
c Components of the solar wind: plasma density (n), plasma flow speed (umag), plasma
dyamic pressure (pdyn), or IMF (BIMF ).

responding to the physical forces they represent, these being the (gradient) pressure, Lorentz,240

gravitational, and collisional forces, respectively. As summarized in Table 2, solar wind241

propagation models differ in which terms of the momentum equation they assume are242

insignificant in the solar wind. Most propagation models, including all those discussed243

here, do not consider collisional forces within the solar wind plasma. Both ENLIL and244

Tao+ keep all the remaining terms shown in Equation 1 (Tao et al., 2005; Odstrcil, 2003).245

HUXt assumes that all forces are negligible compared to the magnitude of the left-hand-246

side momentum terms in Equation 1, and thus does not consider any force terms (M. Owens247

et al., 2020).248

The variables propagated by each model are directly related to the force terms that249

they consider in Equation 1, and are listed in Table 2 for the three models discussed here.250

The dimensionality of each model changes which components of the vector terms in Equa-251

tion 1 can be propagated; for cross-model consistency, we therefore compare solar wind252

parameter magnitudes rather than vector components, where each magnitude is calcu-253

lated as the root-sum-square of available components. The solar wind flow speed umag254

is thus available from all three propagation models considered here. This is the only pa-255

rameter available from HUXt; none of the solar wind density n, temperature T , or IMF256

strength BIMF are propagated as these variables are eliminated from the version of the257

momentum equation used. These parameters– density n, temperature T , and IMF strength258

BIMF of the propagated solar wind– are available from both ENLIL and Tao+.259

Each of these models has an inner boundary at which the conditions of the solar260

wind are input and continuously updated over the course of the model run. The loca-261

tion of this inner boundary and the sources from which the input solar wind conditions262

are drawn vary between models and are summarized in Table 2. ENLIL takes as input263

a 3-dimensional description of the solar corona and near-sun environment, here supplied264

by the Wang-Sheeley-Arge (WAS) model (Arge & Pizzo, 2000) which itself takes remote265

observations of the sun as input. For this study, solar magnetograms from the Kitt Peak266

Observatory are used, with gaps in observations filled in by those from the Mount Wil-267

son Observatory. This sort of boundary is unique amongst the models considered here:268

HUXt and Tao+ instead take in-situ spacecraft measurements, or proxies thereof, as in-269

puts. In this study, both models take OMNI measurements at ∼1 AU as inputs, although270

they both have the functionality to be run at any other location in the solar system, pro-271

vided there are sufficient in-situ solar wind data available (e.g. Sanchez-Diaz et al., 2016;272

Barnard & Owens, 2022). Accuracy in these input solar wind conditions are the single273
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largest factor in determining the propagated solar wind accuracy (Riley et al., 2018), and274

as such including a variety of inputs is beneficial to the final MME.275

The input solar wind conditions used here are assumed to be sampled from the back-276

ground solar wind. This means that coronal mass ejections (CMEs) sampled at the model277

inner boundary are not propagated using the standard cone model (Zhao et al., 2002;278

Xie et al., 2004) but are instead interpreted as fast solar wind flows; rather than prop-279

agate CMEs as radially-expanding regions of constant angular size, they are treated by280

the same fluid description used by each model to describe the rest of the solar wind flow.281

This introduces an intrinsic error into the background solar wind parameters in all of282

the models. Future studies could mitigate this additional source of error by subtracting283

CMEs from the input data prior to propagation, then simultaneously propagating the284

quiescent solar wind and the CME using the cone model, but such an involved change285

to the modeling is ultimately beyond the current scope of this project.286

These three models each run at different spatial and temporal resolutions which287

are directly related to their dimensionality and domains within the heliosphere, and which288

directly impact the small-scale shape of their output propagated solar wind estimates.289

ENLIL covers three spatial dimensions, spanning 0.1−10 AU radially at 0.02 AU res-290

olution, 360o in longitude at 2o resolution, and ±60o in latitude at 2o resolution, with291

a temporal resolution of 1 hour. HUXt is physically a one-dimensional radial model, but292

in practice here it is run in its two-dimensional form in order to more easily sample the293

model at the spacecraft position. Functionally, the two-dimensional form of HUXt is a294

series of independent one-dimensional models spanning 1−6 AU radially with a reso-295

lution of 0.007 AU, 360o in longitude at ∼2.8o resolution, and an intrinsic temporal res-296

olution of 17.4 minutes in the version of the model used here. Tao+ spatial dimension,297

ranging from 1−8 AU at a resolution of 1/300 AU, with an intrinsic temporal resolu-298

tion of 10 s. The outputs of both HUXt and Tao+ have been downsampled to a reso-299

lution of 1 hour to better match the spacecraft data and other models for use in this study.300

Figure 3 shows the model-propagated solar wind flow speed umag during the Juno301

cruise towards Jupiter compared with contemporaneous JADE in-situ measurements from302

Wilson et al. (2018) for each of the models detailed here. While these models are all able303

to propagate solar wind conditions during the other spacecraft epochs shown in Table304

1, and both ENLIL and Tao+ are able to propagate parameters other than umag, here305

we have chosen to show just a single-spacecraft and single-parameter comparison for il-306

lustrative purposes. The agreement between each model and the data in general form307

is clear, but significant deviations in the arrival time of large-scale shocks and smaller-308

scale increases in flow speed between the models and data are evident. These temporal309

lags, which represent single measurements of the full distribution of model timing un-310

certainties, appear to be of the same sign for Tao+ and HUXt but are substantially dif-311

ferent for ENLIL. Characterizing these differences in arrival time is critically important312

to understanding the accuracy of these models in propagating the solar wind, and will313

be further explored here.314

3 Description of MMESH315

The clear disagreements between the propagation models and in-situ data in both316

the modeled arrival time and magnitude, as illustrated in Figure 3, makes the need for317

careful consideration of uncertainties and new statistical approaches in solar wind prop-318

agation modeling evident. MMESH has been designed as a framework to tackle these319

issues. After briefly introducing the statistical metrics used in quantifying model per-320

formance (Section 3.1), the MMESH framework will be described. This system allows321

any number of solar wind propagation models to be compared to simultaneous in-situ322

data; from this comparison, timing uncertainties are characterized either as a constant323

value over the full duration of each model (i.e. as a bias, as explored in Section 3.2.1)324
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Figure 3. Measured solar wind flow speed umag from Juno JADE moments (Wilson et al.,

2018) with the same from the (a) ENLIL, (b) HUXt, and (c) Tao+ models, as labeled, with (d)

a Taylor diagram illustrating the performance of each model relative to the data, as discussed

in Section 3.1 The flow speed is referenced as the root-mean-square of all velocity components,

where components are available. Temporal lags in the timing of the modeled solar wind flow

speed umag are apparent in all models, and are made evident by the Taylor diagram.

or as a dynamic value (Section 3.2.2). This framework fundamentally supports a multi-325

epoch analysis, in which the same timing uncertainties are quantified over multiple space-326

craft epochs, each with one set of in-situ data and multiple models, in order to better327

characterize the model timing uncertainties, including any timing biases (Section 3.3).328

From this characterization, the solar wind propagation models can then have any iden-329

tified biases in timing removed before being assemble into an MME (Section 3.4).330

3.1 Performance Metrics331

The correlation coefficientr, as a robust measure of model goodness-of-fit, is a good332

metric to be maximized in optimizing the alignment of solar wind model to data, as will333

be discussed in Section 3.2.1. For simple methods of aligning the model and data, the334

correlation coefficient r is sufficient alone as a metric. More complex methods of align-335

ment, such as discussed in Section 3.2.2, are better optimized while considering some penalty336

against increasing complexity, in order to maintain physical realism and interpretabil-337

ity. In this case, a statistic determined by both the correlation coefficient and some mea-338

sure of the width of the distribution of timing uncertainties is preferred for optimization.339

Such a statistic is less likely to reach its maximum value when a large range of timin-340

ing uncertainties are predicted, thus preventing unphysical alignment of a model with,341

for instance, a shock-like structure from a previous Carrington rotation. Within MMESH,342

we define σT to be the half-width containing 34% of the distribution of timing offsets,343

such that it would reduce to one standard deviation in a normal distribution. The op-344

timization metric for these cases is then defined as r+(1−σT /∆T ), where ∆T repre-345

sents half the largest allowed magnitude of a timing uncertainty, such that the statis-346

tic varies between 0−2, with the former corresponding to the worst performance and347

the latter corresponding to the best.348

Neither the correlation coefficient r nor the statistic r/σT as single numbers fully349

characterize how closely a model matches data on different scales. Combining the cor-350

relation coefficient r with the overall standard deviation of both the time series and the351

model residuals forms the basis for a more complete multi-scale comparison of model and352

data summarized by the Taylor diagram (Taylor, 2001), illustrated in Figure 6. This type353

of plot relates the standard deviation of the modeled time series, the correlation coef-354

ficient of the modeled time series relative to the measured time series, and the centered355
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root-mean-square difference between the modeled and measured time series to one an-356

other by analogy with the law of cosines, allowing all three quantities to be displayed357

as a single point on the diagram. This is particularly useful for comparing the perfor-358

mance of different models to one another on the same axes. All-around better models–359

those with high correlation coefficients, small residuals when compared with the data,360

and similar intrinsic variances– appear graphically closer to the point representing the361

data time series along the x-axis.362

3.2 Characterization of Propagation Model Performance363

The arrival time of shocks is of particular interest in statistical studies both at Jupiter364

and elsewhere in the outer heliosphere; the arrival of a shock is expected to compress the365

magnetosphere, directly impacting plasma and magentic flux transport and auroral ac-366

tivity (Southwood & Kivelson, 2001; Cowley et al., 2003; Vogt et al., 2019; Nichols et367

al., 2019; Kita et al., 2019). While individual models typically quote some uncertainty368

in modeled arrival times (Tao et al., 2005; Zieger & Hansen, 2008; M. Owens et al., 2020),369

these uncertainties are often characterized relative to different standards and using dif-370

ferent methods, making cross-model comparisons difficult.371

To allow direct comparisons of outer heliosphere solar wind models, independent372

quantification of modeled arrival time uncertainty can be performed with MMESH, as373

is common for near-Earth solar wind modeling (Gressl et al., 2014; Riley et al., 2018).374

The goal in quantifying the arrival time uncertainty is twofold: understanding the er-375

ror intrinsic to each model is necessary to give context to its forecasts, and character-376

izing these errors can give clues as to which aspects of the solar wind system an individ-377

ual model may not be capturing sufficiently. For both of these reasons, here we explore378

two methods available in MMESH of quantifying the arrival time uncertainties in the379

previously discussed models. These comparisons and uncertainty characterization are380

performed identically for every combination of spacecraft and model previously discussed;381

to keep illustrations of these informative and uncluttered, the Juno in-situ solar wind382

flow speed umag measurements will again be used alone.383

3.2.1 Constant Time Offsetting384

A simple metric to characterize the performance of a propagation model is to cal-385

culate the prediction efficiency, or correlation coefficient, between the propagated time386

series and an in-situ measurement of the same quantity (Zieger & Hansen, 2008; Kee-387

bler et al., 2022, e.g.). This offers a straightforward method to determine systematic, spacecraft-388

epoch-wide propagation model errors in the arrival time of shocks and other solar wind389

structures. The time span covered by the model can be shifted off that of the measured390

data by an offset time ∆t both forward (i.e. later) and backward (i.e. earlier) in time,391

then the correlation coefficient between this offset model propagated time series and the392

in-situ measurements can be calculated and compared to the original.393

Performing this 2n+1 times for temporal offsets spanning the values [−n,−n+394

∆t, ..., n − ∆t, n] for a realistic maximum offset time of n ≈ 4 days (Tao et al., 2005;395

Zieger & Hansen, 2008) yields the correlation coefficient as a function of constant tem-396

poral offsets, r(∆t), with positive temporal offsets indicating that the un-offset model397

leads the data and negative offsets indicating that the un-offset model lags the data. Max-398

imizing the correlation coefficient r(∆t) thus gives a constant temporal offset which best399

aligns the propagation model with the measured time series; equivalently, this offset rep-400

resents a systematic error in the arrival time of the original model. There are two draw-401

backs to this method of accounting for temporal offsets in the model: first, it can only402

account for a constant temporal offset ∆t, rather than a distribution of uncertainties or403

a time-varying offset; second, this metric conflates the temporal alignment of the time404

series with the magnitudes of their predicted values, and thus does not necessarily char-405
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acterize the model lag/lead time alone. Nonetheless, constant temporal offsetting is fre-406

quently used as a method to simply and quickly estimate model uncertainties, and as407

such remains available in MMESH.408

3.2.2 Dynamic Time Warping409

The performance of a solar wind propagation model can be decomposed into two410

components: the performance in modeling the arrival time and the performance in mod-411

eling the magnitude of the solar wind time series. These two are essentially represented412

by the abcissa and ordinate pairs of a propagated time series, respectively. Theoretically,413

differences between the propagation model and data time series should be decomposable414

by first optimizing the alignment of the model relative to the data to characterize the415

performance in arrival time, then secondly measuring the residuals between the aligned416

model and data time series to characterize the performance in magnitude. Aligning the417

model to the data in this way is often done by manually identifying patterns of shocks418

in both time series and calculating the difference in their observation times (e.g. Tao et419

al., 2005).420

In practice, characterizing model performance in arrival time alone is not so straight-421

forward, as the identification of patterns of shocks and shock-like structures in the so-422

lar wind data is often subjective. To more objectively define such structures, here we have423

“binarized” both the in-situ and propagation model time series data to identify extrema424

in both. The binarization process developed here involves taking the standard score (z-425

score) of the time derivative of a boxcar-smoothed time series and threshholding the re-426

sult at a given significance level. This process has the end effect of identifying and iso-427

lating steep gradients in the time series of a given parameter, as would be expected in428

a shock, and is described in more detail in Appendix A and illustrated in A1. The bi-429

narization process was applied to the solar wind flow speed umag time series in both the430

model-propagated and in-situ data sets. The boxcar-smoothing-widths used for each time431

series and in each epoch were found dynamically and are listed in Table A1. Here a con-432

stant significance level of 3σ, measured across the full duration of each time series, has433

then been used for binarization.434

Identifying shocks and shock-like structures in the now-binarized time series is triv-435

ial; aligning the patterns of structures found in the model and data time series is not,436

and remains subjective if performed manually. For reproducability, an here we employ437

an objective, automated method of aligning the two binarized time series based on the438

class of algorithms collectively known as dynamic time warping (DTW). Qualitatively,439

the aim of DTW is to locally shift, stretch, and compress one time series to better re-440

semble another. DTW has only recently been applied to space weather modeling prob-441

lems; the calculated net distance has been suggested as a useful, multi-scale metric for442

measuring the performance of solar wind models by Samara et al. (2022), and the re-443

sulting alignments have been used to create more accurate boundary conditions for so-444

lar wind propagation models by M. J. Owens and Nichols (2021). Within MMESH, the445

dtw-python package for the Python programming language developed by Giorgino (2009)446

is employed to warp the modeled time series to more closely resemble the in-situ data.447

The recommended usage, and that which will be followed in this discussion, is to use DTW448

to align the binarized model solar wind flow speed to the binarized measured flow speed,449

as the flow speed generally shows the clearest signatures of shocks and shock-like struc-450

tures after binarization. Both the binarization and DTW methods within MMESH can,451

however, be applied independently to any of the propagated solar wind quantities (i.e.452

n, umag, pdyn, or BIMF ) at the discretion of the user.453

An overview of the two-series implementation of DTW is illustrated in Figure 4 and454

described here. This approach involves calculating the Euclidean distance between ev-455

ery permutation of the elements of each series, resulting in a two-dimensional matrix;456
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Figure 4. A composite diagram offering an overview of the dynamic time warping (DTW)

process used to characterize model arrival time uncertainties. The (a) binarized model and data

are shown as points representing the calculated extrema, with lines connecting model and data

features which were identified to map to one another in the DTW process. The (b) original

model and data time series are plotted to show the original alignment and may be compared to

the (c) alignment of the warped model to the unchanged data, which demonstrates significantly

reduced arrival time uncertainties. Dashed lines (b-c) connect the extrema identified in the orig-

inal model to the same in the warped model; the horizontal component of these lines represents

the offsets δt used to warp the model to best match the data. These δt are then taken as the

distribution of arrival time uncertainties for the model.

a path, or alignment curve, through this matrix is then computed which minimizes the457

net distance, and this serves to effectively align the input modeled time series to best458

match the data by reindexing the former. DTW is here applied to the binarized time se-459

ries data (Figure 4a) in order to eliminate the effect that each series’ amplitude may have460

on the alignment calculation. From the aligned time series, tie points connecting the model461

time series to the data are then chosen from the alignment curve for each matching pair462

of model-data extrema (Figure 4a). The original model time series (Figure 4b) is then463

warped according to a linear interpolation of these tie points, which represents both the464

offsets of the matched extrema and the linear interpolations at each abcissa between these.465

The result is a warped time series which is better aligned with the spacecraft data (Fig-466

ure 4c). While this process uses the binarized solar wind flow speed to compute the align-467

ment, every parameter within a given model can then have the same warping applied468

to it. This allows for better alignment between all parameters, not just umag, by implic-469

itly assuming that the input model parameters are aligned correctly with one another,470

and misaligned only relative to the measured data.471

–13–



manuscript submitted to Enter journal name here

Figure 5. Histograms showing the distribution of total temporal shifts needed to best align

each model with the in-situ data for the all spacecraft epochs, as found using dynamic time

warping (DTW) as described in the text. The means of these distributions are equivalent to

intrinsic shock arrival time errors, or timing biases, and the widths are representative of timing

uncertainties.
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For this demonstration of MMESH, DTW was used to align the binarized solar wind472

plasma flow speeds from each model to that of the data in each spacecraft epoch. Lim-473

its were placed on the DTW algorithm to ensure the resulting warped time series was474

physically meaningful: the maximum offsets allowed were ±4 days (±96 hours), chosen475

to be representative of the maximum temporal offsets measured in other studies (Tao476

et al., 2005; Zieger & Hansen, 2008). The first value of the modeled time series is forced477

to align to the first value of the measured time series by the DTW algorithm used here,478

as is the final value of the modeled time series to that of the measured. To account for479

this, the DTW process was applied to the same 2n + 1 models with constant tempo-480

ral offsets in the range [−n, n] and with step size ∆t as was previously discussed in Sec-481

tion 3.2.1. The optimal alignment within these 2n+1 DTW results was found by max-482

imizing the correlation coefficient of the warped model plasma flow speed umag to the483

data divided by the quasi-1σ half-width of the distribution of total temporal offsets r/σP484

(i.e., both constant and dynamic temporal offsets combined). The total distributions of485

temporal offsets in each model are illustrated in Figure 5 for reference. These distribu-486

tions are not normally distributed, suggesting that the uncertainties in the modeled so-487

lar wind arrival times are not random, and are not centered at zero, indicating biases488

in the modeled arrival times.489

Figure 6. A Taylor Diagram showing the performance of each model, before and after tempo-

ral shifting, relative to the in-situ Juno solar wind data. The unshifted models (black symbols)

all have correlation coefficient r in the range 0.2∼0.3. Both constant time offsetting (outlined

symbols) and DTW (full color symbols) improve the correlation coefficients of all models, but

DTW improves the correlation coefficient more (r between 0.3∼0.4 compared to r between

0.4∼0.6, respectively). Employing time-varying temporal shifts is beneficial to matching the mod-

els to the data more closely.

3.3 Prediction of Time-Varying Model Timing Uncertainties490

The cross-model consistent characterization of systematic timing biases and un-491

certainties already discussed allows the performance of the solar wind models to be quan-492

titatively compared to one another. As the methods discussed in Section 3.2 rely on di-493

rect comparison to contemporaneous data, however, the timing biases and uncertainties494

cannot be empirically quantified in the absence of in-situ data– the main use case for so-495

lar wind modeling. To circumvent this, the distribution of timing uncertainties, as illus-496

trated in Figure 5, could be considered invariant in time and propagated as such; this497

method of propagating timing uncertainties is supported by MMESH. As these timing498

uncertainties and biases are known to vary in time, as can be seen by the different space-499
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Figure 7. Plots of the measured temporal offsets (black lines) from DTW for each model-

spacecraft-epoch set (e.g., a-d for ENLIL, e-h for HUXt, and i-l for Tao+), along with the mul-

tiple linear regression (MLR) fit to the temporal offsets found by fitting the offset time series

with the parameters described in the text (red lines). While the independent parameters add

significant variation in time, they nonetheless describe the emprirical timing uncertainties and

systematics fairly well. The 1σ prediction uncertainities in the MLR fit (shaded red regions) are

also plotted.

craft epochs covered in Figure 5, this method has the drawback of explicitly overestimat-500

ing the uncertainties at any given time.501

Alternatively, MMESH also supports a simple- or multiple-linear regression model502

description of the timing uncertainties. Multiple linear regression models are simple mod-503

els which describe one continuous target variable as a linear combination of multiple con-504

tinuous predictor variables; simple linear regression refers to the special case of a single505

predictor variable. The coefficients calculated for each predictor variable thus describe506

the contributions of each to the target variable. Similarly, the estimated standard de-507

viation on these coefficients gives a sense of the relative importance of each predictor:508

relative to the coefficient value, a large standard deviation denotes a less significant pre-509

dictor, with the opposite being true for a relatively small standard deviation. The lin-510

ear regression method thus allows the propagation model timing uncertainties to be es-511

timated even in the absence of in-situ data for comparison, provided the values of each512

predictor variable are known.513

As the input propagation models do not propagate measurement error, the arrival514

time uncertainties characterized previously are present due to the limitations of these515

MHD-based models, each of which makes different simplifications of the physics describ-516
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ing the solar wind. These simplification give rise to correlations between the timing un-517

certainties in these models and other physical parameters describing the solar wind en-518

vironment. Timing uncertainties in models with an inner boundary set by near-Earth519

measurements often trend with target-Sun-observer (TSO) angle in heliolongitude, in520

at least magnitude if not also in sign (Tao et al., 2005; Zieger & Hansen, 2008). Phys-521

ically, this trend represents increasing uncertainty in the solar wind conditions as sep-522

aration in heliolongitude (or Carrington longitude) increases away from the measurement523

point. While less commonly used, the offsets are expected to trend with the TSO an-524

gle in heliolatitude in a similar way, as the solar wind flow speed is known to be strongly525

ordered in heliolatitude during solar minimum (D. J. McComas et al., 2003; D. McCo-526

mas et al., 2008). This well-ordered structuring with heliolatitude breaks down during527

solar maximum (D. J. McComas et al., 2003), which further suggests a physical connec-528

tion between the offsets and the 11-year solar cycle. A final reasonable expectation is529

that the timing systematics and uncertainties are related to the models solar wind flow530

speed umag. This comes from the assumption that the propagation model is more likely531

to lag the data when underestimating the solar wind flow speed and more likely to lead532

when overestimating; if the underestimates tend to have lower magnitudes and overes-533

timates tend have larger magnitudes, then a trend between modeled solar wind flow speed534

and temporal offset is expected.535

These physical relationships between total, time-variable model offsets and descrip-536

tive parameters about the state of the solar wind can be leveraged to estimate the model537

offsets in the absence of simultaneous in-situ data. Here, multiple linear regression has538

been employed to use all of these physical parameters (i.e. TSO angle in heliolongitude539

and heliolatitude, solar cycle phase, and modeled umag) as predictors of the time-variable540

timing uncertainties and biases by fitting the predictors to the combined spacecraft epochs541

during which simultaneous in-situ measurements are available, as illustrated in Figure542

7. Despite its simplicity, the multiple linear regression technique matches the known tem-543

poral offsets well. The combination of parameters used here accounts for 12% of the vari-544

ation in the measured timings for the ENLIL model (i.e., R2 = 0.12), 37% in the HUXt545

model, and 20% in the Tao+ model.546

3.4 Multi-Model Ensemble547

An MME is now created by the combination of the propagation models. MMESH548

supports the creation of MMEs from input propagation models alone, from propagation549

models with characterized timing uncertainties, whether through constant time offset-550

ting or dynamic time warping, and from propagation models de-trended (i.e. warped)551

to account for timing biases with propagated uncertainties. Here, this final type of MME552

is created from the ENLIL, HUXt, and Tao+ solar wind propagation models warped ac-553

cording to the timing biases estimated by multiple linear regression to the multi-epoch554

in-situ dataset, and timing uncertainties propagated through.555

For simplicity, an equal weights average of the each input model is taken. While556

there is some evidence that carefully-chosen weighting schemes may improve model per-557

formance (Guerra et al., 2020), more complicated weighting schemes may also decrease558

model performance compared to the equal weights, making equal weighting the more ro-559

bust choice (Genre et al., 2013). Thus, the only improvement on the simple equal-weights560

averaging scheme we impose is to set the weight to 0 when a model does not yield an561

output at a given time step, whether due to the model’s design (e.g. the lack of param-562

eters other than solar wind flow speed in HUXt) or a lack of access to more recent mod-563

els. The resulting MME of solar wind flow speed is shown in Figure 8a, superimposed564

on the in-situ measurements of the Juno spacecraft during the missions’s cruise phase565

(cf. Figure 3).566
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3.4.1 Model Performance567

The performance of this multi-model, multi-epoch ensemble is summarized in Fig-568

ure 8, which shows that the ensemble has improved prediction efficiency of the solar wind569

flow speed umag during the Juno cruise epoch compared to any individual input model.570

All of the model time series, including that of the ensemble, show decreased standard571

deviations in Figure 8. This results from considering the distribution of timing uncer-572

tainties in calculating the mean values for each time series: when the distribution of tim-573

ing uncertainties is measured or predicted to be large, the shifted fore-shocks in the so-574

lar wind appear more ‘smoothed out’.575

Despite this decreased standard deviation, the predicted flow speed umag of the MME576

(r = 0.49) outperforms ENLIL by 110% (r = 0.23), HUXt by 7% (r = 0.46), and577

Tao+ by 51% (r = 0.32) in correlation coefficient and achieves a centered root-mean-578

square difference (RMSD= 32.8) 28% lower than ENLIL (RMSD= 45.9), 14% lower579

than HUXt (RMSD= 38.1), and 9.1% lower than Tao+ (RMSD= 36.1). As HUXt does580

not contribute to parameters in the MME other than umag, and the performance of ENLIL581

beyond umag is poor here (i.e., ENLIL is evidently anticorrelated with the data in Fig-582

ure 8f-h), the MME underperforms Tao+ in ntot, pdyn, and BIMF by 12%−24% in cor-583

relation coefficient with 5% − 8% larger RMSD. These shortcomings of the MME are584

thus slight, and would likely be reduced further or eliminated in epochs where ENLIL585

performs more similarly to Tao+; alternatively, adding new solar wind propagation mod-586

els to the MME discussed here would be expected to have a similar effect.587
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Figure 8. The solar wind flow speed umag, with timing uncertainties characterized by DTW

and MLR applied over all spacecraft epochs, for (a) ENLIL, (b) HUXt, (c) Tao, and (d) the

MME, compared to in-situ Juno data in each. The performance of the MME is summarized in

the (e) Taylor diagram for umag, which illustrates that the MME outperforms all input models

for this parameter; the Taylor diagram includes both the multi-epoch MLR-adjusted input mod-

els (colored symbols) and the original input models (black symbols) for comparison. Additional

Taylor diagrams for (f) the total solar wind density ntot, (g) the solar wind dynamic pressure

pdyn, and (h) the IMF magnitude BIMF are included to show the performance of the MME in

these parameters. As HUXt does not contribute to these parameters, the MME slightly under-

performs Tao+.
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4 Juno-epoch Solar Wind MME for Jupiter588

Now that the multi-model epoch system has been fully described, all that remains589

is to generate MMESH-propagated solar wind for a useful epoch. Here we have chosen590

to run the ensemble for Jupiter contemporaneously with the Juno mission, beginning591

before the spacecraft entered the planet’s magnetosphere (2016/05/15) and continuing592

seven years through mid-2023 (2023/05/15), in order to provide valuable context for the593

upstream conditions near Jupiter during Juno’s mission. A subset of the ensemble model594

results are shown in Figure 9, along with the results of the component models, spanning595

the first 6 months of coverage provided by this MME. The Juno in-situ measurements596

prior to entering Jupiter’s magnetosphere are shown in Figure 9 for context, but as the597

MME here is for Jupiter’s location, rather than that of Juno, the two timeseries are not598

expected to align as well as in Figure 9. The results of this specific MME are available599

at https://zenodo.org/link-to-specific-results; more generally, the results of this600

Jupiter MME along with any future updates to improve its predictive power or extend601

the temporally coverage will be available, and documented, at https://zenodo.org/602

link-to-all-results.603
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Figure 9. A 12-month subset of the Juno-era solar wind flow speed umag results, adjusted for

timing biases measured using DTW and characterized using MLR, for the (a) ENLIL, (b) HUXt,

(c) Tao+, and (d) MME, presented here starting during Juno’s approach to Jupiter in May 2016.

The 1σ uncertainties in the solar wind flow speed umag are shown in each panel (shaded regions).

Based on the results discussed here, the MME is expected to significantly outperform each of the

component models in predicting the solar wind flow speed umag.
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5 Summary and Conclusions604

Here we have introduced MMESH, a Multi-Model Ensemble System for the He-605

liosphere, and described one use-case of this system to create a multi-model ensemble606

of the outer heliosphere solar wind near Jupiter through the first 7 years of Juno mis-607

sion, spanning 2016/07/04 – 2023/07/04.608

MMESH provides a framework with two central objectives: first, to allow easy char-609

acterization of solar wind propagation model performance; and second, to create multi-610

model ensembles of the solar wind. The first objective is crucial to statistically evalu-611

ating the strengths of the various solar wind propagation models available, as the orig-612

inal discussions of the performance of these models often quote different statistics or span613

non-overlapping epochs of the solar wind and thus cannot be compared one-to-one. Fur-614

ther, characterization of model performance yields an estimate of the model uncertainty,615

a quantity which is not provided internally by any model discussed here but which is es-616

sential for statistical analyses. With the second objective, we aim to create reliable com-617

posite models of the solar wind by combining physics-based solar wind propagation mod-618

els with their estimated variances to be used in statistical analyses of solar-wind-magnetosphere619

interactions throughout the solar system. The strength of ensemble modeling lies in lever-620

aging the different strengths of the constituent models, and so these two objectives are621

closely intertwined.622

MMESH additionally includes a method to compare biases and variances in the model623

timing to physical parameters across disparate epochs prior to creating an ensemble. The624

objective of this multi-epoch method is to de-trend biases in the model timing which may625

arise from the various assumptions and simplifications made by each model. De-trending626

is performed here through multiple linear regression (MLR) of the measured model tim-627

ing biases with a subset of the physically reasonable parameters with which model per-628

formance is expected to vary. The phase of the solar cycle, difference in heliolongitude629

and heliolatitude between the model target and the observer, and the modeled solar wind630

flow speed are all reasonable and considered here. As estimation of the model timing bi-631

ases and variances is only possible when contemporaneous in-situ data are available for632

comparison, the spans over which the MLR de-trending can be performed are limited.633

The MLR de-trending is made more robust by considering multiple disparate epochs dur-634

ing which spacecraft data are available.635

Using all of these methods, a multi-model ensemble of the solar wind conditions636

at Jupiter during the Juno-epoch has been created by combining three physics-based so-637

lar wind propagation models (ENLIL, HUXt, and Tao+); the version of this ensemble638

discussed here is available at https://zenodo.org/link-to-specific-results and639

the latest release of is available at https://zenodo.org/link-to-all-results. Biases640

and variances in each models timing were characterized for four epochs during which Ulysses641

or Juno data were available for comparison, spanning in total from 1991/12/08 – 2016/06/29.642

The model timing biases were then de-trended using MLR to the heliolatitude and mod-643

eled flow speed, which were determined to provide the best balance between describing644

the timing biases and overfitting. The biases in the three constituent solar wind mod-645

els were corrected according to the MLR equation for the full MME span of 2016/07/04646

– 2023/07/04 and combined. The resulting ensemble model outperforms all of the con-647

stituent models relative to the Juno cruise data immediately preceding this epoch; the648

ensemble has a correlation coefficient of 0.41 (78% increase over ENLIL, 32% increase649

over HUXt, and 86% increase over Tao+, after accounting for timing offsets in each). The650

improved upstream solar wind monitoring capabilities demonstrated by this MME are651

available to be downloaded and used immediately, and should prove crucial to ongoing652

and future in-situ studies of the Jovian magnetosphere using Galileo, Juno, JUICE, and653

Europa Clipper , as well as remote sensing studies using observatories such as JWST, HST,654

and Chandra.655
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Appendix A Time Series Binarization656

Here, the measured and modeled magnitude of the solar wind flow speed umag is657

post-processed by first smoothing the series, then taking the standard score of its time658

derivative. Smoothing is accomplished by taking a rolling boxcar average of the flow speed659

umag. Smoothing in this way serves as a low-pass filter, allowing the recovery of the large-660

scale shape of the time series while ignoring small-scale fluctuations, which may dom-661

inate in in-situ spacecraft measurements. The time derivative of the flow speed time se-662

ries umag(t) is chosen in order to better identify the transition of a spacecraft or model663

trajectory through a slow-fast wind interface; these increases in solar wind flow speed664

occur over timescales less than 1hour and are more easily identifiable than changes in665

other solar wind parameters, which typically occur over longer timescales. The standard-666

score of the time series, or the time series normalized to its own standard deviation, al-667

lows for direct comparison of the relative changes between different time series which may668

have widely varying mean values.669

Binarization requires subjective input of a boxcar-smoothing-width and significance670

level for each time series, however these parameters are partially degenerate with one671

another– a smaller smoothing window and a higher significance level will yield similar672

results to a larger window with lower significance level. To limit subjectivity, boxcar-smoothing-673

widths are found for each time series within a given epoch as the smallest width which,674

when applied to each time series before the derivative is taken, results in an equal se-675

ries standard deviation to the smallest such standard deviation in the epoch. Qualita-676

tively, this is the boxcar-smoothing-width required to make each time series look as ”smooth”677

as the ”smoothest” time series of the epoch. The boxcar-smoothing-widths used for each678

time series and in each epoch are listed in Table A1.679

Table A1. Boxcar-smoothing widths for binarization, in hours

Source Epoch
Ulysses 1 Ulysses 2 Ulysses 3 Juno

in-situ 5 15 2 7
ENLIL 8 1 4 5
HUXt 1 9 1 1
Tao+ 6 11 2 10
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Figure A1. Binarized time series of the solar wind flow speed umag for the (a) ENLIL, (b)

HUXt, and (c) Tao+ solar wind propagation models, with the binarized time series of the in-situ

Juno data superimposed on each (black lines). The time-derivatives of all these series have been

binarized at a value of 3σ, such that each ‘spike’ represents a change in the time-derivative of 3σ

or larger.
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Open Research680

The results presented in this document rely on data collected by the Solar Radio681

Monitoring Program (https://www.spaceweather.gc.ca/forecast-prevision/solar682

-solaire/solarflux/sx-en.php) with additional processing by the NOAA National683

Centers for Environmental Information (https://www.ncei.noaa.gov/). These data684

were accessed via the LASP Interactive Solar Irradiance Datacenter (LISIRD) (https://685

lasp.colorado.edu/lisird/). Ephemeris information was obtained by use of the NASA686

Navigation and Ancillary Information Facility (NAID) SPICE toolkit.687

Simulation results for the ENLIL solar wind propagation model (version 2.8f) have688

been provided by the Community Coordinated Modeling Center (CCMC) at Goddard689

Space Flight Center through their publicly available simulation services (https://ccmc690

.gsfc.nasa.gov). The ENLIL Model was developed by Dusan Odstrcil at George Ma-691

son University. Spacecraft data were acquired from the Goddard Space Flight Center692

Space Physics Data Facility (SPDF) COHOWeb service, except for the Juno in-situ data,693

which were instead acquired from Wilson et al. (2018) (plasma data) and the Automated694

Multi-Dataset Analysis web tool hosted at https://amda.irap.omp.eu/.695

The MMESH code is available at https://github.com/mjrutala/MMESH, and in-696

cludes the routines used to create the figures shown here. The Juno-epoch MME pre-697

sented here is available at https://zenodo.org/link-to-specific-results, and fu-698

ture updates to this MME will be accessible from https://zenodo.org/link-to-all699

-results.700
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