A novel localized fast multipole method for computations with spatially correlated observation error statistics in data assimilation

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of accepted_version.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Hu, G. orcid id iconORCID: https://orcid.org/0000-0003-4305-3658 and Dance, S. L. orcid id iconORCID: https://orcid.org/0000-0003-1690-3338 (2024) A novel localized fast multipole method for computations with spatially correlated observation error statistics in data assimilation. Journal of Advances in Modeling Earth Systems, 16 (6). e2023MS003871. ISSN 1942-2466 doi: 10.1029/2023MS003871

Abstract/Summary

Several observation types (e.g., geostationary satellite and Doppler radar observations) have recently been found to exhibit strong spatial error correlations. Including these error statistics in data assimilation for numerical weather prediction can improve analysis quality and forecast skill. Moreover, it allows for increases in the spatial density of observations assimilated, which is needed for the provision of information on appropriate scales for high-resolution forecasting. However, introducing correlated error statistics may increase the computational complexity and parallel communication costs of matrix-vector products involving observation precision matrices (inverse observation error covariance matrices). Without new approaches, we cannot take full advantage of new observation uncertainty estimates. We develop a new numerical approximation method based on a particular type of fast multipole method and a domain localization approach. The basic idea is to divide the observation domain into boxes and then separate calculations of matrix-vector products according to the partition. These calculations can be done in parallel with very low communication overheads. The new method is easy to implement and parallelise, and it is applicable to a wide variety of observation precision matrices. We applied the new method to a simple variational data assimilation problem and found that the computational cost of the variational minimisation was dramatically reduced while preserving analysis accuracy across a range of scales. The new method has the potential to be used as an efficient technique for practical applications where a large number of observations with mutual error correlations need to be assimilated quickly.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/116418
Identification Number/DOI 10.1029/2023MS003871
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher American Geophysical Union
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar