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Abstract: Food systems emissions (FSE) account for one-third of 

anthropogenic GHGs. Mitigating these emissions is pivotal for achieving the 

1.5°C target. Given current research gaps in regional FSE accounting and 

drivers for China, the world's largest food system emitter, this study constructs 

a regionally specific, bottom-up FSE inventory detailed by food types and 

downscales FSE drivers to the provincial level. China's FSE exhibited an initial 

decline due to energy pattern upgrades during the period of 1990–2000, 

followed by a rise between 2000 and 2018. Increases were predominantly in 

developed southern regions and were propelled by economic growth, 

consumer expenditure, and dietary pattern shifts. This study reveals the spatial 

heterogeneity of emission sources and drivers, emphasizing the necessity of 

demand-side mitigation strategies in developed areas. It underscores the 

importance of formulating regionally differentiated emission reduction and 

interregional compensation policies. 

Keywords: food system, GHG emissions, spatial heterogeneity, drivers, 

mitigation 
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1. Introduction 

The entire food system (production, processing, distribution, preparation 

and consumption) accounts for approximately one-third (34% [25-42%]) of total 

anthropogenic greenhouse gases (GHGs) (Crippa et al., 2021; Rosenzweig et 

al., 2020). Recent studies have revealed the increasing dominance of GHG 

emissions from pre-and post-production processes along supply chains 

(Tubiello et al., 2022). China is the world’s largest food system carbon emitter 

(Godfray et al., 2018). It covers a vast territory that is characterized by 

heterogeneous environmental and socioeconomic conditions and is currently 

transitioning to high-quality diets (He et al., 2018; Zhao et al., 2021). Although 

the estimated food system emissions (FSE) per capita from China’s food 

system are still far below the global average (Crippa et al., 2021), the nation’s 

food system is facing profound mitigation pressure to meet future demands 

(Zhao et al., 2021) in the context of the 2060 carbon neutrality goal and 1.5°C 

global warming targets (Acampora et al., 2023; Roe et al., 2019; Yang et al., 

2022). FSE are also distributed unequally at both national (Poore and Nemecek, 

2018) and regional scales (Xing et al., 2023), producing inequality in these 

mitigation pressures (Sun et al., 2021). Identification of the spatial distributions 

of FSE and their driving forces is urgently required to develop regional-specific 

mitigation strategies for the food sector. 

The drivers of food-related GHG emissions, alongside measures through 

which they can be reduced, are related to both the demand- and supply-sides 

of the food system (Godfray et al., 2010; Poore and Nemecek, 2018). On the 

one hand, supply-side GHGs emissions can be reduced by closing the yield 

gap (Zhang et al., 2013), promoting sustainable intensification (Chen et al., 

2014), and developing efficient management practices (Bajželj et al., 2014; Ren 

et al., 2023). On the other hand, food-related emissions largely depend on 

sustainable healthy diets (Heller and Keoleian, 2015; IPCC, 2022) and food 

loss and waste (Li et al., 2021; Xue et al., 2021) from the demand-side. These 

are influenced by dietary patterns and preferences (Hayek et al., 2021; He et 

al., 2018; He et al., 2021), food prices (Fujimori et al., 2022; Kehlbacher et al., 

2016) and consumption expenditure (Kramer et al., 1999). Decomposition 
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methods have been used to detect the drivers of FSE (Schierhorn et al., 2019). 

For example, He et al. (2018) decomposed dietary-driven GHG emissions into 

seven factors: aging, calorie intake, energy structure, nutrient composition, 

population growth, technical progress, and urbanization. Cerutti et al. (2023) 

identified three additional drivers: per capita GHG emissions, land intensity, and 

emissions intensity. However, the current detection of drivers is primarily at the 

national scale and there is a general absence of detailed regional information 

to examine spatial patterns that influence FSE (Huang et al., 2020). Mitigation 

of food system GHG emissions should address both demand and supply sides 

with regional specifics, but such an integrated approach is currently lacking in 

China. 

Despite significant heterogeneity in the patterns of FSE, particularly at the 

production stage due to diverse commodity production and varying production 

efficiencies (Poore and Nemecek, 2018; Rosenzweig et al., 2020), targeted 

mitigation policies remain a challenge. Hong et al. (2021) decomposed 

emission drivers related to land-use at the national level, underscoring the 

importance of regionally differentiated mitigation strategies. This spatial 

heterogeneity is also evident on the demand side with Sun et al. (2022) 

revealing that dietary shifts in developed regions possess higher emission 

reduction potential. Nevertheless, in China, a country typified by significant food 

production and consumption (Zhang et al., 2022), natural resource endowment 

and economic development are unevenly distributed (Qiang and Jian, 2020), 

inevitably leading to regional disparities in FSE and their drivers (Qi et al., 2023). 

Furthermore, the concentration of China's population and economy in the south, 

coupled with the northward shift of cropland and production, is likely to 

exacerbate the spatial imbalances in FSE (Qi et al., 2022). While some studies 

have explored region-specific socioeconomic drivers of agricultural methane 

emissions (Duan et al., 2023) and nitrogen use (Gao et al., 2019) in China, the 

drivers of regional life-cycle FSE remain unidentified. This knowledge gap 

hampers the ability of policymakers to devise and implement effective and 

targeted food system mitigation policies. 

To address knowledge gaps regarding region-specific GHGs accounting 

within China’s food system and to examine the regional drivers influencing food 
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system emissions, this study aims to develop a lifecycle FSE inventory from 

farm to fork at the provincial level. Initially, our research uncovers the structural 

trends and spatial characteristics of FSE, detailing the contributions of various 

food types to emissions. Subsequently, we decompose the factors influencing 

the changes in China’s food system GHGs and downscale these factors, 

providing insights with regional specificity. Furthermore, our study illuminates 

the coupling trends of food system emissions alongside their most influential 

drivers. The insights garnered from our findings are poised to aid policymakers 

in comprehending the features and spatial heterogeneity of China’s food 

system emissions, thereby enabling the formulation of regionally tailored 

strategies to food system GHGs emission reduction. 

2. Material and methods 

2.1 System boundary of "bottom-up" GHGs inventory 

The food system paradigm breaks down entrenched sectoral categories 

either following the Intergovernmental Panel on Climate Change (IPCC) or the 

United Nations Framework Convention on Climate Change (UNFCCC) GHG 

emissions inventory guidelines (Rosenzweig et al., 2020) and by categorizing 

elements of the former “agriculture, forestry, and other land use” (AFOLU) 

sector. Derived and developed largely from food supply chain concepts (Garnett, 

2011), the food system primarily encompasses land use and land cover change 

(LULCC), production, transport, processing, packaging, retail, consumption, 

and waste disposal (EU, 2020; Crippa et al., 2021). 

The food system assessed in this study involves 12 primary food 

categories consumed by Chinese people and comprises five plant-sourced 

foods (rice, wheat, maize, vegetables, and fruit), seven animal-sourced foods 

(pork, beef, mutton, poultry, egg, and milk), and aquatic foods (fish, shrimp, 

crab, shellfish, and algae). The nutrients supplied from these 12 food categories 

account for 85.4% of the total calories and 88.7% of protein intake by Chinese 

people (FAOSTAT, 2023). Following the EU (2020) Farm-to-Fork Strategy, the 

food supply chain includes preproduction (extraction of the resources needed 

to produce agricultural products), production (the land and farm management 

practices by farmers during the food production process), and post-production 
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(processing, transportation, packaging, distribution, retail, household 

refrigeration and cooking).  

For plant-sourced foods, the food supply chain begins with the pre-

production extraction of resources needed to produce inputs for agricultural 

production, such as energy products including coal, diesel and electricity, and 

agricultural materials and products including plastic film, seeds, pesticides and 

N/P/K fertilizers. The production stage includes machinery diesel use for 

seeding, harvesting and other farming activities, electricity for irrigation, CH4 

emissions from paddy cultivation and straw burning, as well as direct and 

indirect N2O emissions from fertilizers. Emissions induced by land use change 

(agricultural land expansion, forest burning, organic soil burning), human labor, 

the manufacture of agricultural equipment, and the construction of farm 

buildings are excluded in this study. 

For animal-sourced foods, the food supply chain begins with the pre-

production forage planting and processing, with emission factors derived from 

processed forage crops such as maize, soybean, and wheat. There are three 

main emissions sources for the animal-sourced food production: farm energy, 

ruminant animal fermentation, and manure management. Emissions caused by 

farm infrastructure construction, grassland nitrogen fixation and loss, and 

manual labor are not considered in this study. 

Both the plant-sourced and animal-sourced foods have the same post-

production stages (processing, transportation, packaging, distribution, retailing), 

and they both end at household refrigeration and cooking. Emissions from 

LULUC associated with agriculture in the preproduction stage are excluded 

from the assessment due to the challenges in directly linking them to the food 

lifecycle, which is the fundamental framework employed in this study (Lai et al., 

2016). Post-consumption stages (food waste and disposal) are not considered 

owing to their high variability and low food-specific data availability (Xue et al., 

2021). Additionally, this study only considers emission processes within each 

region’s borders; emissions transfer associated with food trade between 

regions and countries are excluded. 
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2.2 Carbon emission accounting of the food system 

Building upon given system boundaries, food system carbon emissions 

accounting can be categorized into two main methodologies. The first type 

stems from a top-down sectoral breakdown. This includes estimates from the 

NASA Research Institute (Rosenzweig et al., 2020), the Food and Agriculture 

Organization (FAO) (Tubiello et al., 2021), the EU Joint Research Center 

(Crippa et al., 2021), the CAAS (Zhang et al. 2021), and CAS (Liu et al., 2023). 

These sources have been instrumental in tracking trends and shifts in global 

food system sectoral GHG emissions, and demonstrate the increasing 

prominence of GHG emissions in both pre-production and post-production 

stages across supply chains. This provides a consistent and transparent 

framework for national level accounting. However, there is a notable lack of 

region-specific and food type-specific emission inventories, which are critical 

for developing targeted mitigation strategies. The second methodological 

category employs a bottom-up life cycle analysis (Poore and Nemecek, 2018), 

advantageous for its emissions inventory that encompasses various food types 

throughout their entire life cycle stages. This approach facilitates the 

identification of primary emission sources and measurement units. Given this 

study's focus on the impact of food consumption patterns on emissions, a 

bottom-up life cycle analysis is the preferred method. 

Life Cycle Assessment (LCA) is the evaluation of the environmental 

burdens associated with a product, process, or activity. It is based on identifying 

and quantifying the energy and materials used and, in turn, the waste materials 

released into the environment (Garnett, 2011). The International Organization 

for Standardization (ISO) has standardized this framework within the ISO 14040 

series on LCA. The LCA of the food system includes the entire lifecycle of food, 

encompassing preproduction, production and post-production processes. 

Consumption-based food system emissions in China are accounting as 

formulas below: 

𝐹𝑆𝐸 𝑖,𝑗 = ∑ 𝐸𝐹𝑖,𝑗,𝑘 ∗ 𝐴𝑖,𝑗

𝑘

 Equation 1 



 

8 

 

where 𝑖  represents the food type consumed, 𝑗  represents the 

consumption region in this case one of 31 provinces in mainland China 

(Hongkong, Macau, and Taiwan are excluded), 𝑘 represents the food system 

stages of the lifecycle. 𝐹𝑆𝐸 𝑖,𝑗  represents consumption-based food system 

emissions of food type 𝑖 in region 𝑗. 𝐸𝐹𝑖,𝑗,𝑘 represents the emission factor of 

food type 𝑖  in region 𝑗  at lifecycle stage 𝑘 . 𝐴𝑖,𝑗  is activity data in LCA, 

represents total consumption amount of food type 𝑖 in region 𝑗.  

2.3 Framework for factors influencing food system GHGs 

In order to explore the influencing factors of food system carbon emissions, 

we constructed a driving force framework that affected food system emissions 

from three categories (Fig. 1): (1) Supply side factors reflecting technology and 

management, incduing specific production practice and energy use pattern. In 

this study, we combined the lifecycle carbon intensity with diversified production 

practices and energy use into one technology factor. (2) Demand side factors 

such as consumption structure, price, Engel coefficient, and expenditure, and 

(3) Socio-economic factors including economic growth, urbanization and 

population.  

 

Figure 1. Framework of mechanisms influencing GHGs emissions from 

the food system in China.  

2.4 LMDI decomposition analysis 

The Log Mean Divisia Index (LMDI) method, developed by Ang (2004), 

was used to analyze how supply- and demand-side drivers affect food system 
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GHGs structural shifts in China. LMDI quantifies the contribution of each driving 

force in proportion without residuals. To conduct the decomposition analysis, 

the GHG changes for the different food types in each region were decomposed 

into eight factors: technology, food consumption structure, food purchasing 

power, Engel coefficient, expenditure, economic development, urbanization 

and population. 

𝐹𝐸𝑇𝑜𝑡𝑎𝑙 = 𝐹𝐸𝑈 + 𝐹𝐸𝑅 Equation 2 

𝐹𝐸𝑈 = ∑
𝐹𝐸𝑈.𝑖,j

𝐶𝑜𝑛𝑈,𝑖,𝑗
×

𝐶𝑜𝑛𝑈,𝑖,𝑗

𝐶𝑜𝑛𝑈,𝑗
×

𝐶𝑜𝑛𝑈,𝑗

𝐹𝐸𝑋𝑃𝑈,𝑗
×

𝐹𝐸𝑋𝑃𝑈,𝑗

𝐸𝑋𝑃𝑈,𝑗
𝑖,𝑗

×
𝐸𝑋𝑃𝑈,𝑗

𝐺𝐷𝑃𝑈,𝑗
×

𝐺𝐷𝑃𝑈,𝑗

𝑃𝑈,𝑗
×

𝑃𝑈,𝑗

𝑃𝑗
× 𝑃𝑗

= ∑ 𝐸𝐼𝑈,𝑖,𝑗

𝑖,𝑗

× 𝐷𝑃𝑈,𝑖,𝑗 × 𝐶𝑃𝑈,𝑗 × 𝐸𝑁𝑈,𝑗

× 𝐶𝐸𝑈,𝑗 × 𝐸𝐺𝑈,𝑗 × 𝑈𝑅𝑈,𝑗 × 𝑃𝑗 

Equation 3 

𝐹𝐸𝑅 = ∑
𝐹𝐸𝑅.𝑖,j

𝐶𝑜𝑛𝑅,𝑖,𝑗
×

𝐶𝑜𝑛𝑅,𝑖,𝑗

𝐶𝑜𝑛𝑅,𝑗
×

𝐶𝑜𝑛𝑅,𝑗

𝐹𝐸𝑋𝑃𝑅,𝑗
×

𝐹𝐸𝑋𝑃𝑅,𝑗

𝐸𝑋𝑃𝑅,𝑗
𝑖,𝑗

×
𝐸𝑋𝑃𝑅,𝑗

𝐺𝐷𝑃𝑅,𝑗
×

𝐺𝐷𝑃𝑅,𝑗

𝑃𝑅,𝑗
×

𝑃𝑅,𝑗

𝑃𝑗
× 𝑃𝑗

= ∑ 𝐸𝐼𝑅,𝑖,𝑗

𝑖,𝑗

× 𝐷𝑃𝑅,𝑖,𝑗 × 𝐶𝑃𝑅,𝑗 × 𝐸𝑁𝑅,𝑗

× 𝐶𝐸𝑅,𝑗 × 𝐸𝐺𝑅,𝑗 × 𝑈𝑅𝑅,𝑗 × 𝑃𝑗 

Equation 4 

where i denotes the different food types, j denotes the different provinces 

in mainland Chinese, U denotes urban factors, and R denotes rural factors. 

𝐹𝐸𝑇𝑜𝑡𝑎𝑙 are the total GHGs emissions from the food system in China (million 

tons CO2e), and 𝐹𝐸𝑈 and 𝐹𝐸𝑅 are the GHGs from urban and rural residential 

consumption, respectively. 𝐹𝐸𝑈.𝑖,j denotes the urban residential consumption 

GHGs of food i in province j, 𝐶𝑜𝑛𝑈,𝑖,𝑗  denotes the urban residential 

consumption weight of food i in province j (million tons), 𝐶𝑜𝑛𝑈,𝑗 denotes the 
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urban residential consumption weight of all food types in province j, 𝐹𝐸𝑋𝑃𝑈,𝑗 is 

the food consumption expenditure of all types of food in province j (billion yuan), 

𝐸𝑋𝑃𝑈,𝑗 is the residential consumption expenditure in province j (billion yuan), 

𝐺𝐷𝑃𝑈,𝑗 represents the GDP from urban areas in province j (billion yuan), 𝑃𝑈,𝑗 

represents the urban population in province j (million person),, and 𝑃𝑗 is the 

total population in province j. 𝐸𝐼𝑈,𝑖,𝑗 =
𝐹𝐸𝑈.𝑖,j

𝐶𝑜𝑛𝑈,𝑖,𝑗
 represents the emission intensity 

from the entire food supply chain of food i in province j’s urban residential 

consumption (kg CO2e kg-1); 𝐷𝑃𝑈,𝑖,𝑗 =
𝐶𝑜𝑛𝑈,𝑖,𝑗

𝐶𝑜𝑛𝑈,𝑗
  denotes the dietary pattern of 

food i in province j’s urban residential consumption (%); 𝐶𝑃𝑈,𝑗 =
𝐶𝑜𝑛𝑈,𝑗

𝐹𝐸𝑋𝑃𝑈,𝑗
 

denotes the purchasing power of all food types in province j’s urban residential 

consumption (which represents the reciprocal of food price) (kg/yuan); 𝐸𝑁𝑈,𝑗 =

𝐹𝐸𝑋𝑃𝑈,𝑗

𝐸𝑋𝑃𝑈,𝑗
  is the Engel coefficient of urban residents in province j (%); 𝐶𝐸𝑈,𝑗 =

𝐸𝑋𝑃𝑅,𝑗

𝐺𝐷𝑃𝑅,𝑗
  is the consumption expenditure of urban residents in province j (%); 

𝐸𝑆𝑈,𝑗 =
𝐺𝐷𝑃𝑈,𝑗

𝑃𝑈,𝑗
 is the economic development of urban area in province j (1000 

yuan per person); and 𝑈𝑅𝑈,𝑗 =
𝑃𝑈,𝑗

𝑃𝑗
  represents the urbanization ratio of 

province j (%). 

△ 𝐹𝐸𝑈 = 𝐹𝐸𝑈
𝑇 − 𝐹𝐸𝑈

0

=△ 𝐹𝐸𝑈,𝐸𝐼 +△ 𝐹𝐸𝑈,𝐷𝑃 +△ 𝐹𝐸𝑈,𝐶𝑃 +△ 𝐹𝐸𝑈,𝐸𝑁 +

△ 𝐹𝐸𝑈,𝐶𝐸 +△ 𝐹𝐸𝑈,𝐸𝐺 +△ 𝐹𝐸𝑈,𝑈𝑅 +△ 𝐹𝐸𝑈,𝑃 

Equation 5 

△ 𝐹𝐸𝑅 = 𝐹𝐸𝑅
𝑇 − 𝐹𝐸𝑅

0

=△ 𝐹𝐸𝑅,𝐸𝐼 +△ 𝐹𝐸𝑅,𝐷𝑃 +△ 𝐹𝐸𝑅,𝐶𝑃 +△ 𝐹𝐸𝑅,𝐸𝑁 +

△ 𝐹𝐸𝑅,𝐶𝐸 +△ 𝐹𝐸𝑅,𝐸𝐺 +△ 𝐹𝐸𝑅,𝑈𝑅 +△ 𝐹𝐸𝑅,𝑃 

Equation 6 

where 𝐹𝐸𝑈
𝑇  and 𝐹𝐸𝑈

0  represent the GHGs from urban residential 

consumption in period T and the baseline period, respectively. △ 𝐹𝐸𝑈 denotes 

the change in GHGs from urban residential consumption between period T and 

the baseline period. △ 𝐹𝐸𝑈,𝐸𝐼 , △ 𝐹𝐸𝑈,𝐷𝑃 , △ 𝐹𝐸𝑈,𝐶𝑃 , △ 𝐹𝐸𝑈,𝐸𝑁 , △ 𝐹𝐸𝑈,𝐶𝐸 , △
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𝐹𝐸𝑈,𝐸𝑆 , △ 𝐹𝐸𝑈,𝑈𝑅 , and △ 𝐹𝐸𝑈,𝑃  indicate the contributions from technology, 

food consumption structure, purchasing power, Engel coefficient, expenditure, 

economic growth, urbanization and population, respectively. 

2.5 Decoupling analysis 

The decoupling analysis can be used to understand the relation between 

food system emissions and economic growth (Wang and Su, 2020). Tapio 

decoupling analysis is  stable and unaffected by changes in statistical 

dimension. They provide additional details about the decoupling state. 

According to this method, the decoupling elastic index between food system 

emission per capita and per capita GDP is shown by Eq. 7: 

𝐷𝐹𝐸,𝐸𝐺 =
(𝐹𝐸𝑡 − 𝐹𝐸𝑡−1)/𝐹𝐸𝑡−1

(𝐸𝐺𝑡 − 𝐸𝐺𝑡−1)/𝐸𝐺𝑡−1
 Equation 7 

were 𝐷𝐹𝐸,𝐸𝐺  represents the decoupling states between food system 

emission per capita and GDP per capita. According to the differences in elastic 

indexes, 𝐹𝐸𝑡  represents food system emission per capita in year 𝑡 , 𝐸𝐺𝑡 

represents per capita GDP in year 𝑡. A value of 𝐷𝐹𝐸,𝐸𝐺 > 0 denotes coupling 

status, while 𝐷𝐹𝐸,𝐸𝐺 < 0 denotes decoupling status. 

 

2.6 Data sources 

The data used in this study comprise cost-benefit survey data of 

agricultural products, food prices, residential consumption data, emission 

factors of various foods in different life cycle stages, economic and social 

statistics data (see Supplementary Table S1 for a description of these data). 

Input data for the production stage mainly come from the national agricultural 

cost-benefit survey data and include most kinds of food input in the production 

process (N-P-K fertilizer and agricultural plastic films, the dosage of seeds, the 

costs of manure, pesticides, fertilizer, fuel, and power, food consumption, and 

food production data). The expenditure of some types of food was divided by 

the price to obtain the consumption amount of the food. Due to limited data 

availability across comparable years and regions for fruits and vegetables in 

the National Compilation of Cost and Benefit Data of Agricultural Products, this 

study selected the average inputs of apple and oranges to calculate the 
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agricultural input of fruit. Similarly, the average inputs of cabbage, radish and 

tomato were selected to calculate the agricultural input for vegetables. 

The per capita consumption data for 12 food types (rice, wheat, maize, 

vegetables, fruits, pork, beef, mutton, poultry, eggs, milk and aquatic products) 

came from the Statistical Yearbook of China and the Statistical Yearbook of 31 

provincial administrative units. The emission factor data was obtained from 

IPCC National GHG Emission Inventory 2006, Provincial GHG Inventory 

Compilation Guide 2011, Standardization Administration of China, public 

databases and published literature. For the emissions from electricity 

consumption for the period after 2006, the 31 provincial administrative units in 

China were divided into six regional power grids using the emission factors of 

the China regional power grid baseline and the annual emission reduction 

project published by the National Development and Reform Commission after 

2006. For the period before 2006, energy emission factors were obtained from 

the Chinese Life Cycle Database (CLCD). 

3. Results 

3.1 Spatial–temporal trends of food system GHG emissions in China 

China's consumption-based food system GHGs emissions fluctuated 

between different periods. It decreases between 1990 and 2000 but then 

increased up to 2018. Across the entire period of 1990–2018, total GHGs from 

the Chinese food system increased from 1.44 Gt CO2e yr-1 (95% confidence 

interval (CI): 1.00-1.88 Gt CO2e yr−1) to 1.55 Gt CO2e yr-1 (95% CI: 1.07-2.03 

Gt CO2e yr−1) (Fig. 2a; see Supplementary S5), which is 11.7% of the total 

GHGs in China (see Supplementary S2 for the results comparison). China's 

consumption-based food system emissions have undergone profound 

structural shifts in the dietary pattern in their spatial distribution. GHGs from 

China's food system has shifted from cereal-dominated foods in 1990 to highly 

carbon-intensive and more diverse foods (i.e., meat and protein products) in 

2018 (Fig. 2a). Specifically, emissions from cereals reduced from 66.0% of the 

total in 1990 to 28.6% in 2018, while rice dropped from the top source of GHGs 

from the food system to the second. Moreover, the carbon emission proportion 

from meat increased from 19.5% to 39.1%. Pork has been the leading and 
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principal source of GHG emissions (Fig. 2a), increasing by 70.8% from 1990 to 

2018 and accounting for 23.9% of total meat emission growth. Emissions from 

protein products including milk and eggs have increased from 2.1% to 5.8%, 

whilst those from aquatic products have grown from 2.3% to 8.5% (Fig. 2a).  

Spatially, consumption-based GHG emissions from China’s food system 

were primarily concentrated in the south. The contribution of the southern part 

of the country (here comprising four regions: EC-East China, SC-South China, 

CC-Central China, and SW-Southwest China) to the national total GHGs 

decreased slightly from 77.0% in 1990 to 75.4% in 2018 (Fig. 2b). Total GHGs 

emissions from the food system in East China were the highest, accounting for 

30.3% of the total national emissions, followed by South China with 16.0%. In 

contrast, Northwest China accounted for the lowest, only 6.1% in 2018 (Fig. 2b). 

In terms of the change rate between 1990 and 2018, GHGs from food systems 

increased in both the southern and northern regions, but the latter experienced 

a more rapid growth rate. On average, growth in the north was 15.2%, 

compared 6.2% in the south. Northwest China (NC) had the most rapid growth 

rate (68.8%), while Southwest (SW), Central (CC), and Northeast China (NE) 

experienced decreasing trends (3.5-6.7%) (Fig. 2b). 

In terms of the spatial characteristics of GHGs emissions from different 

types of food, in most cases, with the exception of mutton, emissions from the 

south were higher than those from the north (Fig. 2b). From the perspective of 

dietary structural change, all regions showed a unified trend of decreasing 

GHGs emissions from cereal food and increasing emissions from fruit and 

vegetables, protein foods and aquatic products. However, there was significant 

spatial heterogeneity in emissions caused by regional dietary structure changes. 

Food system GHGs increases in South China were dominated by meat, those 

in North China were primarily from meat and vegetables, whilst those in East 

China were led by aquatic products (Fig. 2. c-f). As the largest food system 

GHGs emitter in the country, East China experienced the largest drop in cereal 

related emissions (-58.1%) and a large increase in meat (21.8%) and aquatic 

product (9.0%) emissions over the period of 1990–2018 (Fig. 2 c, f). In South 

China, high carbon-intensive meat consumption caused this region to 

experience the largest emission growth rate in the country. GHGs from meat 
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consumption rose by the largest amount (219.4%), and the percentage of 

GHGs from meat increased from 19.0% in 1990 to 43.3% in 2018. In Northwest 

China, the large growth rate in food system GHGs emissions between 1990 

and 2018 were dominated by meat (2.1 times) and vegetables (near doubling) 

(Fig. 2 c, f). 

 

Figure 2. Spatial–temporal changes of China’s food system emissions. a. 

China’s total food system emissions related to food types; b. China’s total food 

system emissions related to regions; c-f. represent the spatial distribution of 

food system emissions in China from 1990 to 2018. Different shades of red on 

the maps represent changes in total GHGs from regional food systems. Colors 

in the pie charts represent different food types with numbers representing 

percentages of the total. The sizes of pie charts correspond to emission 

amounts. Grains comprise rice, wheat, and maize; F&V comprise fruit and 

vegetables; meat comprises pork, beef, mutton, and poultry; protein comprises 

eggs and milk; and aquatic comprises fish, shrimp, crab, shellfish, and algae 
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etc. NE = Northeast China, NC = North China, NW = Northwest China, EC = 

East China, SC = South China, CC = Central China, and SW = Southwest China. 

3.2 Drivers of food-related GHGs emissions at national level 

To quantify the relative contributions of multiple drivers to total food system 

GHGs emissions, we used LMDI decomposition analysis to decompose the 

consumption-based GHGs changes for the different food types in each region 

into eight factors. These factors comprise one supply-side driver (technology), 

four demand-side drivers (food consumption structure, food purchasing power, 

Engel coefficient, and expenditure), and three socioeconomic drivers 

(economic growth, urbanization and population; Fig. 1). Overall, economic 

growth (contributing 173.2% of the growth) and food purchasing power 

(contributing 136.0% of the reduction) had the largest impacts on China’s food 

system GHGs emission during the period of 1990–2018. The Engel coefficient 

contributed 57.8% to the decrease in GHGs emissions, whilst shifts in dietary 

pattern contributed 30.7% to the increase in these emissions. Changes in 

GHGs emission intensity contributed 28.4% of the decrease in food GHGs, 

while expenditure and population contributed 23.9% and 20.2% of the 

increases, respectively (Fig. 3). For the whole country, the impact of 

urbanization ratio was relatively small, with a cumulative impact of only 0.7%, 

but this does not represent the effects of urbanization-related dietary shifts, 

economic growth, and population changes. In addition, the influences of 

urbanization varied between different regions and different food types (for more 

details of the downscaling decomposition, see Fig. 6). The “supply-demand” 

factor decomposition model (Fig.1) was constructed to systematically analyze 

the influencing mechanisms driving changes in GHGs emissions from China's 

food system. Quantitative evidence from this analysis shows that the reduction 

effect caused by demand-side factors had a larger potential compared to 

supply-side factors (Table S3).  



 

16 

 

 

Figure 3. Contributions of different factors to changes in food system 

GHGs between 1990 and 2018. Using 1990 as the base year, the solid black 

line shows the percentage change in total food system GHGs. The other lines 

show the contribution to the change in emissions from eight different drivers. 

Between 1990 and 2000 (P1), a period that was associated with achieving 

sufficient food for the Chinese people, GHGs emissions from China's food 

system decreased by 6.8% (Fig. 4). The reduction in emission intensity 

(technology) of 9.8% was the main reason for the overall reduction in food 

system GHGs during this period. Optimization of the energy structure of the 

food system in East, Central and Southwest China (Fig. 4, Fig. 5) resulted in 

reduced use of raw coal in the processing of cereal (e.g. wheat and maize) and 

rice. Economic growth, dietary pattern and population growth contributed 

43.7%, 13.4% and 10.0% to the overall growth, respectively, while the Engel 

coefficient and food purchasing power contributed 16.6% and 31.7% to the 

decrease, respectively (Fig. 4). Food purchasing power contributed the most to 

the declines in East China for all food types. 

During the period of 2000–2010 (P2), a stage associated with progress 

toward more comfortable standards of living for many Chinese people, the 

direction of change in China's food system GHGs reversed with overall 
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increases, albeit of relatively small magnitude (2.3%, Fig. 4) taking place. 

Economic growth played the largest role in this period, contributing 96.9% of 

overall growth and being particularly important in East China, Central China, 

South China and Southeast China, (Fig. 4, Fig. 5). China's per capita gross 

domestic product (GDP) increased from 1,222 USD in 2000 to 4,740 USD in 

2010, an almost 3-fold increase. Other increases were due to consumption 

structure transformation (7.4%), population growth (6.0%) and emission 

intensity (technology), although the influence of the latter weakened (0.7%) 

compared to the previous period. Reductions in consumption expenditure and 

food purchasing power contributed 17.0% and 75.8% to the decreases but 

these could not offset the growth brought about by the other drivers.  

Between 2010 and 2018 (P3), a period with widespread comfortable living 

standards, GHGs emissions from China's food system continued to increase 

with an overall growth of 13.1% (Fig. 4). Transformation of consumer 

expenditure contributed 23.9% of the increase and was particularly 

concentrated in Central, East China, and North China (Fig. 5). The increasing 

effect of the transformation of the dietary pattern contributed 10.9% of the 

growth and was focused, in particular, within the developed areas in East, 

Central, Southwest, and South China (Fig. 4, Fig.5). A total of 86.6% of the 

emission increase by consumption structure was related to GHG-intensive 

consumption of meat, protein foods and vegetables (Fig. 4b). In addition, 

economic growth contributed 41.1% of the GHGs increase. While the reduction 

in GHGs from the food system due to the Engel coefficient increased to 29.4%, 

the food purchasing power effect on the reduction in food system GHGs 

decreased by 35.4%. The impacts of emission intensity (technology) on GHGs 

emission reductions declined in all regions and even reversed (i.e., increase in 

GHGs) in North and Northwest China (Fig. 5). 

There were apparent spatial variations in the effects of the different drivers 

on food system GHGs emissions. The impacts of urbanization were relatively 

small (3.9% decrease overall) (Fig. 3) but continued to increase in Northwest 

and North China with the influence direction switching from decreases to 

increases in Northeast, East and South China (Fig. 5, Fig. 6). In particular, 

within the highly urbanized South and East China, the impacts of urbanization 
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on food system GHGs emission decreased in the first two periods described 

above (1990–2000 and 2000–2011) then increased between 2010 and 2018. 

Increases in GHGs emissions driven by population gradually weakened in all 

regions, especially in Northeast China; in the final period, the population even 

had a decreasing effect (Fig. 5). 

 

Figure 4. Contribution to the changes of GHGs from China’s food system 

in three periods. a. Contribution of different factors of GHGs in food system in 

three periods. b. Contribution of different food types of GHGs in food system in 

three periods. According to the classification standard of the Engel coefficient 

used by the FAO these periods are 1990–2000 (P1) - achieve sufficient food, 

Engel’s range 50%–59%; 2000–2010 (P2) – progress towards comfortable 
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standards of living, Engel’s range 40%–49%; and 2010–2018 (P3) – 

widespread comfortable living standards, Engel’s range 30%–39%. 

3.3 Spatial heterogeneity of food-related GHGs emissions drivers 

Different drivers not only have varying impacts and contributions to the 

consumption-based food system emissions (FSE), but their effects also 

demonstrate spatial heterogeneity, which provides evidence for the need to 

formulate regionally differentiated strategies for reducing FSE. Regionally, 

economic growth (EG) in southern regions including EC, SC, CC, and SW, 

contributes to approximately 78.5% of the increase in FSE. Within the southern 

regions, the EC has the largest contribution to economic growth effect, although 

its share of the national total economic contribution decreased from 36.6% in 

P1 to 31.4% in P3 (Fig. 5 a, b, c). Regarding purchasing power effects (CP), 

which make the largest overall contribution to emission reductions, the southern 

regions similarly contribute about 78.1% of the maximum emission reduction. 

Changes in purchasing power levels in EC contribute most significantly to this 

reduction, even though their share of the total national reduction in purchasing 

power contribution declined from 33.1% in P1 to 27.0% in P3 (Fig. 5a, b, c). 

Technological effects (EI) accounted for a 23.9% reduction in emissions during 

P1, with the transition away from coal in agricultural and livestock practices in 

southern regions contributing to 75.3% of technology effects (Fig. 5a). 

Consumer expenditure (CE) related to economic growth contributed to a 23.9% 

increase in emissions in P3, predominantly occurring in the EC, CC, and NC 

regions (Fig. 5c). 

Regions are influenced by varying factors at different developmental 

stages, which in turn impact their FSE, indicating dynamic monitoring and 

regulation of these regional factors are essential for emission reduction. In P1, 

EC contributes most significantly to the reduction of food system emissions, 

primarily due to technology effects, expenditures, and the Engel coefficient (Fig. 

5d). However, a weakening of its technology impact leads to EC contributing to 

an increase in food system emissions in P2 (Fig. 5e). In P3, heightened 

expenditures in EC accounts for the highest national contribution to FSE (Fig. 

5f). SC demonstrates consistent growth in its contributions across all three 
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phases, but the underlying factors driving this growth evolve, particularly as 

shifts in dietary patterns increasingly amplify SC's contributions (Fig. 5d, e, f). 

The distribution of economic growth and purchasing power, both key 

drivers of FSE, was notably concentrated when disaggregated to the provincial 

level, as illustrated in Fig. 6. Additionally, a key factor contributing to the rise in 

emissions in P3 (i.e., 2010–2018) is the diminished mitigating impact of food 

purchasing power in southern regions. Similarly, the weakening of mitigation 

effects can also be attributed to a decrease in the contributions from 

technological advancements. During the period 1990–2000 (P1), regions such 

as Jiangsu, Anhui, Hubei, Hunan, and Sichuan, which benefited from 

technological advancements in emissions reduction, contributed approximately 

25.6 Mt CO2e each province to the reduction. However, there was a significant 

decrease of about 68.2% in these contributions during P3. Shifts in dietary 

patterns predominantly impacted southern regions, accounting for 86.6% of the 

national emission increase attributed to dietary changes in P3 (Fig. 6). 

Moreover, a substantial increase in total consumer expenditure in northern 

regions, especially in Hebei, Henan, and Liaoning, contributed to large 

emissions increases during P3, with an average of around 27.1 Mt CO2e, 

alongside even larger increases of 37.2 Mt CO2e in the southern region of 

Hunan. Changes in population growth had a pronounced effect on the southern 

regions, particularly Guangdong, which was alone responsible for 24.2% of the 

national emission increase attributed to population growth. However, across the 

whole period the overall contribution from population factors exhibited a gradual 

decline (Fig. 6). 



 

 

 

Figure 5 Change rate and decomposition of food system GHGs from seven regions in China. EI represents effects of 

technology, DP represents effects of dietary pattern, CP represents effects of purchasing power, EN represents effects of Engel 

coefficient, CE represents effects of consumption expenditure, EG represents effects of economic growth, UR represents effects of 

urbanization, POP represents effects of population. Parts a, b, c respectively represent the comparison of regional drivers in three 

periods. Parts d, e, f represent the decomposition results of regions in these periods respectively. P1 represents the period of 1990-

2000, P2 represents the period of 2000-2010, and P3 represents the period of 2010-2018. 



 

 

 

Figure 6 Spatial patterns in total food system GHGs emissions changes in China and the role of eight drivers between 1990 

and 2018. Percentage values indicate the contribution made by each driver to overall. P1, P2 and P3 represent the periods of 1990-

2000,2000-2010, and 2010-2018, respectively.  



 

 

3.4 Regional coupling trends of food system emissions and economic 

growth 

Economic growth has been identified as the most significant determinant 

of regional consumption-based FSE. However, the impact of economic growth 

varies across different regions, leading to shifting trends in the coupling patterns 

between carbon emissions in food systems and economic growth. Specifically, 

two quadrants can be identified (Fig. 7): (1) the Coupling Quadrant, 

characterized by economically-driven emission growth, where high emissions 

were coupled with high economic development, such that increases in food 

system emissions occurred alongside economic growth; (2) the Decoupling 

Quadrant, indicative of sustainable development, where economic growth was 

achieved concurrently with reductions in food system emissions.  

Most regions initially followed a decoupling development pattern in P1 (i.e. 

1990–2000). This sustainable transition can be largely attributed to 

improvements in production efficiency, in particular the reduction of energy-

intensive food production practices using coal, despite the expansion in meat-

dominated diets. In the promotion of economic growth, the South China and 

Northeast regions were the first to transition from the decoupling quadrant to 

the coupling quadrant during P2 (2000–2010). This shift mirrors the national 

average, where, in most areas, the drivers of economic growth and consumer 

expenditure facilitated the transition to the coupling quadrant in P3 (2010–2018). 

Moreover, in the southern regions, especially EC, CC, SC, and SW, this 

transition was significantly influenced by the transformation of the consumption 

structure towards high carbon density. 

Therefore, regions with high FSE but persistently high economic levels 

need to decouple FSE from economic growth. Conversely, regions currently in 

a sustainable development model should avoid transitioning to unsustainable 

patterns with regional specific strategies. At the national level, pricing 

mechanisms for high carbon-intensive foods, coupled with the promotion of low-

carbon and healthy dietary guidelines should be implemented. Regionally  

there is an urgent need to expedite dietary shifts, particularly in the 

economically developed southern regions. Concurrently, in northern regions, 

which are predominantly food-producing areas, the adoption of sustainable 



 

 

agricultural practices is essential to enhance the potential for emission 

reduction through technological effects. 

 

Figure 7 Decoupling and coupling trends in per capita food system GHGs 

and per capita GDP from seven regions in China. 

4. Discussion 

In this study, a provincial food type-specific "bottom-up" GHGs inventory of 

China's food system enables an exploration of regional downscaling for food 

system emission accounting and driver decomposition. This investigation 

addresses the significant gap in regional lifecycle emission estimations and 

driver differentiation within the country’s food systems. Our results indicate that 

the diminished use of raw coal in the production stage for cereals in East, 

Central, and Southwest China was a significant driver of reductions in food 

system GHG emissions between 1990 and 2000 (Fig. S1 and S2). This finding 

aligns with the conclusions drawn by He et al. (2021), and further extends the 

spatial disaggregation of food system emissions, emphasizing that technical 

progress remains a dominant force in mitigating dietary GHG emissions. 

However, as the food supply chains have evolved, post-production stages have 

demonstrated increasing reliance on energy (Tubiello et al., 2021), 

necessitating a transition towards cleaner energy supplies to counteract the 



 

 

impacts of energy-dependent food supply chains. Consistent with Garnett and 

Wilkes (2014), but integrating regional details, this study identifies economic 

growth as the preeminent factor driving increases in China’s food system GHGs, 

especially in East, Central, South, and Southeast regions. The swift growth rate 

of China's FSE since 2010 has predominantly been propelled by surges in 

consumer expenditure in Central, East, and North China, coupled with 

transitions in dietary patterns. These patterns are principally associated with 

GHG-intensive meat and protein foods, especially in the more developed areas 

of East, Central, Southwest, and South China. 

This study not only identifies regional variations in FSE but also examines 

the disparate impacts of various drivers across regions. Such insights are 

instrumental in shaping region-specific mitigation policies, particularly for 

developed areas. Notably, our findings highlight that the most significant factors 

at the national level —  economic growth and purchasing power —  are 

predominantly concentrated in the developed southern regions of China, 

contributing to approximately 83.7% of FSE in the most recent period (P3; 

2010–2018; Fig. 5e). These regions are also experiencing rapid economic 

growth, contributing to 77.3% of China's GDP (NSB, 2021). Additionally, extant 

research corroborates that regions with higher incomes have greater potential 

for emission reductions through shifts in dietary patterns (Sun et al., 2022). 

Adding to the existing literature, our findings suggest that the FSE driven by 

economic growth in China's developed areas will persist in exerting pressure 

on efforts to mitigate these emissions (Fig. 7). Consequently, developing 

differentiated food system reduction policies that take into account regional 

development levels is of paramount importance. 

Currently, a preponderance of food system policies are predominantly 

oriented towards the supply side, with inadequate attention to regionally 

differentiated compensation strategies. Specifically, 45% of all policies focus on 

Land Use, Land-Use Change, and Forestry (LULUCF) and production stages, 

whereas a mere 10% are consumption-oriented Cerutti et al. (2023). 

Furthermore, not every one of these policies sufficiently addresses their 

potential environmental impacts (Cerutti et al., 2023). The role of food prices as 

a pivotal instrument in modulating environmentally sustainable consumption 



 

 

behaviors has been well-established from the demand side (Latka et al., 2021). 

This study also posits that the price elasticity of food could significantly 

contribute to national emission mitigation strategies (Fig. 4). Frank et al. (2019) 

have suggested that a well-implemented food carbon tax policy holds the 

potential to reduce global GHGs by approximately 8% by 2050. However, the 

implementation of carbon tax policies in the food sector necessitates meticulous 

consideration to circumvent, inducing food insecurity among less developed 

areas and low-income groups. This is imperative as the food demand of lower-

income groups is typically price-inelastic, and a carbon tax on agricultural GHG 

emissions escalates production costs, contingent on the GHG intensity of 

production. Consequently, any redistributive mechanisms employed should be 

attuned to regional disparities and be designed to avert the risks of hunger and 

malnutrition that could emanate from spatially uniform emission mitigation 

policies (Hasegawa et al., 2018; Soergel et al., 2021). 

The uncertainty analysis in this study follows the IPCC Guidelines for 

National Greenhouse Gas Inventories for good practices and uncertainty 

management (IPCC, 2006) (see Supplementary Information). Uncertainties in 

the emissions from the production stage of the food lifecycle mainly come from 

regional differences in activity survey data collected in the production process 

(for example, those describing fertilizer and energy use). The uncertainties in 

the processing and retail stages are primarily derived from the emission factors 

in the literature or the LCA database. Uncertainties in the transportation stage 

mainly come from the spatial allocation of food transport emissions by rail and 

road based on transport statistical data. The surveyed consumption activity 

data for different regions are the main source of uncertainties for the 

consumption stage.  

Concurrent with numerous studies, the present research acknowledges 

certain limitations. Due to the sectoral precision constraints inherent in Multi-

Regional Input-Output (MRIO) tables, inter-regional emission transfers were 

not integrated into our computations. Subsequent research endeavors will 

employ food type-specific MRIO models to refine calculations of embodied 

emissions across regions (Ye et al., 2022), thereby elucidating consumption-

based inter-regional emission responsibilities with greater clarity. The 



 

 

established food system framework disrupts traditional sectoral categories 

found within the national GHG inventory framework as outlined by the IPCC 

(2006) (Rosenzweig et al., 2020). However, the evolution of understanding 

necessitates the development of innovative practical frameworks for assessing 

food system GHGs (IPCC, 2019). In light of the rapid progression of food supply 

chains (Garnett, 2011) and the escalating imperative for such chains to adapt 

to climate change (Gustafson et al., 2021), emissions related to supply chain 

have been incrementally incorporated into food system emission accounting 

(Crippa et al., 2021; Fan, 2021; Fei et al., 2020). Nevertheless, existing policies 

targeting the mitigation of food system impacts during post-production stages 

remain notably scarce, with consumption-oriented policies comprising only 10% 

of the total, alongside transport at 2%, processing at 2%, and retail at 2% 

(Cerutti et al., 2023). This study thus underscores the need for heightened focus 

on consumer-end management and the strategic optimization of the spatial 

configuration of food supply chains to actualize emissions reduction within the 

food system. 

Emission accounting largely depends on the system boundaries (Tubiello 

et al., 2021). If land use changes are considered only, the current results will be 

slightly underestimated. The carbon emissions caused by land use changes in 

China were approximately 3.8 Mt CO2e in 2015, accounting for about 0.2% of 

the total emissions from the food system (Crippa, et al., 2021). Additionally, 

statistics from FAOSTAT suggests emissions of 6.3 Mt CO2e from biomass 

burning, and 4.9 Mt CO2e from land drained for agriculture. However, if the 

forest carbon sink is also taken into account, the results will be greatly 

overestimated, as the FAOSTAT data indicates -711.8 Mt CO2e from forest 

carbon sinks. Additionally, it is difficult to separate the changes caused by 

people direct consumption and for animal feed, and to allocate these to different 

crop types. Therefore, this study excludes the carbon emissions caused by land 

use changes. Furthermore, recent studies have quantified the emissions from 

food loss and waste within China's life cycle at the national scale, using material 

flow methods. These emissions are estimated to be approximately 390.4 Mt 

CO2e (Zhu et al., 2023) and 464 Mt CO2e (Xue et al., 2021). Evaluating food 

loss and waste depend on research into regional supply chain processes, but 



 

 

this study does not cover them. In this study, the major efforts have been 

expended on identifying an array of parameters that possess temporal and 

spatial comparability to suit the requirements of LCA. However, due to the 

limitations in data availability, uncertainties have emerged in the calculation of 

average values for representative food types. 

To facilitate the quantitative attribution of factors, we selected the 

Logarithmic Mean Divisia Index (LMDI) method for its advantages in handling 

negative values flexibly and eliminating residual terms (Ang, 2005). Like all 

methodologies, LMDI operates under certain assumptions. These include the 

assumption of perfect divisibility, the lack of accounting for statistical 

significance, and the potential for interactivity among decomposed factors, 

since inter-relationships are inherent aspect of the decomposition process (Ang, 

2015). Future research will build upon the results of the LMDI decomposition 

by adjusting decomposed factors and employing other attribution analysis 

methods, such as the Shapley Value Regression (Aras and Van, 2022). These 

approaches aim to further elucidate the underlying mechanisms of influence 

enabling a refinement of our understanding of the complex interplays within the 

factors influencing FSE in China. 

5. Conclusion 

By constructing a regional specific bottom-up food system emission 

inventory with food type details, this study employs the decomposition analysis 

method to dissect the transformation trends of food system emissions in China, 

subsequently downscaling drivers to the provincial level. China's food system 

emissions initially decline over the period of 1990–2000. This was followed by 

a surge in emissions that were primarily concentrated in the southern region. 

Within East, Central, and Southwest China, optimization of the food system's 

energy structure by reducing coal for food production resulted in emissions 

declines before 2000. The subsequent increase can primarily be attributed to a 

combination of economic growth, consumer expenditure, and shift in dietary 

pattern, factors which are more pronounced in the developed southern regions. 

FSE in developed regions have long been driven by economic growth. 

This research identifies the distinct characteristics, and spatiotemporal 



 

 

drivers, of emissions within China’s food system. It concludes that the 

implementation of regionally differentiated mitigation policies is imperative to 

curtail food system emissions with particular potential related to guiding dietary 

shifts and instituting regionally differentiated pricing policies in developed 

regions. Furthermore, the study emphasizes the significance of regional offset 

mechanisms for food system emission and a concerted focus on the lifecycle 

carbon management of the food system. 
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