
 
 

UNIVERSITY OF READING 

 

 

 

 

 

Modelling of collagen receptor 
clustering and signalling 

 

A thesis submiƩed for the degree of Doctor of Philosophy 

 

 

Chukiat TanƟwong 

School of Biological Sciences 

April 2023



i 
 

DeclaraƟon 

I confirm that this is my own work, and the use of all material from other sources has been 

properly and fully acknowledged. 

Signed: Chukiat TanƟwong 

Date: 24 April 2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

Acknowledgement 

I am deeply grateful to my advisors, Prof. Jonathan M Gibbins, Dr Joanne Dunster, 

Assist. Prof. Rachel Cavill, and Prof. Johan Heemskerk, for their unwavering support and 

guidance throughout my PhD research, and Dr Christoph Wierling and Prof. Marcus Tindall for 

their helpful suggesƟon. I also extend my thanks to the funding, Marie Sklodowska-Curie 

InnovaƟve Training Network (ITN), and insƟtuƟons for their contribuƟons to my research. 

Special thanks to the parƟcipants, staff, and faciliƟes at the University of Reading, Maastricht 

University, and Alacris TheranosƟcs GmbH. I also appreciate my colleagues, Zahra Maqsood, 

Hilaire Cheung, and other TAPAS ESRs, for their kind support, both academically and 

emoƟonally. I am thankful to my family and friends for their love and encouragement. Thank 

you all for your invaluable contribuƟons to my thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Abstract 

Platelets play a crucial role in haemostasis and thrombosis, and their acƟvaƟon is 

regulated by various agonists and intracellular signalling pathways. This PhD thesis aims to 

invesƟgate the complex interplay between platelet receptors, signalling pathways, and 

intracellular calcium dynamics using mathemaƟcal modelling approaches. We present an 

agent-based model (ABM) to invesƟgate the dimerisaƟon of GPVI and the role of glycolipid-

enriched raŌ-like domains in regulaƟng receptor diffusion. We introduce an ordinary 

differenƟal equaƟon (ODE) model to unravel the regulatory mechanisms of GPVI signalling 

from Syk phosphorylaƟon to releasing inositol trisphosphate (IP3) into the platelet cytosol via 

LAT signalosome. To fulfil the signalling complexity more completely than has previously been 

possible, a mathemaƟcal model of phosphoinosiƟde (PI) metabolism in human platelets in 

response to GPVI acƟvaƟon was developed and calibrated against experimental data capturing 

transient Ɵme-course changes in phosphoinosiƟde posiƟonal isomers. Finally, two machine 

learning models, a non-linear autoregressive network with exogenous inputs (NARX) and a 

parƟal least square (PLS) regression model, were developed to invesƟgate how different 

agonists and inhibitors impact on intracellular calcium dynamics in platelets. 

The findings from this thesis provide valuable insights into the complex regulatory 

mechanisms of platelet acƟvaƟon and intracellular calcium dynamics and how they are 

influenced by various agonists and inhibitors. These mathemaƟcal modelling approaches have 

the potenƟal to be used in the development of simulaƟon frameworks for studying 

spaƟotemporal concentraƟons of ligands and inhibitors in platelets. The results of this thesis 

may have implicaƟons for the development of targeted therapies for platelet-related diseases, 

such as thrombosis and haemostasis disorders. The models also have wide applicability to 

other cell systems. Overall, this PhD thesis contributes to our understanding of platelet biology 

and provides novel insights into platelet signalling and calcium dynamics using mathemaƟcal 

modelling approaches.  
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Chapter 1 

General IntroducƟon 

 

In this chapter, the general understanding of platelet biology will be introduced, 

from platelet formaƟon and lifeƟme to the control of acƟvaƟon, thrombus 

formaƟon, and coagulaƟon. Then we will present our main focus in this thesis, 

platelet collagen receptor, GPVI, its structure and signalling. Some techniques 

that can be used to model GPVI movement, interacƟon, and signalling will be 

reviewed. The problem of platelet cytosolic calcium and proposed machine-

learning approaches will be discussed. Finally, the aims and outline of this thesis 

will be summarised at the end of this chapter. 
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General IntroducƟon 

Blood platelets are required for haemostasis and do also play an important role in 

arterial thrombosis1. Injury of a blood vessel or rupture of an atheroscleroƟc plaque leads to 

platelet adhesion to matrix proteins such as collagens, which lie underneath the endothelial 

layer2. Subsequent receptor-induced intracellular signalling, followed by secreƟon of bioacƟve 

molecules, aƩracts new platelets which results in the formaƟon of platelet aggregates. 

Simultaneously with the formaƟon of this platelet plug or thrombus, acƟvaƟon of the 

coagulaƟon cascade leads to generaƟon of a fibrin mesh, which wraps around and supports 

the thrombus. These events prevent blood from flowing out of the vessel, thus stopping a 

bleeding, or in case of thrombosis can obstruct the vessel with Ɵssue ischemia as a result. 

Current anƟplatelet drugs, aiming to prevent a next thromboƟc event (transient 

ischemic aƩack, stroke or heart infarcƟon), all have a bleeding side effect, likely because of 

over-inhibiƟon of the platelets3. The collagen receptor glycoprotein VI (GPVI), only expressed 

on platelets, is a new interesƟng target for anƟthromboƟc therapy, given that mouse and 

paƟent data report no severe bleeding in the absence of this receptor4. For this thesis, using a 

variety of modelling approaches, I have been interested in the potenƟal of different ways to 

modulate the acƟvaƟon of platelet GPVI, i.e., by interfering with receptor clustering, by 

blockage of GPVI-dependent protein or lipid kinases, or by inhibiƟng Ca2+ entry channels. 

My work on GPVI-dependent platelet acƟvaƟon pathways thereby aims to fill a gap 

between physiological and modelling interfering approaches. MathemaƟcal and neural 

network modelling are to be used to predict effects of regulatory perturbaƟons, to idenƟfy 

promising therapeuƟc targets, and to design opƟmised experiments. In the present chapter, I 

introduce for this thesis relevant background informaƟon regarding platelet and GPVI 
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funcƟons and on potenƟal ways of modelling these. 

 

Platelets formaƟon and life Ɵme 

In comparison to red and white blood cells, platelets are smallest anucleate cells in the 

blood, with a diameter of 2-3 µm and a volume of 4-8 fL5. For a healthy subject, the platelet 

count is 150,000-400,000 per microliter of blood6, meaning that platelets given their small size 

comprise only a small fracƟon of the blood volume7. Upon acƟvaƟon, platelets change in shape 

from a biconvex discoid structure (maintained by cytoskeleton elements)8 to a spread 

appearance with filopodia and lamellipodia9. 

MulƟple signalling and adhesive glycoprotein receptors are present on the platelet 

plasma membrane, the most relevant of which, for this thesis are the collagen receptors, GPVI 

and integrin α2β1, the shear-sensiƟve receptor GPIb-V-IX, and the fibrinogen receptor integrin 

αIIbβ310. Beneath the plasma membrane, the acƟn-myosin filament system controls platelet 

shape11,12. Several organelles are present, including mitochondria,13 storage granules for 

secreƟon14, and the dense tubular system (DTS) with protein processing and Ca2+ storage 

funcƟons15–17. The DTS is derived from the endoplasmic reƟculum of megakaryocytes18. 

Megakaryocytes in the bone marrow19 and lungs20 are able to produce mulƟple 

proplatelets during their life Ɵme21–23. As a megakaryocyte matures, it undergoes the process 

of endomitosis24, in which the nucleus but not the cytoplasm divides, resulƟng in a large 

mulƟnucleated cell (Figure 1A). So-called proplatelets, as protrusions from a megakaryocyte, 

enter into blood stream25,26 in a shear stress-dependent way27. These proplatelets divide into 

platelets by a microtubular twist mechanism28. AŌer an average lifeƟme of 8-9 days, platelets 

in the circulaƟon undergo an apoptoƟc pathway or become desialylated, resulƟng in their 

removal by liver hepatocytes or by splenic macrophages (Figure 1C)7,19. 
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Figure 1. A life cycle of platelets. (A) Mature, mulƟnucleated megakaryocytes in the bone 

marrow cell develop protrusions which separate into the blood stream as proplatelets, then 

dividing into platelets. (B) Adhesion and acƟvaƟon of platelets onto sites of vessel wall injury 

for instance by subendothelial collagen. (C) Clearance of apoptosis and desialylated platelets 

by the spleen and liver, respecƟvely. 

 

Under the dynamic flow condiƟons of the circulaƟon, platelets are pushed by red blood 

cells out of the centre of the blood stream29, which effect is favoured by the convex shape of 
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the red cells30,31. AŌer vascular injury and subendothelial matrix exposure32,33, platelets 

adhere to the exposed collagen fibres, causing acƟvaƟon, change in shape from discoid to 

spherical, and filipodia formaƟon to enlarge the surface (Figure 1B)34. Increased adhesiveness 

is mediated by several integrin receptors35,36, while granular release of ADP and 

polyphosphates leads to the acƟvaƟon of other platelets as well as the coagulaƟon process37. 

All of this results in a gradual formaƟon of platelet aggregates (so-called platelet plugs) in 

primary haemostasis. ConsolidaƟon of the plug occurs by coagulaƟon-induced fibrin formaƟon 

to result in a stable clot38. 

 

Control of platelet acƟvaƟon and thrombus formaƟon 

In the intact vessel wall, platelets are inhibited by nitric oxide and prostaglandin I2 

(prostacyclin)39, produced by vascular endothelial cells40. Both nitric oxide41 and prostaglandin 

I2
42 suppress the adhesion and acƟvaƟon processes of platelets. When the Ɵssue and matrix 

underneath the endothelium becomes exposed, platelets can adhere to collagen fibres43. The 

commonly accepted event sequence of events of platelets in contact with collagen and von 

Willebrand factor (VWF) is illustrated in Figure 2. IniƟal adhesion under shear occurs by the 

interacƟon of GPIb-V-IX with VWF44, which is produced by endothelial cells and 

megakaryocytes45. The collagen receptors integrin α2β1 and GPVI then become engaged, 

accomplishing stable platelet adhesion and acƟvaƟon46. 

The mechanism of collagen-induced acƟvaƟon via GPVI is well understood (for details 

see below). Principal steps involve acƟvaƟon of the protein tyrosine kinase Syk47 and the 

phospholipase Cγ2 (PLCγ2), which mediates in a rise in cytosolic Ca2+.48 Feedforward processes 

are through the release of autocrine mediators ADP37 and thromboxane A2
49,50

. 
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Figure 2. SequenƟal steps of collagen-induced platelet adhesion, acƟvaƟon and thrombus 

formaƟon. Figure adapted from Ref46. At a damaged vessel exposing collagen and VWF, iniƟal 

platelet adhesion occurs by shear-dependent VWF-GPIb-IX-V interacƟons. Rolling of platelets 

leads to adhesion by the collagen receptors integrin α2β1 and GPVI. Subsequent GPVI-induced 

signalling results in the release of ADP and thromboxane A2 (TxA2), acƟng as autocrine agents. 

Under shear condiƟons, both VWF and fibrinogen establish interacƟons with other platelets, 

aŌer which formed fibrin fibres stabilise the thrombus and promote clot retracƟon. 

 

Both mediators act via G-protein coupled receptors, i.e. the P2Y1 and P2Y12 receptors 

for ADP, and the TP receptors for thromboxane A2
51. Specifically the P2Y12 receptor inhibits the 

enzyme adenylyl cyclase, which acts by antagonising the inhibitory effect of prostaglandin 

I2
52,53. Not further detailed here, but important for the establishment of platelet aggregates is 

the signalling-dependent acƟvaƟon of integrin αIIbβ3 to mediate fibrinogen binding54. As a 

bivalent ligand, fibrinogen enables the interacƟon between two platelets, and hence the 

aggregate formaƟon55. 
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Platelets and coagulaƟon 

Platelet acƟvaƟon is linked to the coagulaƟon process, the laƩer forming thrombin via 

the intrinsic and extrinsic coagulaƟon pathways (Figure 3). In the intrinsic pathway, the 

coagulaƟon factors XII and XI become acƟvated, e.g. via collagen or platelet-produced 

polyphosphates. In the presence of traces of thrombin, the ensuing acƟvaƟon of factors VIII 

and IX is greatly enhanced by phosphaƟdylserine (PS), exposed at the surface of highly 

acƟvated platelets56. The PS exposure allows assembly of the tenase complex, consisƟng of 

factor IXa and cofactor VIIIa, producing factor Xa57.  

The extrinsic pathway starts with exposed Ɵssue factor58. Tissue factor interacts with 

factor VII(a)59 to produce factor Xa. TradiƟonally, both the extrinsic and intrinsic pathways are 

considered to join into a common pathway, where higher amounts of factor X are acƟvated 

into factor Xa, which in turn generates thrombin via the prothrombinase complex of factor Xa 

and cofactor Va60. Thrombin accomplishes the cleavage of fibrinogen into fibrin monomers, 

which assemble into in the fibrin mesh61. Thrombin in addiƟon triggers posiƟve feedback 

routes by acƟvaƟng factor XI62, factor VIII63 and factor V64 (Figure 3). AddiƟonal anƟcoagulant 

and fibrinolysis pathways are less relevant for this thesis. 

 An important other role of thrombin is to cleave and acƟvate the protease-acƟvated 

receptors PAR-1 and PAR-4 on human platelets65,66. As G-protein coupled receptors these 

induce strong platelet acƟvaƟon. The platelet acƟvaƟon induced by thrombin thus forms 

another cross-talk mechanism of the coagulaƟon process and platelets. 
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Figure 3. Simplified scheme of the coagulaƟon cascade. The coagulaƟon cascade is classically 

divided into three parts: the extrinsic, intrinsic and common pathways. The extrinsic pathway 

is triggered by the complex of Ɵssue factor and factor VII(a), which cleaves traces of factor X 

into factor Xa. The intrinsic pathway is started by factor XII acƟvaƟon, subsequently involving 

factors XIa, IXa and VIIIa. On a procoagulant PS phospholipid surface, factors IXa and VIIIa form 

the tenase complex, which produces larger amounts of factor Xa in the common pathway. Also 

in a PS-dependent way, factor Xa with cofactor Va massively cleaves prothrombin into 

thrombin. The formed thrombin acts as a posiƟve feedback on acƟvaƟon of factors V, VIII and 

XI, and furthermore cleaves fibrinogen to fibrin monomers. 

 

GPVI structure and membrane locaƟon 

The platelet GPVI receptor is a transmembrane protein with an esƟmated molecular 

weight of 62 kDa67. Its extracellular region consists of two C2-type immunoglobulin domains, 

D1 and D2, and a mucin-rich-glycosylated stalk. Also present are a transmembrane region and 

a short intracellular tail (Figure 4A). In the membrane, GPVI forms a complex with the Fc 

receptor γ-chain (FcRγ), which contains an immunoreceptor tyrosine-based acƟvaƟon moƟf 
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(ITAM), required for intracellular signalling47. 

AnƟbody studies have indicated that GPVI on platelets is present more in a monomeric 

than a dimeric form. Flow cytometric quanƟtaƟon indicated that the GPVI dimers account for 

2–29% in resƟng platelets, while aŌer sƟmulaƟon with the GPVI ligand collagen-related 

pepƟde (CRP) this number increases to 39%68. Also the presence of mulƟple GPVI binding sites 

in collagen fibres results in the formaƟon of GPVI dimers, as shown by super-resoluƟon 

microscopy69. 

Structural aspects appear to favour the dimerisaƟon of GPVI. Thus, the homodimer 

presence of FcRγ allows for binding of two GPVI chains70,71. In addiƟon, the extracellular D1 

and D2 domains, when dimerised, form a back-to-back conformaƟon, thus creaƟng a binding 

groove for interacƟon with mulƟmeric ligands like collagen (Figure 4B)72,73. 

 

 

       (A)       (B) 

Figure 4. Structure of GPVI receptor complex. Figure adapted from Ref71. (A) The extracellular 

region of GPVI consists of D1 and D2 immunoglobulin-like domains and a mucin-rich stalk. The 

transmembrane sequence and intracellular tail are linked to the dimeric FcR γ-chain, which 

carries the ITAM signalling sequence. (B) In response to mulƟmeric ligands, such as collagen, 

GPVI assembles into dimers increasing the ligand affinity. Panel adapted from Ref72. 
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A direct relaƟon between GPVI dimerisaƟon and ligand binding has been measured. 

Surface plasmon resonance analysis indicated that a dimeric recombinant GPVI binds to 

immobilised collagen with a KD of 5.76 x 10-7 M, while the binding of a corresponding 

monomeric GPVI was too weak for quanƟficaƟon74. In other words, the affinity of GPVI for 

collagen appeared to be higher in the dimeric than the monomeric form. 

Recent evidence showed that GPVI can also interact with other ligands than collagens, 

for instance with laminins75, factor XIIIa76, fibrinogen and fibrin77,78. For these ligands, it is sƟll 

unclear to which extent GPVI dimerisaƟon occurs. Whether dimerising GPVI ligands induce 

platelet acƟvaƟon or vice versa platelet acƟvaƟon leads to GPVI dimerisaƟon is sƟll a maƩer 

of debate. 

 A related topic/quesƟon in this context is whether specific domains in the plasma 

membrane can contribute to GPVI dimerisaƟon. Interest herein is the potenƟal role of lipid 

raŌs, which are small and transient nanodomains, enriched in cholesterol and glycolipids, 

known to regulate membrane fluidity and protein trafficking79,80. In general, is it considered 

that lipid raŌs are important for the transmission of signals. For several receptors, including Fc 

receptors and integrins, signal transducƟon in a raŌ-dependent manner has been observed81. 

 

Signalling routes induced by GPVI 

In platelets, ligands of GPVI induce a complex pathway of protein tyrosine kinase-

dependent signalling events, such as reviewed by others82,83. Below, I focus on parts that are 

relevant for this thesis. 

 Ligand-binding to GPVI iniƟally results in phosphorylaƟon via Src-family kinases (SFKs) 

of the tyrosine residues of the ITAM domain of FcRγ, thereby allowing the kinase Syk to dock 

to this domain84. Since in other cell types SFKs concentrate in lipid raŌs85, also for platelets a 
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role of raŌs in this phosphorylaƟon can be assumed. Subsequently Syk becomes sequenƟally 

phosphorylated at two tyrosine residues, namely Y323 and Y525 (Figure 5)86,87. There is evidence 

for a negaƟve feedback, in that the phospho-Y323 site of Syk allows binding of the ubiquiƟn 

ligase c-Cbl88,89,90, which aƩracts the phosphatase TULA-2(T-cell ubiquiƟn ligand-2) to establish 

the dephosphorylaƟon of the Y525 residue 91. 

 

 

Figure 5. Pathway of transient Syk tyrosine phosphorylaƟon. Redrawn from Ref92. Proposed 

pathway of a stepwise phosphorylaƟon of residues Y525 and Y323 of Syk to allow complex 

formaƟon of c-Cbl, ubiquiƟn and TULA-2. The laƩer protein phosphatase mediates 

ubiquiƟnylaƟon-dependent Syk dephosphorylaƟon. 

 

 Once phosphorylated, Syk propagates the cascade via tyrosine phosphorylaƟon of 

several other signalling proteins, including Btk (Bruton's tyrosine kinase), the adaptor protein 

LAT, and the effector protein phospholipase Cγ2 (PLCγ2) (Figure 6)93. In spite of the recogniƟon 

that the tyrosine-phosphorylated Btk is involved in the GPVI signalling pathway, the precise 

molecular mechanism of its acƟon is not well understood. 
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 PhosphoinosiƟdes, i.e. inositol-containing phospholipids, play important roles in 

agonist-induced platelet signalling events. Within the plasma membrane, the LAT-associated 

phosphoinosiƟde 3-kinase (PI3K) converts phosphaƟdylinositol 4,5-bisphosphate (PIP2) into 

phosphaƟdylinositol 3,4,5-trisphosphate (PIP3)94. The formed PIP3 provides an anchor for the 

binding of several PH-domain containing signalling proteins. In addiƟon, the acƟvated PLCγ2 

cleaves PIP2 into the second messengers inositol 1,4,5-triphosphate (IP3) and 1,2-diacylglycerol 

(DAG)95. The DAG in the membrane acƟvates protein kinase C (PKC) isoforms96, whereas the 

soluble IP3 binds to IP3 receptors on the DTS, promoƟng Ca2+ release from the DTS77 (Figure 6). 

While all of this points to a central role of PIP2 in the GPVI-induced signalling scheme, how 

PI3K and PLCγ2 compete for the phosphoinosiƟde sƟll needs to be resolved. 

 

Figure 6. SchemaƟc diagram of GPVI signalling to phosphoinosiƟde turnover. GPVI ligands 

induce the SFK-mediated phosphorylaƟon and docking of Syk to the ITAM domain of FcRγ. Once 

phosphorylated, Syk in turn phosphorylates and acƟvates the adaptor protein LAT, and also 

Btk, PI3K and PLCγ2. In the membrane, the phosphoinosiƟde PIP2 is phosphorylated by PI3K 

into PIP3, whereas it is cleaved by PLCγ2 into DAG and IP3. The IP3 mediates Ca2+ mobilisaƟon. 

Both DAG and elevated Ca2+ contribute to acƟvaƟon of PKC isoforms. For abbreviaƟons and 

references, see text. 



 

13 
 

Of note, the platelet Ca2+ responses are regulated not only by PLC-induced Ca2+ release 

from the DTS, but also by other mechanisms (Figure 7). These include back-pumping of 

elevated cytosolic Ca2+ into the DTS via SERCA pumps77 and into the extracellular medium by 

PMCA pumps in the plasma membrane. Furthermore, extracellular Ca2+ can enter the cytosol 

via ORAI1 channels, which are linked to STIM1 proteins in the DTS membrane97. Of note, IP3-

induced Ca2+ release is also triggered by the PLCβ-acƟvaƟng agonists thrombin,98 thromboxane 

A2 and ADP99. ATP-triggered Ca2+ entry also occurs via the P2X1 ion channels100. So far, no 

systemaƟc studies are available comparing the relaƟve contribuƟons of all these channels and 

pumps to the cytosolic Ca2+ rises induced via GPVI or other platelet receptors. 

 

Figure 7. RegulaƟon of agonist-induced cytosolic Ca2+ rises in platelets. Receptors signalling 

via PLCγ2 or PLCβ isoforms generate the second messenger IP3, which opens IP3-receptor (IP3R) 

Ca2+ channels in the Ca2+-loaded DTS, causing a rise in cytosolic Ca2+. A fast and quickly 

desensiƟsed manner of Ca2+ entry is mediated by ATP, acƟvaƟng the P2X1 Ca2+ ion channel 100 

The Ca2+-store depleƟon, sensed by STIM1 in the DTS membrane, evokes Ca2+ entry from the 

extracellular medium via ORAI1 Ca2+ channels in the plasma membrane. Back-pumping of 

cytosolic Ca2+ occurs by SERCA isoforms (inhibited by thapsigargin), whereas Ca2+ 
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externalisaƟon occurs by plasma membrane Ca2+-ATPases (PMCA). In isolated platelets, the 

presence of extracellular EGTA acts as a Ca2+ chelator prevents Ca2+ entry. For references, see 

text. 

 

Platelet disorders and anƟplatelet medicaƟon 

Both congenital and acquired bleeding disorders are linked to platelet dysfuncƟon. The 

most prevalent hereditary bleeding disorder is von Willebrand disease (VWD), caused by a 

qualitaƟve or quanƟtaƟve defect in VWF101, which indirectly leads to a reduced platelet 

adhesion. Other bleeding diseases can be due to low platelet counts or to receptor or signalling 

defects of platelets. 

Whereas venous thrombosis is commonly treated with anƟcoagulants, arterial 

thrombosis is treated with platelet inhibitors, in agreement with the specific role of platelets 

in thrombus formaƟon within the arterial part of the circulaƟon. Arterial thrombosis or 

atherothrombosis is mostly the result of plaque rupture or erosion. It can manifest as heart 

infarcƟon (occluded coronary artery), angina (semi-occlusion), or ischemic stroke (occluded 

caroƟd artery)102. 

A most prescribed drug for the secondary prevenƟon of atherothrombosis is aspirin, 

blocking (platelet) cyclooxygenase and thromboxane A2 release103. Other common anƟplatelet 

drugs are P2Y12 receptor inhibitors, such as clopidogrel and prasugrel, which prevent a 

substanƟal part of the platelet acƟvaƟon process medicated by autocrine ADP. The anƟplatelet 

drugs, while not completely protecƟve, however come at the expense of (pre)clinical bleeding 

in a non-negligible number of paƟents104,105,106. This problem has led to the search for beƩer 

anƟplatelet drugs. 

 One of the promising new drug targets is GPVI, since its inhibiƟon in vivo effecƟvely 

reduces experimental arterial thrombosis and thrombo-inflammaƟon in mice, while leaving 
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the haemostaƟc response unaffected107–109. Its unique expression on platelets makes GPVI to 

a good therapeuƟc target with expected limited side effects108,110. At present, two GPVI-related 

drugs are invesƟgated in clinical trials, i.e. the heterodimer recombinant GPVI construct 

Revacept and the anƟbody-based drug Glenzocimab111. In the last few years also anƟ-GPVI 

nanobodies have been developed with a therapeuƟc potenƟal as well112. 

 

Modelling ways of receptor-dependent processes 

Several modelling approaches are available to analyse the molecular interacƟons and 

pathways of biological systems. The choice of approach being influenced by the complexity of 

the model, the Ɵme and spaƟal components, the data available for calibraƟon and validaƟon 

and the quesƟons requiring an answer113. The mathemaƟcal models that have been used to 

beƩer understand the processes of thrombus formaƟon and blood coagulaƟon114,115 use a 

range of techniques from models comprising ordinary differenƟal equaƟons (ODE) that 

describe the processes underling coagulaƟon and subcellular interacƟons to spaƟal models in 

the form of parƟal differenƟal equaƟons and agent based models, more details of which are 

described below. 

 

Modelling of the GPVI structure, interacƟons and movements 

SpaƟotemporal modelling techniques can be used to invesƟgate the mobility and 

dimerisaƟon of proteins such as the GPVI receptors. The mathemaƟcal equaƟon for molecular 

diffusion is based on the parƟal differenƟal equaƟon (PDE) for a two-dimensional diffusion 

process, assuming a conƟnuous distribuƟon of molecules116: 

𝜕𝜙

𝜕𝑡
= 𝐷𝛻ଶ𝜙 
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where ϕ is the molecular concentraƟon, D is the diffusivity and ∇ is the del or nabla operator. 

The outcome is conƟnuous in both space and Ɵme with no discriminaƟon between individual 

receptor molecules. 

An alternaƟve molecular dynamics (MD) approach is possible, which describes the 

dynamics of a single protein or pepƟde by calculaƟng the trajectory of each atom or group of 

atoms. The MD simulaƟon of target proteins has been helpful in drug discovery117. LimitaƟons 

of the MD technique are the restricƟons in spaƟal and Ɵme scales. Even for small secƟons of 

a given protein, high computaƟonal resources are required for calculaƟng a configuraƟon, and 

then sƟll result in short trajectory Ɵmes, in the order of nanoseconds. 

A related technique to simulate movements of individual (receptor) molecules is 

provided by Langevin dynamics118, which describe the Brownian moƟon of a parƟcle by 

combining the standard Newton's law equaƟon of moƟon with random noise: 

𝑚
𝑑�⃗�

𝑑𝑡
= −𝛻𝑈(𝑟) − 𝜆�⃗� + �⃗�(𝑡) 

where m is the parƟcle's mass, 𝑟 is its posiƟonal vector, t is the Ɵme variable, λ stand for the 

viscosity; �⃗� is the noise term represenƟng random collisions with other molecules in a fluid; 

and U is a funcƟon for interacƟons between molecules. The equaƟon describes movements of 

individual molecules, for instance, receptors in a membrane. In constructed sets of ODEs, it is 

possible to simulate the movement and interacƟons per complete molecule. However, 

determinisƟcally solving the equaƟon of moƟon for all molecules present again requires high 

computaƟonal power. 

Yet another approach is that of agent-based modelling (ABM). This treats molecules 

(receptors) as moving agents in an area (membrane). Instead of calculaƟng the exact path of 

movement for each agent, ABM stochasƟcally simulates the changes in Ɵme; this comes with 
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lower complexity and less computaƟonal costs119,120. In general terms, the ABM method is an 

approach to simulate a real-world system by transforming objects into interacƟng agents with 

fixed properƟes in the environment led by definable mathemaƟcal rules. ABM thereby 

provides a micro-scale simulaƟon that predicts for changes in a larger-scale system. 

When applied to receptor interacƟons, ABM can introduce different kinds of agents 

(receptors and other membrane proteins), each with a defined size, mass and movement 

paƩern (stochasƟc or determinisƟc), and with a specified interacƟon spectrum (aƩracƟve or 

repulsive). Authors, introducing the term protein diffusivity, have applied ABM to simulate the 

interacƟons between membrane proteins based on certain hypotheses121,122. Because of the 

availability of prior data, ABM simulaƟon is an aƩracƟve approach for modelling the 

movements of GPVI molecules on a platelet membrane. A limitaƟon though is that 

simplificaƟon of the agent's (molecular) properƟes is needed. In conclusion, ABM, as a 

preferable method for receptor clustering simulaƟon due to its spaƟotemporal property, 

stochasƟcity, simplicity, computaƟonal cost, and discreƟsaƟon, is used in Chapter 2. 

 

MathemaƟcally modelling of GPVI signalling 

The GPVI-induced signalling pathway involves several components and steps with 

parallel posiƟve and negaƟve feedback loops. A type of mathemaƟcal modelling that can 

capture this is creaƟng a set of ordinary differenƟal equaƟons (ODEs) for each of these steps. 

The underlying assumpƟon is that the components are evenly distributed in space, and that 

the reacƟons follow mass acƟon kineƟcs. The set of ODEs then comes with Ɵme-dependent 

predicƟons for each protein in the signalling system123. A given biochemical reacƟon in the 

form of: 
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𝐴 + 𝐵  
𝑘ା

⇌
𝑘ି

  𝐴𝐵 

can be translated in an ODE for the component AB as: 

𝑑[𝐴𝐵]

𝑑𝑡
= 𝑘ା[𝐴][𝐵] − 𝑘ି[𝐴𝐵] 

𝑑[𝐴]

𝑑𝑡
=

𝑑[𝐵]

𝑑𝑡
= −𝑘ା[𝐴][𝐵] + 𝑘ି[𝐴𝐵] 

For given values of k+ and k− (binding and dissociaƟon constants), and known iniƟal levels of 

[A], [B] and [AB] at Ɵme t = 0, the equaƟon can be solved numerically. The result is a Ɵme-

dependent simulaƟon for each variable. This is a useful approach for biochemical reacƟons 

where otherwise spaƟal-dependent informaƟon is absent, such as for the distribuƟon of 

proteins across a cell membrane. In prior work, the GPVI-induced signalling events of Syk 

(de)phosphorylaƟon have been modelled in this way92. The system of ordinary differenƟal 

equaƟons being inferred from and validated against experimental data. This Bayesian 

approach (called Approximate Bayesian ComputaƟon (ABC)124) has been uƟlised extensively 

to compare the outputs from systems of ODEs to experimental data125,126. It allows the 

systemaƟc updaƟng of beliefs in the structure of the model in light of experimental data the 

fundamental theorem behind this being Bayes that states the probability of an event A given 

some evidence B is equal to the probability of B given A mulƟplied by the probability of A, 

divided by the probability of B. In mathemaƟcal terms, it can be expressed as: 

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)
𝑃(𝐴)

𝑃(𝐵)
 

where P(A|B) is the probability of A given B, which is the value we want to calculate, P(B|A) is 

the probability of B given A, which is the likelihood of the evidence given the prior knowledge, 

P(A) is the prior probability of A, which is our prior belief or experience about the probability 

of A before considering the evidence, and P(B) is the probability of the evidence B, which 
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serves as a normalising constant to ensure that the result is a valid probability distribuƟon. 

This approach allows us to determine the best set of parameters that enables the 

model to simulate the experimental data. The advantage of ABC approaches is that it is not 

necessary to analyƟcally describe the likelihood of parameter dependence on data. Rather, 

approximates are calculated by running many simulaƟons (we use n = 50000 in Chapter 3 and 

4) with parameters drawn randomly from biologically feasible ranges (priors). This provides a 

systemaƟc way to assess if a model's structure is capable of generaƟng the given experimental 

data and in this thesis we supplement this by uƟlising model comparison techniques to124. 

compare many different structural models. The criteria used for determining the best model 

for the system, in this work, is Akaike InformaƟon Criteria with a correcƟon of small sample 

size (AICc)127 that is used to pick the best model that balances goodness of fit and model 

complexity by the sum of squares error (SSE) via: 

𝐴𝐼𝐶𝑐 = 𝑛 ln ൬
𝑆𝑆𝐸

𝑛
൰ + 2𝑘 +

2𝑘ଶ + 2𝑘

𝑛 − 𝑘 − 1
 

where k is the number of parameters and n is the number of datapoints used in the fiƫng 

process. The numerical value of AICc reflect the 'distance' from the true model, more AICc 

mean the model is far from 'true model'.  

There is a tension between the need to incorporate biological detail into models such 

as those of sub-cellular signalling pathways and the necessity of developing robust, predicƟve 

and well-constrained models. ABC approaches offer a way to balance this, allowing assessment 

of the inferred parameter values in light of data and in light of this provide a descripƟon of the 

variability of predicƟons. We use this approach in Chapters 3 and 4. Of course ABC can be 

uƟlised to assess the ability of agent based models to reproduce experimental data128 and 

would be useful in validaƟng outputs from the agent based model developed in Chapter 2 
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Once more data comes available. 

Neural network modelling of platelet Ca2+ responses 

Modelling of the GPVI-evoked platelet Ca2+ response is a challenge, because of the 

involvement of mulƟple signalling proteins, Ca2+ channels and pumps, and secondary 

mediators, which are present in or are acƟng on disƟnct intracellular regions. Due to synergisƟc 

effects between these actors, a convenƟonal ODE modelling approach is unsuitable. SoluƟon 

here is to use a machine learning technique, known as neural network generaƟon129,130. This 

method acts as a black box, since the data processing relies on creaƟon of layers with hidden 

parameters. On the other hand, with appropriate training, a neural network can generate 

useful output for a given input with valuable predicƟve power. 

As illustrated in Figure 8, a standard neural network consists of three parƟƟons, i.e. an 

input layer, one or more hidden layers, and an output layer. The input layer is fed with 

experimental datasets, which are processes by adding different weights, bias effects and 

summaƟons. Several acƟvaƟon funcƟons can be called upon, depending on the fiƫng 

purpose, such as training acceleraƟon, accuracy and linearity131,132. Finally, the training output 

is compared to known results, aŌer which the weights and sums are tuned to minimise the 

difference between the experimental data and the predicted output. 

A recurrent neural network is a more complex version that employs the output of a 

processing node, and then feeds it back into the network. Each node records the previous 

operaƟons, and uses the informaƟon for an improved data processing. This type of neural 

network is useful for Ɵme series predicƟons. Other researchers have used it to predict specific 

agonist-induced rises in cytosolic Ca2+ upon platelet acƟvaƟon133,134. In that work, the 

recurrent neural network was trained by providing input of the Ca2+ responses of platelets 

from several donors. 
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Figure 8. Example organisaƟon of a neural network. The illustrated neural network consists 

of three parƟƟons, namely an input layer, one or more hidden layers, and the output layer. The 

number of inputs is set at 2, with hidden layer consisƟng of 3 nodes, and 1 output layer. Shown 

is how the network feeds input values x1, x2 into nodes 1 and 2 of the input layer, aŌer which 

combined values pass through each node in the hidden layer (3-5) with different weights (wij 

connected nodes i and j). Further processing works by summing up the node values with 

addiƟonal bias (bi for node i), and passing these through an acƟvaƟon funcƟon f. The funcƟon 

output feeds the output layer with node 6. Compared of the output with the target value, 

results in an error esƟmate. Training of the neural network is to tune the weights and biases to 

minimise this error. 

 

ParƟal least square (PLS) regression of platelet Ca2+ responses 

Also useful, but less predicƟve than a neural network, is the method of parƟal least 

square (PLS) regression analysis135,136. It provides a data-driven modelling strategy with 

mulƟple predictor and response variables. A PLS regression analysis, searching for mulƟple 

correlaƟve relaƟonships, can for instance be used to make quanƟtaƟve predicƟons of the 

effects of new signalling intervenƟons. The method is frequently used in computaƟonal 

biology, in high-dimensional genomics and in cellular signalling137–139. In the PLS regression 
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analysis, a linear model is used that finds coordinates for mulƟple independent variables in 

order to minimise the difference between input and output variables (Figure 9). The result is 

expressed as components Ci, with C1 providing the highest contribuƟon to the output variable 

Y. The maximum number of Ci equals the number of input variables Xi. Commonly, the first 2-

3 PLS components cover most of the variance of Y. Although the constructed model is linear 

and may not have the same predicƟve power as a neural network, it is easier to interpret the 

effect of Xi on Y. 

 

Figure 9. Geometrical interpretaƟon of a parƟal least square regression analysis. Figure 

adapted from Ref135. The X coordinates represent the input values, while the C coordinates 

define the transformed set by PLS regression. From an N-dimensional X input, PLS regression 

converts values from each data point by construcƟng a K (≤ N) dimensional hyperplane, which 

maximises the variance between the new coordinate and the target Y. ProjecƟon of the data 

to this new coordinate results in a C-coordinate (C1 = a1x1 + a2x2 + …). The maximal correlaƟon 

hyperplane is wriƩen as a linear combinaƟon of C-components (C1t1 + C2t2 +…, where the score 

ti refers to coordinate Ci). The new coordinates are sorted such that the C1 axis has the highest 

contribuƟon to the explained variance of outcome Y, followed by C2 and so on. The contribuƟon 

of Xi to Y is expressed as a coefficient for each xi component in C1, etc. 
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Aims and outline of this thesis 

The overarching aim of this thesis is to understand the overall process of glycoprotein 

VI (GPVI)-induced platelet acƟvaƟon by applying different mathemaƟcal/computaƟonal 

modelling and validaƟon approaches. Basic assumpƟon is that the obtained insight can help 

to idenƟfy and precise the mode of acƟons of GPVI-dependent signalling processes that have 

a therapeuƟc potenƟal. The introducƟon of Chapter 1 gives relevant background informaƟon 

on platelets and on platelet acƟvaƟon processes. Subsequent secƟons describe the structure, 

the localisaƟon and the signalling mechanisms of GPVI. The chapter furthermore describes 

different ways of (mathemaƟcal) modelling approaches that are relevant for and that are being 

used in this thesis (see Figure 10). 

 

 

Figure 10. Overview of mathemaƟcal modelling approaches in this thesis. Chapter 2 uses 

ABM to model the dimer formaƟon of GPVI in the plasma membrane taking into account the 

impact of confined domains and other molecular interactors. Chapter 3 uses modelling by ODEs 

of the Ɵme-dependent GPVI-induced tyrosine (de)phosphorylaƟon events up to acƟvaƟon of 

Btk and PLCg2 and of IP3 formaƟon. Chapter 4 conƟnues on this by developing an ODE-based 

model of the enzymaƟc regulaƟon of phosphoinosiƟde turnover. Chapter 5 uses a recurrent NN 

and PLS analysis to model the GPVI-induced and other Ca2+ responses in acƟvated platelets, to 

prelude on the systemaƟc Ca2+ response measurements of Chapter 6. AbbreviaƟons: ABM, 
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agent-based modelling; ODEs, ordinary differenƟal equaƟons; NN, neural network; PLS, parƟal 

least squares. 

 

 The applicaƟon of ABM to study factors influencing GPVI dimerisaƟon on the plasma 

membrane is the main topic of Chapter 2. Based on prior informaƟon on the heterogeneity of 

GPVI movement paƩerns, a confined domain (represenƟng lipid raŌs) is introduced with 

restricted receptor diffusivity, acƟng a as a GPVI-dimer forming enƟty. Chapter 3 uses non-

linear ODE-based modelling approaches to describe and predict the changes over Ɵme of 

GPVI-induced and tyrosine kinase-dependent protein acƟvaƟon steps. These include the 

changes in (phosphorylated) LAT, Btk and PLCγ2, leading to PIP2-dependent IP3 generaƟon. The 

modelling work links to the quesƟon of whether the phosphoinosiƟde-modulaƟng kinases are 

suitable targets for suppression of GPVI acƟvaƟon. The subsequent Chapter 4 presents an 

ODE-based model for the generaƟon of Ɵme-dependent profiles of phosphoinosiƟde changes 

in GPVI-acƟvated platelets, including levels of PIP2 isomers and PIP3. The ODE model is 

validated by comparing its predicƟons with new experimental data on pharmacological 

inhibitors that are known to affect the phosphoinosiƟde turnover. 

Chapter 5 addresses the Ɵme-dependent Ca2+ responses of Fura-2-loaded platelets 

sƟmulated with GPVI or PAR agonists. Both a recurrent neural network and a PLS regression 

model are developed to simulate and predict the nanomolar changes in cytosolic Ca2+. 

QuesƟons to be answered are if non-equaƟon based modelling approaches can capture the 

complex regulaƟon of cytosolic Ca2+ rises, involving many triggers, channels, pumps and 

modulators. In other words, can a model be developed that simplifies the system's complexity, 

but sƟll has sufficient predicƟve power and an understandable interpretability.  

The general discussion in Chapter 6 compares and integrates the various modelling and 
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experimental approaches in order to beƩer understand the GPVI signalling mechanism, such 

in comparison to the current knowledge. OpportuniƟes and limitaƟons of the models are 

discussed, and follow-up steps are proposed for advancing the research field. 
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Chapter 2 (published) 

An agent-based approach for modelling and 

simulaƟon of glycoprotein VI receptor diffusion, 

localisaƟon and dimerisaƟon in platelet lipid raŌs 
 

Receptor clustering and dimerisaƟon are important for receptor acƟvaƟon 

because they facilitate the formaƟon of signalling complexes and enhances the 

efficiency of downstream signalling. Clustering brings receptors in close 

proximity, allowing them to interact and iniƟate intracellular signalling cascades, 

leading to cellular responses such as gene expression, enzyme acƟvaƟon, or 

membrane trafficking, while dimerisaƟon is a prerequisite for some receptor 

acƟvaƟon and ligand binding. This chapter presents an agent-based model (ABM) 

approach to invesƟgate the clustering and dimerisaƟon of the platelet- and 

megakaryocyte-specific receptor for collagen glycoprotein VI (GPVI) and explores 

the role of glycolipid-enriched raŌ-like domains in regulaƟng receptor diffusion. 
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Abstract 

Receptor diffusion plays an essential role in cellular signalling via the plasma 

membrane microenvironment and receptor interactions, but the regulation is not well 

understood. To aid in understanding of the key determinants of receptor diffusion and 

signalling, we developed agent-based models (ABMs) to explore the extent of dimerisation of 

the platelet- and megakaryocyte-specific receptor for collagen glycoprotein VI (GPVI). This 

approach assessed the importance of glycolipid enriched raft-like domains within the plasma 

membrane that lower receptor diffusivity. Our model simulations demonstrated that GPVI 

dimers preferentially concentrate in confined domains and, if diffusivity within domains is 



 

37 
 

decreased relative to outside of domains, dimerisation rates are increased. While an increased 

amount of confined domains resulted in further dimerisation, merging of domains, which may 

occur upon membrane rearrangements, was without effect. Modelling of the proportion of 

the cell membrane which constitutes lipid rafts indicated that dimerisation levels could not be 

explained by these alone. Crowding of receptors by other membrane proteins was also an 

important determinant of GPVI dimerisation. Together, these results demonstrate the value 

of ABM approaches in exploring the interactions on a cell surface, guiding the experimentation 

for new therapeutic avenues. 

 

Keywords: Agent-based modelling, confined domain, glycoprotein VI, receptor diffusion, 

receptor dimerisation, transmembrane receptors, lipid raft 

 

Introduction 

The plasma membrane of eukaryotic cells provides a physical and biochemical 

interface1 that allows the precise control of cell functions, facilitates shape change and 

movement2, attachment to the extracellular matrix or other cells, the controlled transfer of 

solutes outside-in and inside-out3, and the onset of the signalling mechanisms that regulate a 

cell4. Through the basic structure of its phospholipid bilayer, the plasma membrane provides 

a specialised environment in which cell surface receptors engage with extracellular ligands to 

trigger the transduction of signals in the cytosol. These signals are then propagated and 

amplified through enzyme cascades culminating in a controlled change in cell behaviour, for 

instance in gene expression, migration, secretion, proliferation, survival and apoptosis5–7. 

Transmembrane receptors may move laterally within the phospholipid plane of the 

plasma membrane, although there are movement restraints due to the presence of and 
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linkage to other surface proteins, as well as due to the presence of intracellular proteins, such 

as the membrane actin-myosin and tubular cytoskeletons8,9. The receptors may also be 

restricted in their movements due to the position of ligands, for instance, in the extracellular 

matrix10, or due to ligand-induced dimerisation or clustering, as in cases of the insulin and 

antibody receptors11,12. Interactions of plasma membrane receptors with other proteins inside 

the cell are furthermore controlled via biochemical processes such as post-translational 

modifications of proteins (phosphorylation, acetylation, ubiquitination, sumoylation, 

glycosylation, lipidation), ultimately leading to precisely regulated temporal and spatial 

control of cell signalling mechanisms13–16. 

The ability of receptors to initiate cell signalling is influenced by the membrane 

phospholipid composition and distribution7. Small and transient nanodomains of the 

membrane enriched in cholesterol and glycolipids, known as lipid rafts, present unique 

physicochemical properties, enabling a highly localised enrichment of cholesterol and other 

lipid molecular species to influence membrane fluidity and the ability of proteins to move 

within17. The concept of intra-membrane heterogeneities and lipid rafts has thereby 

facilitated our understanding of the spatiotemporal orchestration of receptor signalling 

mechanisms. 

Limited efforts have been made so far to develop theoretical models that combine the 

effects of intra-membrane constraints and ligand-induced actions for understanding of the 

critical elements of receptor localisation and movement. One approach that can be used to 

study the dynamics of a particle on a membrane is agent-based modelling (ABM). Previous 

work has utilised this approach to investigate the formation of generalised molecular 

clusters18, finding that protein diffusion is influenced by its neighbourhood, or to investigate 

more specific questions about particular receptor classes (such as integrins19) without 
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recourse to data. Das and coworkers18 have developed an in-house code to link data and 

agent-based models to answer specific questions centring on the activation of trafficking of 

EGFR-HER2 receptors.  

For this study we constructed a simple and effective model, based on experimental 

evidence , for predicting receptor movements on the anucleate platelets using the ABM 

approach. Our chosen target was the receptor for collagen, glycoprotein (GP) VI, which is 

uniquely expressed on blood platelets and megakaryocytes20,21. The binding of collagen to this 

receptor leads to GPVI dimerisation and clustering, and to a signalling response that 

culminates in rapid thrombus formation, which contributes to haemostasis22. The monomeric 

GPVI receptor has a weak affinity for collagen and is non-covalently associated with the Fc 

receptor γ-chain, through which it transmits signals23. Receptor dimerisation results in the 

formation of a complex with a higher affinity for collagen (Figure 1A), thus facilitating ligand 

binding and signalling responses24–26. 

 Developing an ABM with distinct regions of membrane lipid composition - here 

referred to as confined domains that are proxy entities for lipid rafts28,29 - we studied how 

GPVI receptors on the platelet plasma membrane can switch between monomer and dimeric 

entities. Our modelling studies support the preferential enrichment for GPVI in lipid rafts, in 

agreement with experimental observations30. Through simulation of multiple facets of the 

plasma membrane and membrane proteins, we thus provide a basis for understanding how 

receptor complexes form and function, and can impact altered receptor signalling processes 

in disease. 
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Figure1. Structure and dimerisation of platelet GPVI receptors. (A) The extracellular domain 

of monomeric GPVI on platelets comprises of two IgG domains and a connection to the 

transmembrane domain (blue). The GPVI protein is stably connected to two chains of the FcR 

-chain, forming ITAM-containing signalling domains. Monomers of GPVI can dimerise with 

other monomers (dimerisation), a process that is reversible (dissociation). Adapted from 

Induruwa et al. (2016)27. (B) Crystal structure of human platelet GPVI. Image taken from RCSB 

PDB (rcsb.org), annotation PDB ID 2GI723. (C) Projected illustration of GPVI as a 

transmembrane protein with an assigned effective area in two dimensions. 

 

Methodology 

1. Application of agent-based modelling (ABM) 

An ABM approach was used to simulate agents (receptors and lipids) on the cell 

surface31. This approach has been used in different fields of physical science, biological 

science, social science, and finances32. For example, several recently published works used 

ABM to study the spreading of the COVID-19 pandemic33–35. There are several ways to 

implement ABM, either by coding the model from scratch or using existing software. A 

commonly used ABM software package is NetLogo, which is multi-purpose, computationally 

efficient and easy to use, offering the advantage of being easily implemented and modified by 

GPVI effecƟve size 

(A) 

114 Å 
45 Å 

75 Å 

(B) 

(C) 
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non-theoretical experimentalists36. Using NetLogo, we simulated the diffusion of receptors in 

a two-dimensional plasma membrane. The implementation of this is demonstrated in Figure 

2A-D, and a flowchart is provided in the Supplement. The generated models can be easily 

modified to model different kinds of receptors and transmembrane proteins, by adjusting 

properties such as size, mass and diffusivity. To ease this modification, the code to run 

simulations is made available, and details on how to install and implement it are given in the 

Supplement. In our ABM approach, receptors are able to move with an assigned behaviour, 

which is either deterministic or stochastic as modelled. Certain areas of the plasma membrane 

were considered as confined areas with reduced diffusivity. By default, components in the 

system were studied in a two-dimensional box with periodic boundary conditions to imitate 

an infinite membrane37. 

 

2. Brownian motion 

Agents (receptor molecules and other membrane proteins) were considered to move 

freely in the two-dimensional surface in random directions. By applying a mean square 

distance (MSD) of Brownian motion on a two-dimensional surface as time (t) dependent38: 

MSD = 4Dt, 

a given step size (dS ~ MSD½) was taken, depending on the agent’s diffusivity (D) as dS ~ D½. 

Herein, the constant of variation was a function of the applied scaling. Agents in the simulation 

were modelled as circular discs, which never overlapped. It was assumed that the area 

occupied by one receptor is conserved during dimerisation, and that the space occupied by 

two monomers is equal to that occupied by one dimer, πR2
dimer = 2πR2

monomer. The sizes (radii) 

of dimer Rdimer and monomer were then related as Rdimer = √2 Rmonomer (Figure 2C). The 

relationship of diffusivity and particle size was retrieved from the Stokes-Einstein relation39:
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◄ Figure 2. Overview of ABM simulation procedure. (A) The target system, i.e. the platelet 

membrane. The simplified version of a membrane consists of two areas, i.e. parts where 

molecules are confined in movements (confined domains), and the remaining part where they 

move freely (Brownian motion). In addition to inert proteins, the receptors of interest are 

indicated as transmembrane proteins. (B) Application of ABM to target receptor dimerisation. 

The membrane in the simulation box consists of agents (receptor molecules) in monomeric or 

dimeric forms and inert proteins. The confined domains are considered to represent lipid rafts. 

All agents are treated as independent, of which mathematical rules determine their properties 

and interactions. (C) Assignment of agent parameters. The simulation parameters included 

diffusivity, particle size and step size. (D) Rules for agent movements. Each simulation step 

consists of a randomly placed agent with random walk (rejected in case of overlapping), 

dimerisation and dissociation. Steps are repeated until all agents are selected, after which 

movements follow. The role of the confined domain is to capture differences in diffusivity 

between receptors on and off lipid rafts. The dimensionless/scaled parameter values are 

discussed later in Methodology section 4. 

 

R = kBT/6πηD ~ 1/D, 

where kB, T, and η are Boltzmann constant, temperature, and viscosity, respectively. Although 

this formula is modelled in a 3-dimensional case, we presumed that the inversely proportional 

relationship between R and D was retained in 2-dimensions, the coefficient being absorbed in 

the scaling process. Combining these assumptions, the relationship between step size of 

monomer and dimer was: 

dSmonomer = 2¼ dSdimer 

Note that the step size of an agent (receptor) in each time step may not be equal. In 

the calculation above, the maximum step size was set, but the actual step size in each 

movement could be generated according to a Wiener’s process, dSactual ~ |N(0,1)|dSmaximum. 

Herein N(0,1) forms a random variable with a standard normal distribution (Figure 2D). 
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 Experimentally, using single-particle tracking, it has been seen that the diffusivity of 

GPVI molecules on mouse platelets decreased by approximately ten times, when present in 

regions with confined membrane properties40, with the receptor’s mode of motion changing 

from Brownian movement to restricted movement. In our ABM implementation, the mode of 

motion of the receptor inside and outside the confined domain remained the same; the only 

difference being the diffusivity. While the presence of this domain confined the movement of 

the receptor, we assumed that the receptor was effectively moved slower, with a smaller 

diffusivity within the domain.  

 

3. Receptor dimerisation 

The effects of dimerisation and dissociation of receptors were captured by the 

probabilities kb and kd,, respectively. Herein, dimerisation was defined as the conversion from 

two monomers to one dimer. The proximity that two monomers have to fall within in order 

to form a dimer was arbitrarily set at 10% of the monomer’s diameter. For calculating the 

conversion, a random number R[0,1] ∈ [0,1] was generated. Dimerisation occurred if this 

number met the condition of R[0,1] < kb. Conversely, dissociation was imputed as the change 

from one dimer to two monomers. For dimer movements, also a random number R[0,1] was 

generated, and dissociation occurred when R[0,1] < kd (Figure 2D). 

 

4. Parameterisation and scaling analysis 

The following section explains how values were assigned to parameters. Note that 

when precise values for parameters were not available, order of magnitude estimates needed 

to be made, applicable to the platelet surface and the collagen receptor GPVI. The simulation 

conversion parameters estimated in the following section are summarised in Table 1. 
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Parameter Real-world scale Simulation scale 

Size of simulation box 3.0 x 10–7 m 30 

GPVI effective size 114 Å 3.8% of 30 ~ 1.14 

GPVI diffusivity 0.091 x 10–12 m2/s 1 

Expected step size of GPVI in a time-step 12.5 nm (π/2)½ ~ 1.25 

Time-step 0.43 ms 1 

 

Table 1. List of real-world and simulation parameters. See estimates in Methodology, 

section 4. 

 

4.1. Platelet surface area. 

The platelet volume based on previous work41 was taken to be Vp  ≈ 7.4 x 10–18 m3, 

allowing us to determine (by assuming that platelets are perfect spheres) the radius R and the 

surface area A: 

R ≈ 1.2 x 10–6 m, 

A ≈ 1.8 x 10–11 m2. 

Some assumptions needed to be made in considering the shape and volume of 

platelets, since their activation results in changes in morphology and membrane 

organisations. We reasoned that with the open canicular system exposed, following 

activation, the morphology of a platelet is closer to a sphere than a discoid. If an average 

discoid platelet is considered to have an average diameter of ~3 μm, the thickness of the cell 

can be determined as ~1 μm. Thus, the surface area of a platelet would be ~2.4 x 10–11 m2 

(~33% more than a spherical shape). If we account for the contribution of the open canicular 

system (estimated to be ~25% of the plasma membrane surface)42, the total surface area will 

increase to 3.2 x 10–11 m2. However, since the open canalicular system is continuous with the 

plasma membrane, we assumed that the volume of a platelet remains constant during shape 
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change. The consequences of a different receptor surface density is addressed in section 9 of 

the results. For the remaining simulations, we maintained a platelet surface area of 1.8 x 10–

11 m2, consistent with spherical shape with a diameter of 2.4 μm. 

 

4.2. Simulation box size. 

The (transient) confined domain diameter for a lipid raft of d ≈ 100 – 300 nm was 

obtained from an earlier publication28. For convenience, we used a raft size of 200 nm. Note 

that the size did not affect the model outcomes (see results, section 4). A model limitation is 

the assumption of the confined domain as a single circular area in the centre of a periodic box, 

implying that a too-small box can result in simulation artefacts. In other words, if a raft size is 

smaller than 30 nm, less than one receptor molecule will be present inside a box. Too-small 

number of receptors per box could also lead to high fluctuations in the simulation results. We 

further assumed lipid rafts occupy about 35% of the plasma membrane surface area43. The 

total area occupied by lipid rafts was then calculated as: 

Araft ≈ 35% x A ≈ 6.4 x 10–12 m2. 

Considering this as the total area of confined domains, with d ≈ 200 nm, the count of 

domains was: 

boxper platelet = Araft/(π(d/2)2) ≈ 205. 

In the simulation, the box area (consisting of one confined domain per box) was: 

Abox = A / boxper platelet ≈ 9.0 x 10–14 m2, 

with a box length of: 

L = (Abox)½ ≈ 3.0 x 10–7 m. 
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4.3. Receptor count per box. 

The number of GPVI molecules in a single platelet was estimated as  ≈ 9600 copies44. 

This gave as a number of GPVI monomers per simulation box: 

GPVIper box = GPVIper platelet / boxper platelet ≈ 9600/117 ≈ 47 

 

4.4. GPVI receptor molecule dimensions. 

The molecular dimensions of GPVI were taken from its crystal structure23: 114 Å x 45 

Å x 75 Å. Considering the extremum case that its longest side is the projected diameter of the 

GPVI on the platelet surface (Figure 1B,C), we choose a dGPVI ≈ 114 Å. The size of a GPVI 

monomer scaled to the box size then was: 

dGPVI
scaled = dGPVI/L ≈ (114 x 10–10)/(3.0 x 10–7) ≈ 3.8%. 

 

4.5. Step size and time scale of modelling. 

The diffusivity of a single GPVI molecule in the membrane (off lipid raft) has been 

measured before40, Dexp ≈ 0.091 x 10–12 m2s–1. From the mean square distance of particle on a 

two-dimensional surface moving in Brownian motion, the step size can be scaled as: 

dS2 ≈ 4Ddt. 

According to this equation, we could either pick dS and determine the scale of dt from 

dS or vice versa. To simplify the simulation, we scaled the step size to order O(1) by setting D 

~ 1, dt = 1, and dS = D½|N(0,1)|. Note that the constant 4 was absorbed in the D scaling and 

that random Brownian motion was assumed to have a random standard normal distribution, 

N(0,1). With these definitions, the expected step size was calculated at: 

dSexpected ≈ (π/2)½ x (L/30) ≈ 12.5 x 10–9 m, 

where rexpected = (π/2)½ is the expected distance determined by a standard normal distribution 
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function, and 30 comes from the defined scaled box size. Hence, the time scale was set as: 

dt ≈ dS2/4D ≈ (12.5 x 10–9)2/(4 x 0.091 x 10–12) ≈ 0.43 ms. 

This time scale was small enough to capture the confined behaviour of particles, which occurs 

in seconds28. 

 

4.6. Inert proteins. 

The modelling further included an unknown number of transmembrane proteins that have no 

interaction with the receptor of interest. The effect of a collision between proteins was 

already incorporated in the diffusion simulation via Brownian motion. The motion direction 

and step size changed randomly due to random encounters, implying that the presence of 

inert proteins was included by default. Additional parameters such as additional inert proteins 

(in arbitrary numbers) were used to check for effects on receptor dimerisation, while they 

essentially block receptors from moving into occupied spaces. 

 

5. Standard setup of ABM simulations 

Simulations were performed in NetLogo 6.2.2 (Supplementary Figure S1), using the 

algorithm illustrated in Figure 2 (for details see Supplementary Figure S2). A list of simulation 

parameters per research question is provided in Table 2. The default start setting was 47 

receptor monomers that were uniformly distributed in a box representing the plasma 

membrane. Of note, this default did not take into account the heterogeneities caused by 

membrane cytoskeletal connections and receptor complexes, although the model may reach 

a non-uniform equilibrium after the simulation. Based on the calculations above, the diameter 

of GPVI was approximated as 3.8% of the length of the simulation box (scaled as 30 x 30 pixels). 

The movement speed of monomers was set to D½. Each simulation was run for ≥200,000 steps 
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to ensure equilibrium. An average of the last 50,000 steps was used for the analysis. 

Except where indicated otherwise, binding and dissociating probabilities were 

arbitrarily defined as kb = 0.05 molecule–1 per unit time and kd = 0.01 per unit time (or per 

timestep, dt ~ 0.43 ms as calculated above). These numbers were chosen to ensure balancing 

of the time scale of dimerisation and dissociation, i.e., to prevent an equilibrium without 

dimers or monomers. This also ensured that the number of GPVI molecules in dimeric form in 

the simulations were broadly consistent with the dimeric levels measured experimentally26. 

The impact of variation of these parameters is shown in section 10 of the results. All 

simulations were repeated three times. The code for this model, together with the setup for 

each simulation, is available in the Supplement. 
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Results 

In the present study, we aimed to understand how a fluid-mosaic plasma membrane 

influences receptor diffusion, interaction or dimerisation, and the initiation of cell signalling. 

According to the mosaic model, the phospholipids and proteins are not uniformly distributed. 

Lipid patches (rafts) are considered to concentrate signalling proteins, including receptors, 

thereby permitting or enhancing cell signalling processes17,30. Precisely how this occurs has 

not yet been resolved. The agent-based modelling (ABM) approach allowed us to explore the 

impact of confined lipid domains within the plasma membrane on the enrichment and 

clustering of the collagen receptor GPVI. The model can easily be applied to other receptors 

and cell types of interest, with adapted parameters as in the methods section. 

 To address ABM simulations, we designed a receptor-containing simulation box, 

representing a defined square part of the plasma membrane with mobile GPVI molecules and 

initially a single confined domain (“raft”). With the chosen parameters, we assumed that GPVI 

monomers have no inherent tendency to form dimers or clusters. Note that the confined 

domain was not included in the simulation from sections 5 to 7. 

 

1. Simulated receptors preferentially localise to confined domain areas 

Differential diffusivity in the lipid domains of a membrane may result in an uneven 

distribution of transmembrane proteins. In the present ABM, we assumed that the confined 

domains contain a higher level of proteins that are free to move inside or outside45,46. In a 

series of simulations, we tested this idea. 

 The proportion occupied by the confined domain, as assumed in rafts, was estimated 

as 35% by Prior et al.39. The size of the confined domain was fixed as a circle, which 

represented a domain of lower protein diffusion. The diffusivity ratio outside and inside the 
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confined domain was varied to simulate effects on receptor diffusion. 

 If the receptor localisation is not affected by diffusivity, the relative numbers of 

receptors located inside or outside the confined domain will be similar for all diffusivity ratios. 

In Figure 3A, the ratio of diffusivity of receptors between the outside and inside of a confined 

domain, expressed as Dout:Din, was taken as an independent variable and then changed from 

20, 21, 22, ... to 210 (i.e., 1024). The actual ratio can be estimated to be ~10, according to single 

particle tracking results of GPVI molecules in mouse platelets40. In our studies we varied this 

ratio from 1 to 1024 to explore the extreme relationships between diffusivity and location 

preference of GPVI. The number of receptors located inside the domain, as a dependent 

variable, was found to asymptotically reach 100%, with 50% at a Dout:Din of in the range of 8 

to 16 (Figure 3B). Note that if a different diffusivity ratio does not affect the receptor 

localisation, this number should not deviate from the starting value of 35%. Based on the 

obtained changes at default model settings, we concluded that GPVI receptors will 

preferentially localise to the confined domains, i.e., the areas with lower diffusivity. 

 

Figure 3. Preferential localisation of single receptors in the confined domain. (A) Snapshots 

of 11 simulations of 47 receptors (red dots) moving on the simulated membrane with confined 

domain (yellow circle). Note the sub-micrometer size of the simulation box of 0.3 x 0.3 μm, and 

the initial random distribution of GPVI receptors. Simulations were run for ≥200,000 steps, with 

Dout:Din = 1024 Dout:Din = 256 

Dout:Din = 16 Dout:Din = 4 Dout:Din = 1 
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an average of the last 50,000 steps shown. The diffusivity ratio between outside and inside 

confined domains, Dout:Din, was changed from 1 (20) to 1024 (210). The snapshots shown are 

for Dout:Din = 1, 4, 16, 64, 256 and 1024. (B) Effect of an altered ratio Dout:Din on number of 

receptors inside the confined domain. Each simulation was repeated three times, means ± SD. 

 

Previous studies have demonstrated that GPVI is present in cholesterol-rich lipid rafts. 

GPVI recruitment occurs upon platelet adhesion to collagen47, a process which can lead to 

GPVI clustering48. While these membrane structures concentrate specific signalling proteins 

within, recent studies reveal that lipid rafts also cage or restrict protein and receptors 

diffusion49,50, which may be a prerequisite for GPVI clustering. Indeed, a heterotypic 

interaction of GPVI with PECAM1 is increased in lipid rafts51. Considering that lipid rafts can 

orchestrate the GPVI signalling52, we hypothesized that lowered diffusivity in rafts compared 

to non-raft domains results in an increased GPVI dimerisation within. 

 

2. Decreasing diffusivity in the confined domain increases receptor dimerisation 

We then explored how the confined domain affected the likeliness of receptor 

dimerisation, a process that is known to enhance GPVI ligand-binding properties24–26. For 

simplicity in the ABM simulation, we assumed that dimerisation is not modulated by other 

proteins in the plasma membrane or actin cytoskeleton. We thus assumed that the fraction of 

receptors in dimeric form remains the same for all Dout:Din ratios. 

 As illustrated in simulation snapshots (Figure 4A), we found that an increase in the 

diffusivity ratio (i.e., lower diffusivity in the confined domain with Dout:Din set from 20 to 210) 

yielded a higher number of receptor dimers. Herein, the ratio of diffusivity of receptors 

outside or inside the confined domains was taken as an independent variable. The dimeric 

receptors increased non-linearly with the diffusivity ratio to reach a saturation level of 80% 
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(Figure 4B). The simulation thus pointed to a main effect of intra-membrane differences in 

receptor diffusivity for promoting receptor dimerisation. 

 

Figure 4. Higher diffusivity ratio enhances receptor confinement and dimerisation. (A) 

Snapshots of simulation of receptors in monomeric (red) or dimeric (orange) forms in the 

presence of a confined domain (yellow circle). Initially, 47 monomeric receptors were randomly 

distributed without dimeric form. Simulations were run for ≥200,000 steps, with an average of 

the last 50,000 steps shown. The diffusivity ratio between outside and inside confined domains, 

Dout:Din, was varied from 1 (20) to 1024 (210). Snapshots are shown for Dout:Din = 1, 4, 16, 64, 

256 and 1024. (B) Effect of altering the ratio of Dout:Din on the number of receptors in dimeric 

form. Simulations were repeated three times, means ± SD. 

 

3. Total area of the confined domain influences receptor dimerisation 

To explore whether the relative size of a confined domain affected dimerisation, this 

domain was again set as a circular area, of which the relative radius was altered to make up 

an increasing part of the membrane box size (Figure 5A). The area occupied by the confined 

domain was then modelled from 0-75%, i.e., up to twice the estimated area of lipid rafts, while 

the diffusivity ratio Dout:Din was varied from 1 to 32. We found that both the area occupied by 

confined domains and the diffusivity ratio greatly affected the average number of dimers. 

Interestingly, the number of receptor dimers increased substantially from 10% to plateau to 

40%, when the Dout:Din increased (Figure 5B). The highest dimer levels were reached at the 
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two highest Dout:Din ratios of 16 and 32. In addition, a larger area occupied by the confined 

domains was needed to plateau at lower Dout:Din ratios. In other words, the level of 

dimerisation increased with the diffusivity ratio, with curves reaching a saturation point at the 

lower domain area in case of a higher diffusivity ratio. Translated to receptor biology, this 

suggested that both the attraction strength and the size of raft-like structures can determine 

the extent of receptor dimerisation. 

 

Figure 5. Increasing confined domain area induces more receptor dimerisation. Effect of 

increasing the confined domain area at different diffusivity ratios. (A) Snapshots of the 

occupied area of the confined domain (yellow circle) from upper left at 20%, 40%, 60% and 

75%. Red and orange dots represent monomeric and dimeric receptors, respectively. The size 

of the confined domain was kept constant while the confined domain increased, resulting in 

an increasing number of confined domains. Note that at higher area percentages, the number 

of receptors per box reduces, when the number of boxes per cell increases. (B) Results of 

simulation for receptor fractions in dimeric form. Simulations were run for ≥200,000 steps, with 

an average of the last 50,000 steps shown. 
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4. Merging of confined domains does not influence receptor dimerisation 

Since membrane rafts are temporary structures that can reversibly merge53, we 

hypothesised that the merging could affect receptor dimerisation. To assess this, we varied 

the number of confined domains while fixing the total area occupied, and then simulated the 

receptor organisation. Herein, we set the ratio of outside/inside diffusivity of receptors 

Dout:Din to 10, knowing that about half of the GPVI receptors on mouse platelets have a 

diffusivity approximately ten times lower than the other half of receptors with Brownian 

motion40. The simulation is visualized by snapshots in Figure 6A. When extending this domain 

number to higher fold merging, we observed no change in dimer formation (Figure 6B). 

Translating to real life, for platelets this suggests that the mere merging of membrane rafts 

does not impact receptor dimerisation. 

 

Figure 6. Merging of confined domains has no effect on receptor dimerisation. Simulated was 

the effect of merging two confined domains while fixing the total occupied area size. (A) 

Snapshots of two confined domains merged into one (yellow circles). The red and orange dots 

represent monomeric and dimeric receptors, respectively. (B) Simulation for determining 

dimeric receptors as a function of the fold merging of confined domains. Simulations were 

repeated three times, mean ± SD; Pearson correlation of 0.40 indicates a weak positive 

correlation between confined domain folds and dimerisation. 
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5. Inert protein crowding in the membrane increases receptor dimerisation 

As the platelet membrane contains other moving transmembrane proteins without 

interaction with the GPVI receptor, we also added free-moving membrane proteins to the 

ABM, acting as obstacles to receptor diffusion. In our simulation, the number of inert proteins 

per box varied from 0, 25, 50, ... to 200 (Figure 7A). The size of inert proteins was arbitrarily 

set at 0.05 of the box size, and their speed was set at 0.5D½. The average number of receptors 

in dimeric form, as an outcome variable, almost linearly increased from 25% to 45%, while the 

number of inert proteins increased from 0 to 200 (Figure 7B). This is explained by the space 

occupied by the inert proteins, thus tightening the diffusion room of monomeric receptors, 

which then leads to a higher encounter rate between receptors. 

 

 

Figure 7. Increasing inert protein crowding induces more receptor dimerisation. Simulation 

of added inert proteins on the receptor dimerisation. Red and orange dot represents 

monomeric and dimeric receptors, respectively; green dots represent inert proteins. 

Simulations were run for ≥100,000 steps, with an average of the last 50,000 steps shown. (A) 

Snapshots from the left top with inert proteins of 50, 100, 150 and 200. (B) Plot of dimer counts 

versus number of inert proteins. Note the more abundant dimeric receptors, when protein 

crowdedness increases. Each simulation was repeated three times, mean ± SD. 
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6. Disintegration of inert proteins has a minor impact on receptor dimerisation 

We then considered that inert proteins could differ upon platelet activation, i.e., the 

proteins can become aggregated or disintegrated54. This was simulated by splitting the space 

size into smaller components while not changing the total space occupied by inert proteins. 

Inert proteins were placed randomly in the simulation box, and the inert protein size was 

initially set as one large circle with a diameter half of the box size. Then the protein number 

was increased from 1 to 256 (20 to 28), while the size was proportionally decreased with a total 

conserved area (Figure 8A). According to the Stokes-Einstein relation39, diffusivity may be 

expected to increase since smaller particles move faster. Yet, our ABM simulations showed a 

minor increase from 30% to 36% of dimeric receptors, when the inert protein disintegrated 

from 1 to 256 pieces (Figure 8B). To verify that this was not statistical noise, we determined a 

Pearson correlation coefficient of +0.94. Accordingly, it appears that the disintegration of inert 

proteins exhibits only a minimal effect on receptor dimerisation. 

 

 

Figure 8. Disintegration of inert protein slightly affects receptor dimerisation. Simulation of 

the effect of size of inert proteins on receptor dimerisation. The total area occupied by inert 

proteins was kept constant, while subareas of smaller size were created. See further Figure 5. 

(A) Snapshots for 1, 4, 16 and 64 splits of inert proteins. (B) Plot of receptor dimer counts versus 
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the number of disintegrated inert proteins. Each simulation was repeated three times, mean ± 

SD (Pearson correlation +0.96). 

 

7. Decreasing receptor diffusivity increases the level of receptor dimerisation 

According to work by Haining et al.40, the activation of GPVI decreased in Tspan9 

knock-out mice, while also the overall diffusivity of GPVI decreased. This suggested that a 

reduced diffusivity per se can lead to reduced dimer formation. To test this, we simulated the 

variation of receptor diffusivities from 2–5, 2–6, … to 25; and then measured dimerisation, taken 

as a proxy for receptor activation. It appeared that the number of dimeric receptors, as a 

dependent variable decreased substantially from 85% to 25%, when the diffusivity increased 

(Figure 9). In other words, a slower-moving agent has a higher chance of encountering other 

agents. This suggests that the phenotype of reduced GPVI signalling of Tspan9-knock-out 

platelet is unlikely to be explained by changes other than membrane diffusion alone. 

 

    

Figure 9. Decreasing receptor diffusivity increases dimerisation. Simulated testing of altered 

receptor diffusivity to assess receptor dimerisation, with otherwise fixed parameters. For 

convenience, receptor velocity was taken as v = D½. Diffusivity varied from 2–5, 2–3, ..., to 25. 

The simulation shows a decrease in dimer number at an increased diffusivity. Data are shown 

in a semi-log2 scale; mean ± SD. 
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8. Estimation of the plasma membrane area of confined domains 

Haining et al.40 deduced the proportion of the plasma membrane that constitutes 

confined domains using a single particle tracking microscopy, noting that GPVI exhibited 

distinctive Brownian and confined movement without and within confined domains, 

respectively. The number of GPVI molecules in Brownian and restricted movement mode was 

approximately equal40. A temporal change in the proportion of the membrane confined 

domains may also impact the localisation of a receptor. Using electron microscopy and spatial 

point pattern analysis, previously lipid rafts were estimated to comprise approximately 35% 

of the total membrane surface43. 

We used ABM to ask what proportion range of the plasma membrane should comprise 

a confined domain, such in accordance with the 50% of GPVI receptors with restricted 

movements40. To answer this, we fixed the diffusivity ratio to Dout:Din = 10:1 and the size of 

the domain to 200 nm, and then varied the percentage of the plasma membrane occupied by 

a confined domain. The number 10:1 was obtained from the diffusion coefficients of two pools 

of GPVI40. A first run of the simulation gave 20-21% of confined domains, which is below the 

estimation of lipid rafts of 35%43. Subsequently, the effects of enforced dimerisation were 

added (Figure 10). The adding of dimerisation somewhat decreased the corresponding 

domain area (with GPVIinside ~ 50%), meaning that the area occupied by the confined domain 

would not exceed 21%, based on the model prediction. We therefore concluded that, while 

confined domains govern the receptor dimerisation rate, the physicochemical properties of 

these do not alone control receptor function. Other constraining features such as more 

complex receptor interactions, including the actin-based membrane skeleton within lipid 

rafts55 and receptor crowding, are also important. 
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Figure 10. Enforced GPVI dimerisation reduces the confined domain area for a given GPVI 

localisation ratio. Plot of simulation of GPVI localisation in the presence of a confined domain 

with variable occupied area. Note the near linear increase of receptors inside the confined 

domain when this area increases. The reported value of GPVI with restricted movements40 is 

about 50%, pointing to a confined domain size of 20–21%. In the presence of dimerisation, this 

area slightly decreases to 19–20%, with a kb = 0.000625 and kd = 0.000125 (least square 

regression analysis). 

 

9. Increased receptor surface density results in higher predicted dimerisation levels 

Several estimates may affect the number of receptors on the cell surface used in the 

current model. The first variable is the number of GPVI receptor copies. We set this number 

at 9,600 per platelet, following Burkhart’s work44, which was obtained by quantitative mass 

spectrometry. Other studies using flow cytometry reported different figures ranging from 

3,000 to 9,00056,57, while also different GP6 alleles lead to altered membrane-expressed GPVI 

levels58. Furthermore, even within a given subject, platelet sub-populations exist with >10 fold 

differences in GPVI level, related to ageing cells59, differential cell size, receptor internalisation 

and shedding60. 

 Parameter estimation in this model assumed the platelet to be a perfect sphere; in 
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reality, the disc-like shape of platelet leads to a higher surface area given the same volume. 

Also human and mouse platelets differ in this respect. For mice, the GPVI density can be 

estimated as 575 molecules per μm2 (mouse platelet volume of ~4.7 fl61, with GPVI ~7800 

molecules per platelet62). Considering that the dimerisation rate depends on receptor density, 

inter-species differences can also be captured by the current simulation. 

 While setting for human the GPVI density as 9,600 per platelet surface area ≈ 1.8 x 10–

11 m2 (σ0 = 9600 / 1.8 x 10–11 m2 = 533 molecules per μm2) as a reference, we varied this density 

from -75% to +100% from σ0 and measured the percentage of receptors in dimeric form 

(Figure 11). The simulation predicted that an increased surface density of GPVI elevates the 

dimeric GPVI from 50% to 75% (over a range of -75% to +100% of reference levels). This implies 

that in the model dimerisation does not increase proportionately with the ratio of density. 

 

 

Figure 11. Increasing GPVI surface density increases dimerisation. (A) Simulation setups with 

various surface densities of GPVI: from left to right, top to bottom 50%, 100%, 150%, and 200% 

of σ0. (B) The plot shows that receptor dimerisation (as proportional to total GPVI, in %) 

increases with the GPVI surface density (as proportional to σ0 in %). Reference density σ0 was 

set as 533 molecules per μm2 (9600 receptors divided by platelet surface area ≈ 1.8 x 10–11 m2; 

spherical assumption). 
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10. Simulation of ligand binding increases GPVI dimerisation 

A way to simulate the effect of ligand binding is to increase the GPVI binding rate 

and/or dissociation rate. In real life, we expect GPVI in dimeric form to increase and to remain 

dimeric on collagen-adhered platelets26. To simulate this, we varied the kb and kd from the 

initial values (kb = 0.05 molecule–1 unit time–1 and kd = 0.01 unit time–1) by ±10%, ±20%, ±30%, 

and ±40%. The percentage of receptors in dimeric form was then simulated, as displayed in 

Figure 12. In this case, the dimerisation rate to increased when the binding rate was increased 

and/or dissociation rate decreased – both may illustrate the effect of ligand binding. A 

decrease in dissociation rate means that a formed dimer is more stable (e.g. stabilised by a 

multimeric ligand), while an increase in binding rate allows monomers to form into dimers 

with greater probability (induced by receptor-associated proteins). 

 

 

Figure 12. Increase in binding rate and decrease in dissociation rate increase GPVI 
dimerisation. Simulation varying the binding and dissociation rate value from -40%, -30%, …, 
+30%, +40%, deviating from the initial values of kb = 0.05 molecule–1 unit time–1 and kd = 0.01 
unit time–1. Values represent percentages of GPVI in dimeric form, as a proportion of total 
GPVI. Red colour represents higher dimerisation, blue lower dimerisation. 
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odelled factors to G

PVI dim
er form

aƟon. Arrow
s show

 the direcƟon of increasing the 

indicated factor.  O
ther condiƟons w

ere assum
ed to be fixed, w

hen varying the param
eter of interest. The level of dim

erisaƟon (in %
) displayed 

in colour scale: from
 20%

 (red) to 90%
 (right).N

um
bers indicate param

eter ranges tested w
ith units or dim

ension indicated in parentheses. 



 

65 
 

Concluding remarks 

In this study, we have demonstrated the abilities of a simple ABM technique to 

understand the constraints of receptor localisation and movement in the plasma membrane. 

Receptor dimerisation and subsequent clustering upon ligation are key initiators of signal 

transduction by many receptors that regulate cell function, including cell adhesion, migration 

and activation, for instance in the context of haemostasis and immunity. The ABM illustrates 

the presence of different lipid domains with distinctive properties (as confined domains), the 

space that these occupy on the cell surface, and the importance of the plethora of additional 

proteins on the cell surface, that form crowds and influence a given receptor’s ability to 

interact with partner proteins. The relative contributions of the functionally relevant 

parameters tested in the ABM to GPVI dimerisation levels are summarised in Figure 13. 

 Due to its simplicity, computational efficiency and ease of use, ABM has the potential 

to be developed and generalised also to other cell types and more complex systems of 

receptor/protein or cell membranes. It can be applied to various studies by adapting the 

properties of agents (e.g., mass, size, environment), and how these affect agent diffusivity and 

interaction rules. Moreover, the present still simple ABM can be further developed into a 

more complex system with more agents and conditions. Useful additions such as receptor 

interactions with the cytoskeleton can be added in by utilising a computational cluster63,64. 

Taken together, this study forms an initial step to model and define membrane 

properties and their influences on receptor function. This will highlight specific processes that 

may be targeted therapeutically to increase or decrease receptor function and may be used 

for teaching, enabling the impact of modulation of various model components to be tested or 

demonstrated in silico. 
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Supplemental 

The program implemented in this work is uploaded to the following reference.  

Tantiwong, Chukiat (2022): 

ABM_for_transmembrane_receptor_diffusion_and_dimerisation.nlogo. figshare. Software. 

https://doi.org/10.6084/m9.figshare.20444046.v2 

In order to use the program, you need to install NetLogo. Please download NetLogo via 

https://ccl.northwestern.edu/netlogo/download.shtml 

Open the downloaded program with NetLogo; you should be able to see an interface, as 

shown in Figure S1. You can change the value of parameters, click on setup and run to visualise 

the movement of agents. The tick’s sliding tab can be used to speed up the simulation. The 

plot on the right-hand side can be exported with right-click. The info tab shows the description 

of how the model work, the definition of each parameter, things to notice, and things to try. 

The code tab contains raw code to run the model, with descriptive comments. 

 

Figure S1. NetLogo screenshot of applied ABM. A screenshot was taken from the NetLogo 

program, and contains parts of interfaces, information, and codes. The shown interface part 

visualises the simulation box, the time-plots of receptor monomers and dimers, and the 

adjustable parameters. The information part describes the model and parameters. The coding 

part contains relevant details. 
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Figure S2. Flowchart of algorithm used in the GPVI-receptor ABM. The algorithm includes 

various steps in the simulation from randomly assigned initial positions up to stochastically 

movements per agent. 
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Chapter 3 (to be submiƩed) 

The importance of regulaƟon on controlling GPVI 

signal transducƟon: a systems biology approach 

 

Following GPVI acƟvaƟon triggered by dimerisaƟon and collagen binding, 

signalling from GPVI/ligand complex to Syk-phosphorylaƟon has been modelled 

in our previous work. Building upon previous work, we aimed to construct a 

mechanisƟc descripƟon of the complex pathway leading from Syk 

phosphorylaƟon to the release of inositol trisphosphate (IP3) into the platelet 

cytosol throught the LAT signalosome. The aim was a more comprehensive 

models, leading to the iniƟaƟon of inositol phospholipid metabolism and Ca2+ 

mobilisaƟon. In this chapter, we present a mathemaƟcal model that combines 

new experimental data to capture Ɵme-dependent changes in key components 

of the pathway and unravel the underlying regulatory mechanisms. 

 

 

 



 

75 
 

The Importance of RegulaƟon on Controlling GPVI Signal TransducƟon: 

A Systems Biology Approach 

Joanne L. Dunster1, Chukiat TanƟwong1,2, Rachel Cavill3, Johan W. M. Heemskerk2,4, Christoph 

Wierling5, Amanda J Unsworth6, Alexander P Bye7, Jonathan M Gibbins1,* 

1 School of Biological Science, University of Reading, Reading, UK 

2 Department of Biochemistry, CARIM, Maastricht University, Maastricht, Netherlands 

3 Department of Data Science and Knowledge Engineering, Maastricht University, 

   Maastricht, Netherlands 

4 Synapse Research InsƟtute, Maastricht, Netherlands 

5 Evotec, Göƫngen, Germany 

6 Manchester Metropolitan University, Manchester, UK 

7 Reading School of Pharmacy, University of Reading, Reading, UK 

* Corresponding author: j.m.gibbins@reading.ac.uk 

 

Abstract 

The platelet collagen receptor GPVI is a key trigger for the acƟvaƟon of platelets that 

provide the core component of the blood clots that stop bleeding at sites of injury but can, 

when formed inappropriately, lead to heart aƩacks and strokes. Although the subcellular 

components downstream of the GPVI receptor are known, how they interact to control 

platelet acƟvaƟon has not yet been fully unravelled, hindering the ability to predict therapeuƟc 

intervenƟons. Experimentally deciphering interacƟons that change quickly over Ɵme is 

challenging, and so here, we combine new experimental data that describes Ɵme-dependent 

changes in six key components within the signalling pathway with mathemaƟcal methods to 
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help elucidate regulatory mechanisms. We extend previous work describing the early events 

downstream of the platelet GPVI receptor, aƩempƟng to construct a mechanisƟc descripƟon 

of the complex pathway up to the release of InsP3 to the platelet cytosol. Bayesian techniques 

are used to compare compeƟng hypotheses regarding how the components interact with 

experimental data. The modelling sheds light on inositol InsP3 acƟvity, a key step that is hard 

to describe experimentally and is able to predict the effect therapeuƟc targeƫng of Btk. The 

sets of interacƟon parameters in each model were esƟmated, and the best candidate signalling 

model was selected by Akaike informaƟon criteria. Model simulaƟons reveal how nonlinear 

regulaƟon of Btk phosphorylaƟon and subsequent stabilisaƟon of membrane lipids are key 

regulatory components of the pathway. 

 

IntroducƟon 

The changes that platelets undergo in response to extracellular signals are essenƟal for 

health; they acƟvate, change shape and become sƟcky, allowing them to aggregate into clots 

that plug damage and prevent excessive bleeding at sites of injury, but when triggered 

inappropriately, lead to the formaƟon of clots that can trigger heart aƩacks and strokes1. The 

development of new drugs to suppress platelet funcƟon and thereby prevent thrombosis has 

been shown to be an effecƟve strategy. The collagen receptor glycoprotein VI (GPVI) drives 

thrombo-inflammatory platelet responses2. It triggers a subcellular pathway of events that is 

parƟcularly long and complex, centring around the proteins Spleen tyrosine kinase (Syk) and 

Bruton's tyrosine kinase (BTK) that are both targeƩed therapeuƟcally3. 

A cell's response to its environment involves a complex dance between subcellular 

molecules, proteins, lipids, and ions, culminaƟng in changes to the cell's behaviour. While the 

key players of these pathways are now oŌen well known, the choreography of the events is 
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oŌen obscured from view, inaccessible to experimental methods that only provide snapshots 

of events in space and Ɵme. MathemaƟcal models can join the data together to describe the 

Ɵme-dependent interacƟons between components, providing predicƟons that are testable, 

informaƟon on those aspects of a system that are not directly accessible to experimental 

observaƟon and insight into the effect of therapeuƟc intervenƟons4. The ability of these 

models to be useful in a laboratory or clinical seƫng relies on their ability to make valid 

predicƟons. But most models are not supported by sufficient quanƟtaƟve biological data. They 

are oŌen informed by data describing events in other cells or experimental setups.  

We previously developed a mathemaƟcal model of the early events downstream of 

GPVI7. Here, we extend this work in an aƩempt to decipher and order interacƟons that occur 

later in this pathway and culminate in the release of inositol InsP3 (IP3) to the cytosol. The aim 

is to provide a framework that is easily adapted and extended to test and direct future 

experimental data. There is uncertainty in the structure of the signalling pathway, and 

therefore, we compiled a number of hypotheses about how the proteins and lipids may 

interact, combining them into eight compeƟng model structures. We use a data-driven 

approach to test the different model structures. The data that we used was generated in-house 

specifically to describe the events downstream of GPVI sƟmulaƟon; it is unusually dense, 

describing the changes in six components over eleven Ɵmepoints. The model structures were 

translated into mathemaƟcal models and tested and calibrated against the data using Bayesian 

techniques. The use of this framework avoids point esƟmates for parameters, instead 

characterising the uncertainty in their inference from the model and available data, poinƟng 

to the most informaƟve experimental direcƟons5. SimulaƟons from the compeƟng models 

were compared to glean insight into the importance of individual events on the ability of 

models to fit the experimental data, uncovering the importance of nonlinear regulaƟon of Btk 
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and that experimental discriminaƟon between the compeƟng models could be achieved by 

the collecƟon of data that differenƟates between cytosolic and membrane bound proteins. 

 

Methods and Materials 

Experimental data 

Experimental data tradiƟonally used for calibraƟon, inference and validaƟon of 

mathemaƟcal models that capture subcellular changes are oŌen lacking in density, describing 

the changes to just a few components (or indeed just one) over a limited number of 

Ɵmepoints. Higher-density data is known to increase parameter idenƟfiability and the ability 

of the model to make valid predicƟons6, and our previous work demonstrated how data dense 

in Ɵme-dependent changes can aid in the discovery of the oŌen neglected and less understood 

negaƟve feedbacks within signalling pathways that can play a role in regulaƟng signal 

transducƟon7. Therefore here, experimental data was collected that was dense in both the 

Ɵmepoints over which it was assessed (11 spread over 3 minutes) and the number of 

components (4 proteins (Syk, LAT, PLCγ2, Btk and a PKC substrate) and 2 lipids (PIP2 and PIP3)), 

all of which are known to play a role downstream of the GPVI receptor. 

Data characterising the Ɵme-dependent changes to Syk, LAT, PLCγ2, Btk and a PKC 

substrate were performed on blood samples from healthy donors that had given consent, 

using procedures approved by University of Reading Research Ethics CommiƩee. Blood was 

collected by venepuncture into 4% sodium citrate and washed platelets prepared by 

differenƟal centrifugaƟon, as described previously. In short platelet rich plasma (PRP) was 

separated from whole blood via centrifugaƟon at 100 xg for 20 minutes at room temperature. 

Acid citrate dextrose was added to the PRP (1:8 v/v) prior to an addiƟonal centrifugaƟon step 

at 350 xg for 20 minutes to pellet the platelets. The platelet pellet was then resuspended in 
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Modified-Tyrodes HEPEs buffer (134mM NaCl, 0.34mM Na2HPO4, 2.9mM KCl, 12mM 

NaHCO3, 20mM N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid, 5mM glucose and 1mM 

MgCl2, pH 7.3), containing 100µM MRS2179, 1µM cangrelor, 1mM EGTA and 10 µM 

Indomethacin; to suppress secondary signalling and secreƟon and used immediately. 

Samples were sƟmulated with CRP-XL (Cambcol, Cambridge, UK) at a final 

concentraƟon of 1 µg/ml, then lysed in Laemmli sample buffer, denatured by boiling and 

loaded onto 4-12% NuPAGE Bis-Tris gradient gels (BioRad) and separated by SDS-PAGE 

electrophoresis. Immunobloƫng was performed using standard techniques. In short, proteins 

separated by electrophoresis were then transferred via semi-dry (Bio-Rad) western bloƫng to 

Immobilon-FL membranes (Millipore). Membranes were blocked with 5% (w/v) BSA and 

probed with phosphospecific anƟbodies that recognise the phosphorylated state of proteins 

of interest ((p)LAT-Y200, (p)Syk Y525/526, (p)Btk Y223 , (p)Ser-PKC substrates, (p)PLC – Y759). 

Following primary incubaƟon immunoblots were treated with either a fluorescent Cy5 dye-

labelled goat anƟ-Rabbit or a Alexa-Fluor 647 dye-labelled donkey anƟ-mouse (Life 

Technologies) anƟbodies. Proteins were detected using fluorophore conjugated secondary 

anƟbodies and visualised using a Typhoon Fluorimager and Image Quant soŌware (GE 

Healthcare). Band intensiƟes were quanƟfied and levels of total protein were used to 

normalize the phosphorylaƟon data using Image Quant soŌware and ImageJ. 

The phosphoinosiƟdes (PtdIns(4,5)P2 and PtdIns(3,4,5)P3) were measured via a newly 

developed method that uƟlises a quanƟtaƟve targeted ion chromatography-mass 

spectrometry-based workflow that separates phosphoinosiƟde isomers and increases the 

quanƟtaƟve accuracy of measured phosphoinosiƟdes, described in8. In summary washed 

platelets from healthy donors were pretreated with apyrase and indomethacin, and 

subsequently sƟmulated with CRP. High concentraƟons of CRP (30µg/mL) being used to 
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improve the detecƟon of these low abundance phosphoinosiƟdes. SƟmulaƟon was stopped at 

specified Ɵme points (0,30,60,90,120,180 and 600s), with ice cold 1M HCI9 and the samples 

were analysed and quanƟfied using ion chromatography tandem mass spectrometry system. 

 

Model development 

The aim is to develop a model that captures the key components that play a role in 

conducƟng signals downstream of a platelet’s GPVI receptor. We extend our previous model 

that captures the early steps in the GPVI pathway7, and culminated in the acƟvaƟon of the 

protein Syk, to incorporate eight new components: the trans-membrane protein Linker for 

AcƟvaƟon of T cells (LAT), a key member of a signalosome assembled following Syk 

phosphorylaƟon, the protein PhosphoinosiƟde 3-kinase (PI3K),  the phosphoinosiƟdes 

PtdIns(4,5)P2 (hereaŌer called PIP2) and PtdIns(3,4,5)P3 (PIP3), a member of the Tec family of 

tyrosine kinases Bruton tyrosine kinase (Btk), PLCγ2, the second messengers diacylglycerol 

(DAG) and protein kinase C (PKC) and, lastly, the inositol 1,4,5-trisphosphate (IP3) that when 

released to the platelets cytosol triggers calcium release from internal stores that leads to 

platelet acƟvaƟon. 

  While the key components of the GPVI pathway are well known, there is some 

uncertainty in how they interact to control IP3 release. To reflect this uncertainty, we compiled 

a core set of reacƟons that reflect current biological knowledge on the interacƟons (that we 

call our base model) and three modificaƟons that vary methods of interacƟons and regulaƟon 

between the components. 
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Figure 1 SchemaƟc depicƟng the interacƟons and reacƟons of the GPVI signalling pathway 

that are captured in the mathemaƟcal models. The reacƟons captured in the base model 

structure (denoted b) are depicted in the top panel. There are 3 modificaƟons to this, denoted 

with and addiƟonal 'a', 'd’ and ‘l’.   The inset in black broken lines demonstrates the 

modificaƟon denoted l and requires the removal of PLC binding to PIP3 (right-hand side). The 

modificaƟon ‘d’ captures  the removal of recycling of DAG to the membrane, and ‘a’ the 

addiƟon of nonlinear phosphorylaƟon of Btk. The modificaƟons are combined to form eight 

compeƟng model structures. Variables are represented by boxes, and the parameter 

associated with each process is placed next to the relevant arrow. Green boxes are outputs 

from the early model, red indicate that they are described experimentally, and blue are those 

without data. The equaƟons for all models are described in the supplemental 
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The base model 

These reacƟons are depicted in Figure 1 (top panel). In summary, following acƟvaƟon 

of GPVI, Syk-dependent events close to the platelet membrane (and captured in our earlier 

work) lead to formaƟon of a signalosome, a key component of which is LAT. The cytosolic 

protein PI3K can be recruited to this cluster of proteins at the cell membrane. Its primary 

substrate is PIP2, a lipid of the phosphoinosiƟde pathway, which through the acƟvity of PI3K, 

is converted to PIP3. The phosphoinosiƟde pathway is a large complex network of reacƟons 

with many other components, but we focus here on only those known to influence the GPVI 

signalling pathway and include a pool (denoted PI) to represent the other members of this 

network. Btk and PLCγ2, cytosolic proteins, both have PH domains that can bind to PIP3, 

facilitaƟng their recruitment to the cell membrane. Btk itself is able to mediate 

phosphorylaƟon and acƟvaƟon of PLCγ2. Once acƟvated PLCγ2 feeds back to influence the 

phosphoinosiƟde pathway by mediaƟng cleavage of PIP2, releasing it in the form of DAG and 

IP3 to the cytosol. The formaƟon of DAG leads to the binding and acƟvaƟon of PKC, a regulator 

of platelet granule secreƟon, and  IP3 is responsible for the release of calcium from internal 

stores into the platelet cytosol. 

The following describes three modificaƟons to the base model: 

 

ModificaƟon l:changes the mechanism of recruitment of PLCγ2 to the platelet membrane. 

In the base model, recruitment of PLCγ2 to the platelet membrane is through a PH 

domain that binds PLCγ2 to the phosphoinosiƟde PIP3. But, LAT has been proposed to recruit 

PLCγ2 to the membrane through its C-terminal SH2 domain and this modificaƟon, denoted by 

an 'l', reflects this10. 
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ModificaƟon d: neglects the recycling of DAG from the cytosol to the cell membrane. 

It is generally believed that cytosolic DAG and IP3 are recycled slowly up to the 

membrane, combining to join the pool of phosphoinosiƟdes, and this was captured in the base 

model. However, IP3 and DAG are known to be recycled via different pathways that likely 

involve differing rates11. Therefore, assuming a linear combinaƟon of IP3 and DAG may be 

misleading, and all models with a 'd' neglect DAG recycling. 

 

ModificaƟon a: includes nonlinear regulaƟon of Btk phosphorylaƟon. 

The recruitment of Btk to the platelet membrane, via its PH domain, and its subsequent 

phosphorylaƟon is known to be an important step downstream of GPVI, being crucial for the 

acƟvaƟon of phospholipase C-γ2 (PLCγ2). In the base model, phosphorylaƟon of Btk (on Tyr 

551) is assumed to be linear, being mediated by SFKs present upstream close to the GPVI 

receptor. But, there is evidence that this process is nonlinear,  with membrane recruitment 

triggering trans-autophosphorylaƟon12–14. Therefore all models denoted with an 'a' include an 

addiƟonal nonlinear process of Btk phosphorylaƟon.  

 

Combining model structures 

The four different scenarios denoted 'b', 'l', 'a' and 'd', were combined to form eight 

networks of interacƟons (denoted as b, ba, bd, bl, bad, bla, bld and blad). For example 

model b + modificaƟon l + modificaƟon d = model bld, 

that incorporates the base reacƟons, has PLCγ2 being recruited to the LAT signalosome, and 

DAG recycling is neglected. Each network of reacƟons (Figure 1) was translated into a system 

of ordinary differenƟal equaƟons. In addiƟon to the equaƟons and parameters in the original 

model, models ’b’, ’ba’, and ’bad’ comprise sixteen equaƟons and all models with an ’l’ (’bl’, 
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’bla’, ’bld’, ’blad’) have eighteen equaƟons, models with an ’a’ having nineteen parameters and 

those without an ’a’ having eighteen (Table 1 provides a descripƟon of the models parameters 

while full details of the equaƟons are given in Supplemental). These eight mathemaƟcal 

models capture our ideas on the dominant mechanisms by which the key proteins downstream 

of a platelet’s GPVI receptor interact to release IP3 to the cytosol, leading the calcium flux and 

platelet acƟvaƟon. 

 

Parameter DescripƟon Unit of measure 

r1 Syk phosphorylaƟon of LAT signalosome molecules–1s–1 

r2 Rate of binding for PI3K m3moles–1s–1 

r–2 DissociaƟon rate for PI3K s–1 

r3 Rate of conversion of PIP2 to PIP3 molecules–1s–1 

r–3 Rate of conversion of PIP3 to PIP2 s–1 

r4 Rate of binding for PLC m3moles–1s–1 

r–4 DissociaƟon rate for PLC s–1 

r5 Hydrolysis of PIP2 to IP3 and DAG molecules–1s–1 

r6 Recycling of IP3 to the membrane (PI) molecules–1s–2 

r7 Rate of binding for Btk m3moles–1s–1 

r–7 DissociaƟon rate for Btk s–1 

r8 Rate for Btk phosphorylaƟon molecules–1s–1 

r9 Rate for PLC phosphorylaƟon molecules–1s–1 

r10 Rate of binding for DAG (to PKC) molecules–1s–1 

r–10 DissociaƟon rate for DAG s–1 

r11 PI conversion to PIP2 s–1 

r–11 PIP2 conversion to PI s–1 

r12 PIP3 conversion to PI s–1 

re Btk non-linear phosphorylaƟon & molecules molecules–1s–1 
 

Table 1 A summary of new models parameters. Their definiƟons and units of measure, prior 

distribuƟons are uniform in log-scale in range 10–10 to 10+3. 
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Model inference and validaƟon 

To assess which, if any, of the eight networks of interacƟons was supported by the 

experimental data, the mathemaƟcal models were calibrated and compared to the data using 

a form of Approximate Bayesian ComputaƟon. The steps in this process are depicted in Figure 

2. 

We esƟmated all unknown parameter values for our models as previously7. Parameter 

values were drawn randomly from wide ranges via a LaƟn Hypercube. The parameter set was 

passed to a constrained local opƟmisaƟon rouƟne (MATLAB's fmincon) that varies all unknown 

parameters to minimise the differences between the model structures and experimental data 

via a cost funcƟon (SSE) 

Sum Squared due to Error (SSE) = Σi,j (1/Nj)*(yi(θ)j - Datai
j)2 

where yi(θ)j is the model's predicƟon for the model variable j (that were used in fiƫng, i.e. 

LAT*, PLC*) at Ɵme point i (which depends on the parameters θ), Datai
j represents the 

experimental observaƟons, and Nj is the number of data points corresponding to the variable 

j. This cost funcƟon allows us to define each models ability to fit the data where we miƟgate 

against a more complex model, with more parameters, being able to beƩer fit the data by 

using Akaike InformaƟon Criteria (AICc)15. 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘ଶ + 2𝑘

𝑛 − 𝑘 − 1
 

where  

𝐴𝐼𝐶 = 𝑛 ln ൬
𝑆𝑆𝐸

𝑛
൰ + 2𝑘 

Here, k be the number of esƟmated parameters in the model, and n be the number of data 

(fiƫng points). This modified criterion taking into account the experimental sample size by 

increasing the relaƟve penalty for model complexity with small datasets. The value of AICc has 
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no meaning in isolaƟon, its relevance only becoming apparent when it is used to compare (and 

rank) models fiƩed to the same experimental data15. Parameter values that enable the model 

to ’best’ describe the experimental data were saved. The process was repeated 50,000 Ɵmes 

for each model. It yields sets of parameter values that allow a parƟcular model to achieve its 

best descripƟon of the experimental data. The distance (captured in this cost funcƟon) for 

simulaƟons produced from the set of ’best’ parameter values for each candidate model can 

then be compared to assess which model structure is best able to fit the available experimental 

data. The numerical simulaƟons generated from these parameter values, which cover the 

Ɵme-dependent changes in all of the proteins and lipids included in the model, can then be 

compared to assess if they produce biologically consistent and feasible predicƟons. The ranges 

of the best parameter values are then assessed, providing insight into the mechanisms that 

allow a parƟcular model to describe the data beƩer than an alternaƟve model. 
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Figure 2 The steps involved in model calibraƟon and comparison to experimental data. A) 

Time-resolved data are collected to describe 6 key steps in the pathway. B) The four alternaƟve 

hypotheses regarding the interacƟons and reacƟons between the signalling proteins and 

plasma membrane lipids are combined and translated into systems of ordinary differenƟal 

equaƟons. C) Bayesian inference is to used to infer parameters that have a high or appreciable 

probability of having generated the observed data. A parameter set is sampled from prior 

distribuƟons and used to numerically simulate a model structure. The cost funcƟon (SSE) is 

used to decide if the parameters allow the model to generate predicƟons close to the data. D) 

The distance between each model's predicƟons and the data provides informaƟon on which 

A B 

C 

D 
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model structure is best able to replicate the data. Posterior distribuƟons provide informaƟon 

on the uncertainty in parameter esƟmates that are learned from observed data and also on 

the range of realisƟc parameter values that can produce observed data. Model simulaƟons 

provide predicƟons for unobservable components and addiƟonal informaƟon on the gap 

between observable components and the data. 

 

Results 

Experimental data 

The experimental data (Figure 3) describes the changes that occur in platelets following 

a ligand binding to the GPVI receptor. Standard laboratory methods to describe post-

translaƟonal modificaƟons usually comprise a limited number of Ɵmepoints. Here our data 

comprises 11 Ɵmepoints describing changes over 3 minutes, capturing the full dynamics of 

post-translaƟonal changes. The proteins (LAT, Btk, PLCγ2 and PKC) and the lipids (PIP2 and 

PIP3) were selected based on their known importance in GPVI signal transducƟon. 

PhosphorylaƟon of Btk is quanƟfied, while the data describing changes in LAT, PLCγ2 and PKC 

is normalised to maximal levels. 

PhosphorylaƟon of LAT and PLCγ2 monotonically increases before achieving a steady 

state approximately 2 minutes aŌer sƟmulaƟon. The data indicate that phosphorylated Btk 

follows a similar paƩern, though hints at an early peak (and regulaƟon) at 1 minute before 

phosphorylaƟon increases at later Ɵmepoints. The quanƟficaƟon of phosphorylated Btk 

indicates that it comprises only a fracƟon (<40%) of the total pool, as occurs in other cell 

types16, a further indicaƟon of regulaƟon of Btk phosphorylaƟon. In agreement with studies in 

alternaƟve cell types, the abundance of PIP2 is shown to be three orders of magnitude higher 

than for PIP3. 

 



 

89 
 

 

Figure 3 Experimental data describing CRP-induced changes to two phosphoinosiƟdes and 

four proteins that play a role in the GPVI signalling pathway. Results for Btk, PIP2 and PIP3 

are expressed as molecules/platelet, while results for LAT, PLC and PKC are normalised to the 

maximum. Results are mean ± SD from mulƟple donors (LAT, 6 donors; Btk, 8; PLC, 4; PKC, 6; 

PIP2 and PIP3, 4). 

 

The importance of non-linear regulaƟon of Btk in differenƟaƟng the reacƟons that dominate 

the GPVI signalling pathway 

We are iniƟally interested in which of our eight compeƟng mathemaƟcal models are 

best supported by the experimental data. Table 2 provides informaƟon (output from the cost 

funcƟon) on the ability of each model to fit the experimental data. This summarises the 

distance between the experimental data and the models simulaƟons, a lower number 

reflecƟng a closer fit to the data. The results indicate that a single structural modificaƟon that 

incorporates PLCγ2 binding to the signalosome or neglects DAG recycling does not greatly 

improve the fit to the data (minimum AICc for model ’b’∼’bl’∼’bd’∼ −185), the same being 

true for a combinaƟon of these (’bld’∼ −185). The inclusion of nonlinear phosphorylaƟon of 

Btk improves the fit of any of these combinaƟons, with a model that combines all modificaƟons 
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(blad) being able to produce simulaƟons closest to the data (’blad’, −244), it is worth noƟng 

that removal of nonlinear regulaƟon of Btk phosphorylaƟon reduces to a model that is least 

able to simulate the data (bld, −184). 

 

Model b ba bd bad bl bla bld blad 

Median (10) n log(SSE/n) -186.71 -238.5 -188.23 -240.63 -185.82 -239.18 -184.17 -244.37 

Median (100) n log(SSE/n) -182.21 -234.56 -183.73 -240.63 -181.77 -236.75 -176.8 -241.08 

Median (10) AICc -136.16 -183.97 -137.68 -186.1 -135.27 -184.66 -126.24 -189.85 

K 18 19 18 19 18 19 18 19 

 

Table 2 Results of fiƫng each model to the data. Results of fiƫng each model to the data. SSE 

= distance of model simulaƟons from experimental observaƟons, n is the number of 

experimental observaƟons (11 Ɵmepoints ×6 datasets = 66) and K = the number of the model’s 

parameters that are inferred from the data. Median (10) indicates the median of the lowest 10 

results, Median (100) the lowest 100. Metrics in bold denote the models with the lowest n 

log(SSE/n) or AICc. 

 

The posteriors (Figure 4) describe the parameter values inferred from the data, they 

are shown normalised against the prior distribuƟons (staƟsƟcs are provided in Supplemental). 

These sets hold informaƟon on which parts of the signalling pathway can be best inferred from 

the data as well as a parameters influence on the general ability of the model to fit the data, 

two concepts that are inƟmately linked. If a posterior distribuƟon is broad and, therefore, not 

very different from the prior, then the parameter is not inferable from the data and the fiƫng 

process is insensiƟve to its variaƟon. In contrast, parameters with a narrower posterior 

distribuƟon (lower values, denoted by asterisks indicate the best constrained) they have had 
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informaƟon returned from the experimental data, and the predicƟons for the data are 

sensiƟve to its variaƟon. 

 

Figure 4: An illustraƟon of the approximated posterior parameter ranges. These posteriors 

show parameter ranges for lowest SSE normalised to the prior distribuƟon. VerƟcal lines 

represent the 90% credible interval, black the interquarƟle, red the inner 10%. Circles represent 

medians. To avoid crowding 90% intervals are described numerically in Table 5 of 

Supplemental. 

 

Generally parameter posterior distribuƟons were well dispersed, making point 

esƟmates unreliable but, despite this unidenƟfiability that is present in all of the models, some 

models are beƩer at constraining the data than others. Models ’bd’ and ’blad’ are best able to 

constrain the parameters (the 90% percenƟles being restricted to 40% of their priors for 16 

parameters), while ’bld’, the model that was noted above to have difficulty fiƫng the data is 

also least able to constrain the parameters (the 90% percenƟles being restricted to 40% of 
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their priors for 8 parameters, only 1 of these being restricted to a range of 25% of their priors). 

However, we cannot infer that the beƩer model always yields a narrower range of parameters 

posterior. The goodness of fit sƟll needs to be quanƟfied and evaluated by the cost funcƟon. 

In general the models are beƩer at inferring forward reacƟons than their reverse. Models are 

best at inferring parameters r1 (LAT phosphorylaƟon) and the parameters controlling Btk 

phosphorylaƟon (r8 and its addiƟon re, which no doubt reflects the quanƟty of surrounding 

data (for r1) or its quality, the Btk data being quanƟfied. Other parameters that have been 

consistently restricted by most models are those of the phosphoinosiƟde pathway (r11, r12, r3 

and r−3). 

Comparing the 10 best simulaƟons for each model against the experimental data 

reveals that all models are able to capture the general trend displayed in the experimental 

data describing phosphorylaƟon (an example of this is shown in Figure 5, A), but some models 

are less well able to describe the dynamics of the phosphoinosiƟdes PIP2 and PIP3 (Figure 5, 

B). Models ’b’, ’bd’, ’bl’ and ’bld’ predict sharp early transient peaks in both phosphoinosiƟde 

species while the inclusion of nonlinear rates of Btk phosphorylaƟon (models with an ’a’) are 

able to produce simulaƟons without these sharp peaks. 

In summary model ’blad’ is best supported by the experimental data and removing 

non-linear regulaƟon from this model results in a model (’bld’) that is least able to generate 

the data. The selecƟon of model ’blad’ as represenƟng the most likely set of dominant 

reacƟons that lead to the data is supported by the notable difference between the posteriors 

of the two models with model ’blad’, being one of two models best able to restrain the 

parameter values, and model ’bld’ the worst. SimulaƟons from models with non-linear 

regulaƟon of Btk phosphorylaƟon predict that Btk binding to the phosphoinosiƟde PIP3 
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stabilises the phosphoinosiƟde pathway, which is reflected in the lack of early transient peaks 

in simulaƟons of PIP2 and PIP3. 

 

Binding kineƟcs of proteins can differenƟate model predicƟons 

Comparing model predicƟons reveals other differenƟaƟng predicƟons. SimulaƟons for 

all three species of Btk, when it is in the cytosol, bound to the membrane and phosphorylated 

(Figure 5, B) are different from models that include non-linear regulaƟon of Btk 

phosphorulaƟon to those without. Models without an ’a’ predict that cytosolic Btk slowly 

decays, but once Btk recruited to the membrane it is quickly becomes phosphorylated. In 

contrast, models with an ’a’ predict that Btk quickly transfers to the membrane where it is 

slowly phosphorylated. In the former, it is the slow availability of Btk at the membrane that 

controls the rate of phosphorylaƟon, while in the laƩer, with nonlinear rates of 

phosphorylaƟon, this is not required. 

In a similar manner there are differing predicƟons for the rate that PLC is recruited to 

the membrane (Figure 5, panel C). Models where PLC is recruited to the signalosome (denoted 

with ’l’) predict that cytosolic PLC is slowly recruited to the membrane where it is quickly 

phosphorylated whereas models where PLC binds to PIP3 (without an ’l’) predict that cytosolic 

PLC is quickly recruited to PIP3 at the membrane, where it is slowly acƟvated (Figure 5). 

Model simulaƟons generally predict that the phosphoinosiƟde pool (PI) is not 

depleted, remaining at high levels. The excepƟon is in simulaƟons from models that neglect 

recycling of DAG back to the membrane and have linear Btk phosphorylaƟon, namely models 

’bd’ and ’bld’. The 10 best simulaƟons from these models can be categorised into two groups, 

those that show liƩle depleƟon of the phosphoinosiƟde pool that are more in line with data 

describing posiƟve levels of these alternaƟve phosphoinosiƟdes 10 minutes aŌer sƟmulaƟon 
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with CRP8,17,18 and those that do, the laƩer being accompanied by subsequent large rises in 

IP3 and DAG (Figure 5, D). 

 

Figure 5 Comparison of model simulaƟons. A) An example of simulaƟons of LAT, Btk, PLC, and 

PKC acƟvity (black lines) compared to data (red lines). B) SimulaƟons from a model that does 

not incorporate nonlinear phosphorylaƟon (leŌ) compared to simulaƟons from a model that 
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does (right). C) SimulaƟons of PLC acƟvity comparing the outputs from a model where PLC 

binds to the signalosome compared to a model where PLC binds to PIP3. D) SimulaƟons 

demonstraƟng divergent predicƟons for PI, IP3 and DAG. All simulaƟons show the 10 best fits. 

The different colours highlight the different predicƟons for subsets of simulaƟons. 

In summary, while non-linear regulaƟon of Btk is supported by the current 

experimental dataset differenƟal predicƟons of cytosolic and membrane bound proteins 

points the way to a further experimentaƟon that could be informaƟve in discriminaƟng 

between compeƟng hypothesis regarding the reacƟons that dominate in the GPVI signalling 

pathway. 

 

The impact of collecƟng experimental measurements of IP3 

In simulaƟons from all models, predicƟons of the IP3 inositol trisphosphate are highly 

variable. While measurement of IP3 is difficult, due to its rapid hydrolysis, we hypothesised 

that experimental data describing this key molecule may increase the model idenƟfiability (and 

therefore predicƟve ability). Data describing changes in IP3 in platelets downstream of an 

alternaƟve receptor are available in literature19. The cost measure associate with IP3 has been 

added to SSE calculaƟon.  This data (Figure 6, right panels (in red)) re-inferred models ’bld’ (the 

model least able to replicate the original datasets) and ’blad’ (the best). 

The inclusion of the addiƟonal data did not improve the agreement between model 

simulaƟons and data for both models (Supplemental Figures 10 and 11). Parameter ranges, 

compared to priors, were also similar with only minor reducƟons in the uncertainty in their 

values. Both models failed to fit the IP3 data. But, model ’blad’ shows consistency in its 

predicƟons, displaying a slow-prolonged release of IP3 to the cytosol that is in contradicƟon 

to the experimental data from literature which shows thrombin sƟmulated IP3 release with a 

sharp transient before falling to a lower posiƟve steady state by 100 seconds aŌer sƟmulaƟon. 
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Calcium flux from intracellular stores is know to closely follow the release of IP3 and thrombin 

sƟmulated calcium flux shows a similar paƩern to the data used for model fiƫng and CRP 

sƟmulated calcium flux reminiscent of the predicƟons from model ’blad’20. 

 

 

Figure 6 The impact of fiƫng the models ’blad’ and ’bld’ to datasets that include changes in 

IP3, the ’i’ indicaƟng the model was inferred to IP3 data. LeŌ panels show the parameter 

ranges of the 100 lowest SSE normalised to the prior distribuƟon. VerƟcal lines represent the 

95% credible interval, black the inter-quarƟle, red the inner 10%. Circles represent medians. 

Right panels show model simulaƟons for IP3 (black lines) against IP3 data (red) (top, from 

model blad, boƩom from bld). 

 

SensiƟvity analysis 

The sensiƟvity analysis has been performed on model blad by varying both parameters 

(from -90% and +90%) and iniƟal condiƟons (-50% and +50%) to see their effect on steady state 

level (SS), maximum level (max), Ɵme reach maximum (Ɵme), and slope raƟo (shape) of each 

specie in the model, defined in Figure 7C. It reveal that the levels of the phosphoinosiƟdes are 

unsurprisingly controlled by the internal rates of conversion between phosphoinosiƟdes (r3, r-

3, r11, r-11 and r12). Rising levels of PI, or its rates of conversion to other species (r11, r-11 and r12), 
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results in the raising of PIP2, PIP3 and its downstream products IP3 and DAG. Levels of PI3K 

and the rate it converts PIP2 to PIP3 (r3, r-3) have a differenƟal effect, with rising levels increasing 

PIP3 and decreasing PIP2 and its downstream products. Similar divergent effects are seen from 

changing levels of PLC or its acƟon on PIP2 (r5), which increase PIP2 and PIP3 but lower IP3, DAG 

and PKC acƟvity.  

Another important note is the decrease/increase in the rate that IP3 is recycled back to 

the membrane (r6) and only affects IP3 levels (both steady state and its maximum), it being 

returned to the pool of phosphoinosiƟdes that are greatly in excess of IP3 – the difference in 

order of magnitude. AddiƟonally, the nonlinear phosphorylaƟon term (ke) of blad model 

dominates the behaviour of Btk. The acƟvity of the signalosome, which in this model 

comprises of LAT, PI3K and PLC, has effects on most downstream events. The detailed results 

are presented in Figure 7A. 

Figure 7B shows the effect of iniƟal condiƟons variaƟon on the same set of 

observaƟons (SS, max, shape, and Ɵme). The first thing we could spot is the variaƟon of ligand 

concentraƟon (L) largely affects the response Ɵme throughout the signalling cascade (PI3L, 

LAT, PLC, and PKC). Steady state (SS) of some components is not only sensiƟve to upstream 

components but also downstream; for example, PI3KSS is sensiƟve to [PI3K]0 (itself), [LAT]0 

(upstream), and [PLC]0 (downstream). This could be due to the reverse reacƟon; thus lower 

PLC could decrease the rate of spaning the PI3K* species (which can be LAT*:PI3K*, 

LAT*:PLC:PI3K*, and LAT*:PLC*:PI3K*, see figure 1). While LAT signalosome interacƟons are 

complicated, BTKmax is only controlled by [BTK]0 itself, as it comparaƟvely independent. 

However, we could see that the variaƟon of other variables / iniƟal condiƟons, either posiƟvely 

or negaƟvely, affect the BTKshape such that the ‘shape’ is geƫng larger, meaning that the BTK 

curve can quickly become a plateau.  



 

98 
 

 

 

Figure 7 Heatmaps resulƟng from the sensiƟvity analysis. A) shows the effect of varying the 

models parameters (-90% and +90%). B) the effect of varying the iniƟal values of the variables 

(-50% and +50%). Each column represents a model's output, and each row a parameter or 

variable (where a negaƟve sign indicates a decrease and a posiƟve increase). The summary 

staƟsƟc defined as value = ((manipulated − original)/original)×100. In the heatmap the data 

are binned into 5 groups with cut offs ± 10, 50, 100, 500. Red and blue colours reflect the 

increasing and decreasing of value, respecƟvely. C) the illustraƟon of the definiƟon of observe 

sensiƟviƟes: SS, max, Ɵme, and shape. SS is the average concentraƟon during a steady state 

(from t = 320 s to 360 s). max is the maximum concentraƟon of the Ɵme series. Ɵme is the Ɵme 

when the concentraƟon hits its maximum value. shape is the raƟo of the slope of tangental 

lines before and aŌer the curve reaches its maximum point. 

(A) (B) 

(C) 
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Discussion 

In this study, we described a mathemaƟcal modelling approach to invesƟgate the 

signaling pathway acƟvated by CRP in platelets. The modelling approach provides insights into 

the role of key molecules and processes in the signaling pathway and highlights the limitaƟons 

of the current understanding of the pathway. We aimed to test current knowledge of the 

structure of the GPVI signalling pathway using mathemaƟcal models. Our goal was not to 

create a final and complete model, but to form a framework that could be modified and 

extended as more data and ideas were generated. The complexity of the pathway and the data 

made intuiƟon-based analyses difficult, so we turned to mathemaƟcal models as a way to test 

hypotheses and direct resources to experiments that were likely to provide the most 

informaƟon.   

We encountered a number of challenges while creaƟng these models. Firstly, we found 

that it was relaƟvely easy to generate mathemaƟcal models and predicƟons, but the problem 

was making predicƟons that could be relied on in a research or even clinical seƫng. We knew 

that for most models, many different parameter sets could generate results that fit data, but 

some may not be valid, and some may be excluded when tested against alternaƟve data or 

produce divergent predicƟons under perturbaƟons. To address this issue, we used the 

Bayesian method, which provides a framework for assessing uncertainty in models in both the 

parameters and the structure of the model21. In a Bayesian framework, the prior of the 

parameters play a crucial role in the esƟmaƟon of parameters, and the prior was selected 

based on the available literature and expert knowledge. 

AddiƟonally, as the models describing subcellular pathways became more complex, it 

was easy for them to be over-parameterised with respect to the experimental data used for 
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parameter esƟmaƟon, resulƟng in uncertainty in the individual parameter esƟmates as well as 

in the predicƟons made from the model. To address this, we sought to assess whether the 

amount and quality of the experimental data constrained the parameter esƟmates, which is 

known as pracƟcal idenƟfiability22–24. Even for our model that shows the best ability to reflect 

the available experimental data, only 3 parameters, i.e. r1, r8, and re, were appreciably 

narrowed from their priors, indicaƟng that there is always an inherent tension oŌen neglected 

when construcƟng mathemaƟcal descripƟons of biological systems between the desire to 

include every possible interacƟon into a model, increasing uncertainty, and the availability of 

supporƟng data that allow such a model to make valid predicƟons. The parameter's posterior 

could also depend on the proximity of the corresponding interacƟons to the data being 

measured; for example, r1 is closest to measured LAT* without other parameters' interference. 

The uncertainty in our parameter esƟmates raises the possibility that a structurally simpler 

model may fit the empirical data equally well. However, we do not take this approach, 

preferring to retain biological components that are the focus of research, instead using the 

unidenƟfiability to point to areas of further research. 

The model was calibrated and tested against an unusually comprehensive set of dense 

data that describes the Ɵme-dependent changes in six key components obtained from the use 

of mulƟ-omics techniques, such as phospho-proteomics, which enables characterisaƟon of 

protein copy numbers and phosphorylaƟon of signalling components. These models were 

designed to test our knowledge of the pathway against our data and represented a first step 

in understanding the complex interacƟons within the pathway. Of the compeƟng models, a 

model that includes nonlinear regulaƟon of Btk was found to be the best able to describe the 

experimental data, uncovering the importance of nonlinear regulaƟon of Btk in stabilizing the 

pathway. AddiƟonally, our aƩempts to extend the model highlighted the importance of the 
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membrane in the regulaƟon of the pathway, both in terms of stabilizaƟon and speed to 

acƟvaƟon. We discovered that while PIP2 and PIP3 represent less than 1% of membrane 

phospholipids, their ability to act as a tether controls the regulaƟon of Btk with feedback 

through the stabilizaƟon of PIP3 that, in turn, regulates the phosphaƟdylinositol pathway. The 

importance of membrane tethering in the regulaƟon of the pathway points the way to the 

inclusion of spaƟal effects that, through lack of spaƟally resolved data, was necessarily 

neglected here. Furthermore, Calcium data is readily available, but given the uncertainty of 

the intermediate steps, it was also not incorperaƟon. However, with well-controlled 

experimental set up, it is a future priority to incorporate calcium Ɵme series into the model for 

purposes of calibraƟon. This development could also extend the model's validaƟon capability 

by experiment on ligand concentraƟon as has been done in25. In conclusion, this study paves 

the way for future research to enhance the model by incorporaƟng calcium Ɵme series data, 

enabling a more comprehensive understanding of the CRP/collagen-acƟvated signalling 

pathway in platelets. 
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Supplemental 

Here we present details of the mathemaƟcal models and provide the results of 

inferring the models to the experimental data. 

 

1. MathemaƟcal model structures 

1.1 Previous model 

We extend our previous work describing the early events downstream of the GPVI 

receptor to capture current biological knowledge of the events up to, and including, the 

producƟon of IP3. The details of the model of the early reacƟons, taken from1, are included 

for completeness. The variables, iniƟal condiƟons, parameters and values are summarised in 

Table 1 and the equaƟons are: 

ௗ[]

ௗ௧
= −

భ

ೡ
[𝑙][𝑔] +

షభ

ೡ
[𝐺]         (1a) 

ௗ[]

ௗ௧
= −𝑘ଵ[𝑙][𝑔] + 𝑘ିଵ[𝐺]         (1b) 

ௗ[ீ]

ௗ௧
= 𝑘ଵ[𝑙][𝑔] − 𝑘ିଵ[𝐺] − 𝑘ଶ[𝐺]        (1c) 

ௗ[ீ]

ௗ௧
= 𝑘ଶ[𝐺] −

య

ೡ
[𝐺][𝑠]         (1d) 

ௗ[ீబ,బ
್ ]

ௗ௧
=

య

ೡ
[𝐺][𝑠] − 𝑝ଶൣ𝐺,

 ൧ + 𝑝ିଶൣ𝐺ଵ,
 ൧ − 𝑝ଵൣ𝐺,

 ൧ + 𝛾ଶ([𝐺ଵ,ଵ
௨ ] + [𝐺ଵ,

 ])[𝐺,ଵ
 ] (1e) 

ௗൣீభ,బ
್ ൧

ௗ௧
= 𝑝ଶൣ𝐺,

 ൧ − 𝑝ିଶൣ𝐺ଵ,
 ൧ −

య

ೡ
ൣ𝐺ଵ,

 ൧[𝑐] + 𝑝ିଷൣ𝐺ଵ,
 ൧ − 𝑝ଵൣ𝐺ଵ,

 ൧  

+𝛾ଶ([𝐺ଵ,ଵ
௨ ] + [𝐺ଵ,

 ])[𝐺ଵ,ଵ
 ]        (1f) 

ௗൣீభ,బ
 ൧

ௗ௧
=

య

ೡ
ൣ𝐺ଵ,

 ൧[𝑐] − 𝑝ିଷൣ𝐺ଵ,
 ൧ − 𝑝ଵൣ𝐺ଵ,

 ൧ − 𝑝ସൣ𝐺ଵ,
 ൧ + 𝑝ିସൣ𝐺ଵ,

௨ ൧  

+𝛾ଶ൫ൣ𝐺ଵ,ଵ
௨ ൧ + ൣ𝐺ଵ,

 ൧൯[𝐺ଵ,ଵ
 ]        (1g) 
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ௗൣீభ,బ
ೠ ൧

ௗ௧
= 𝑝ସൣ𝐺ଵ,

 ൧ − 𝑝ିସൣ𝐺ଵ,
௨ ൧ −

ఱ

ೡ
ൣ𝐺ଵ,

௨ ൧[𝑟] − 𝑝ଵൣ𝐺ଵ,
௨ ൧ + 𝑝ିହൣ𝐺ଵ,

 ൧  

+𝛾ଶ([𝐺ଵ,ଵ
௨ ] + [𝐺ଵ,

 ])[𝐺ଵ,ଵ
௨ ]         (1h) 

ௗൣீభ,బ
ೝ ൧

ௗ௧
=

ఱ

ೡ
ൣ𝐺ଵ,

௨ ൧[𝑟] − 𝑝ଵൣ𝐺ଵ,
 ൧ + 𝛾ଵൣ𝐺ଵ,ଵ

௨ ൧ − 𝑝ିହൣ𝐺ଵ,
 ൧     (1i) 

ௗൣீబ,భ
್ ൧

ௗ௧
= 𝑝ଵൣ𝐺,

௨ ൧ − 𝑞ଶ𝑝ଶൣ𝐺,ଵ
 ൧ + 𝑝ିଶൣ𝐺ଵ,ଵ

 ൧ − 𝛾ଶ([𝐺ଵ,ଵ
 ] + [𝐺ଵ,

 ])[𝐺,ଵ
 ]   (1j) 

ௗൣீభ,భ
್ ൧

ௗ௧
= 𝑝ଵൣ𝐺ଵ,

 ൧ + 𝑞ଶ𝑝ଶൣ𝐺,ଵ
 ൧ − 𝑝ିଶൣ𝐺ଵ,ଵ

 ൧ −
య

ೡ
ൣ𝐺ଵ,ଵ

 ൧[𝑐] + 𝑝ିଷൣ𝐺ଵ,ଵ
 ൧  

−𝛾ଶ([𝐺ଵ,ଵ
 ] + [𝐺ଵ,

 ])[𝐺ଵ,ଵ
 ]        (1k) 

ௗൣீభ,భ
 ൧

ௗ௧
= 𝑝ଵൣ𝐺ଵ,

 ൧ +
య

ೡ
ൣ𝐺ଵ,ଵ

 ൧[𝑐] − 𝑝ିଷൣ𝐺ଵ,ଵ
 ൧ − 𝑝ସൣ𝐺ଵ,ଵ

 ൧ + 𝑝ିସൣ𝐺ଵ,ଵ
௨ ൧  

−𝛾ଶ൫ൣ𝐺ଵ,ଵ
 ൧ + ൣ𝐺ଵ,

 ൧൯ൣ𝐺ଵ,ଵ
 ൧        (1l) 

ௗൣீభ,భ
ೠ ൧

ௗ௧
= 𝑝ଵൣ𝐺ଵ,

௨ ൧ + 𝑝ସൣ𝐺ଵ,ଵ
 ൧ − 𝑝ିସൣ𝐺ଵ,ଵ

௨ ൧ −
ఱ

ೡ
ൣ𝐺ଵ,ଵ

௨ ൧[𝑟] + 𝑝ିହൣ𝐺ଵ,ଵ
 ൧  

−𝛾ଶ൫ൣ𝐺ଵ,ଵ
 ൧ + ൣ𝐺ଵ,

 ൧൯ൣ𝐺ଵ,ଵ
௨ ൧        (1m) 

ௗൣீభ,భ
ೝ ൧

ௗ௧
= 𝑝ଵൣ𝐺ଵ,

 ൧ +
ఱ

ೡ
ൣ𝐺ଵ,ଵ

௨ ൧[𝑟] − 𝛾ଵൣ𝐺ଵ,ଵ
 ൧ − 𝑝ିହൣ𝐺ଵ,ଵ

 ൧     (1n) 

ௗ[௦]

ௗ௧
= −

య

ೡ
[𝐺][𝑠]          (1o) 

ௗ[]

ௗ௧
= −

య

ೡ
ൣ𝐺ଵ,

 ൧[𝑐] + 𝑝ିଷൣ𝐺ଵ,
 ൧ −

య

ೡ
ൣ𝐺ଵ,ଵ

 ൧[𝑐] + 𝑝ିଷൣ𝐺ଵ,ଵ
 ൧    (1p) 

ௗ[]

ௗ௧
= −

ఱ

ೡ
ൣ𝐺ଵ,

௨ ൧[𝑟] −
ఱ

ೡ
ൣ𝐺ଵ,ଵ

௨ ൧[𝑟] + 𝑝ିହൣ𝐺ଵ,ଵ
௨ ൧ + 𝑝ିହൣ𝐺ଵ,

 ൧    (1q) 

where, in the equaƟons below, [𝑆𝑦𝑘 − 𝑌525∗] = ൣ𝐺,
 ൧ + ൣ𝐺,ଵ

 ൧ + ൣ𝐺ଵ,ଵ
 ൧ + ൣ𝐺ଵ,ଵ

௨ ൧ + ൣ𝐺ଵ,ଵ
 ൧ 

and [𝑆𝐹𝐾] = [𝑔] + [𝐺] + ൣ𝐺൧ + ൣ𝐺,
 ൧ + ൣ𝐺ଵ,

 ൧ + ൣ𝐺ଵ,
 ൧ + ൣ𝐺ଵ,

௨ ൧ + ൣ𝐺ଵ,
 ൧ + ൣ𝐺,ଵ

 ൧ + ൣ𝐺ଵ,ଵ
 ൧ 

+ൣ𝐺ଵ,ଵ
 ൧ + ൣ𝐺ଵ,ଵ

௨ ൧ + ൣ𝐺ଵ,ଵ
 ൧. 
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Variable IniƟal condiƟon Parameter Value 

l 3 x 10–4 k1 8 

g 5000 k–1 0.0302 

s 2763 k2 0.211 

G 0 k3 614.8 

Gp 0 Ve 3.3 x 10–9 

Gk
i,j 0 Vp 7.4 x 10–18 

r 7800 p1 67.954 

c 2581 p2 22.526 

  p–2 47.008 

  p3 20812 

  p–3 27.954 

  p4 21.689 

  p–4 54.011 

  p5 6.4052 

  p–5 0.23309 

  q2 17.02 

  γ1 99.846 

  γ2 2.5969 

 

Table 1 Variables, iniƟal condiƟons (leŌ) and parameters and values (right) used for 

simulaƟons of  equaƟons (1), our previous model of the early events in signalling through 

the GPVI receptor. Gk
i,j represents eight variables where i and j indicate phosphorylaƟon on 

Y323 and Y525 respecƟvely (0, unphosphorylated; 1, phosphorylated) and k denotes the 

sequenƟal processes of (b), binding of Syk; (c), binding of c-Cbl; (u), ubiquiƟnaƟon and (r), 

binding of TULA-2. 
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1.2 Baseline model (b) 

The extension to this model is iniƟated by the phosphorlaƟon of LAT and the assembly 

of the LAT signalosome that includes the recruitment of PI3K. The equaƟons describing these 

events are given by: 

ௗ[்]

ௗ௧
= −𝑟ଵ[𝑆𝑦𝑘 − 𝑌525∗][𝐿𝐴𝑇]        (2a) 

ௗ[்∗]

ௗ௧
= 𝑟ଵ[𝑆𝑦𝑘 − 𝑌525∗][𝐿𝐴𝑇] −

మ

ೡ
[𝐿𝐴𝑇∗][𝑃𝐼3𝐾] + 𝑟 ଶ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾]  (2b) 

ௗ[ூଷ]

ௗ௧
= −

మ

ೡ
[𝐿𝐴𝑇∗][𝑃𝐼3𝐾] + 𝑟 ଶ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾]      (2c) 

ௗ[்∗:ூଷ]

ௗ௧
=

మ

ೡ
[𝐿𝐴𝑇∗][𝑃𝐼3𝐾] − 𝑟 ଶ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾]     (2d) 

these being conserved such that [𝐿𝐴𝑇]் − [𝐿𝐴𝑇] − [𝐿𝐴𝑇∗] =
ଵ

ೡ
[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾] and 

[𝑃𝐼3𝐾]் − [𝑃𝐼3𝐾] =
ଵ

ೡ
[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾]. The output [LAT*:PI3K] alters the balance of the 

phosphoinosiƟde network, for which the equaƟons for the key components are described by 

ௗ[ூ]

ௗ௧
= 𝑟 ଵଵ[𝑃𝐼𝑃2] − 𝑟ଵଵ[𝑃𝐼] + 𝑟[𝐼𝑃3][𝐷𝐴𝐺] + 𝑟 ଵଶ[𝑃𝐼𝑃3]    (3a) 

ௗ[ூଶ]

ௗ௧
= −𝑟ଷ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾][𝑃𝐼𝑃2] + 𝑟 ଷ[𝑃𝐼𝑃3] − 𝑟 ଵଵ[𝑃𝐼𝑃2] + 𝑟ଵଵ[𝑃𝐼]  

−𝑟ହ[𝑃𝐼𝑃3: 𝑃𝐿𝐶∗][𝑃𝐼𝑃2]         (3b) 

ௗ[ூଷ]

ௗ௧
= 𝑟ଷ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾][𝑃𝐼𝑃2] − 𝑟 ଷ[𝑃𝐼𝑃3] −

ర

ೡ
[𝑃𝐼𝑃3][𝑃𝐿𝐶] + 𝑟 ସ[𝑃𝐼𝑃3: 𝑃𝐿𝐶] 

 −
ళ

ೡ
[𝑃𝐼𝑃3][𝐵𝑡𝑘] + 𝑟 [𝑃𝐼𝑃3: 𝐵𝑡𝑘] − 𝑟 ଵଶ[𝑃𝐼𝑃3]    (3c) 

The equaƟons for Btk and PLC are given by 

ௗ[௧]

ௗ௧
= −

ళ

ೡ
[𝑃𝐼𝑃3][𝐵𝑡𝑘] + 𝑟 [𝑃𝐼𝑃3: 𝐵𝑡𝑘]      (3d) 

ௗ[ூଷ:௧]

ௗ௧
=

ళ

ೡ
[𝑃𝐼𝑃3][𝐵𝑡𝑘] − 𝑟 [𝑃𝐼𝑃3: 𝐵𝑡𝑘] − 𝑟 [𝑃𝐼𝑃3: 𝐵𝑡𝑘][𝑆𝐹𝐾]   (3e) 
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ௗ[ூଷ:௧∗]

ௗ௧
= 𝑟 [𝑃𝐼𝑃3: 𝐵𝑡𝑘][𝑆𝐹𝐾]        (3f) 

ௗ[]

ௗ௧
= −

ర

ೡ
[𝑃𝐼𝑃3][𝑃𝐿𝐶] + 𝑟 ସ[𝑃𝐼𝑃3: 𝑃𝐿𝐶]      (3g) 

ௗ[ூଷ:]

ௗ௧
=

ర

ೡ
[𝑃𝐼𝑃3][𝑃𝐿𝐶] − 𝑟 ସ[𝑃𝐼𝑃3: 𝑃𝐿𝐶] − 𝑟ଽ[𝑃𝐼𝑃3: 𝐵𝑡𝑘∗][𝑃𝐼𝑃3: 𝑃𝐿𝐶]  (3h) 

ௗ[ூଷ:∗]

ௗ௧
= 𝑟ଽ[𝑃𝐼𝑃3: 𝐵𝑡𝑘∗][𝑃𝐼𝑃3: 𝑃𝐿𝐶]       (3i) 

and those for IP3, DAG and PKC 

ௗ[ூଷ]

ௗ௧
= 𝑟ହ[𝑃𝐼𝑃3: 𝑃𝐿𝐶∗][𝑃𝐼𝑃2] − 𝑟[𝐼𝑃3][𝐷𝐴𝐺]      (4a) 

ௗ[]

ௗ௧
= −𝑟ଵ[𝐷𝐴𝐺][𝑃𝐾𝐶] + 𝑟 ଵ[𝐷𝐴𝐺: 𝑃𝐾𝐶∗]      (4b) 

ௗ[ீ]

ௗ௧
= 𝑟ହ[𝑃𝐼𝑃3: 𝑃𝐿𝐶∗][𝑃𝐼𝑃2] − 𝑟[𝐼𝑃3][𝐷𝐴𝐺] − 𝑟ଵ[𝐷𝐴𝐺][𝑃𝐾𝐶] + 𝑟 ଵ [𝐷𝐴𝐺: 𝑃𝐾𝐶∗](4c) 

ௗ[ீ:∗]

ௗ௧
= 𝑟ଵ[𝐷𝐴𝐺][𝑃𝐾𝐶] − 𝑟 ଵ[𝐷𝐴𝐺: 𝑃𝐾𝐶∗]      (4d) 

ConservaƟon within these equaƟons (3),(4) is described by 

[𝑃𝐼]் = [𝑃𝐼] + [𝑃𝐼𝑃2] + [𝑃𝐼𝑃3] + [𝑃𝐼𝑃3: 𝑃𝐿𝐶] + [𝑃𝐼𝑃3: 𝑃𝐿𝐶∗] + [𝑃𝐼𝑃3: 𝐵𝑡𝑘]   

+[𝑃𝐼𝑃3: 𝐵𝑡𝑘∗] + [𝐼𝑃3]        (5a) 

[𝐵𝑡𝑘]் − [𝐵𝑡𝑘] =
ଵ

ೡ
([𝑃𝐼𝑃3: 𝐵𝑡𝑘] + [𝑃𝐼𝑃3: 𝐵𝑡𝑘∗])     (5b) 

[𝑃𝐿𝐶]் − [𝑃𝐿𝐶] =
ଵ

ೡ
([𝑃𝐼𝑃3: 𝑃𝐿𝐶] + [𝑃𝐼𝑃3: 𝑃𝐿𝐶∗])     (5c) 

These seventeen equaƟons comprise model "b". 

1.3 AutophosphorylaƟon model (a) 

Models denoted with an addiƟonal "a" capture autophosphorylaƟon of Btk and as such 

have and addiƟonal term added to equaƟons (3e) and (3f) such that 

ௗ[ூଷ:௧]

ௗ௧
=

ళ

ೡ
[𝑃𝐼𝑃3][𝐵𝑡𝑘] − 𝑟 [𝑃𝐼𝑃3: 𝐵𝑡𝑘] − 𝑟 [𝑃𝐼𝑃3: 𝐵𝑡𝑘][𝑆𝐹𝐾]  

−𝑟[𝑃𝐼𝑃3: 𝐵𝑡𝑘]ଶ        (6a) 

ௗ[ூଷ:௧∗]

ௗ௧
= 𝑟 [𝑃𝐼𝑃3: 𝐵𝑡𝑘][𝑆𝐹𝐾] + 𝑟[𝑃𝐼𝑃3: 𝐵𝑡𝑘]ଶ     (6b) 
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1.4 LAT signalosome model (l) 

Models denoted with an addiƟonal "l" assume that PLC is recruited to the membrane 

via LAT signalosome, in place of recruitment to PIP3. EquaƟons (2) therefore read 

ௗ[்∗]

ௗ௧
= 𝑟ଵ[𝑆𝑦𝑘 − 𝑌525∗][𝐿𝐴𝑇] −

మ

ೡ
[𝐿𝐴𝑇∗][𝑃𝐼3𝐾] + 𝑟 ଶ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾] 

 −
ర

ೡ
[𝐿𝐴𝑇∗][𝑃𝐿𝐶] + 𝑟 ସ[𝐿𝐴𝑇∗: 𝑃𝐿𝐶]      (7a) 

ௗ[ூଷ]

ௗ௧
= −

మ

ೡ
[𝐿𝐴𝑇∗][𝑃𝐼3𝐾] + 𝑟 ଶ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾] −

మ

ೡ
[𝐿𝐴𝑇∗: 𝑃𝐿𝐶][𝑃𝐼3𝐾]  

 +𝑟 ଶ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶] −
మ

ೡ
[𝐿𝐴𝑇∗: 𝑃𝐿𝐶∗][𝑃𝐼3𝐾] + 𝑟 ଶ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶∗] (7b) 

ௗ[்∗:ூଷ]

ௗ௧
=

మ

ೡ
[𝐿𝐴𝑇∗][𝑃𝐼3𝐾] − 𝑟 ଶ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾] −

ర

ೡ
[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾][𝑃𝐿𝐶]  

+𝑟 ସ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶]        (7c) 

ௗ[]

ௗ௧
= −

ర

ೡ
[𝐿𝐴𝑇∗][𝑃𝐿𝐶] + 𝑟 ସ[𝐿𝐴𝑇∗: 𝑃𝐿𝐶] −

ర

ೡ
[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾][𝑃𝐿𝐶]  

+𝑟 ସ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶]        (7d) 

ௗ[்∗:]

ௗ௧
=

ర

ೡ
[𝐿𝐴𝑇∗][𝑃𝐿𝐶] − 𝑟 ସ[𝐿𝐴𝑇∗: 𝑃𝐿𝐶] −

మ

ೡ
[𝐿𝐴𝑇∗: 𝑃𝐿𝐶][𝑃𝐼3𝐾]  

 +𝑟 ଶ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶] − 𝑟ଽ[𝑃𝐼𝑃3: 𝐵𝑡𝑘∗][𝐿𝐴𝑇∗: 𝑃𝐿𝐶]    (7e) 

ௗ[்∗:ூଷ:]

ௗ௧
=

ర

ೡ
[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾][𝑃𝐿𝐶] − 𝑟 ସ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶]  

+
మ

ೡ
[𝐿𝐴𝑇∗: 𝑃𝐿𝐶][𝑃𝐼3𝐾] − 𝑟 ଶ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶]  

−𝑟ଽ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶][𝑃𝐼𝑃3: 𝐵𝑡𝑘∗]       (7f) 

ௗ[்∗:∗]

ௗ௧
= 𝑟ଽ[𝑃𝐼𝑃3: 𝐵𝑡𝑘∗][𝐿𝐴𝑇∗: 𝑃𝐿𝐶] +

మ

ೡ
[𝐿𝐴𝑇∗: 𝑃𝐿𝐶∗][𝑃𝐼3𝐾]  

−𝑟 ଶ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶∗]        (7g) 

ௗ[்∗:ூଷ:∗]

ௗ௧
=

మ

ೡ
[𝐿𝐴𝑇∗: 𝑃𝐿𝐶∗][𝑃𝐼3𝐾] − 𝑟 ଶ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶∗]   

+𝑟ଽ[𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶][𝑃𝐼𝑃3: 𝐵𝑡𝑘∗]       (7h) 
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and the equaƟons (3h) and (3i) are dropped and equaƟons (3b) and (3c) are modified such 

that 

ௗ[ூଶ]

ௗ௧
= −𝑟ଷ([𝐿𝐴𝑇∗: 𝑃𝐼3𝐾] + [𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶] + [𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶∗])[𝑃𝐼𝑃2]  

+𝑟 ଷ[𝑃𝐼𝑃3] − 𝑟 ଵ [𝑃𝐼𝑃2] + 𝑟ଵଵ[𝑃𝐼]  

−𝑟ହ([𝐿𝐴𝑇∗: 𝑃𝐿𝐶∗] + [𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶∗])[𝑃𝐼𝑃2]     (7i) 

ௗ[ூଷ]

ௗ௧
= 𝑟ଷ([𝐿𝐴𝑇∗: 𝑃𝐼3𝐾] + [𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶] + [𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶∗])[𝑃𝐼𝑃2]  

−𝑟 ଷ[𝑃𝐼𝑃3] −
ళ

ೡ
[𝑃𝐼𝑃3][𝐵𝑡𝑘] + 𝑟 [𝑃𝐼𝑃3: 𝐵𝑡𝑘] − 𝑟ଵଶ[𝑃𝐼𝑃3]   (7j) 

1.5 DAG recycling model (d) 

Models with a "d" neglect DAG recycling. This requires the alteraƟon to equaƟons (3a) 

and (4) such that 

ௗ[ூ]

ௗ௧
= 𝑟 ଵଵ[𝑃𝐼𝑃2] − 𝑟ଵଵ[𝑃𝐼] + 𝑟[𝐼𝑃3] + 𝑟ଵଶ[𝑃𝐼𝑃3]     (8a) 

ௗ[ீ]

ௗ௧
= 𝑟ହ[𝑃𝐼𝑃3: 𝑃𝐿𝐶∗][𝑃𝐼𝑃2] − 𝑟ଵ[𝐷𝐴𝐺][𝑃𝐾𝐶] + 𝑟 ଵ[𝐷𝐴𝐺: 𝑃𝐾𝐶∗]   (8b) 

ௗ[ூଷ]

ௗ௧
= 𝑟ହ[𝑃𝐼𝑃3: 𝑃𝐿𝐶∗][𝑃𝐼𝑃2] − 𝑟[𝐼𝑃3]       (8c) 

Or the models with both "l" and "d", (8b) and (8c) must be 

ௗ[ீ]

ௗ௧
= 𝑟ହ([𝐿𝐴𝑇∗: 𝑃𝐿𝐶∗] + [𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶∗])[𝑃𝐼𝑃2] − 𝑟ଵ[𝐷𝐴𝐺][𝑃𝐾𝐶]  

+𝑟 ଵ[𝐷𝐴𝐺: 𝑃𝐾𝐶∗]         (9a) 

ௗ[ூ ]

ௗ௧
= 𝑟ହ([𝐿𝐴𝑇∗: 𝑃𝐿𝐶∗] + [𝐿𝐴𝑇∗: 𝑃𝐼3𝐾: 𝑃𝐿𝐶∗])[𝑃𝐼𝑃2] − 𝑟[𝐼𝑃3]   (9b) 

In the above Av stands for Avogadro’s number, Ve and Vp are the volume of extracellular 

medium per cell under the experimental condiƟon and cytosolic volume per platelet 

respecƟvely. The variables and parameters for the models of this new secƟon of the GPVI 

pathway are summarised in Tables 2 and Table 1 in main text, respecƟvely. 

 



 

112 
 

Variable IniƟal condiƟons Source 
LAT 4800 2 
PI3K 3400 2 
Btk 11100 2 
PLC 2000 2 
PI 108 3–5 

PIP2 336666 in-house 
PIP3 20000 in-house 
IP3 0 6 
PKC 17600 2 
DAG 59000 2 

 

Table 2 IniƟal condiƟons for the variables of the new models. 

All units are molecules per platelet. 

 

2. AddiƟonal plots and parameters 

 

 

Figure 1 Samples unƟl cost funcƟon convergence for the different models. Solid line 

represents the minimum ’best’ fit (lowest cost funcƟon) with upper number in plot indicaƟng 

the corresponding sample number to achieve this. Broken line represents the mean of the 

lowest 100 ’best’ fits (lowest cost funcƟon) with lower number indicaƟng the corresponding 

sample number to achieve this 
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Figure 2 Model b simulaƟons (solid lines) compared to experimental results (broken lines). 

SimulaƟons are based on the parameter values from the 10 ’best’ fits. 

 

 

Figure 3 Model ba simulaƟons (solid lines) compared to experimental results (broken lines). 

SimulaƟons are based on the parameter values from the 10 ’best’ fits. 
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Figure 4 Model bd simulaƟons (solid lines) compared to experimental results (broken lines). 

SimulaƟons are based on the parameter values from the 10 ’best’ fits. 

 

 

Figure 5 Model bad simulaƟons (solid lines) compared to experimental results (broken lines). 

SimulaƟons are based on the parameter values from the 10 ’best’ fits. 
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Figure 6 Model bl simulaƟons (solid lines) compared to experimental results (broken lines). 

SimulaƟons are based on the parameter values from the 10 ’best’ fits. 

 

 

Figure 7 Model bla simulaƟons (solid lines) compared to experimental results (broken lines). 

SimulaƟons are based on the parameter values from the 10 ’best’ fits. 
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Figure 8 Model bld simulaƟons (solid lines) compared to experimental results (broken lines). 

SimulaƟons are based on the parameter values from the 10 ’best’ fits. 

 

 

Figure 9 Model blad simulaƟons (solid lines) compared to experimental results (broken 

lines). SimulaƟons are based on the parameter values from the 10 ’best’ fits. 
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Figure 10 Model bldi simulaƟons (solid lines) compared to experimental results (broken 

lines). SimulaƟons are based on the parameter values from the 10 ’best’ fits. 

 

 

Figure 11 Model bladi simulaƟons (solid lines) compared to experimental results (broken 

lines). SimulaƟons are based on the parameter values from the 10 ’best’ fits. 
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Parameter b ba bd bad bl bla bld blad 
r1 0.0125*** 0.015*** 0.013*** 0.016*** 0.009*** 0.012*** 0.362* 0.012*** 

r2 0.432 0.365* 0.370* 0.340* 0.310* 0.374* 0.557 0.411 

r–2 0.246** 0.220** 0.177** 0.226** 0.179** 0.291* 0.317* 0.224** 

r3 0.551 0.429 0.545 0.476 0.317* 0.241** 0.484 0.301* 

r–3 0.150** 0.214** 0.097** 0.121** 0.141** 0.109** 0.381* 0.139** 

r4 0.757 0.836 0.310* 0.303* 0.491 0.531 0.314* 0.344* 

r–4 0.397* 0.382* 0.400 0.366* 0.394* 0.377* 0.271* 0.371* 

r5 0.001*** 0.158** 0.001*** 0.158** 0.001*** 0.164** 0.516 0.175** 

r6 0.395* 0.429 0.340* 0.418 0.373* 0.400 0.457 0.444 

r7 0.129** 0.225** 0.211** 0.240** 0.404 0.450 0.772 0.345* 

r–7 0.248** 0.210** 0.210** 0.210** 0.166** 0.143** 0.213** 0.171** 

r8 0.183** 0.218** 0.103** 0.191** 0.153** 0.181** 0.373* 0.239** 

r9 0.395* 0.466 0.329* 0.473 0.359* 0.448 0.441 0.378* 

r10 0.303* 0.311* 0.213** 0.216** 0.238** 0.240** 0.482 0.361* 

r–10 0.324* 0.339* 0.353* 0.449 0.283* 0.391* 0.404 0.377* 

r11 0.465 0.447 0.342* 0.350* 0.450 0.456 0.515 0.470 

r–11 0.403 0.472 0.311* 0.383* 0.389* 0.463 0.508 0.340* 

r12 0.404 0.386* 0.337* 0.402 0.293* 0.367* 0.258* 0.354* 

re - 0.003*** - 0.002*** - 0.001*** - 0.001*** 
 

Table 3 90% range of posterior (Q90). Scaled between 0 and 1 of prior. ***, ** and * indicates 

restricƟon in range Q90 < 0.02, Q90 < 0.25 and Q90 < 0.40 respecƟvely. 
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Figure 12 Model b simulaƟons for all model variables (not just those that can be compared 
to experimental data). SimulaƟons are based on the parameter values from the 10 ’best’ fits. 
Dark line denotes simulaƟon with lowest cost funcƟon. Top leŌ panel, [LAT] solid line, [LAT*] 
broken line. Top right, [PI3K] solid line, [LAT*:PI3K] broken line. Second from boƩom (leŌ), [Btk] 
solid line, [PIP3:Btk] broken, [PIP3:Btk*] small broken. Second from boƩom (right), [PLC] solid 
line, [PIP3:PLC] broken, [PIP3:PLC*] small broken. BoƩom right, [PKC] solid line, [DAG:PKC*] 
broken line. 
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Figure 13 Model ba simulaƟons for all model variables (not just those that can be compared 
to experimental data). SimulaƟons are based on the parameter values from the 10 ’best’ fits. 
Dark line denotes simulaƟon with lowest cost funcƟon. Top leŌ panel, [LAT] solid line, [LAT*] 
broken line. Top right, [PI3K] solid line, [LAT*:PI3K] broken line. Second from boƩom (leŌ), [Btk] 
solid line, [PIP3:Btk] broken, [PIP3:Btk*] small broken. Second from boƩom (right), [PLC] solid 
line, [PIP3:PLC] broken, [PIP3:PLC*] small broken. BoƩom right, [PKC] solid line, [DAG:PKC*] 
broken line. 
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Figure 14 Model bd simulaƟons for all model variables (not just those that can be compared 
to experimental data). SimulaƟons are based on the parameter values from the 10 ’best’ fits. 
Dark line denotes simulaƟon with lowest cost funcƟon. Top leŌ panel, [LAT] solid line, [LAT*] 
broken line. Top right, [PI3K] solid line, [LAT*:PI3K] broken line. Second from boƩom (leŌ), [Btk] 
solid line, [PIP3:Btk] broken, [PIP3:Btk*] small broken. Second from boƩom (right), [PLC] solid 
line, [PIP3:PLC] broken, [PIP3:PLC*] small broken. BoƩom right, [PKC] solid line, [DAG:PKC*] 
broken line. 
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Figure 15 Model bad simulaƟons for all model variables (not just those that can be compared 
to experimental data). SimulaƟons are based on the parameter values from the 10 ’best’ fits. 
Dark line denotes simulaƟon with lowest cost funcƟon. Top leŌ panel, [LAT] solid line, [LAT*] 
broken line. Top right, [PI3K] solid line, [LAT*:PI3K] broken line. Second from boƩom (leŌ), [Btk] 
solid line, [PIP3:Btk] broken, [PIP3:Btk*] small broken. Second from boƩom (right), [PLC] solid 
line, [PIP3:PLC] broken, [PIP3:PLC*] small broken. BoƩom right, [PKC] solid line, [DAG:PKC*] 
broken line. 
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Figure 16 Model bl simulaƟons for all model variables (not just those that can be compared 
to experimental data). SimulaƟons are based on the parameter values from the 10 ’best’ fits. 
Dark line denotes simulaƟon with lowest cost funcƟon. Top leŌ panel, [LAT] solid line, [LAT*] 
broken line. Top right, [PI3K] solid line, [LAT*:PI3K] broken line. Second from boƩom (leŌ), [Btk] 
solid line, [PIP3:Btk] broken, [PIP3:Btk*] small broken. Second from boƩom (right), [PLC] solid 
line, [PIP3:PLC] broken, [PIP3:PLC*] small broken. BoƩom right, [PKC] solid line, [DAG:PKC*] 
broken line. 
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Figure 17 Model bla simulaƟons for all model variables (not just those that can be compared 
to experimental data). SimulaƟons are based on the parameter values from the 10 ’best’ fits. 
Dark line denotes simulaƟon with lowest cost funcƟon. Top leŌ panel, [LAT] solid line, [LAT*] 
broken line. Top right, [PI3K] solid line, [LAT*:PI3K] broken line. Second from boƩom (leŌ), [Btk] 
solid line, [PIP3:Btk] broken, [PIP3:Btk*] small broken. Second from boƩom (right), [PLC] solid 
line, [PIP3:PLC] broken, [PIP3:PLC*] small broken. BoƩom right, [PKC] solid line, [DAG:PKC*] 
broken line. 
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Figure 18 Model bld simulaƟons for all model variables (not just those that can be compared 
to experimental data). SimulaƟons are based on the parameter values from the 10 ’best’ fits. 
Dark line denotes simulaƟon with lowest cost funcƟon. Top leŌ panel, [LAT] solid line, [LAT*] 
broken line. Top right, [PI3K] solid line, [LAT*:PI3K] broken line. Second from boƩom (leŌ), [Btk] 
solid line, [PIP3:Btk] broken, [PIP3:Btk*] small broken. Second from boƩom (right), [PLC] solid 
line, [PIP3:PLC] broken, [PIP3:PLC*] small broken. BoƩom right, [PKC] solid line, [DAG:PKC*] 
broken line. 
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Figure 19 Model blad simulaƟons for all model variables (not just those that can be 
compared to experimental data). SimulaƟons are based on the parameter values from the 10 
’best’ fits. Dark line denotes simulaƟon with lowest cost funcƟon. Top leŌ panel, [LAT] solid 
line, [LAT*] broken line. Top right, [PI3K] solid line, [LAT*:PI3K] broken line. Second from boƩom 
(leŌ), [Btk] solid line, [PIP3:Btk] broken, [PIP3:Btk*] small broken. Second from boƩom (right), 
[PLC] solid line, [PIP3:PLC] broken, [PIP3:PLC*] small broken. BoƩom right, [PKC] solid line, 
[DAG:PKC*] broken line. 
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Figure 20 Model bldi simulaƟons for all model variables (not just those that can be compared 
to experimental data). SimulaƟons are based on the parameter values from the 10 ’best’ fits. 
Dark line denotes simulaƟon with lowest cost funcƟon. Top leŌ panel, [LAT] solid line, [LAT*] 
broken line. Top right, [PI3K] solid line, [LAT*:PI3K] broken line. Second from boƩom (leŌ), [Btk] 
solid line, [PIP3:Btk] broken, [PIP3:Btk*] small broken. Second from boƩom (right), [PLC] solid 
line, [PIP3:PLC] broken, [PIP3:PLC*] small broken. BoƩom right, [PKC] solid line, [DAG:PKC*] 
broken line. 
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Figure 21 Model bladi simulaƟons for all model variables (not just those that can be 
compared to experimental data). SimulaƟons are based on the parameter values from the 10 
’best’ fits. Dark line denotes simulaƟon with lowest cost funcƟon. Top leŌ panel, [LAT] solid 
line, [LAT*] broken line. Top right, [PI3K] solid line, [LAT*:PI3K] broken line. Second from boƩom 
(leŌ), [Btk] solid line, [PIP3:Btk] broken, [PIP3:Btk*] small broken. Second from boƩom (right), 
[PLC] solid line, [PIP3:PLC] broken, [PIP3:PLC*] small broken. BoƩom right, [PKC] solid line, 
[DAG:PKC*] broken line. 
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Parameter bldi bladi 
r1 0.395* 0.009*** 

r2 0.423 0.379* 

r–2 0.187** 0.324* 

r3 0.466 0.288* 

r–3 0.267* 0.110** 

r4 0.232** 0.286* 

r–4 0.648 0.412 

r5 0.471 0.159** 

r6 0.448 0.441 

r7 0.602 0.340* 

r–7 0.165** 0.054** 

r8 0.368* 0.176** 

r9 0.476 0.455 

r10 0.507 0.380* 

r–10 0.386* 0.366* 

r11 0.556 0.481 

r–11 0.54 0.319* 

r12 0.202** 0.292* 

re - 0.001*** 

 

Table 4 VariaƟon of posterior. 
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Chapter 4 (to be submiƩed) 

Development of a mathemaƟcal model of platelet 

phosphoinosiƟde metabolism 
 

The model introduced in the previous chapter simplified the complexity of the 

phosphoinosiƟde (PI) cycle due to the lack of availability of PI metabolism data. 

In this chapter, the potenƟal interplay between GPVI downstream signalling, PI 

and their associated kinase/phosphatases was invesƟgated. Here, we present a 

mathemaƟcal model of PI metabolism in human platelets in response to GPVI 

acƟvaƟon. The model was constructed and calibrated against experimental data 

capturing transient Ɵme-course changes in tyrosine kinase phosphorylaƟon, 

phosphoinosiƟde posiƟonal isomers, IP3 levels, and calcium mobilisaƟon. 

 

 

 

 

 



 

132 
 

Development of a mathemaƟcal model of platelet 
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Abstract 

Current antiplatelet therapies come with a risk of bleeding, so treatments targeting 

new pathways that preserve haemostasis are needed. Two potential inter-related candidates 

being investigated in this thesis are collagen and fibrin(ogen) receptor GPVI, which has a major 

role in thrombosis but a minor one in haemostasis, and phosphoinositides and their associated 

kinase/phosphatases, which are involved in Ca2+ mobilisation and regulation of pleckstrin 

homology (PH) domains-containing proteins. The key to efficient GPVI and phosphoinositides 

targeting is better understanding of the interconnections between the involved enzymes and 

lipids. Here, we describe a mathematical model of the phosphoinositide metabolism in human 

platelets in response to activation of glycoprotein VI (GPVI). The model was constructed and 

calibrated against experimental data, covering transient time-course changes in tyrosine 

kinase phosphorylation, phosphoinositide positional isomers, inositol trisphosphate (InsP3) 
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level and Ca2+ mobilisation. The developed model was able to simulate the phosphoinositide 

metabolism upon GPVI activation, and predict the effect of phosphatidylinositol 4-kinase A 

(PI4KA) inhibitor GSK-A1 on inositol triphosphate (InsP3) levels and Ca2+ mobilisation, 

demonstrating its function in the PtdIns(4,5)P2 resynthesis to sustain downstream signalling. 

 

Introduction 

The phosphoinositide metabolism is deeply integrated with major signalling pathways 

such as G protein-coupled receptors (GPCRs) or tyrosine kinase receptors in all cell types, 

including the glycoprotein VI (GPVI) signalling cascade and Ca2+ mobilisation. Given the 

importance of phosphoinositides, several mathematical models have tried to incorporate 

these lipids in signalling pathways, though often with a limited outcome. Some mathematical 

models captured the involvement of a lamellipodium and cell polarisation, which include the 

molecules PtdIns(4,5)P2, PtdIns(3,4,5)P3, phosphoinositide 3-kinase (PI3K) and the protein 

phosphatase and tensin homolog (PTEN), and then explored the role in cellular shape change 

and chemotaxis.1,2 Olivença et al. developed a detailed mathematical model that captured the 

complete phosphoinositide pathway, accounting for all species of phospho-inositides and the 

interconverting enzymes.3 The authors validated their model by predicting the effects of small 

interfering ribonucleic acid (siRNA) species for the knockdown of phosphoinositide kinases and 

phosphatases on the steady-state PtdIns(4,5)P2 level in human alveolar epithelial cells. This 

time-dependent model comprised a system of 10 ordinary differential equations (ODEs); 

herein 19 kinetic parameters were calibrated to steady-state data, but neglecting the transient 

nature of the pathway. 

 Other recent studies attempt to describe mathematical elements of phosphoinositide 

metabolism in platelets. Diamond et al. developed a homogeneous mathematical model that 
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captures GPCR signalling and the phosphatidylinositol cycle (PI cycle), which can predict the 

platelet dose-dependent response of Ca2+ mobilisation and inositol trisphosphate (InsP3) 

production.4 However, the author utilised copy numbers of 11 enzymes and parameter values 

for model simulations that were taken from data from cells and tissues that are unrelated to 

platelets, such as rat liver, human cerebrospinal fluid, plant cells and yeast cells. The 

approximations covered enzymes participating in the phosphoinositide metabolism, including 

phosphatidylinositol-4-phosphate kinase, inositol monophosphatase, inositol-1,4-

bisphosphate 1-phosphatase, diacyl-glycerol kinase and cytidine diphosphate-diacylglycerol 

synthase. In addition, the model included a reduced representation of the phosphoinositide 

pathway, but neglected other phosphoinositide species such as PtdIns(3,4,5)P3 and 

PtdIns(3,4)P2. 

 Regarding platelets, Mazet et al. developed an ODE-based mathematical model that 

captured the phoshoinositide cycle (PI cycle).5 The authors took parameter values from the 

literature and adjusted the simulations to match the experimental data, which led to the idea 

that lipid- and protein-binding proteins help to regulate the levels of PtdIns(4,5)P2 and InsP3 in 

GPCR signalling. The model predicted changes of 108 molecules of inositol or PtdIns in less 

than 10 s, which seems to be too drastic to be physiologically relevant, as the highest enzyme 

turnover reported is purified catalase which can covert 2.8 x 106 molecules of hydrogen 

peroxide per second.6,7 

 The protein phosphorylation cascade and phosphoinositide metabolism downstream 

of GPVI signalling in platelets is relatively well understood. Many of the earlier studies, 

however, focused on single routes and did not combine several pathways or involve kinetic 

analyses. This paper aims to develop a new dynamic mathematical description of the 

phosphoinositide metabolism in platelets, which is based on and validated against 
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experimentally consistent high-density data. The model is calibrated against data describing 

the time course of five phosphoinositide species, i.e. PtdIns, PtdIns4P, PtdIns(4,5)P2, 

PtdIns(3,4)P2 and PtdIns(3,4,5)P3, and the tyrosine phosphorylations of Linker for activation of 

T cells (LAT) at Y200 and phospholipase Cγ2 (PLCγ2) at Y1217, which represent the triggers of 

collagen-related peptide (CRP) on the phosphoinositide metabolism. The model is 

subsequently used to predict the effect of the phosphat-idylinositol 4-kinase A (PI4KA) 

inhibitor GSK-A1 and the inositol polyphosphate-5-phosphatase (OCRL) phosphatase inhibitor 

YU142670 on phosphoinositide metabolism and platelet activation. The model is further cross-

validated with inositol monophosphate (InsP1) and Ca2+ measurements. 

 

Results 

 

Development of mathematical model on phosphoinositides metabolism downstream of 

GPVI signalling 

Details of the model network, reactions and parameters. The mathematical model describing 

phosphoinositides was developed using ODEs; as such it is based on two assumptions: (i) all 

species that are located in the same compartment are evenly distributed, and (ii) all reactions 

in the model follow the law of mass action which states the rate of reaction is proportional to 

the concentration of the reactant and the rate constant. In the model, the reactions that 

comprise the phospho-inositide pathway are determined based on the copy number of the 

relevant enzyme in platelets,8,9 as shown in Figure 1. This is a simplified interpretation of the 

phosphoinositide pathway that neglects regulation via kinases and phosphatases and any 

diffusion or trafficking present in the cytosol and inner membranes at the same rate constant. 

 In Model 1, we integrated the phosphoinositides metabolism with CRP-induced 
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activities of PI3K and PLCγ2, which respectively converts PtdIns(4,5)P2 into PtdIns(3,4,5)P3, and 

hydrolyses PtdIns(4,5)P2 into InsP3 in the plasma membrane (PM) compartment. We herein 

assume that all phosphoinositide species are in the PM. This assumption is supported by a 

staining study showing that PtdIns4P and PtdIns(4,5)P2 are localised in the PM of resting and 

activated platelets.10 We also incorporate the phosphoinositide cycle (PI cycle) to recycle the 

hydrolysed PtdIns(4,5)P2 with no dead-end species. To increase the ability of the model to be 

inferred from the data, the rest of the PI cycle is reduced to three components InsP3, InsP1 and 

an inositol pool (Ipool), which comprises inositol and other inositol phosphates, residing in the 

cytosol (Cyt) compartment. Similarly, the variable phosphatidylinositol pool in the PM (Ppool) 

comprises the PM contribution of PtdIns3P, PtdIns5P, and PtdIns(3,5)P2, which molecules can 

not be measured by the IC-MS method due to a low abundance and overlap with the more 

prominent species PtdIns4P and PtdIns(4,5)P2. 

 This model was modified to Model 2, in order to consider the transportation of 

phosphatidylinositol from Cyt to PM compartment by phosphatidyl-inositol transfer protein 

type α (PITPα), which was shown to contribute to thrombin-induced InsP3 production in 

platelets.11 The goal of this adjustment is to slow down the flux of PtdIns conversion to 

PtdIns4P in an effort to improve the simulations. 
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Figure 1. Network diagram of the phosphoinositides metabolism model. Network diagram 

of Model 1 (A) and Model 2 (B). Variables are represented by square boxes and the parameter 

associated with each process is placed next to the relevant arrow. See Tables1 and 2 for a 

description of the variables and parameters. In Model 2, an additional species PtdIns (Cyt) and 

1 new parameter θ6 are added to incorporate the transportation of phosphatidylinositol from 

the Cyt to PM compartment. 

 

 Utilising mass-action kinetics, the network diagram in Figure 1A is translated into the 

following system of nine ODEs for Model 1:  

𝑑𝑦ଵ

𝑑𝑡
= 𝜃ଶ𝑦 − 𝑟ଵ𝑦ଵ + 𝑟 ଵ𝑦ଶ − 𝜃ଷ𝑦ଵ + 𝜃ିଷ𝑦, (1.1) 

𝑑𝑦ଶ

𝑑𝑡
= 𝑟ଵ𝑦ଵ − 𝑟 ଵ𝑦ଶ − 𝑟ଶ𝑦ଶ + 𝑟 ଶ𝑦ଷ, (1.2) 
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𝑑𝑦ଷ

𝑑𝑡
= 𝑟ଶ𝑦ଶ − 𝑟 ଶ𝑦ଷ − 𝑠ଵ𝑠𝑡𝑖𝑚(𝑡)𝑦ଷ − 𝑠ଶ𝑠𝑡𝑖𝑚(𝑡)𝑦ଷ + 𝑟 ଷ𝑦ହ − 𝜃ହ𝑦ଷ + 𝜃ିହ𝑦, (1.3) 

𝑑𝑦ସ

𝑑𝑡
=  𝑟ହ𝑦ହ − 𝜃ସ𝑦ସ + 𝜃ିସ𝑦, (1.4) 

𝑑𝑦ହ

𝑑𝑡
= 𝑠ଶ𝑠𝑡𝑖𝑚(𝑡)𝑦ଷ  − 𝑟 ଷ𝑦ହ  −  𝑟ହ𝑦ହ, (1.5) 

𝑑𝑦

𝑑𝑡
= 𝜃ଷ𝑦ଵ − 𝜃ିଷ𝑦 + 𝜃ହ𝑦ଷ − 𝜃ିହ𝑦 + 𝜃ସ𝑦ସ − 𝜃ିସ𝑦, (1.6) 

𝑑𝑦

𝑑𝑡
= 𝑞ଵ𝑦ଵ − 𝜃ଶ𝑦, (1.7) 

𝑑𝑦଼

𝑑𝑡
= 𝑠ଵ𝑠𝑡𝑖𝑚(𝑡)𝑦ଷ − 𝜃ଵ𝑦଼, (1.8) 

𝑑𝑦ଵ

𝑑𝑡
= 𝜃ଵ𝑦଼  −  𝑞ଵ𝑦ଵ . (1.9) 

 The function stim(t) that appears in equations 1.3, 1.4 and 1.8 captures the effect of 

CRP stimulus on the phosphoinositide metabolism, i.e. the activation of PI3K and PLCγ2. This 

assumes that any changes in phosphoinositides metabolism do not affect tyrosine 

phosphorylation. Similarly, the network diagram in Figure 1B can be translated into the 

following system of ten ODEs for Model 2:  

𝑑𝑦ଵ

𝑑𝑡
= 𝜃𝑦ଽ − 𝑟ଵ𝑦ଵ + 𝑟 ଵ𝑦ଶ − 𝜃ଷ𝑦ଵ + 𝜃ିଷ𝑦, (2.1) 

𝑑𝑦ଶ

𝑑𝑡
= 𝑟ଵ𝑦ଵ − 𝑟 ଵ𝑦ଶ − 𝑟ଶ𝑦ଶ + 𝑟 ଶ𝑦ଷ, (2.2) 

𝑑𝑦ଷ

𝑑𝑡
= 𝑟ଶ𝑦ଶ − 𝑟 ଶ𝑦ଷ − 𝑠ଵ𝑠𝑡𝑖𝑚(𝑡)𝑦ଷ − 𝑠ଶ𝑠𝑡𝑖𝑚(𝑡)𝑦ଷ + 𝑟 ଷ𝑦ହ − 𝜃ହ𝑦ଷ + 𝜃ିହ𝑦, (2.3) 

𝑑𝑦ସ

𝑑𝑡
=  𝑟ହ𝑦ହ − 𝜃ସ𝑦ସ + 𝜃ିସ𝑦, (2.4) 

𝑑𝑦ହ

𝑑𝑡
= 𝑠ଶ𝑠𝑡𝑖𝑚(𝑡)𝑦ଷ  − 𝑟 ଷ𝑦ହ  −  𝑟ହ𝑦ହ, (2.5) 

𝑑𝑦

𝑑𝑡
= 𝜃ଷ𝑦ଵ − 𝜃ିଷ𝑦 + 𝜃ହ𝑦ଷ − 𝜃ିହ𝑦 + 𝜃ସ𝑦ସ − 𝜃ିସ𝑦, (2.6) 
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𝑑𝑦

𝑑𝑡
= 𝑞ଵ𝑦ଵ − 𝜃ଶ𝑦, (2.7) 

𝑑𝑦଼

𝑑𝑡
= 𝑠ଵ𝑠𝑡𝑖𝑚(𝑡)𝑦ଷ − 𝜃ଵ𝑦଼, (2.8) 

𝑑𝑦ଽ

𝑑𝑡
= 𝜃ଶ𝑦 − 𝜃𝑦ଽ, (2.9) 

𝑑𝑦ଵ

𝑑𝑡
= 𝜃ଵ𝑦଼  −  𝑞ଵ𝑦ଵ. (2.10) 

The model’s variables, their units of measure, and initial conditions are summarised in Table 

1. The model parameters and the units are summarised in Table 2. 

 

Variable Description Initial amount Reference 

y1 PtdIns (PM) 1,350,000 This study, Ref 12 

y2 PtdIns4P 640,000 This study 

y3 PtdIns(4,5)P2 310,000 This study 

y4 PtdIns(3,4)P2 5,200 This study 

y5 PtdIns(3,4,5)P3 1,900 This study 

y6 Ppool 25000 Ref 13,14 

y7 Ipool 100,000,000 Ref 15 

y8 InsP3 0 This study 

y9 PtdIns (Cyt) 1,350,000 This study, Ref 12 

y10 InsP1 2500 This study 

 

Table 1. Variables and initial conditions for the mathematical Models 1 and 2. Variable y9, 

PtdIns(Cyt) is only present in Model 2. All inositol compounds, except for InsP3, were measured 

in (and have units of measure in the model as) molecules per platelet. The InsP3 data were 

normalised, as are the model simulations. 
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Table 2. Model parameters and fitting constraints in the phosphoinositide metabolism 

model. Abbreviation: N/A, not applicable in the specified model. For parameter values of the 

10 best fits of the model, see the supplemental. 

 

Time course profiling of protein phosphorylation and Ca2+ mobilisation in CRP-stimulated 

platelets 

Experiments were conducted to determine the time-course phosphorylation of LAT at 

Y200 and PLCγ2 at Y1217 downstream of GPVI activation for the determination of the function 

stim(t), that represents stimulus of phosphoinositide metabolism in response to platelet 

activation with CRP. The phosphorylation of LAT was chosen as a proxy for PI3K, as this enzyme 

recruits and activates PI3K.16 Washed platelets at 4 x 108 cells were simulated with 10 µg/mL 

CRP in the presence of 9 μM eptifibatide, and were lysed at the stated time after CRP. The cell 

lysates were probed against phospho-specific antibodies to determine the extnet of tyrosine 

Parameter Description Units Model 1 Model 2 Fitting constraint
r1 Rate of conversion of PtdIns to PtdIns4P s-1 ✓ ✓ 10-4 - 102

r-1 Rate of conversion of PtdIns4P to PtdIns s-1 ✓ ✓ 10-4 - 102

r2 Rate of conversion of PtdIns4P to PtdIns(4,5)P2 s-1 ✓ ✓ 10-4 - 102

r-2 Rate of conversion of PtdIns(4,5)P2 to PtdIns4P s-1 ✓ ✓ 10-4 - 102

r-3 Rate of conversion of PtdIns(3,4,5)P3 to PtdIns(4,5)P2 s-1 ✓ ✓ 10-4 - 102

r5 Rate of conversion of PtdIns(3,4,5)P3 to PtdIns(3,4)P2 s-1 ✓ ✓ 10-4 - 102

θ1 Rate of conversion of InsP3 to InsP1 s-1 ✓ ✓ 10-2 – 10-1

θ2 Rate of conversion of Ipool to PtdIns (PM) s-1 ✓ N/A 10-4 - 102

θ2 Rate of conversion of Ipool to PtdIns (Cyt) s-1 N/A ✓ 10-4 - 102

θ3 Rate of conversion of PtdIns to Ppool s-1 ✓ ✓ 10-4 - 102

θ-3 Rate of conversion of Ppool to PtdIns s-1 ✓ ✓ 10-4 - 102

θ4 Rate of conversion of PtdIns(3,4)P2 to Ppool s-1 ✓ ✓ 10-4 - 102

θ-4 Rate of conversion of Ppool to PtdIns(3,4)P2 s-1 ✓ ✓ 10-4 - 102

θ5 Rate of conversion of PtdIns(4,5)P2 to Ppool s-1 ✓ ✓ 10-4 - 102

θ-5 Rate of conversion of Ppool to PtdIns(4,5)P2 s-1 ✓ ✓ 10-4 - 102

θ6 Rate of conversion of PtdIns (Cyt) to PtdIns (PM) s-1 N/A ✓ 10-8 - 102

s1 Rate of hydrolysis of PtdIns(4,5)P2 into InsP3
 s-1 ✓ ✓ 10-6 – 10-2

s2 Rate of conversion of PtdIns(4,5)P2 into PtdIns(3,4,5)P3  s-1 ✓ ✓ 10-4 - 102

q1 Rate of conversion of InsP1 to Ipool s-1 ✓ ✓ 10-4 – 10-3
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phosphorylation. The addition of eptifibatide prevented the interference of integrin αIIbβ3 

outside-in signalling,which acts through the kinases Src and Syk,17 and hence prevented 

platelet aggregation under the stirring conditions. 

 As shown in Figure 2B, platelet stimulation with CRP induced a rapid increase in 

phosphorylation for LAT at Y200, and PLCγ2 at Y1217, both of which plateaued at 45 s and 

sustained for up to 50 min. The stim(t) function was determined by fitting to the 

phosphorylation data: 

𝑠𝑡𝑖𝑚(𝑡) = ൫0.001𝑡𝑒ି.ଶ௧మ
൯ + tanh(0.02𝑡), 

with t representing the time following CRP stimulation. The obtained stim function (dotted 

line) closely matched the LAT Y200 and PLCγ2 Y1217 phosphorylation profiles. 

 Experiments were also conducted to measure Ca2+ mobilisation in CRP-stimulated 

platelets. Herein, Fura-2-loaded washed platelets were pre-treated for 10 min with the ADP 

scavenger apyrase and the cyclooxygenase-1 inhibitor indomethacin to prevent the 

interference of secondary mediators in signalling. The platelets were again stimulated with in 

the presence of CaCl2, to provide physiological extracellular Ca2+, which allowed extracellular 

Ca2+ entry. As shown in Figure 2C, similar to the phosphorylation of LAT at Y200 and PLCγ2 at 

Y1217, the platelet Ca2+ mobilisation plateaued at 120 s (rising from 35 ± 13 to 233 ± 68 nM) 

and slightly decreased to 283 ± 70 nM over 10 min. 
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Figure 2. CRP-induced sustained tyrosine phosphorylation and Ca2+ mobilisation and the 

determination of stim function. (A) Washed platelets were stimulated with 10 µg/mL CRP in 

the presence of 9 μM eptifibatide. Platelets were lysed with 5x reducing lysis buffer at the 

stated time after addition of CRP. Representative phosphorylation blots from whole-cell lysates 

after probing with the stated antibodies. (B) Plot of relative phosphorylation for LAT at Y200, 

PLCγ2 at Y1217, and the extrapolated stim function (mean ± SD, n = 3). (C) Fura 2-loaded platelets 

at 2 x 108 cells/mL were pre-treated for 10 min with apyrase (2.5 U/mL) and indomethacin (20 

µM). Platelets were then stimulated with 10 µg/mL CRP in the presence of 1 mM CaCl2. 

Representative traces of changes in [Ca2+] over the 600 s were recorded.  
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Time course profiling of phosphoinositides in CRP-stimulated platelets 

Experiments were then conducted to profile the time-courses of phosphorylation of 

tyrosine kinases downstream of GPVI activation. Washed platelets again were pretreated with 

apyrase and indomethacin, and subsequently stimulated with CRP; at certain time points the 

stimulation was stopped with icecold HCl.18 In this experiment higher concentrations of both 

platelets and CRP were used (Figure 3), when compared to the other assays to improve the 

detection of low abundance phosphoinositides, especially PtdIns(3,4,5)P3. 

 As shown in Figure 3, PtdIns showed a slight initial increase (rising from 2.3 ± 0.5 to 2.9 

± 0.6 x 105 molecules/platelet over the first 60 s) before declining to below base level (1.5 ± 

0.2 x 105 molecules/platelet). In contrast, the amount of PtdIns(4,5)P2 gradually increased 1.6-

fold over the first 120 s (from 2.9 ± 0.6 to 4.8 ± 0.4 x 106 molecules/platelet), and remained 

elevated over basal for up to 30 min. PtdIns(3,4)P2 increased by 6-fold (from 0.5 ± 0.2 to 3.0 ± 

0.8 x 104 molecules/platelet) over the first 180 s and this elevated level was sustained for 10 

min before dropping to 1.7 ± 0.1 x 104 molecules/platelet after 30 min. For PtdIns(3,4,5)P3, a 

2.6-fold increase was observed over the first 180 s, from 2.2 ± 0.8 to 5.8 ± 2.8 x 104 

molecules/platelet. The large error bar can be attributed to donor variability and/or the low 

abundance of PtdIns(3,4,5)P3 which increase the impact of background noise and lower the 

accuracy of measurement. No significant change was observed for PtdIns4P, and its level 

remained near the basal level for 30 min. 
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Figure 3. CRP-induced changes in phosphoinositides profile in human platelet. Washed 

platelets at 1.2 x 109 cells were stimulated with 30 µg/mL CRP in the presence of apyrase and 

indomethacin. Stimulation was stopped at the stated time with icecold 1 M HCl. 

Phosphoinositides in the samples were analysed and quantified using IC-MS. Results are 

expressed in molecules/platelet and are means ± SD from 3 experiments. *P < 0.05 and **P < 

0.01, one-way ANOVA followed by Tukey’s test, compared to t = 0 s. 

 

Comparison of model simulations with experimental profile 

Figure 4A shows that both models are able to fit the data equally well, with similar 

minimum (both at 0.01) and median SSE/n (0.014 for Model 1 and 0.012 for Model 2). In Figure 

4B, the posterior distributions of the parameter values show that this dataset cannot constrain 

the parameter values and that the approximated parameters in Model 2 are more widespread 

compared to Model 1. The 10 best simulations (i.e. parameter values with the lowest SSE) are 

compared to the experimental data as shown in Figure 5. In both models, we observed that 

the top 10 simulations (black lines) fit well with the experimental profile (red lines). In addition, 

most best-fit lines had similar trajectories and were able to converge to their steady state over 

600 s, except those of Ipool and Ppool, which converge to different levels, and InsP1 which is 

increasing function. 



 

145 
 

 In Model 1, the best-fitting simulations predicted a rapid depletion of Ipool from 108 

molecules to 104 molecules in the first 200 s. These molecules are subsequently converted to 

Ppool, which rapidly increases from 2 x 104 molecules to 108 molecules in the first 200 s through 

PtdIns as an intermediate. In contrast, Model 2 predicted a much less drastic change in Ipool 

and Ppool. The number of molecules in Ipool stayed constant over 600 s of simulations, while the 

amount of Ppool slightly increased to around 105 molecules. The observed variations in the 

model simulations are due to the lack of experimental data available for calibration. 

Nevertheless, the simulations of Model 1 seem too drastic to be physiologically possible within 

200 s, while the predictions of Model 2 fit better to our understanding of phosphoinositide 

metabolism in platelets. The prediction in Model 2 of the Ppool increase is also comparable to 

a study by Valet et al., which showed a 3-fold increase in PtdIns3P after 3 min of CRP 

stimulation,19 assuming that PtdIns5P and PtdIns(3,5)P2 remain unchanged. 

 



 

146 
 

 

Figure 4. Assessing parameter fitting with cost function and range of parameters 

approximations. (A) Histograms showing the frequency of cost function SSE/n for the best 100 

simulations for Models 1 (left) and 2 (right). Median and minimum SSE/n are also listed. (B) 

Posterior parameter ranges are shown for Models 1 (top) and 2 (bottom). The blue, black, and 

red lines and hollow circles show the full range, interquartile range, the inner 10% range and 

median of each estimated parameter. Posteriors for s1, θ1, θ6 and q1 are constrained to other 

ranges and are shown in the supplemental. 
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Figure 5. Com
parison of m

odel sim
ulation profile w

ith experim
ental data. The best-fitting m

odel profiles of M
odel 1 (left) and M

odel 2 

(right). The 10 best sim
ulations (black and grey dotted lines) w

ere com
pared to experim

ental observations in Figure 3 (red dotted lines). 
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Model prediction of the effect of phosphoinositides kinase and phosphatase inhibitors 

The mathematical models capture the relationship between phosphoinositides in 

agonist-stimulated platelets. To test the models under alternative conditions, functional 

studies were undertaken using the PI4KA inhibitor GSK-A120 and the OCRL inhibitor 

YU14267021 on platelet activation. The results were compared with the model predictions. The 

use of these inhibitors was based on the hypothesis that they affect the resynthesis of 

PtdIns(4,5)P2 or the dephosphorylation of PtdIns(4,5)P2, respectively, thereby lowering the 

CRP-induced InsP3 production and Ca2+ mobilisation. To predict the effects of the phosphatase 

inhibitor YU122670, the model was simulated using the original parameters listed in Table 2 

except for lowering the rate of conversion of PtdIns(4,5)P2 to PtdIns4P r-2 to 10% of the original 

value, and lowering the rate of conversion of PtdIns to PtdIns4P r1 to 10% of the original value 

for GSK-A1. 

 For the simulation of YU142670 treatment (Figure 6), the two Models 1 and 2 have 

similar profile trends and predicted a lower steady-state level of PtdIns4P than the original 

model because of the inhibition of PtdIns(4,5)P2 phosphatase which reduces the amount of 

PtdIns4P formed by PtdIns(4,5)P2 dephosphorylation. At the same time, the predicted levels 

of PtdIns(4,5)P2, PtdIns(3,4)P2 and PtdIns(3,4,5)P3, InsP3 and InsP1 are higher compared to the 

original model, due to the lack of removal of PtdIns(4,5)P2 through dephosphorylation, and 

those fluxes are instead transferred to other species that are produced from PtdIns(4,5)P2. The 

effect of r-2 on Ipool and Ppool is minimal and similar to that observed in Figure 5. The 

simulation is consistent with Bura et al. who reported an increase of intracellular PtdIns(4,5)P2 

in activated platelet compared to the unstimulated,10 visualised by anti-PtdIns4P, anti-

PtdIns(4,5)P2 antibodies labelled platelets.  

 For the simulation of treatment with the PI4KA inhibitor GSK-A1 (Figure 7), both 
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models predicted that the steady-state level of PtdIns to be higher than the original model due 

to the inhibition of PI4K which reduces PtdIns removal through phosphorylation in both 

models. Consequently, the resynthesis of PtdIns(4,5)P2 is reduced, and the predicted steady-

state levels of PtdIns(4,5)P2, PtdIns(3,4)P2 and PtdIns(3,4,5)P3 are 50% lower than the original 

model. Model 1 predicted a rapid drop in PtdIns4P and PtdIns(4,5)P2 within 10 s of agonist 

stimulation followed by slow resynthesis of these species. This indicates the huge metabolic 

flux of r1 (conversion of PtdIns to PtdIns4P) and r2 (conversion of PtdIns4P to PtdIns(4,5)P2) in 

Model 1, and with inhibition of r1 these two species are rapidly depleted with slow 

replenishment. 

 Model 2 predicted that the level of PtdIns(4,5)P2 PtdIns(3,4)P2 PtdIns(3,4,5)P3 and InsP3 

match the profile for the first 100 s, showing that inhibition of PI4K mostly has a less 

pronounced effect immediately affect agonist stimulation. Model 2 also predicted that GSK-

A1 led to an increase in Ppool, possibly because of increased production of PtdIns3P and 

PtdIns5P due to more PtdIns being present. This increase is not observed in Model 1. The 

simulation is consistent with Bura et al., who reported a decrease of both PtdIns(4,5)P2 and 

PtdIns4P levels in activated platelets compared to the control.10 
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Figure 6. Sim
ulation of the effect of YU

142670 on phosphoinositides m
etabolism

. The m
odel is sim

ulated by adjusting r-2  to 10%
 of its 

original value, w
hile keeping all other param

eters the sam
e as in previous sim

ulations. The ten best-fitting m
odel profiles (black dotted 

lines) w
ere com

pared to the original experim
ental data (red dotted lines).  
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Figure 7. Sim
ulation of the effect of G

SK-A1 on phosphoinositides m
etabolism

.The m
odel sim

ulated by adjusting r1  to 10%
 of its original 

value, w
hile keeping all other param

eters the sam
e as in previous sim

ulations. The ten best-fitting m
odel profiles (black dotted lines) w

ere 

com
pared to the original experim

ental data (red dotted lines).  
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Effect of phosphoinositide kinase/phosphatase inhibitors on Ca2+ mobilisation 

To validate the predictions of the models, functional experiments were conducted to 

investigate the effect of GSK-A1 and YU142770 on the Ca2+ mobilisation. For this purpose, Fura-

2 loaded platelets were pre-treated for 10 min with GSK-A1 or YU142670 at the listed 

concentration, again in the presence of apyrase and indomethacin. The platelets were then 

stimulated with CRP in the presence of CaCl2. 

 As shown in Figure 8A-B, 1 µM YU142670 has no effect on Ca2+ mobilisation in platelet. 

YU142670-treated platelets behaved similarly to that of the vehicle, with cytosolic Ca2+ 

increased rapidly for the first two min, from the basal level at 35 ± 13 to 233 ± 68 nM (vehicle 

control) and 262 ± 108 nM (YU142670). Afterwards, the cytosolic Ca2+ level remained 

sustained and it slightly decreased to 183 ± 70 nM (control) and 190 ± 88 nM (YU142670) over 

10 min. On the other hand, for 1 µM GSK-A1 treated platelets, the Ca2+ also increased rapidly 

for the first two min to 233 ± 82 nM, but then it steadily decreased back to basal level for the 

next 8 min and reached 44 ± 9 nM, significantly lower than the vehicle (P < 0.01). 



 

153 
 

 

Figure 8. Effect of GSK-A1 and YU142670 on Ca2+ mobilisation. Fura 2-loaded washed 

platelets at 2 x 108 cells/mL were pre-treated for 10 min with DMSO vehicle, or at the stated 

concentration of GSK-A1 or YU142670 in the presence of apyrase (2.5 U/mL) and indomethacin 

(20 µM). The platelets were then stimulated with 10 µg/mL CRP in the presence of 1 mM CaCl2. 

(A) Representative traces of changes in [Ca2+]i with 1 µM GSK-A1 or YU142670-treated 

platelets over 600 s were recorded. Quantification of increases in [Ca2+]i for 2 min (B) or 10 min 

(C) after CRP stimulation. Data are means ± SD (n = 3), **P < 0.01, Welch’s t-test. 
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Validation of model using InsP1 measurement and phosphoinositide turnover inhibitors 

Experiments were also conducted to determine the effect of GSK-A1 and YU142670 on 

CRP-induced accumulation of InsP1 due to InsP3 production and rapid hydrolysis. Washed 

platelets at 8 x 108 cells/mL were pre-treated for 10 min with vehicle, 1 µM GSK-A1 or 1 µM 

YU142670 in the presence of apyrase (2.5 U/mL), indomethacin (20 µM) and 50 mM LiCl. The 

presence of Li+ inhibits inositol-phosphate phosphatase and prevents InsP1 hydrolysis to 

inositol.22 The concentrationd of platelets, inhibitors and LiCl was based on similar studies and 

manufacturer’s structions.10,23 

 As shown in Figure 9, similar to vehicle (from 30 ± 12 to 284 ± 112 nM), YU142670 pre-

treatment led to the accumulation of InsP1 to 334 ± 41 nM after 10 min of CRP stimulation, 

which was not significantly different from the vehicle control. On the contrary, 10 min pre-

treatment of GSK-A1 was able to eliminate CRP-induced InsP1 production, and remain at the 

basal level of 21 ± 3 nM after 10 min (P < 0.05 compared to vehicle). The results show that 

GSK-A1 inhibit PtdIns(4,5)P2 resynthesis that prolonged the Ca2+ response, and that GSK-A1 

treatment did not affect the initial Ca2+ mobilisation despite the lack of InsP1 accumulation. 

This may suggest that the initial Ca2+ mobilisation is induced by InsP3 is produced from the 

starting PtdIns(4,5)P2. 

 The model predictions were compared with the experimental data in Figure 9B. The 

predictions were produced by simulating the model with the same parameters as the original 

model except for 10% θ1 (the rate of conversion of InsP1 to Ipool) only for the control condition, 

or together with 10% r1 for GSK-A1 or 10% r-2 for YU142670. Both models predicted the 

inhibition of InsP1 accumulation for GSK-A1, with most of the best-fitting model profiles (black 

dotted lines) matching the experimental data (orange line in Figure 9A), accumulating to 1,000 

to 10,000 molecules after 10 min (equivalent to around 13 to 130 nM for 8 x 108 platelets/mL). 
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Figure 9. Comparison of experimental data and model predictions on the effect of GSK-A1 

and YU142670 on InsP1 accumulation. (A) Washed platelets at 8 x 108 cells/mL were pre-

treated for 10 min with DMSO vehicle (grey), 1 µM GSK-A1 (orange) or 1 µM YU142670 (blue) 

in the presence of apyrase (2.5 U/mL), indomethacin (20 µM), and 50 mM LiCl to prevent InsP1 

hydrolysis. The platelets were stimulated with 10 µg/mL CRP, and the stimulation was stopped 

at the stated time with lysis buffer. Cumulative InsP1 production was quantified using ELISA 

according to the manufacturer’s instructions. *P < 0.05, Welch’s t-test (n = 3 donors). (B) Model 

1 (left) and 2 (right) were simulated at 10% r-2 to represent the effect of YU142670 (top) or 

10% r1 to represent the effect of GSK-A1 (bottom). The 6 best-fitting model profiles (black 

dotted lines) were compared to the observation in (A) (red dotted lines). Both simulated with 

θ1 equal to 10% of its original value. 
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For YU142670, the model predicted an enhancement in InsP1 accumulation which was not 

observed in the experiment. Comparing both models, in general simulation profiles of Model 

1 deviates more from the red lines, compared to Model 2. In addition, the best-fitting model 

profiles failed to converge or reach steady states, and the predicted InsP1 level after 10 min 

ranges from 20,000 to 50,000 molecules (equivalent to 260 to 650 nM for 8 x 108 platelets/mL). 

 

Discussion 

In this chapter, we created a biological model of the phosphoinositides metabolism 

that uses kinetic rate characteristics determined in platelets downstream of GPVI, allowing a 

more accurate representation of platelets. It has long been known that PtdIns(4,5)P2 has a 

high turnover rate, which has been linked to so-called futile cycles of dephosphorylation and 

rephosphorylation that are thought to occur on the plasma membrane (PM).24 This is shown 

by the rapid labelling kinetics of PtdIns(4,5)P2 and PtdIns4P compared to the much slower 

labelling kinetics of PtdIns and other phospholipids.25 In our model, we are able to simulate 

the high turnover mathematically between PtdIns(4,5)P2, PtdIns4P and PtdIns which provided 

the kinetic basis for the futile cycle and demonstrated the system can reach a steady state in 

the simulated platelets system. 

 Controlling the amount of PtdIns(4,5)P2 in the PM is crucial for regulating signalling 

and membrane dynamics. Platelets must replenish this pool, since PtdIns(4,5)P2 only make up 

a tiny portion of all cellular PtdIns, particularly during prolonged PLC and PI3K activity. Early 

research in rat hepatocytes had shown that even a 10 min stimulation causes huge turnover 

in PtdIns(4,5)P2 pool.26 This can be explained by the sequential phosphorylation by PI4K and 

PIP5K,8 and the ER-PM membrane contact site (MCS), which can form in response to agonist 

stimulation and facilitate lipid-transfer proteins to shuttle phosphatidic acid and PtdIns back 
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and forth across membranes, to sustain PtdIns(4,5)P2 level.27 In the model, we integrated this 

concept by reducing the platelet environment into PM and Cyt compartments, with Cyt 

representing the cytosol and the inner membranes at the opposite side of MCS. This makes it 

possible for PtdIns to be transferred from the Cyt to the PM compartment by PITP in MCS in 

activated platelets without the need for vesicle transport, which would impede the 

replenishment of PtdIns and is unable to support continuous secondary mediators generation. 

And as a result, the model is constructed based on an activated platelet and is unable to 

simulate the resting condition in an unstimulated platelet. 

 The Ca2+ assay shows that GSK-A1 treatment did not affect the initial Ca2+ mobilisation 

despite the lack of InsP1 accumulation, but it inhibited prolonged Ca2+ response. The 

discrepancy is probably because platelet Ca2+ response is regulated InsP3 receptor activity, 

extracellular Ca2+ entry and Ca2+ back-pumping. In the first two min, InsP3 is mainly produced 

by the initial pool of PtdIns(4,5)P2 that is present in the PM, causing the opening of InsP3 

receptor and Ca2+ release from the internal stores. The Ca2+ spiking is caused by the co-

stimulatory effect of InsP3 and released Ca2+.28 However, in the presence of GSK-A1 and 

inhibition of PI4KA, PtdIns(4,5)P2 gradually depletes without replenishment from PtdIns. 

Together with the continuous hydrolysis of InsP3 and its dissociation from InsP3 receptors, the 

ion channels are eventually closed, and the elevated cytosolic Ca2+ is pumped back to the 

stores by Ca2+-ATPases until returning to the basal level. 

 Model 1 predicted a rapid depletion of Ipool from 108 molecules to 104 molecules in 

the first 200 s, which is converted to Ppool, increasing from 2 x 104 molecules to 108 molecules 

in the first 200 s through PtdIns as an intermediate. These predictions are too drastic to be 

physiologically possible within 200 s. While for the predictions in Model 2, which predicted a 

stable pool of Ipool and a tiny increase in Ppool, are more physiologically feasible. The reason 
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Model 1 produces such a simulation is that all 108 molecules of Ipool can participate in the 

reaction to synthesise PtdIns. By the law of mass action, with such a high amount of reactant, 

the conversion rate of Ipool to PtdIns is huge, and these molecules are subsequently converted 

to Ppool instead of PtdIns4P, as its level is constrained by experimental data. Model 2 prevents 

such a large flux by having half of the PtdIns and its synthesis located in a separate intracellular 

compartment. Therefore PtdIns (PM) can only be converted from PtdIns (Cyt), which is two 

orders of magnitude lower than Ipool, resulting in a much lower conversion rate compared to 

Model 1. This highlights the importance of spatial regulation, trafficking on maintaining the 

futile cycle and equilibrium of interconversion of phosphoinositides. 

 The model predicted a slight enhancement in InsP1 accumulation for YU142670 which 

was not observed in the experiment. In addition, YU142670 produced a similar Ca2+ 

mobilisation trace as vehicle. The lack of effect of YU142670 can be because OCRL is localised 

in the trans-Golgi network instead of the PM compartment.29 On the contrary, GSK-A1 inhibits 

PI4KA which localises in PM.30 Therefore, inhibition of OCRL may assert minimal short-term 

effect on the pool of high turnover phosphoinositides that localise in PM in activated platelets. 

 There are several limitations of the model. First, the model does not account for spatial 

effects, combining cytosol and the inner membranes into the same Cyt compartment. This is 

not the full representation of the platelet system, ignoring the cytosol-inner membrane 

interface which would, for example, limit the amount of inositol available to be incorporated 

into PtdIns, and prevent the huge flux from happening in Model 1. Second, the posterior 

parameter approximations generated in this study (Figure 5B) span two orders of magnitude, 

showing that there are insufficient experimental data to constrain the parameter values. 

Acquiring extra data under different experimental conditions, such as the use of different 

levels of agonist and other phosphoinositides kinase/phosphatase inhibitors would help in 
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constraining the range of approximated parameters. In addition, the model combined 

PtdIns3P, PtdIns5P, and PtdIns(3,5)P2 into a single variable Ppool, because I was unable to 

quantitate their abundance by the developed IC-MS method due to their peak overlap. 

 In conclusion, this chapter develops an experimentally calibrated dynamic 

mathematical model of phosphoinositide metabolism in platelets. Despite advances in mass 

spectrometry-based profiling or imaging techniques, our quantitative knowledge of these 

transient and unstable phosphoinositides is still limited. This is because there are no tools 

available to real-time measure the absolute concentrations and subcellular resolution of lipids 

in living cells at the same time. The mathematical model developed in this chapter can 

circumvent these problems and shed light on the interconnectedness of phosphoinositide 

metabolism. The model is also able to predict the effect of GSK-A1 on phosphoinositides 

metabolism and platelet activation, proving the hypothesis it would inhibit the resynthesis of 

PtdIns(4,5)P2 level thereby reducing CRP-induced InsP3 production and sustained Ca2+ 

mobilisation. 
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Materials and Methods 

 

Materials 

Chemicals and reagents were obtained from the following sources: Cross-linked 

collagen-related peptide (CRP) came from the University of Cambridge (Cambridge, United 

Kingdom); Fura-2 acetoxymethyl ester and human fibrinogen were obtained from Invitrogen 

(Carlsbad, CA, USA); Pluronic F-127 from Molecular Probes (Eugene, OR, USA). MS-grade 

MeOH from Biosolve (Valkenswaard, The Netherlands); formic acid, 37% HCl, CHCl3 and 

methylamine in MeOH from Sigma-Aldrich (Steinheim, Germany); NaCl, 1-butanol and 

isopropanol (IPA) from Merck (Darmstadt, Germany); Tris(hydroxymethyl)-aminomethane 

(Tris) was purchased from Applichem (Darmstadt, Germany); sodium dodecyl sulfate (SDS) 

from Roth (Karlsruhe, Germany); 16:0/16:0 PtdIns4P and 16:0/16:0 PtdIns(4,5)P2 α-

fluorovinylphosphonate (PtdIns(4,5)P2-FP) from Echelon Biosciences (Salt Lake City, UT, USA); 

and 17:0/20:4 PtdIns3P, 18:1/18:1 PtdIns(3,4)P2, 18:1/18:1 PtdIns(4,5)P2, 18:1/18:1 
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PtdIns(3,5)P2 and 17:0/20:4 PtdIns(3,4,5)P3 from Avanti Polar Lipids (Alabaster, AL, USA). 

Ultrapure water (18 MΩ cm at 25°C) was obtained from an Elga Labwater system (Lane End, 

United Kingdom). The bicinchoninic acid (BCA) assay was purchased from Thermo Scientific 

(Schwerte, Germany). Platelets were activated using collagen-related peptide (CRP, Richard 

Farndale, University of Cambridge, United Kingdom) or thrombin from human plasma (Roche, 

Germany). 

 

Subjects and blood collection 

Blood was taken by venipuncture from healthy male and female volunteers who had 

not taken anti-platelets in the previous ten days, after full informed consent according to the 

Helsinki declaration. The study was approved by the Medical Ethics Committee of Maastricht 

University. According to the approval, blood donor age and sex were not recorded. Blood was 

collected into 3.2% sodium citrate (Vacuette tubes, Greiner Bio-One, Alphen a/d Rijn, The 

Netherlands). All blood donors had platelet counts within the reference range, as measured 

with a Sysmex XN-9000 analyser (Sysmex, Kobe, Japan). 

 

Platelet isolation 

Platelet-rich plasma (PRP) and washed platelet were obtained from citrated blood 

samples, using an earlier described protocol with slight modifications.31 The PRP was obtained 

through centrifugation at 260 g for 10 min, and supplemented with 1:10 vol/vol acid citrate 

dextrose (ACD; 80 mM trisodium citrate, 183 mM glucose, 52 mM citric acid). After transferring 

into eppendorf tubes, the PRP was centrifuged at 2360 g for 2 min. The pelleted platelets were 

resuspended into HEPES buffer pH 6.6 (10 mM HEPES, 136 mM NaCl, 2.7 mM KCl, 2 mM MgCl2, 

5.5 mM glucose, and 0.1% bovine serum albumin). After the addition of apyrase (1 U/mL) and 
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1:15 vol/vol ACD, a second similar centrifugation step was performed to obtain washed 

platelets. 

 

Platelet stimulation experiment 

Washed platelets at a concentration of 1 x 109 platelets/mL were stimulated with 30 

μg/mL CRP in the presence of apyrase (2.5 U/mL) and indomethacin (10 µM), before the 

addition of 10x volume of cold HCl to stop the reaction. The pellets were then shock frozen in 

liquid nitrogen and kept at -80°C after the platelets had been centrifuged for 5 min at 640 g at 

25°C. 

 

Lipid extraction 

Acidified chloroform/methanol (CHCl3/MeOH) extraction was carried out following the 

protocol of Clark et al.32 For platelet samples, after the addition of 242 μL CHCl3, 484 μL MeOH, 

23.6 µL 1M HCl, 170 µL water and internal standard [100 pmol of PtdIns(4,5)P2-FP] to the cell 

pellets containing 1 x 108 platelets, the mixture was allowed to stand at room temperature for 

5 min with occasional vortexing. Next, 725 µL of CHCl3 and 170 µL 2M HCl was added to induce 

phase separation and the samples were centrifuged at 1,500 g for 5 min at room temperature 

(Eppendorf, Hamburg, Germany). This created a two-phase system with an upper aqueous 

layer and a protein interface. Then, the lower organic layer was transferred to another tube 

and dried under a continuous stream of nitrogen (1 L/min N2 at 25°C). 

 The lipid extracts were then deacylated following the protocol of Jeschke et al.33 The 

dried lipid extracts were resuspended in 50 µL methylamine in methanol/water/1-butanol 

(46:43:11) and incubated at 53°C for 50 min in a thermomixer at 1 000 rpm (Thermomixer 

Comfort; Eppendorf, Hamburg, Germany). Then 25 µL cold IPA was added to the mixture, and 
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the mixture was dried under a continuous stream of nitrogen to obtain dried lipid extracts (1 

L/min N2 at 25°C). The dried and deacylated lipid extract was resuspended in 50 μL water and 

stored at -80°C prior to further analysis. 

 

Protein concentration determination 

1200 µL methanol was added to the remaining protein interphase and aqueous upper 

phase, and the mixture was incubated at -80°C for 3 hours. Then the mixture was centrifuged 

at 19,000 g for 30 min at 4°C, the supernatant removed, and the remaining protein pellet was 

dried under the fume hood. The resulting protein pellet was then resuspended in 1% SDS, 150 

mM NaCl, 50 mM Tris (pH 7.8) and the protein concentration was determined using a BCA 

assay. 

 

IC−MS/MS 

IC-MS/MS was conducted using a Dionex ICS-5000 instrument (Thermo Fischer 

Scientific, Darmstadt, Germany) connected to a QTRAP 6500 instrument (AB Sciex, Darmstadt, 

Germany) that was equipped with an electrospray ion source (Turbo V ion source). 

Chromatographic separation was accomplished with a Dionex IonPac AS11-HC column (250 

mm × 2 mm, 4 μm; Thermo Fischer Scientific) fitted with a guard column (50 mm × 2 mm, 4 

μm; Thermo Fischer Scientific). A segmented linear gradient was used for separation of 

GroPInsP: initial 15 mM potassium hydroxide (KOH), then held at 15 mM KOH from 0.0 to 5.0 

min, 15 to 25 mM KOH from 5.0 to 15.0 min, 50 to 65 mM KOH from 15.0 to 30.0 min, 100 mM 

KOH from 30.0 to 34.0 min, 10 mM KOH from 34.0 to 38.0 min, 100 mM KOH from 38.0 to 42.0 

min, and 15 mM KOH from 42.0 to 45.0 min. The IC flow rate was 0.38 mL/min, supplemented 

postcolumn with 0.15 mL/min makeup flow of 0.01% FA in MeOH. The temperatures of the 
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autosampler, column oven and ion suppressor were set at 10, 30 and 20°C, respectively. The 

injector needle was automatically washed with water and 5 μL of each sample were loaded 

onto the column. 

 The following ESI source settings were used: curtain gas, 20 arbitrary units; 

temperature, 400°C; ion source gas I, 60 arbitrary units; ion source gas II, 40 arbitrary units; 

collision gas, medium; ion spray voltage, -4500 V; declustering potential, -150 V; entrance 

potential, -10 V; and exit potential, -10 V. For scheduled selected reaction monitoring (SRM), 

Q1 and Q3 were set to unit resolution. The collision energy was optimized for each GroPInsP 

by direct infusion of the corresponding deacylated standard. The scheduled SRM detection 

window was set to 3 min, and the cycle time was set to 1.5 s. Data were acquired with Analyst 

version 1.6.2 (AB Sciex). Skyline (64-bit, 3.5.0.9319) was used to visualize results, integrate 

signals over the time, and quantify all lipids that were detected by MS.34 

 

Preparation of Fura-2 loaded platelets 

The washed platelets were resuspended into HEPES buffer pH 7.45 at a count of 2 x 

108/mL, and then loaded with Fura-2 acetoxymethyl ester (3 µM) and pluronic (0.4 µg/mL) for 

40 min at room temperature. The Fura-2-loaded platelets were then centrifuged again in the 

presence of apyrase (1 U/mL) and 1:15 vol/vol ACD. For all inhibitor experiments, extra apyrase 

(1 U/mL) was added during labelling followed by centrifugation in the presence of 1:15 vol/vol 

ACD. The final count after resuspension into HEPES buffer pH 7.45 was 2 x 108/mL. 

 

Calibrated platelet [Ca2+]i measurements 

Changes in [Ca2+]i of Fura-2-loaded platelets were measured in 96-well plates using a 

FlexStation 3 robot (Molecular Devices, San Jose, CA, USA), basically as indicated before.35,36 
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In brief, 200 µL samples of platelets (2 x 108/mL) per well were left untreated or were 

pretreated with apyrase (0.1 U/mL) and indomethacin (20 µM) for 10 min. Where indicated, 

pharmacological inhibitors to block Ca2+ entry were added as well (see Table 1). After the 

addition of either 0.1 mM EGTA or 2 mM CaCl2, the disposed platelets in wells were 

temperature adjusted (37°C) and fluorescence at two excitation wavelengths were recorded 

for 10 min. During recording, 20 µL of agonist solution was added by automated pipetting. 

Note that the mixing of agonist with Fura-2-loaded platelets was diffusion-limited, and 

occurred by high-speed injection of 10% volume of the agonist solution. Prior to default use, 

injection volume and speed (125 µL/s) had been optimized to obtain maximal platelet 

responses.36 

 Changes in Fura-2 fluorescence (37°C) were measured per row by ratiometric 

fluorometry, using excitation wavelengths of 340 and 380 nm and a single emission wavelength 

of 510 nm.36 Fura-2 fluorescence ratio values per well were obtained every 4 s. Separate 

calibration wells contained Fura-2-loaded platelets that were lysed with 0.1% Triton-X-100 in 

the presence of either 1 mM CaCl2 or 1 mM EGTA/Tris for determining Rmax and Rmin values.37 

After the correction for 340 and 380 nm background fluorescence levels, nanomolar changes 

in [Ca2+]i were calculated according to the Grynkiewicz equation with a KD of 224 nM.38 All 

measurements were completed within 2-3 hours of isolation of cells. Dye leakage during 

measurements appeared to be negligible. 

 

Platelet stimulation and InsP1 ELISA 

Washed platelets were resuspended in Tyrode's buffer at a concentration of 8 x 108 

platelets/mL supplemented with 50 mM LiCl which prevents InsP1 hydrolysis. Before 

stimulation, washed platelets were pre-treated with GSK-A1, YU142670, or DMSO as vehicle 
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together with 2.5 U/mL apyrase, 10 uM indomethacin for 10 min (presence of 2.5 U/mL 

apyrase, 10 uM indomethacin). Afterwards, the washed platelets were stimulated by 10 μg/mL 

CRP, and lysed with 1% lysis buffer (IP-ONE ELISA kit, Cisbio, Bedford, MA, USA). After cell lysis, 

the lysed platelets were snap-frozen in liquid nitrogen for future analysis. The InsP1 ELISA was 

conducted according to IP-ONE ELISA kit manufacturer’s instructions, and the final result was 

measured in 96-well plates using a FlexStation 3 (Molecular Devices, San Jose, CA, USA). 

 

Model calibration 

The mathematical models were calibrated to the experimental data utilising a Bayesian 

approach. We sampled parameter values via a Latin Hypercube from log-normal fitting 

constraints between 10-4 and 102 for 20,000 times, as summarised in Table 2. The constraints 

for s1, θ1, θ6 and q1 are different from the listed range and adjusted according to literature 

which shows the hydrolysis rate of inositol phosphates,39,40 or by the examination of posteriors 

distribution after the initial fitting. Based on the constraint, a gradient-based method (fmincon, 

MATLAB) was used to find the local minimum, minimising the distance between the 

mathematical model’s simulations and the experimental data through the cost function: 

𝑆𝑆𝐸 = ൫𝑦,௫(𝑎)– 𝐷𝑎𝑡𝑎,௫൯
ଶ
, 

where SSE denotes sum squared error, yi,x(a) indicates the model simulations for species x at 

time point i and Datai,x represents the experimental profile of species x at time point i. As best 

parameter values were defined those that allow the mathematical model to produce 

simulations with the lowest SSE and are closest to the experimental data. 
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Supplemental 

 

 

Figure S1. Posterior parameter ranges for s1 and θ6. Posterior parameter ranges are shown 

for Models 1 (top) and 2 (bottom). The blue, black, and red lines and hollow circles show the 

full range, interquartile range, the inner 10% range and median of each estimated parameter. 
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Table S2. Results of param
eter fitting M

odel 2 to experim
ental data. Param
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Chapter 5 (to be submiƩed) 

AddiƟve benefit of modelling of platelet calcium 

signalling by combined recurrent neural network and 

parƟal least squares analyses 
 

The mechanisms that regulate calcium levels in the platelet cytosol following 

platelet acƟvaƟon via GPVI or other receptors/ligands is complex. This involves 

mulƟple ion channels in different subcellular locaƟons. The relaƟonship between 

these components is poorly understood. In this chapter, we developed two 

modelling techniques to invesƟgate how different agonists and inhibitors impact 

intracellular Ca2+ dynamics in platelets. Using a fluorescence raƟo probe, we 

sƟmulated human platelets with a panel of agonists under various condiƟons, 

including the presence of inhibitors of a range of ion channels that are implicated 

in Ca2+ homeostasis, and modulaƟon of secondary mediators. The aim was to 

construct mathemaƟcal models that could effecƟvely predict calcium response 

due to a combinaƟon of ligands and inhibitors, without overwhelming signalling 

complicaƟons. 
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Abstract 

Platelets play criƟcal roles in haemostasis and thrombosis. The platelet acƟvaƟon 

process is driven by agonist-induced rises in cytosolic [Ca2+]i, where the paƩerns of Ca2+ 

responses are sƟll incompletely understood. In this study, we developed a number of 

techniques to model the [Ca2+]i curves of platelets from a single blood donor. Using a 

fluorescence raƟo probe, the platelets were sƟmulated with a panel of agonists, i.e. thrombin, 

collagen, or CRP under various condiƟons, prevenƟng extracellular Ca2+ entry, secondary 

mediator effects or Ca2+ reuptake into intracellular stores. To analyse the data, we developed 

two non-linear models, a mulƟlayer perceptron (MLP) network and an autoregressive network 
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with exogenous inputs (NARX). The trained networks accurately predicted the platelet [Ca2+]i 

curves in the presence of combinaƟons of agonists and inhibitors, with the NARX model 

achieving an R2 up to 0.64 for trend predicƟon of unforeseen data. In addiƟon, we used the 

same dataset for construcƟon of a parƟal least square (PLS) linear regression model, which 

esƟmated the explained variance of each input. The NARX model demonstrated that good fits 

could be obtained for the calcium curves modeled, whereas the PLS model gave useful 

interpretable informaƟon on the importance of each variable. These modelling results can be 

used for the development of novel platelet [Ca2+]i-inhibiƟng drugs. 

 

IntroducƟon 

Blood platelets, derived from megakaryocytes, funcƟon in haemostasis and thrombosis 

via receptor-induced signalling responses1-3. Important platelet-acƟvaƟng receptors are the 

protease-acƟvated receptors (PAR1/4) for thrombin and the glycoprotein VI (GPVI) receptor 

for collagen, which signal as G-protein coupled receptors (GPCR) and as a protein tyrosine 

kinase-linked receptor (TKLR), respecƟvely4. Given that arterial thrombosis is driven by the 

acƟvaƟon and aggregaƟon of platelets5, and it is a prominent cause of death worldwide 6, a 

clear understanding of the process of platelet acƟvaƟon is a must. 

 In platelets sƟmulated via GPCR or TKLR, a rise in cytosolic [Ca2+]i is the common iniƟal 

event, mediaƟng all essenƟal platelet funcƟons7, 8. The agonist-induced mobilisaƟon of Ca2+ 

from intracellular stores in the endoplasmic reƟculum (or dense tubular system) occurs via 

inositol 1,4,5-trisphosphate receptors (IP3Rs), whereas sarcoplasmic/endoplasmic reƟculum 

Ca2+-ATPases (SERCAs) are responsible for Ca2+ back pumping into these stores (Figure S1)7, 8. 

The IP3R channels are triggered by IP3, which is produced as a result of acƟvaƟon of the GPCRs 
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for thrombin9 and ADP10, and of acƟvaƟon of the TLR GPVI by collagen or collagen-related 

pepƟde (CRP)8. 

 According to the mechanism of store-operated Ca2+ entry (SOCE), the store depleƟon 

is coupled to entry of Ca2+ from the extracellular medium, via Orai1 channels, which then 

interact with a Ca2+ sensor STIM1 (stromal interacƟon molecule 1) in the endoplasmic 

reƟculum membrane7. The back pumping of Ca2+ over the plasma membrane occurs via 

plasma membrane Ca2+-ATPases (PMCAs). The primary agonists, thrombin and CRP, 

furthermore sƟmulate the release of autocrine agents that can enforce the Ca2+ signalling 

process. These are in parƟcular autocrine-produced thromboxane A2 (TxA2) and ADP, both of 

which sƟmulate IP3 producƟon via GPCRs12. Another paracrine-dependent Ca2+ entry 

mechanism is provided by ATP, which acƟvates P2X1 channels that specifically mediate Ca2+ 

entry11. 

 Several pharmacological inhibitors can be used to interfere with the platelet Ca2+ 

responses. The entry of Ca2+ from the extracellular fluid is prevented by the Ca2+ chelator EGTA. 

Back pumping of Ca2+ from cytosol to intracellular stores is inhibited by the compound 

thapsigargin, which accordingly potenƟates the Orai1-STIM1 dependent entry7. The effects of 

autocrine agents can be suppressed by the presence of apyrase (degrading ATP and ADP) and 

indomethacin (blocking TxA2 formaƟon). Figure S1 illustrates these platelet receptors, ligands, 

inhibitors and channels, relevant to the present study. 

The high complexity of the Ca2+-modulaƟng process in platelets has triggered other 

authors to develop mathemaƟcal models, aiming not only to beƩer understand the process 

but also to idenƟfy new therapeuƟc targets. Dolan and Diamond combined several models of 

Ca2+ fluxes in different platelet compartments into one single system, using a set of ordinary 

differenƟal equaƟons (ODEs)13. Although their system did not include ligand-receptor 
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interacƟons, it sƟll consisted of 34 enƟƟes, 35 interacƟons and 86 parameters, thus reflecƟng 

the complexity of Ca2+ signalling process. An alternaƟve approach presented by ChaƩerjee and 

Diamond14 was to create a neural network model, which was trained from the Ca2+ response 

paƩerns to specific agonists, using the platelets from a number of healthy donors. The neural 

network, acƟng as a black box, could predict synergisƟc effects on the Ca2+ responses of up to 

six receptor agonists. A trade-off of this network model was that all the parameters needed to 

be tuned and trained, which required extensive experimental data to achieve the desired 

predicƟve power. Another limitaƟon was that the neural network approach did not provide 

informaƟon on the contribuƟon of each type of Ca2+ channel and pump to the overall [Ca2+]i 

levels. Similarly, it did not idenƟfy how the blockage of a given channel or (autocrine) process 

influenced the overall response. 

In the present study, we constructed a computaƟonal model to predict the shapes of 

platelet [Ca2+]i curves over Ɵme in response to thrombin or CRP for a given set of experimental 

condiƟons, with known agonists and inhibitors. We built several neural network-based models 

to beƩer predict the agonist and inhibitor effects on the [Ca2+]i Ɵme curves. We subsequently 

used a parƟal least square regression analysis to understand how specific curve variables 

contributed to obtained response. To exclude inter-individual variaƟon, we used a coherent 

set of Ca2+ response curves in platelets, taken from a single healthy subject on one occasion. 

 

Methodology 

Materials 

Human α-thrombin came from Kordia (Leiden, The Netherlands); cross-linked collagen-

related pepƟde (CRP-XL) from the University of Cambridge (UK); Fura-2 acetoxymethyl ester 

from Invitrogen (Carlsbad CA, USA); Pluronic F-127 from Molecular Probes (Eugene OR, USA). 
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Horm-type collagen was obtained from Nycomed (Hoofddorp, The Netherlands). Other 

materials were from sources described before15. 

Blood collecƟon and platelet preparaƟon 

The study was approved by the Medical Ethics CommiƩee of Maastricht University. 

Blood donor age and sex could not be recorded. Blood was taken into 3.2% sodium citrate 

(VacueƩe tubes, Greiner Bio-One, Alphen a/d Rijn, The Netherlands) from consenƟng healthy 

volunteers who had not taken anƟ-platelet medicaƟon in the previous ten days. Platelet counts 

were within the reference range. 

 Platelet-rich plasma (PRP) was obtained from the citrated blood by centrifuging, aŌer 

which the collected platelets were washed in the presence of apyrase (1 U/mL), and then 

loaded with Fura-2 acetoxymethyl ester (3 µM) and Pluronic (0.4 µg/mL) at a count of 2 x 

108/mL for 40 min at room temperature, such as described before16. The cells were finally 

resuspended at a concentraƟon of 2 x 108/mL in HEPES buffer pH 7.45 (10 mM HEPES, 136 mM 

NaCl, 2.7 mM KCl, 2 mM MgCl2, 5.5 mM glucose, and 0.1% bovine serum albumin). 

Calibrated cytosolic Ca2+ measurements 

In the Fura-2-loaded platelets, changes in cytosolic [Ca2+]i were measured in 96-well 

plates using a FlexStaƟon 3 (Molecular Devices, San Jose, CA, USA), as described before16. 

When appropriate, the cells in wells were pretreated with apyrase (0.1 U/mL) plus 

indomethacin (20 µM), or with thapsigargin (1 µM) for 10 min. AŌer the addiƟon of 0.1 mM 

EGTA or 1 mM CaCl2, the cells were sƟmulated by automated pipeƫng with one of the 

following agonists: CRP (1 or 10 µg/mL), collagen (1,3, 10 or 30 µg/mL), thrombin (0.3, 1, 3 or 

10 nM), or none of these (control). In all wells, changes in Fura-2 fluorescence were measured 

over Ɵme at 37 °C by raƟometric fluorometry, using appropriate control wells for calculaƟng 

nM concentraƟons of [Ca2+]i.16 
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SelecƟon of platelet [Ca2+]i traces for modelling 

Calibrated agonist-induced Ɵme series of [Ca2+]i with the various experimental 

condiƟons were performed with Fura-2-loaded platelets from 6 donors17. For the present 

modelling approach, a complete set of 72 Ɵme curves (Table 1) was chosen from one donor, 

which were representaƟve for those all six donors. In the table, the validaƟon and test 

condiƟons are highlighted in blue and red, respecƟvely. The criteria for spliƫng these are 

indicated below. 

PreparaƟon of input data 

The traces of nM changes in [Ca2+]i in platelets for experiments involving CRP or 

collagen were measured every 4 s, while those for experiments with thrombin had an interval 

of 2-4 s. To be able to compare all 72 traces, all raw data (Figure S2) were linearly resampled 

and interpolated to generate 1 s Ɵme steps, from 0 s to 540 s (9 min). To minimize the noise in 

the dataset, the curves were smoothened with a Savitzky–Golay filter (Figure S3). 

 In cases where scaling of data was needed, a subset of interpolated curves was 

subjected to a standard min-max scaling algorithm to obtain values between 0 and 1. For the 

scaling of input condiƟons, experimental variables were set to have values in the range [-1, 1]  

(Table 1). Here, -1 meant no agonist or inhibitor present, while 1 indicated that the 

concentraƟon of agonist or inhibitor was maximal across the samples. 

For construcƟng a mulƟlayer perceptron (MLP) network, a regression model was built 

using magnitudes of the [Ca2+]i Ɵme series. The experimental variables were used as input 

values (Figure 1A). Herein we used the mean square error (MSE) as a cost funcƟon. This 

ensured a beƩer fit for larger values (in the order of magnitude). To handle this complexity, we 

set the target (output) for the model as log-scaled values of the nM [Ca2+]i range as log10(max 

– min). This opƟmised the overall accuracy across log scales. 
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No. Col CRP Thr EG AI Tha  No. Col CRP Thr EG AI Tha
1 0 0 0 0 1 0  37 0 10 0 0 0 1 
2 0 0 0 1 1 0  38 0 1 0 0 0 1 
3 0 0 0 0 1 1  39 0 10 0 1 0 1 
4 0 0 0 1 1 1  40 0 1 0 1 0 1 
5 0 0 0 0 0 0  41 0 10 0 0 1 0 
6 0 0 0 1 0 0  42 0 1 0 0 1 0 
7 0 0 0 0 0 1  43 0 10 0 1 1 0 
8 0 0 0 1 0 1  44 0 1 0 1 1 0 
9 30 0 0 0 1 0  45 0 10 0 0 1 1 

10 10 0 0 0 1 0  46 0 1 0 0 1 1 
11 3 0 0 0 1 0  47 0 10 0 1 1 1 
12 1 0 0 0 1 0  48 0 1 0 1 1 1 
13 30 0 0 1 1 0  49 0 0 10 0 1 1 
14 10 0 0 1 1 0  50 0 0 3 0 1 1 
15 3 0 0 1 1 0  51 0 0 1 0 1 1 
16 1 0 0 1 1 0  52 0 0 0.3 0 1 1 
17 30 0 0 0 1 1  53 0 0 10 1 1 1 
18 10 0 0 0 1 1  54 0 0 3 1 1 1 
19 3 0 0 0 1 1  55 0 0 1 1 1 1 
20 1 0 0 0 1 1  56 0 0 0.3 1 1 1 
21 30 0 0 1 1 1  57 0 0 10 0 1 0 
22 10 0 0 1 1 1  58 0 0 3 0 1 0 
23 3 0 0 1 1 1  59 0 0 1 0 1 0 
24 1 0 0 1 1 1  60 0 0 0.3 0 1 0 
25 10 0 0 0 0 0  61 0 0 10 1 1 0 
26 1 0 0 0 0 0  62 0 0 3 1 1 0 
27 10 0 0 1 0 0  63 0 0 1 1 1 0 
28 1 0 0 1 0 0  64 0 0 0.3 1 1 0 
29 10 0 0 0 0 1  65 0 0 10 0 0 1 
30 1 0 0 0 0 1  66 0 0 1 0 0 1 
31 10 0 0 1 0 1  67 0 0 10 1 0 1 
32 1 0 0 1 0 1  68 0 0 1 1 0 1 
33 0 10 0 0 0 0  69 0 0 10 0 0 0 
34 0 1 0 0 0 0  70 0 0 1 0 0 0 
35 0 10 0 1 0 0  71 0 0 10 1 0 0 
36 0 1 0 1 0 0  72 0 0 1 1 0 0 

 

Table 1. Assignment matrix of variables of experimental condiƟons. Fura-2-loaded platelets 

from one single donor were used for Ca2+ response measurements on the same day. CondiƟons 

highlighted in blue (solid borders) were used as validaƟon set, while those in red (dashed 

borders) were used as test set. AbbreviaƟons: No., condiƟon number; Col, collagen (μg/mL); 

CRP, collagen-related pepƟde (μg/mL); Thr, thrombin (nM); EG, EGTA: 0.1 mM if assigned to 1; 

or 1 mM CaCl2 if assigned to 0; AI, apyrase (0.1 U/mL) plus indomethacin (20 μM); Thap, 

thapsigargin (1 μM). 
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Magnitude predicƟon neural network 

 Considering that the number of features was small with 6 experimental condiƟons 

(Table 1), we also generated polynomial features (quadraƟc feature combinaƟons) to increase 

the feature number from 6 to 27. The MLP network was opƟmised by seƫng the number of 

hidden layers to 1, with the number of nodes randomly selected from 1 to 10. Given the 

relaƟvely small training set that was available, network architecture opƟons were chosen to 

train only a low number of parameters, thus prevenƟng overfiƫng. Networks were trained 

100 Ɵmes, starƟng from random weights. The best structure was chosen as the one with a 

minimal score in the cost funcƟon of the validaƟon set. Network training was performed using 

the Levenberg-Marquardt algorithm, containing a recƟfied linear unit (ReLU) as an acƟvaƟon 

funcƟon in each node. Modelling was conducted using Matlab R2022a and the Neural Network 

Toolbox. 

Trend predicƟon of NARX network 

Another type of neural network was constructed to predict the trends of smoothened 

and scaled [Ca2+]i Ɵme curves. To beƩer capture the Ɵme dynamics (i.e. the shape of the 

curve), we choose a non-linear autoregressive network with exogenous inputs (NARX) and 

parallel architecture18,19, which is known as a closed-loop neural network. For this NARX 

network, the model's output y(t) was used to fit the target (i.e. the smoothened and scaled 

[Ca2+]i curves). The output then generated feedback as addiƟonal input to the network, when 

combined with the experimental condiƟon (Figure 1B). The mathemaƟcal expression of 

[Ca2+](t) is wriƩen as follows: 

𝑦(𝑡)  = 𝑓(𝐿ସ × 𝑓(𝐻ଷ × 𝑦 + 𝐿ଷ × 𝑓(𝐻ଶ × 𝑦 + 𝐿ଶ × 𝑓(𝐻ଵ × 𝑦 + 𝑊 × 𝐼 + 𝑏ଵ) + 𝑏ଶ) + 𝑏ଷ) + 𝑏ସ) 

where y(t) is [Ca2+]i(t), I is an input matrix of experimental condiƟons, yh is the feedback delay 

(history) of y. Furthermore, W and Hn are the input matrix's weight and feedback delay of y, 
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respecƟvely; bn are biases, and Ln are weights of each hidden layer; f is the acƟvaƟon (transfer) 

funcƟon. Note that the product of the matrix also is a matrix, meaning that the equaƟon 

represents a summaƟon of numerous parameters and funcƟons. 

For the feedback delays, we choose the values at the last 1, 3, 6, 10, 15, 21, 28, and 36 

s prior to the current value of the [Ca2+]i Ɵme series. These feedback delays hence kept the 

informaƟon about recent values, while preserving the long-term memory of the system. IniƟal 

values of the feedback delays were set to zero, as the system was assumed to be in a steady 

state prior to the agonist-induced acƟvaƟon of platelets. The use of MSE as a cost funcƟon 

allowed us to make predicƟons of the scaled min-max [Ca2+]i Ɵme series. The scaling was 

performed per Ɵme series, implying that each series had the same range [0,1]. Polynomial 

features were also used in this network, thus expanding the number of inputs from 6 to 27. 

The neural network architecture was opƟmised in a way to maximise the goodness of 

fit, but to prevent overfiƫng. We used three hidden layers, with each layer's size varying 

between 2 to 20 nodes (not including feedback delays). This gave approximately 7000 different 

architectures being trained. A randomised grid search was employed to find the best 

architecture. For training, the Levenberg-Marquardt algorithm was used with a hyperbolic 

tangent sigmoid (tansig) as an acƟvaƟon funcƟon. Since parameter fiƫng in the neural 

network depended on a random seed, each architecture was fiƩed 100 Ɵmes, aŌer which the 

best parameters were used for comparison. The networks were again built and trained in 

Matlab. 
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Figure 1. ConstrucƟon of tw
o neural netw

orks. (A) Setup of M
LP netw

ork, as a fully connected feedforw
ard neural netw

ork, w
hich w

as used 

for predicƟon of the m
agnitude of [Ca

2+]i  Ɵm
e curves. (B) Closed-loop non-linear autoregressive netw

ork w
ith exogenous inputs (N

ARX), w
hich 

w
as used as a recurrent neural netw

ork. H
erein, generated output served as input for a next Ɵm

e point. This netw
ork type w

as used for the 

predicƟon of trends in [Ca
2+]i  Ɵm

e curves.  
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Parameter sensiƟvity analysis 

To perform sensiƟvity analysis, the method of one-factor-at-a-Ɵme (OAT) was applied 20. This 

procedure keeps all other variables fixed to the central or baseline values while changing one 

variable at a Ɵme. Since all effects were computed with reference to the same central point in 

space, this improved comparability of the outcomes. As a default, we set the condiƟons of 

EGTA or CaCl2, autocrine inhibitors (AI) or not, and thapsigargin or not as 1 or 0 (23 = 8 possible 

combinaƟons). Furthermore, the agonist concentraƟon was scaled from 0 to 10% of the 

maximal concentraƟon, i.e. 30 μg/mL collagen, 10 μg/mL CRP or 10 nM thrombin. The shape 

of each [Ca2+]i Ɵme curves was defined according to their scalar characterisƟcs, namely the 

magnitude of the response, the peak Ɵme, the relaƟve terminal level, and the mean deviaƟon 

from a straight line, such as indicated in Figure 2. 

 

 

Figure 2. Defining the scalar characterisƟc of a [Ca2+]i Ɵme curve. Scaling was performed 

using the following conversions: magnitude (nM) points to the maximal value minus the 

minimal value of a series. tmax refers to the Ɵme point that the curve reaches the maximal 

value, scaled by Ɵme range (540 s). Parameter ylast indicates the terminal value, scaled 

according to the magnitude. absdev is a value indicaƟng how much the Ɵme curve is deviaƟng 

from a straight line (red line); calculated are at each Ɵme point the deviaƟons from this line 

(green lines), and absdev is the average of these deviaƟons. 
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ParƟal least square regression analysis 

ParƟal least square (PLS) regression analysis21,22 was used as an extension of principal 

component analysis, in which PLS instead of maximising the variance in each component, 

maximises the covariance between an input matrix X and an output matrix Y. Herein, each 

component has a latent variable ti, while the linearly weighted combinaƟon of the latent 

variables generates the predicƟon of outcomes (Y matrix) as follows: 

Y = C1t1 + C2t2 + …, where Ci = a1ix1 + a2ix2 

The experimental condiƟons of Table 1 were used as the X matrix, and the scalar 

characterisƟcs of each [Ca2+]i Ɵme series served as Y matrix. The number of components in the 

PLS analysis was obtained from the opƟmal variance achieved, when increasing the 

components. The loading weights depended on input variables that were most important for 

the predicƟons. By maximising the covariance between the explanatory variable X and the 

response variable Y, the most relevant components in X were obtained that affected the 

changes in Y. Stated otherwise, by examining the loading weights of first few latent variables 

that accounted for the majority of explained covariance, we could idenƟfy those experimental 

condiƟons with a most significant impact on [Ca2+]i Ɵme curves. 

 

Results 

Comparing the input agonist-induced platelet [Ca2+]i curves 

Using a high-throughput method described before 17, the Fura-2-loaded platelets from 

a single healthy donor were incubated in the presence of EGTA or CaCl2 with or without 

secondary mediator inhibitors apyrase and indomethacin (AI); and then sƟmulated with 

collagen, CRP or thrombin. Under all these condiƟons, agonist-induced rises in [Ca2+]i were 

measured as nM concentraƟons over a Ɵme period of 9 min. Altogether, by also varying the 
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agonist concentraƟons, resulted in a set 72 different experimental condiƟons (Table 1). For the 

present paper, the 72 different [Ca2+]i Ɵme curves were obtained from the platelets of a single 

donor17. 

 Comparing the set of original traces (Figure S2), several characterisƟcs can be 

observed, except for the expected agonist dose-dependency17. In general, the [Ca2+]i curves 

induced by the weak GPVI agonist collagen showed steady increases with lower maximal 

amplitudes (Exp. 9-31), when compared to the higher amplitude and oŌen biphasic [Ca2+]i rises 

induced by the strong GPVI agonist CRP (Exp. 37-48). In parƟcular, the curves with the PAR1/4 

agonist thrombin (Exp. 49-72) had a transient shape, indicaƟng high acƟvity of the SERCA Ca2+ 

pumps. Other differences were 4-80 Ɵmes higher amplitude curves (depending on other 

variables) in the presence of CaCl2 than with EGTA, which in part was due to Orai1-dependent 

Ca2+ entry17. Furthermore, we observed potent [Ca2+]i increase by adding the SERCA inhibitor 

thapsigargin, inhibiƟng SOCE and acƟvaƟng the Orai1 channels7. Effects of the autocrine 

inhibitors indomethacin and apyrase (IA) were a consistent lowering of most of the curves. 

 

Workflow of the modelling approaches 

In order to prepare the experimental data for further processing, we first interpolated 

and smoothened the 72 curves at 1 s Ɵme intervals (Figure S3), followed by a y-axis scaling per 

curve from 0-1 (Figure S4). The subsequent workflow (Figure 3) consisted of feature generaƟon 

by combining and squaring of the experimental variables (see below), and split the curves into 

training, validaƟon and test sets. The data were used as input for two types of modelling, i.e. 

neural network and PLS analyses. In the neural network analysis, we used the NARX procedure 

for trend predicƟon and the MLP procedure for magnitude predicƟon. A combined opƟmised 

network was tested on final performance. On the other hand, PLS was used to directly model 
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the scalar characterisƟcs of the curves. The result from both approaches was interpreted and 

cross-checked with each other. 

 

Figure 3. Workflow used for the data processing, neural network construcƟon and scalar 

model development. For explanaƟon, see text. 
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Neural MLP network for magnitude predicƟon 

We first aimed to beƩer understand how the smoothened [Ca2+]i curves of platelets 

relied on the various experimental condiƟons (CaCl2/EGTA, agonist dose, AI or thapsigargin). 

For this purpose, we generated a simple network able to predict the magnitude of the Ca2+ 

signal. The constructed mulƟlayer perceptron (MLP) network was trained and validated, from 

which it appeared that the best MLP architecture had three nodes with a single hidden layer 

(Figure 1A). The results for the training, validaƟon and test sets are shown in Figure S5. Plots 

were generated to compare the experimental data with the predicƟons in log scale and linear 

scale. Herein, each data point represents the experimental values and predicted magnitude 

values. These plots indicated an overall reasonable fiƫng, expecially for the log-scale seƫng. 

 The obtained MLP parameters associated with each node are shown in Figure S6, with 

a colored way of the relaƟve weights of the combined and squared parameters in the network. 

A limitaƟon of this MLP approach is that only the curve magnitude is predicted and not the 

curve shape. 

Neural NARX network for trend predicƟon 

For predicƟon of the shape of trend of the [Ca2+]i curves with all different amplitudes, 

uniform scaling is needed. PredicƟons modelling on these scaled Ɵme curves were made by 

construcƟng a recurrent, closed-loop neural network (NARX). For the training of the network, 

we used 58 scaled curves (Figure S7), which resulted in the best results for a network 

architecture with 3 hidden layers and 4 x 12 x 4 nodes (mean R2 = 0.84) (Figure 1B). The validity 

of the network was overall confirmed for the validaƟon set of 7 curves (mean R2 = 0.71) (Figure 

S8). Fiƫng was less for the test set with 7 curves (R2 = 0.64), in parƟcular for the transient 

curve of Exp. 58 with thrombin (Figure 4A-G). For comparison, tesƟng the same (unscaled) 
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amplitude curves with the MLP network resulted in a good predicƟon, especially for the high-

magnitude curves (Figure 4H). 

 The NARX predicƟon trends also provided informaƟon on the non-linear shape of the 

[Ca2+]i curves. Examining the trend values of R2, it appeared that these were negaƟve for Exp. 

58 (Figure S8) and Exp. 63 (Figure 4). This pointed to an explained variance worse than random, 

and hence inability of fiƫng. Furthermore, also other Exp. 67, 70 and 72 with thrombin as 

agonist gave an R2 <0.4. The likely explanaƟon with this is the transiency of the thrombin-

induced [Ca2+]i rises. The above results prompted us to compare the neural network results of 

both magnitude and trend predicƟon. 

Combining MLP and NARX networks 

For a combined network curve predicƟon, we used the training set of 58 curves (Figure 

S9). The training with respect to magnitude and trend predicƟons was then validated and 

tested using the remaining 14 curves (Figure S10). The combined predicƟon resulted in a 

generally improved outcome. We also performed a one-factor-at-a-Ɵme (OAT) analysis by 

varying the agonist concentraƟon at different inhibitor combinaƟons, as shown in Figure 5A 

(as scaled variant curves) and Figure 5B (as scalar heatmaps). For addiƟonal visualizaƟon, also 

the unscaled curves are represented in Figure S11, which shows both the size and trend 

changes of the curves. 

 The OAT sensiƟvity analysis of Figure 5A shows how the predicted trend changed with 

the experimental input condiƟon. It appeared that the predicted magnitude of the 'no 

inhibitor' (0 0 0) condiƟon was mostly changed with the CRP concentraƟon, when compared 

to collagen or thrombin. The presence of EGTA reduced the overall magnitude with to all 

agonists. Thrombin affected the magnitude most, while collagen and CRP had smaller effects. 

Furthermore, the presence of thapsigargin increased the overall magnitude predicƟon, 
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regardless of the type of agonist. Furthermore, the predicted magnitude increased less with 

the concentraƟon of thrombin, than that of collagen or CRP. 

As shown in the heatmap in Figure 5B, we also compared the three scalar 

characterisƟcs (tmax, ylast, and absdev) of the scaled curves (see Figure 2). The [Ca2+]i peak 

Ɵme (tmax) provided informaƟon on the carve transiency. If the tmax was equal to the final 

Ɵme point (540 s) usually indicated means that the Ca2+ response increased over the Ɵme 

range. In parƟcular with thrombin the tmax was oŌen <540 s, indicaƟng a peaking and 

transient response. With CRP this was only seen to a limited extent at some inhibitor 

condiƟons. 

The final level of [Ca2+]i, i.e. the parameter ylast, displayed similar trends as tmax 

(Figure 5B). In general, ylast is close to 1 under condiƟons of a conƟnuous increase in [Ca2+]i, 

and <1 when the trend hit a peak before decreasing. Thus, thrombin inducing a non-linear 

curve paƩern produced lower ylast values, even at higher agonist concentraƟons. The 

parameter absdev (absolute deviaƟon from a straight line) indicated how the curve deviates 

from a linear response. Analysis of absdev showed that most of curves with thrombin were 

non-monotonic, except for condiƟons at which both thapsigargin and AI were present, i.e. 

resulƟng in more linear curves (Figure 5B). Accordingly, the three scaled curve characterisƟcs 

provided addiƟonal informaƟon on the Ca2+ response paƩerns upon varying the CaCl2, 

thapsigargin, AI and agonist concentraƟons. 
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◄ Figure 5. Combined variaƟon of trend predicƟon of scaled platelet [Ca2+]i responses at 

varying agonist concentraƟons. (A) Panels indicate predicƟon efficacy per agonist 

concentraƟon. Lightest grey lines represent basal levels, while darker lines point to curve 

predicƟons in the presence of agonist by 1% from the basal level to 10% of the maximum 

concentraƟon in the training set. Columns show condiƟons with indicated agonists (collagen, 

Col), CRP or thrombin (Thr). Rows represent different inhibitor condiƟons: + or - mean presence 

or not; from top to boƩom: EGTA, apyrase plus indomethacin (AI), and thapsigargin (Thap). 

Dash lines at scale 1 indicate maximal trend per experiment. (B) SensiƟvity of scalar 

characterisƟcs of Ɵme curves generated by MLP and NARX model. Columns here indicate: 

[Ca2+]i level at log10 base (magnitude), Ɵme of [Ca2+]i (tmax), final [Ca2+]i level (ylast), and 

mean absolute deviaƟon from linear (absdev). All data shown are scaled at 0-1. For the 

unscaled [Ca2+]i data, see Figure S7. 

 

From combining the results of the two tested MLP and NARX networks, several 

conclusions can be drawn. The transient [Ca2+]i responses with thrombin were harder to model 

than the non-transient responses with other agonists. For both the weak GPVI agonist collagen 

and the strong agonist CRP, the scaling approach showed a mostly monotonic curve increase, 

being close to linear at low agonist concentraƟons. Furthermore, the combined magnitude 

and trend modelling indicated for CRP addiƟve effects of the absence of Ca2+ entry (EGTA, Exp. 

36), absence of secondary mediators (AI, Exp. 42), of which the former was stronger (Exp. 44). 

However, in spite of these insights, the black-box nature of neural network approaches could 

have hidden other relevant relaƟons between curves. 

 

PLS regression analysis 

As a more straighƞorward approach, we also directly invesƟgated the contribuƟon of 

each experimental variable (agonist dose, EGTA/CaCl2, IA, thapsigargin) to the scalar curve 

characterisƟc, i.e., reducing the [Ca2+]i Ɵme curves to tmax, ylast and absdev. For that purpose, 
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we used a PLS regression analysis to fit the relaƟonships. As the PLS regression is a linear 

model, it is easier to invesƟgate the impact of input variables on the output. 

As input for the PLS model, we normalised all experimental condiƟons to separate 

variables of the concentraƟons of agonist and inhibitors (collagen dose, CRP dose, thrombin 

dose, EGTA/CaCl2, AI, thapsigargin), all varying from 0 (none) to 1 (maximum). This resulted in 

a six-component model explaining the variance per component. As indicated in Figure S12, 

only the first two components contributed to the variance of the target. Accordingly, we fiƩed  

 

Figure 6. Loading coefficients of experimental variables in PLS regression analysis. Plots show 

for the first2 principal components the loading of the six experimental variables (collagen dose, 

CRP dose, thrombin dose, EGTA/CaCl2, AI, thapsigargin). The PLS regression analysis was 

performed for predicƟon of curve magnitude (A), tmax (B), ylast (C) and absdev (D). Indicated 

in colours are the contribuƟons per varible. 

 

(A) (B) 

(C) (D) 
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the 2-component PLS regression for curve magnitude, tmax, ylast and absdev, using the same 

training of 58 experimental condiƟons, while keeping the remaining 14 (previously validaƟon 

and test sets) as test set of the PLS model. The variable loading coefficients of each PLS 

component are shown in Figure 6. This type of regression analysis was then used to predict 

the scalar characterisƟcs of the test set. It also generated regression errors of both the training 

and test sets, which provided informaƟon on overfiƫng (Figure S13). 

In agreement with the analysis above, it appeared that the first PLS component in the 

magnitude predicƟon had a negaƟve loading in the presence of EGTA and/or AI, indicaƟng a 

lower level of [Ca2+]i (Figure 6A). On the other hand, the presence of thapsigargin resulted in 

a highly posiƟve loading, due to an increased [Ca2+]i level. Indeed, the presence of EGTA 

stopped the entry of extracellular Ca2+, whereas thapsigargin increased this process by 

inhibiƟng the SERCA-type Ca2+ pumps controlling the STIM1-Orai1 entry pathway17. 

Furthermore, the tlast and ymax predicƟons showed an opposite loading in component 1 for 

thrombin (negaƟve) and thapsigargin (posiƟve) (Figure 6B-C). This reflected the more 

transient, non-linear Ca2+ responses with thrombin in comparison to those with thapsigargin. 

Regarding the absdev predicƟon, the thrombin condiƟon showed a parƟcularly high posiƟve 

weight in component 2 (Figure 6D). The NARX model showed that the paƩerns of calcium 

curves modeled were accurately predicted, while the PLS model provided valuable 

understandable data regarding the significance of each variable. 

 

Discussion 

The combinaƟon of modelling approaches presented in this work introduces a new way 

to predict the response paƩern of agonist-induced platelet Ca2+ responses under a great 

variety of condiƟons. The constructed neural networks by MLP and NARX were able to produce 
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mostly correct magnitude curves of [Ca2+]i, whereas the modelling by PLS regression captured 

the characterisƟc curve shape. Our work thereby adds to the idea of a platelet Ca2+ calculator 

introduced by Diamond and colleagues14, in that also curve paƩerns can be predicted without 

mathemaƟcal modelling. On the other hand, we did not consider the synergisƟc effects of 

agonist combinaƟons such as presented in that study. 

It is important to note that while the present machine-learning techniques were able 

to fit most of the input data, the obtained output does not give a direct biological 

interpretaƟon, although sensiƟvity analysis was used to improve the interpretability. This 

contrast to other modelling approaches with a clear biological meaning, such as enzyme or 

receptor reacƟon rates in ODE-based kineƟc models. However, the laƩer approaches cannot 

easily capture interacƟons between individual signalling steps, for instance due to 

combinaƟons of agonists and inhibitors. 

Both the NARX network and the PLS regression analysis yielded useful results for the 

[Ca2+]i curve analysis. Thus, the up to magnitude differences between traces in the presence 

of CaCl2 or EGTA and CaCl2 (caused by Ca2+ entry into the platelets) were captured by both the 

MLP and PLS regression models. The predicƟon results - i.e. sensiƟvity analysis for MLP and 

PLS component analysis for PLS -were well interpretable for this case. On the other hand, NARX 

could beƩer then PLS capture the curve effects by certain experimental variables. The curve 

magnitude and other characterisƟc effects (tmax and absdev) caused by thapsigargin, was also 

captured by NARX, but not by PLS regression. This illustrates that neural networks as NARX can 

easily handle non-linear effects funcƟon due to the complex acƟvaƟon funcƟons, while PLS 

relies in linear regression analysis and hence cannot adapt to non-linearity. 

A specific problem encountered was the different shapes of the [Ca2+]i curves used for 

training by the various approaches, i.e. more oŌen transient with thrombin and usually linear 
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with CRP or collagen. Although neural networks can capture any funcƟon, they need many 

data to train for such curve differences. In our case, only a limited number of curves with either 

agonist could be used for training, which caused a certain imbalance in the training set. One 

way to fix this problem is to use data augmentaƟon, for example by the syntheƟc minority 

oversampling technique (SMOTE)23, which is more oŌen used for imbalanced datasets. 

In the present paper, we trained all models using platelets derived from a single donor 

sƟmulated with a range of agonists and inhibitors, which thus resulted in a new tool for 

invesƟgaƟng the complex Ca2+ signalling pathways in single donor platelet acƟvaƟon. The 

models can now be used to generate hypotheses for addiƟonal experimentaƟon and to 

provide insights that are otherwise not obtained by tradiƟonal analyƟcal approaches. 

However, appropriate use of the models is important, ensuring that the data used for training 

are representaƟve, while independent data are available for validaƟon. The use of blood from 

a single donor can be seen as a limitaƟon of the study, also because this reduced the number 

of variable experimental condiƟons and, accordingly, the machine learning models had a 

limited predicƟve power. Comparing the platelet responses from mulƟple donors will increase 

the number of samples available for model building, and may thereby decrease the accuracy 

of the predicƟons for each donor. 

A soluƟon to this issue is the approach of transfer learning24, in which a generic model 

can be built for the samples from various donors, and then refine the model to obtain adjusted 

the weights for each donor separately. This approach is being used to build personalised 

models for drug development25. An alternaƟve is to train an auto-encoder in learning from a 

reduced part of the input, this to reproduce the output; this will also allow training on the data 

from several blood donors. Regardless of the approach followed, modelled analysis will be 
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interesƟng of the effects of addiƟonal inhibitors of relevant Ca2+ signalling pathways, such as 

P2X1 Ca2+ channel antagonists26 or STIM1-Orai1 pathways blockers27. 

 Differently from the neural network models, the PLS regression analysis performed 

beƩer with the relaƟvely small sample size from one blood donor. The PLS approach is also 

less prone to overfiƫng. The present PLS regression analysis to predict the (scaled) [Ca2+]i 

curve features easily allows for comparisons with the platelets from more donors. In work of 

the Diamond laboratory14, a NARX model was generalised by fiƫng mulƟple networks 

constructed from several donors, and the determining their average predicƟon. Or analysis 

indicates that this can be done more easily by PLS regression approaches. 
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Supplemental 

 

 

 

Figure S1. Overview of receptor-induced Ca2+ signalling mechanisms in platelets. Collagen 

and collagen-related pepƟde (CRP) acƟvate platelet via glycoprotein GPVI (GPVI), while 

thrombin acts by cleaving proteinase-acƟvated receptors (PAR). The ligands of these receptors 

induce the formaƟon of inositol 1,4,5-trisphosphate (IP3), which sƟmulates IP3 receptors (IP3R) 

in the membrane of the dense tubular system (DTS). This sƟmulaƟong leads to discharge of 

Ca2+ from intracellular stores into the cytosol. Entry of extracellular Ca2+ is mediated by the 

Orai1 Ca2+ channels in the plasma membrane, which couple to STIM1 Ca2+ sensors in the DTS 

membrane. In addiƟon, a fast and quickly desensiƟsed entry of Ca2+ is mediated by ATP, 

acƟvaƟng the P2X1 ion channels. Autocrine produced ADP and TxA2, via their receptors, 

potenƟate the IP3 producƟon. Back pumping of released Ca2+ out of the cytosol occurs by the 

SERCA Ca2+ ATPAses in the DTS, which are inhibited by thapsigargin. Back pumping out of the 

cells occurs by the PMCA Ca2+ ATPAses. The presence of extracellular CaCl2 or EGTA allows Ca2+ 

entry of not. The formaƟon of TxA2 is inhibited by indomethacin, whereas the effects of ADP 

are blocked by apyrase. 
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Raw
 [Ca

2+]i (t) traces 

Figure S2. Raw
 data of agonist-induced [Ca

2+]i  Ɵm
e traces of Fura-2-loaded platelets from

 a representaƟve subject, used for the m
odelling 

studies. N
ote w

idely different ranges of nanom
olar levels of [Ca

2+]i  per condiƟon. Y-axes represent linear ranges in nM
 [Ca

2+]i . Tim
e axes are 0 

to 540 s.  
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Figure S3. Raw
 and sm

oothened agonist-induced [Ca
2+]i  curves (in nM

) of Fura-2-loaded platelets from
 a representative subject. The 72 

experim
ental conditions (Table 1) w

ere grouped into four panels according to the agonist used: (A
) basal (no agonist), (B) collagen, (C) CRP, 

or (D
) throm

bin. Resam
pled and interpolated curves w

ere sm
oothened w

ith a Savitzky-G
olay filter. Show

n are the original curves (dash black 

lines) and the filtered curves (red lines). N
ote that highest supra-m

icrom
olar rises in [Ca

2+]i  w
ere obtained in the presence of thapsigargin 

and CaCl2  (dashed blue lines).  
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Figure S4. Scaled agonist-induced [Ca
2+]i  Ɵm

e traces of Fura-2-loaded platelets (in nM
) from

 one healthy representaƟve donor. N
um

bers for 

experim
ents and agonist/treatm

ent condiƟons are indicated in Table 1. Raw
 input data in nM

 w
ere curve interpolated, sm

oothened and linearly 

scaled 0-1. Tim
e axes are from

 0 to 540 s. 
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(A
(B

(C

(D
(E

(F

Figure S5. M
agnitude predicƟon of agonist-induced platelet [Ca

2+]i  responses. Show
n are for Ɵm

e traces of the selected training set (A
, D

), 

validaƟon set (B, E) and test set (C, F), the relaƟon betw
een the m

easured target levels and the predicted levels (nM
). (A-C) Log10 scale, (D

-F) 

linear scale. N
ote the used curve selecƟon for validaƟon set (Exp. 4,19,22,30,44,58,68), test (Expt. 10,16,25,36,51,56,63), and training set (all 

the rest). Red lines represent diagonals.  
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Figure S6. Parameter composiƟon of polynomial mulƟlayer perceptron (MLP) network 

associated with each node. Note the 27 combinaƟons made from 6 input variables. RelaƟve 

weights of per node are displayed in colour scale.  
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Figure S7. Trend predicƟon w
ith N

ARX of agonist-induced platelet [Ca
2+]i  responses in the training set. N

um
bers for experim

ents and 

agonist/treatm
ent condiƟons are indicated in Table 1. VerƟcal axes represent scaled responses from

 0 to 1. H
orizontal axes represent 

m
easurem

ent Ɵm
e from

 0 to 540 s. 
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Figure S8. Trend predicƟon of agonist-induced platelet [Ca
2+]i  responses in the validaƟon set. Experim

ental 

condiƟons w
ere num

bered as in Table 1. VerƟcal axes represent scaled responses from
 0 to 1. H

orizontal axes 

represent experim
ental Ɵm

e from
 0 to 540 s. 
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Figure S9. M
agnitude and trend predicƟon of platelet [Ca

2+]i  responses in training set. The predicted curves resulted from
 a com

binaƟon of 

m
agnitude and trend predicƟons. N

um
bers for experim

ents and agonist/treatm
ent condiƟons are indicated in Table 1. Panels indicate 

nanom
olar [Ca

2+]i  levels versus Ɵm
e (0 to 540 s). 
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Figure S10. Com
bined predicƟon of platelet [Ca

2+]i  responses w
ith m

agnitude and trend predicƟons. Indicated are results from
 validaƟon set 

(A) and from
 test set (B). The results from

 2 m
odels w

ere com
bined (m

agnitude and trend predicƟon). N
um

bers for experim
ents and 

agonist/treatm
ent condiƟons are indicated in Table 1. VerƟcal axes indicate [Ca

2+]i  levels in nM
, and horizontal axes the Ɵm

e. 



 

211 
 

 

Figure S11. VariaƟon of trend predicƟon of nanomolar [Ca2+]i responses with increasing 
agonist concentraƟons. Panels indicate predicƟon efficacy per agonist concentraƟon. Lightest 
grey lines represent basal levels, while darker lines represent a curve predicƟon due to an 
increment of ligand by 1% from basal level to 10% of the maximum concentraƟon used in the 
training set. Columns show condiƟons with different agonists (collagen, Col), CRP or thrombin 
(Thr). Rows represent different inhibitor condiƟons: + or - mean presence or not; from top to 
boƩom: EGTA, apyrase plus indomethacin (AI), and thapsigargin (Thap). Shown are unscaled 
levels of [Ca2+]i (nM); for scaled data, see Figure 5.  
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Figure S12. Variance in PLS regression model explained per component. Plots show the per 

principal component of PLS the fraction of explained variance of the dataset. PLS regression 

analysis was performed for prediction of curve magnitude (A), tmax (B), ylast (C) and absdev 

(D). For definition of the six included experimenta variables,see Figure 6. Red lines indicate the 

explained variance of input (experimental condition); blue lines show explained variance of the 

target (curve's scalar characteristic). Dashed lines display cumulative sums for increasing 

components. Note that only the first 2 components contributes to most of the target variance. 

 

(A) (B) 

(C) (D) 
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Figure S13. Residual deviaƟons of the PLS regression model. Indicated are absolute regression 

errors upon increasing observaƟons in the training set (red bars) and test set (blue bars). 

Regression errors were defined as the actual value minus the predicted value. PosiƟve errors 

indicate an underesƟmate of the explained variance. PLS regression analysis was performed 

for predicƟon of curve magnitude (A), tmax (B), ylast (C) and absdev (D). 
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Chapter 6 

General Discussion 

 

In this chapter, a reflecƟon is presented on the applicaƟon of 

mathemaƟcal modelling approaches to address complex cell biology 

quesƟons, using the platelet GPVI collagen receptor as a model system. 
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General Discussion 

Overview 

Transmembrane receptor clustering and signalling are crucial processes in many 

biological acƟviƟes ranging from cell adhesion, migraƟon, and cell-cell interacƟons, to control 

immune funcƟon and neurotransmission1–3. By studying these processes, scienƟsts can gain a 

beƩer understanding of how cells interact with their environment and how different signalling 

pathways regulate cellular responses. 

There are several reasons why the study of transmembrane receptor clustering and 

signalling is important. DysregulaƟon of receptor clustering and signalling is linked to many 

diseases, from chronic inflammaƟon to cancer. In breast cancer, overexpression or mutaƟon 

of human epidermal growth factor receptor 2 (HER2) lead to their consƟtuƟve acƟvaƟon, 

resulƟng in excessive clustering of HER2 receptors on the cell surface. This can further increase 

signalling cascades that promote cell proliferaƟon and survival4. Understanding these 

processes can lead to the development of new therapies and treatments. Trastuzumab 

(HercepƟn) is a targeted therapy for early-stage breast cancer that overexpresses HER2. It has 

been shown to improve outcomes by reducing the risk of recurrence and improving survival in 

HER2-posiƟve early breast cancer paƟents when used in combinaƟon with chemotherapy 

and/or hormonal therapy5. Many drugs target these receptors and their signalling pathways. 

This is a recent development in the last few years. An increasing number of drugs target 

signalling processes rather than the tradiƟonal receptor antagonists, for example, targeƟng 

PI3K signalling pathway in HER26. Studying these processes can help idenƟfy new drug targets 

and improve exisƟng treatments. Understanding transmembrane receptors also provides 

insights into how cells funcƟon together to maintain Ɵssue and organ funcƟon. 
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Platelet GPVI (glycoprotein VI) is primarily responsible for iniƟaƟng platelet acƟvaƟon 

in response to damage to the blood vessel wall, which leads to the formaƟon of a blood clot 

and the prevenƟon of excessive bleeding. Biologists have studied GPVI's funcƟon and 

regulaƟon and found that it is possibly becoming one of the promising therapeuƟc targets for 

thrombosis. This also serves as a model receptor and readily accessible cell to generally model 

receptor behaviour - in a way that could be applied to a range of cell systems. To understand 

the mechanisms and quanƟtaƟve aspects of GPVI and platelet acƟvaƟon, 

mathemaƟcal/computaƟonal modelling was used in the present studies to help us fill these 

gaps and to provide a framework in which to opƟmise experimental design and for predicƟng 

the impact or consequences of GPVI funcƟon, its mechanism of acƟon and the impact of 

perturbing these. 

Our iniƟal biological quesƟons about GPVI and calcium regulaƟon were focused on 

understanding how it occurs and which component contributes the most to its mechanism. 

We started by invesƟgaƟng GPVI's clustering on the platelet surface prior to ligand binding in 

Chapter 2. We asked how the clustering behaviour, such as dimerisaƟon and localisaƟon, 

depended on membrane properƟes and other proteins. With regards to membrane physics, 

diffusivity of transmembrane receptors depend on various factors, from membrane lipid 

composiƟon to cytoskeleton elements. In addiƟon to diffusivity, the presence of an inert 

protein on the membrane might block the movement of receptor, affecƟng receptor encounter 

rate. This raises the quesƟon of how lipid raŌs and presence of inert protein could affect 

receptors localisaƟon and dimerisaƟon. 

We then focused on the complexity of GPVI signalling immediately aŌer ligand binding, 

which included the LAT signalosome (Chapter 3) and the phosphaƟdylinositol cycle (PI-cycle, 

Chapter 4), as we aimed to mathemaƟcally describe how these components interact. The idea 
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behind these models was that biological interacƟons and their signalling pathways might be 

known, but most related parameters have not been quanƟfied experimentally. Successful 

modelling of signalling processes may reflect a complete understanding of the components of 

signalling pathways, while failure to model data may indicate important gaps – for example, 

missing proteins or feedback systems.  

Finally, we have studied how calcium is released from an internal store of platelet due 

to these acƟvaƟons (chapter 5). To be specific, cytosolic calcium producƟon can be exchanged 

through various channels, i.e. from/to internal store of platelet (DTS) via IP3 receptor and 

SERCA, or from/to extracellular matrix via PMCA and STIM/Orai1. These processes involve 

many signalling pathways and could lead to hundreds or thousands of parameters and 

variables. These parameters and variables may include the expression levels of different 

receptors and signalling molecules, the acƟvaƟon status of different signalling pathways, the 

downstream effects of these signals on cellular behaviour, and their reacƟon rates and 

thresholds. We want to invesƟgate the calcium behaviour without construcƟng a complicated, 

overwhelming model (which easily leads to uncertainty and overfiƫng) while maintaining a 

useful predicƟon. 

In this work, we have created computaƟonal models for the iniƟal stages of the 

mechanisms that regulate the funcƟons of platelets, from surface receptor mobilisaƟon to 

internal calcium release. Combined, these models uƟlised several branches of mathemaƟcs 

and modelling techniques. They may seem unrelated at first sight and might raise the quesƟon 

of why each part of biology needs a different model, but they are actually a conƟnuous process 

and easier to address with different approaches. In this chapter, we will discuss how those 

models are connected, or can be connected, in terms of biology and modelling. We will also 

see their applicaƟons, limitaƟons, and possibiliƟes to improve them in the future. 
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How models can be helpful for biological understanding 

One important consideraƟon for biologists is how mathemaƟcal modelling can 

enhance biological research, parƟcularly in the field of platelet biology. By integraƟng 

mathemaƟcal and physical principles with experimental biology, modelling provides a 

powerful tool for studying platelets in various ways. Rather than being a separate enƟty from 

experimental biology, modelling complements and enhances it by allowing researchers to 

make predicƟons and test hypotheses in silico before carrying out costly and Ɵme-consuming 

experiments. This also someƟmes allows complex quesƟons to be asked which would be 

difficult or impossible to explore in the research laboratory.   While it is true that biology and 

physics operate on different levels, and there may be philosophical quesƟons regarding their 

complete representaƟon of biological systems using mathemaƟcal approaches, although 

modelling provides a valuable framework for bridging the gap between these fields and gaining 

deeper insights into platelet behaviour. In the following secƟon, we discuss examples of how 

the models presented in this work can be applied to platelet biology research. 

Models are able to provide an esƟmaƟon of how a system will behave in response to 

different experimental condiƟons, such as changes in ligand concentraƟon, the presence of 

other signalling molecules, or the introducƟon of inhibitors or acƟvators of platelet acƟvaƟon. 

Through this simulaƟon, the model could predict how the system would respond to these 

changes and provide insight into the underlying mechanisms of platelet behaviour. The 

predicƟon might not be exact or fully quanƟtaƟve, but it provides powerful informaƟon helpful 

for experimental design. Agent-based models allow users to experiment with a different range 

of parameters, i.e., arƟficial membrane/receptor, to observe receptor clustering behaviour. 

The research done by Chen et al.7 is a good example of how receptor dimerisaƟon is studied. 

In their work, arƟficial transmembrane receptors and their signalling were designed by 
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modular DNA scaffolds and triggered the dimerisaƟon by external signal input. The process 

induced the expression of a peroxidase-like enzyme and facilitated an output signal, which can 

be observed by fluorescence or absorbance. This work provides a generalisable method for an 

arƟficial transmembrane receptor design. Our agent-based model (ABM) can be used to design 

(and can be validated by) similar experiments. 

In our other studies, the GPVI signalling and Ca2+ mobility models enabled us to 

invesƟgate the magnitude of how each component affects the outcome. These could be 

helpful for a real-world experiment to esƟmate the range of related ligand/inhibitor 

concentraƟons to achieve the desired results. For example, we could design a set of 

experiments varying possible concentraƟons of CRP that could increase calcium response by 

the expected order of magnitude. Another similar scheme has been illustrated by Cho et al.8, 

where experiments esƟmated the model parameters, and the parameter sensiƟvity could be 

conversely used for experimental design. They used TNFα-mediated NF-κB pathway, which is 

involved in immunity and inflammaƟon and cell proliferaƟon, differenƟaƟon, and apoptosis, 

as a case study. They constructed a set of ordinary differenƟal equaƟons (ODEs) and used the 

Monte-Carlo (MC) simulaƟon to analyse the parametric sensiƟvity. Thus, the parameters were 

esƟmated and used for designing an experiment. This technique relies on the random 

iniƟalisaƟon of parameters. It makes reaching the global (or even local) opƟmum harder than 

our Bayesian technique, which uƟlised the posterior distribuƟon of parameters. However, their 

developed framework is sƟll helpful and can be a good example of how modelling could be 

used for experimental design.   

In the context of drug target idenƟficaƟon, computaƟonal models can be used to 

simulate the behaviour of a biological system in response to the presence of a drug. This can 

provide insights into drug's mechanism of acƟon and help idenƟfy potenƟal drug targets. 
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Simply decreasing (or increasing) a component in the model and observing how this change 

will affect the outcome can illustrate to us what the component's inhibiƟon could lead to. The 

GPVI clustering model allowed us to test various effects of lipid raŌ or inert proteins on GPVI 

dimerisaƟon, which leads to increased affinity for collagen thereby reinforcing acƟvaƟon 

signalling. It is possible to alter these components by interrupƟng some processes, thus 

effecƟvely inhibiƟng GPVI acƟvaƟon. The GPVI signalling and calcium model will enable us to 

vary the effect of each element on a whole signalling pathway or outcome. These models can 

help idenƟfy potenƟal drug targets by predicƟng which components of the system are most 

affected by the drug and which interacƟons are most important for the drug's acƟvity, which 

could act as an inhibitor of a specific protein or channel. Many researchers have used this 

similar technique in drug targeƟng for cancer. Lebedeva et al. performed a sensiƟvity analysis 

of an ODE-based model to idenƟfy anƟ-cancer drug targets in ErbB2/3 network9. Zhu et al. 

developed a stochasƟc logical model, where the acƟvaƟon or inhibiƟon were modelled using 

digital logic, with ON/OFF states, to analyse the vulnerability of signalling components in 

breast cancer10. They found that vulnerabiliƟes of some components vary depending on sub-

pathways, thus requiring more personalised treatment. AddiƟonally, some components' 

vulnerabiliƟes are high and invariant, making them a more universal target. 

 

Comparison of modelling approaches 

In these studies, we have used many modelling approaches for different systems or 

problems. The following secƟon describes the raƟonale behind our decision to pick these 

specific models for each problem. How do the models suit their problems? 

In this work, we decided to use ABM since we must consider a spaƟotemporal effect 

of receptors' clustering on the membrane. We also need the discreƟsaƟon so receptor 
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behaviour can be assigned individually. Diffusion models based on the parƟal differenƟal 

equaƟons (PDE) do not lend themselves to studying individual receptors and their physical 

processes; conversely, it assumes that the receptor is a conƟnuum concentraƟon that can not 

be discreƟsed. The determinisƟc dynamic, such as solving the equaƟon of moƟon of each 

atom, molecule, or receptor (F = ma), would consume substanƟal computaƟonal power and 

include random force, which adds uncertainty to the simulaƟon. On the other hand, agent-

based models can assign individual sets of rules to receptors/proteins, interacƟon, and 

randomness (via stochasƟc movement). Thus, ABM can be considered an opƟon that offers a 

compromise between an overly simplisƟc and an overly complicated model. More protein 

diffusion modelling choices and their pros and cons have been discussed in Burrage et al.11, 

starƟng from an overly simplisƟc model, i.e., mean-field kineƟc, where the whole biological 

system is treated as a conƟnuum media, to an overly complicated model, i.e., molecular 

dynamics (MD), where all atoms are simulated with their equaƟon of moƟon and interacƟons. 

Next, we used ODE-based technique to model signalling components as it could 

quanƟfy the Ɵme series response. Although the main components in most signalling pathways 

are well known and documented in many textbooks, their interacƟon parameters frequently 

have not been measured experimentally. If a good amount of experimental data exists, then 

we can fit some of these parameters. A model should be able to describe the interacƟon of 

each component raƟonally. Thus, these interacƟons can be converted into a system of ordinary 

differenƟal equaƟons using mass-acƟon kineƟcs. The unknown parameters can be determined 

by fiƫng the model predicƟon with experimental data. This idea is similar to what has been 

done by colleagues12, where the early events of GPVI-ligand signalling have been modelled, 

and parameters quanƟfied. The range for parameter values can be limited by proper and 

possible order of magnitude, and their uncertainty can be esƟmated by observing their 
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posterior distribuƟon. The computaƟonal models of signalling networks have been discussed 

step-by-step by Rangamani and Iyengar13. They stated that the use of computaƟonal models 

could help to idenƟfy the behaviour of signalling that experimental data cannot achieve. 

Models provide the ability to explain what is happening to different modules and components 

of a network at different Ɵme scales. Even for a basic signalling cascade, modelling can lead to 

insights that are not easily comprehensible. 

Some biological processes, such as complicated cell signalling, involve too many 

parameters and are almost impossible to be described by convenƟonal mathemaƟcal models. 

It could be a beƩer idea to treat this kind of problem as a black box, where we know only an 

input and can only probe the output signal. In platelet biology, the second messenger, like Ca2+, 

can be easily measured and studied, Ca2+ model can be a useful tool for understanding the 

platelet response. Since Ca2+ fluxes involve many related components and signalling pathways, 

including all of these could lead to a highly complicated model that involves hundreds of 

parameters14. Fiƫng these parameters could easily lead to overfiƫng due to parameter 

redundancy. Thus, a machine learning model could be a powerful tool to handle this kind of 

problem. Neural networks (NN) can learn complex relaƟonships between inputs and outputs 

without requiring explicit knowledge of the underlying process or system, and can provide 

accurate predicƟons even when the relaƟonship is nonlinear or difficult to describe using 

tradiƟonal mathemaƟcal models. In addiƟon, recurrent neural networks like NARX (nonlinear 

autoregressive network with exogenous inputs)15 not only use the input from the iniƟal 

condiƟon but also from output series. It can recycle the output of the previous Ɵme step as an 

input for the next Ɵme step; this work as a 'memory' of the network where other inputs, i.e. 

experimental condiƟons, are treated as a constant. Diamond et al.16,17 have performed similar 

work using NARX on calcium concentraƟon modulaƟon although this was approached 
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differently through study or the synergisƟc effect of ligands, while in the present study we 

explored the combinatorial effect of ligands and channel inhibitors. 

Although we carefully modelled these problems and avoided unrealisƟc and 

unreasonable assumpƟons (as far as we can be sure), some limitaƟons could sƟll be inevitable 

due to limited available experimental data or biological informaƟon. The following are a few 

limitaƟons of our modelling approaches with specific examples from these present studies and 

potenƟal miƟgaƟng measures. 

First, all models make assumpƟons, whether due to gaps in knowledge or underlying 

biological availability of data, or the modelling approach itself. Some parts of the constructed 

models in this study were oversimplified. For example, in receptor clustering ABM, we 

assumed that the receptor and other proteins equally distribute in all periodic simulaƟon 

boxes; we also disregarded the effect of membrane curvature. This might not be neglectable 

since several enzymes and proteins display curvature-sensiƟvity18. In the signalling model, we 

have not included the spaƟal effect of components. This might result in inaccurate, biologically 

implausible predicƟons or a wide range of possible values that could be assigned to each 

parameter. These uncertainƟes can be improved by adding more experimental data. With 

more data, it is possible to esƟmate model parameters and assess the model's ability to predict 

new observaƟons accurately. For example, in ABM, this added data could be the observed 

receptor distribuƟon on platelet membrane, allowing us to assign a proper rule for diffusion. 

In ODE models, we can improve the model which lack spaƟal effects by adding 

compartmentalisaƟon, i.e., separaƟng the variable between the surface, cytosol, and nucleus, 

as we have done with PI in chapter 4. However, we sƟll need to disregard diffusive and 

advecƟve processes assuming they are fast compared to other reacƟon rates in the system. 

Using Virtual Cell computaƟonal modelling and simulaƟon soŌware (VCell), the simulaƟon of 
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spaƟal PDE and compartmental ODE models were shown to be approximately idenƟcal in that 

case19.  

Another idea is to convert an ODE to a PDE model. Levy20 has highlighted how PDE-

based model could add spaƟal terms to ODE-based model, and what addiƟonal 

parameters/variables are needed to generalise the model, for example, localisaƟon of scaffold 

protein and spaƟal gradient of concentraƟon. In his work, the author started considering the 

most simplisƟc case, the symmetric spherical cell with one degree of freedom – distance from 

the centre (1D PDE model). Even for this most straighƞorward case, solving an analyƟcal 

soluƟon was complicated. 

A problem that arises from model assumpƟons, which oŌen oversimplify the system, 

is there are missing parameters. In ODE model, we have disregarded some components or 

intermediate steps in signalling pathway. This might render the model incapable of capturing 

some behaviour that can be observed experimentally. For example, we have not included an 

intermediate step of IP3 recycling pathway in our GPVI signalling model, which should be IP3 

→ IP2 → IP1 → I or even more complex intermediate steps21. To overcome this problem, we 

would need to add at least 2 more parameters and, therefore 2 more differenƟal equaƟons. 

However, adding more parameters could lead to overfiƫng. This problem, again, can be solved 

by producing more experimental data for the fiƫng, especially with addiƟonal components. 

In addiƟon, we can assess their relaƟve quality using Akaike informaƟon criteria (AIC)22 to find 

the opƟmal candidate model. AIC is a mathemaƟcal method for determining how well a model 

fits the data expressed as a score. The AIC score is not only improved by the beƩer fit of the 

model but also impaired by redundancy parameters. Thus, it can balance the goodness of fit 

and penalty for overwhelming parameters and, therefore, can be used for model selecƟon. 
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Although we tried to base our developed models in this work on experimental data as 

much as possible, data availability could limit our models from being generalisable. The 

receptor clustering model used esƟmated data to construct a theoreƟcal model that can only 

predict trends. In contrast, the GPVI signalling model used phosphorylaƟon data from many 

donors to fit the ODE parameters. The laƩer, in principle, can predict a beƩer representaƟon 

of the populaƟon since it relies on actual experimental data compared with those models 

based on rough esƟmaƟon. The calcium predicƟon model, on the other hand, relies on only 

the data from a single donor. Although it can give a useful and interpretable fiƫng, its result is 

preliminary as it cannot be generalised to other donors. On the other hand, Ca2+ model might 

not represent populaƟon well due to variability in data of human samples; it would probably 

be easier to uƟlise. 

There are examples of machine learning models that are trained on data from a single 

individual and can generalise to a larger populaƟon, and their performance can be compared 

with models trained on data from many individuals. One such example is the use of transfer 

learning23, where a model trained on data from a single person can be fine-tuned on a larger 

dataset from a populaƟon to leverage the learned representaƟons. This approach has been 

applied in various domains, including healthcare, where models trained on data from 

individual paƟents can be fine-tuned on larger datasets from diverse populaƟons to improve 

generalisaƟon performance. 

For instance, in a study by MioƩo et al.24, a deep learning model was trained on 

electronic health record (EHR) data from individual paƟents and then fine-tuned on a larger 

dataset from a populaƟon to predict disease outcomes. The study showed that the model 

trained on individual-level data followed by fine-tuning on populaƟon-level data outperformed 
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models trained only on individual-level or populaƟon-level data, indicaƟng the potenƟal 

benefits of leveraging both types of data in a sequenƟal manner. 

 

The connecƟon between models 

In this thesis, we have worked on four different secƟons of platelet biology. There is no 

clear boundary between models. The constructed models divided different aspects of 

biological complexiƟes into pieces for the sake of simplicity. Although we have modelled all 

these problems with different approaches, they are biologically connected. We use the labels 

(A to E), as in Figure 1, to represent each model. 

First, the key connecƟon between GPVI clustering (A) and early signalling model (B) is 

the ligand binding in its dimeric form. As dimeric GPVI is able to bind its ligand, i.e. collagen or 

CRP, with higher affinity than in monomeric form, we are convinced25–27 that the dimerisaƟon 

of GPVI is essenƟal for its acƟvaƟon. Thus, the dimerisaƟon study can be viewed as an early 

stage of GPVI signalling prior to the ligand binding. 

Soon aŌer the ligand binding, GPVI is acƟvated and iniƟates a signalling cascade 

through Syk phosphorylaƟon as modelled previously12 (model B, Figure 1). This work conƟnues 

expanding the last model by dividing the downstream signalling into 2 main parts regarding 

the availability of the data: LAT signalosome (C) and PI-cycle (D) studies. The first one relies on 

phosphorylaƟon data of LAT, PLC, Btk, and PKC, with less detail of the PI-cycle, while the laƩer 

one used quanƟficaƟon of PI, PI4P, PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3, which focus on PI-

cycle and treat other parts of the signalling pathway as empirical input funcƟon obtained from 

experiment. These 2 parts used similar techniques and complimented each other. Thus, they 

are pieces of jigsaws that can be glued together to form a complete GPVI signalling pathway 

model. 
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In our GPVI signalling model (B and C), the last molecular specie that was included in 

the pathway is IP3, which could lead to Ca2+ release via IP3-receptor on the DTS. There are many 

IP3R-Ca2+ models available. For example, Sneyd and Dufour28 used saturaƟng kineƟc and 

system of ODEs to describe interacƟon between different states of IP3R. However, as there are 

also many possible ligands and inhibitors that could alter the Ca2+ signal in addiƟon to GPVI, 

we developed the model (E) that treats all complex signalling pathways as a black box, and 

shortcuts the ligand binding to Ca2+ producƟon. This held the advantage of being able to assess 

calcium producƟon and ligands/inhibitors condiƟons while minimising the number of 

variables/parameters. GPVI model is a small secƟon of the black box with a detailed pathway 

which well constructed and parameterised. 

 

What are the missing pieces? 

Although it can be seen that the models presented in this thesis are biologically 

connected, combining all these models into a single complete model might not be plausible 

due to the lack of techniques for modelling connecƟons. In the following secƟon, the missing 

pieces of informaƟon encountered while modelling GPVI funcƟon and signalling are discussed.  

Firstly, although models developed in this work are meaningful and able to predict 

interpretable results, they are far from perfect. The first piece we can easily spot is the absence 

of a ligand binding simulaƟon in (A). Instead, we varied the binding and dissociaƟon rate (kb 

and kd, respecƟvely) to simulate the effect of ligand by assuming that the ligand could stabilise 

dimeric form of receptor (decrease kd), and also induce dimerisaƟon (increase kb). However, 

no physical agent of ligand, i.e. collagen, has been introduced in the model. The idea of adding 

ligands which lie in a different medium, i.e. moving in 3-dimensional extracellular space 

instead of a 2-dimensional membrane, would lead to the introducƟon of another level of 
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complexity and associated limitaƟons. The idea of ABM with compartmentalisaƟon has been 

implemented in different cell lines. In studies by Das et al. 29, an ABM of ErbB signalling was 

implemented as 5 compartments: extracellular domain, plasma membrane, early endosome, 

late endosome, and lysosome. While ligand has been modelled as a moving agent in 

extracellular domain, receptors were moving on plasma membrane with assigned ligand 

affinity. 

Secondly, while GPVI early signalling model (B, ODE-based) describes the signalling 

pathway of GPVI inside platelets, it simplifies ligand (collagen or CRP) binding to receptor 

(GPVI) using simple mass-acƟon kineƟcs. Our available clustering model (A, ABM-based) does 

not yet connect to the signalling model. For this, we would need to connect this missing piece 

from ligand binding to GPVI dimerisaƟon, which could include spaƟal effects of receptor 

clustering within the GPVI acƟvaƟon and signalling model. 

Thirdly, the current work on GPVI model separates signalling pathways into 2 parts: PI-

cycle (D) and LAT signalosome (C). The previously developed model (A)12 focused on the 

connecƟon between GPVI-ligand binding and Syk phosphorylaƟon, and our LAT signalosome 

model conƟnues that connecƟon to IP3. However, the PI part of our LAT model was simplified, 

and we have developed another separate model for this complexity. Although the input from 

LAT signalosome, feeds into the PI-cycle model as a mathemaƟcal funcƟon, we have not made 

a combined model that connects these 2 parts as a single large model. Once the models are 

completed and well-parameterised, this issue should be easily solved. To achieve this goal, 

more Ɵme course results of other components might be needed, for example, 

unphosphorylated species of LAT, BTK, PLC, and PKC, IP3 and its degradaƟon,  and missing 

components in PI-model, i.e., PI3P, PI5P, and PI(3,5)P2. 
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Finally, IP3 producƟon is a step that can be predicted by the GPVI signalling model 

developed in this study (C and D). By combining IP3 producƟon with IP3-receptor model, which 

has been developed by Sneyd et al. 30, we should be able to generate the Ɵme course Ca2+ 

response to GPVI. Since GPVI is one of the explanatory variables used in our calcium black box 

model, it is possible to validate its result using the GPVI signalling model by varying the GPVI 

concentraƟon. However, this method can only capture the variaƟon in calcium concentraƟons 

due to GPVI, and cross-validate between 2 models (ODEs for GPVI and NN for Ca2+ (E)). It 

cannot be used to validate Ca2+ producƟon model from other ligands/receptors, i.e. PAR1-

model31. The proper way to assess these different models is to test them with experimental 

results. 

 

 

Figure 1. Summary of models in this thesis. The scope of each model is framed by a dash 

rectangle and labelled with bold text. The connecƟon between models is highlighted with faded 

yellow.  
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Model Approach Chapter ConnecƟons Missing pieces 

A. Receptor 

clustering  
ABM 2 

DimerisaƟon (A) → GPVI 

acƟvaƟon (B) 
Ligand binding 

B. GPVI early 

signalling 
ODEs 

previous 

work12 

Syk phosphorylaƟon (B) → LAT 

acƟvaƟon (C) 

SpaƟal effect of 

receptor clustering 

C. LAT signalling ODEs 3 
AcƟvated PI3K (C) → input signal 

for PI cycle (D) Complete GPVI 

signalling model D. PI cycle 

signalling 
ODEs 4 

IP3 producƟon (C/D) → IP3R on 

DTS (Ca2+ release) (E) 

E. Ca2+ flux 
NN + 

PLSR 
5 

Ligands binding (A) →  

Ca2+ flux (E) 

Other receptors' 

model validaƟon 

 

Table 1 Summary of models in this thesis. The table shows the approaches used, the (possible) 

connecƟon, and the missing pieces in each model. AbbreviaƟons: ABM, agent-based 

modelling; ODEs, ordinary differenƟal equaƟons; NN, neural network; PLSR, parƟal least 

squares regression. 

 

Future development 

The use of mathemaƟcal and computaƟonal models has become increasingly popular 

in the study of biological systems. In this secƟon, we discuss potenƟal future developments in 

the validaƟon, data requirements, and modelling approaches for the platelet models 

presented in this thesis. Specifically, we explore experimental data that could be used for 

model validaƟon and examine whether more data are needed for modelling. AddiƟonally, we 

discuss alternaƟve modelling approaches, including agent-based modelling (ABM) for cellular 

signalling and mulƟple donor calcium modelling. These approaches have the potenƟal to 

enhance our understanding of platelet behaviour and could contribute to the development of 

novel therapeuƟc strategies. 
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There are a few experiments that can be used to validate the models presented in this 

thesis. The receptor clustering model is theoreƟcal and designed to show the effect of each 

parameter variaƟon. It can be validated by experiment, i.e. synthesising an arƟficial 

membrane, to test the predicƟon by observing receptor behaviour with single-parƟcle-

tracking techniques. The GPVI signalling model can be validated by either variaƟon of ligand 

concentraƟon or by using inhibitors that alter specific pathways; phosphorylaƟon outcomes 

may be invesƟgated and compared to the predicƟons made by the model. There are many 

possibiliƟes to validate the calcium model by varying the concentraƟons of each ligand, 

channel inhibitors, and their combinaƟons. 

Within the receptor clustering model, most parameters are arbitrary, and the 

framework of this model is theoreƟcal rather than experiment-based. The data that could 

improve the model should be able to be parameterised as model input, i.e. receptor binding 

and dissociaƟon rates. More phosphorylaƟon data of various components in the signalling 

pathway could improve GPVI signalling model by narrowing down the posterior parameter 

range, thus reducing the error of parameter esƟmaƟon. In calcium modelling, where all 

signalling complexity is treated as a black box, more data could lead to a more accurate model. 

For example, calcium Ɵme course due to all possible combinaƟons of ligand and inhibitor 

concentraƟon could improve the accuracy of model predicƟon due to synergisƟc effect of 

ligands/inhibitors. It is also possible to fit these models for several donors, and find the average 

to achieve the predicƟon of the pool. 

Are there any other modelling approaches to explore? By extending the current ABM 

model for receptor clustering to GPVI signalling downstream, each component in signalling 

pathway can be converted into a model's agent with assigned interacƟon parameters obtained 

from the ODE model. This model might be able to capture the spaƟal behaviour of lipids (2D 
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movement in membrane) and proteins (3D movement in cytosol). The mulƟscale modelling 

technique can be used as a full model that connects GPVI clustering and signalling from end-

to-end process. These 2 models can also be combined by interchanging their simulaƟon 

outcome via connected components, i.e. acƟvated receptors. This hybrid modelling idea has 

been implemented to predict pressure ulcer formaƟon by Solovyev et al.32, where the ABM 

(used for skin injury, inflammaƟon, and ulcer formaƟon modelling) and ODE model (used for 

blood flow modelling) are connected via specific variables (blood flow and external pressure). 

For current calcium model, the limitaƟon is that it is based on data from a single donor. 

This might not capture the overall trend of calcium response for the average populaƟon. The 

next challenge is to extend the model to cover mulƟple donors. One straighƞorward way to do 

this is using the data from mulƟple donors, construcƟng the model for each donor with 

personalised parameters, and making a predicƟon from their average. In addiƟon to transfer 

learning, which we menƟoned earlier, Bernardo-Faura et al.33 have developed another 

approach using mulƟple individual paƟent models to idenƟfy the drug combinaƟon that could 

convert the signal in an 'unhealthy state' to a 'healthy-like' state. Although the idea is not to 

generalise the model to cover all donors, it can be used to obtain similar applicaƟons, i.e., to 

idenƟfy the therapeuƟc target. 

 

Concluding remarks 

The models in this work have many applicaƟons, from experimental design to drug 

targeƟng. In this thesis, we created ABM for transmembrane receptors, which can be 

generalised to other receptors/proteins or cell lines, not limited to GPVI on the platelet 

surface. The model provides a useful predicƟon for receptor localisaƟon and dimerisaƟon due 

to the various condiƟons of their diffusivity on membrane and the addiƟon of inert 
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transmembrane proteins. We developed an equaƟon-based model and quanƟfied signalling 

parameters for LAT signalosome and PI-cycle, which lie in between the GPVI signalling aŌer 

acƟvaƟon and IP3 producƟon, which leads to platelet internal calcium release. Finally, we 

simplified the complicated platelet calcium mobilisaƟon due to ligands and channel 

inhibitors/antagonists as a machine learning model such as NN and PLSR. These models can 

generate meaningful results and are useful for trend analysis. However, the ODE models 

developed relied on a small blood sample from a small group of donors, while the calcium 

work is developed from single donor data, and the ABM work is a theoreƟcal approach based 

on esƟmated parameters obtained from many sources, which is hugely varied. This means that 

our models cannot be generalised to large populaƟons. The scope of these works is also limited 

to the factor included in the models; they cannot be used for other purposes, i.e. predict the 

effect of other components.  

The findings of this thesis highlight the potenƟal of cross-disciplinary modelling 

approaches for understanding and predicƟng biological processes. At the same Ɵme, there is 

sƟll room for improvement, such as incorporaƟng more experimental data to enhance model 

performance and expanding the scope of predicƟon through spaƟotemporal modelling or 

combining different modelling approaches. The future prioriƟes for further development of 

this approach involve uƟlising modelling to guide biological data acquisiƟon in order to provide 

the necessary data for parameterisaƟon and tesƟng of informaƟve quesƟons. This may apply 

greater openness to using models to ulƟmately advance our understanding of complex 

biological systems. 
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