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Abstract 

Mixed-mode (MM) buildings are designed to provide mechanical air conditioning and 

natural passive cooling as regulated by occupants. This would enable the potential of 

shifting the narrow comfort range in HVAC (heating, ventilation and air conditioning) 

buildings to a wider range similar to NV (naturally ventilated) buildings. Recent studies 

have provided evidence of higher degrees of thermal adaptation among occupants in 

MM buildings. However, limited attention has been given to understanding the linkages 

between these expanded ranges and the specific adaptive behaviors or contextual 

factors that influence them. This paper aims to investigate the influence of occupants’ 

adaptive behaviors on thermal comfort in MM buildings. A one-year field study in two 

MM office buildings with 5,096 valid questionnaires was conducted in Chongqing, 

China, under hot summer and cold winter climatic characteristics by developing 

machine learning algorithms compared with classic thermal comfort models. Results 

show that incorporating adaptive behaviors as input variables enhances the performance 

of machine learning algorithms, leading to improved overall model performance, while 

the classic thermal comfort index PMV (predictive mean vote) presents the limited 

accuracy but the best recall in most cases. This paper also demonstrates that some 



energy-inefficient thermal adaptations were found in MM buildings during the HVAC 

mode, such as using air conditioning in mild spring and autumn, and frequent window 

openings during cooling periods of summer. It is therefore valuable for future research 

to further focus on how MM buildings both incorporate positive features and reduce 

negative features during the HVAC and NV modes. 

Keywords: Adaptive thermal comfort, PMV, Adaptive model, Adaptive behaviors, 

Machine learning 

 

 

 

Abbreviations 

 

AC  Air conditioning 

Clo  Clothing level 

DT  Decision Tree 

FN  False negative 

FP  False positive 

HVAC Heating ventilation and air conditioning  

KNN K- Nearest Neighbor 

Met  Metabolic rate 

MM Mixed mode 

NB  Naive Bayes 

NV  Naturally ventilated  

PMV Predicted Mean Vote 

RH  Relative humidity 

RHout Outdoor relative humidity 

SVM Support Vector Machine 

Ta  Air temperature 

Tr  Radiant temperature 

To  Operative temperature 

Tout  Outdoor air temperature 

TN  True negative 

TP  True positive 

Vel  Air velocity 



1. Introduction 

Providing thermally comfortable conditions in buildings not only benefits occupants’ 

health, satisfaction, productivity, and well-being [1] [2] [3], but also directly influences 

building energy usage from HVAC (heating, ventilation and air conditioning) systems 

[4]. It is suggested that increasing cooling setpoints by 2.8℃ (22.2 to 25℃) and 

decreasing heating setpoints by 1.1℃ (21.1 to 20℃) can contribute to total HVAC 

energy savings of 27% and 34%, respectively [5]. To better understand the essential 

cause-and-effect variables behind thermal comfort, many researchers have focused on 

developing empirical experiments to study human thermal perception in both well-

controlled climate chambers and real-world buildings [6]. Relevant research findings 

were later employed to develop solid theories for mathematically describing thermal 

comfort, which have been then successfully incorporated into international and national 

standards, such as the PMV index in ISO 7730 [7] and ASHRAE 55 [8], adaptive 

models in EN 16798 [9] and UK’s CIBSE Guide A [10], aPMV model in China’s GB/T 

50785 [11], etc. These thermal comfort models are stipulated by the standards to 

determine acceptable thermal environments for occupants and to calculate 

heating/cooling loads for equipment sizing in NV (naturally ventilated) and HVAC 

buildings. 

However, for mixed-mode (MM) buildings with a hybrid strategy of using both natural 

ventilation and mechanical devices, operable evaluation approaches are still in progress. 

According to EN 15251 [12], MM buildings should be evaluated using both PMV and 

adaptive approaches depending on operation modes, whereas ASHRAE 55 updated the 

applicability of using the adaptive approach from “must be no mechanical cooling 

system for the space” (ASHRAE 55-2004 [13]) to “no mechanical cooling system or 

heating system in operation” (ASHRAE 55-2020 [8]). Although the statement “in 

operation” loses the strict requirements for adopting adaptive comfort theory in 

buildings, these “black or white” binary distinctions could increase the difficulty of 

applying appropriate thermal comfort models in practice because turning on/off the 

heating or cooling systems may occur frequently in MM buildings, making constant 



switch of evaluation methods less feasible from an engineering perspective. 

1.1 Adaptive thermal comfort in MM buildings 

Many field studies have already been conducted around the world to investigate the 

“hybrid philosophy” in relation to occupants’ thermal comfort in MM buildings, as 

shown in Table 1. Most of the findings suggested that the adaptive model with a wider 

temperature range is more suitable for MM buildings because MM buildings provide 

more control opportunities for thermal environments, such as operating windows [14] 

and adjusting clothes [15], which can positively affect occupants’ subjective 

satisfactions and thermal expectations. One common criticism about using the PMV 

index in HVAC buildings is that it encourages buildings to operate in a very narrow 

temperature range [16] and it isolates humans from the natural rhythms of the outdoors 

[17], resulting in an addiction to narrow artificial environments maintained by 

avoidable energy consumptions, but this narrow range has the potential to be optimized 

in MM buildings. Leaman and Bordass [18] compared post-occupancy evaluation (PoE) 

results from 21 MM and 64 HVAC buildings in the UK and discovered that occupants 

in MM buildings were more tolerant of changing indoor environments than occupants 

in HVAC buildings. Thermal comfort surveys from Indonesia [19] and India [20] also 

demonstrated that the upper limit and general range of comfort temperatures in MM 

buildings can be extended by 2-3℃ and 5℃, respectively, when compared to HVAC 

buildings. Therefore, adaptive models with a more flexible and wider temperature range 

are often recommended for assessing thermal environments in MM buildings, 

particularly during their HVAC mode compared with fully HVAC operated buildings.  

 Table 1. Thermal comfort research in MM budlings. 

Reference Year Location Climate Building 

type 

Outdoor 

temperature 

limits (℃) 

Sample 

size 

Key finding 

Barbadilla

-Martín et 

al. [21] 

2014 Seville, 

Spain 

Temperate Office 8, 33 5,000 

responses 

from 54 

subjects 

The neutral 

temperatures 

calculated by the MM 

adaptive model are 

lower than the NV 



requirements in 

ASHRAE-55 and EN 

15251. 

Luo et al. 

[22] 

2015 Shenzhe

n, China 

Subtropical Office 16, 31 834 

responses 

from 50 

subjects 

PMV can’t account for 

adaptive behaviors and 

deviated from actual 

thermal response in 

AC mode.  

Kim et al. 

[23] 

2017 Sydney, 

Australia 

Subtropical Residential 9, 27 1,525 

responses 

from 42 

homes 

Residents in Sydney 

preferred to use AC 

and fans rather than 

open windows. 

Rupp et al. 

[24] 

2018 Florianó

polis, 

Brazil 

Subtropical Office 17, 27 5,400 

responses 

from three 

buildings 

Customized adaptive 

models were 

developed for both 

HVAC and NV modes 

in Brazil context. 

Khoshbak

ht et al. 

[25] 

2019 Brisbane

, and 

Gold 

Coast, 

Australia 

Mediterrane

an 

subtropical 

Office 10, 30 1,001 

responses 

from three 

buildings 

Control strategy can 

significantly affect 

thermal perceptions. 

Kim et al. 

[14] 

2019 Sydney, 

Australia 

Subtropical Office 15, 22 877 

responses 

from 31 

subjects 

Occupants adapted 

more during NV mode 

compared to HVAC 

mode. 

Ming et al. 

[15] 

2020 Chongqi

ng, 

China 

Humid 

subtropical 

Office 15, 38 827 

responses 

from 29 

subjects 

Occupants actively 

adjusted clothes in 

four seasons. 

Jia et al. 

[26] 

2020 Tianjin, 

China 

Humid 

continental 

Office -12, 38 583 

responses 

from one 

building 

Occupants adapted 

more in NV mode 

compared to AC 

mode. Adaptive 

models are more 

accurate than PMV. 

Gaffoor et 

al. [27] 

2021 Hybrid Temperate 

oceanic 

Hybrid -4,35 1,121 

responses 

from 

public 

datasets 

Indoor operative 

temperature is the 

most influential factor. 

Khadka et 

al. [28] 

2022 Tokyo, 

Yokoha

ma, and 

Humid 

subtropical 

Office 7, 34 3,000 

responses 

from 17 

The comfortable 

temperature range in 

MM mode is wider 



Odawara

, 

Japan 

building than in FR (free-

running) mode. 

On the contrary, the classic PMV index received less positive attention in MM buildings 

due to its limitation to maximize the potential of energy saving [29] and low predictive 

accuracy in real buildings [30]. Several field studies reported that occupants’ neutral or 

comfort temperatures in MM buildings during HVAC mode are generally higher (1.5℃ 

in [26], 2℃ in [20], and 2.1℃ in [29]) than PMV predicts. But a few studies have 

shown that PMV can accurately predict occupants’ actual thermal sensation during the 

HVAC period of MM buildings [31]. Although current standards recommend clear 

guidance for evaluating thermal environments in HVAC and NV buildings (PMV [8] 

for HVAC, adaptive model [10] or aPMV [11] for NV buildings), an effective and 

distinct approach for MM buildings is lacking and has yet to be developed because a 

simple combination of stipulations from NV and HVAC buildings may not fully 

represent the actual thermal adaptations and energy-related behaviors of occupants in 

MM buildings, resulting in inappropriate or misleading outcomes. 

1.2 Machine learning algorithms in thermal comfort research 

One of the major trends in thermal comfort research is the shift towards the 

implementation of personalized models trained by machine learning algorithms [6]. 

Unlike traditional physical or empirical thermal comfort models that can’t be updated 

or modified with extra input variables in MM buildings (age, gender, climate, season, 

building type, time of day, etc.), machine learning algorithms are highly data-driven 

and have the advantage of being able to accommodate new variables and patterns with 

high accuracy and efficiency [32]. Many studies already employed machine learning 

algorithms to investigate how specific contextual factors affect indoor thermal comfort, 

such as wrist temperature [33], facial temperature [34], heartrate variability [35], 

occupied time [36], gender [37], age [38], etc.  

What’s more, the emergence of Internet of Things (IoT) technology or digital 

transformation enables building management to learn about occupants’ thermal comfort 



directly from real-world data generated through new and enormous data sources 

empowered by smart sensors and devices, such as smartphone [39], wristband [33], 

thermal camera [34], RGB camera [40], EEG (electroencephalogram) measurements 

[41], automatic sphygmomanometer [42], etc. These cutting-edge methods have the 

potential to revolutionize thermal comfort research by analyzing affluent input features 

and large-volume datasets, allowing complex relationships between variables to be 

identified.  

Previous studies have shown that incorporating additional input dimensions from 

contextual factors or IoT data collected in climate chambers or field studies can 

significantly enhance the predictive performance of machine learning-based models. 

For instance, most studies have reported achieving remarkable accuracy of over 60% 

[43], which outperforms the predictive accuracy of classic thermal comfort models, 

such as PMV with 30-40% accuracy [30]. However, merely using metric “accuracy” to 

evaluate a model could be misleading due to randomness when the dataset is 

imbalanced [43]. What’s more, machine learning in thermal comfort research is often 

employed to enhance the predictive performance of models by embedding additional 

inputs, but such inputs are typically utilized in a data-driven manner to improve model 

accuracy rather than to elucidate the underlying mechanisms of thermal comfort. 

Therefore, although machine learning can improve prediction, it may not necessarily 

contribute to a deeper understanding of the theoretical foundations of thermal comfort. 

While current studies have demonstrated that occupants in MM buildings have a wider 

acceptable or neutral temperature range than in HVAC buildings due to more flexibly 

adaptive approaches, there is still a need for a quantitative proof of the inner interactions 

of these extra factors and how they influence occupants’ actual thermal comfort. This 

will provide a more comprehensive basis for designing and operating MM buildings. 

1.3 Objective of this study 

To address the gaps identified in the previous sections, this research aims to investigate 

the influence of occupants’ adaptive behaviors on thermal comfort in mixed-mode 

buildings. It explores the specific impacts of adaptive strategies on occupants’ comfort 



experiences and evaluates the effectiveness of machine learning algorithms in capturing 

and predicting these dynamics compared with classic thermal comfort models. The 

schematic overview of this research as presented in this paper is shown in Fig. 1, 

illustrating how each aspect of our methodology contributes to achieving specific 

objectives. Firstly, a one-year “right-here-right-now” field study in MM buildings with 

both air conditioning and natural ventilation modes was conducted, and relevant 

adaptive behaviors were recorded as extra model inputs. Secondly, the applicability of 

two popular machine learning algorithms, namely naive bayes (NB) and random forest 

(RF), was investigated with and without feature selection process. Their performances 

were assessed and compared with classic thermal comfort models using four evaluation 

metrics: accuracy, precision, recall, and F1-score. Finally, adaptive behaviors that can 

provide a positive impact during the establishment of machine learning models were 

selected and then examined using the Mann-Whitney test to see if there is statistical 

significance of thermal environments before and after any specific adaptation was 

implemented. 

 

Fig. 1 Schematic overview of research methodology in relation to objectives 

 



2. Methodology 

In this study, a one-year investigation was conducted in five offices from two MM 

buildings at Chongqing University, China. The Chongqing area is situated at 29.56°N 

106.55°E and is classified under the Cfa Köppen climate type (humid subtropical), 

ASHRAE climate zone 3A (warm-humid), and HSCW zone (hot summer and cold 

winter) in China’s Thermal Design Code GB 50176 [44]. Chongqing is recognized as 

a “furnace city” due to its high outdoor temperatures and humidity levels. The daily 

average temperature exceeds 20 °C for seven months of the year, and the average 

humidity values consistently remain above 80% [45]. During the winter months, the 

daily mean air temperature in Chongqing typically ranges from 5 to 10 °C. The city 

also experiences a low level of sunshine rate in winter, with a rate of only 13% 

calculated as the length of time with sunshine over the total length of daytime [46]. 

The right-here-right-now field studies have been carried out in five office rooms from 

two academic buildings at Chongqing University. A total of twelve subjects participated 

voluntarily with payments and were asked to conduct their typical daily work activities. 

Monitoring devices were positioned near each subject to gather real-time environmental 

data. Subjects were required to complete and submit questionnaires hourly at least eight 

times a day and nine days per month over the entire year through the online survey 

platform Wenjuanxing (https://www.wjx.cn), and over 5,000 valid questionnaires were 

collected. 

2.1 Experimental settings 

2.1.1 Environmental monitoring 

According to ASHRAE Standard 55-2020 [8], the assessment of acceptable thermal 

comfort in a steady state requires consideration of six significant factors, namely 

metabolic rate, clothing insulation, air temperature, radiant temperature, air speed, and 

humidity. Additionally, in occupant-controlled naturally conditioned spaces, the 

outdoor air temperature is regarded as a crucial factor in defining acceptable thermal 

conditions. This study did not include data on radiant temperature and air velocity 



because: 1) the absence of any significant radiant sources in the investigated offices led 

to the assumption that the radiant temperature was similar to the air temperature [47]; 

and 2) it was inappropriate to place an anemometer for each subject to frequently 

measure air velocity and measurement of air velocity was not feasible within the frame 

of the project. Given the fact that no ceiling fans or desk fans were used, the air velocity 

was assumed to be at 0.1 m/s in the steady state. 

The air temperature and relative humidity of both indoor and outdoor environments 

were measured utilizing HOBO UX100-011 data loggers, with ±0.21℃ uncertainty for 

air temperature and ±3.5% for relative humidity. The data collection was configured 

with a frequency of 10 seconds. Indoor data loggers located close to each subject while 

maintaining a safe distance from potential heat sources such as computers and lamps. 

Outdoor data loggers were placed exterior to each office and shielded from direct 

sunshine by the implementing an anti-radiation louver ventilation hood. 

2.1.2 Field Survey 

This study conducted a one-year survey of thermal comfort in office environments from 

December 2020 to November 2021, involving twelve master and PhD students 

recruited voluntarily from five different offices in Chongqing, China (Figs. 2 and 3). 

Students primarily worked in the office but also attended lectures in other classrooms 

or conducted experiments outside the office. In order to gather sufficient data while 

minimizing disruptions to the subjects’ daily work, they were permitted to select three 

days within the first, middle, and last ten days of each month to take the online survey 

during the study period. Subjects were carrying out typical office tasks from 9:00 a.m. 

to 6:00 p.m., such as talking, reading, writing, and computer operation. Brief departures 

from the office were allowed, such as having lunch or using the toilet. Subjects can 

adjust their comfort levels by turning on/off the air conditioner, adjusting the AC set 

point, changing clothing, drink hot/cold water, and opening/closing windows as needed. 

After performing these adaptive behaviors, subjects were instructed to document them 

in the subsequent online questionnaire, which was to be filled once per hour. The 

detailed statistics of subjects are presented in Table 2.  



Table 2. Statistics information of 12 investigated subjects 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Height (cm) 155 165 180 180 171 173 165 182 160 177 153 166 

Weight (kg) 55 60 71 85 67 68 52 73 54 75 50 67 

BMI 22.89 22.04 21.91 26.23 22.91 22.72 19.10 22.04 21.09 23.94 21.36 24.31 

Gender F M M M M M F M M M F M 

Clothing level 

(clo) 

0.70± 

0.30 

0.74± 

0.36 

0.75± 

0.43 

0.65± 

0.17 

0.66± 

0.32 

0.62± 

0.30 

0.96± 

0.45 

0.76± 

0.26 

0.82± 

0.29 

0.51± 

0.31 

1.01± 

0.22 

0.91± 

0.27 

Metabolic rate 

(met) 

1.22± 

0.24 

1.22± 

0.22 

1.10± 

0.10 

1.11± 

0.13 

1.11± 

0.11 

1.21± 

0.26 

1.26± 

0.27 

1.21± 

0.26 

1.13± 

0.12 

1.20± 

0.18 

1.22± 

0.25 

1.40± 

0.13 

 

Fig. 2 Layout of investigated offices (surveyed participants are marked in yellow) 

 

Fig. 3 Field-deployed instruments and occupants of Office 3 



To minimize intervening with subjects, two thermal feedbacks were asked: 1) thermal 

sensation (continuous ASHRAE scale from -3 cold to 3 hot [8]); 2) thermal preference 

(McIntyre scale of cooler, no change, and warmer). Additionally, metabolic rate and 

clothing level were also required to be provided in each questionnaire according to the 

descriptions in ASHRAE 55-2017 [8] Informative Appendix L ‘Measurements, surveys, 

and evaluation of comfort in existing spaces: parts 1 and 2’. Thermal preference was 

chosen as the primary predictive response in this study because it directly indicates 

thermal discomfort and expresses subjects’ preferences in practice, thereby guiding the 

HVAC system to take appropriate action. 

2.2 Data preprocessing 

2.2.1 Data cleaning 

During the data collection stage, missing values and outliers could occur due to the 

improper placement, insufficient power and storage space of the data logger. To 

maintain the quality of the dataset, any data points that had missing values for air 

temperature, relative humidity, metabolic rate, clothing value, or thermal feedback were 

removed from the dataset. Outliers, which are typically distinguished by their extremely 

high or low values, can emerge as a result of dubious responses or incorrect data coding 

and have a significant impact on regression, model training/building, and overall 

statistical analysis. As a result, it is critical to accurately identify and effectively address 

outliers in order to avoid biases or inaccuracies in the results. 

In thermal comfort studies, stochastic-based methods, such as the 3-Sigma rule or the 

Boxplot rule, are commonly used for outlier detection. These methods consider a new 

observation to be an outlier if its probability density is low relative to the statistical 

distribution established from prior data. However, it has been found that the 3-Sigma 

rule may fail to detect outliers, as the presence of extreme values can alter the overall 

pattern of the data distribution and impact the detection process due to its reliance on 

mean-based calculations [48]. In contrast, median-based approaches like the Boxplot 

rule are less susceptible to this influence and tend to produce more reliable results. The 



Boxplot rule was employed in this paper for outlier elimination. After removing all the 

null values and outliers from the original dataset, the remaining data were utilized for 

further analysis. 

2.2.2 Data matching and pre-coding 

The data in this study were collected from data loggers and online questionnaires. Each 

questionnaire represented a single data point, which included several columns of 

features for further examination. To match the air temperature and relative humidity 

from the data logger with the questionnaire, the submission time of each questionnaire 

was located within the timestamps of the data logger near to the subject. The average 

values of environmental measurements collected one minute before and one minute 

after the questionnaire’s submission time were used to match each questionnaire. For 

example, if a questionnaire was submitted at 10:31:04, its environmental data would be 

matched with the average measurements taken between 10:30:04 and 10:32:04.  

Label encoding method was used to convert text data into numeric data during the 

training processes of machine learning algorithms because it was found to achieve 

higher accuracy than another commonly used method one-hot encoding on predicting 

thermal comfort data [49]. To reduce the imbalanced effects of data units, the input 

variables were standardized using the function StandardScaler in the Python package 

Scikit-Learn package [50]. The detailed descriptions of investigated adaptive behaviors 

are shown in Table 3 

Table 3. Investigated adaptive behaviors and their relation to thermal comfort 

Adaptive behavior Filled value in survey Relation to thermal comfort 

Change AC setpoint Off or setpoint value Impact indoor temperature, affect body temperature 

Open Window Four opening levels Impact indoor air circulation and temperature distribution, provide fresh air 

Drink hot water Y or N Raise body temperature, improve comfort in cool environments 

Drink cold water Y or N Lower body temperature, improve comfort in warm environments 

Add clothe Y or N Maintain body temperature, improve comfort in cool environments 

Reduce clothe Y or N Lower body temperature, improve comfort in warm environments 

Leave office Y or N Alter individual heat load and metabolic rate 

Have dinner Y or N Provide energy and heat, affect metabolism and body temperature regulation 

Go upstairs Y or N Increase metabolic rate, affect heat generation and dissipation 



2.3 Machine learning algorithms 

This study compared the predictive outcomes of two machine learning algorithms, 

naive bayes (NB) and random forest (RF), with traditional thermal comfort models. The 

NB algorithm is well-known for its quick completion and solid theoretical foundations 

[51], whereas the ensemble tree method RF has recently gained popularity in the 

thermal comfort community due to its favourable performance. 

2.3.1 Naive Bayes 

The Naive Bayes (NB) algorithm is a well-established and straightforward probabilistic 

method employed in classification problems. This method is rooted in Bayes theorem 

and assumes that the features involved in the classification task are independent of one 

another. Despite the fact that this assumption is rarely met in real-world applications, 

NB algorithm efficient and even outperforms sophisticated rules in terms of efficiency, 

simplicity, and robustness to missing data and noise [51]. 

The Bayes theorem states that the probability of a class, given certain features, is 

proportional to the prior probability of that class multiplied by the probability of the 

features given that class. In a particular prediction problem, the predictor features 

𝑥1, 𝑥2, … , 𝑥1 are utilized to estimate the probability of the response category 𝐶𝑘 (𝑘 =

1, … , 𝐾 possible categories). This relationship can be formulated as follows [52]: 

𝐶𝑘 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑚)                                                     (1) 

The NB algorithm employs the concept of conditional probability as: 

𝑃(𝐶𝑘|𝑥1, 𝑥2, … , 𝑥𝑚), ∀ 𝑘 = 1,… , 𝐾                                    (2) 

This posterior can be represented through the Bayes Theorem as: 

𝑃(𝐶𝑘|𝑥1, 𝑥2, … , 𝑥𝑚) =  
𝑃(𝑥1, 𝑥2, … , 𝑥𝑚|𝐶𝑘)𝑃(𝐶𝑘)

𝑃(𝑥1, 𝑥2, … , 𝑥𝑚)
                        (3) 

where 𝑃(𝑥1, 𝑥2, … , 𝑥𝑚|𝐶𝑘) is the likelihood of the features given the class, 𝑃(𝐶𝑘) is 

the prior probability of the class, and 𝑃(𝑥1, 𝑥2, … , 𝑥𝑚) is the evidence. 

The fundamental simplification in the NB algorithm is the assumption of independence 



between features, meaning that the likelihood of the features given a class can be 

determined as the product of the individual likelihood probabilities: 

𝑃(𝑥1, 𝑥2, … , 𝑥𝑚|𝐶𝑘) = 𝑃(𝑥1|𝐶𝑘)𝑃(𝑥2|𝐶𝑘)…𝑃(𝑥𝑚|𝐶𝑘)               (4) 

Then, equation (3) can be transformed by incorporating equation (4): 

𝑃(𝐶𝑘|𝑥1, 𝑥2, … , 𝑥𝑚) =  
𝑃(𝐶𝑘)

𝑃(𝑥1, 𝑥2, … , 𝑥𝑚)
  ∏ 𝑃(𝑥𝑚|𝐶𝑘)

𝑚

𝑖

                     (5) 

Since the evidence term 𝑃(𝑥1, 𝑥2, … , 𝑥𝑚)  is the same across all classes, the NB 

classifier selects the class with the highest posterior probability as the final prediction, 

given the observed features, as expressed by the following equation: 

�̂� =  𝑎𝑟𝑔𝑚𝑎𝑥⏟    
𝑘∈{1,2,…,𝐾}

𝑃(𝐶𝑘)  ∏ 𝑃(𝑥𝑚|𝐶𝑘)

𝑚

𝑖

                              (6) 

The NB algorithm has been widely applied in various domains related to energy and 

buildings, including battery health management [53], investment in renewable energy 

[54], and smart grid systems [55]. Despite criticisms of the NB approach for its overly 

simplistic assumption of independence between features [56], there are several reasons 

why it often exhibits good performance, including [51]: 1) this intrinsic simplicity often 

results in low variance in the probability estimate; 2) the potential biased assumption 

may not influence the outcome directly as long as the rank order is correct; and 3) 

simple extension to original NB structure can further improve its performance. 

To ensure reproducibility in this research, the training and testing data were split in an 

8:2 proportion for each NBdefault model training under the random state of 42 by Scikit-

Learn package (the fixed seed value of the random state ensures that the sample 

splitting results are consistent [50]). Rather than using all features for the NB model, 

default inputs from the classic PMV index were used to train the initial NBdefault model 

to better grasp the knowledge from prior thermal comfort research. Subsequently, one 

environmental or behavioral feature from questionnaires was added to the initial inputs 

to train an updated model NBupdate, and the evaluation metrics were observed to see if 



they improved. If the performance was improved with the addition of a specific feature, 

that feature was marked as selected and included in the final training model NBselect 

(Fig. 4). The above process was carried out separately for data collected in each season. 

 

Fig. 4 Diagram of training NB models for one season 

2.3.2 Random Forest 

Random Forest (RF) is a stochastic-based machine learning algorithm that is known for 

its robustness and ability to avoid overfitting of a single tree. Traditional tree-based 

models suffer from the loss of generalization accuracy on unseen data, and the RF 

algorithm can overcome this by combining and training multiple decision trees on 

random subsets of data, then aggregating the results from each tree with selected 

variables to produce a final prediction [57].  

One of central hyperparameters in the RF setting is mtry, which is defined as the number 

of randomly selected candidate variables from which each split is chosen, and is often 

set to the square root of the input number in classification problems [58].  

𝑚𝑡𝑟𝑦 =  √𝑝                                                          (7) 



where p is the number of inputs. 

The splitting criterions of the RF algorithm include two main kinds: “Gini” and 

“entropy”. Gini (or Gini impurity) index measures how often a randomly selected 

element from the set would be labelled incorrectly if it were labelled randomly 

according to the distribution of labels in the subset [59]. It is calculated through: 

𝐺𝑖𝑛𝑖 =  1 −∑𝑝𝑗
2

𝑘

𝑖=1

                                                       (8) 

where k is the number of classes, and p is the probability of class j. 

The entropy index explains a set’s disorder or randomness, with lower entropy 

indicating greater order or structure [59]. It is calculated through Shannon entropy [60]: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  −∑𝑝𝑗𝑙𝑜𝑔2(𝑝𝑗)

𝑘

𝑖=1

                                           (9) 

where k is the number of classes, and p is the probability of class j. 

Both splitting criteria are effective in many applications [46], but Gini impurity is faster 

to compute and preferable in large datasets because it is a linear measure as opposed to 

Entropy's logarithmic measure. The entropy is more sensitive to changes in the 

distribution of classes and is preferred for maximizing information gain at each split 

[61]. 

The remaining tuning hyperparameters in the RF algorithm include number of trees, 

maximum depth, and node size: 1) Number of trees (or estimator) determines the total 

number of trees in the forest. A larger number of trees usually results in a more robust 

model, but at the expense of increasing computation time and becoming too complex, 

and it can begin to fit the noise in the dataset rather than the underlying patterns; 2) 

Maximum depth represents the maximum depth of each tree, and small max depth 

could lead to a shallow tree and poor performance on training data, whereas a large max 

depth will result in overfitting and poor generalization to unseen data; and 3) Node size 

(or minimum sample leaf) calculates the minimum number of samples required to arrive 



at a leaf node, which serves as the final decision point, and generates a prediction at a 

tree for a given input sample [62].  

Above hyperparameters in the RF algorithm control the splitting principles and the 

randomness of aggregating trees, thus influencing the model performance. However, 

Mantovani et al. [63] discovered that the effects of tuning hyperparameters in the RF 

algorithm are much smaller than other machine learning algorithms, such as support 

vector machines (SVM). In building engineering, the RF algorithm has been 

extensively utilized and achieved appropriate results [64][65][66], and thermal comfort 

related studies are as listed in Table 4. Most of these studies reported acceptable 

predictive accuracy levels ranging from 70% to 90%. In comparative performance 

studies, the RF algorithm consistently demonstrated outstanding performance, often 

with the highest accuracy or only a minor difference from the top-performing algorithm. 

Table 4. Random forest algorithms used in thermal comfort studies 

Publication Matrix RF SVM AdaBoost DT KNN NN NB Logistic PMV Specific 

focus  

Luo et al. 

[49] 

Accuracy 65.1% 57.7% 61.6% 57.9% 61.7% 60.4% 52.3% 59.9% 43.1% Algorithm 

comparison 

Gao et al. 

[67] 

Accuracy 51.41% 37.93% 42.94% 43.33% 41.43% 50.35% 40.43%  33.35% Climate 

difference F1-Score 52.93% 40.91 42.41% 43.34% 41.93% 50.67% 39.40%   

Zhang et al. 

[68] 

Accuracy 70.6% 47.1%  49.6%  54.6%    Office 

building 

Yu et al. 

[69] 

Accuracy 79.4%  77.8%  80.2%     Feature 

selection 

Aryal and 

Becerik-

Gerber [70] 

Accuracy 78% 77%  76% 80%     Personalized 

comfort 

systems 

Li et al. [71] Accuracy 72.0% 57.4%    67.7%    Individual 

prediction Kappa 50.5% 0    40.4%    

Farhan et al. 

[72] 

Accuracy 52.1% 56.7% 51.1%      33.2% Individual 

prediction 

Vellei et al. 

[73] 

Error 0.2   0.26    0.42  Relative 

humidity 

influence 

Li et al. [74] Accuracy 85%         Facial 

infrared 

thermography 



Chaudhuri 

et al. [75] 

Accuracy 

(Male) 

92.86%         Gender 

difference 

Accuracy 

(Female) 

94.29%         

Shetty et al. 

[76] 

Accuracy 97.73%         Desk fan 

usage 

Liu et al. 

[77] 

Accuracy 77%         Prediction 

using wrist 

temperature  

Kappa 43%         

Wu et al. 

[78] 

Accuracy 70.4%         Prediction 

using local 

skin 

temperature 

In this study, 20% of the data was divided into test samples with a random state of 42, 

and the grid search method under 5-fold cross-validation was used to evaluate RF 

predictive performance by identifying the best parameters among the above four 

hyperparameters within the range of [10, 25, 50, 100, 200] for a number of estimators, 

[“Gini”, “entropy”] for criterion, [3, 5, 10, 15, 20, 25] for max depth, and [1, 2, 5, 10] 

for min sample leaf. The RF models have been fed with two rounds of input features: 

round one uses all features and round two uses the features selected from the NBselect 

modes. 

2.4 Classic thermal comfort models in standards 

2.4.1 PMV index 

Developed by Fanger during 1970s, PMV (Predictive Mean Vote) index was based on 

American and European experiments in well-controlled climate chambers, which views 

thermal comfort as a physiological phenomenon of the human body and considers 

thermal sensation to be the result of heat transfer between the human body and its 

surroundings [8]. The PMV index has been widely adopted for evaluating the HVAC 

operation in thermal comfort standards (ISO 7730 [7], ASHRAE 55 [8], EN 16798 [9], 

CIBSE Guide A [10], and GB/T 50785 [11]). Despite its widespread acceptance, the 

PMV index also faces challenges in its application to built environments [6]: 1) its two 

environmental inputs, “radiant temperature” and “air velocity”, require expensive 

instruments and human assistance for accurate measurement, and two personal inputs, 



“clothing level” and “metabolic rate”, are often simplified or assumed due to the 

difficulty in automated collection; 2) The index was designed to predict average 

comfort of a large population, but usually performs poorly at an individual level; 3) It 

provides limited opportunity for further adaptations or updates, as all relationships 

between inputs and outcome are clearly stated. 

Several thermal comfort studies have revealed that the PMV index only provides 

approximately half the accuracy compared with fine-tuned machine learning algorithms, 

as demonstrated in Table 1. To further assess the performance of this index, this study 

uses the boundary of ±0.5 to represent the hot and cold limits for evaluating thermal 

comfort, which is classified as Category II in ISO and EN standards, and Category I in 

American, UK, and Chinese standards. The PMV values were calculated using Python 

package pythermalcomfort developed by Tartarini and Schiavon [79]. 

2.4.2 Adaptive model 

The “one size fits all” feature of the PMV index could not only lead to poor satisfaction 

at the individual level but also risk expending a significant amount of energy in 

maintaining a uniform indoor environment in buildings year-round, regardless of 

outdoor climates and individual preferences or adaptations. To address these limitations, 

many field studies have been conducted in actual buildings to validate the adaptive 

comfort concept in various climatic zones. In 1976, Humphreys performed a meta-

analysis of over 30 field surveys conducted between 1930 and 1975, utilizing over 

200,000 records to further promote the adaptive principle [80]. He discovered that the 

relationship between indoor preferred temperature and monthly mean outdoor 

temperature was linear in naturally ventilated buildings, whereas curvilinear in heated 

or cooled buildings. This linear relationship of the adaptive model in the most recent 

ASHRAE 55-2020 standard was stimulated for determining acceptable indoor 

temperature in naturally conditioned spaces as [8]: 

𝑈𝑝𝑝𝑒𝑟 80% 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑙𝑖𝑚𝑖𝑡 = 0.31𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 21.3             (10) 

𝐿𝑜𝑤𝑒𝑟 80% 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑙𝑖𝑚𝑖𝑡 = 0.31𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 14.3             (11) 



where 𝑡𝑝𝑚𝑎(𝑜𝑢𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the prevailing mean outdoor air temperature, which is a weighted-

mean value from the previous days (from 7 to 30 days [8]) with decreasing weighing 

factors. 

Although this linear regression-based model includes the adaptive concept that people’s 

neutral temperature can vary with changes in outdoor thermal conditions, it is primarily 

based on statistical analysis and does not provide detailed explanations of how the 

human body is affected by its surroundings, as the PMV index does [81]. To better 

examine its predictive performance, the comfort boundaries of the adaptive model in 

ASHRAE 55 were also used in this paper as comparative benchmarks for the analysis 

in the spring and autumn seasons. 

2.5 Evaluation metrics 

The performance of thermal comfort models developed using NB and RF machine 

learning algorithms, as well as classic PMV/adaptive models, was evaluated using a 

confusion matrix: accuracy, precision, recall, and F1-Score: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                                    (12) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                 (13) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                 (14) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒𝑐𝑎𝑙𝑙

                                    (15) 

where TP is true positive, FP is false positive, TN is true negative, and FN is false 

negative. 

Accuracy is the most commonly used evaluation metric in thermal comfort studies 

(Table 1) because it indicates the fraction of successful predictions among all records 

and provides a clear understanding of how frequently the established model is correct. 

However, using only one index to evaluate model performance may produce misleading 

results. The metric of accuracy can be misleading when the class distribution is 



imbalanced, such as in a binary labeled dataset where only 1% of the data are labeled 

as “+”. If the model predicts all examples as “-”, it will still have an accuracy of 99% 

[77]. To address this issue, precision can be used, which is defined as the ratio of true 

positive predictions to all positive labels. In the 1% “+” example mentioned above, the 

lack of true positive predictions would result in a precision of 0, as the numerator in 

equation (9) would be 0. In other words, precision indicates how much the model can 

be trusted when it predicts an individual as positive. Therefore, precision is frequently 

prioritized in situations where false positives are costly, such as a stock trading system 

in which predictive buying signals are extremely important despite missing a few 

opportunities [82]. Conversely, recall measures the model’s ability to identify all 

positive units in the dataset [43]. If false negatives are important, as in medical 

diagnosis, where identifying all potential cases of disease is important even if it means 

finding healthy people incorrectly [83], recall becomes the priority. To account for both 

false positives and false negatives, the F1 score, which provides a balanced average of 

precision and recall, is recommended. Therefore, indicators such as precision, recall, 

and F1-score, which provide more detailed performance information, are critical in 

evaluating the outcomes of machine learning algorithms [84]. 

As thermal preference was used as a predictive response in three classes: “warmer”, 

“no change”, and “cooler” (Fig. 5, rows and columns represent actual and predicted 

classes, respectively), the corresponding precision, recall, and F1 score for 3-class 

problems were examined across all classes by using the unweighted mean of the metric 

score. 

 

Fig. 5 Confusion matrix for 3-class classification 



Then the overall confusion matrix can be updated as [85]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑇𝑃𝑖
3
𝑖=1

𝑇𝑜𝑡𝑎𝑙
                                                  (16) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑚𝑎𝑐𝑟𝑜) =  
1

3
∑

𝑇𝑃𝑖
𝑃𝑖

3

𝑖=1

                                             (17) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑚𝑎𝑐𝑟𝑜) =  
1

3
∑

𝑇𝑃𝑖
𝐴𝑖

3

𝑖=1

                                             (18) 

𝐹1 − 𝑠𝑜𝑐𝑟𝑒 (𝑚𝑎𝑐𝑟𝑜) =  
1

3
∑

2

1
𝑇𝑃𝑖
𝑃𝑖

+
1
𝑇𝑃𝑖
𝐴𝑖

3

𝑖=1

                                    (19) 

where TPi is the number of correct predictions in class-i, Eij is the number of wrong 

prediction j in class-i, Ai is total sum of actual samples in class-i, Pj is the total sum of 

prediction j, and Total is the overall number of samples. Equations (13) to (15) denote 

that these macro indices place particular emphasis on false positives, false negatives, 

and their combined effects in 3-class classification problems. 

In this research, the relevant calculations were also achieved by the functions 

accuracy_score, precision_score, recall_score, and f1_score in Python’s Scikit-Learn 

package [50]. In particular, the parameter “average” in each score function was set to 

“macro” to evaluate the precision, recall, and F1-score of multi-class classification 

problems by giving equal weight to each class. 

2.6 Statistical analysis 

To investigate the statistical significance of adaptive behaviors on thermal preference, 

several statistical analyses were performed based on the Mann-Whitney test. The 

Mann-Whitney test (also known as the U test) is a non-parametric test that compares 

the medians of two independent samples to determine whether data from two 

populations are significantly diverse [86]. It performs well on small datasets and does 

not require the normality assumption in the data distribution as the parametric t-test 

does [87]. The Mann-Whitney test has already been used in several thermal comfort 



studies to determine whether there was a significant difference between data from two 

groups, for example, between PMV and TSV [88], between comfort state and 

discomfort state [89], as well as the attitudes of different bill payers toward 

programmable thermostats [90]. The Mann-Whitney test carried out in this paper was 

implemented using function add_stat_annotation in Python package statannot [91]. 

 

3. Results 

3.1 Data overview 

After removing null values and outliers from the original dataset (n: 5,135), a total of 

5,096 data points remained available for analysis, as shown in Fig. 6. Due to 

participants being in their daily work, occasional forgetfulness may result in missed 

questionnaire submissions. While efforts were made to remind them, we did not force 

subjects to fill out the questionnaire. The final valid response rate for collected 

questionnaires is approximately 50%. Our study implemented several measures to 

mitigate participant fatigue and ensure the reliability of responses. These included a 

concise questionnaire design, a web-based data collection platform, limited 

experimentation days, and staged monetary compensation. Analysis of abnormal 

responses in Fig. 7, particularly in relation to deviations from optimal air temperature 

ranges in ISO 7730, reveals a low incidence of anomalous behavior. Further 

examination of individual responses, such as those from subjects 2 and 12, highlights a 

correlation between elevated metabolic rates and preferences for cooler ambient 

conditions. These findings collectively underscore the conscientious approach of 

participants towards questionnaire completion, reinforcing the validity of our study’s 

data collection process. 

Table 5 summarizes the statistical information of the dataset over this one-year 

experiment in four seasons. Because of the Spring Festival vacation and students’ busy 

lectures or other experiment schedules, the data sums in winter and autumn are 

relatively low compared with spring and summer. In general, the indoor and outdoor 



temperatures are highest in the summer, lowest in the winter, and moderate in the spring 

and autumn. The average values of outdoor air temperatures during autumn (14.78°C) 

and winter (7.12°C) are lower compared to spring (19.28°C) and summer (27.82°C). 

The five offices studied are located in MM buildings, allowing occupants to adjust their 

thermal comfort through various means such as turning on/off air conditioning, 

opening/closing windows, changing clothing, drinking hot/cold water, etc. Fig. 8 

depicts the relationship between variables as presented in Table 5, with the matrix 

diagonal showing the density plot of the three thermal preferences (“no change”, 

“warmer”, and “cooler”) through different colors. It is evident that the “No change” 

preference was prevalent, while the “Warmer” preference was more commonly reported 

at low indoor/outdoor air temperatures, high indoor humidity levels, and low clothing 

levels. As the subjects carried out their daily office work regardless of the thermal 

environment, their metabolic rates appear to remain relatively constant. 

 

Fig. 6 Questionnaire collection state of the one-year experiment 



 

Fig. 7 Percent of abnormal votes when air temperature is below 19℃ or beyond 27℃ 

Table 5. Results of investigated environmental and subjective parameters 

Parameter Winter Spring Summer Autumn 

Indoor Air temperature (℃) 21.55 ± 3.02 23.33 ± 2.41 26.40 ± 1.26 22.13 ± 2.07 

Outdoor Air temperature 

(℃) 

7.12 ± 1.56 19.28 ± 3.47 27.82 ± 3.47 14.78 ± 3.58 

AC setpoint (℃) 23.53 ± 2.55 23.88 ± 1.90 25.03 ± 1.38 25.04 ± 3.05 

Indoor humidity (%) 35.78 ± 8.24 58.91 ± 8.32 58.61 ± 8.94 54.91 ± 10.38 

Clothing level (Clo) 1.17 ± 0.31 0.77 ± 0.24 0.43 ± 0.13 0.92 ± 0.30 

Metabolic rate (Met) 1.24 ± 0.24 1.19 ± 0.21 1.16 ± 0.20 1.15 ± 0.16 

PMV 0.12 ± 0.71 0.08 ± 0.66 0.38 ± 0.60 -0.11 ± 0.67 

Data sum 784 2083 1643 586 

 

Fig. 8 Relationship between different variables 



Fig. 9 shows the adaptive behaviors and thermal preferences among questionnaires. As 

Chongqing is located in the hot summer and cold winter (HSCW) climate zone in China, 

it shows typical needs of cooling in summer and heating in winter. In these mix-mode 

offices, investigated subjects turned to use air conditioning frequently in summer (73%) 

and winter (96%) compared with spring and (13%) autumn (13%). Despite the fact that 

the buildings were air conditioned 96% of the time in winter, the status of windows 

being completely closed was only 19%. Subjects also drank water for roughly half of 

the time in order to actively maintain thermal comfort, with the intake of cold water 

being highest in summer (28%) and hot water highest in winter (42%). For general 

thermal preference in each season, subjects in spring expressed a high level of 

satisfaction of 82%, which is higher than standard requirements that “a thermal 

environment that a substantial majority (more than 80%) of the occupants find 

thermally acceptable” [8]. This percentage, however, is not met in the other three 

seasons, with obvious cooling needs in summer (23%) and heating needs in autumn and 

winter (35%) even under the operation of HVAC systems. 

 

Fig. 9 Distribution of adaptive behaviors and thermal preference: (a) AC on/off; (b) 

windows open/close; (c) drink water; (d) thermal preference 



The classic PMV index, developed by Fanger, incorporates two subjective factors, 

namely “metabolic rate” and “clothing level” into its numerical calculation of thermal 

comfort to represent the heat generated within the body and the heat retention/loss due 

to the insulation and the air permeability of clothing [92]. Since the participants in this 

study performed daily office work such as typing, reading, or talking, their metabolic 

rates remained relatively constant across different seasons or thermal environments. 

Therefore, the adaptation of clothing level is depicted in Fig. 10 at binned intervals of 

one degree of outdoor air temperature. In Table 5, the mean values of clothing level are 

1.17, 0.77, 0.43, and 0.92 for winter, spring, summer, and autumn, respectively. Fig. 10 

illustrates the decreasing linear relationship between outdoor air temperature and 

clothing level in spring (orange color) and autumn (red color). However, during summer 

and winter, the clothing level remains consistently low (green color) and high (blue 

color) with limited opportunities for people to adjust. 

 

Fig. 10 Variations of clothing insulation in four seasons based on outdoor air 

temperature 



3.2 Predictive performance of machine learning algorithms 

3.2.1 Naive Bayes 

Instead of randomly adding or throwing all features into the NB model, four PMV index 

inputs, namely Ta, Clo, Met, and RH, were used to train the initial NBdefault model, as 

Tr and Vel were not collected during the experiment. Table 6 shows the predictive 

performance of each NBdefault model over the four seasons. Each cell in Table 6 with a 

grey background indicates that the NBdefault model predicts data from that season, 

whereas cells without a grey background indicate that the NBdefault model predicts data 

from other seasons. The bold number represents the best evaluation metrics of each 

NBdefault model across four seasons. The winter NBdefault model shows the least 

generalizable potential, with only 12% accuracy in predicting spring data and 10% F1-

score in predicting summer data. However, this poor generalization did not appear 

significantly among other NBdefault models in spring, summer, and autumn, with 

accuracies ranging from 53% to 81% and F1-scores ranging from 31% to 44%. Because 

spring data is the most imbalanced, with 82% “no change” votes (Fig. 9d), the NBdefault 

models trained from spring, summer, and autumn data all performed best accuracy on 

spring test data (81%, 75%, and 78%), posing the risk of “accuracy cheating”, in which 

the model turns to generate more “no change” outcomes to improve accuracy. As 

precision and recall are concerned with predictive positives and actual positives, 

respectively, a trade-off between these two metrics is usually unavoidable under certain 

conditions [93]. This is also supported by Table 6, which shows that the best precisions 

and recalls do not appear simultaneously on test data from the same season. The high 

precisions in summer test data (58%) indicate that the summer NBdefualt models are more 

likely to ignore tags than add incorrect tags [94]. 

Table 6. The prediction power of NBdefault model for each season 

 
Winter test data  Spring test data  Summer test data  Autumn test data 

A P R F1  A P R F1  A P R F1  A P R F1 

Winter 

NBdefault 
62% 43% 41% 40%  12% 30% 34% 8%  13% 25% 30% 10%  34% 32% 34% 23% 

Spring 53% 53% 39% 31%  81% 35% 40% 37%  69% 45% 39% 37%  66% 32% 38% 34% 



NBdefault 

Summer 

NBdefault 
62% 47% 40% 40%  75% 42% 41% 42%  70% 58% 41% 41%  66% 50% 42% 42% 

Autumn 

NBdefault 
54% 45% 42% 38%  78% 49% 44% 44%  67% 40% 43% 42%  64% 55% 44% 44% 

Note: A: accuracy; P: precision; R: recall; F1: F1-score. In binary classification problems, the F1-score is always 

between precision and recall. However, in multi-class classification, the final F1-score may be lower than both 

precision and recall due to Simpson’s Paradox [95], which is caused by an imbalanced representation of subgroups 

when attempting to interpret the overall performance of subgroups. The values presented in the shadowed 

background correspond to model performance trained and predicted using the current season's data, while those in 

the non-shadowed background correspond to model performance trained and predicted using data from other seasons. 

Fig. 11 depicts the Pearson correlation between four NBdefault model inputs. Winter data 

has the highest sum of dependence degree (1.57 in Fig. 11a), which could threaten the 

NB algorithm's fundamental assumption that each input is independent of each other, 

resulting in poor model generalization of winter NBdefault in Table 6. During the winter, 

the air conditioner was turned on 96% of the time to provide heating (Fig. 9a). It will 

raise the indoor air temperature while significantly lowering the RH level and cause a 

strong negative correlation (-0.66) between Ta and RH in Fig. 11a. The high negative 

correlation values between Ta and Clo in spring (-0.58 in Fig. 9b) and autumn (-0.37 in 

Fig. 9d) also indicate people’s active adaptive behaviors of adding and reducing the 

number of clothes during cold and hot conditions. 

 

Fig. 11 The Pearson correlation coefficient between four NBdefault inputs (absolute 

sums shown after season’s name) 



The changes in predictive power after adding one feature at a time to the original four 

inputs of the NBdefault model are depicted in Fig. 12, with red and green colors 

representing a decrease or increase in performance and circle size indicating the change 

rate. During the spring season, several features failed to influence the performance of 

the NBupdate model (no circles plotted), and two features “max Tout” and “min Tout” 

contributed positively to all evaluation metrics, namely improving accuracy, precision, 

recall, and F1-score simultaneously. Therefore, these two features were chosen for the 

training of final spring NBselect model. Similarly, the added features for winter, summer, 

and autumn are 1) “drink cold water” (sum: 1); 2)“max Tout”, “average Tout”, “window 

open”, “weather”, “go out of office”, “outdoor RH”, “drink hot water”, “stay time in 

office”, “min Tout”, “go upstairs to enter office” (sum: 10); and 3) “weather”, “go out 

of office”, “drink hot water”, “have dinner” (sum: 4). 

 

Fig. 12 Prediction power changes of the NBupdate model compared with the NBdefault 

model 

Table 7 shows the final predictive performance of the NBselect models after all the 

selected features have been added to the NB models. The accuracy of the spring NB 

model, which added two new features “max Tout” and “min Tout”, remains at 81%, but 

precision, recall, and F1-score increased by 9%, 3%, and 6%, respectively. These 

metrics increases for winter and autumn remain in the 1% to 2% range. However, for 

the summer data, 10 new features were added to the training process, and accuracy, 



precision, recall, and F1-score increased by 3%, 12%, 10%, and 14%, respectively. 

Table 7. Prediction power of NBselect model for each season 

 
Winter test data  Spring test data  Summer test data  Autumn test data 

A P R F1  A P R F1  A P R F1  A P R F1 

Winter 

NBselect 
63% 43% 42% 41%  12% 33% 35% 9%  11% 19% 30% 7%  33% 31% 33% 22% 

Spring 

NBselect 
57% 46% 41% 41%  81% 44% 43% 43%  70% 46% 40% 39%  63% 54% 45% 46% 

Summer 

NBselect 
58% 58% 34% 27%  75% 41% 43% 41%  73% 70% 51% 55%  67% 51% 40% 37% 

Autumn 

NBselect 
57% 48% 44% 41%  78% 50% 45% 45%  65% 39% 43% 41%  64% 54% 44% 45% 

3.2.2 Random Forest 

Table 8 and Fig. 13 show the best pairs of hyperparameters of the RFall models and 

RFselect models discovered by grid search, as well as their predictive performance. Table 

8 shows that criteria entropy is preferred during AC-conditioned seasons (winter and 

summer), whereas criteria Gini is preferred during non-AC-conditioned seasons (spring 

and autumn), with the exception of season autumn from the RFall model. This 

preference for criteria entropy during AC-conditioned seasons can be attributed to the 

increase in adaptive AC-related behaviors, such as frequent adjustments in temperature 

setpoints and usage patterns, particularly prevalent during winter and summer. Criteria 

entropy, being more sensitive to changes in class probabilities, effectively captures the 

variability introduced by these adaptive behaviors. Conversely, criteria Gini, which 

focuses on the majority class (or “in favor of variables with high category 

frequencies”[96]), are more suitable for non-AC-conditioned seasons where adaptive 

behaviors are less pronounced. The observed discrepancies between AC and non-AC 

conditions underscore the importance of considering contextual factors and adaptive 

behaviors in model development to improve model efficiency and predictive accuracy. 

The complexity of the RFselect models is generally lower than the complexity of the RFall 

models because fewer input features were utilized and the grid search results of the 

number of estimators, max depth, and min sample leaf were all reduced at significant 



levels in Table 8. It is noteworthy that the observed reduction in complexity of the 

RFselect models compared to the RFall models is reflected not only in the utilization of 

fewer input features but also in the significant adjustments identified through grid 

search. For instance, the grid search results in Table 8 demonstrate notable reductions 

in the number of estimators and max depth for RFselect models across various seasons, 

indicating a more streamlined and efficient model architecture. Specifically, the 

reduction in the number of estimators from 100 to 25 in summer and the decrease in 

max depth from 25 to 5 in summer highlight the simplification of the RFselect models, 

aligning with the principle of Occam’s razor in favoring simpler models when achieving 

comparable predictive performance.  

Fig. 13 depicts the feature importance rankings from trained RF models. It is clear that 

some classic PMV inputs (Ta, RH, Clo) contribute the most to model establishment and 

remain at the top, followed by outdoor conditions (Tout, Weather), and adaptive 

behaviors (window opening, AC adjustments, water drinking, etc.). One interesting 

outcome is that the adaptative behaviors of adding and removing clothes have no 

contribution to the RF models, because clothing levels during the summer are already 

kept at a relatively low level and have very limited potential for further adjustments, so 

the RF training process in summer ignores these two features. 

Table 8. Hyperparameter optimization of the RF models using all features and selected 

features during two rounds 

Parameter Search space 
RFall  RFselect 

Winter Spring Summer Autumn  Winter Spring Summer Autumn 

Number of estimators [10, 25, 50, 100, 200] 200 25 100 100  10 25 25 100 

Criterion [“Gini”, “entropy”] Entropy Gini Entropy Entropy  Entropy Gini Entropy Gini 

Max depth [3, 5, 10, 15, 20, 25] 25 20 25 25  5 25 20 20 

Min sample leaf [1, 2, 5, 10] 1 2 2 1  1 2 1 1 



 

Fig. 13 Feature importance of RF models in four seasons 

3.2.3 Performance comparison between machine learning models and PMV index 

Fig. 14 summarizes the predictive results of the RF models combined with NB models 

in section 3.2.1 and PMV predictions. In general, the RF models produce the best results 

(green colors). Within RF models, the RFall and RFselect models perform similarly in 

summer and autumn, but in winter, the RFall models (light green) slightly outperform 

RFselect models (dark green), and this trend reverses in spring. The NB models with all 

features (light blue) have very poor predictive accuracy in all four seasons, as irrelevant 

features can significantly affect their performance. This is consistent with Luo et al’s 

[49] finding that the NB models have the lowest accuracy among all the machine 

learning algorithms when evaluating 10,618 samples drawn from twelve features of the 

ASHRAE global database [97]. However, after only using selected features from the 

framework in this paper, the NB models exhibit competitive performance (dark blue) 

similar to the RF models. The RF models, on the other hand, are more robust to the 

interference from unfavorable features because each tree in the forest can choose to 

give low weights to the less contributed features during training. 

Classic PMV models in Fig. 14 have the lowest predictive accuracy in these 3-class 

classification problems from winter to autumn (pink, 46% to 62%) when compared to 



NBselect and RF models (62% to 88%). This poor performance in practice has also been 

frequently criticized in thermal comfort studies as being sometimes equivalent to 

random “guessing”, such as around 50% accuracy in binary classification [98], 34% 

accuracy in seven-class classification [30], and 6% Cohen’s kappa coefficient in 3-class 

classification [77]. The precision of the PMV models in this study is also very low in 

the spring, summer, and autumn, as the PMV index is population-based and this study 

only includes 12 surveyed subjects, resulting in bias due to individual sensitivity. 

However, the recall of PMV in winter, spring, and autumn shows superior results, which 

may lead to the final F1-score competitive (40% to 47%) to the NBselect and RF models 

(40% to 45%). This low precision and high recall prediction will suffer from incorrect 

label returns but will benefit from a high chance of detecting all actual positives, namely 

at the cost of introducing irrelevant results to avoid missing relevant results. Therefore, 

the PMV index could have many undiscovered potentials when false negatives are 

critical and false positives are less important. For example, in infant care [99] or hospital 

settings [100], where missing positive detections of thermal comfort can have serious 

consequences, the PMV index could be used as a supplement to ensure a higher level 

of recall rate for final decision making.  

 

Fig. 14 Evaluation metrics of the NB, RF, and PMV models using all features and 

selected features 

Fig. 15 depicts the training speed of the NB, RF, and PMV models in seconds on a log 



scale. The RF models require the longest time to train, ranging from 3.4 to 5.7 minutes. 

This may be due to the search grid method used to find the best hyperparameters. On 

the contrary, the NB models only take 0.04 to 0.06 seconds to train, resulting in a nearly 

real-time response. This is because NB models are straightforward and based on the 

mathematically well-grounded Bayes theorem with few hyperparameters to tune. The 

classic PMV index, which embeds several iterations and heat balance equations to 

calculate intermediate variables (such as determining clothing surface temperature), 

presents calculation times ranging from 0.6 to 1.2 seconds. After reducing feature sums 

from the original NB and RF training processes, the speeds of training NBselect and 

RFselect models (columns 4 and 2 in Fig. 15) are slightly slower than training NBall and 

RFall models (columns 3 and 1 in Fig. 15). 

 

Fig. 15 Model training speed of NB, RF, and PMV models with log scale in y-axis 

(Results obtained using a laptop equipped with an Intel i7-8750H CPU, 2.20GHz) 

3.3 Performance of the classic adaptive model in spring and autumn 

The ASHRAE 55-2020 [8] standard suggests using a graphic method (adaptive model) 

to evaluate thermal comfort in occupant-controlled naturally conditioned spaces with 



no mechanical cooling or heating system operations with the valid prevailing mean 

outdoor temperature ranging from 10°C to 33.5°C. This graphic-based adaptive model’s 

x-axis was changed from monthly mean outdoor air temperature to prevailing mean 

outdoor air temperature in the 2013 version of ASHRAE 55, while monthly mean 

outdoor air temperature is still allowed when prevailing mean outdoor air temperature 

is unavailable. The study in this paper was carried out in the hot summer and cold winter 

(HSCW) zone in Chongqing, China, where the climate is moderate in spring and 

autumn under high NV potentials. Therefore, Fig. 16 depicts the relationship between 

the indoor operate temperature and the monthly mean outdoor air temperature during 

the transition seasons of spring and autumn. Due to the high cost of collecting Tr and 

the lack of obvious radiance sources discovered during the investigation, Tr was 

assumed to be equal to Ta, resulting in the operative temperature of the adaptive model 

being the same as Ta (To = (Ta + Tr)/2 in ASHRAE 55 [8]). 

 

Fig. 16 Indoor temperature plotted against the 80% and 90% acceptability limits in 

ASHRAE55 the monthly means were used to interpolate the relationships in the 

adaptive model, as suggested by ASHRAE 55-2020 section 5.4.2.1.3 [8].) 

In Fig. 16, spring and autumn seasons clearly show some cooling and heating demands 



(× mark), as the values of outdoor air temperature in spring (blue background) are 

generally higher than the values in autumn (red background). However, a few 

overheating and overcooling risks emerge at the top left and bottom right when the AC 

was turned on (× mark) and the indoor temperature has been raised or decreased outside 

of the comfort zones. Some votes in the bottom left area indicate that people are more 

tolerant of cold thermal environments in offices (○ mark in the green background) and 

chose not to turn on the AC even when the conditions exceeded the ASHRAE 55 limits. 

To better quantify the predictive performance of the adaptive model in transition 

seasons, Fig. 17 displays the evaluation metrics of the adaptive models, PMV, and the 

machine learning algorithms under selected features when the AC was turned off, in 

accordance with the ASHRAE 55 stipulation that no cooling or heating systems should 

be in operation when referring to the adaptive model. The NB and RF models (green 

colors) have the best overall performance, while the PMV (pink) still presents low 

accuracy/precision but a high recall rate. The adaptive models (blue colors) show 

relatively high accuracy/precision but low recall, which is the opposite of the PMV 

trend. The balanced metrics F1-score of the adaptive model is also lower (32% to 37%) 

than other models (41% to 46%).  

 

Fig. 17 Evaluation metrics of NB, RF, PMV, and adaptive models in spring and 

autumn when the AC was turned off 

3.4 Adaptive behaviors in winter and summer  

As discussed in the introduction, while machine learning models have proven effective 



in predicting thermal comfort in MM buildings, their inherent lack of interpretability 

raises concerns regarding the understanding of the underlying relationships between 

input variables and predictions. In order to address this interpretability aspect, the 

relationships between various input variables through statistical analysis are explored 

in this section. The training process of the NB model demonstrates that outdoor 

conditions and several personal behavioral variables during the winter and summer 

improve the overall predictive performance of machine learning algorithms. To better 

illustrate their specific impacts, the features “drink water” in winter and “window status” 

in summer were chosen for statistical analysis using the Mann-Whitney test when the 

AC was turned on, as both features contributed positively to the model training process. 

3.4.1 Drinking cold and hot water in winter 

Fig. 18 displays the results of the Mann-Whitney test on thermal preference in four 

seasons. Within one season, the significance levels of preference are all significant 

(from p<=0.01 to p<=0.0001), with one exception of warmer and cooler preferences in 

winter (ns), namely indoor environments of warmer preference and cooler preference 

in winter are quite similar but people present two opposite thermal states. In Fig. 19, 

the Mann-Whitney test on adaptive behaviors from winter data reveals that occupants’ 

comfort temperature (green color, no change) when drinking cold water (room 

temperature water) is significantly higher (p<=0.0001) than when not drinking cold 

water. However, when drinking hot water, the comfort temperature is significantly 

lower p<=0.001 than when not drinking hot water. Therefore, the habit or adaptive 

behaviors of drinking hot water may contribute to lower comfort temperatures when 

compared to drinking cold water, which is beneficial for saving HVAC energy during 

the winter. 



 

Fig. 18 Mann-Whitney test of thermal preference in four seasons (****: p <= 0.0001; 

***: 0.0001 < p <= 0.001; **: 0.001 < p <= 0.01; *: 0.01 < p <= 0.05; ns: 0.05 < p <= 

1) 

 

Fig. 19 Mann-Whitney test of drinking cold and hot water in winter 

3.4.2 Windows status in summer 

The Mann-Whitney test results on window status in Fig. 20 show that the differences 

in indoor air temperatures between prefer warmer (red color) and prefer cooler (blue 

color) during the windows “totally open” period are not significant (ns), whereas the 

results are all significant (p<=0.0001) for three non “totally open” periods. The 



differences in comfort temperatures between period “totally open” and the other three 

periods are increasing: from not significant (ns) on period “half open”, to 0.01 

significant level (p<=0.01) on period “slightly open”, and finally to 0.0001 significant 

level (p<=0.0001) on period “closed”. Meanwhile, the general values of comfort 

temperatures (green colors) are reduced while the windows are closed more thoroughly. 

 

Fig. 20 Mann-Whitney test of windows status in summer 

To better illustrate how windows behaviors influence indoor conditions, Fig. 21 plots 

the linear regressions of outdoor and indoor air temperatures binned at one-degree 

intervals at four window states. As the windows are closed more tightly, the overall 

indoor temperature drops. Furthermore, as long as the windows are not completely 

closed (periods “slightly open”, “half open”, and “totally open”), the indoor thermal 

environments change more obviously with outdoor temperatures, with linear gradients 

ranging from 0.08 to 0.12 (blue, orange, and green colors). When the windows are 

closed, the indoor conditions remain much more stable, with a linear gradient of 0.02 

(red color).  



 

Fig. 21 Linear regressions of windows status in summer 

3.5 Impact of outdoor air velocity on adaptive behaviors and thermal comfort 

We also extracted outdoor wind speed data from the meteorological station in 

Chongqing and analyzed its influence on adaptive behavior and thermal comfort in 

mixed-mode buildings. Fig. 22 illustrates the distribution of wind force levels over 365 

days, with force levels 1 and 2 comprising the majority, force level 3 being less common, 

and force levels 0 and 4 being even rarer. Fig. 23 displays the proportion of different 

degrees of windows opening under various wind force levels. As wind force levels 

increase, the proportion of “Open” and “Half open” significantly rises, while the 

proportion of “Slightly open” and “Closed” decreases. This suggests that occupants in 

mixed-mode buildings are more inclined to ventilate indoor spaces as outdoor wind 

speed increases, enhancing their own comfort. 

Fig. 24 illustrates the distribution of indoor comfort air temperatures when subjects 

voted for "No change" under different wind force levels. For wind force levels 0-2, 

there is minimal difference in indoor comfort temperatures across various windows 

opening degrees. However, at wind force level 3, the indoor temperature when windows 



are closed is notably higher than when they are open, indicating that in such conditions, 

opening windows significantly lowers indoor comfort temperatures. Considering the 

current lack of specific and rigid recommendations for outdoor wind speed in thermal 

comfort standards, we suggest that future research could dive deeper into this aspect to 

supplement and enrich the comprehensiveness of existing thermal comfort knowledge. 

 

Fig. 22 Distribution of outdoor wind force levels during the one-year experiment 

 

Fig. 23 Proportion of windows opening degrees under different wind force levels 



 

Fig. 24 Distribution of indoor comfort air temperatures under preference vote “No 

change” 

 

4. Discussion 

4.1 Predictive performance of machine learning algorithms and classic thermal 

comfort models 

As many thermal comfort studies have already shown [6][49][69], machine learning 

models (NB and RF) generally outperform traditional thermal comfort models (PMV 

and adaptive) in terms of accuracy (Figs. 14 and 17). However, this paper compared 

three other evaluation metrics: precision, recall, and their combined effects F1-score. It 

was found that the PMV index shows highest predictive recalls in winter, spring, and 

autumn even beyond well-tuned RF models that further makes its F1-score comparative 

to machine learning algorithms, with only one exception from summer case in Fig. 14. 

The unexpectedly high recalls observed in the PMV index can be attributed to several 

factors: 1) Conservative predictions: the PMV index tends to make conservative 

predictions by prioritizing the detection of actual true labels (preferences) even at the 

expense of potentially predicting some wrong labels (low precisions), which may lead 

to higher recall rates as the model turns to minimize false negatives (missed positive 

labels); 2) Sensitive to actual votes: the PMV index may be more sensitive to 

variations in actual thermal states experienced by subjects, capturing a wider range of 



thermal preferences or discomfort levels across different seasons, which could 

contribute to its ability to detect a larger proportion of actual true labels, resulting in 

higher recall rates; 3) Inherent model characteristics: the PMV index is well-known 

for its solid theoretical deduction process, which may inherently possess certain 

characteristics that facilitate higher recall rates, aiming to capture a broad spectrum of 

thermal states experienced by subjects; 4) Contextual factors: the specific 

environmental conditions, occupants’ adaptive behaviors, and building characteristics 

together may together influence the performance of the PMV index, which means that 

other study may or may not find PMV with high recall.  

Overall, the unexpected high recalls observed in the PMV index across different 

seasons highlight its ability to effectively capture a substantial portion of actual thermal 

preferences or discomfort levels among subjects. However, it's essential to 

acknowledge the potential limitations of the PMV index, such as its lower precision and 

the risk of predicting wrong labels, especially in situations where false positives are 

costly. Consequently, combining the PMV index with customized machine learning 

approaches can offer a more comprehensive evaluation of occupants' real thermal states, 

leveraging the strengths of both traditional thermal comfort models and advanced 

machine learning techniques. 

Although random forest models generally achieve optimal performance in most 

scenarios, it is important to note that they also have inherent limitations that should be 

considered in practical applications [58]: 1) Interpretability: its structure is typically 

complex, consisting of numerous sub-decision trees, which can be challenging to 

interpret directly compared to a single decision tree or linear regression; 2) Potential 

overfitting: when it becomes overly complex or when insufficient parameter tuning 

techniques are employed during model training, the model turns to capture noise or 

random fluctuations in the training data rather than the underlying patterns or 

relationships; 3) High computational resources: its computational demands and 

memory requirements can become challenging as data volume or dimension increases, 

especially when resources are limited. 



Adaptive models in ASHRAE-55 provide acceptability limits of 80% and 90% comfort 

zones indicated by graphic methods. The 80% limits have a wider range, which means 

that as the indoor temperature range extends, fewer people are satisfied. When 

predicting thermal preferences with 80% and 90% limits, as shown in Fig. 17, the 80% 

limits have higher accuracy and precision but lower recall and F1-score. From an 

accuracy perspective, the boundaries of 80% limits are more reasonable, but for picking 

more actual positives, 90% limits could have better performance. 

4.2 Generalization of machine learning algorithms 

The ability to generalize results from training samples to unseen data is widely 

recognized as an important capability of any model. However, the findings of a meta-

analysis [101] that gathered models from several scientific literatures and cross-

validated their performance on various public datasets show that one of the most modest 

models performs the best on all other datasets, while one of the most robust models 

performs nearly the worst. For the machine learning algorithm, even though it has many 

techniques to avoid overfitting [102], its data-driven nature faces the lack of systematic 

modeling procedures, physical fundamentals, and interactions with real-world 

scenarios [6], thus creating barriers to generalization.  

In this study, the NB models were trained individually using data specific to each season. 

However, to testify their generalization during the prediction phase, the discussion 

encompasses the scenario where each model is utilized to predict data for all four 

seasons (spring, summer, autumn, and winter). Table 6 shows that the winter NBdefault 

model has 62% accuracy and 40% F1-score on winter data but only 12% accuracy and 

9% F1-score on spring data. What’s more, the models trained from spring, summer, and 

autumn data all achieve highest accuracy on spring data (81%, 75%, and 78%). This 

could be caused by the imbalanced data distribution in spring data that over 82% vote 

are “no change”.  

Imbalances in the dataset can lead to biased predictions, particularly affecting minority 

classes and overall model performance metrics. As discussed before, the trained Naive 



Bayes models exhibited varying degrees of performance across seasons, with notable 

disparities observed in predictive accuracy and F1-scores when applied to different 

seasons. For instance, while the winter NBdefault model demonstrated relatively high 

accuracy and F1-score on winter data, its performance significantly decreased when 

predicting spring data. This disparity in performance across seasons highlights the 

impact of imbalanced data distribution, particularly evident in spring where over 82% 

of votes indicated "no change." Consequently, solely relying on accuracy as an 

evaluation metric may incentivize machine learning algorithms to prioritize the 

majority class, potentially compromising the model's ability to generalize. By 

incorporating additional metrics such as precision, recall, and F1-score, we provide a 

more comprehensive assessment of model performance, mitigating the influence of 

data imbalance and ensuring a more robust evaluation framework.  

We have chosen to disclose this issue and trained another kind of advanced machine 

learning algorithm for performance compensation, “Random Forest”, which is known 

to be more robust to imbalanced data. In addition to model training process, resampling 

techniques, such as oversampling or undersampling, can partially address the issue of 

data imbalance. However, it's crucial to recognize that these techniques may introduce 

the problem of overfitting or underfitting [103], exacerbating the imbalance or reducing 

the representativeness of the data, respectively. Therefore, careful consideration of the 

trade-offs associated with resampling techniques is necessary to effectively manage the 

challenges posed by imbalanced data. 

One of the central problems in machine learning is to identify relevant information 

subset or feature-selection for making accurate predictions. Fig. 14 depicts that when 

all features are used for NB training, the predictive accuracies in winter and summer 

(34% and 39%) are even lower than PMV accuracies (46% and 62%), with only half 

the accuracies of using selected features for NB training (63% and 73%). The precision 

of the RF model in spring drops from 72% to 57% when all features are used without 

feature-selection. These findings emphasize the importance of including the appropriate 

variables in the training process of machine learning algorithms.  



Another important consideration during the generalization is the response time of 

model prediction. Fig. 15 shows that the RF models will take more than three minutes 

to train and establish, whereas the NB models and the PMV index only take around one 

second. These time differences are tolerable in situations where there will be no serious 

consequences, such as young adults working in offices who feel slightly cool or warm. 

However, some delays in predicting thermal state can result in life-threatening 

conditions, such as hypothermia and hyperthermia to the elderly who live alone at home 

[72]. Unfortunately, the classic PMV index or adaptive model are population-based that 

often perform less well on individuals [6]. The machine learning algorithms thus can 

provide new opportunities from adding specific features to the model establishment 

with improved predictive power and acceptable training speed.  

4.3 Marked features in MM buildings 

4.3.1 Classic thermal comfort models for MM buildings 

Generally, the PMV index and graphic-based adaptive model are recommended for 

evaluating thermal environments in HVAC and NV buildings in current international 

and national thermal comfort standards [7] [8] [9] [10] [11]. This is because people in 

HVAC buildings are assumed to rarely adapt themselves and have few opportunities to 

control their own thermal environments, whereas people in NV buildings have no 

heating or cooling devices to operate. People in the study, however, actively adapted 

themselves during heating and cooling periods in winter and summer by drinking water 

and opening windows. This creates challenges when applying the PMV index directly 

to the HVAC mode of MM buildings.  

On the other hand, people in this study during spring and autumn chose to turn on/off 

the AC whenever they felt thermally uncomfortable. Fig. 16 demonstrates that some 

data points within the ASHRAE 55 adaptive models’ 80%/90% comfort zones were 

under AC operation, implying that the MM buildings may not provide acceptable 

thermal environments simply relying on the natural ventilation in Chongqing’s spring 

and autumn. Furthermore, a significant proportion of comfort points in cooler 



environments were identified as uncomfortable (green background) by ASHRAE 55 

adaptive models, and a few overheating (red background) and overcooling (blue 

background) risks emerged during the autumn and spring, respectively. The data in this 

paper proves that this adaptation appears in Chongqing and office buildings as well.  

4.3.2 Water drinking 

Several studies have already shown that people will actively consume hot/cold water to 

actively adapt to thermal environments [22][104]. This study further discovered that 

during the heating season, occupants’ comfort temperatures were significantly higher if 

cold water was consumed (p<=0.0001), or lower if hot water was consumed (p<=0.001), 

compared to no drinking adaptations (Fig. 19). From the energy perspective, drinking 

cold water here will be unfavourable because higher comfort temperatures may result 

in higher heating demands from HVAC systems. Our investigated offices are all 

equipped with water dispensers that can conveniently provide cold or hot liquids, 

allowing occupants to choose according to their own preferences. Yu et al. [105] 

conducted field studies on residents’ thermal comfort in Tibet, China, where 

temperatures and humidity are extremely low, with annual average air temperature 

ranging from 5.93℃ to 9℃ in four investigated cities. They discovered that people 

there have unique ways of protecting themselves from the cold, such as frequently using 

stoves in kitchens and drinking hot butter-sweet tea. These findings highlight the fact 

that the adaptive opportunities provided by buildings, as well as people’s 

customs/habits, will result in varying HVAC energy consumption outcomes. 

4.3.3 Windows opening 

Previous publications already indicated a high frequency of open windows in non-

heating/cooling periods [47]. This study further discovers that in MM buildings, the 

practice of windows openings occurred extensively (over 80% of the time) even during 

heating and cooling seasons. These behaviors could lead to increased air change rate 

and heat transfer through building facades, causing indoor environments to 

significantly fluctuate with outdoor conditions (Fig. 21), resulting in extra HVAC 



energy consumption. However, as the windows are opened wider, occupants’ comfort 

temperatures will rise significantly (Fig. 20). On the other hand, opening windows can 

provide people with more enjoyable views and engagements with outdoor nature, as 

well as adequate fresh air and indoor air movements. Several ASHRAE-sponsored field 

studies [106] (6148 responses from 53 buildings) discovered that when the thermal 

sensation range was -0.7 to 1.5, larger percentages of people (47% to 84%) preferred 

more air movements, while smaller percentages (3% to 7%) preferred less. Therefore, 

cooling or heating thermal environments with similar characteristics from NV can not 

only improve occupants’ subjective satisfaction but also save the required energy of 

HVAC systems by raising HVAC setpoints higher during cooling seasons. To validate 

this, Chen et al. [107] proposed a CFIAC (Ceiling-fan-integrated air-conditioning) 

framework offering non-uniform distributions of indoor air-speed and temperature 

capable of compensating for 1.2 to 1.5 PMV scale units in the 26℃ to 28℃ temperature 

range. 

To address the challenges of optimizing energy efficiency during summer months when 

occupants tend to open windows with the air conditioner on, the following potential 

solutions and recommendations are proposed: 

· Implement smart windows technology: install smart windows equipped with 

sensors and actuators that automatically adjust opacity or ventilation based on 

outdoor conditions and occupant preferences. 

· Optimize the ventilation system: one reason for users opening windows is to 

improve indoor air quality. Therefore, with the installation or update of mechanical 

systems that provide adequate fresh air, the need for window opening behavior may 

be significantly reduced. 

· Enhance occupants’ awareness of energy conservation: provide occupants with 

information and guidelines on energy-efficient behaviors, including the appropriate 

use of windows, thermostats, and HVAC systems; encourage occupants to utilize 

natural ventilation during cooler times of the day and minimize reliance on air 



conditioning. 

4.4 Limitation and further work 

Although we tried to comprehensively evaluate both classic thermal comfort models 

and machine learning algorithms for evaluating adaptive behaviors and predicting 

thermal comfort in MM buildings, some limitations and future research 

recommendations still remain: 

1. It’s important to recognize that our study sample primarily consisted of young and 

middle-aged adults working in office settings. Therefore, the generalizability of our 

findings to other demographic groups, such as elderly individuals or individuals in 

non-office environments, may be limited. Future research should aim to include a 

more diverse range of participants to better understand how different demographic 

groups adapt to microclimate modifications in various settings. 

2. This paper focused specifically on the climate conditions and building practices 

prevalent in Chongqing, which exhibit distinct seasonal demands for cooling in 

summer and heating in winter. While the insights gained from our research are 

valuable for this specific context, caution should be applied when extrapolating these 

findings to regions with different climate patterns and building practices. It is 

recommended that future studies consider conducting similar investigations in 

different geographical locations with varying climate conditions to assess the 

transferability of our models and observations. It is important to note that regions 

with diverse climate patterns may have unique thermal comfort requirements, and 

thus the applicability of our conclusions may vary. 

3. The grid search method employed in hyperparameter tuning process of machine 

learning models can be computationally intensive and may not guarantee finding the 

absolute best hyperparameter combinations. Due to the vast search space and time 

constraints, it is possible that alternative hyperparameter configurations with 

potentially superior performance were not explored. 

4. This study highlights the significance of both the number of input features and the 



identification of dominant factors in achieving accurate models for understanding 

adaptive thermal comfort phenomena in MM buildings. However, the widespread 

use of smart devices in the future may enable data collection at any time rather than 

just the moment of a questionnaire, posing challenges in intuitively understanding 

the data and developing robust models for practice. 

5. Future studies could address the following research questions to advance our 

understanding of thermal comfort in mixed-mode buildings: 

· How do specific adaptive behaviors, such as adjusting air conditioning settings or 

opening windows, interact with each other in response to varying climatic 

conditions? 

· What are the energy implications of these adaptive behaviors in terms of heating 

and cooling demand, and how do they contribute to overall building energy 

consumption? 

· Are there differences in the effectiveness of adaptive strategies between different 

geographical regions with distinct climate patterns? 

· How do occupant preferences and habits influence their adaptive behaviors, and 

how can building design and operation be optimized to align with these preferences 

while minimizing energy consumption? 

· What are the trade-offs between occupant comfort and energy efficiency in mix-

mode buildings, and how can these be balanced through design interventions or 

operational strategies? 

 

5. Conclusions 

The mixed mode of building is thought to be capable of positively extending occupants’ 

comfort temperature to a wider range compared to fully air-conditioned buildings. Our 

study employs machine learning algorithms and classic thermal comfort models to 

investigate thermal preference during a one-year field study in Chongqing, China. The 



novelty of this research lies in integrating adaptive behaviors, which are difficult to 

include and quantify in conventional thermal comfort models, into machine learning 

algorithms to achieve a more comprehensive thermal comfort assessment and analysis 

of energy-related adaptive behaviors. This contributes to providing potential criteria 

and recommendations for identifying energy-inefficient behaviors in mixed-mode 

buildings, thereby enhancing building energy efficiency related to occupants’ 

adaptations, and highlighting the potential trade-offs associated with building operation 

modes. The following findings are noteworthy:  

(1) The spring, summer, and autumn naive bayes models all achieve best accuracy on 

spring data, with 82% voting “no change”. However, relying solely on accuracy as 

the evaluation method can result in misleading results because it can be heavily 

influenced by the data distribution pattern. The high accuracy of machine learning 

models could be attributed to “cheating” on imbalanced data sources by giving 

more weights to majority votes instead of creating useful knowledge. To avoid 

falling into the trap of “accuracy cheating” during model training and evaluations, 

it is essential to include additional evaluation indices such as precision, recall, and 

F1-score, which will provide a more comprehensive understanding of model 

performance. 

(2) In general, random forest models outperform naive bayes and classic thermal 

comfort models in terms of accuracy, precision, and F1-score. They are also 

resistant to irrelevant feature disruption, but at the cost of longer training times. 

However, the naive bayes models can provide training speed in real-time and are 

better suited for scenarios with time constraints. The classic PMV index with a 

transparent explanation between the human body and the surrounding physical 

environment has limited accuracies in most cases but unexpectedly high recalls, 

indicating that the PMV index has the potential to be a useful supplement for a more 

comprehensive evaluation. 



(3) The concept of mixed-mode buildings can embody both positive and negative 

attributes of naturally ventilated and fully air-conditioned buildings. Our study 

discovers that occupants in mixed-mode buildings adopt energy-inefficient 

behaviors by using air-conditioning in moderate spring and autumn, with winter 

occupants requiring higher temperatures due to non-hot drinking habits, and 

summer occupants constantly opening windows while using air conditioning. 

Therefore, the operation of mixed-mode buildings should aim to minimize the usage 

of mechanical devices when outdoor conditions are moderate, while resorting to 

normative heating or cooling operations during adverse weather conditions. This 

will maximize the advantages of mixed-mode buildings by leveraging the strengths 

of naturally ventilated and fully air-conditioned buildings, rather than amplifying 

their shortcomings. 
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