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Abstract

Classification rule learning produces expressive rules so that a human user can

easily interpret the rationale behind the predictions of the generated model. Con-

structing a very accurate classification model may lead to overfitting, a common

problem in data mining that causes a leaner to perform badly on test instances.

Ensemble learning is a common way to address the problem of overfitting while

improving the learner’s accuracy. The idea of ensemble classification is to con-

struct various predictive base learners, and then, combine their predictions. This

often goes at the expense of explainability of the predictive model learned, as the

analyst is presented with many different classification models. Therefore, predic-

tive learning models are required to be not only reliable and accurate, but also

comprehensible to avoid the risk of irreversible misclassification, especially in crit-

ical applications such as medical diagnoses, financial analysis, terrorism detection,

etc. The level of expressiveness of the individual base learners is one of the most

important factors for improving the whole ensemble’s explainablility.

Taking this into account, this research focuses on developing a predictive en-

semble learner that maintains the expressive power of rule learning models while

benefiting from the high predictive performance of ensemble learning. Measur-

ing the expressiveness of a rule-based learner often depends on the complexity

of its rule set. A rule set is considered more expressive when it produces fewer

number of rules with less complex terms per rule. Also, rule learning approaches

can abstain from classification when the algorithm is uncertain about a prediction,

which contributes to increased explainablility in the model by ensuring the trust-

worthiness of the induced rule set. Abstaining is needed to prevent costly false

classification. Nevertheless, classifying instances correctly is more desired than

abstaining from it in most applications. Therefore, this thesis aims to answer the

following raised research question: ‘is it possible to develop a predictive ensemble
model, which exhibits a similar expressiveness as the predictive base learner while
improving its accuracy and lowering its abstaining rate?’.

To achieve that, this thesis makes a number of contributions towards rule

induction algorithms in both single-based and ensemble-based systems. Three

novel single predictive rule-based algorithms are developed, termed G-Prism-FB,

G-Prism-DB, and G-Rules-IQR, where ‘G’ stands for Gaussian distribution. These

algorithms are highly expressive on their own, that can be used to serve as the

base learners of the ensemble. The results of empirical evaluation show that these



algorithms produce expressive and more computationally efficient numeric rule-

terms compared with frequent discrete intervals. G-Rules-IQR learner, in particu-

lar, has shown to be superior in terms of expressiveness and accuracy compared

with other rule-based learners. Therefore, it is utilised in this research as a base

learning algorithm to induced multiple base classifiers for the ensemble systems.

Furthermore, a novel framework for explainable rule-based ensemble algo-

rithms called ReG-Rules (Ranked ensemble G-Rules) is presented. ReG-Rules in-

corporates three novel methods. First, a new ranking-based approach to rank the

base classifiers, and then a selection method to find the best performing models.

Second, a new rules merging algorithm to reduce the number of rules induced by

each selected model without loss of rule coverage. Third, to reduce the overall

number of rules presented to human analyst during the prediction stage, a deci-

sion committee of rules is built per classification attempt using a novel weighted

voting combination method.

Additionally, an extension of ReG-Rules learner termed CRC (Consolidated

Rules Construction) is developed. CRC enhances the explainablility of ReG-Rules

by generating rules that can be consolidated into a single global rule set and used

directly in predictions without the need for a classification committee. The exper-

imental studies show that comparred with the standalone classifier (G-Rues-IQR),

ReG-Rules and CRC, are more accurate on all cases. Also, the ReG-Rules and

CRC abstaining rates were almost zero on all cases, while the abstaining rate of

G-Rules-IQR learner was above 10% in several cases.
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Chapter 1

Introduction

1.1 Introduction to Predictive Ensemble Learning

In machine learning and data mining, classification is a popular supervised learn-

ing approach. The process aims to derive a model that describes the hidden pat-

terns labelled by target classes (concepts) in the training data and then uses this

learned model (classifier) to accurately predict the label of a new instance in the

testing data [1, 2]. Each instance is represented by a number of input attributes,
also known as features. Training and testing stages are also known as learning and

prediction respectively.

Predictive learning models are required to be accurate and also comprehen-

sible to reduce the risk of irreversible wrong classification. This is especially the

case in many critical applications, such as medical diagnoses, financial analysis,

credit risk evaluation, terrorism detection, etc. where the predictive model should

explain the reason for classification to the decision makers, and not only produce

predictions. On the other hand, to build an accurate and efficient model, it is

important to avoid the problems of overfitting and underfitting.

‘Overfitting’, which is a common problem in learning algorithms happens when

a model is over-optimised for the training data. This is often caused by noise or

outliers in the dataset and it is likely to result in a learner with high variance that

achieves a very good fit to the training data, but performs badly on the test data.

Variance is the variability of model prediction for a given class label. Overfitting

is also, a major cause of constructing a complex predictive learner to the human

analyst, which may considerably reduce the comprehensibility of the learner [1].

In terms of ‘underfitting’ problem, it happens when a model is over-simplified

and pays very little attention to the training data. This leads to a learner with high

bias that often performs badly on training and test data. Bias is the difference

between the average prediction of a model and the correct value which the model

20
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are trying to predict [1].

In most predictive learning algorithms, the standard strategy to avoid overfit-

ting is simplifying/generalising the model, i.e. sacrificing accuracy on the training

set for accuracy of classifying unseen data. This trade-off in complexity is a trade-

off between bias and variance with the aim of finding a good balance without

overfitting and undefitting. However, there is no ideal learning algorithm that

can successfully use this trade-off strategy on all types of datasets [3]. Therefore,

the alternative common approach which has initially been developed in order to

reduce overfitting and underfitting, while improving the predictive accuracy, is

ensemble learning [4]. This can be explained by the main concept and philoso-

phy of ensemble classification which is based on learning not just one classifier,

but various base classifiers induced from diverse samples of the training data [5].

Then, combining the predictions of several classifiers can efficiently remove the

high variance or high bias that may exist in predictions and perform better than

individual models that may overfit/underfit the training data [6]. The prediction

is usually derived through a voting strategy, i.e. majority, weighted majority vot-

ing, etc. Chapter 2 explains why ensembles work better, on average, than single

base learners used by the ensemble.

However, the use of ensemble approaches defies the purpose of explainability,

as the human is presented with a large range of entire classification models, such

as multiple decision trees. This would challenge the ability of decision makers to

understand how a predictive ensemble system makes its decisions as the human

analyst would have to examine many decision models to gain insights about the

causality of the prediction. Therefore, this thesis is concerned with developing

and implementing a predictive ensemble learning model that is interpretable by

humans while retaining key advantages of ensembles learners.

1.2 Research Motivations

Despite that the predictive accuracy is considered to be the key evaluation crite-

rion in most classification methods, the importance of comprehensible learning

models is considerably increasing in many application domains, such as medicine

and banking [7]. In regard to the accuracy, the main concept of ensembles is

based on the idea that combining several individual learners would often generate

a learner with a higher predictive accuracy than its components [1, 3, 5, 8–10].

However, concerning expressiveness, most ensemble learners are hardly readable

by a human [2,3,7].

Therefore, this thesis is mainly motivated by the desire to develop a predictive

ensemble learner that can be both accurate and expressive at the same time. This
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will include the transformation of the proposed ensemble classification model into

a consolidated ensemble learner that can be more expressive while preserving the

predictive accuracy of the ensemble it was derived from.

Figure 1.1: Hierarchy of output expressiveness (source: adapted from [11])

Various machine learning algorithms exist to induce classification models that

can be used as base classifiers for a predictive ensemble learner. However, it was

of interest in this study to only investigate approaches that share the common goal

of producing models that are readable by humans. This means excluding all the

black box learning approaches such as Support Vector Machine (SVM), Kernel-

based learning, Artificial Neural Networks (ANN) and Deep Learning approach.

It also means not using the Tree-based models, which are not sufficiently expres-

sive as they tend to be complex once the tree grows to a certain size, and hence

they become increasingly difficult for humans to understand and maintain. Conse-

quently, the project focuses solely on modular Rule Induction approaches as they offer
a greater explainability about how they arrive at a particular prediction compared
with Decision Trees. They are much closer to the white box models than other

techniques, as illustrated in Figure 1.1. Rule-based predictive methods use a set of

IF-THEN rules for classification [1,3]. Each rule is an expression of the form:

IF condition(s) THEN conclusion

The left-hand-side (LHS) of a rule is known as precondition while the right-hand-

side (RHS) is the rule consequent. A verity of Rule Induction algorithms were
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investigated in this research. A review of them is provided in Chapter 2.

The terms explainable and expressive are similar, but there is a subtle semantic

difference how they are used in this thesis. The term explainability refers to clas-

sification models that explain the outcome of a predicted label to the analyst. The

less information is needed to explain the model, the higher the degree of explain-

ability. Similarly, the term expressive is used in this thesis in the context of single

rules. A rule is more expressive the more compact the information leading to a

prediction is encoded in the rule. The research presented in this thesis focuses on

the explainability aspect of ensemble classifiers by minimising the amount of rules

needed to derive a prediction. However, on a rule level also, the most expressive

types of rules are utilised.

1.3 Research Question, Hypothesis and Objectives

The aim of this thesis is to answer the following research question:

Is it possible to develop a predictive ensemble model, which exhibits

a similar expressiveness as the predictive base learner while

improving its accuracy and lowering its abstaining rate?

To answer the research question, this thesis focuses on a number of investigations,

experimental studies and empirical evaluations that involve discussing/testing the

following proposition/hypothesis:

We can develop a predictive ensemble learning system using an expressive
rule-based algorithm or similar white box approach as a base learners’
inducer, and this system will be more accurate than its components while
producing compact and human-readable rules.

The following research objectives would facilitate the testing of the aforemen-

tioned hypothesis, which may lead ultimately to the achievement of the research

aim:

Objective 1: To critically assess rule-based and ensembles predictive techniques

and their limitations.

Objective 2: To measure and compare the expressiveness of rule based models

and develop an appropriate rule-based predictive algorithm suitable

as base learner for an ensemble.
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Objective 3: To improve the quality of rule sets by developing rule merging tech-

niques for predictive rules and minimising loss of accuracy.

Objective 4: To develop an expressive ensemble learner footed upon the base

classifier developed in objective 2 and the rule merging techniques

in objective 3.

1.4 Research Methodology

This theoretical section focuses on reflecting the nature of this research and the

required methods to tackle the research area properly. It uses the ‘research onion’

(Figure 1.2) as a way of describing the research methodology. Briefly, according

to [12], the research onion consists of the following layers:

1. The main philosophy and paradigm - forms the philosophical stance of the

research. Amongst the two common paradigms that have been adopted in

this thesis (positivism and interpretivism), which will be briefly discussed in

the next section.

2. The logical approaches to theory development - can be implied by the research

philosophy on previous layer and usually includes: deduction and induc-

tion. The former approach is utilised in the current project. The differences

between them will be explained in the next section.

3. Methodological choice - this layer specifies the use of quantitative, qualitative

methods or combinations of both, which is the choice adopted in this work.

Further details are in Section 1.4.2.

4. Strategies - this layer includes: experiment, survey, quasi-experiment, case

study, ethnography, grounded theory, etc. This thesis uses experiment and

case study strategies to answer the research question. Section 1.4.2 and

Section 1.4.4 explain how these two strategies are utilised in this project.

5. Techniques and procedures - include data collection and data analysis. Section

1.4.3 determines the data sources used in this research.

1.4.1 Research Philosophy and Logical Approaches

The main goal of any research is generalising results that obtained from some

adopted strategies to the extent that they could be applied beyond the area under



25 1.4. Research Methodology

Figure 1.2: The research onion - red colour refers to the ways adopted in this thesis (source:
Adapted from Saunders et al. 2015)

investigation [13,14]. However, the system of ideas, beliefs and assumptions that

are utilised by a community of researchers to obtain knowledge from the world

differs significantly between communities depending on the origins and the char-

acteristics of each field. As can be seen in the research onion, layer 1 includes a

number of philosophies (paradigms). However the current section focuses on pos-

itivism and interpretativism because they are to some extent related to the strate-

gies adopted in the research presented in this thesis. For detailed descriptions of

all research paradigms, the reader is referred to [14].

The positivism paradigm is a methodological philosophy often involves the use

of present theory to develop hypotheses to be tested during the research process.

In this respect, any conclusion needs to be measured using trustworthy measure-

ments and statistics [12]. Often, positivism prefers to quantitative methods to

extract new knowledge from positive interpretation of results using experiments.

The interpretivism paradigm is a methodological philosophy focus primarily on

understanding of knowledge related to human subjective experience and social

sciences [14]. Consequently, according to this paradigm the research outcomes

may have more than one interpretation in contrast to the positivism paradigm

where the findings of the research focus on only one possible explanation [12].

To understand the knowledge, interpretivism rely on qualitative methods such as

case studies. Please note that both paradigms are utilised in this research.

Regarding the logical approaches to theory development (layer 2), two con-

trasting approaches are outlined here: deductive and inductive. The former moves

from general to specific, i.e. the research develops the hypothesis or hypotheses

upon a pre-existing theory, which is often developed from academic literature.

Then the research designs a strategy to test this theory. The deductive approach
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thus might be considered particularly suited to the quantitative methods. How-

ever, qualitative research methods can also be utilised under the deductive reason-

ing approaches. In contrast, inductive reasoning moves from specific to general,

i.e. the observations are the starting point for the researcher. Then as the data is

analysed, it may be found that it can be fit into an existing theory or even new

theories can be generated. Please note that this research follows the inductive

reasoning approach as it is based on analysing data and observations in order to

generate new theories (approaches).

1.4.2 Research Methods and Strategies

Considering layers 3 and 4 in Figure 1.2, the underlying hypothesis in machine

learning field is relatively close to the positivism philosophy (quantitative meth-

ods) and therefore, experimental studies are heavily relied on to verify or even fal-

sify the hypothesis on empirical data. Nevertheless, the interpretivism (qualitative

methods) is considered to be a common methodological philosophy in machine

learning research. There are also well-established methods, which are suitable

and specific to Computer Science discipline [15].

Roughly speaking, machine learning research is typically based on: (i) theoret-
ical approaches like logic, mathematics and algorithms. (ii) practical approaches
like implementations, systems, or combination of both. In computer science dis-

cipline, this involves implemented the machine learning algorithms as software

(written code) solutions in which their performance can be empirically evaluated

and compared to other solutions [16].

As mentioned in the previous section, this project is mainly under the positivist

paradigm as most of the methods adopted in this thesis to answer the research

question are quantitative (experiments strategies in particular). However, part of

the evaluation studies presented in chapter 5 are conducted under the interpre-

tivism paradigm in which a qualitative method was used in the form of case study

strategy.

To sum up, multi-methods strategy is employed in this research. The strategy

involves: (1) proposing novel algorithms from an existing mathematical concept

(theoretical method), (2) implementing the proposed algorithms using R statisti-

cal language (practical method), and (3) evaluating the algorithms using (i) quan-

titative methods for the most proposed algorithms (experimental studies) and (ii)

qualitative methods (case studies) for algorithms proposed in Chapter 5.
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1.4.3 Data Sources

Referring to layer 5 in Figure 1.2, the datasets used in this thesis are taken from

well-known Repositories like UCI ML [17] and KDD [18], which are widely used

datasets for benchmarking machine learning algorithms from several problem

domains with many different characteristics. The detailed descriptions of the

datasets that have been used in this thesis are provided in each experimental

study independently. Noticeably, all the datasets are chosen randomly and the

only condition being that they contain continuous attributes and involve classifi-

cation tasks.

1.4.4 Evaluation Procedures

The final and the most important stage in any machine learning project is the

evaluation process of the model. This is defined by what the problem scope and

what the research aim are. A suitable metric, or a set of metrics must be carefully

selected to provide the best assessment of how well a system meets the criteria of

the evaluation process. As aforementioned, the central focus in this project is to

produce correct predictions using predictive rules with the ability to be reviewed

and manually investigated by the decision maker. Taking this into account, the

concentration will be on maximising the expressive power of the system while

improving its predictive accuracy. The former will be assessed by how well the

model can generate rules that are fully comprehensible to a human, and the latter

will be measured by the quality and the accuracy of these rules. Therefore, all

the algorithms this project developed were quantitatively evaluated using several

experimental studies.

In addition, some of the methods proposed in this thesis were also qualita-

tively evaluated based on a number of case studies. To estimate the accuracy of

the classification models, two methods are adopted in this thesis. The first pro-

cedure is the ‘holdout’ where the given dataset is randomly partitioned into two

independent sets, a training set, which is used to construct the model and a test

set which is used to estimate the accuracy of the model [1]. The second procedure

is ‘Bagging’, which is a popular method introduced by [9], and used to improve

the stability of the model by partitioning the data several times with replacement.

Each sample is likely to have approximately 63.2% of the instances which can

be used to train a base model, while the remaining (about 36.8%) which called

out-of-bag (OOB) instances can be used to validate the base model performance.
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1.5 Contributions to Knowledge

This thesis makes a number of contributions towards rule induction algorithms

in both single-based and ensemble-based systems. The contributions can be sum-

marised as follows:

1. A novel classification rule induction approach, called G-Prism, which makes

use of Gauss Probability Density Distribution (GPDD) and z-score distribu-

tion to generate a new rule-term structure that improves classification per-

formance of the PRISM family of algorithms. The new approach produces

more expressive and computationally efficient numeric rule-terms compared

with converting continuous attributes into categorical ones in the form of fre-

quent discrete intervals. The first version of G-Prism was termed (G-Prism-

FB) and it has been introduced in [19], a paper published in the 36th SGAI

International Conference on Artificial Intelligence.

2. A novel classification rule induction approach, called G-Prism-DB, which is

a second version of G-Prism algorithm that enables it to expand the cover-

age of each numeric rule-term, and thus produces fewer rules which are less

prone to overfitting. The algorithm is based on a new dynamic rule-term

boundaries approach to improve the expressiveness of the rules induced.

The dynamic sized boundary can be defined by the user. The work has been

introduced in [20], a paper published in the 37th SGAI International Confer-

ence on Artificial Intelligence.

3. A novel predictive rule induction algorithm, called G-Rules-IQR, which in-

corporates two new methods in its construction:

• A new more efficient method in learning heuristics to induce numerical

rule-terms directly from continuous attributes based on a combination

of: GPDD function, quartiles, and Interquartile Range (IQR). The new

method enables producing more compact, accurate and expressive rules

using IQR boundaries instead of user defined boundaries.

• A new way to address the challenges in assuming normally distributed

attributes in the previous GPDD rule learning algorithms by reducing

the skewness rate of numerical attribute values from the normal distri-

bution. G-Rules-IQR algorithm incorporates a prior testing for normal-

ity for each attribute in the dataset before applying the approximate

normal transformation on the attribute’s values.

The work has been introduced in [21], a paper published in the 17th IEEE

International Conference on Machine Learning and Applications.
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4. A novel framework for ensemble rule-based system, called Ranked Ensemble

G-Rules (ReG-Rules) learner, which utilises G-Rules-IQR algorithm as a

learning algorithm for its base classifiers. This ensemble model provides an

approach to harvest the predictive power of an ensemble learner, while main-

taining several explainable aspects of rule-based predictive models. ReG-

Rules incorporates three novel methods in its construction:

• A new Ranking-based method to rank the base classifiers according to

a number of criteria, not only to their accuracies.

• A new local Rule Merging (RM) technique that can reduce the number

of rules induced within each individual base classifier without sacrific-

ing the overall predictive accuracy of the model. The approach can be

considered as a useful aid in improving the quality of the induced rules

and thus developing more expressive rule learners.

• A new combination technique called ‘ReG-Rules Committees’, which

makes use of a weighted voting strategy to decide the final ensemble

predictions. The method addresses the potential problem of reliability

when some base models are more reliable than others.

This work has been introduced in [22], a paper published in IEEE Access

Journal.

5. A significant extension of the ensemble ReG-Rules learner that can be more

expressive while benefiting from the high predictive performance of ensem-

ble learning compared with its stand-alone base classifiers. This system,

which is called ‘Consolidated Rules Construction (CRC)’ incorporates the

following novel method in its construction:

• A new rule consolidation approach, termed ‘CRC Consolidator’, which

can compress multiple classifiers’ rule sets into one global rule set that

can be used directly in predictions without the need to build a commit-

tee of rules for each new classification attempt.

6. All the aforementioned algorithms have been implemented and empirically

evaluated. All the source codes, which were written in the statistical pro-

gramming language R, are available in online repository at - https://github.

com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0 and are archived at

- https://doi.org/10.5281/zenodo.5557590 [23].

https://github.com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0
https://github.com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0
https://doi.org/10.5281/zenodo.5557590
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The publications that have been produced during this project are listed below:

• Almutairi, Manal, Frederic Stahl, Mathew Jennings, Thien Le, and Max

Bramer. "Towards Expressive Modular Rule Induction for Numerical At-

tributes." In International Conference on Innovative Techniques and Appli-

cations of Artificial Intelligence, pp. 229-235. Springer, Cham, 2016.

• Almutairi, Manal, Frederic Stahl, and Max Bramer. "Improving Modular

Classification Rule Induction with G-Prism using Dynamic Rule Term Bound-

aries." In International Conference on Innovative Techniques and Applica-

tions of Artificial Intelligence, pp. 115-128. Springer, Cham, 2017.

• Almutairi, Manal, Frederic Stahl, and Max Bramer. "A Rule-Based Classifier

with Accurate and Fast Rule Term Induction for Continuous Attributes." In

2018 17th IEEE International Conference on Machine Learning and Applica-

tions (ICMLA), pp. 413-420. IEEE, 2018.

• Almutairi, Manal, Frederic Stahl, and Max Bramer. "ReG-Rules: An Explain-

able Rule-Based Ensemble Learner for Classification." IEEE Access 9 (2021):

52015-52035.

1.6 Structure of the Thesis

This thesis is organised as follows:

Chapter 2. Introduces essential background of predictive data mining algorithms

and their limitations in the classification tasks for both paradigms: stand-alone and

ensembles. Classification rule induction has been thoroughly investigated and the

algorithms related to its two types: ‘divide and conquer’ and ‘separate and con-

quer’ have been described in depth and compared to each other with examples.

Several ensemble methods characteristics have been thoroughly explored in this

chapter. Also, the main quality criteria in the predictive ensemble learning evalu-

ation is discussed in this chapter.

Chapter 3. Discusses and analyses a number of limitations existing in separate

and conquer approaches, particularly in PRISM family of algorithms. The chapter

focuses on challenges in dealing with numeric attributes and thus it thoroughly

reviews a number of common (local and global) discretisation methods. The com-

putational issues with discretising continuous attributes using local cut-point cal-

culations in PRISM family of algorithms are investigated. The chapter introduces
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an alternative and more efficient technique to handle numeric values based on

Gaussian Probability Density Distribution (GPDD). The new technique has been

utilised to develop two new members in PRISM family of algorithms, namely, G-

Prism-FB and G-Prism-DB. The letter ‘G’ stands for Gaussian probability density

distribution, ‘FB’ refers to fixed size rule-term boundaries and ‘DB’ stands for dy-

namic size rule-term boundaries. These algorithms are empirically evaluated in

this chapter and compared with the original PRISM algorithm and against each

other.

Chapter 4. Highlights some limitations that exist in G-Prism algorithms, then

the solutions resulting in a new rule induction classifier called ‘G-Rules-IQR’ are

presented. The chapter also, illustrates the methods integrated in G-Rules-IQR

theoretically and empirically. The methods are a combination of GPDD technique,

Interquartile Range (IQR), and a transformation approach towards normally dis-

tributed data. For comparative purposes, this chapter implements different ver-

sions of the original PRISM with various well-known discretisation methods (bi-

nary splitting, ChiMerge and Caim). Also, the implementations of G-Rules-IQR

and G-Prism algorithms allowed to switch off the transformation to approximate

normal distribution. This will be followed by empirical evaluation in which multi-

ple comparisons between the aforementioned algorithms are conducted.

Chapter 5. Discusses and analyses a number of limitations related to stand-alone

learning systems, which emphasise the strength of utilising ensemble learning to

address such issues. Then, the development of a new explainable rule-based en-

semble learner, called ReG-Rules, with 5 components is presented. The chapter

first, identifies G-Rules-IQR as the suitable learning algorithm (inducer) for the

base classifiers induction of the proposed ensemble. Then, it illustrates the three

novel methods incorporated into ReG-Rules learner construction. (i) Ranking-

based method, which is used to rank the base models before selecting the top

ones. (ii) Local Rule Merging method, which represents a post-processing of the

induced rules to improve their quality locally and independently. (iii) Combination

method based on weighted voting strategy, which is utilised by ReG-Rules learner

to build committees of rules to decide its final predictions. Then, several experi-

mental studies are conducted to evaluate empirically and qualitatively ReG-Rules

and the aforementioned integrated methods.

Chapter 6. Demonstrates a number of improvements that can be made to a rule-

based ensemble system (such as ReG-Rules) to avoid some potential obstacles

related to expressiveness, computations and memory resources especially in the
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domain of large datasets. Then, solutions implemented resulting in developing

a significant extension of the ensemble ReG-Rules learner, which is called ‘Con-
solidated Rules Construction (CRC)’ system. This CRC can compress multiple base

classifiers’ rule sets into one global expressive rule set. The chapter describes the

5-stages construction of CRC, which have some similarities with ReG-Rules in the

first three components. However, in stage 4, a new rules consolidation method is

integrated in CRC to derive the global rule set that will be used directly in predic-

tions (stage 5). This is followed by an empirical evaluation that aims to evaluate

the performance of CRC.

Chapter 7. Concludes the thesis with a summary of the presented research. It

highlights the contributions to knowledge and the extent to which the project aims

and objectives have been met is examined. Also, the chapter lists the publications

that have been produced during the project and outlines some potential areas for

future research by which this work can be extended.

1.7 Summary

This chapter has discussed the ensemble learning strategy, which is often used to

improve the accuracy of the classification model. However, this often goes at the

expense of expressiveness and explainability of the predictive model learned. The

chapter emphasizes the need for an expressive method that can be integrated in

a predictive ensemble leaner without compromise made to its accuracy. It has

also described the need to develop an appropriate classification algorithm that

can be used to induce the suitable base learners of the ensemble. The chapter

also introduced the methodology adopted in this research including the evalua-

tion procedures used to measure the experimental studies. The contributions to

knowledge and publications accomplished during the project have been listed with

brief description. Finally, the structure of the thesis is outlined at the end of this

chapter.





Chapter 2

Background

This chapter introduces essential background of predictive data mining algorithms

and their limitations in the classification tasks for two paradigms: single-based

and ensembles. Classification rule induction and the algorithms related in its

two types: ‘divide and conquer’ and ‘separate and conquer’ are reviewed in more

depth. Also, the chapter explores several characteristics of ensemble methods, and

then describes a number of criteria for evaluating the predictive performance of

ensemble learning systems.

2.1 Introduction

As previously discussed in Chapter 1, instead of sacrificing accuracy on the training

set in order to avoid overfitting, utilising predictive ensemble learning approaches

can be an ideal way to reduce the problem of overfitting while improving the

accuracy of the model. This is the main advantage of using ensemble methods

according to several studies found in the literature such as [1,3,5,8–10,24,25].

However, the lack of interpretability is a major drawback in most ensemble

techniques especially that the importance of developing a interpretable predictive

learning model is not less than obtaining a very accurate one [2] in many critical

applications such as medical diagnoses, financial analysis, terrorism detection, etc.

In other words, the benefit to use most existing ensemble systems is a choice of a

black box model prioritizing accuracy.

The aim of this research is to develop a predictive learner that can be inter-

pretable by humans (expressive) while retaining the key advantage of ensembles,

which is the better accuracy.

34
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Among the set of objectives established in Chapter 1 that to be accomplished to

meet the research’s aim is the following:

“Critically assess predictive learning techniques of rule-based and ensemble
systems and their limitations.”

Accordingly, this chapter thoroughly reviews the literature around predictive learn-

ing systems, in which they can be broken down into two categories:

1. Single learning systems.

2. Ensemble learning systems.

With regards to (1), the chapter provides in Section 2.2 an overview of several

predictive data mining algorithms. This involves investigating their suitability to

be used as a single base learning algorithm (inducer) to produce multiple base

classifiers for the proposed ensemble systems. However, approaches to classifica-

tion rule induction will be surveyed in more depth because they are much closer

to the white box models than other techniques as previously discussed in Chapter

1 (see Figure 1.1). Rule induction strategies will be divided in Section 2.3 into two

categories: (a) ‘divide and conquer approaches’, 1 which can extract classification

rules form decision trees, (b) ‘separate and conquer approaches’, which can gen-

erate IF-THEN rules directly from training datasets. Each strategy is examined in

this chapter with more detailed descriptions of its popular algorithms. However,

the modular rule induction approaches that this project focuses on are based on

separate and conquer strategy. Therefore, the algorithms based on this strategy

will be reviewed in depth in Section 2.4.

Regarding (2), the ensemble learning system, the general concept and the phi-

losophy of this system are illustrated in Section 2.5. Also, the relevant literature

on categorising ensemble methods in classification tasks is comprehensibly dis-

cussed in Section 2.6. These characteristics of the ensemble methods include the

following four factors: inter-classifiers relationship (Section 2.6.1), diversity gen-

erator (Section 2.6.2), combining method (Section 2.6.3), and ensemble selection

(Section 2.6.4).

Furthermore, evaluating the performance of an ensemble is very important for

assessing the quality of the ensemble and regulating its parameters accordingly.

Several criteria such as computational complexities, interpretability of the result-

ing ensemble, scalability to large datasets, and robustness are reviewed in Section

2.7. Finally, a short summary will be provided in the last section (2.8).

1Divide and conquer approaches are also known as Top Down Induction of Decision Tree
(TDIDT) techniques and the two terms are used interchangeably in this thesis.
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Figure 2.1: Machine Learning Taxonomy, blue colour refers to the approaches related to the work
presented in this thesis

2.2 Overview of Predictive Data Mining Algorithms

Predictive data mining are typically supervised methods. They are used to train

models from class-labelled data. Then, each trained model (classifier) can be used

to predict the class label of previously unseen data instances.

The machine learning taxonomy presented in Figure 2.1 demonstrates a num-

ber of popular learning methods such as Decision Trees, Classification Rules, Sup-

port Vector Machines (SVM), k-Nearest Neighbors (kNN), and Artificial Neural

Network (ANN). The main characteristics and limitations of these methods will

be explained in this section. However, rule induction algorithms, which is related

to the methodology adopted in the research presented in this thesis will be more

closely investigated further in Section 2.3.

2.2.1 Decision Trees Approach

Top Down Induction of Decision Trees is a well-known technique in data mining

community, which originally began in the 1970s due to the need for discovering

survey data and statistical programs [26]. Since then, a considerable amount

of literature has been published discussing decision trees. A traditional decision

tree [27] uses a top-down recursive divide-and-conquer strategy to construct a
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classifier from a training dataset. As it can be seen in Figure 2.2, decision tree

has a tree-like structure which consists of a number of nodes and branches created

by a process known as ‘splitting on the value of attributes’ [5]. The partitioning

is represented by a sequence of tests. Each internal node symbolises one test of

an attribute value, and the branches from the node are labelled with the possible

outcomes of the test (classifications). Usually, the test compares an attribute value

with a constant value. The splitting process continues until each branch can be

labelled with just one classification, i.e. leaf nodes are reached [3,5,28]. However,

selecting the best attributes to split the data affects the class distribution of the

following branches which is a difficult task in tree inductions [1,26,27,29].

On the other hand, one of the main advantages of tree-based models is their

simplicity to be converted to a set of rules by easily transforming each leaf in

the tree into a rule [1, 2]. Thus, a rule represents a direct path from root to

a leaf node. This level of simplicity is what makes decision tree classifiers so

popular [1, 29, 30]. However, the process suffers from several limitations, which

will be discussed further in Section 2.3.

As previously explained in Chapter 1, this research uses rule-based methods to

generate a base learner for an ensemble because they are much closer to the white

box models than other popular data mining techniques. Decision trees can be a

source of rules for a classifier. However, the suitability of this type of rule repre-

sentation as a base learner for an expressive ensemble model must be investigated

first according to the second objective of this thesis.2 Therefore, the decision tree

construction strategy will be further reviewed in Section 2.3.1.

Figure 2.2: A decision tree for the mammal classification problem (source: adapted from [2])

2 The second objective of this project as stated in Chapter 1 is to measure and compare the
expressiveness of rule based models and develop an appropriate rule-based predictive algorithm
suitable as base learner for an ensemble.
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2.2.2 Rule Induction Approach

As mentioned in Chapter 1, the rule-based predictive methods use a set of IF-THEN

rules for classification. The left-hand side (LHS) or precondition of a rule is a series

of test (logically conjunctive together) just like the internal nodes in decision trees.

The right-hand side (RHS) or consequent contains a class prediction just like the

leaf nodes in decision trees [2]. If an instance satisfy all the conditions of the

LHS of a rule, then we can say that the instance is covered by that rule. The two

common strategies to generate classification rules are the ’Divide-and-Conquer’ and

the ’Separate-and-Conquer’ approaches. The former is based on decision trees by

simply create one rule for each path in the tree from the root to a leaf node.

The latter approach induces modular predictive rules directly from the training

data without having to construct a decision tree. Both ways have advantages

and disadvantages and since this thesis focuses mainly on predictive rule-based

algorithms, these two types of rule induction will be more thoroughly investigated

in Section 2.3.

2.2.3 Support Vector Machine (SVM) Approach

Support Vector Machines (SVMs) are a supervised machine learning technique

presented in 1992 by Vladimir Vapnik in [31] and are used for regression analysis

and classification. It has received considerable attention in the machine learning

literature [32]. This technique is based on statistical learning theory and ideally

works well on binary classification problems. The main aspect of SVM approach

is its ability to avoid the curse of dimensionality by transforming the training data

into a higher dimension. Within this new dimension, SVM approach finds the

optimal linear ’separating hyperplane’ (decision boundary) to separate two classes.

The basic idea of linear SVMs is conceptually illustrated in Figure 2.3.

The idea is to maximise the margin, i.e. the distance between the hyperplane

and the closest instances of the two classes. Those closest instances, which called

’support vectors’ are used to define the margin that separates the two classes [1,

32, 33]. Although transforming data attributes into a higher dimension seems a

promising approach with regard to the accuracy of SVM models, it often requires

costly computations.

In addition, when the data is not linearly separable, SVM needs a non-linear

separating hyperplane. One potential solution is to transform the data into an in-

finite dimensional space, but this is an even more computationally expensive task

and may suffer from the curse of dimensionality problem [32]. Therefore, SVM

uses ‘kernel tricks’ method to construct non-linear separating surfaces where the

learning process is performed on the original data attributes and not on the trans-
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Figure 2.3: Basic idea of linear support vector machines (source: adapted from [33])

formed attributes. SVM is often applied in applications such as handwriting digit

recognition, object recognition, and speaker identification. However, selecting a

‘good’ kernel function is not an easy task and often increases the training time con-

siderably. Also, the user of SVM approach has to define a set of hyper-parameters

such as the type of kernel functions to use and the cost function C and gamma for

introducing a binary variable for each of the attribute values [32].

Because of these overheads and model complexity, especially when dealing

with large datasets, SVM’s classifiers are difficult to understand and are referred to

as black box models. In fact, in many applications it’s almost impossible to explain

the logic behind model predictions or visualise their impacts [28, 34]. Therefore,

SVM is not a suitable approach for critical applications where the interpretability

of the model is highly desirable [35].

2.2.4 Instance Based Learning Approach

It is a statistical method known as lazy-learning approach, as it does not require

explicit learning phase. One of the most popular instance-based learning tech-

niques is the k-Nearest Neighbors (kNN) algorithm. It was first presented in the

early 1950s by Fix and Hodges in [36] and its main idea based on the principle

that, most of the instances that exist close to each other within a dataset are shar-

ing similar properties [1,29,34]. According to this principle, the learning process

in kNN classifiers is performed by comparing a new testing instance with all the

training instances that are similar to it. Then, the unlabelled new instance will be

classified based on the class of its neighbours. In case of having more than one la-
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bel close to this unclassified instance, the new instance will be classified according

to the majority class of its neighbours [32]. The proportional distance between in-

stances is defined by a distance metric such as Euclidean distance, which typically

tends to minimise the distance between the instances belong to the same class and

maximise the distances between instances of different classes.

Despite the very simple implementation of kNN algorithm and the little num-

ber of parameters required (distance metric and k), this approach have several

limitations, such as the low efficiency being a lazy learning method and the heavy

dependency on the value of k, etc. [37]. The authors of [29] argue that kNN algo-

rithm suffer from the lack of principled strategy to select k except through cross-

validation or similar computationally-expensive technique. This besides the high

cost of classifying new instances due to the absence of a learned model. Accord-

ing to [37], every computational single new instance needs O(n2) to be classified.

The effect of the choice of k on the performance of kNN classifiers is described in

Figure 2.4. Due to this high a drawback, which is likely to be even more expensive

in large datasets, kNN seems to be not suitable as a base inducer of the ensembles

proposed in this project. The reader is referred to [29,37] for a detailed review of

kNN algorithms and instance-based learning approach in general.

Figure 2.4: The 1-, 2-, and 3-nearest neighbour (source: adapted from [32])

2.2.5 Artificial Neural Network (ANN) Approach

The study of artificial neural networks (ANN) was inspired by efforts to mimic

biological neural systems. It is one of the most popular data mining techniques.

In [38], Donald Hebb introduced the notion of a simple rule for adjusting the in-

tensity of connections between biological neurons in 1949. Such a rule requires

only local information, and this type of locality was the real motivation in the

literature for developing approaches in neural network learning. The first impor-

tant advance in the development of ANN algorithms was in 1957 when Rosenblatt

presented the first neural model [39], and later introduced the tow-layered per-

ception in 1962. However, a typical neural network that often used for classifica-

tion problems was presented by Hecht-Nielsen in [40], and called ’multi-layered
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feed-forward neural network’. As shown in Figure 2.5, it consists of a collection of

connected neurons organised in a layered cascade as follows: (1) an input layer

(corresponding to attributes); (2) one or more hidden layers; (3) an output layer

(corresponding to classes). Signals travel from the input layer to the output layer,

passing through the hidden layer(s) via connections. Each connection has a weight

associated with it. The network model learns by modifying the weights in order

to be able to predict the correct class label for a certain instance in the input layer.

The reader referred to [41], a textbook by Haykin, for a thorough overview of

both supervised and unsupervised neural networks.

Figure 2.5: Example of a multi-layer feed-forward ANN (source: adapted from [32])

The advantages of artificial neural networks are: (1) their high predictive ac-

curacy including their ability to deal with noisy data; (2) their practicality of using

with little information about the relationships between attributes and classes; (3)

their suitability for continuous attributes; (4) their potential to be parallelised to

speed up the computation process. According to [1], these factors make neu-

ral network based algorithms more popular. However, ANN suffers from several

drawbacks that can be summarised as follows: (1) a high computational cost and

therefore its suitability is limited to the application where this is feasible; (2) re-

quiring a number of parameters that often should be determined empirically; (3)

the extreme difficulty to interpret or understand the reason behind model pre-

dictions and consequently mostly serve as black-box models. These shortcomings

made neural network less desirable for decision makers [1] and therefore not suit-

able as a base inducer of the ensembles proposed in this project.
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2.3 Rule Induction Strategies

Approaches to classification rule induction are surveyed more thoroughly in this

part of the chapter. The rule-based algorithms that are described here can be

divided into the following: (1) Top Down Induction of Decision Tree algorithms

(TDIDT), also known as ‘divide and conquer’ approach, which will be discussed

in the next section. Please note that both terms are used interchangeably in this

thesis. (2) ‘Covering’ algorithms, also known as ‘separate and conquer’ approach

which will be discussed in Section 2.3.2.

2.3.1 Divide and Conquer Strategy

As mentioned in Section 2.2.1, generating classification rules from an interme-

diate form of decision tree using divide and conquer approach is a widely used

technique. However, these rules are usually pruned to remove the irrelevant and

redundant conditions (terms), which is considered a necessary but unfavourable

outcome of tree representation of rules. In other words, the rule generation pro-

cess using divide and conquer strategy requires the following three steps:

Step 1. Decision Tree Construction: constructing a decision tree first is a nec-

essary and unavoidable step before the conversion to an equivalent rule set taking

place. In this section, some common decision tree algorithms will be reviewed in

order to investigate their suitability to meet the objectives of this research.

One of the common decision tree algorithm is ID3 (Iterative Dichotomiser 3),

which is based on a prior work on ‘concept learning system’ established by [42].

The main reason for ID3 popularity lay in its information formula, which is used

to select the appropriate attribute that has the highest information gain. However,

ID3 has some disadvantages, for instance: (1) in feature selection procedures, ID3

biases toward attribute that have more values despite the fact that multi-values

attribute is not always the best choice; (2) multiple logarithmetic operations are

required in the process of attribute selection, i.e. high computational cost; (3)

It is hard to control the tree size. Therefore, several techniques were suggested

later with some degree of ID3-compatibility in an effort to develop a more efficient

ID3-based algorithm; for example, ID4, ID5, ID5R, and IDL algorithms.

Regardless of whether these ID3 evolutions were successfully handled the orig-

inal ID3 problems or not, C4.5 algorithm, which is also introduced by Quin-

lan is considered to be more effective and became a cornerstone of the newer

data mining algorithms to compare with [1]. This widely used algorithm utilises

information-theoretic entropy as a purity measure for attribute selection process



43 2.3. Rule Induction Strategies

[3]. The attribute that would reduce the entropy the most by splitting the data is

used to expand the tree. As a result, the attributes near the root have a stronger in-

fluence on the class label than the ones in the lower part of the tree, and hence the

reliability of the selected attributes reduces with the growth of the tree [3]. This

also, would likely increase the size of the tree and consequently increase the risk

of overfitting, especially that tree models are often prone to overfit the training

data.

Step 2. Extracting Rules from Decision Trees: Each branch of the tree corre-

sponds to a classification rule, and so extracting rules from it can be accomplished

by converting each direct path from root to leaf nodes into a rule. Although, it is

easy to perform the transformation, this procedure might produce rules that are

far more complex than necessary, and they are often executed in irrelevant or-

der [2]. In fact, they may inherit all the complexity of the source or might become

more difficult to understand than the corresponding trees in some cases [1].

Furthermore, the redundancy problem that is mentioned at the beginning of

this section leads to so called ‘replicated subtree problem’, which has been recog-

nised by Cendrowska in [43] as the main reason for overfitting in decision trees.

Although, Cendrowska never uses the term replicated subtree, her study compre-

hensively described this popular drawback very well. She criticised the principle

of deriving decision rules from trees in comparison with generating modular rules

directly from training data. Cendrowska argues that decision trees cannot easily

represent the implicit disjunction among the different rules. Thus, forcing rules

with no common attributes to fit in a tree structure would require adding unnec-

essary, meaningless rule-terms.

To explain how this problem happens in decision tree representation of rules,

consider the following rule set 2.1 as an example:

IF A1 AND B2 THEN Class = x

IF C2 AND D3 THEN Class = x

Otherwise→ Class = y

 Rule set (2.1)

The complexity of the corresponding tree depends on the number of attribute val-

ues that are possible to be selected for splitting. Let the four attributes (A,B,C,D)

each have only three possible values (1, 2, 3) and let attribute A be selected at the

root node. Thus, the simplest form of the tree to represent the above rules is

demonstrated in Figure 2.6.
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Figure 2.6: An example of a replicated subtree problem

Consequently, by following divide and conquer approach, the total of 21 rules will

be derived from the decision tree that is shown in Figure 2.6. The rules that predict

class x only is shown below in rule set 2.2 :

IF A1 AND B1 AND C2 AND D3 THEN Class = x

IF A1 AND B2 THEN Class = x

IF A1 AND B3 AND C2 AND D3 THEN Class = x

IF A2 AND C2 AND D3 THEN Class = x

IF A3 AND C2 AND D3 THEN Class = x


Rule set (2.2)

Step 3. Rule Post-pruning: The mechanism that often used to prune divide and

conquer rules is similar to a tree pruning method, which is based on the error

rate estimation at each internal node in the tree [2]. For each condition (term)

in a given particular rule, work out the instances covered by the rule before and

after removing the term, and then, calculate the error rate of the rule in both

cases. If the rule is better without the current condition, remove it and continue

investigating another condition in the same rule. The rule will be completed when

there is no further improvement can be introduced to it. After pruning all the

derived rules, deletion of any duplicated rules is also another important step.

However, there is no guarantee that simplifying rule set this way would pro-

duce the best version of the rules [2]. Another solution to find the correct set of

conditions is by using optimization techniques, such as genetic algorithms [1, 2].
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The main problem of these greedy pruning methods is computational cost. For

every condition that is subject to be removed from a particular rule, the whole

rule must be re-evaluated on all the training instances. This is usually an expen-

sive procedure, and its cost might be significantly increased for classification tasks

that involve a lot of noise in the data [1, 2]. The algorithms C4.5 and its succes-

sor C5.0 are typically using these pruning methods to successfully derive a good

rule set from a transitional form of decision tree [44, 45]. Note that in the litera-

ture, the term C4.5RULES is used to refer to generating rules from a pruned C4.5

tree [1, 2, 46]. However, in addition to the undesirable computational cost, the

pruning procedures of these algorithms might needlessly increase the size of the

trees without improving the performance of the classifiers.

Another popular algorithm that uses pruning methods to generate rules from

decision trees is CART (Classification And Regression Tree), which is described

by Breiman in [47]. CART tree learning system tries to regulate the tree size and

avoid the unnecessary growing of the tree by using a more conservative pruning

mechanism called ‘cost-complexity optimisation’. According to empirical investi-

gation conducted by Oates and Jensen in [48], CART system often generates a

smaller and more accurate tree than C4.5 rules method. However, this tree takes

much longer training time to be produced, and it is even more difficult to under-

stand. The reader is also referred to [30,49] for additional descriptions of common

divide and conquer rules algorithms.

To sum up, extracting classification rules from the decision trees including the

aforementioned widely used models (C4.5, C5.0, and CART) have several limita-

tions that can be summarised as follows: (1) expensive computational cost in the

pruning methods of C4.5 and C5.0, which might needlessly increase the size of

trees; (2) long training time in CART system which produce rules that might be-

come more difficult to understand than the corresponding trees in some cases; (3)

tree models in general are often prone to overfit the training data and thus pro-

duce rules with irrelevant and redundant conditions (terms). Therefore, the tree

representation of rules is not suitable as a base inducer of the ensembles proposed

in this project. Further explanations will be provided in Section 2.4.5.

2.3.2 Separate and Conquer Strategy

The previous section outlined how classification rules are derived from decision

trees. Despite the advantage of being easily obtained, and to some extent, under-

standable by analysts, several drawbacks of this type of rule representation were

also highlighted. However, the alternative to divide and conquer approaches have

been originally developed by Michalski in 1969 under the name of covering strat-
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egy [50]. Then, Pagelo and Haussler in 1990 refer as ’separate-and-conquer’ [51]

to covering approach. A considerable amount of studies in the literature, such

as [1–3, 43, 52] use both terms to describe the same strategy. This type of rule

learning can extract IF-THEN rules directly from the training data, i.e., without

having to construct a decision tree first, and thus being less susceptible to the

potential issues stated in the previous section (2.3.1).

A basic pseudocode for separate and conquer strategy is shown in Algorithm

1. Rules are produced for a given class at a time. After a rule is generated, all in-

stances that are covered by that rule are removed from the current training dataset

(the separate part), and the next rule is induced using the remaining training in-

stances (the conquer part) until a terminating condition is met. The terminating

conditions (also known as stopping criteria) vary from algorithm to algorithm.

However, the common ones are: no more training instances are left; the quality of

a rule induced is below the user-specified threshold; or all the remaining instances

belong to the same class (pure examples) [1,2,52].

Algorithm 1: Basic Separate and Conquer algorithm
1 Rule-set = { } ; //initialise set of rules
2 foreach class C do
3 Rule = { } ; //generate an empty rule
4 while terminating condition not satisified do
5 Rule = Learn.Rule ;
6 Remove all instances covered by Rule from training data;
7 end
8 Rule-set = Rule-set + Rule; //add new completed rule to rule set
9 end

10 return Rule-set;

The most important step in the above algorithm is the ‘Learn.Rule’ function

(line 5), which begins with an empty rule and then gradually appends the best

attribute-value pair (rule-term) for the current class C. All the possible combina-

tions of rule-terms should be considered before deciding the best rule-term, which

makes this greedy process computationally very expensive. Therefore, different

covering algorithms adopt different search strategies to reduce the search space

of the Learn.Rule procedure, while maintaining the quality of the rule. All these

strategies use the general-to-specific manner to induce the rules [1,2,52].



47 2.4. Separate and Conquer based Algorithms

2.4 Separate and Conquer based Algorithms

There are many separate and conquer algorithms. Popular approaches include AQ

family of algorithms [50, 53, 54], CN2 algorithm [55], RIPPER [56], and PRISM

algorithm [43] and its successors. The first three algorithms will be explored in

Sections (2.4.1, 2.4.2, and 2.4.3), respectively. However, PRISM algorithm will be

thoroughly investigated in Section 2.4.4 and compared with aforementioned rule

induction strategies in Section 2.4.5 because of its relation to several parts of this

research.

2.4.1 AQ Family of Algorithms

The original version of the Algorithm Quasi-optimal (AQ) can be considered as the

original covering algorithm, which was developed by Michalski in [50]. Various

algorithms based on this have appeared in the literature over the span of decades,

such as [54, 57–60]. These subsequent tailored implementations of AQ aimed to

handle different complicated learning problems. Generally speaking, the varia-

tions between the members of the AQ family of algorithms are based on applying

different parameter settings. Although, these parameters are not considerably dif-

ficult to learn, they might be to, some extent, a possible cause of limiting the usage

of the AQ approach.

The basic AQ algorithm is an irreversible top-down search that induces a rule

for each class in turn. It starts by selecting one positive example (called seed ex-
ample) and then repeatedly generates all the possible conjunctions of tests (called

complexes) that cover the seed but do not cover any random selected negative ex-

amples. By using rule learning heuristics, all these potential complexes are evalu-

ated before selecting the best complex. The algorithm aims to learn perfect rules

that cover all positive examples and exclude all the negatives.

The AQ method has advantages and disadvantages in comparison with other

rule-based algorithms such as C4.5RULES [44,45]. Some of the original disadvan-

tages have been overcome over the years, with additional processes utilised for

optimization purposes. One of the main advantages of AQ approach is its ability

to generate readable and maintainable rules, like most of the separate and con-

quer based algorithms. AQ could be further improved to generate good rules that

consider only positive examples. However, AQ is computationally expensive as

it is considerably slower in comparison with C4.5RULES algorithm. This is due

to the main aspect of the learning process of the AQ algorithm, which compares

each positive event in the training dataset with all the negatives. However, this

aspect can be also considered as a strong point at the same time, since it guaran-



Chapter 2. Background 48

tees that all the decisions to select the best rule-term (complex) are made with the

maximum amount of information available [61].

2.4.2 CN2 Algorithm

CN2 algorithm [55] is named after the initials of its designers, Clark and Niblett.

The algorithm integrates the ideas from AQ and ID3 approaches, i.e., induces rules

directly from training data using beam search strategy like AQ but with ID3 capa-

bility of handling noisy data. The essential observation in rules learning is that a

single rule represents a branch in a decision tree. Thus, the first version of CN2

uses ID3’s information gain (entropy) to evaluate each possible condition instead

of only concentrating on conditions that randomly partition pairs of positive and

negative examples like in AQ algorithm. Using this search heuristic to select the

best condition makes CN2 less susceptible to a potential problem that AQ algo-

rithm would suffer from, which is selecting a mislabelled negative instance as a

positive seed example, and thus be forced to induce a rule that covers this exam-

ple. This is a great advantage over AQ algorithm, which makes CN2 the first rule

learning system that addressed the overfitting problem [3].

Additionally, the original CN2 adopts the ID3 algorithm’s method to deal with

multiple classes by selecting the majority class among the instances that covered

by the complete rule [3]. However, a study in [62] later optimised CN2 and sug-

gested different search heuristic that can deal with each class in the training data

as a separate concept, thereby considering all the instances that belong to the

current class as the positive examples and all the rest as the negatives. This ap-

proach, which they called unordered, has become very popular and is also known

as one-against-all. Multiple successors for CN2 algorithm have been found in the

literature, including mFOIL [63], ICL [64] and BEXA algorithms [65]. The reader

is referred to [3] for a brief review of these methods.

2.4.3 RIPPER Algorithm

The RIPPER (Repeated Incremental Pruning to Produce Error Reduction) algo-

rithm was introduced by W.Cohn in [56]. It is based on the idea of incremental

reduced-error pruning (IRIP) presented by Fürnkranz and Widmer in [66]. RIPPER

algorithm have addressed the overfitting problem efficiently [3]. The algorithm

can be understood in a three-step process: (1) grow, (2) prune, (3) optimise.

For each individual rule for a given class, the training data is split into two sets

(growing set) and (pruning set). In the first step, the rule will be specialised by

adding new terms using the growing set, and then the information gain criterion
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is utilised to determine the next term. When adding a new term to the rule no

longer reduces entropy, the specialisation step stops and the rule will be gener-

alised by removing unnecessary terms using the pruning set. Steps one and two

are repeated until the general stopping criterion of the rule set is reached. At this

point, a global optimisation strategy is applied to the rule set using a diversity

heuristic. In case of finding no more rules to learn, a default rule (with empty

RHS3) is added for the most frequent class.

According to [3], RIPPER provided a powerful rule based model that was used

for several practical applications. However, the algorithm is not as accurate as tree

based models when compared with C4.5RULES approach [44, 45], and also using

one class as a default prediction has some disadvantages. Several studies have

tried to improve RIPPER approach; for example, an alternative variation of the

algorithm named ‘JRIP’ is implemented in WEKA [2], and considered to be among

the most competitive rule learning systems available today.

Another interesting approach, which involves incorporating some ideas from

fuzzy rule induction into RIPPER, is called Fuzzy Unordered Rule Induction Algo-

rithm (FURIA). The approach was proposed in [67] and the experimental results

revealed that FURIA as a hybrid algorithm outperformed RIPPER and C4.5RULES

in terms of classification accuracy. However, according to [68], rules created by

FURIA models might not always be as human-readable. Also, a main disadvantage

of RIPPER algorithm and its predecessors is that certain important information in

the training data might be prevented from being utilised during the rules’ induc-

tion step because some instances are split into the pruning set. Also, for a similar

reason, some incorrect rules might be kept during the pruning step as a result of

limited information in the pruning set to detect the error.

2.4.4 Modular Rule Induction using PRISM Algorithm

As mentioned in Section 2.3, ‘Modular Rules’ refers to the representation of rules

that often can not be fit into a decision tree without creating at least one irrelevant

feature [5]. This type of limitation of tree representation of rules was explained

previously in Section 2.3.1 using the example of replicated subtree problem that

can be seen in Figure 2.6. The problem that first recognised by Cendrowska in

[43] and considered to be the main cause of the overfitting problem. In fact, she

criticised the whole principle of building a decision tree in order to derive decision

rules from it. Therefore, she developed PRISM [43] as an alternative expressive

rule induction approach, which will be reviewed in this section.

3RHS refers to the right-hand-side of the rule, also known as ‘rule consequent’
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The Basic PRISM Algorithm:

The PRISM algorithm is based on ‘separate and conquer’ strategy and developed

with the aim of inducing modular classification rules directly from training data

in the form of a ‘IF-THEN’ rule set. As described in Algorithm 2, the basic PRISM

approach can handle only categorical attributes. The outer loop iterates over the

classes, starting with a target class and generating only correct and ‘perfect’ rules

by inducing one rule at a time for the current class. Then, PRISM measures the

quality of an attribute-value pair α = v (rule-term) by calculating its conditional

probability P(Ci|α = v) for the target class Ci. Hence, each rule is specialised

term-by-term by selecting the term that maximises the conditional probability of

the rule’s selected target class. The training stops once the rule only covers in-

stances belonging to that pre-assigned target class. These instances covered by

the induced rule will be removed from the training data before the induction of

the next rule commences. The process is repeated until there are no instances

left in the training data that match the target class. Then, the training set will be

reinitialised to its initial state before the same procedure is carried out for the next

target class.

Algorithm 2: Cendrowska’s original PRISM Algorithm
1 for each class Ci do
2 Step 1: Calculate the probability of occurrence, P(Ci|α = v), of the

class Ci for each attribute-value pair α = v (rule-term tα) ;
3 Step 2: Select the pair α = v with the largest P(Ci|α = v) and create a

subset of the training set comprising all the instances that match the
selected α = v ;

4 Step 3: Repeat step 1 and step 2 for this subset until a subset is
reached that contains only instances belong to class Ci. The induced
rule R is then the conjunction of all the selected α = v pairs
(rule-terms) ;

5 Step 4: Remove all instances covered by R from the training set ;
6 Step 5: Repeat steps 1 to 4 untill all instances of class Ci have been

removed from the training set.
7 end
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Further Variations of the PRISM Algorithm:

Cendrowska’s PRISM does not indicate any method of dealing with the following:

1. Tie-breaking problem, i.e. two or more rule-terms have the same conditional

probability.

2. Clashes in the training data, i.e. two or more instances are identical but have

different class labels.

3. Conflict resolution in the testing stage, i.e. two or more rules with different

class labels but covered the same example.

4. Continuous attributes, i.e. only categorical features are considered.

Therefore, PRISM sparked work on a range of different PRISM variations with the

aim of improving the algorithm, also known as the ‘PRISM family of algorithms’.
One of the early attempts to improve the performance of original PRISM was in-

troduced by Bramer in [69], namely N-Prism algorithm, which incorporates some

additional features to overcome the aforementioned shortcomings. These revised

features will be investigated more closely in the next chapter as they are, to some

extent, related to the algorithms developed in this thesis, and also they have been

applied to the whole PRISM family. N-Prism was implemented in the Barmer’s In-

ducer software [70,71]. A number of experiments were conducted to compare this

extended version of PRISM with the divide and conquer rule induction approach4.

The results of these experiments will be explored in the next section, where com-

parisons between PRISM family of algorithms and the other rule based algorithms

are detailed.

More variations of PRISM exist such as PrismTC and PrismTCS algorithms,

where ‘TC’ refers to Target Class and ‘S’ indicates that class with Smallest number

of instances is considered first [69, 71]. PrismTC always uses the majority class

and PrismTCS uses the minority class. The main difference between these two

variants of PRISM and the basic PRISM is that PrismTC and PrismTCS introduce

an order in which the rules are induced, where there is none in the basic PRISM

approach. Another difference is that the training set in the original version has

to restored to its full original size for each of the classes, while in PrismTC and

PrismTCS the full training set only needs to be processed once no matter the

number of classes. Therefore, both variations can remove the outermost loop

in the original PRISM (line 1 in Algorithm 2). This aspect can be considered as a

4‘Divide and conquer’ rule induction is also known as TDIDT based rules; and both terms are
used interchangeably in this thesis.
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computational advantage and also a useful aid to the development of a distributed

version of PrismTCS, which is another member in the PRISM family called PMCRI

(Parallel Modular Classification Rule Induction) [72]. PMCRI allows to parallelise

any member of the PRISM family of algorithms.

Generally speaking, existing literature shows that PRISM’s successors have fo-

cused mainly on improving the algorithm’s predictive accuracy and scalability.

However, to the author’s best knowledge, there is no PRISM based algorithm that

can produce numeric rules from batch data in an expressive and computation-

ally efficient way. The current implemented method of processing continuous

attributes in PRISM family of algorithms is based on a local discretisation method

called cut-point calculations (also known as binary splitting), which produces rule-

terms of the form (α < x and α ≥ y) or (α ≤ x and α > y) where x and y are two

current values of the attribute named α. This way of handling numeric values is

computationally expensive, and hence results in long processing times. Therefore,

a new proposed heuristic approach will be introduced and experimentally evalu-

ated in the next chapter. The approach introduces a new rule-term structure in

the form of (x ≤ α < y) instead of two separate rule-term combinations, which

greatly enhances the readability of the individual rules5.

2.4.5 Comparing PRISM with other Rule Induction Algorithms

In this section, PRISM approach is compared with the ‘divide and conquer’ rule

induction approach (TDIDT based rules), and then with other popular ‘separate

and conquer’ rule induction approaches (i.e. AQ, CN2, and RIPPER).

PRISM Approach vs. Divide and Conquer (TDIDT Rules) Approach

According to [3, 43], the key advantage of PRISM comparing with decision trees

is based on its induction strategy. While PRISM follows the theory of overlapping

rules, decision trees are constrained to discover a theory with non-overlapping

rules. More specifically, PRISM has an information theoretic basis to avoid inducing

classification rules that contains redundancy, which is considered a necessary but

undesirable feature of decision trees that may result in more complex models in

large datasets.

Another difference is that PRISM generally has a preference for leaving a test

instance ‘unclassified’ rather than giving it a wrong classification. In critical do-

mains, this may be an important feature. According to [5,69], when noise exists,

PRISM is more stable and achieves better predictive accuracy than TDIDT even if

5This approach is one of the contributions of this research and it was published in [19].
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the level of noise is very high in the training data. An additional advantage, a

rule produced by PRISM algorithm can be separately evaluated or even removed

without affecting the entire set of rules (the constructed model). In contrast, there

is no possibility of making any modifications in a built tree without reconstructing

the entire tree [1,3,5].

Table 2.1: Opticians’ decision table for fitting contact lenses. Source: adapted from [43]

Instance id
Attribute value

lenses? Instance id
Attribute value

lenses?
A B C D A B C D

1 1 1 1 1 no 13 2 2 1 1 no
2 1 1 1 2 soft 14 2 2 1 2 soft
3 1 1 2 1 no 15 2 2 2 1 no
4 1 1 2 2 hard 16 2 2 2 2 no
5 1 2 1 1 no 17 3 1 1 1 no
6 1 2 1 2 soft 18 3 1 1 2 no
7 1 2 2 1 no 19 3 1 2 1 no
8 1 2 2 2 hard 20 3 1 2 2 hard
9 2 1 1 1 no 21 3 2 1 1 no
10 2 1 1 2 soft 22 3 2 1 2 soft
11 2 1 2 1 no 23 3 2 2 1 no
12 2 1 2 2 hard 24 3 2 2 2 no

Concerning expressive power, the authors of [43] point out that decision trees

are not always appropriate in expert systems. This can be explained using Cendrowska’s

case study, which was taken from the world of ophthalmic optics. Table 2.1 shows

a decision table for an optician for fitting contact lenses where each instance

represents a description of a classification in terms of values of four attributes

(A,B,C,D). The potential values of the attributes are listed below:

A: the age of the patient

1. young

2. pre-presbyopic

3. presbyopic

B: patient’s spectacle prescription

1. myope

2. hypermetrope

C: patient has astigmatism ?

1. no

2. yes

D: patient’s tear production rate

1. reduced

2. normal
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Accordingly, the optician has to decide whether the patient should be fitted with

hard or soft contact lenses or if there are no contact lenses suitable to the patient.

Now assume that the patient requiring contact lenses was a presbyopic (A = 3)

with high hypermetropia (B = 2) and astigmatism (C = 2). From the decision

table, PRISM can directly induce the rule (2.3):

IF A = 3 AND B = 2 AND C = 2 THEN decision → No lenses (2.3)

Thus, the optician within a couple of seconds can take the decision if no contact

lens is suitable for this patient. However, assume that the decision tree in Figure

2.7 was used as the knowledge base for an expert system. It would be unable

to make a decision without information about attribute D (the tear production

rate). Hence, an unnecessary test of the tear production rate will be advised by

the optician requiring a lot of time and also may result in an additional fee to be

paid by the patient. The consequences could be even more serious than wasting

patient’s time and money if attribute D involved surgery.

Figure 2.7: Decision Tree. Source: adapted from [43]

Prism Approach vs. other Separate and Conquer Approaches

PRISM algorithm (Section 2.4.4), AQ family (Section 2.4.1), CN2 ( Section 2.4.2),

and RIPPER (Section 2.4.3) follow a very similar top-down search heuristic that

induces rules directly from training data for each class in turn. However, com-

paring with AQ , PRISM is not controlled by a particular random selected pair of

positive and negative examples (seeds), which is an essential learning step in the

AQ family. Note that this procedure may cause a potential overfitting problem if

AQ algorithm selects a mislabelled negative instance as a positive seed example
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and thus forced to induce a rule that covers this example. Also, AQ compares each

positive seed in the training data with all the negatives, which is computationally

very expensive.

Regarding CN2 algorithm, it uses ID3’s information gain (entropy) to select

the best pairs of positive and negative instances; thus, it is less susceptible to

the problem that AQ suffer from. However, as CN2 combines ideas from AQ and

‘divide and conquer’ approaches, it is possible to be suffered from the problems

that might be existed in one of them. Therefore, PRISM is considered a more

stable algorithm comparing with AQ and CN2 because it is not depending on any

prior selected seeds in its learning process.

With respect to RIPPER algorithm, splitting the training data into growing set

and pruning set makes the classifier not as accurate as tree based models. Some

incorrect rules might be generated during the growing step as a result of not hav-

ing enough information in the set and some other incorrect rules might be kept

during the pruning step due to the same reason. Also, unlike PRISM, RIPPER is not

abstaining as it uses one class as a default prediction in case of finding no more

rules to learn in the growing step.

To sum up, the above comparisons support the benefit of choosing the strategy

of PRISM family of algorithms over other rule induction approaches to develop an

appropriate rule based predictive algorithm that can be suitable as an inducer for

the ensemble systems proposed in this thesis, and thus, achieving objective 2 of the

project. Please note that this decision will be further investigated experimentally

in Chapter 3. Moreover, some practical and computational issues related to the

implemented versions of PRISM family will be also discussed and addressed in

Chapters 3 and 4 whereas the rest of this chapter will focus on the literature

around predictive ensemble learning.

2.5 Overview of Predictive Ensemble Learning

Generally speaking, ensemble methodology stimulates our nature to look for sev-

eral views before making any critical decision [24]. We mentally assess the indi-

vidual views and combine them to attain our ultimate choice. Similarly, ensemble

learning systems consist of multiple classifiers, each trained on a different subset

of data, and produces a single prediction (vote). Combining these votes (deci-

sions) using a some kind of voting approach is likely to create an ensemble with

a higher level of overall predictive accuracy than its base learners. The ensemble

methodology, referred to as a system of systems and considered to be one of the

most effective strategies to improve prediction performance in data mining [73].

It is mostly applicable in all fields where classification algorithms can be ap-
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plied. Examples of applications where ensemble have been successfully deployed

include: finance [74, 75], manufacturing [76, 77], text categorisation [78, 79],

medicine [80, 81], cheminformatics [82, 83], geography [84], information secu-

rity [85,86], image retrieval [87,88], recommendation systems [89,90]. The next

section will illustrate the philosophy of ensemble systems in general and why they

usually work better than stand-alone systems.

2.5.1 Philosophy of Ensemble Systems

The goal of any predictive classification model is to obtain good performance.

The most common performance measure in predictive data mining algorithms is

accuracy. Several studies argue that combining the predictions of multiple models

learned from the same data can create a more reliable ensemble model with higher

level of overall accuracy than its base learners. Kuncheva [91] states that there

are three fundamental reasons for this.

(a) STATISTICAL (b) COMPUTATIONAL (c) REPRESENTATIONAL

Figure 2.8: Three essential reasons for using ensembles classifiers. Source: adapted from [91].
The outer curve indicates a space of hypotheses (H), the inner curve denotes the set of hypotheses
with good accuracy in the training data, the points labelled (B) is the best hypothesis and (T) is
the true hypothesis.

1. Statistical Reason: The aim of a learning algorithm is to find the best hypoth-

esis in a space H of hypotheses (Figure 2.8). If the amount of the training data

is too small compared with the size of the space H, a statistical problem arises.

Without enough training data, the learning algorithm can find many hypotheses

in the space H with a good performance on the training data, but may have differ-

ent performance in the testing data. Selecting one classifier as the solution for a

classification problem, may lead onto the risk of making a bad choice for the prob-

lem, such as choosing an overfitted model. This risk is significantly reduced if we

construct an ensemble out of these accurate classifiers and the learning algorithm

averages their votes. As it can be seen in the Figure 2.8a, the point labelled T is

the true hypothesis and by averaging the accurate hypotheses (inner space), the

ensemble can find a good approximation to T , which is the point labelled B.
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2. Computational Reason: Many learning algorithms, such as neural network

and decision tree, are running some forms of local search that only guaranteed

to converge to a locally optimal solution. Even with sufficient training data, it

may still very difficult computationally for the learning algorithm to find the best

hypothesis. Therefore, an ensemble constructed by performing the local search

from different starting points may result in a better approximation to the true

hypothesis T than any of the individual classifiers as shown in Figure 2.8b.

3. Representational Reason: Given sufficient training data, most machine learn-

ing applications such as neural networks and decision trees are very flexible, and

they will search the space H for all possible hypotheses (classifiers). However,

this exploration process is bounded by a finite training data, and it will terminate

when the algorithm finds a hypothesis that fits the training data. The represen-

tational issue arises when the true hypothesis T can not be represented by any

of the possible hypothesis in H as shown in Figure 2.8c. Therefore, constructing

weighted aggregates of hypotheses drawn from H may expand the space of possi-

ble functions to find the best hypothesis (B), which is a good approximation to T .

Figure 2.8c illustrates this situation.

Generally speaking, a learning algorithm that suffers from the statistical issue

can be described as having a high ‘variance’, a learning algorithm that suffers from

the computational issue is often said to have a high ‘computational variance’, and

a learning algorithm that suffers from the representational issue is said to have a

high ‘bias’ [92].

2.6 Ensemble Learning Methods Characteristics

Considering the potential advantages of ensemble systems, it is not surprising

that a wide variety of ensemble techniques is available to researchers. According

to [73], a typical taxonomy to categorise ensemble methods in classification tasks

contains four factors. As Figure 2.9 shows, these factors are: (1) Inter-classifiers

relationship, (2) diversity generator, (3) combining method, (4) ensemble selec-

tion. Each one of these factors will be discussed in a separate section.

2.6.1 Inter-classifiers Relationship

This ensemble method characteristic indicates whether the base classifiers are de-

pendent or independent. Using this factor, ensemble methods can be categorised

into two main types: sequential and parallel.
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Figure 2.9: Taxonomy for characterizing ensemble methods in classification tasks, blue colour
refers to the approaches related to this thesis

2.6.1.1 Sequential Ensemble Learning Algorithms

It is also known as dependent approaches where the output of a certain member

in the ensemble system influences the training process of the following member.

This influence may be recognised by modifications of either the dataset or the al-

gorithm. As shown in Figure 2.10a, there is an interaction between the learning

runs. Hence, in each iteration, a continuously refined model may be generated

based on the results of the previous executions and also may provide knowledge

that can be utilised to enhance the learning process in the next iteration [28].

The idea is to reduce the redundancy and improve the quality of the final results.

Therefore, some individual learners will be discarded. Among the popular sequen-

tial ensemble methods are boosting, Windowing, and Stacking, which are briefly

described below.

Boosting. It is a widely used method, and it works on the principle that a set of

weak base classifiers can be boosted sequentially to a strong ensemble classifier.

The basic idea of boosting was developed by Schapire in [93] and it described how

a gradual combining of multiple classifiers can achieve a higher combined accu-

racy than those obtained if the base classifiers were used individually. AdaBoost

algorithm, which stands for (Adaptive Boosting) is an improvement on boosting

and developed in [94]. It starts by assigning an equal weight to each training

instance, and then generates the first model on a random sample of the training

data. Next, depending on the performance of the first learner, the weights of the

training instances of a subsequent learner are adjusted as can be seen in Figure
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(a) Sequential System (b) Parallel System

Figure 2.10: Ensemble Learning Paradigms

2.10a. Specifically, the weights are increased for the misclassified instances and

decreased for the correctly classified ones. This process continues until a spec-

ified threshold is met or a number of base learners are generated. The idea is

to give higher weights to ‘difficult’ instances, and thus enable the following weak

learners to focus more on instances that have been incorrectly classified in pre-

vious iterations. Despite that these gradual corrections of the mistakes made by

weak models improve the overall classification accuracy of the model, AdaBoost

classifier is known to suffer from overfitting especially on noisy datasets [95].

Windowing. It was originally designed to speed up C4.5’s tree induction process

to deal with large datasets. Windowing starts by selecting a random subset of

training dataset, a ‘window’, in order to build an initial tree. The remaining train-

ing instances are used as a validation dataset to test the performance of this first

tree. If the accuracy obtained are below a target threshold, all the misclassified

instances are removed from the current validation dataset and added to the win-

dow in which a new tree is constructed, and then validated using the remaining

training instances (non-window dataset). This process is repeated until sufficient

accuracy is obtained from the last trained tree, which is considered to be the final

classifier. Comparing with other ensemble methods such as boosting, windowing

approach has not receive much attention due to the vast development of com-

puter capabilities in terms of memory sizes and processor speeds, which makes

constructing a model using multiple rounds of windowed data is not necessarily

faster than using a single round with all the data [24,96]. Also, it has been found

in [97] that on noisy domains, windowing approach should be avoided.



Chapter 2. Background 60

Stacking. It was introduced in [98] and unlike boosting, staking is generally

used to combine models of the same type, i.e. a heterogeneous method [99]. As

the term suggests, it consists of multilevel hierarchy of models. Stacking works by

creating a meta-learner, which replaces the voting procedure in boosting in order

to combine the output of the base classifiers. The process starts by generating

what is called meta-data based on the complete training data using leave-one-out

procedure. Then the meta-learner is trained on the meta-data. The attributes used

to build the meta-data, and the algorithm used in the learning procedure, are the

most important decisions concerning stacking [10]. The number of levels and

the number of models may have also a considerable impact on the final ensemble

performance.

2.6.1.2 Parallel Ensemble Learning Algorithms

It is also known as independent approaches, in which each member in the ensem-

ble is generated independently using a different sample of training data. As shown

in Figure 2.10b, the base models hardly need to share any information during the

induction processes. Instead, collaborations between them are taking place in the

testing stage, i.e. to classify a test example each base classifier produces a pre-

diction and all the predictions are combined to decide the final prediction of this

example. The idea of parallel ensemble methodology is to improve the classifica-

tion accuracy of the system by combining different classifiers that commit different

errors at different times, according to [100]. Another benefit of the parallel en-

semble methods is that they are perfectly suitable to parallel computing, in which

the speed and memory constraints can be addressed by distributed environments.

Three parallel ensemble methods, namely; Bagging, Random Forest, and Random

PRISM are briefly described in the following paragraphs.

Bagging. It is the short name of Bootstrapped aggregating, which is a widely

used method developed by Breiman in [9]. In contrast to boosting, bagging works

by creating multiple random data samples produced using the strategy of sampling

with replacement the original training set as shown in Figure 2.11. These data

samples typically have the same number of instances the original training set has.

Hence, statistically, each bootstrap sample is likely to have approximately 63.2% of

the total number of training instances appearing at least once in the sample [9].

On each sample, an individual base learner is trained by applying the base learning

algorithm. Also, approximately 36.8% of the original training instances may not be

included at all in the bootstrap sample [9]. They are referred to as the out-of-bag
(OOB) instances and can be used to validate the base model. Then, to construct an
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ensemble learner, bagging typically adopts majority voting to combine all the base

classifiers’ predictions of a new example. However, other combination methods,

such as weighted voting are also possible. It is concluded in literature that bagging

techniques are empirically and theoretically can reduce the model overfitting error,

and can be more powerful when dealing with unstable models, where small details

of the training algorithm/process may lead to significant changes in the model

predictions.

Figure 2.11: Bootstrap sampling with replacement in bagging

The effectiveness of bagging might be explained by its original design as a

variance reduction technique, which is mainly obtained through the bootstrap

sampling method. It is based on the idea that if the variance of a prediction is

σ2, then the variance of the average of k independent and identically distributed

predictions is reduced to
σ2

k
. Given sufficiently independent predictions, such an

approach of averaging will reduce the variance significantly. Generally speaking,

the bagging method can be used in principle with any kind of data mining al-

gorithm to construct an ensemble classifier. However, the main criticisms of the

bagging and other ensemble approaches are the lack of interpretation and the high

of computational cost.

Random Forests (RF). It can be considered as a variation of the bagging algo-

rithm constructed from decision trees, i.e. an ensemble of decision trees devel-

oped by Breiman in [101]. Briefly, a random forest combines the two concepts

of bagging and Random Selection Features. The latter concept was developed by

Ho in [102, 103]. Ho argues that on high dimensional datasets, traditional trees

cannot be grown to arbitrary complexity without risking a loss of generalisation

caused by high possibilities of overfitting to the training data. Therefore, Ho pro-

poses Random Decision Forest (RDF) approach that generates multiple trees in
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randomly selected subspaces of the feature space. Ho’s empirical study concludes

that these individual trees in different subsets of features generalise their output in

integral ways, and hence their combined classification performance is improved.

Just like in bagging approach, a typical RF uses bootstrap sampling with re-

placement strategy to produce different training sets. Each bootstrapped sample

can be used to train an individual tree. Additional randomness can be explicitly

inserted into the random forest construction by incorporating the RDF approach

in each node splitting decision of each tree. In other words, each time a split in

a tree is considered, a random subset of features is selected as split candidates

from the overall feature space [104]. Similar to the bagging algorithm, RF uses

the out-of-bag (OOB) instances (about 36.8% of the training data) to estimate the

test error of each tree. To classify a new unlabelled instance, each decision tree

provides a prediction and RF aggregates these predictions and chooses the most

voted one as the final classification label for this instance.

Generally speaking, most studies argue that integrating the feature random-

ness and bagging methods in a random forest model is more likely to ensure

building of robust and uncorrelated forest of trees which often leads to better

predictive accuracy of unlabelled new instances [105–107]. However, an exten-

sive evaluation study conducted in [107] shows that RF algorithm suffers from

several weaknesses. Firstly, RF requires to construct a number of base learners

(trees) in the range of 100 to 500 in order to significantly improve the predictive

accuracy of the classification output. This might not be a practical solution in the

real life applications where retrieving a fast classification decision is critical. Sec-

ondly, RF algorithms are likely to build highly-correlated complex trees from high

dimensional datasets, which could considerably increase the complexity and the

forests’ error rate. Thirdly, RF does not consider feature interaction (relationships)

that might occur in the feature space.

Random Prism. It is an ensemble learner not based on decision trees but on rule

sets produced by PrismTCS algorithm [108, 109]. It follows the parallel ensem-

ble learning approach and uses bootstrap sampling with replacement technique to

partition the training data into multiple data samples. Each sample typically has

the same size as the original training dataset, and thus, as in bagging methods,

some training instances may appear more than once in the same sample and some

may not be included at all, i.e. OOB instances. As Figure 2.12 illustrates, each sam-

ple trains a different classifier using PrismTCS algorithm and its OOB instances are

used as a validation data for this particular base classifier. Once a defined number

of base classifiers is induced, Random Prism adopts a weighted majority voting

technique to combine their individual predictions of a new unlabelled instance.
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It has been empirically demonstrated in [108] that Random Prism outperforms

its stand-alone base classifier with regard to accuracy and tolerance to noise. How-

ever, also pointed out in [108], Random Prism’s computational cost is high. Al-

though this challenge may be common for most ensemble learners. The authors

of [110, 111] show that the CPU requirements of Random Prism in terms of time

and apace are significantly higher even with modest sized datasets. Therefore,

a parallel version of Random Prism has been developed in [111]. It is based on

data parallelisation and utilises Google’s MapReduce programming paradigm [112].

Specifically, Parallel Random Prism distributes the construction of each individual

base classifiers to different machines in a computer cluster using the Hadoop im-

plementation of MapReduce.

Figure 2.12: The Random PRISM architecture. (adapted from [108])

The authors of [110] provide theoretical complexity analyses of Random Prism

algorithm and its parallel version. The experimental study concludes that Parallel

Random Prism scales well on a large number of training examples, a large number

of data features and a large number of processors. Furthermore, Random Prism is

an accuracy-oriented ensemble model, which uses each base classifier’s accuracy to

assess the quality of its participation in classifying a new unseen instance. How-

ever, this aspect has been criticised by several studies such as [113], which found

that the accuracy is unreliable as a measure of a classifier’s quality especially for

unbalanced datasets.

2.6.2 Diversity Generators

As previously illustrated in Figure 2.9, diversity generator is one of the ensemble

method characteristic, which refers to the generation of a set of base classifiers

that should be as diverse as possible to assure producing uncorrelated errors, and

then obtain more accurate ensemble [24]. It has attracted a lot of attention in
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the literature, because of its significant impact on the performance of ensembles.

There is no explanatory theory that defines why and how diversity among individ-

ual classifiers contributes to overall ensemble accuracy [24,114,115]. An attempt

to investigate the hypothetical relationship between diversity and the ensemble

accuracy have been found in [25]. This study uses an extensive example of an

ensemble of three classifiers to try to predict 10 new instances. Each classifier pre-

dicts exactly 6 of the 10 objects (individual accuracy = 0.6) and thus 28 possible

distributions of correct/incorrect votes are produced. These two limit lists were

termed as ‘pattern of success’ and ‘pattern of failures’ respectively. The experiment

resulted to that the accuracy of the ensemble varied between 0.4 and 0.9. The

reader is referred to [25] for further details about this experimental study.

Moreover, surveys; such as that conducted in [115] reviewed the various tech-

niques used for creating diverse ensembles and categorise them according to whether

they explicitly employ diversity using some measurements, or whether they implic-

itly inject randomisation methods into the system to encourage diversity. Several

studies such as [92,115] describe the popular methods used for creating diversity

in ensembles as follows:

1. Manipulating the Inducer - this method attempts to diversify individual learn-

ers by using different parameter settings for the base learning algorithm, i.e.

each ensemble member is trained by an inducer that is manipulated differ-

ently

2. Manipulating the Training Samples - in this widely used method, each clas-

sifier is trained on a different subset of the original dataset. This category

of diversity creation includes bagging and boosting algorithm. However,

the data sample manipulation depends on the sampling approach itself, e.g.

bagging employs bootstrap sampling with replacement, and boosting utilises

sequential sampling.

3. Manipulating Input Feature - the training data is usually described by a set

of features. Different samples of features give different representations of

datasets. Therefore, in this method, each base learner trained from different

subsets of features. However, this method may not appropriate for datasets

with only a few features.

4. Manipulating Output Representation - in this method that manipulates the

target attributes, instead of generating a single complex learner, an ensem-

ble of multiple learners with different and often simpler representations of

the target attribute can be generated. It is based on a concept called ‘aggre-

gation’ [24].
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It is important to note that the above popular diversity generation methods

can be used together, e.g. Random Forest [101] employs both methods of training

samples manipulation and input feature manipulation.

2.6.3 Combining Methods

As previously illustrated in Figure 2.9, combining methods are one of the ensemble

method characteristic. ‘Fusion Methods’ is the alternative term of the combining

methods in a number of studies. Simply, for classification tasks instead of trying to

determine the perfect single model, combining the outputs of a diverse set of mod-

els can mostly achieve accurate prediction ability. This is the main philosophy of

ensemble systems and the fundamental theoretical reasons behind that explained

in Section 2.5.1. The combining strategies can be divided into two main groups:

(1) weighing methods, (2) meta-combining methods. Only the first group will be

briefly described in the following paragraphs, as they are within the scope of this

thesis. However, detailed explanations about the second group of combination

methods (meta-combiners), can be found in [24].

As their name implies, weighing methods assign weights to each classifier’s

prediction, and then use these weights to produce the final ensemble classifica-

tion. The combination methods belong to this group include: majority voting,

performance weighing, Bayesian combination, Dempster–Shafer, and distribution

summation, etc.

Majority Voting. In this widely used type of voting, all the base classifiers are

treated equally, and thus equal weights are assigned to each classifier’s output.

The ensemble learner performs the combined classification for a new unlabelled

instance according to the class that obtains the most frequent vote. Several en-

semble classifiers adopt this equal voting, such as Random Forest [101,102].

Performance Weighing. The weighted majority voting is the alternative name

of this type of combination in the literature. It is among the most widely used

combiners [25]. In contrast to the majority voting, weighted majority voting con-

siders the performance evaluation of each base classifier on a validation dataset

as a weight to avoid a potential problem of reliability that may occur in simple

majority voting method, when some base classifiers are more reliable than others.

Hence, each base classifier’s decision is multiplied by its weight to reflect the confi-

dence of the decision. Giving the qualified models more power in making the final

classifications of an ensemble would improve the overall predictive performance

of the ensemble [24].
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Bayesian Combination. In the Bayesian combination method, each base classi-

fier has been assigned its posterior probability as a weight given the training set.

Then, to make a prediction of a new unlabelled instance, the ensemble choose the

classifier’s decision with maximum posterior probability. The full learning process

is outlined in [116]. Also, the interested reader is referred to [25] for further

discussion about this combination strategy.

Dempster-Shafer (DS). This combination method is based on Dempster-Shafer

theory [117], also referred to as the theory of evidence or the theory of belief func-
tions. DS is developed by Arthur Dempster in 1968, and then improved by Glenn

Shafer in [118]. The idea of utilising DS theory for combining multiple base clas-

sifiers was introduced in [119] by selecting the class that maximizes the value of

the belief function. Several combination methods have been inspired by this the-

ory, e.g. a recent approach presented in [120] to solve the motor imagery task

classification for Brain-computer interface (BCI) systems, which can be utilised to

help disabled people to interact with the world through their brain signals.

Distribution Summation. This combination method is based on the conditional

probability vectors, which obtained from each base classifier in an ensemble [62].

Then, to classify a new instance’s class, the ensemble selects the class with the

highest value in the total vector. The mathematical formula of this distribution is

illustrated in [24].

2.6.4 Ensemble Selection

An important characteristic of ensemble methods is to define how many base clas-

sifiers should be generated (ensemble size) and which classifiers should be in-

cluded in the final ensemble model (models selection) [24]. In this subsection,

two types of ensemble selection methods will be discussed.

2.6.4.1 Pre-Selection of the Ensemble Size

Several ensemble learning algorithms, such as bagging and Random Forest treated

the ensemble size as a hyper-parameter, which is tuned using a quantitative ap-

proach. Determining a proper size of an ensemble requires balancing accuracy and

efficiency. The size can not be too small because adequate data must be available

for each learning process to maintain diversity and generate an affective classifier.

Also, the ensemble size can not be too large because it would be very expensive in

terms of computations and memory resources [24,121]. In other words, the num-

ber of base classifiers that should be used in an ensemble is usually defined ac-
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cording to the following aspects: (1) desired accuracy, (2) computational cost, (3)

number of processors available (memory resources), (4) the nature of the classifi-

cation problem. However, the impact of these aspects on the ensemble efficiency

and their strong relationship to each other make the ensemble size determination

difficult [114]. Extensive experiments carried out in [121] using two widely used

parallel ensembles (bagging and random forest) show that the ideal ensemble size

can be very sensitive to the nature of the classification problem. Another major

experimental study conducted in [122] suggested constructing between 64 and

128 base learners to ensure a balance between computational cost and accuracy.

The same study has shown that there is no significant performance gain if a larger

number of base models is used.

2.6.4.2 Post-Selection of the Ensemble Size (Models Selection)

As stated previously in this section, the number of component classifiers that

should be included in the final ensemble is an influential factor for building an effi-

cient and accurate ensemble [24,114]. A large ensemble explores different feature

subspaces, which might increase its general classification accuracy. However, it re-

quires a higher computational overhead than a smaller one, and it decreases the

ensemble’s explainability. To overcome this trade-off, reducing the ensemble size

should be considered, but to what extent this reduction can be applied without

causing significant accuracy loss to the whole model is difficult to determine.

According to an empirical study presented in [123], a compact ensemble can

be extracted from a large one without reducing the whole ensemble’s predictive

performance in terms of diversity and accuracy. Moreover, the theorem of ‘many
could be better than all’, which was presented in [124] inspired researchers to in-

troduce many ensemble selection methods. Roughly speaking, the two most pop-

ular approaches for selecting an ensemble subset are: (1) Ranking-based method,

and (2) Search-based method. Both approaches will be presented in the following

paragraphs, however the former will be illustrated further because it is related

to the models’ selection method that have been developed in this research. The

reader is referred to [125] for greater detail and also additional models selection

approaches.

Regarding (1), the main concept of Ranking-based approach is to separately

rank the base classifiers according to a certain criterion, and then choose the top

classifiers that have ranks above a certain threshold [24]. The traditional ranking

approach is based on the individual model’s accuracy on a separate validation

dataset. However, this is not an adequate measure, especially in case of dealing

with imbalanced datasets [113,126]. A considerable amount of literature has been
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published on investigating various ensemble selection methods; however, there is

no particular way to identify which classifier will produce the best prediction on a

particular dataset.

For example, a ranking-based method proposed in [127] suggests ranking

classifiers according to their classification performance on a different validation

dataset and their performance to correctly classify certain classes. Another study

proposes generating a selective ensemble of rough subspaces by utilising an accuracy-

guided forward search strategy to add the most relevant members gradually into

the ensemble system. The algorithm is termed, FS-PP-EROS and the reader is

referred to [128] for more explanation. The third example of ranking-based en-

semble methods is also a diversity measure called Kappa pruning, which was in-

troduced in [129]. In this method, the Kappa statistic k is computed for all pairs

of classifiers. Pairs of classifiers are chosen in ascending order of their concurrence

level until a desired ensemble size is obtained. Last example of ranking-based tech-

niques is orientation ordering [130] for base classifiers obtained from bagging and

then selecting a subset for combination. The selected sub-ensemble containing be-

tween 15% and 30% of the original ensemble size. Moreover, an important issue

arises in most ranking-based ensembles following employing a ranking process is

the final number of base classifiers to choose. The common ways to obtain this

fixed number are a user-defined input or percentage of the components.

With regard to (2), instead of separately ranking an ensemble’s members,

Search-based methods perform a heuristic search in the space of the possible dif-

ferent ensemble subsets while evaluating the collective merit of a candidate sub-

set" [35]. Among others, GASEN algorithm [124] is a neural network ensemble

learning system that follows this method. The algorithm starts by training mul-

tiple neural networks, and then assign a random weight to each of these neural

networks. Next, GASEN utilises a genetic algorithm to develop and update those

weights so that they can define the quality of each individual neural network. Fi-

nally, it selects the networks with weights bigger than a pre-defined threshold to

make up the final ensemble model. The authors of [124] argue that GASEN algo-

rithm can not only construct neural network ensembles with far smaller sizes than

those created using bagging or boosting algorithms, but also achieves stronger

generalisation ability. Another study introduced in [131] proposes ranking the

base classifiers according to their ROC performance, and then evaluate the ensem-

ble model using the top-ranked members. Then, additional members are gradually

added to the ensemble subset since its performance are continuously improving.

Hence, the ensemble size will be sequentially increased until its performance does

not improve further.
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2.7 Evaluating Ensemble of Classifiers

Evaluating the performance of an ensemble is very important for assessing the

quality of the ensemble and regulating its parameters accordingly. There are sev-

eral criteria for evaluating the predictive performance of ensembles systems, such

as computational complexities, interpretability of the resulting ensemble, scala-

bility to large datasets, and robustness, etc. This section reviews some of those

performance measures.

2.7.1 Computational Complexity

Generally speaking, computational complexity of machine learning models in-

cludes ‘time complexity’ and ‘space complexity’. The former refers to the amount

of CPU time consumed by each classifier, and the latter represents the amount of

extra memory required to implement the classifier. According to [24], there are

three common metrics that can be used for computational complexity evaluation:

1. Computational complexity for generating a new classifier, especially when

dealing with massive datasets.

2. Computational complexity requires to update the current classifiers given

new data added.

3. Computational complexity that is needed to classify a new unseen instance.

Despite the importance of creating an ensemble with the highest possible ac-

curacy, reducing the computational complexities is necessary to increase the en-

semble efficiency. Moreover, the smaller or compact models demand less space

(memory), which is particularly crucial in multiple real-time applications.

2.7.2 Interpretability of the Resulting Ensemble

It is also known as the comprehensibility criteria of the ensemble model. Inter-

pretability is the degree to which the final ensemble results can be understood

by humans. This is particularly essential in critical applications, such as medical

diagnosis [132] where a wrong decision can have very serious consequences. In-

terpretability is treated in the literature as a subjective issue that is not clear how

to be measured. However, there is a number of indicators and quantitative mea-

sures that can help in evaluating these criteria. For example, compactness which

can be measured by the ensemble size, and the interpretability of the base inducer
used can impact the interpretability of the ensemble. Therefore, choosing a base

learning algorithm that generates base learners with a good expressive power,
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such as rule-based classification algorithms may help to reduce the risk of creating

complex ensembles. However, according to [92] this would not be always guaran-

teed as the comprehensibility lost in the ensemble is also influenced by its adopted

combination method.

2.7.3 Scalability to Large Datasets

Scalability indicates the ability of the classification algorithm to effectively deal

with large datasets, especially that the amount of data in real-life is considerably

increasing and this may introduce time and memory problems in most ensemble

methods [24]. However, there are ensemble approaches that are more appropriate

for scaling to the large datasets than other approaches. For example, independent

(parallel) approaches are considered more scalable than dependent (sequential)

approaches because of their ability to be trained in parallel using different pro-

cessors. Moreover, the partitioning methods are more suitable for scaling to large

datasets.

2.7.4 Robustness

It refers to the efficiency of the ensemble to process data with missing values or

to deal with noise. The robustness of an ensemble is commonly measured using

the following process: (1) train the ensemble on a clean dataset, (2) add some

artificial noisy instances to this clean dataset to produce a noisy training set, (3)

train another version of the ensemble using this noisy dataset, (4) compute the

accuracy of the two ensemble learners. The robustness level is measured as the

differences in the performance of those learning processes.

2.8 Summary

The goal of this work is to develop an efficient, accurate predictive ensemble

learner that exhibit a similar expressiveness as its single base learner. Therefore,

the literature concerning the two paradigms: (1) single predictive learning, and

(2) ensemble predictive learning, has been thoroughly reviewed in this chapter.

Several existing approaches in both paradigms have been assessed for their suit-

ability to be employed in constructing the ensemble system that can satisfy the

research question and objectives.
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In terms of (1), Section 2.2 has examined a number of widely used predictive data

mining algorithms such as decision tree, rule induction, support vector machine, k-

nearest Neighbors, and artificial neural network. Approaches to classification rule

induction have been surveyed further in Section 2.3, e.g. AQ family of algorithms,

CN2 algorithm, RIPPER algorithm, and PRISM family of algorithms, etc.

Regarding (2), predictive ensemble learning methods have been illustrated in

Section 2.5 and Section 2.6.1. Approaches to generating an ensemble model can

be categorised into two main types: sequential and parallel. Section 2.6.1.1 has

explored a number of sequential approaches such as Boosting, windowing, and

stacking, while the parallel approaches such as Bagging, Random Forest, and Ran-

dom Prism have been discussed in Section 2.6.1.2.

The performance of an ensemble model is highly depended on the level of di-

versity among the group of classifiers that constitute the ensemble. The widely

used diversity generation methods are explained in Section 2.6.2. The combina-

tion strategy that can be utilised by an ensemble model is also an essential factor

to produce not only accurate, but more robust classification results. Several pop-

ular ensemble combining methods; such as majority voting, weighted majority

voting, Bayesian combination, Dempster-Shafer, and distribution summation are

introduced in Section 2.6.3.

Moreover, defining (1) how many base learners should be generated, and (2)

which members should be included in the final ensemble model is another impor-

tant characteristics of ensemble methods. Regarding (1), which is also called a

‘pre-selection of the ensemble size’ and it can be tuned as a hyper-parameter using

a quantitative approach, has been highlighted in Section 2.6.4.1. Concerning (2),

which is also known as ‘models selection’ has been reviewed in Section 2.6.4.2.

Furthermore, evaluating the performance of an ensemble model is also crucial

for assessing the quality of the ensemble and regulating its parameters accordingly.

A number of criteria for ensembles evaluation such as computational complexity,

interpretability, scalability to large datasets, and robustness are discussed in Sec-

tion 2.7.

Specifically, the literature analysis carried out in this chapter leads to the fol-

lowing concluding remarks:

• Modular rule induction, PRISM family of algorithms in particular have shown

to be superior with regard to the expressiveness level comparing with most

classification algorithms. Further investigations on this will be provided in

Chapter 3.

• Bagging is a robust ensemble method, and it is generally designed as a vari-

ance reduction technique to reduce the model overfitting error, which can be
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effective when dealing with unstable weak classifiers. Bagging as a parallel

(independent) ensemble approach is, also more suitable for scaling to the

larger datasets than dependent (sequential) ensemble approaches, in which

it can address the speed and memory constraints by distributed environ-

ments. More discussion on the benefits of using bagging in decision-making

applications will be provided in Chapter 5.

• Combining multiple predictions from diverse classifiers using weighted ma-

jority voting technique are more reliable than other techniques, because it

gives the qualified models more power in making the final classification,

which would improve the overall predictive accuracy of the ensemble model.





Chapter 3

New Modular Rule Induction
Approaches for Continuous
Attributes

This chapter discusses and analyses a number of limitations existing in separate

and conquer approaches, particularly in PRISM family of algorithms. The compu-

tational issues with converting continuous attributes into categorical ones using

discretisaton methods are investigated. Then, the chapter introduces a more ef-

ficient and expressive method to induce numeric rule-terms from continuous at-

tributes. The method is used to develop two new members in the PRISM family of

algorithms (G-Prism-FB and G-Prism-DB). These algorithms are among the contri-

butions of this project and are published in [19] and [20], respectively. They are

also, empirically evaluated in this chapter.

3.1 Introduction

In the previous chapter, a number of predictive data mining approaches were iden-

tified from the literature that could be used to meet the project’s aim, which is to

develop an efficient and accurate predictive ensemble learner that exhibit a sim-

ilar expressiveness as its single base learner while improving its accuracy. These

approaches were examined for their suitability as a base learning algorithm (in-

ducer) for an explainable ensemble system. A choice was made to develop a rule

induction approach in relation to the PRISM family of algorithms to be used as an

inducer for the ensemble.

74
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The new rule induction classifier must be able to induce highly expressive rules

from datasets in order to be in line with the research requirements, objective 2 in

particular:

“To measure and compare the expressiveness of rule based models and
develop an appropriate rule-based predictive algorithm suitable as base
learner for an ensemble.”

In Section 3.2, this chapter will begin with the rationale behind the choice of

PRISM algorithm derived from Chapter 2. A number of shortcomings found in

the current implemented PRISM based algorithms are discussed in Section 3.3.

However, the chapter focuses mainly on the problem of dealing with continuous

features, which is thoroughly investigated in Section 3.5.1. The common discreti-

sation techniques utilised in rule based algorithms to deal with numerical features

are reviewed in Section 3.4.

Then, a more efficient and expressive method to induce rule-terms from con-

tinuous attributes is proposed in Section 3.5.2 This new rule-term structure is

integrated in the PRISM family of algorithms, for which two new members are

developed in Section 3.6. Section 3.7 demonstrates the empirical evaluation of

these new algorithms comparing with the original PRISM algorithm. Finally, a

short summary of this chapter is provided.

3.2 Modular Rule Induction using PRISM family of

Algorithms

The PRISM family of algorithms follows the ‘separate and conquer’ approach, out-

lined in Section 2.3.2, to induce expressive modular classification rules directly

from training data. In contrast, the ‘divide and conquer’ rule induction approach,

outlined in Section 2.3.1, generates rules from an intermediate form of a decision

tree. A rule-based learner is considered more expressive when it produces fewer

numbers of rules with less complex terms per rule. This is because a human user

can more easily interpret the rationale behind the predictions of a smaller and less

complex rule set.

‘Modular Rules’ refers to the representation of rules that often can not be fit into

a decision tree without creating at least one irrelevant feature [5]. This issue that

has been previously demonstrated in Figure 2.6 is called ‘replicated sub-tree prob-

lem’, which was recognised by Cendrowska [43] and considered the main cause

of overfitting. In fact, she strongly criticised this way of constructing classification

rules and argued that tree-based induction algorithms grow needlessly complex,
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and this would result in redundant rule-terms, which is completely undesirable in

expert systems. Generally speaking, complexity in models often leads to the lack

of interpretability issues, which can be very expensive in real world datasets, de-

spite how accurate the model is. This can be explained by the example, previously

presented in Section 2.4, which was about an optician who has to decide whether

a patient should be fitted with hard or soft contact lenses or there is no contact

lenses suitable to the patient. The decision of ‘no lenses are suitable’ can be taken

within a couple of seconds using the single compact Rule 2.3 induced by PRISM

algorithm. Contrarily, using a decision tree shown in Figure 2.7 would require

the optician to advise the patient to do an unnecessary test of the tear production

rate, which would cost time and probably an additional fee to be paid. In fact,

the consequences could be even more serious if this avoidable procedure involves

surgery.

This level of expressiveness cost was one of the main reasons to choose the

PRISM algorithm in this thesis to be the basic rule induction strategy to develop

the proposed new modular rule-based algorithms. Another reason for choosing

PRISM, is the results of a series of experiments conducted in [5, 69], which were

in line with Cendrowska’s original findings as they strongly indicate that PRISM-

based algorithms not only produce a more expressive compact set of rules than

tree-based rules, but also it achieves a similar or better predictive accuracy. On

noisy data, the same studies found that PRISM was more stable than tree-based

algorithms, even when a high level of noise exists in the training dataset.

The more important reason for choosing PRISM, is related to its ability to ab-

stain from classifying a new example when it is uncertain about the classification

and does not take a risk of classifying the instance wrongly, whereas tree-based

approaches should always produce a classification because of their hierarchical

structure. Abstaining aspect in PRISM family of algorithms may contributes to

increased explainablility in the model by ensuring the trustworthiness of the in-

duced rule set. This aspect is necessary in critical applications; such as in medical

diagnosis, financial analysis, terrorism detection, etc.

Nevertheless, all members of PRISM family algorithms such as N-Prism, PrismTC,

and PrismTCS (see Section 2.4.4), suffer from some practical and computational

issues, which will be discussed in the next section. Among these limitations is the

high computational cost of dealing with continuous attributes, which is addressed

in this thesis and an alternative solution is introduced accordingly in Section 3.5.
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3.3 Limitations in the PRISM family of Algorithms

3.3.1 Dealing with Tie-Break and clashes

‘Tie-break’ occurs when two attribute-value pairs (terms) have equal probability of

occurrence. Where the original PRISM algorithm decides to choose arbitrarily, its

predecessor (N-Prism [69]) takes the rule-term with the highest total frequency,

i.e., covers the highest count of the target class. ‘Clashes in training data’ occur

whenever there are instances in a subset of the training set that are assigned to

different classes, but sharing the same attribute values, and hence cannot be sep-

arated further. Such a subset is known as a ‘clash set’. The implemented version

of PRISM [70,71] addresses the problem of clashes as follows:

• Determine the clash set’s majority class.

• Check if the majority class is also the target class of the rule currently being

generated. If this is the case, the rule is completed for the classification of

the target class. If it is not, the rule is discarded.

The description in [69,70] does not provide any additional instructions about how

to deal with the clash set. Note that not handling the clash set properly means that

PRISM would be trapped in an infinite loop as the same rule would be generated,

from the same clash set, all over again and again discarded [133]. Therefore,

Bramer in [133] explained a strategy to handle the clash set. The strategy is to

remove all the instances that belong to the discarded rule from the clash set. This

saves Prism-based algorithms from encountering the same clash set all over again.

3.3.2 Dealing with Conflict Resolution

‘Conflict resolution’ issue occurs in most separate and conquer rule induction algo-

rithms. It is also known as classification conflict, i.e. an unseen instance covered

by several rules with different classification outputs (predictions) in the same rule

set. According to [5], the strategies that can be used to solve this conflict include:

• ‘Majority voting’, e.g. an instance fired three rules predicting class d and one

rule predicted class a, so the final classification will be d.

• ‘Giving priority’ to certain types of rules or classifications, e.g. rules with

fewer number of terms or rules predicting a minority class, etc.

• ‘Take the first one that fires’. This is the widely used strategy, even though it is

very basic. The main advantage of this method is the considerable reduction

in the amount of processing required. However, it makes the order of the

rules in a set very important. The current research adopt this strategy.
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3.3.3 Dealing with Missing Values

In many real-world datasets, not all attribute values are recorded, and thus learn-

ing algorithms have to be able to deal with missing information and unknown

values. There are several strategies for handling missing values and according

to [3,5], the most commonly used are:

• ‘Delete strategy’, which is completely ignoring all instances that have at least

one missing value. Applying this method is very simple, and it does not

necessitate any changes in the learning algorithm. Also, it has the benefit

of avoiding introducing any noise and data errors; however, it is wasting

training instances and impacts the reliability of a model’s results negatively,

especially if it applied to a large proportion of the data. Therefore, the algo-

rithms developed in this project do not support this strategy.

• ‘Common value strategy’, which is based on estimating each of these missing

values using the most frequently occurring (non-missing) value for categor-

ical attributes, and the average value (the mean) for continuous attributes.

The former way seems to be reasonable if the values of the target attribute

are very unbalanced but if they are evenly distributed, the reasonableness

of this method would be doubtful. In terms of continuous attributes, it is a

straightforward and effective way [5] however, like any other strategy for

handling missing values, it has to be utilised with care to avoid incorrect

results, especially when the number of unknown attribute values is high.

3.3.4 Dealing with Continuous Attributes

Generally speaking, many data mining algorithms, including TDIDT tree based,

Naive Bayes, CN2, C4.5, PRISM, etc. require all the attributes to be categorical.

However, most real world applications of learning involve attributes that are nat-

urally continuous, e.g. length, weight, temperature, speed, etc. A common way to

handle this issue is to convert continuous features into categorical ones, i.e. known

as ‘discretisation’. Therefore, several methods have been developed in the litera-

ture for this purpose. The next section thoroughly examines a number of these

methods including the method utilised in PRISM family of algorithms [69, 71],

which is based on a local discretisation approach called ‘cut-point calculations’ or

‘binary discretisation’ [134]. Although, this discretising technique was allowed

PRISM based algorithms to deal with continuous attributes, major concerns about

its computational efficiency have arisen [5]. This will be more thoroughly inves-

tigated in Section 3.5 in which a new alternative numerical rule-term structure

based on probability density distribution is proposed.
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3.4 Discretisation Techniques

Discretisation is the process that transforms the continuous or numerical attributes

into categorical ones by partitioning the range of numeric variables into sub-ranges

(intervals). Each interval is labelled a discrete value, i.e. a categorical value and

then the original numeric data will be mapped to a set of discrete values [135]. It

is required in a large number of machine learning and statistical techniques that

can only be applied to categorical data. The goal of discretisation is to find a set

of cut-point that can create a number of intervals that have a good class unifor-

mity [136]. A typical discretisation process generally consists of four steps: (1)

sorting (in an ascending or descending order) the numeric values for the target

attribute to be discretised, (2) selecting the best cut-point to split or to merge two

adjacent intervals, (3) discretising the numeric attribute values continuously by

splitting or merging intervals depending on the type of discretisation, (4) specify-

ing a stopping criterion to end the discretisation process [137].

3.4.1 Categorization of Discretisation Approaches

Generally speaking, the discretisation algorithms can be categorised from multiple

perspectives, which include, (1) local and global, (2) top-down and bottom-up.

These categories can be (briefly) described as follows:

Local and Global Discretisation Approaches:

The methods belong to this category are distinguished by the timing of the discreti-

sation process. Local discretisation methods, such as ‘cut-point calculations’ or ‘bi-

nary discretisation’ [134] carry out discretisation during induction; whereas global

methods, such as ‘ChiMerge algorithm’ [138] and ‘CAIM algorithm’ [139] convert

each continuous attribute to a categorical once and for all as a pre-processing step

prior to the induction stage. Both approaches need a stopping criterion to termi-

nate the process at some point. Notice that all the aforementioned discretisation

algorithms have been implemented in this project for comparative purposes and

therefore, they will be further explored in the next section1.

1All the source codes are available in a public online repository at https://github.com/
ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0 and are archived at https://doi.org/10.
5281/zenodo.5557590 [23].

https://github.com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0
https://github.com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0
https://doi.org/10.5281/zenodo.5557590
https://doi.org/10.5281/zenodo.5557590
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Top-down and Bottom-up Discretisation Approaches:

In another perspective, the top-down and bottom-up are characterised by be-

haviour of the discretisation process. The top-down starts with one big interval

consisting all known numeric values and then continuously splitting this interval

into multiple ones. Cut-point calculations and CAIM approaches follow this dis-

cretising strategy. In contrast, bottom-up technique such as ChiMerge algorithm

begins with a number of intervals and then evaluate their cut-points; these indi-

vidual intervals are continuously merged until a stopping criterion is met.

3.4.2 Discretisation Algorithms

Cut-point Calculations (Binary Discretisation):

It is a local top-down discretisation technique, and thus each continuous attribute

is converted into a categorical attribute at each stage of the induction process.

To the best of the author’s knowledge, there is no particular source cited in the

literature as the main developer of this discretisation method although it has been

used, for years, in several data mining approaches such as in [27, 30, 47, 55, 134,

140]. However, as mentioned in Section 3.3.4, this method of handling continuous

attributes was integrated into PRISM family of algorithms by Bramer in [69, 71].

Detailed investigation of this will be provided in Section 3.5.1 with examples.

In general, binary discretisation is simply a logical condition, in terms of one

or more attributes that can partition the data into at least two subranges [134].

Assume that a threshold value, v, for a continuous attribute α is determined by

computing the information gain (or other measure) of multiple values in α (cut-

points) and choosing the one with the largest information gain. Accordingly, the

threshold value v splits the training data into two parts joined by the logical ‘and’

operator, those instances for which α ≤ v and those for α > v.

ChiMerge Algorithm:

ChiMerge is a global discretisation technique developed by [138]. It consists of

initialisation step and a bottom-up merging process, which is continually running

until a particular threshold is exceeded. ChiMerge utilises a statistical technique,

namely the chi-square (X2 ) value, which can be computed using the formula

shown in Equation (3.1).
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X2 =
2∑
i=1

k∑
j=1

(Aij − Eij)2

Eij
(3.1)

Where:

k = number of classes,

Aij = number of examples in the ith interval, jth class,

Eij = expected frequency of Aij =
Ri∗Cj

N
,

Ri = number of examples in ith interval =
∑k

j=1Aij ,

Cj = number of examples in jth class =
∑m

i=1Aij,

N = total number of examples =
∑k

j=1Cj

Each continuous attribute in a dataset is individually discretised only once using

the following steps:

1. Sort the values of a target continuous attribute into ascending order.

2. Calculate the X2 value for each pair of adjacent intervals as shown in equa-

tion (3.1).

3. Merge the pair of adjacent values that has the lowest X2 value.

4. Repeat steps 2 and 3 until a user-defined (X2 threshold) is exceeded.

According to [138], ChiMerge is a robust discretisation algorithm and the main

source of robustness is that taking the class of an instance into consideration when

generating or adjusting intervals. Also, ChiMerge works well in practice and can

be applied to multi-class learning [5]. However, the algorithm has several prob-

lems, e.g. it tends to construct too many intervals; and since it is a parametric

algorithm, setting a high (X2 threshold) value may eliminates important intervals.

A serious weakness is its lack of global evaluation, as each attribute is discretised

individually without considering the other attributes. Moreover, the merging pro-

cess in ChiMerge can only examine the two adjacent intervals and ignoring other

intervals. The interested reader is referred to [5,138] for more details.

CAIM Algorithm:

It is a global top-down discretisation technique developed by [139] and based on

the interdependency between class and attribute values to determine the width of

every interval. The main goal of CAIM approach is to increase the attribute-class

relationship and therefore decrease the number of discrete intervals generated.

The dependency between the class C and the discretisation variableD for attribute

F can be measured using the heuristic criterion shown in Equation (3.2).
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CAIM (C,D|F ) =
∑n

r=1
max2r
M+r

n
(3.2)

Where:

C is the class variable, D is the discretisation variable,

F is the attribute, n is the number of intervals,

r iterates through all intervals, i.e. r = 1, 2, ..., n

maxr is the maximum value among within the rth column of the

quanta matrix,

M+r the total number of continuous values of attribute F .

Like other global discretisation methods, CAIM starts discretising process by se-

lecting a continuous attribute and sort its values ascendantly. Generate a single

large interval contains all the possible values of the continuous attribute and then

divides it repeatedly. The algorithm computes the CAIM criterion of all the possible

division boundaries produced and selects the highest value. The main advantage

of CAIM algorithm is that it does not require the user to provide any parameter.

However, the algorithm is computationally very expensive as it requires testing of

all possible cut-points. Also, CAIM gives a high factor to the number of gener-

ated intervals when it discretises an attribute, and thus the number of intervals

would be almost close to the number of classes. Moreover, for each generated

interval, only the class with majority number of instances would be highly consid-

ered, while the other classes would be mostly ignored. Such a consideration may

decrease the quality of the discretisation in some cases [141,142].

3.5 A new efficient Rule-Term Induction Method for

Continuous Attributes

The problem with any method of discretising continuous attributes is that of over-

sensitivity. Therefore, regardless of the heuristic used to select a particular cut-

point, there will always be values that fall just above the cut-point and thus treated

very differently from those that fall just below the cut-point [5]. This issue can be

considered a general disadvantage of any discretisation method, including the bi-

nary splitting approach that has been implemented in PRISM family of algorithms.

More investigation on this method is presented in the next section.
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3.5.1 Computational Issues with Discretising Continuous At-

tributes in PRISM Family of Algorithms

As previously stated in Section 3.3.4 and shown in Algorithm 2, the basic PRISM

algorithm can only train from categorical data, i.e. only produces rule-terms of the

form (α = v) where v is one of the possible values of attribute α. However, in order

to overcome this limitation, the other variations of PRISM use a local discretisation

method (cut-point calculations) to deal with continuous attributes. Hence, they

produce rule-terms of the form (α < v and α ≥ v) or the form (α ≤ v and α > v).

In this case, v is a constant that represents a subrange of numeric values αj for

a continuous attribute α. Generally, the process of how the improved versions of

PRISM incorporate this binary splitting approach in their implementations can be

described as follows:

• For each continuous attribute α in the training data:

1. Sort the data into ascending numerical order;

2. For each possible value in α (v1 , v2, ... vn) where n represents the

number of the distinct values in attribute α

(a) Calculate the conditional probability for a given target class Ci for

both rule-terms P(Ci|α ≤ v) and P(Ci|α > v)

3. Select the rule-term ( αj ) with the maximum conditional probability

that have been calculated in step 2a;

4. Add αj to the left-hand side of the target induced rule R.

Interestingly, the previous described method requires many cut-point calculations

for the conditional probabilities for each possible value, v of a numeric attribute

α. This would lead to a very high computational complexity in real world applica-

tions, which often involve discretising very large datasets.

Table 3.1: Example of a very simple small dataset

Continuous Attribute X Class Label
4 B
9 A
13 A
22 A
33 B
40 B
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For example, Table 3.1 shows a simple small dataset that compromises of just six

instances, one continuous attribute and two class labels. In order to induce a

single rule-term for class A only, 12 cut-point calculations are required, as shown

in the list below (3.3).

P(A |X ≤ 4) = 0.00 AND P(A |X > 4) = 0.60

P(A |X ≤ 9) = 0.50 AND P(A |X > 9) = 0.50

P(A |X ≤ 13) = 0.67 AND P(A |X > 13) = 0.33

P(A |X ≤ 22) = 0.75 AND P(A |X > 22) = 0.00

P(A |X ≤ 33) = 0.60 AND P(A |X > 33) = 0.00

P(A |X ≤ 40) = 0.50 AND P(A |X > 40) = 0.00


12 Cut-point Calculations (3.3)

Computationally, this is very inefficient, as it is extremely costly in time and space

complexity. Also, it is likely to be even more expensive with algorithms of the

PRISM family, given that they rely on the ‘separate-and-conquer’ search approach,

which may require many iterations to introduce a complete rule.

To address this issue, a new heuristic approach, which is based on Gaussian

Probability Density Distribution (GPDD) is proposed in this chapter to generate a

more efficient and expressive rule-term structure directly from numeric attributes.

Specifically, instead of creating two rule-terms of the form (α < v and α ≥ v) for

every possible value in a numeric attribute (α), only one rule-term of the form

(x ≤ α < y) is induced to describe an interval of data; where v is a discrete value,

x and y are valid continuous values of the attribute.

The new Gaussian based rule-term selects only a highly relevant range of val-

ues from a numeric attribute α for a given target class. Hence, the 12 cut-point

calculations that are described in Rule set 3.3 and used to induce one rule-term

for class A, can be replaced by a single rule, which is shown below:

if (9 ≤ α ≤ 22) Then A (3.4)

This would greatly enhance readability of the individual rules and potentially re-

duce overfitting. The next section will further explain this method theoretically,

while Section 3.7 will evaluate it empirically.

3.5.2 Using Probability Density Distribution to Deal with Con-

tinuous Attributes

The idea of utilising the Gaussian probability distribution in the learning process

of numeric features is driven by the fact that Gaussian or normal distribution can

be considered the most important and most widely used distribution in statistics
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and many natural phenomena are at least approximately normally distributed,

e.g. human blood pressure, weight, height, age, test scores, etc. [25, 143–146].

Normal distribution is also called the “Gaussian curve” after the mathematician

‘Karl Friedrich Gauss’, however, some studies refer the first discovery of the nor-

mal distribution to ‘Abraham de Moivre’ despite that his theorem about normal

distribution was lacked the concept of the probability density function. When the

values are normally distributed, the density distribution has a bell shape curve (the

height for a given value on the x axis) as shown in Figure 3.1. The parameters µ

and σ are the mean and standard deviation, respectively [144].

Furthermore, even if a dataset is not normally distributed, according to ‘Central

Limit Theorem’ (CLT) the distribution of the means of many samples generated

from the same dataset would be very nearly normally distributed. Therefore, the

more samples generated, the closer the distribution of their means would be to a

normal distribution [144]. Also, according to [145], the normality assumption is

valid if the sample size is large and the sample are considered to be large enough

if its size greater than 30.

Figure 3.1: Standard normal density function

Assume a dataset with a set of classification labels, C1, C2, C3, ..., Ci and a con-

tinuous attribute α. Using Gaussian distribution, we can find the specific value in

attribute α that is the most relevant one to a given class label Ci. The Gaussian

distribution is calculated with mean µ and variance σ2 from all the values of the

continuous attribute α that are associated with the target class label. Then in or-

der to create a rule-term αj the conditional density probability for class Ci can be

obtained using Equation 3.5.

P(αj|Ci) = P((αj|µ, σ2) =
1√
2πσ2

exp(−(αj − µ)2

2σ2
) (3.5)
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Hence, a value based on P(Ci|αj) or equivalently log(P(Ci|αj)) can be calcu-

lated using the Equation 3.6. This value is used to determine the posterior proba-

bility of a given class label Ci for a valid value of a numerical attribute αj.

log(P(Ci|αj)) = log(P(αj|Ci)) + log(P(Ci))− log(P(αj)) (3.6)

As shown in Figure 3.2, the greatest probability density is in the middle of

the distribution. Thus, from a generated Gaussian probability density distribution

(GPDD) for class label Ci, the range of values that extends to both sides from the

mean (µ) represent the highly relevant values of the attribute α, i.e. the shaded

area under the curve between lower bound (x) and upper bound (y). As a result,

a candidate rule-term αj can be simply produced in the form (x ≤ α < y).

Figure 3.2: The shaded area represents a range of values of attributes αj for class Ci

Generally speaking, the process of how to generate a rule-term for a target class

label using the GPDD based method can be summarised as follows:

1. For each continuous attribute, calculate a Gaussian distribution with mean µ

and variance σ2 from all the values of associated with a given target class.

2. For each numeric value of the current continuous attribute, calculate class

conditional density probability using equation 3.5 and then calculate the

posterior class probability using 3.6 for the target class.

3. From step 2, determine the mean of the distribution (µ), which is expected to

be the attribute’s value with the highest class conditional density probability

(see Figure 3.2).

4. Select the next lower bound (x) and the next upper bound (y), which rep-

resent the next two attribute’s values with the highest posterior probabilities

to both sides of the mean µ.

5. Create a candidate rule-term in the form (x ≤ α < y).
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The next section will examine the GPDD based rule-term approach by incor-

porating it in new modular rule based algorithms and then empirically compare it

with the other rule-term structure that is based on frequent cut-point calculations

approach.

3.6 G-Prism Algorithms: New Expressive Modular

Rule based Algorithms

For the purpose of improving the computational efficiency of PRISM family of al-

gorithms, ‘G-Prism algorithms’ are developed to produce the more expressive and

more efficient rule-terms directly from continuous attributes using the method as

introduced in the previous section. The letter ‘G’ stands for Gaussian probability

density distribution. Two versions of G-Prism are proposed in this Chapter: (1) ‘G-

Prism-FB algorithm’ where ‘FB’ refers to fixed size rule-term boundaries [19], (2)

‘G-Prism-DB algorithm’ where ‘DB’ stands for dynamic size rule-term boundaries

[20]. Notice that, these algorithms are among the contributions of the research

presented in this thesis, and are published in [19, 20]. The following subsections

will present each algorithm in depth.

3.6.1 G-Prism Algorithm with Fixed Rule-Term Bounds (G-Prism-

FB)

Algorithm 3 illustrates that G-Prism-FB utilises the ‘separate and conquer’ search

strategy. The outer loop iterates over classes, and thus rules are produced for a

given class at a time. Each rule is specialised term-by-term by selecting the term

that maximise the conditional probability of the rule for a target class. After a

complete rule is generated, all instances that covered by that rule are removed

from the current training dataset. G-Prism-FB algorithm handles the categorical

attributes in exactly the same way as other PRISM family members do, and thus

it produces a rule-term αj of the form (α = v) where v is a discrete value. Con-

cerning continuous attributes, G-Prism-FB can produce a computationally efficient

numeric rule-term αj in the form (x ≤ α < y) by using a class conditional density

probability of the Gaussian distribution function that has been proposed in Sec-

tion 3.5.2. x and y are valid continuous attributes values represented by the next

closest values left and right of the mean µ, i.e. the shaded area shown in Figure

3.2.
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Algorithm 3: Learning classification rules using G-Prism with Fixed
Bounds.

Notations: C: class label, D: training dataset, S: subset of D, α: attribute,
R: complete rule, v: discrete value, x and y: two numeric values,
αj: attribute-value

1 for i = 1→ C do
2 D ← Training Dataset;
3 while D does not contain only instances of class Ci do
4 forall attribute α ∈ D do
5 if attribute α is categorical then
6 Create a rule-term αj in the form (α = v) ;
7 Calculate the conditional probability, P(Ci|αj) for all possible

attribute-value αj from attribute α ;
8 else if attribute α is continuous then
9 Calculate mean µ and variance σ2 of continuous attribute α for class Ci ;

10 foreach value αj of attribute α do
11 Calculate P(αj |Ci) based on Gaussian distribution created in line 9 ;
12 end
13 Select attribute-value αj of attribute α, which has highest density in line

11 ;
14 Create a rule-term (x < α ≤ y) as explained in Section 3.5.2 ;
15 Calculate P(Ci|x < α ≤ y) ;
16 end
17 end
18 Select (α = v) or (x < α ≤ y) with the maximum conditional probability

(computed in lines 7 and 15) as best rule-term ;
19 Create a subset S from D containing all the instances covered by selected

rule-term at line 18 ;
20 D ← S

21 end
22 The induced rule R is a conjunction of all selected rule-terms built at line 18 ;
23 Remove all instances covered by rule R from Training Dataset ;
24 repeat
25 lines 2 to 23 ;
26 until all instances of class Ci have been removed form the training data;
27 Reset Training Data to its initial state ;
28 end
29 return induced Rules ;

3.6.2 G-Prism Algorithm with Dynamic Rule-Term Bounds (G-

Prism-DB)

As explained in the previous subsection, G-Prism-FB makes use of the next smaller

attribute value x and the next larger attribute value y from both sides of the mean

µ of the Gaussian distribution to find the most common values αj of continuous

attribute α for the target class Ci. Therefore, this algorithm targets the highest

density class probability P(x ≤ α < y|Ci) and thus it can generate rules that

are computationally less demanding compared with binary splitting approach as

demonstrated in Section 3.5.1. However, as it can be seen in Figure 3.3a, G-

Prism-FB uses a very conservative strategy for finding the best numeric rule-term

boundaries that may lie further left and right of the mean µ than just the next
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attribute values. This may result in the rules only covering few instances, which in

turn may lead to overfitting of rules and more rules to be induced. The empirical

evaluation conducted in this chapter investigates this issue in depth in Section 3.7.

To overcome this problem, the shaded area under the curve can be expanded

as shown in Figure 3.3b and thus more attribute values are tested before choosing

a highly relevant range of values that maximises the coverage of a rule for a target

class. This means that instead of generating one range in the form of (x < α ≤ y)

by selecting the next lower bound (x) and the next upper bound (y), more ranges

can be dynamically produced such as (x1 < α ≤ y3), (x3 < α ≤ y5), (x2 < α ≤
y4),... (xn < α ≤ yk) or (xk < α ≤ yn) where k refers to the number of numeric

rule-terms to be considered left and right of µ before deciding the best one and

n indicates the maximum number of possible rule-terms that can be tested per

attribute. Theoretically, the larger k value the larger coverage of data instances

for a single rule-term can be found. This new proposed approach, which is named

the ‘G-Prism with Dynamic Boundaries’ ( G-Prism-DB ) is outlined in Algorithm 4

and empirically evaluated in the next section.

(a) G-Prism-FB

P(6.5 < α ≤ 7.6) = 0.41

(b) G-Prism-DB

P(5.6 < α ≤ 8.4) = 0.83

Figure 3.3: Example of finding rule-terms with G-Prism. The shaded areas represent values of
attribute αj for class Ci

The example in Figure 3.3 demonstrates the key difference between the two

versions of G-Prism algorithms in terms of the coverage of a particular subset of

training instances for a numeric single rule-term. The shaded area in each curve

between the vertical lines represents the range of values αj for a particular class Ci,

which are selected to generate a rule-term. In this example with µ = 6.8 and σ2 =

1.0, G-Prism-FB generates the rule-term: (6.5 < α ≤ 7.6) which covers around

41% of all the possible values under the curve, whereas G-Prism-DB maximises the

coverage of the rule-term and thus generates: (5.6 < α ≤ 8.4) which covers more

than 83% of all the possible values under the curve.
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Algorithm 4: Learning classification rules using G-Prism with Dynamic
Bounds.

Notations: C: class label, D: training dataset, S: subset of D, α: attribute,
R: complete rule, v: discrete value, x and y: two numeric values,
αj: attribute-value, k: number of rule-terms, n: maximum number of
possible rule-terms

1 for i = 1→ C do
2 D ← Training Dataset;
3 while D does not contain only instances of class Ci do
4 forall attributes α ∈ D do
5 if attribute α is categorical then
6 Cretae a rule-term αj in the form (α = v) ;
7 Calculate the conditional probability, P(Ci|αj) for all possible

attribute-value (αj) from attribute α ;
8 else if attribute α is numerical then
9 calculate mean µ and variance σ2 of continuous attribute α for class Ci ;

10 foreach value αj of attribute α do
11 Calculate P(αj |Ci) based on Gaussian distribution created in line 9 ;
12 end
13 Select attribute-value αj of attribute α, which has highest density value

calculated in line 11 ;
14 for n = maxBound→ 1 do
15 for k = 1→ maxBound do
16 Create a rule-term in a form of (xn < α ≤ yk) as explained in

Section 3.5.2 ;
17 Calculate P(Ci|xn < α ≤ yk) ;
18 end
19 end
20 end
21 end
22 Select (α = v) or (xn < α ≤ yk) with the maximum conditional probability as a

rule-term ;
23 Create a subset S from D containing all the instances covered by selected

rule-term at line 22 ;
24 D ← S

25 end
26 The induced rule R is a conjunction of all selected rule-terms built at line 22 ;
27 Remove all instances covered by rule R from Training Dataset ;
28 repeat
29 lines 2 to 27 ;
30 until all instances of class Ci have been removed form the training data;
31 Reset Training Data to its initial state ;
32 end
33 return induced Rules ;

G-Prism-DB algorithm, as illustrated in Algorithm 4 (line 14), allows the user

to specify the maximum upper and lower bound based on µ and σ2, and thus

any combination of numeric rule-terms within these bounds is taken into account.

For example, if the user has chosen a bound of 3, then there are (32) possible

rule-terms that are need to be examined for this attribute before deciding the best

one. Nevertheless, the ideal boundary may lie beyond this predefined value. The-

oretically, it is possible not to impose a bound and allow any possible rule-term

combinations fanning out from µ. However, this is likely to result in a computa-
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tionally very expensive approach, especially if there are many distinct values for

a particular attribute. Also, statistically the larger the number of distinct values,

the more likely it is that the maximum boundary is close to µ and therefore it is

unlikely that rule-terms spanning far from the µ will cover many instances of the

target class.

Furthermore, as the algorithm follows a ‘separate and conquer’ strategy, the

number of training instances decreases over time. Thus, after each iteration µ and

σ2 are updated and the bounds are selected from the currently available values

of the continuous attribute for the current target class. Also, like other PRISM

family members, G-Prism-DB has the ability to abstain from making a classification

when it is uncertain. Regarding the categorical attributes, G-Prism-DB uses the

PRISM rule induction strategy to induce the discrete rule-terms as it can be seen in

Algorithm 4 (lines 5 - 7).

3.7 Empirical Evaluation of G-Prism Algorithms

The aim of the experimental evaluation, in this chapter, is to compare the perfor-

mance of the dynamic rule-term boundary in G-Prism-DB algorithm with the bi-

nary splitting in PRISM and the fixed rule-term boundary in G-Prism-FB algorithm.

As previously explained in Section 3.5.1, binary splitting is the local discretisation

method that has been applied to the PRISM family to deal with numerical attributes

as outlined in [5,69]. Therefore, the comparison presented here is against an im-

plementation of PRISM that incorprates the aforementioned extensions of PRISM

Family members. This implementation is referred here as PRISM.

3.7.1 Experimental Setup

All the three algorithms have been implemented in the statistical programming

language R [147]2. The fixed sized boundary of G-Prism-FB was set to one value

smaller and one value larger than µ. The dynamic sized boundary originally al-

lows the user to determine the lower and upper boundary. However, the current

experiment was set to allow a range up to 6 smaller and 6 larger values based on

µ and σ2. The algorithms have been applied to 11 datasets, which are described

in Table 3.2. These datasets were picked randomly from the UCI repository [17]

and the only condition being that they contain continuous attributes and involve

classification tasks. The reason for choosing datasets with continuous features

2All the source codes are available in a public online repository at https://github.com/
ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0 and are archived at https://doi.org/10.
5281/zenodo.5557590 [23].

https://github.com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0
https://github.com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0
https://doi.org/10.5281/zenodo.5557590
https://doi.org/10.5281/zenodo.5557590
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only is because the G-Prism-FB and G-Prism-DB algorithms are distinguished from

the original PRISM only with regard to dealing with continuous attributes. The

datasets have been randomly sampled without replacement into train and test

datasets. While the test set consists of 30% of the dataset, the remaining 70% were

used to build the classifiers. Please note that the same experiments on the same

datasets plus additional datasets were conducted within a comparative evaluation

in Chapter 5. The overal results for G-Prism versions were the same.

Table 3.2: List of Datasets used in the experiments

Dataset No. Instances No. Attributes No. Classes
1. iris 150 4 (cont) 3
2. seeds 210 7 (cont) 3
3. wine 178 13 (cont) 3
4. blood transfusion 748 5 (cont) 2
5. banknote 1372 5 (cont) 2
6. ecoli 336 8 (7 cont, 1 name) 8
7. yeast 1484 9 (8 cont, 1 name) 10
8. page blocks 5473 10 (cont) 5
9. user modelling 403 5 (cont) 4
10. breast tissue 106 10 (cont) 6
11. glass 214 10 (9 cont, 1 id) 7

The algorithms were evaluated on each of the datasets against the following 5

evaluation metrics:

• Number of rules: this is simply the total number of rules induced. A low

number of rules is desired.

• Abstaining Rate: PRISM, G-Prism-FB, G-Prism-DB algorithms abstain from a

classification if a case is not covered in the rule set. The abstain rate is the

ratio of instances that remain unclassified in the test set. A low abstain rate

may be desired.

• F1 score: this is the harmonic mean of precision and recall. A high F1 score

is desired.

• Accuracy: this is the ratio of data that have been correctly classified. In-

stances that not covered in the rule set are classified using the majority class

strategy. A high accuracy is desired.

• Tentative Accuracy: this is the ratio of data that have been correctly classified

among only the classification attempts. A high tentative accuracy is desired.

It is worth noting that there is a direct relationship between accuracy, tentative ac-

curacy and abstaining rate. The accuracy counts abstained instances as a potential

misclassification, because the majority class label in a dataset may not always be
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the correct prediction for all the abstained instances. Tentative accuracy does not

consider abstained instances. Therefore, the higher the abstaining rate, the lower

the accuracy and the higher the tentative accuracy.

3.7.2 Empirical Results

Table 3.3 and Table 3.4 show the results of the experiments with respect to the 5

evaluation metrics. In each table, the ‘#’ symbol refers to the index of the dataset

in Table 3.2. Regarding the number of Rules, Table 3.3 shows PRISM produces

fewer rules than G-Prism algorithms in 7 out of 11 datasets. However, comparing

both versions of G-Prism, G-Prism-DB is outperformed in all the 11 cases. In terms

of abstaining rate, which is the ratio of instances that remain unclassified in the

test set, Figure 3.4 shows that PRISM seems to have a lower abstaining rate in most

cases (9 out of 11). In comparison with G-Prism-FB, G-Prism-DB achieves a lower

abstaining rate in 7 out of 11 cases.

Table 3.3: Results of Number of Rules and Abstaining Rates

Datasets
#

Number of Rules Abstaining Rate

Prism
G-Prism

Prism
G-Prism

FB DB FB DB
1 12 20 9 0.04 0.02 0.04
2 19 73 30 0.02 0.06 0.10
3 12 55 16 0.06 0.19 0.11
4 19 109 46 0.00 0.32 0.10
5 13 466 176 0.00 0.09 0.08
6 51 113 49 0.04 0.28 0.21
7 78 595 287 0.00 0.28 0.12
8 138 1236 465 0.00 0.03 0.03
9 26 122 41 0.29 0.28 0.17

10 31 42 23 0.13 0.44 0.31
11 54 77 46 0.09 0.46 0.48

Table 3.4: Results of F1 score, Overall Accuracy and Tentative Accuracy

Datasets
#

F1 score Overall Accuracy Tentative Accuracy

Prism
G-Prism

Prism
G-Prism

Prism
G-Prism

FB DB FB DB FB DB
1 0.90 0.93 0.93 0.87 0.91 0.91 0.91 0.93 0.93
2 0.88 0.94 0.93 0.87 0.87 0.86 0.87 0.93 0.93
3 0.98 0.89 0.96 0.92 0.79 0.89 0.98 0.88 0.96
4 0.87 0.90 0.89 0.76 0.77 0.77 0.76 0.82 0.81
5 0.80 0.96 0.96 0.72 0.90 0.92 0.72 0.95 0.96
6 0.37 0.69 0.76 0.67 0.65 0.75 0.68 0.84 0.88
7 0.29 0.44 0.45 0.37 0.40 0.43 0.36 0.47 0.48
8 0.58 0.82 0.79 0.95 0.95 0.95 0.95 0.96 0.96
9 0.66 0.84 0.92 0.53 0.66 0.78 0.72 0.83 0.91
10 0.71 0.79 0.93 0.66 0.50 0.66 0.75 0.89 0.95
11 0.55 0.44 0.73 0.52 0.51 0.66 0.53 0.54 0.82
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Figure 3.4: Abstaining rates of PRISM, G-Prism-FB and G-Prism-DB

Moreover, Table 3.4 lists the results for the remaining evaluation metrics; F1

score, accuracy and tentative accuracy. For easier description of the contents of the

table, Figure 3.5 demonstrates the difference of the F1 score of G-Prism-FB and

G-Prism-DB compared with the basic PRISM, Figure 3.6 illustrates the difference

of the accuracy of G-Prism-FB and G-Prism-DB compared with the basic PRISM,

and Figure 3.7 presents the difference of the tentative accuracy of G-Prism-FB and

G-Prism-DB compared with the basic PRISM.

With respect to F1 score, Figure 3.5 shows that G-Prism algorithms outper-

forms PRISM in most cases (10 out of 11) and G-Prism-DB in particular achieves

the higher score in 7 out of these 10 cases compared with G-Prism-FB.

Figure 3.5: Difference of F1 score of G-Prism-FB and G-Prism-DB compared with Prism
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Regarding overall accuracy, as can be seen in Figure 3.6, G-Prism-DB achieves

the better accuracy compared with PRISM in 7 out of 11 datasets. However, in the

cases where G-Prism-DB did not outperform PRISM, its accuracy only marginally

lower. Comparing with PRISM, G-Prism-FB has a higher accuracy in 5 datasets and

in 4 it does not; however, it performs at the same level with PRISM at 2 cases.

In terms of tentative accuracy, as can be seen in Figure 3.7, both versions of G-

Prism outperform PRISM, both achieve a higher tentative accuracy in 10 out of

11 datasets. Also, G-Prism-DB achieves a better accuracy in 7 out of 11 cases in

comparison with G-Prism-FB. In all cases where G-Prism-DB did not perform better

than G-Prism-FB, it achieved only marginally lower tentative accuracy.

Figure 3.6: Differences in overall Accuracy of G-Prism-FB and G-Prism-DB compared with Prism

Figure 3.7: Differences in Tentative Accuracy of G-Prism-FB and G-Prism-DB compared with Prism
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3.7.3 Interpretation of Results

Overall, comparing with the original PRISM algorithm, it can be seen that both ver-

sions of G-Prism algorithm are outperformed in most cases, in terms of the three

evaluation metrics (F1 score, overall accuracy, and tentative accuracy). However,

with regards to the number of rules and abstaining rates, PRISM outperforms G-

Prism algorithms in most cases. The high abstaining rates in G-Prism approaches

could potentially link to the high number of rules induced by G-Prism. In other

words, a large number of rules with little coverage of each rule means that the

model might have overfitted the training data and hence fewer test data can be

covered by the rule set.

Comparing the two approaches of G-Prism with each other, the main differ-

ence between them as previously illustrated in Figure 3.3 is that G-Prism-DB had

a dynamic rule-terms boundaries that are either the same or cover a wider range.

Therefore, in all cases, G-Prism-DB produces fewer rules but covering a larger

number of training instances compared with G-Prism-FB. Also, in terms of the

remaining measurements, all the figures in this section show that G-Prism-DB al-

gorithm outperforms G-Prism-FB in most cases. Generally speaking, G-Prism-DB

achieves a better classification performance compared with Prism and G-Prism-FB.

However, more improvements are required to reduce the number of rules compar-

ing with the basic Prism. Moreover, some limitations that exist in both G-Prism

algorithms will be highlighted and addressed in the next chapter.

3.8 Summary

This chapter has discussed a number of limitations that exist in separate and con-

quer approaches, namely PRISM family of algorithms. It has focused specifically

on the challenges in dealing with numeric attributes. A common way to handle

this issue is to convert numerical features into categorical ones, i.e. known as ‘dis-

cretisation’. Therefore, Section 3.4 has thoroughly reviewed a number of discreti-

sation methods, which have been categorised into local and global. Local discreti-

sation such as cut-point calculations and global discretisation such as ChiMerge

and CAIM methods are illustrated in Section 3.4.1. The computational issues with

discretising continuous attributes using cut-points calculations in PRISM family of

algorithms are investigated in Section 3.5.1.

Subsequently, a new computationally efficient approach of constructing nu-

merical rule-terms in the form (x ≤ α < y) instead of two separate rule-terms

combinations was proposed in Section 3.5.2. The new rule-term structure is based

on Gaussian Probability Density Distribution (GPDD) and it has been utilised to
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develop two new members in PRISM family of algorithms; termed G-Prism-FB and

G-Prism-DB, which were proposed in Section 3.6.1 and Section 3.6.2 respectively.

These two algorithms are among the contributions of this project and they were

published in [19,20].

The main difference between these two algorithms as illustrated in Figure 3.3

is that G-Prism-DB had a dynamic rule-terms boundaries that can be set by the user

to expand the coverage of each rule and thus cover a larger number of instances.

An empirical performance evaluation of G-Prism algorithms and basic PRISM is

detailed in Section 3.7. The results show that the classification performance of

G-Prism-DB algorithm is better than PRISM and G-Prism-FB in most cases with

regard to these 3 metrics: F1 score, accuracy and tentative accuracy. In terms

of abstaining rate and number of rules induced, PRISM algorithm performs better

than both G-Prism approaches in most cases. Therefore, an improvement to the

results can be made to the more accurate algorithm in this chapter (G-Prism-DB)

to reduce the number of rules induced. The following chapter will investigate

and address this issues, in addition to a number of other limitations that exist in

G-Prism approaches.



Chapter 4

G-Rules-IQR: a Classifier with
Expressive, Explainable and
Accurate Rule-Terms

This chapter introduces a new rule-based algorithm, called G-Rules-IQR, which

is based on a combination of GPDD approach1, Interquartile Range (IQR), and

a transformation approach towards normally distributed data. The chapter also,

illustrates the methods that have been integrated in G-Rules-IQR theoretically and

empirically. Please note that G-Rules-IQR algorithm is among the contributions of

the research presented in this thesis, and it is published in [21].

4.1 Introduction

The previous chapter introduced a new method based on the density class prob-

ability from Gaussian distribution to extract numerical rule-terms directly from

continuous attributes. This new rule-term structure was integrated into two new

rule-based algorithms; termed G-Prism-FB and G-Prism-DB. The algorithms are

resulted in a better accuracy compared with the original Prism. Comparing both

version of G-Prism, G-Prism-DB generally achieves a better classification perfor-

mance compared with G-Prism-FB. However, it is possible that this approach could

be improved. As a result, the following research objective, which was partially met

in the previous chapter is fully met in the current chapter:

1GPDD stands for Gauss Probability Density Distribution which is presented in Chapter 3 (see
Section 3.5.2)

98
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Objective 2: “To measure and compare the expressiveness of rule based mod-
els and develop an appropriate rule-based predictive algorithm suitable as
base learner for an ensemble.”

Measuring the expressiveness of a rule-based learner often depends on the com-

plexity of its rule set. A rule set is considered more expressive when it produces

fewer number of rules with less complex terms per rule.

This chapter highlights some problems that exist in G-Prism algorithms. The

solutions resulting in a new rule induction classifier, termed ‘G-Rules-IQR’ are

presented. The proposed algorithm is based on quartiles and Interquartile Range

(IQR) to derive the upper and lower boundaries of rule-terms. This is introduced

in Section 4.5 and evaluated against three different implementations of the origi-

nal Prism and the two versions of G-Prism.

The main advantage of this approach is that the generated rule-terms are more

expressive and computationally less demanding compared with the local discreti-

sation approach (binary splitting) in PRISM family and dynamic boundaries ap-

proach in G-Prism. Therefore, G-Rules-IQR classifier is expected to be more ap-

propriate to be used as base classifier to the ensemble system that can sufficiently

meet the final goal of this thesis, which is to develop a predictive ensemble learner

that is human-readable (expressive) while retaining the key advantage of ensem-

bles which are the better accuracy than its stand-alone base classifiers.

Moreover, in Sections (4.3, 4.4 and 4.5.1), the chapter explains the methods

utilised or developed to overcome the aforementioned shortcomings of G-Prism

algorithms and then incorporated in G-Rules-IQR as shown in Figure 4.4. Lastly, a

short summary of this chapter is provided.

4.2 Limitations in G-Prism Algorithms

As previously discussed, G-Prism-FB and G-Prism-DB algorithms use a new heuris-

tic rule-term induction method, which handles the continuous attributes more ef-

ficiently than original PRISM algorithm. However, there are 4 limitations of these

algorithms that can be highlighted as follows:

1. User defined threshold. Regarding the more accurate G-Prism-DB classifier,

the user has to define the maximum number rule-term boundary values to

the left and right of µ (by default, six values to the left and six values to

the right). However, the optimal boundary may lie beyond this user defined

value and is dependent on the number of training instances. Statistically, the

larger the number of training instances, the more likely that the ideal bound-

aries are closer to mean, i.e. the need to define a large number rule-term
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boundary values becomes less important. Nevertheless, being constraint by

an external parameter takes from the user can be considered an obstacle.

2. Normal Distribution Assumption. Although this assumption is common in

many statistical procedures and models [148], it may not be accepted in

some applications and thus considered a drawback. The experiments of

both versions of G-Prism algorithms described in the previous chapter (Sec-

tion 3.7) did not test the attributes’ distributions in the experiments. Despite

that the results reflect a good performance for G-Prism-DB algorithm in most

cases, it is still possible that the algorithm may not perform as well on at-

tributes that are not normally distributed due to the use of GPDD. Normality

assumption in classification tasks will be further discussed in Section 4.4

3. Abstaining rate. The experiments conducted in the previous chapter show

that the abstaining rates for both approaches of G-Prism are higher than the

one of original Prism. This was the reason for decreasing the accuracy of the

classifiers in some cases despite the higher tentative accuracy values. This is

because abstained instances were counted as misclassification.

4. Execution time: Although this evaluation metric not has been used in the

empirical evaluation detailed in Section 3.7, it is expected that Prism and

G-Prism-DB are computationally more expensive than G-Prism-FB as a re-

sult of additional and frequent cut-point calculations for Prism and multiple

additional rule-term bounds evaluations for G-Prism-DB.

Regarding problem (1) the user defined rule-term boundary threshold, which is

required by G-Prism-DB algorithm, this chapter proposes a new rule-term structure

based on Interquartile Range (IQR) to addresses this issue. Statistically, IQR is a

popular way to measure the dispersion (spread) of a numerical dataset. The next

section illustrates the concept of IQR and its advantages of using it to induce rule-

terms from continuous attributes.

In terms of problem (2) the normality distribution assumption, a solution to

overcome this obstacle is proposed in Section 4.4. With respect to obstacles (3)

and (4), they will be investigated in depth in the evaluation part of this chapter

(Section 4.6).

4.3 Measuring the Dispersion of Numerical attributes

The degree to which numerical data tend to spread is called the dispersion or

variability. The most widely used measures of data dispersion are standard devi-

ation, variance, quartiles, and IQR. The dispersion measures refer to how often
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and how much they differ from the mean µ [1]. Variance is the most commonly

used dispersion measure. The standard deviation is the square root of the vari-

ance. Quartiles as shown in Figure 4.1 are the values that divide the probability

density function into four parts with an equal amount of data points (25% each).

The second quartile (Q2) is identical to the median. The lower quartile, denoted

by Q1 in the figure, is the 25th percentile; and the upper quartile, denoted by Q3,

is the 75th percentile. The IQR represents the range of attribute values that cover

the middle half of the dataset, which is equal to Q3−Q1. While the standard de-

viation and variance are very sensitive to a single large or small value (outliers),

quartile and IQR are robust to outliers. Also, IQR is very useful for describing

skewed distributions [1].

Figure 4.1: Interquartile Range (IQR) of normal random variables

Advantages of using IQR Over the Mean and Variance to Measure

the Spread of the Dataset:

The two examples shown in Figure 4.2 and Figure 4.3 demonstrate the robustness

of the IQR based method against the outliers in comparison to the variance based

method. Assume that the continuous attribute values that are shown in each figure

are under the Gaussian curve, and they are all relevant to the same target class.

Notice that the attribute’s values in Figure 4.3 include an extreme outlier value

(400). In both figures, the numbers indicated by the letter (a) represent the upper

and lower boundaries that can be extracted using the mean and variance, while

(b) indicates the upper and lower boundaries that can be derived using IQR.
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Figure 4.2: An example of inducing a numerical rule-term from an attribute’s values of a target
class. (a) Rule-term generated using mean and variance; (b) Rule-term generated using IQR

From the attribute’s values presented in Figure 4.2, the following values can be

computed:

Mean(µ) = 19

first quartile (Q1) = 7

second quartile (Median) = 16

Third quartile (Q3) = 32

Interquartile Range (IQR) = 25


measures of spread

Figure 4.3: An example of inducing a numerical rule-term from an attribute’s values of a target
class with an extreme outlier added to it. (a) Rule-term generated using mean and variance; (b)
Rule-term generated using IQR
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From the attribute’s values that contained an extreme outlier value (400), shown

in Figure 4.3, the following values can be computed:

Mean(µ) = 53.63

first quartile (Q1) = 8

second quartile (Median) = 19

Third quartile (Q3) = 35

Interquartile Range (IQR) = 27


measures of spread

Comparing the measures of spread results demonstrates that the IQR based method

is not effected by outliers as the IQR value only slightly changed from 25 to 27, and

thus Q1 and Q3 locations are almost unchanged. However, the mean has been con-

siderably effected by the outlier as its value changed from 19 to 53.63 and thus its

location has moved a lot toward the outlier.

4.4 Assumption of Normality

Assuming that the underlying data is normally distributed is one of the most com-

mon assumptions made in the development and use of statistical procedures and

models. It has a considerable attention in the literature and therefore there are

more tests designed specifically to assess normality than for any other distribu-

tion [148]. Generally speaking, the assumption is based on a number of Central

Limit Theorem (CLT) characteristics, which can be summarised as follows:

• The distribution of a random sample generated from a dataset would be

very nearly normally distributed if the sample size is large enough, even if

the dataset itself is not normally distributed.

• If a random sample derived from normal distributed data is drawn, then the

distribution of the sample is normal distributed regardless of its size.

• The distribution of means of many random samples generated from the same

dataset with any distribution would tend to be normally distributed.

Furthermore, the experiments conducted in [149, 150] conclude that the viola-

tion of the normality is not a major issue when we have samples of hundreds of

observations. Because of the above points, the approaches developed in the pre-

vious chapter (G-Prism algorithms) are dealing with continuous attributes based

on the assumption that the values come from a normal or Gaussian distribution.

However, if this assumption is not justified, then Section 4.5.1 proposes an ap-

proximation method toward normally distributed data, which can overcome or
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considerably mitigate this limitation. The approach utilises a prior normality test

to decide whether the assumption is at least approximately satisfied or not. The

next section introduces the methods adopted in this research for normality test.

Normality Tests:

There are two main methods of assessing normality: Graphical and numerical.

Graphical or visual methods might be useful when sample sizes are very small or

very large. However, to avoid the wrong interpretations of the graphical tests, it

might be the best to rely on the numerical methods [150].

There are several numerical approaches available to test the normality of con-

tinuous attributes, among them are the two widely used: Shapiro-Wilk test [151]

and Jarque–Bera test [152]. The former is based on the correlation between the

data and the corresponding normal scores, and the latter is based on the function

of the measures of skewness S and kurtosis K compared from the sample [153].

Under normality, the values of S and K in Jarque-Bera test are 0 and 3 respec-

tively. According to [150,153,154], Shapiro-Wilk test is more suitable method for

small sample sizes ( < 50 samples ) whereas Jarque-Bera become more powerful

while the sample size increases.Noticeably, the sizes of all the datasets used in the

experimental studies in this thesis that have been conducted in the current project

are larger than 50 instances. Therefore, Jarque-Bera is chosen in this thesis for

testing the normality of data before using the new rule-based algorithm that will

be proposed in the next section.

4.5 G-Rules-IQR Algorithm

G-Rules-IQR, a rule-based algorithm, was developed with the aim of overcoming

or mitigating some limitations and drawbacks of both versions of G-Prism algo-

rithm that have been listed in Section 4.2. The new proposed approach is pre-

sented in Algorithm 5 and is expected to be not only expressive but also more

accurate and fast compared with its predecessors in order to fully meet objective

2. The following subsections describe the procedures incorporated in G-Rules-IQR

algorithm, which are summarised in Figure 4.4.

4.5.1 Transformation for Skewed Distribution

One of the major limitations of G-Prism-FB and G-Prism-DB algorithms is the as-

sumption of normally distributed attributes. In order to address this obstacle,

G-Rules-IQR algorithm integrates a testing for normality for each attribute in the
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Figure 4.4: The main approaches incorporated in G-Rules-IQR algorithm

dataset as shown in Figure 4.4. The test is carried out prior to the application of

G-Rules-IQR algorithm using the widely used normality test, Jarque-Bera. Hence,

if values of an attribute at a particular target class are not normally distributed,

then the algorithm would apply an approximate normal transformation of the at-

tribute’s values with respect to that target class. In other words, it reduces the

skewness of attribute values from the normal distribution. A simple and common

method to achieve the transformation for a skewed long-tailed dataset is to take

the logarithm of the skewed attribute values [148]. This method of approximation

to normal distribution is utilised in this research.

4.5.2 A new approach to induce numerical rule-terms using

Quartiles and Interquartile Range (IQR)

It can be seen from Figure 4.4 that the proposed G-Rules-IQR algorithm uses the

GPDD-based approach, which was introduced in the previous chapter (Section

3.5.2) to find the most relevant values of an attribute for a target class. In this

approach, as shown in Algorithm 5, the Gaussian distribution is calculated for

each continuous attribute α from all the values associated with a classification Ci.

Then, the class conditional density probability for each numeric attribute-value

αj of the target class Ci is calculated ( line 11 ). The attribute-value αj, which

has the highest density is then selected. To create a candidate rule-term from αj

in the form (x ≤ α < y), G-Rules-IQR incorporates the quartiles method, which

divides the probability density function into four parts with an equal amount of
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data points (25% each). The main idea of the method was previously explained

in Section 4.3 (Figure 4.1), and the size of its coverage is dependent on the size

of the dataset. Specifically, G-Rules-IQR makes use of the difference between the

third and the first quartiles as in Equations 4.1 to find the upper rule-term and the

lower rule-term boundaries. σ is the standard deviation from the mean, z1 is the

fixed score of the first quartile and is (≈ −0.67), while z3 is the fixed score of the

third quartile and is (≈ 0.67).

Q1 = (σ ∗ z1) + x

Q3 = (σ ∗ z3) + x

IQR = Q3 −Q1

(4.1)

Algorithm 5: Learning classification rules using G-Rules-IQR Algorithm
Notations: C: class, D: training dataset, S: subset of D, α: attribute, R: complete rule, v: discrete value,

x , y: two numeric values, αj : attribute-value

1 for i = 1→ C do
2 D ← Training Dataset;
3 while D does not contain only instances of class Ci do
4 forall attributes α ∈ D do
5 if attribute α is categorical then
6 Create a rule-term αj in the form (α = v) ;
7 Calculate the conditional probability, P(Ci|αj) for all possible attribute-value (αj) from

attribute α ;
8 else if attribute α is continuous then
9 Calculate mean µ and variance σ2 of continuous attribute α for class Ci ;

10 foreach value αj of attribute α do
11 Calculate P(αj |Ci) based on Gaussian distribution created in line 9 ;
12 end
13 Select attribute-value αj of attribute α which has highest density in line 11 ;
14 Compute 1st and 3rd quartile using zscore values ;
15 zScore = 0.67 ;
16 x = σ ∗ (−zScore) + αj ;
17 y = σ ∗ (zScore) + αj ;
18 Create a rule-term (x < α ≤ y) ;
19 Calculate P(Ci|x < α ≤ y) ;

20 end

21 end
22 Select (α = v) or (x < α ≤ y) with the maximum conditional probability (computed in lines 7 and 19)

as best rule-term ;
23 Create a subset S from D containing all the instances covered by selected rule-term at line 22 ;
24 D ← S

25 end
26 The induced rule R is a conjunction of all selected rule-terms built at line 22 ;
27 Remove all instances covered by rule R from Training Dataset ;
28 repeat
29 lines 2 to 27 ;
30 until all instances of class Ci have been removed form the training data;
31 Reset Training Data to its initial state ;

32 end
33 return induced Rules ;
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4.6 Comparative Experimental Evaluation of G-Rules-

IQR Algorithm

The aims of the experiments in this chapter are:

• To evaluate the performance of G-Rules-IQR algorithm compared with its

predecessors G-Prism-FB and G-Prism-DB. Unless stated otherwise, the de-

fault parameters of these algorithms as stated in Section 3.6 have been used.

The implementation of G-Rules-IQR allowed to switch off the transformation

to approximate normal distribution.

• To compare G-Rules-IQR and the G-Prism algorithms with original PRISM

ALGORITHM using three different discretisation methods to handle the con-

tinuous attributes indirectly. Further explanations about these versions of

PRISM are given in Section 4.6.2.

4.6.1 Experimental Setup

All the experiments were performed on a 2.3 GHz Intel Core i7 machine with 16

GB DDR3 memory, running macOS High Sierra version 10.13.2. The procedure

used in this experimental evaluation is hold-out procedure. All the 18 datasets

used in the experiments were picked randomly from the UCI repository [17], the

only condition being that they contain continuous attributes and involve classifi-

cation tasks.

Table 4.1: List of Datasets used in the experimental evaluation of G-Rules-IQR algorithm

# Dataset No. Attributes No. Classes No. Instances
1. iris 4 (cont) 3 150
2. seeds 7 (cont) 3 210
3. wine 13 (cont) 3 178
4. blood transfusion 5 (cont) 2 748
5. banknote 5 (cont) 2 1372
6. ecoli 8 (7 cont, 1 name) 8 336
7. yeast 9 (8 cont, 1 name) 10 1484
8. page blocks 10 (cont) 5 5473
9. user modelling 5 (cont) 4 403
10. breast tissue 10 (cont) 6 106
11. glass 10 (9 cont, 1 id) 7 214
12. HTRU2 9 (cont) 2 17898
13. magic Gamma 11 (cont) 2 19020
14. wine quality-white 12 (cont) 11 4898
15. letter recognition 17 (cont) 26 20000
16. breast cancer 11 (10 cont, 1 id) 2 699
17. post-operative 9 (8 categ, 1 cont) 3 90
18. EEG eye state 15 (cont) 2 14980
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All algorithms have been implemented in the statistical programming language

R [147] and re-used the same code base, differing only in the methodological as-

pects described in this chapter. The datasets have been randomly sampled without

replacement into train and test datasets; whereas the test set consists of 30% the

dataset and the remaining 70% was used to learn the ruleset. The datasets are

described in Table 4.1 in terms of number of instances, attributes (and type of

attributes) and classes. Datasets 16 and 17 contained missing values. Missing cat-

egorical values have been replaced with the most frequent categorical value for

the concerning attribute, and missing continuous values have been replaced with

the average value for the concerning attribute. These metrics were the Number

of Rules, Abstaining Rate, F1 score, Accuracy, Tentative Accuracy, and Execution

Time. The descriptions of the metrics can be found in Section 3.7.1.

Please consider that there is a relationship between accuracy, tentative accu-

racy and abstaining rate. The accuracy counts abstained instances as misclassi-

fication, and tentative accuracy does not include abstained instances. Therefore,

the higher the abstaining rate, the lower the accuracy and the higher the tentative

accuracy.

4.6.2 Implemented Versions of Original PRISM using Different

Types of Local and Global Discretisation Methods

Three different versions of original PRISM are implemented in this research for

comparative purposes. All these versions are based on discretisation methods

used to handle continuous attributes and varied only in the type of discretisation.

G-Rules-IQR was compared against these variations of PRISM, which are briefly

described as follows:

1. Prism-CutP: PRISM algorithm using a binary splitting and cut-point calcula-

tions (top-down local discretisation method). It is similar to the extended

version of PRISM algorithm as introduced in [69, 71]. This implementation

is referred to in this work as original PRISM algorithm.

2. Prism-ChiM: PRISM algorithm using ChiMerge (bottom-up global discretisa-

tion method), which is a well-known approach used to deal with continuous

attributes in classification tasks [138].

3. Prism-CAIM: PRISM algorithm using CAIM (top-down global discretisation

method), which does not require user defined parameters [139]. It is deter-

mined as the interdependency between the target class and the discretisation

scheme of a continuous attribute.
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4.6.3 Results and Interpretation

Tables 4.2 to 4.7 show the results of the experiments in terms of 6 evaluation

metrics. In each table the ‘#’ symbol indicates the index of the dataset in Table

4.1. ‘T’ denotes that the transformation to normal distribution was switched on.

The best result(s) in the tables for each dataset are highlighted in bold letters.

Table 4.2: G-Rules-IQR Experimental Results: Number of Rules

#
Prism G-Prism G-Rules

DB FB IQR
CutP ChiM Caim T T T

1 12 8 9 9 10 20 21 18 18
2 17 27 22 30 27 73 71 31 22
3 15 18 11 16 21 55 38 26 13
4 18 48 7 46 17 109 58 60 20
5 14 196 8 176 250 466 483 101 89
6 57 72 83 44 52 108 97 91 53
7 51 556 537 219 117 511 218 270 132
8 110 412 223 465 430 1236 1325 205 215
9 24 78 46 41 49 122 122 67 57
10 17 33 31 23 17 42 44 32 28
11 56 63 64 45 40 75 81 67 30
12 77 789 39 3928 2074 6292 7107 894 31
13 25 3929 129 3133 4563 7177 8281 3467 155
14 74 1827 1511 923 577 1576 1229 1643 171
15 868 3801 3901 843 320 2334 844 2600 875
16 33 41 37 23 6 48 9 49 11
17 30 32 31 30 30 30 30 29 29
18 37 3706 516 2602 4650 5603 7009 4585 4423

Table 4.3: G-Rules-IQR Experimental Results: Abstaining Rate

#
Prism G-Prism G-Rules

DB FB IQR
CutP ChiM Caim T T T

1 0.09 0.00 0.04 0.04 0.02 0.02 0.02 0.07 0.07
2 0.17 0.05 0.03 0.10 0.10 0.06 0.05 0.03 0.03
3 0.17 0.11 0.08 0.11 0.04 0.19 0.04 0.17 0.06
4 0.00 0.02 0.00 0.10 0.02 0.23 0.00 0.08 0.00
5 0.00 0.10 0.00 0.08 0.13 0.09 0.09 0.00 0.02
6 0.14 0.11 0.12 0.24 0.10 0.31 0.16 0.20 0.08
7 0.07 0.17 0.16 0.36 0.08 0.45 0.08 0.36 0.07
8 0.01 0.05 0.01 0.03 0.03 0.03 0.03 0.04 0.02
9 0.50 0.26 0.03 0.17 0.12 0.28 0.28 0.19 0.30
10 0.31 0.06 0.06 0.31 0.19 0.44 0.22 0.19 0.19
11 0.11 0.08 0.20 0.54 0.12 0.46 0.14 0.42 0.11
12 0.00 0.03 0.00 0.02 0.00 0.03 0.00 0.01 0.00
13 0.00 0.23 0.00 0.31 0.00 0.34 0.01 0.16 0.00
14 0.00 0.22 0.12 0.40 0.01 0.35 0.02 0.41 0.01
15 0.38 0.13 0.14 0.16 0.01 0.16 0.03 0.15 0.04
16 0.02 0.01 0.00 0.03 0.00 0.02 0.02 0.02 0.00
17 0.04 0.04 0.11 0.04 0.04 0.04 0.04 0.11 0.11
18 0.00 0.16 0.01 0.35 0.15 0.33 0.12 0.23 0.19
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Tabel 4.2 demonstrates the results of the number of rules generated. A small

number of rules is desired. This is the only metric where the basic Prism (par-

ticularly Prism-CutP) outperforms G-Rules-IQR classifier and G-Prism classifiers.

Nevertheless, comparing with G-Prism-FB and G-Prism-DB approaches, G-Rules-

IQR is outperformed on the transformed data on all the datasets and in some cases

it produces fewer rules than original Prism.

Table 4.3 shows the abstaining rate results. As previously explained in Section

3.7.1, the abstaining rate for rule-based predictions is the percentage of data in-

stances remaining unclassified due to no matching rules being available. This may

be a desirable feature in critical applications where a false classification is very

costly, such as in health, safety and finance. However, the lower the abstaining

rate the better for most applications. In general, the results show that there is no

clear winner in terms of abstaining rate. However, Prism-CutP and Prism-Caim

abstain less than their competitors, as it can be seen in Table 4.3 and Figure 4.5.

Table 4.4: G-Rules-IQR Experimental Results: F1 score

#
Prism G-Prism G-Rules

DB FB IQR
CutP ChiM Caim T T T

1 0.93 0.91 0.95 0.93 0.91 0.93 0.93 0.96 0.96
2 0.96 0.97 0.95 0.93 1.00 0.89 1.00 0.94 1.00
3 0.98 0.93 0.92 0.96 0.98 0.98 0.98 0.89 0.98
4 0.87 0.87 0.87 0.89 1.00 0.90 1.00 0.89 0.98
5 0.80 0.99 0.94 0.96 0.97 0.96 0.97 0.98 0.99
6 0.77 0.61 0.71 0.72 0.80 0.72 0.61 0.62 0.79
7 0.33 0.53 0.55 0.49 0.75 0.49 0.81 0.54 0.86
8 0.64 0.74 0.78 0.80 0.84 0.82 0.85 0.89 0.93
9 0.82 0.91 0.87 0.92 0.86 0.84 0.84 0.94 0.96
10 0.81 0.73 0.83 0.93 0.93 0.79 0.77 0.80 0.81
11 0.64 0.73 0.84 0.67 0.97 0.44 0.90 0.61 0.86
12 0.96 0.99 0.99 0.99 1.00 0.99 1.00 0.99 1.00
13 0.80 0.98 0.85 0.88 0.95 0.87 0.95 0.91 1.00
14 0.29 0.49 0.35 0.50 0.95 0.50 0.79 0.55 0.79
15 0.90 0.82 0.83 0.87 0.99 0.88 0.99 0.88 0.99
16 0.97 0.97 0.97 0.97 1.00 0.98 1.00 0.98 1.00
17 0.38 0.53 0.69 0.49 0.49 0.49 0.49 0.52 0.52
18 0.71 0.83 0.76 0.79 0.79 0.77 0.78 0.87 0.86

Table 4.4 details the results of the F1 score for each of the classifiers in the

experiments. As can be seen in Equation 4.2, F1 score is the harmonic mean of

precision and recall. In multi-class classification problems, precision and recall are

computed by taking an average of these metrics’ values for each class.

F1 score = 2 · precision · recall
precision + recall

(4.2)

The results show that G-Rules-IQR classifier with transformation aspect achieved
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the best score on 11 out of 18 datasets. For most of the remaining 7 datasets

where G-Rules-IQR-(T) did achieve the best F1 score, it was still close to the best

performing F1 score, in particular for 3 datasets it was at most only 3% lower than

the best F1 score.

Table 4.5: G-Rules-IQR Experimental Results: Accuracy

#
Prism G-Prism G-Rules

DB FB IQR
CutP ChiM Caim T T T

1 0.87 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
2 0.92 0.95 0.94 0.86 0.90 0.87 0.95 0.87 0.97
3 0.89 0.83 0.85 0.89 0.96 0.79 0.94 0.85 0.94
4 0.76 0.77 0.77 0.77 0.98 0.77 1.00 0.77 0.97
5 0.72 0.93 0.94 0.92 0.92 0.90 0.93 0.98 0.98
6 0.77 0.75 0.75 0.72 0.85 0.65 0.77 0.73 0.91
7 0.37 0.51 0.51 0.44 0.87 0.46 0.89 0.49 0.89
8 0.95 0.95 0.96 0.95 0.97 0.95 0.97 0.96 0.98
9 0.61 0.74 0.83 0.78 0.76 0.66 0.66 0.82 0.72
10 0.59 0.72 0.81 0.66 0.78 0.50 0.69 0.66 0.66
11 0.60 0.77 0.75 0.55 0.86 0.51 0.83 0.58 0.86
12 0.92 0.97 0.98 0.97 1.00 0.96 0.99 0.98 1.00
13 0.67 0.86 0.80 0.74 0.94 0.72 0.93 0.80 1.00
14 0.49 0.63 0.58 0.56 0.98 0.59 0.97 0.60 0.99
15 0.57 0.72 0.71 0.73 0.98 0.75 0.96 0.75 0.96
16 0.96 0.95 0.96 0.94 1.00 0.96 1.00 0.96 1.00
17 0.59 0.74 0.74 0.63 0.63 0.63 0.63 0.67 0.67
18 0.56 0.75 0.70 0.67 0.71 0.66 0.72 0.77 0.77

Table 4.5 illustrates the results of the accuracy for each classifier implemented

in the experiments. Please note that instances that have not covered in the rule

set are classified using the majority class strategy and counted in this metric. G-

Rules-IQR (T) accomplished the best accuracy in 12 out of 18 datasets. On 3 out

of the remaining 6 cases, G-Rules-IQR was not the best but was still very close

within 3% of the best accuracy. On the other remaining 3 datasets (9 , 10 and

17), G-Rules-IQR’s accuracy was much lower than the other evaluated classifiers.

However, these datasets also cause a relatively high abstaining rate, and therefore

they had been classified using the majority class method.

Table 4.6 lists the results of the tentative accuracy. G-Rules-IQR classifier with

transformation achieved the highest tentative accuracy on 13 out of 18 datasets

and on 3 out of the remaining 5 datasets its accuracy was within 3% of the best

tentative accuracy.

Table 4.7 demonstrates the results of the execution times. These also include

the time needed approximating normal for G-Prism classifiers and G-Rules-IQR.

As can be seen in the table, G-Rules-IQR with transformation achieved shortest

execution times on 15 out of 18 datasets. Thus, it outperforms the remaining

G-Prism classifiers and all three versions of basic Prism algorithm.
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Table 4.6: G-Rules-IQR Experimental Results: Tentative Accuracy

#
Prism G-Prism G-Rules

DB FB IQR
CutP ChiM Caim T T T

1 0.93 0.91 0.95 0.93 0.91 0.93 0.93 0.95 0.95
2 0.96 0.97 0.95 0.93 1.00 0.93 1.00 0.89 1.00
3 0.98 0.94 0.92 0.96 0.98 0.88 0.98 0.98 0.98
4 0.76 0.78 0.77 0.81 1.00 0.82 1.00 0.80 0.97
5 0.72 0.99 0.94 0.96 0.97 0.95 0.97 0.98 0.99
6 0.86 0.81 0.83 0.86 0.91 0.86 0.86 0.84 0.94
7 0.40 0.54 0.57 0.54 0.95 0.58 0.96 0.59 0.97
8 0.95 0.97 0.97 0.96 0.98 0.96 0.97 0.98 0.99
9 0.83 0.91 0.86 0.91 0.85 0.83 0.83 0.94 0.95
10 0.86 0.77 0.87 0.95 0.92 0.89 0.84 0.81 0.81
11 0.64 0.82 0.87 0.70 0.98 0.54 0.96 0.71 0.97
12 0.92 0.99 0.98 0.98 1.00 0.98 0.99 0.98 1.00
13 0.67 0.97 0.80 0.82 0.94 0.80 0.93 0.87 1.00
14 0.49 0.66 0.61 0.63 0.99 0.66 0.98 0.69 1.00
15 0.90 0.82 0.82 0.87 0.99 0.88 0.99 0.88 0.99
16 0.97 0.96 0.96 0.97 1.00 0.97 1.00 0.98 1.00
17 0.62 0.73 0.75 0.65 0.65 0.65 0.65 0.67 0.67
18 0.56 0.79 0.71 0.74 0.73 0.72 0.72 0.84 0.83

Table 4.7: G-Rules-IQR Experimental Results: Execution Time (in seconds)

#
Prism G-Prism G-Rules

DB FB IQR
CutP ChiM Caim T T T

1 2.66 2.18 2.39 1.92 1.65 2.98 2.61 1.95 1.65
2 3.86 12.11 8.10 5.97 5.52 4.46 4.17 3.07 2.63
3 4.93 11.27 8.52 8.09 5.86 4.73 4.11 3.93 2.75
4 6.10 15.44 7.86 12.22 5.33 11.20 6.90 8.33 5.33
5 15.07 224.80 25.31 32.70 31.64 38.50 38.78 15.64 13.48
6 10.76 18.14 22.62 9.69 6.58 8.37 6.54 7.89 5.23
7 40.37 262.30 394.20 98.40 26.08 100.20 30.32 76.20 23.60
8 1068.00 546.00 407.40 295.80 256.80 440.40 417.00 115.20 87.00
9 12.29 21.77 12.49 7.78 7.46 6.51 6.25 4.98 4.25
10 24.37 19.60 13.77 6.78 4.55 3.11 3.12 3.50 2.88
11 39.87 18.62 27.06 9.26 5.41 6.44 4.63 7.37 3.18
12 352.80 65520.00 2492.40 6600.00 3066.00 5652.00 7200.00 1055.00 165.60
13 568.80 234144.00 3321.00 6500.00 5184.00 6768.00 6840.00 6372.00 238.80
14 198.00 1622.00 2428.20 509.40 248.40 459.60 330.60 1079.00 86.40
15 1720.00 10800.00 11844.00 6000.00 754.80 2583.00 939.00 3182.00 1049.00
16 11.94 12.82 13.72 11.97 5.48 9.04 5.76 8.90 5.03
17 3.66 28.22 5.88 4.28 3.20 3.64 3.50 4.36 3.53
18 262.20 8028.00 1752.00 6540.00 5472.00 4464.00 5508.00 10224.00 10296.00

4.6.4 Runtime Complexity (Big O Notation)

Overall, the time complexity of G-Rules-IQR is expected to be similar to that of

G-Prism and basic Prism algorithms in terms of the number of instances N and

number of attributes M . However, G-Rules-IQR is faster than the others. The

authors of [110] estimated the worst case time complexity of a PRISM classifier to

be approximately O(N2 ·M). In the worst case, each rule covers exactly one data

instance and each rule has two rule-terms per attribute. This is a very unlikely

case and time complexity is strongly dependent on the pattern in the data that

can be expressed in the form of rules. The worst case of G-Rules-IQR and GPrism



113 4.7. Summary

classifiers would induce only 1 rule-term per attribute, and thus already divides

the worst case complexity by 2. Also, G-Rules-IQR is expected to be faster than

G-Prism-DB and Prism because of the number of calculations required to induce a

rule-term. In the worst case scenario, Prism and G-Prism have to evaluate either

several cut-point calculations or rule-term boundaries, whereas G-Rules-IQR only

has to calculate the quartiles. Also, G-Rules-IQR with transformation has a lower

runtime than G-Rules-IQR even though there is an additional operation. However,

this is likely because, in most cases, G-Rules-IQR with transformation produces

fewer rules than G-Rules-IQR without transformation.

Figure 4.5: Summary of results: how often a particular algorithm achieved the best results com-
paring with its competitors

4.7 Summary

This chapter proposed the rule-based G-Rules-IQR algorithm for continuous at-

tributes. The chapter began with investigating the limitations of G-Prism-FB and

G-Prism-DB algorithms, which were developed in the previous chapter and pub-

lished in [19] and in [20] respectively. These limitations are: (1) the more accu-

rate G-Prism-DB requires user defined rule-term boundary threshold, (2) both ap-

proaches assume normally distributed continuous attributes, (3) both algorithms

have a higher abstaining rate than the original Prism classifier and (4) the more

accurate G-Prism-DB was estimated to have a longer execution time than G-Prism-

FB and the basic Prism. With respect to underfitting rule-term boundaries, Section
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4.5.2 proposed a method that optimises these boundaries by replacing the user de-

fined threshold with IQR based rule-term boundaries. In terms of the assumptions

of normally distributed data, Section 4.5.1 introduced an approximation towards

normally distributed data.

As shown in Figure 4.4, G-Rules-IQR algorithm integrates the aforementioned

methods in addition to the GPDD-based approach, which was developed in Chap-

ter 3 and a testing for normality approach which was introduced in Section 4.4.

The test was carried out prior to the application of G-Rules-IQR. In Section 4.6, G-

Rules-IQR algorithm was evaluated empirically and comparatively with G-Prism-

FB, G-Prism-DB and the original Prism with various well known discretisation

methods (binary splitting, ChiMerge and Caim). For comparative purposes, the

implementations of G-Rules-IQR and G-Prism algorithms allowed to switch off the

transformation to approximate normal distribution. No transformation has been

implemented for the three variations of original Prism, as they do not assume nor-

mally distributed continuous attributes, and they convert them into categorical by

discretising their values.

Overall, as demonstrated in Figure 4.5, G-Rules-IQR with transformation out-

performed its competitors with respect to F1 score, accuracy, tentative accuracy

and execution time. With regard to limitation (1), G-Rules-IQR achieves shorter

execution times than its competitors, with respect to limitation (2) G-Prism achieves

a competitive (similar) abstaining rate as its competitors, with respect to limitation

(3) G-Rules-IQR does not require user input for rule-term boundary thresholds

and with respect to limitation (4) the normal distribution approximation made

G-Rules-IQR the best performing Prism based classifier in this chapter. Thus, G-

Rules-IQR will be used for the development of the ensemble learner described in

Chapter 5.





Chapter 5

ReG-Rules: an Explainable
Rule-based Ensemble Learner

This chapter introduces a new framework of an explainable rule-based ensemble

learner, called ReG-Rules (Ranked ensemble G-Rules), which consists of 5 compo-

nents (stages) with several operations. The chapter also, illustrates the three new

methods incorporated in ReG-Rules’s construction. Then, several experimental

studies are presented to evaluate empirically and qualitatively ReG-Rules learner

and its integrated methods. The ensemble ReG-Rules learner is one of the contri-

butions of this project, and it is published in [22].

5.1 Introduction

In Chapter 4, a new rule-based predictive algorithm (G-Rules-IQR) has been de-

veloped. The algorithm integrates testing for normality for each attribute in the

dataset, as previously shown in Figure 4.4. Depending on the results of this nor-

mality testing, G-Rules-IQR algorithm applies an approximate normal transforma-

tion of the attribute’s values with respect to a target class. The algorithm was

empirically evaluated in Section 4.6, comparing its performance with five differ-

ent Prism based approaches. The results revealed that G-Rules-IQR classifier with

transformation outperformed its competitors in most cases. Therefore, the choice

was made to use the G-Rules-IQR algorithm as the base inducer of the ensemble

classifier that is described and evaluated in this chapter with the goal of maximis-

ing the overall accuracy as well as maintaining a high level of explainability in

terms of rule examinations needed for tracing individual predictions.

116
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Therefore, objective 3 (restated below) is fully met in this chapter:

“To improve the quality of rule sets by developing a rule merging tech-
nique for predictive rules and minimising loss of accuracy.’

Also, the chapter is employing steps to meet the research objective number 4 re-

stated below:

“To develop an expressive ensemble learner footed upon the base classifier
developed on objective 2 and the Rule Merging technique in objective 3.”

This chapter begins with brief descriptions of some limitations related to stand-

alone learning systems, which emphasise the strength of utilising ensemble learn-

ing to address such issues. Next, Section 5.3 introduces the framework of the

ensemble learning system termed ‘ReG-Rules’ which consists of 5 components

(stages) with several operations. Each stage is illustrated in a separate section

in this chapter.

Section 5.3.1 provides the description of component (1) Diversity Generation.

As Figure 5.1 shows, it is based on the method of manipulating a dataset by using

different samples of the training data to train individual classifiers. Specifically, to

obtain classifiers diversity, ReG-Rules classifier integrates bagging method [9] in

its construction stage.

Section 5.3.2 illustrates component (2) Base Classifiers Induction (see Figure

5.1), where multiple learners are generated independently using the aforemen-

tioned inducer (G-Rules-IQR algorithm). These base learners are weighted in this

stage using a ‘performance weighting method’, which consists of a combination of

measurements that can be obtained during a validation phase.

The component (3) Models Selection (see Figure 5.1) is thoroughly described

in Section 5.3.3 where the number of base classifiers that will be participating in

the final ensemble predictions is reduced based on the theorem of ‘many could

be better than all’ [124] by ranking all the classifiers first according to a certain

criterion using a proposed ranking-based method. Then ReG-Rules selects all the

models that are above a particular threshold. This ranking approach is evaluated

in Section 5.4.4.

Regarding component (4) Rules Improvement (see Figure 5.1), this stage in-

volves improving the quality of the rules locally and independently for each top-

ranked selected models. Section 5.3.4 explains this ReG-Rules component and

its proposed integrated Rule Merging method is explained using three exemplary

scenarios.
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In terms of component (5) Combination and Prediction (see Figure 5.1), Sec-

tion 5.3.5 outlines the combination method, which is introduced in this chapter

and based on a weighted voting strategy. For this, ReG-Rules builds a committee

of rules for each new unlabelled instance to decide its final predicted class label.

Finally, Section 5.4 demonstrates the experiments to evaluate the approaches

developed in this chapter. The general performance of the ensemble ReG-Rules

is evaluated empirically in Section 5.4.3 and compared with the stand-alone G-

Rules-IQR classifier. The new proposed method that has been integrated in ReG-

Rules and is used for ranking and selecting models is empirically evaluated in

Section 5.4.4. While the other new proposed methods that have been developed

to improve the quality of the rules are evaluated in Section 5.4.5.

5.2 Issues with Stand-alone Classification Systems

Despite that G-Rules-IQR algorithm shows high performance compared with its

competitors, in general, stand-alone classifiers are not stable, especially when they

are applied on unbalanced or noisy datasets. Also, they are sensitive to sampling

techniques and consequently the level of predictive accuracy varies between dif-

ferent samples [155]. Accordingly, as mentioned in Section 2.5.1, learning al-

gorithms that produce only a single classification model suffer from the following

three essential drawbacks: (1) the statistical problem; (2) the computational prob-

lem; (3) and the representational problem.

The statistical issue occurs when a learning algorithm is dealing with a too

small or a too large amount of training instances. In such cases, different clas-

sification models with similar predictive accuracy rates might be generated and

hence selecting one of them would be a difficult task as the risk of choosing an

overfitted model is rather high [2]. The computational issue is also related to the

size of the dataset. In real life, there might be considerable dependencies between

different features, especially in datasets with high dimensionality. Therefore, like

with the statistical problem, finding the best model in a feasible execution time

might be very challenging. The representational issue occurs when there is no

ideal classifier to be selected within the space of all possible classification models.

Generally, a learning model that suffers from statistical or computational issues

is described as having a high variance while a model that experiences represen-

tational problems is said to have a high bias. According to [155], constructing

an ensemble classification model by combining the predictions from several base

classifiers can be an effective method to overcome the aforementioned problems,

as the main strength of ensemble learning is the ability to handle bias and variance

in the data effectively.



119 5.3. Framework for the Ensemble Learning System: ReG-Rules

5.3 Framework for the Ensemble Learning System:

ReG-Rules

This section proposes a new rule-based ensemble classification system named:

Ranked ensemble G-Rules-IQR (ReG-Rules). The aim of this system is to improve

the predictive performance of explainable rule-based learners while presenting

the human analyst with a readable model for predictions. Algorithm 6 details

the pseudocode for ReG-Rules classifier and Figure 5.1 demonstrates the general

framework of the system, which consists of five stages with several operations:

(1) Diversity Generation, (2) Base Classifier Inductions, (3) Models Selections,

(4) Rule Merging Technique, (5) Combination and Prediction. These stages will

be explained in the following sections, referring to the lines of code in Algorithm

6.

Figure 5.1: The General framework of the ensemble rule-based classifier ReG-Rules

5.3.1 Stage 1: Ensemble Diversity Generation

The performance of an ensemble classification model is heavily reliant on the

level of diversity among the group of classifiers, which comprises the ensemble.

Combining several models with identical or even similar outputs to produce a do-

nothing ensemble model. Therefore, the generation of a set of base classifiers

should be as diverse as possible to assure producing uncorrelated errors and then

obtain a more accurate ensemble. However, there is no theoretical explanation

of how and why inducing diverse individual base models contribute to overall

ensemble classifier [24,73,92].
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Algorithm 6: Ensemble Rule-based Classifier: ReG-Rules
Notations: S: training dataset, M : original ensemble size, n: number of top-ranked

base classifiers defined by user/default ,
V : validation dataset, R: rule set, BC: base classifier,
Epool: ensemble pool, w: weight, topBC: top-ranked base classifier

1 Initialise the ensemble model (ReG-Rules)
2 for i = 1→M do
3 si ← Random sample with replacement using Bagging method
4 vi ← out-of-bag set
5 Generate a base classifier BCi by applying Algorithm 5 (G-Rules-IQR) on si dataset

and learn a rule set→ Ri

6 Evaluate BCi performance by applying Ri on vi dataset
7 Calculate a weight for each rule induced in previous line
8 Send BCi including its rule set weights to the ensemble pool Epool

9 end
10 Rank all the base classifiers BC collected in Epool according to the criteria described in

Section 5.3.3
11 Eliminate weak BC by selecting the n top models (topBC) ranked in the previous step

according to the following if statement:
12 if models selection type = defualt then
13 n← 20%M models
14 else
15 n← selected models size defined by user
16 Select the top n BC models in line 10
17 Assign all the n classifiers (topBC) selected in line 11 to the ensemble model (ReG-Rules)
18 for j = 1→ n do
19 w1 ← Rj weight computed previously in line 6
20 Apply Algorithm 8 (Local Rule Merging) on current topBcj and update its rule set

Rj

21 Re evaluate Rj on the same validation dataset used for weighting the rules in line 6
22 w2 ← Calculate the merged rules Rj weight returned from the previous line
23 if w2 > w1 then
24 Replace rule set of the current topBCj by the new merged rules Rj

25 end
26 Sort the rule set Rj according to their correctly used times
27 end
28 return ReG-Rules Classifier

There is a number of popular methods that can be used for creating diversity in

ensembles, such as manipulating the inducer, manipulating the training samples,

manipulating input features, and manipulating output representation. The reader

is referred to Chapter 2 (Section 2.6.2) for brief descriptions about these methods.

ReG-Rules is a homogeneous ensemble in which all its base classifiers are gen-

erated using the same base algorithm (G-Rules-IQR ). Also, the system adopts the

parallel learning approach, i.e. the induction of each base learner is independent

and can be built in parallel to other models without cooperation in the training

phase. The reason for adopting the parallel ensemble methodology is that they

are perfectly suitable to parallel computing in which the speed and memory con-

straints can be addressed by distributed environments as previously discussed in

Section 2.6.1. However, parallelising ReG-Rules is outside the scope of this thesis.
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Accordingly, the method utilised in this thesis to train diverse classifiers in

ReG-Rules ensemble system is: ‘using different training datasets to train individ-

ual classifiers’. In this approach all the subsets are drawn from a single data source,

but they can just as well be entirely different samples taken from different sources

capturing different features of data if a suitable level of randomness is used [92].

Specifically, as shown in Figure 5.1 (diversity generation part), ReG-Rules system

uses two types of training sampling in order to maximise the level of base classi-

fiers’ diversity:

1. Sample a dataset randomly without replacement into train and test datasets.

2. Bagging, which is a well-known sampling with replacement method.

The reader is referred to Section 2.6 for further details about bagging. Regarding

the first sampling method, note that the test data is used only once to assess the

general performance of the whole ensemble model. With respect to the second

sampling method (bagging), it is used in to produce multiple data samples. The

size of each sample is equal to the size of the training dataset, and then some

instances may appear more than once and some may not appear at all. Thus,

statistically, a sample created using the bagging method is likely to contain 63.2%

of the original training dataset which can be used to construct a base classifier.

The remaining 36.8% of the original instances that are not picked in the training

phase and called out-of-bag instances which can be used as a validation dataset to

independently assess the performance of the base classifier [9]. Bagging method

is integrated in ReG-Rules system as shown in lines (3 and 4) of Algorithm 6.

5.3.2 Stage 2: Base Classifiers Inductions

This stage includes a significant factor that controls the induction of any ensemble

model, the number of base classifiers that should be generated (ensemble size).

This is simply a predefined parameter that can be set by the user and is repre-

sented by the symbol ‘M ′ in Figure 5.1 (see Algorithm 6, line 2). However, deter-

mining a proper ensemble size requires balancing accuracy and efficiency. Thus,

it can not be too small to ensure a high level of base classifier diversity, and also

it can not be too large to avoid the high cost in terms of computations and mem-

ory resources [24, 121]. There is no ideal ensemble size, and the impact of this

user-defined number on the ensemble performance makes its determination even

more difficult [114]. However, a major experimental study conducted in [121]

suggested constructing between 64 and 128 base classifiers to maintain a balance

between computational cost and accuracy in most cases. The same study con-

cluded that there is no significant performance gain if a larger number of base
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models is generated. Accordingly, this thesis uses a 100 G-Rules-IQR base classi-

fiers, which is within this range, as a default number in the experiments presented

in this thesis.

The inducer, G-Rules-IQR (Algorithm 5) is invoked in line 5 of Algorithm 6 to

independently train M base classifiers on M random training samples generated

by bagging method. Then, for the purpose of finding the best learners that can be

chosen within a smaller ensemble, ReG-Rules algorithm (line 6) assesses the per-

formance of each individual base classifier using different validation data subsets,

i.e. out-of-bag instances produced by the bagging method. This independent eval-

uation process during the induction stage of base classifiers is called a ‘classifier’s
performance weighting’, which will be described in the next section.

Base Classifier’s Performance Weighting

The predictive accuracy is considered to be the key evaluation criterion in most

classification methods. However, in many real-life datasets, especially in imbal-

anced domains, accuracy alone might be an insufficient metric to evaluate the

performance of a classifier [113]. Hence, a more suitable metric or a set of metrics

must be carefully selected to provide the more reliable weighting of the classifier’s

performance and avoid the bias of the training model (overfitting). This combina-

tion of measurements can be obtained during the validation phase in ReG-Rules

ensemble model. In other words, given M base classifiers are induced in the

training phase, their evaluation criteria are organised as an M -dimensional vec-

tor, which consists of the following:

1. Rule set size: the number of rules induced for each base classifier using the

inducer (G-Rules-IQR) algorithm.

2. Average of a rule length: this is the average number of terms per rule for

each base classifier.

3. CUR: stands for ‘Correctly Used Rules’, which is the number of times a rule

was used during the validation phase and predicted the correct class label.

This is a track record prediction for each rule separately in each base classifier.

4. Abstaining rate: the proportion of instances a base classifier abstains from

classification, i.e. the proportion of validation instances not covered in the

rule set for each base classifier.

5. Accuracy: the ratio of validation instances that have been correctly classified

either using the rule set or majority class strategy for each base classifier.
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6. Tentative accuracy: the ratio of validation data that have been correctly clas-

sified based only on the number of instances that have been assigned a clas-

sification.

The final step of this stage of ReG-Rules classifier construction is represented by

the terms ‘ensemble pool’ in Figure 5.1 and Epool in Algorithm 6 (line 8).

5.3.3 Stage 3: Models Selection

As previously discussed in Chapter 2 (Section 2.6.4), the number of component

classifiers that should be included in the final model is a crucial factor for building

an effective and accurate ensemble [24,114]. A large ensemble can access and ex-

amine different feature sub-spaces, which might increase its general classification

accuracy. However, it might be computationally inefficient and more likely more

difficult to understand for human. This potential problem could be addressed or

mitigated by reducing the number of base classifiers that can participate in the

final ensemble predictions according to the theorem of ‘many could be better than
all’ which was introduced in [124]. Nevertheless, determining the exact amount

of reduction in the ensemble size without causing considerable loss in its accuracy

is a difficult choice. Therefore, inspired by the aforementioned theorem many en-

semble models selection approaches have been developed in the literature [125].

Amongst these were the two widely used methods: ‘ranking-based’ and ‘search-

based’ that have been reviewed in Chapter 2 (Section 2.6.4).

Generally speaking, search-based method is suitable for sequential ensemble

systems as additional members are gradually added to the ensemble subset since

its performance is sequentially increasing. Alternatively, the main concept of the

other method, ranking-based, is to separately rank each base classifier according to

a certain criterion and then chose the models that are above a particular threshold

[73]. This makes ranking-based models selection method more suitable for the

parallel ensemble systems. Therefore, a newly developed ranking-based approach,

termed ‘Ranking-based CUR’ is proposed in this chapter, which can be integrated in

ReG-Rules algorithm and used to rank its base classifier. This is further illustrated

below.

Ranking-based CUR Approach.

ReG-Rules system makes use of the combination of metrics that are obtained dur-

ing the base classifiers’ performance weighting stage, which was explained in Sec-

tion 5.3.2. Specifically, three of these metrics, namely (1) tentative accuracy, (2)

CUR and (3) abstaining rate, are used as ensemble selection criteria by ranking all
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the base classifiers accordingly. First, all the models are ranked in descending or-

der according to their tentative accuracies and in case of tie-breaks the descending

order will be based on their average CUR values. Next, if more tie-breaks occur,

the ranking will be continued based on the ascending order of their abstaining

rates. Then, as highlighted in Algorithm 6 (lines 10 and 11), when the ranking

process is completed the weak base classifiers will be eliminated after selecting

the top-ranked models (topBC) according to a predefined size (n). This size is

determined in ReG-Rules algorithm using two types of threshold: (1) default or

(2) user defined. There is no ideal ensemble size to be specified [114] but in this

project, the default threshold is the top 20% of the ranked models, and it was set to

ensure that only the strong base classifiers are selected. Thus, for example, from

the 100 base classifiers induced in the experiments presented in this chapter, only

the top 20 ranked base classifiers are chosen to design the final ReG-Rules ensem-

ble system and the remaining 80 models are discarded. Despite this big reduction

in the ensemble size, the top 20 models were sufficient according to ‘many could

be better than all’ theorem [124] and this default threshold worked well in most

cases investigated in this chapter.

5.3.4 Stage 4: Rules Improvement using Local Rules Merging

Algorithm

As mentioned in Chapter 2 (Section 2.4.5), the main difference between the rules

generated by a tree (using divide and conquer strategy) and the rules generated by

a rule learning algorithm (using separate and conquer strategy), is that the induc-

tion of the former rule set follows the ‘theory of non-overlapping rules’. Imposing

such a restriction on rules mostly results to inducing a classification rule set that

contains redundancy (see Figure 2.6 and Rule set 2.2).

Separate and conquer rule induction algorithms such as G-Rules-IQR and Prism

family relax this constraint by allowing for possibly overlapping rules, which may

often result in smaller rule sets that are less susceptible to the redundancy problem

during the training phase [3]. However, overlapping rules are generally unneces-

sary as they need to be tested at the prediction stage, thus incur unnecessary

computational cost of classification. Also, multiple overlapping rules may cause

conflicting predictions for the same instance [3].1

Therefore, the ensemble ReG-Rules learner integrates a new method termed

local Rule Merging (RM) with the aim to address locally and independently the is-

1The strategies that are often used to solve the classification conflicts in most separate and
conquer rule induction algorithms, are previously described in Section 3.3.2.
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sue of overlapping rules for each selected base classifier, i.e. improving the quality

of induced rule sets. As can be seen in Algorithm 6, the process of improvement

starts in line 20 by applying the RM algorithm for each rule set. Then a new im-

proved rule set denoted by Rj is evaluated on the same validation dataset that

have been used for weighting the original rule set. Thus, a new weight (w2) will

be assigned to the newly merged rule set as shown in line 22 and by comparing it

with the previous weight (w1) that has been computed in line 7, ReG-Rules decides

whether to keep the current original rule set or replace it with the new improved

(merged) one. In both cases, the resulting rule set Rj of the current base classifier

(topBCj) will be sorted according to their performance during validation phase,

as shown in line 26.

Integrated Local Rule Merging (RM) Algorithm

The local Rule Merging technique represents a post-processing of the induced

rules, and it is applied on the rules of each target class in turn. The pseudocode of

this technique is presented in Algorithm 8. The process begins with filtering rules

according to their target class and the attributes contained in their rule-terms.

Hence, some rules within the same target class will either be discarded or merged

with other rules according to their similarities (overlap of features’ ranges). This is

conditioned by the decision returned from Algorithm 7 (Overlap Checking), which

is invoked by the RM algorithm in line 7 to carry out the examination.

Algorithm 7: Overlap Checking
1 Input: Rule1 (current rule)
2 Rule2 (another rule)

3 if ( class label in Rule1 = class label in Rule2) and
4 ( all attributes α in Rule1 = all attributes α in Rule2) then
5 foreach attribute α ∈ Rule1 and Rule2 do
6 switch the type of α do
7 case Continuous do
8 if (lower bound of one rule includes the lower bound of the other and
9 upper bound of one rule includes the upper bound of the other) then

10 OverlapExist← True
11 else
12 OverlapExist← False
13 case Categorical do
14 if ( discrete value in Rule1 = discrete value in Rule2) then
15 OverlapExist← True
16 else
17 OverlapExist← False
18 end
19 end
20 if (OverlapExist = False ) then
21 Exit the loop in line 5
22 end
23 end
24 else
25 OverlapExist← False
26 end
27 return OverlapExist
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Overlap checking: both rules under examination must refer to the same class

label and must contain the same attribute names in order to start the process of

checking. In case of continuous terms, the lower bound in one rule should include

the lower bound of the other rule. The same condition is applied to the upper

bounds of the same rules. Whereas, in categorical terms, the discrete values of one

rule should be equal to the other rule in order to be considered as overlapped rules.

In case of having more than one term in each rule, all the corresponding terms

should have passed the overlap checking together. The process will be terminated

once any term fails the overlap checking. By the end of Algorithm 7, a decision

(true/false) about the current rules’ examination is retuned to the RM algorithm.

Next, if the overlap exist the merging is performed and results in more concise

and smaller base classifier rule sets, which are thus expected to be more easily

read and understood by human analysts. The following paragraphs describe the

RM approach using three exemplary scenarios.

Algorithm 8: Local Rule Merging (RM) Algorithm
Notations: R: rule set,

checkedRules: rules that have been merged or checked,
OtherRj: the remaining rules , α: attribute

1 checkedRules→ empty
2 for i = 1→ R do
3 checkedRules← ckeckedRules+Ri ;
4 OtherR← R [−checkedRules] ;
5 j = 1 ;
6 repeat
7 OverlapExist← Apply Algorithm 7 (Overlaps Checking) on Ri and OtherRj

8 if (overlapExist = True) then
9 Compute new upper and lower bounds for each rule-terms ;

10 Create merged rule in a form of (x < α ≤ y) or (α = x) ;
11 Replace Ri in R rule set by a new merged rule created in line 10
12 end
13 j ← j + 1 ;
14 until No more rules in OtherR set;
15 end
16 return new rules list R

Figure 5.2 demonstrates the main idea of the Rule Merging algorithm using

two basic examples where, in each example, two different rules sharing the same

attribute and the same class label. In Figure (5.2a) there is an overlap between

the two rules and therefore it can be merged into the single rule shown below in

Rules 5.1.

Merged Rule: if (10.6 < α1 ≤ 13.4) Then low (5.1)

Rules 5.1: A rule produced after applying the local RM approach to the example of rules presented
in Figure 5.2a.
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Rule 1: if (11.4 < α1 ≤ 13.4) Then low

Rule 2: if (10.6 < α1 ≤ 12.5) Then low

(a) overlapping rules

Rule 1: if (8.2 < α1 ≤ 9.6 ) Then high

Rule 2: if (2.2 < α1 ≤ 6.5 ) Then high

(b) non overlapping rules

Figure 5.2: Rule sets with single term each rule sharing similar features and classes.
In example (a) there is an overlap between rules and in example (b) the rules do not overlapped.

In case of Figure (5.2b), there is a gap as can be seen between the upper bound of

Rule 1 and the lower bound of Rule 2 and thus the merging cannot be performed.

Figure 5.3 shows another example of three rules sharing the same two at-

tributes α1 and α2 (terms) and referring to the same class label (high). While Rule

1 and Rule 3 are fully overlapped in both terms (T1 and T2), Rule 2 is partially

overlapped with them by only a single term (T1).

Rule 1: if (3.5 < α1 ≤ 8.6 ) & (10.6 < α2 ≤ 14.7) Then high

Rule 2: if (6.8 < α1 ≤ 12.9) & (16.1 < α2 ≤ 22.9) Then high

Rule 3: if (2.8 < α1 ≤ 11.3) & (11.3 < α2 ≤ 13.2) Then high

Figure 5.3: Rule set with two rule-terms sharing similar features and classes (before merging)

As a result, Rule 2 cannot be incorporated in the merging process due to the

gap existing in (T2) between 14.7 and 16.1 whereas Rule 1 and Rule 3 can be

combined into a single rule. The final output of this process is the rule set shown

in Rules 5.2

Merged Rule: if (2.8 < α1 ≤ 11.3) & (10.6 < α2 ≤ 14.7) Then high
Rule 2: if (6.8 < α1 ≤ 12.9) & (16.1 < α2 ≤ 22.9) Then high

}
(5.2)

Rules 5.2: A rule set produced after applying the local RM approach to the example of rules
presented in Figure 5.3.
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As previously stated, the main advantage of this approach is reducing the com-

plexity and improving the interpretability of rules that might be generated from

large datasets or high dimensional data. Consequently, the number of rules for

each selected base classifier in the ensemble model would be reduced by remov-

ing the overlap that might occur between rules and thus also reduce the compu-

tational cost of prediction. Following is another example to show how beneficial

this Rule Merging can be. Figure 5.4 includes four rules (Rule 1, Rule 2, Rule 3,

Rule 4); each of which shares the same attributes ( α1, α2, α3, α4 ) and refers to the

same class label (low).

Rule 1: if (4.8 < α1 ≤ 7.9 ) & (15.8 < α2 ≤ 19.8) & ( 9.4 < α3 ≤ 22.5) & (23.1 < α4 ≤ 37.6) Then low

Rule 2: if (1.7 < α1 ≤ 5.5 ) & (11.3 < α2 ≤ 15.8) & ( 8.2 < α3 ≤ 12.2) & (37.6 < α4 ≤ 44.1) Then low

Rule 3: if (1.7 < α1 ≤ 7.9 ) & ( 6.7 < α2 ≤ 20.9) & (22.5 < α3 ≤ 25.5) & (32.3 < α4 ≤ 40.5) Then low

Rule 4: if (5.5 < α1 ≤ 9.4 ) & (11.3 < α2 ≤ 20.9) & (12.2 < α3 ≤ 28.5) & (32.3 < α4 ≤ 44.1) Then low

Figure 5.4: Rule set with multiple rule-terms sharing similar features and classes (before merging)

Assume that a classifier is searching this rule set to find the first rule that covers

an instance with the following attributes values: ( α1 = 8.1, α2 = 20.2, α3 =

27.5, α4 = 43.4 ). In this case, the classifier is required to check the whole rule

set to find the first match which is Rule 4. Figure 5.4 shows that each rule-term in

any of the rules is either completely or partially overlapped with at least one rule

that includes the same attribute. Hence, applying the rule merging method to this

rule set, as illustrated in Figure 5.5, replaces the four rules with a single merged

rule and thus less effort is required to find a rule that matches the instance.

if (1.7 < α1 ≤ 9.4 ) & ( 6.7 < α2 ≤ 20.9 ) &
(8.2 < α3 ≤ 28.5 ) & (23.1 < α4 ≤ 44.1) Then low

Figure 5.5: A rule set with 4 rule-terms produced after merging the rules listed in Figure 5.4
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5.3.5 Stage 5: Combination and Prediction

The underlying philosophy of ensemble systems, which was described in Section

2.5.1 states that instead of trying to determine the perfect single model to provide

a correct prediction for a new unseen instance, ensemble methods can combine

the predictions of a diverse set of models in order to achieve accurate prediction

ability. However, it is essential to an ensemble combiner to utilise the appropriate

combination strategy in order to produce not only accurate but also more robust

classification results [73]. As clarified in Section 5.3.1, ReG-Rules adopts the paral-

lel learning strategy, i.e. each base classifier in the ensemble can be independently

created in parallel to other base classifiers’ constructions without cooperation in

the training phase. Instead, collaborations between them can exist only in testing

phase where their individual predictions are passed to a combiner using a combi-

nation strategy [92].

In Chapter 2 (Section 2.6.3), a number of combination methods have been

reviewed. Amongst these were the two frequently used strategies: (1) majority

voting and (2) weighted voting. Regarding (1), all the base models have the

same weights and thus in the testing step, the ensemble classifier will assign an

unlabelled instance to the class that has the highest number of votes. A number of

widely used ensemble classifiers such as Random Forest [101] use this equal voting

method to decide the final classification output. With respect to (2) and unlike the

majority voting, weighted voting combination method considers the performance

evaluation of each base classifier on a validation set as a weight to avoid a potential

problem of reliability that may occur in simple majority voting method when some

base classifiers are more reliable than others. Hence, assigning higher weights to

the decisions of those qualified models may further improve the overall predictive

performance than can be achieved by the equal majority voting [24,35].

ReG-Rules Combination Approach

The combination method adopted in this research is based on the weighted voting

strategy, but not just on classifier level but also on individual rule level. For this,

ReG-Rules builds a committee of rules termed Classification Committee as can be

seen in Figure 5.1. The process is detailed in Algorithm 9. In the algorithm, i

refers to the new unseen instance, T denotes the test data, and n is the number

of the top-ranked base classifiers (topBC). Essentially for each i, the combiner

creates a committee of rules, which comprises the first rule that fired from each

topBC as seen in Figure 5.1.
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Algorithm 9: Combiner: ReG-Rules Committees
Notations: i: an unseen instance, T : Test data, n: number of

top-ranked base classifiers, j: a base classifier, C: class label,
R: rule set, w: weight, topBC: top-ranked base classifier

1 for i = 1→ T do
2 Generate new classifier committe comm
3 for j = 1→ n (topBC selected and weighted in Algorithm 6) do
4 votej ← predict class Ci for instance i
5 Add votej to commi including the weight of the model topBCj and

the weight of its rule set Rj that has been used for the prediction
6 end
7 Eliminate the abstaining classifiers whose rule set does not cover the

instance i
8 Compute the score wi for each class in commi

9 return committe decision commi that has highest weighted average
probability

10 Evaluate commi final prediction
11 end

Table 5.1 shows this committee of rules on an example, how it has been com-

puted by lines 3 to 6 in Algorithm 9. Each prediction received by the committee

from the topBC is associated with the following components:

1. Tentative accuracy of the base classifier from which the rule comes from.

The Tentative accuracy is computed only on classification attempts.

2. The number of times a rule was used during the validation phase and pre-

dicted the correct class label (CUR).

3. The predicted class label of the rule.

4. The classification type, i.e. did the base classifier use a rule or was it just a

majority vote.

Next, in lines 7 to 10 in Algorithm 9 the votes are combined. First all votes that

are based on majority class as classification type are not considered for computing

the weight. The reason is that no rule has fired for these base classifiers, thus

they have abstained, and their votes are considered unreliable. Then, the scores

for each class label in Table 5.1 are computed, in this case there are 3 class labels

namely A, B, and C.
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Table 5.1: Example of metrics contained in a committee of 20 rules for the classification of one test
instance

Classifier No. Rule ID CUR times Tentative Acc. Vote Classification Type
34 8 3 1.0 Class B Rules
14 8 0 1.0 Class A Rules
80 3 10 1.0 Class B Rules
54 4 12 1.0 Class B Rules
25 12 3 1.0 Class B Rules
84 - - 1.0 Class C Majority class
20 3 12 1.0 Class B Rules
59 10 0 1.0 Class A Rules
77 4 7 1.0 Class B Rules
12 3 12 1.0 Class B Rules
38 - - 1.0 Class C Majority class
7 10 0 1.0 Class A Rules
53 3 9 1.0 Class B Rules
71 4 7 1.0 Class B Rules
81 4 3 1.0 Class B Rules
60 12 1 0.94 Class B Rules
50 12 0 0.93 Class B Rules
90 7 2 0.91 Class B Rules
73 13 3 0.85 Class A Rules
46 10 2 0.75 Class C Rules

The computed scores in this example are shown in Table 5.2. For each pre-

dicted class, the score contains the following components:

1. Vote frequency, which is simply how often there is a base classifier in the

classification committee that voted for a particular class.

2. Sum of tentative accuracies of the rule sets’ base classifiers that have voted

for that class.

3. Total CUR, which is the sum of all CUR values of the rules’ base classifiers

that voted for that class.

Hence, as it can be seen in Table 5.2:

Total CUR for class A = 3

Total CUR for class B = 81

Total CUR for class C = 2

Table 5.2: Predicted Classes’ Scores

Predicted class Vote Frequency Total CUR per class Sum Ten. Acc. per class
Class A 4 3 3.85
Class B 13 81 12.78
Class C 1 2 0.75
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Accordingly, CUR value is used to assign a class to the test instance for which

the committee of rules was build for. A higher CUR indicates a better class label

discrimination, and thus is selected as the final prediction of the committee. If

there is a tie-break, meaning two or more classes have achieved the same highest

CUR, then the highest sum of tentative accuracies per class is used to discriminate

further. If the tie-break issue still exist, then vote frequency per class label is

considered.

5.4 Evaluation

The aims of the experiments in this chapter are:

1. To empirically evaluate the overall performance of the new rule-based en-

semble learner ReG-Rules compared with the stand-alone classifier (G-Rules-

IQR), and also explores its runtime complexity.

2. To empirically evaluate the performance of these two new methods, which

are integrated in the ensemble ReG-Rules learner:

• Ranking-based CUR approach, which was proposed in Section 5.3.3,

and used as a criterion to rank the base classifiers before selecting the

top models according to a predefined size.

• Rule Merging (RM) approach, which was proposed in Section 5.3.4,

and used to improve the quality of the rules for each base classifier in

the ensemble locally and independently.

5.4.1 Experimental Setup

All the experiments were performed on a 2.9 GHz Quad-Core Intel Core i7 ma-

chine with 16 GB 2133 MHz LPDDR3, running macOS Catalina version 10.15.1.

All the 24 datasets used in the experiments were chosen randomly from the UCI

repository [17], the only condition being that they contain continuous attributes

and involve classification tasks. The specifications of the datasets are highlighted

in Table 5.3 in terms of number of instances, attributes (including the type of at-

tributes) and class labels. Datasets 15, 16 and 24 included few missing values

in continuous attributes. To address this issue, the current research adopted and

implemented a common method, found in the literature [5], which is based on

estimating a missing numeric value with the average value for the concerning at-

tribute.
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Table 5.3: Characteristics of the datasets used in Chapter 5 experiments

No. Dataset No. Attributes No. No.
Classes Instances

1. iris 5 (4 cont) 3 150
2. seeds 8 (7 cont) 3 210
3. wine 14 (13 cont) 3 178
4. blood transfusion 6 (5 cont ) 2 748
5. banknote 6 (5 cont) 2 1,372
6. ecoli 9 (7 cont, 1 name) 8 336
7. yeast 10 (8 cont, 1 name) 10 1,484
8. page blocks 11 (10 cont) 5 5,473
9. user modelling 6 (5 cont) 4 403
10. breast tissue 11 (10 cont) 6 106
11. glass 11 (10 cont, 1 id) 7 214
12. HTRU2 10 (9 cont) 2 17,898
13. magic gamma 12 (11 cont) 2 19,020
14. wine quality-white 13 (12 cont) 11 4,898
15. breast cancer 12 (10 cont, 1 id) 2 699
16. post operative 10 ( 1 cont, 9 categ) 3 90
17. wifi localization 8 (7 cont) 4 2,000
18. indian liver patient 12 ( 10 cont, 1 categ) 2 583
19. sonar 62 (61 cont) 2 208
20. leaf 17 (15 cont, 1 name) 40 340
21. internet firewall 12 (cont) 4 65,532
22. bank marketing 17 (6 cont, 10 categ) 2 45,211
23. avila 11 (10 cont) 12 20,867
24. shuttle 10 (9 cont) 7 58,000

Moreover, all algorithms have been implemented in the statistical programming

language R [147] and reuse the same code base, differing only in the method-

ological aspects described in this chapter. The algorithms were evaluated against

5 metrics for classifiers, which are presented as follows:

1. Number of Rules: this is the total number of rules generated by G-Rules-IQR

classifier and the average rules generated by the ensemble base classifiers.

2. F1 score: this is also known as the harmonic mean of precision and recall.

This is a number between 0 and 1. A high F1 score is desired.

3. Accuracy: this is the ratio of instances that have been correctly classified,

either using the induced rule set, or the majority class strategy in case of

unclassified instances. This is a number between 0 and 1.

4. Tentative Accuracy: this is the ratio of instances that have been correctly

classified using only the induced rule set, i.e. does not count instances that

not covered by rules.

5. Abstaining Rate: this is the proportion of cases a classifier abstains from

classification, i.e. the proportion of instances not covered by the rule set.

This is a number between 0 and 1. A low abstaining rate is desired.
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It is important to note, that tentative accuracy does not consider the abstained

instances, while the accuracy counts them as misclassifications. Hence, the higher

the abstaining rate, the higher the tentative accuracy and the lower the accuracy.

Regarding the empirical evaluation of the ensemble ReG-Rules classifier in

comparison with its stand-alone G-Rules-IQR classifier, the following two evalu-

ation methods have been applied to all the experimental datasets presented in this

chapter:

1. Separate Train and Test Datasets. In this evaluation method, each dataset

was randomly sampled without replacement into train and test datasets. While

the 70% of the data instances were used to train and build the ensemble clas-

sifier, the remaining 30% were used as a testing dataset.

2. Five-fold Cross Validation. In this evaluation method, each dataset was

shuffled and randomly divided into 5 partitions (folds) of equal size. Then

for each fold, a learning algorithm was trained on the remaining four folds

and then tested on the current fold.

In both evaluation methods, the test set is used only once to assess the general

performance of the classification models. In case of ReG-Rules model, the train

dataset is used to generate multiple base classifiers using bagging, which is a

method of sampling with replacement that can be used to ensure a sufficient level

of diversity during the base classifiers’ generation phase.

5.4.2 Runtime Complexity of the Ensemble ReG-Rules Classi-

fier

The induction process of ReG-Rules involves 4 components that need to be consid-

ered for estimating the runtime complexity with respect to the number of instances

N and the number of features M . These components are (1) Diversity Generation,

(2) Base Classifier Inductions, (3) Models Selection and (4) Rules Merging (see

Figure 5.1). These components are executed sequentially, hence the complexity of

ReG-Rules is determined by the component with the highest complexity [22].

With respect to component (1) Bagging is used. Bagging has a complexity

of O(N) since N sample instances are taken. Bagging is not dependent on the

number of features M . Hence, the complexity of Diversity Generation can be de-

scribed with O(N). With respect to component (2), G-Rules-IQR base classifiers

have a theoretical worst case complexity of O(N2M) [21], in which case each

data instance would be covered by a single rule. However, according to [110] the

complexity of algorithms of the PRISM family (to which G-Rules-IQR belongs) is es-

timated to be linear on average. Thus, the runtime complexity of ReG-Rules’ Base
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Classifier Inductions component can be estimated as d ·O(N2 ·M), where d is the

number of base classifiers induced. d can be neglected here as it is not dependent

on the size of the training data. With respect to component (3) the Models Se-

lection is not dependent on the training data but represents a summand m added

to the runtime dependent only on the number of models generated. With respect

to component (4) the merging of rules is not dependent on the training data but

represents a summand r depending only on the number of rules generated. Thus,

the total runtime complexity can be described as O(N)+O(N ·M)+m+ r, which

can be simplified to a runtime complexity of O(N ·M). Thus, it can be said that

ReG-Rules is likely to scale linearly with respect to the number of data instances

and features in the training data.

5.4.3 Empirical Evaluation of the Ensemble ReG-Rules Classi-

fier

The experimental results presented in Tables 5.4 and 5.5 were obtained using the

train and test evaluation method. Similarly, Tables 5.6 and 5.7 present the exper-

imental results acquired using the five-fold cross validation method. Each evalua-

tion method’s results will be discussed separately in the following sub-sections. In

each table, the # symbol refers to the index of the dataset in Table 5.3. The best

result(s) in the tables for each dataset are highlighted in bold letters. The tables

show the results with respect to the 5 evaluation metrics previously described in

Section 5.4.1.

5.4.3.1 Evaluation Using Separate Training and Testing Dataset Strategy

The number of rules and the abstaining rates computed using train and test strat-

egy are shown in Table 5.4. Regarding ‘number of rules’ metric, three types of

induced rule sets are compared for each dataset: (1) number of rules generated

by the stand-alone G-Rules-IQR classifier, (2) average number of rules induced by

the ensemble ReG-Rules classifier before utilising the local RM algorithm, and (3)

average number of rules generated by ReG-Rules after integrating the local RM

algorithm in its selected base classifiers’ rule sets. As can be seen in the table, on

average, a ReG-Rules base classifier produces fewer rules than G-Rules-IQR for all

the 24 datasets.

However, further reduction in the number of induced rules without reducing

the performance of the base classifier is desired and beneficial to the human ana-

lyst. For this reason, ReG-Rules integrates the local RM approach in its construc-

tion. The results presented in Table 5.4 demonstrates a considerable reduction
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in the number of rules generated by ReG-Rules classifier after applying the local

RM method, i.e. particularly in 18 out of 24 datasets. As shown in Figure 5.6, in

some cases the reduction was more than 45%. In 6 out of 24 datasets ReG-Rules

classifier produced the same number of rule sets before and after utilising the RM

method. Importantly, and due to this significance, the remaining experimental

results in this chapter will consider only the version of ReG-Rules, which employs

the local RM technique in its construction.

Concerning the second part of Table 5.4, the abstaining rate metric results

show that ReG-Rules achieves the lower rate in all the 24 cases. On 21 datasets

ReG-Rules classifier lowers the abstaining rate to zero and on the remaining 3

cases its abstaining rate was very close to zero. While in terms of the stand-alone

base classifier, G-Rules-IQR, the abstaining rates were higher than 10% on several

datasets. In three datasets (9, 10, and 20) G-Rules-IQR’s abstaining rate reaches

30%, 19% and 40% respectively.

Table 5.4: Number of Rules and Abstaining Rates using separate training and testing sets method

Number of Rules Abstaining Rate
# G-Rules-IQR ReG-Rules G-Rules-IQR ReG-Rules

before merging after merging
1 18 17 13 0.07 0.00
2 22 19 15 0.03 0.00
3 13 13 11 0.06 0.00
4 20 16 11 0.00 0.00
5 89 82 82 0.02 0.00
6 37 32 32 0.02 0.00
7 99 82 82 0.04 0.00
8 131 115 104 0.02 0.00
9 57 45 42 0.30 0.00
10 28 24 23 0.19 0.00
11 30 25 22 0.11 0.02
12 31 26 17 0.00 0.00
13 79 69 50 0.00 0.00
14 126 115 62 0.02 0.00
15 11 9 8 0.00 0.00
16 29 23 23 0.11 0.00
17 59 48 38 0.01 0.00
18 47 50 50 0.17 0.00
19 16 13 12 0.13 0.00
20 124 101 98 0.40 0.01
21 21 20 16 0.00 0.00
22 40 38 38 0.01 0.00
23 158 164 146 0.06 0.01
24 27 21 19 0.00 0.00

Table 5.5 uses the evaluation method of separate Training and Test datasets to

compare ReG-Rules and G-Rules-IQR classifiers in terms of F1 score, accuracy and

tentative accuracy metrics. With respect to F1 score, which is the harmonic mean

of precision and recall, the results show that the proposed ReG-Rules outperforms



137 5.4. Evaluation

Figure 5.6: Difference (in percentage) of average number of rules of ReG-Rules classifier after
integrating RM approach compared with before the merging process

G-Rules-IQR on 12 out of 24 datasets. Moreover, in 6 out of the remaining 12 cases

where ReG-Rules did not outperform its competitor, it still performs at the same

level of F1 score as G-Rules-IQR. On two datasets (1 and 9), ReG-Rules algorithm

was not the best method, but was still very close within 3% difference to the best

F1 score.

Table 5.5: F1 score, General Accuracy and Tentative Accuracy using separate training and testing
sets method

#
F1 score Accuracy Tentative Accuracy

G-Rules-IQR ReG-Rules G-Rules-IQR ReG-Rules G-Rules-IQR ReG-Rules
1 0.96 0.93 0.91 0.93 0.95 0.93
2 1.00 1.00 0.97 1.00 1.00 1.00
3 0.98 1.00 0.94 1.00 0.98 1.00
4 0.98 1.00 0.97 1.00 0.97 1.00
5 0.98 0.99 0.98 0.99 0.99 0.99
6 0.99 0.91 0.96 0.95 0.97 0.95
7 0.87 0.91 0.93 0.97 0.96 0.97
8 0.93 0.87 0.98 0.98 0.99 0.98
9 0.96 0.95 0.72 0.94 0.95 0.94

10 0.81 0.97 0.66 0.97 0.81 0.97
11 0.86 0.93 0.86 0.95 0.97 0.97
12 0.99 1.00 1.00 1.00 1.00 1.00
13 1.00 1.00 1.00 1.00 1.00 1.00
14 0.96 0.87 0.97 1.00 0.99 1.00
15 1.00 1.00 1.00 1.00 1.00 1.00
16 0.52 0.77 0.67 0.63 0.67 0.63
17 1.00 1.00 0.99 1.00 1.00 1.00
18 0.83 0.84 0.71 0.73 0.71 0.73
19 0.95 0.97 0.87 0.97 0.94 0.97
20 0.75 0.67 0.39 0.56 0.65 0.57
21 0.90 0.90 1.00 1.00 1.00 1.00
22 0.99 0.99 0.98 0.98 0.98 0.98
23 0.89 0.93 0.85 0.92 0.88 0.92
24 0.99 1.00 1.00 1.00 1.00 1.00
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In terms of accuracy, Table 5.5 shows that, in almost all cases, ReG-Rules

achieved the highest accuracy. In particular, it outperforms the G-Rules-IQR algo-

rithm in 15 out of 24 datasets and performs at the same level as its competitor in

7 out of the 9 remaining cases. On one of the two datasets (16) where ReG-Rules

did not outperform G-Rules-IQR, the accuracy of ReG-Rules was lower by only

4% compared with G-Rules-IQR. With respect to tentative accuracy, the ReG-Rules

algorithm performs better or equal than G-Rules-IQR in 18 out of 24 datasets.

In these 18 cases, the proposed ReG-Rules classifier outperforms G-Rules-IQR in

8 cases. On 5 out of the remaining 6 cases, where ReG-Rules was not the best

method, it only underperformed by a maximum difference of 3%.

5.4.3.2 Evaluation Using Cross Validation Strategy

The number of the rules generated by the G-Rules-IQR classifier is compared with

the average number of rules generated by the ensemble ReG-Rules classifier that

integrated local RM approach in its construction.

Table 5.6: Number of Rules and Abstaining Rates using cross validation method

#
Number of Rules Abstaining Rate

G-Rules-IQR ReG-Rules G-Rules IQR ReG-Rules
1 20 14 0.10 0.00
2 26 17 0.08 0.00
3 13 11 0.07 0.00
4 21 11 0.01 0.00
5 94 81 0.01 0.00
6 43 36 0.08 0.00
7 111 92 0.05 0.00
8 135 107 0.02 0.00
9 72 50 0.09 0.00
10 30 24 0.29 0.01
11 30 22 0.12 0.00
12 31 17 0.00 0.00
13 83 57 0.00 0.00
14 132 66 0.02 0.00
15 10 8 0.01 0.00
16 34 25 0.09 0.00
17 59 39 0.02 0.00
18 51 51 0.18 0.00
19 17 13 0.12 0.00
20 138 107 0.42 0.00
21 23 19 0.01 0.00
22 41 39 0.02 0.00
23 160 143 0.11 0.01
24 26 20 0.00 0.00

The results are demonstrated in Table 5.6 in which on average a ReG-Rules

base classifier produces fewer rules than G-Rules-IQR on all the 24 datasets. The

table also shows that compared with stand-alone G-Rules-IQR, the abstaining rate
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in ReG-Rules was almost zero on all 24 datasets. Only on two cases (10 and 23)

was ReG-Rules’ abstaining rate slightly above zero.

Table 5.7: F1 score, General Accuracy and Tentative Accuracy using cross validation method

#
F1 score Accuracy Tentative Accuracy

G-Rules-IQR ReG-Rules G-Rules-IQR ReG-Rules G-Rules-IQR ReG-Rules
1 0.95 0.96 0.88 0.97 0.96 0.97
2 1.00 1.00 0.93 1.00 1.00 1.00
3 0.99 1.00 0.92 1.00 0.99 1.00
4 0.98 1.00 0.96 1.00 0.97 1.00
5 0.97 0.97 0.96 0.97 0.96 0.97
6 0.92 0.93 0.87 0.95 0.93 0.95
7 0.90 0.89 0.93 0.97 0.98 0.97
8 0.90 0.86 0.98 0.98 0.99 0.98
9 0.95 0.96 0.89 0.96 0.95 0.96

10 0.94 0.90 0.70 0.88 0.93 0.88
11 0.93 0.86 0.86 0.93 0.96 0.93
12 1.00 1.00 1.00 1.00 1.00 1.00
13 1.00 1.00 1.00 1.00 1.00 1.00
14 0.96 0.96 0.98 1.00 1.00 1.00
15 1.00 1.00 0.99 1.00 1.00 1.00
16 0.69 0.76 0.66 0.69 0.67 0.69
17 0.99 1.00 0.98 1.00 0.99 1.00
18 0.83 0.83 0.70 0.71 0.72 0.71
19 0.96 0.97 0.89 0.97 0.96 0.97
20 0.80 0.70 0.37 0.55 0.61 0.55
21 0.84 0.85 0.99 1.00 1.00 1.00
22 0.99 0.99 0.97 0.98 0.98 0.98
23 0.93 0.94 0.87 0.93 0.92 0.92
24 0.99 0.98 1.00 1.00 1.00 1.00

Table 5.7 compares the ensemble ReG-Rules classifier and the stand-alone G-

Rules-IQR classifier in terms of F1 score, accuracy and tentative accuracy using the

evaluation method of 5-fold cross validation.

Regarding F1 score, the results illustrate that ReG-Rules achieves best F1 score

on 18 out of 24 datasets. On these 18 datasets, ReG-Rules was the best classifier

in 10 cases and performs at the same level of F1 scores as its competitor in the

remaining 8 cases. Also, on 4 out of the remaining 6 datasets (7, 8, 10, 24),

ReG-Rules classifier only underperformed by a maximum difference of 4%.

With respect to accuracy, ReG-Rules classifier outperforms G-Rules-IQR in 21

out of 24 datasets and performs at the same level on the remaining 3 datasets.

Regarding tentative accuracy, ReG-Rules performs equal or better than G-Rules-

IQR on 18 out of 24 datasets. Among these 18 cases, ReG-Rules outperforms

G-Rules-IQR on 9 datasets.
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5.4.3.3 Evaluation Summary of the Ensemble ReG-Rules Classifier

Generally speaking, the results of all the experiments conducted in this research

using cross validation are consistent with the results obtained from the evaluation

strategy of separate training and testing datasets. Both strategies show that ReG-

Rules base classifiers are not only producing fewer rules on all the 24 datasets,

but also almost never abstain from making a classification decision compared with

G-Rules-IQR, which suffers from high abstaining rate on multiple datasets. In

terms of F1 score, accuracy, and tentative accuracy, both evaluation approaches

demonstrate that ReG-Rules outperforms G-Rules-IQR in most cases.

5.4.4 Empirical Evaluation of Ranking-based CUR Approach

As previously explained in Section 5.3.2, CUR stands for Correctly Used Rules,

which is the number of times a rule was used to cover instances during the vali-

dation stage and predicted the correct class label. It is a ‘track record prediction’

for each rule separately in each individual base classifier. In other words, CUR is a

rule’s quality measurement, which will be associated with the rule and also be part

of the general performance weighing of the base classifier that has generated this

rule. The ensemble ReG-Rules system uses the CUR values of a certain model to

compute the average CUR value of that model. Then as presented in Section 5.3.3

ReG-Rules ranks once its individual members according to not only their overall

accuracy but also their CUR values and in case of ties the ranking will be based

on the ascending order of their abstaining rates. Consequently, ReG-Rules system

selects the top base classifiers whose rank is above a given threshold (either a fixed

user defined amount or percentage of models).

In this part of the evaluation section, the ranking-based CUR approach is em-

pirically evaluated in order to show not only its performance but also to what

extent this strategy contributes towards the improvement of overall accuracy of

the ensemble classification. For evaluation purposes, there are two versions of the

ensemble ReG-Rules implemented using the same code base but differing in the

ensemble selection method:

• Version 1. ReG-Rules learner incorporates a prior ranking to its base clas-

sifiers according to the ranking-based CUR method before selecting the top-

ranked members.

• Version 2. ReG-Rules learner that does not involve any ranking process to

its composite classifiers before selecting the same subset size of ensemble as

for the first version.
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Table 5.8: Comparison between two types of ensemble selection models applied to ReG-Rules
classifier in terms of number of rules and abstaining rate

#
Number of Rules Abstaining Rate

No Ranking Ranking No Ranking Ranking
1 11 13 0.00 0.00
2 16 15 0.00 0.00
3 11 11 0.00 0.00
4 16 11 0.00 0.00
5 80 82 0.00 0.00
6 31 32 0.00 0.00
7 82 82 0.00 0.00
8 101 104 0.00 0.00
9 42 42 0.00 0.00
10 22 23 0.00 0.00
11 21 22 0.00 0.02
12 20 17 0.00 0.00
13 90 50 0.00 0.00
14 64 62 0.00 0.00
15 8 8 0.00 0.00
16 21 23 0.00 0.00
17 36 38 0.00 0.00
18 51 50 0.00 0.00
19 12 12 0.00 0.00
20 97 98 0.00 0.01

Table 5.9: Comparison between two types of ensemble selection models applied to ReG-Rules
classifier in terms of F1 score, Accuracy and Tentative Accuracy

#
F1 score Accuracy Tentative Accuracy

No Ranking Ranking No Ranking Ranking No Ranking Ranking
1 0.91 0.93 0.91 0.93 0.91 0.93
2 1.00 1.00 1.00 1.00 1.00 1.00
3 0.98 1.00 0.98 1.00 0.98 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00
5 0.99 0.99 0.99 0.99 0.99 0.99
6 0.91 0.91 0.94 0.95 0.94 0.95
7 0.89 0.91 0.97 0.97 0.97 0.97
8 0.85 0.87 0.97 0.98 0.97 0.98
9 0.93 0.95 0.93 0.94 0.93 0.94
10 0.87 0.97 0.88 0.97 0.88 0.97
11 0.90 0.93 0.97 0.95 0.97 0.97
12 1.00 1.00 1.00 1.00 1.00 1.00
13 1.00 1.00 1.00 1.00 1.00 1.00
14 0.87 0.87 1.00 1.00 1.00 1.00
15 1.00 1.00 1.00 1.00 1.00 1.00
16 0.74 0.77 0.59 0.63 0.59 0.63
17 1.00 1.00 1.00 1.00 1.00 1.00
18 0.83 0.84 0.71 0.73 0.71 0.73
19 0.96 0.97 0.95 0.97 0.95 0.97
20 0.66 0.67 0.57 0.56 0.57 0.57

The results of the experiments are detailed in Tables 5.8 and 5.9 using the five

5 metrics described in Section 5.4.1. The best result(s) in these tables for each

dataset are highlighted in bold letters. With regard to number of rules measure,

the results demonstrated in Table 5.8 suggests that the ranked version of ReG-
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Rules achieves the best results in 11 out of 20 datasets. In terms of abstaining

rates metric, both versions performed almost equally well.

The results demonstrated in Table 5.9 show that integrating the ranking method

into the proposed ensemble algorithm improves the classification performance in

most cases in terms of F1 score, accuracy, and tentative accuracy.

Regarding F1 score, the table shows that ReG-Rules (version 1)2 outperforms

(version 2)3 in 11 out of 20 datasets. Also, among the remaining 9 cases where it

is not surpassing, the ranked version of ReG-Rules algorithm achieves similar F1

scores on 8 datasets compared with the other version.

Concerning accuracy, ReG-Rules (version 1) achieves the highest results in 18

out of 20 datasets. Only on two datasets (11 and 20) where the proposed ReG-

Rules algorithm was at most 2% lower in accuracy than the results accomplished

by ReG-Rules (version 2).

In terms of tentative accuracy, ReG-Rules (version 1) performs equal or better

than the other version of ReG-Rules on all the 20 datasets.

For simplicity, the bar chart shown in Figure 5.7 summarises the performance

of ReG-Rules with ranking-based CUR approach over ReG-Rules classifier without

the ranking as follows:

• Number of rules: the results indicates that there is no clear winner with 6

wins and 5 ties for ReG-Rules (version 1).

• Abstaining rates: with 18 ties and only 2 losses out of 20, both versions of

ReG-Rules are almost performed equally.

• F1 score and Tentative accuracy: there is no loss reported in these two met-

rics for ReG-Rules with ranking, i.e. it clearly outperformed its competitor.

• Overall accuracy: ReG-Rules with ranking reports 9 wins, 9 ties and only 2

losses. Thus, it outperformed version 2.

2ReG-Rules (version 1) incorporates a prior ranking to its base classifiers according to the
ranking-based CUR method.

3ReG-Rules (version 2) does not involve any ranking process to its composite classifiers.
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Figure 5.7: Performance of ReG-Rules classifier with ranking-based approach over ReG-Rules clas-
sifier without ranking-based approach

5.4.5 Qualitative Evaluation of Rules Merging (RM) Algorithm

Rule Merging (RM) method was proposed in Section 5.3.4 with the aim to mitigate

the complexity of rule set for the individual classifier by reducing the number of

rules and rule-terms. The RM approach has been integrated in the ensemble ReG-

Rules classification model construction and was empirically evaluated in Section

5.4.3 with respect to the general performance of ReG-Rules classifier. This section

evaluates the RM method qualitatively on two cases studies where the rule sets

produced by a G-Rules-IQR classifier without RM and one with RM are examined.

The two case studies are the blood transfusion and the wine datasets from the

UCI repository [17]. The descriptions of the two datasets can be found in Table 5.3

(3 and 4) in terms of number of instances, attributes (including type of attributes)

and classes. Both datasets are used previously among other datasets to evaluate

the original G-Rules-IQR algorithm in a published work [21]. The datasets have

been randomly sampled without replacement into train and test datasets; whereas

the test sets consist of 30% of the data instances and the remaining 70% were used

to learn the rule set.
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5.4.5.1 Case Study 1: Experiments Conducted on Blood Transfusion Dataset

The two rule sets listed in the following page are generated using the same 524

training instances derived from the same dataset (blood transfusion). The 20

original rules were induced by the base learning algorithm (G-Rules-IQR) before

applying the RM approach, whereas the 12 merged rules were produced after

utilising the rule merging technique. Both rule sets, the original and the merged,

are evaluated using the same remaining 224 testing instances.

Table 5.10: Experimental results of Case Study 1

Metrics Original rule set Merged rule set
Number of Rules 20 12
Abstaining Rate 0 0
Recall 1 1
Precision 0.966 0.971
F1 score 0.982 0.985
Accuracy 0.973 0.977
Tentative Accuracy 0.973 0.977

The results are shown in Table 5.10 using 6 different metrics, and it can be

seen that after applying the RM method, the number of rules is reduced from 20

to 12 rules (i.e. more than 40% reduction). This significant decrease in the rules

size enhances the expressive power of the rule model and makes it easier for the

analyst to understand the rules. By manually examining the two lists (original and

merged), we can see that the RM approach merges without loss of information.

Thus, instances covered by a rule before merging should still be covered either

by the same rule or the resulting merged rule (leading to the same classification)

after RM was applied.

With regard to precision, F1 score, accuracy and tentative accuracy, Table 5.10

shows very small variations in these metrics. A closer examination of the results

of the test data revealed that the variations are a result of the order in which the

rules are applied. Before merging a data instance may have been covered by two

or more rules each leading to a different class label and the first rule applied and

matching the data instance would determine the class label. The same effects

are still true after the RM, if two rules are merged they are not any more listed

consecutively and the rule order may change slightly.
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Original Rules
R1: 18.59 < Time ≤ 51.41 → 0

R2: 30.8 < Time ≤ 73.2 → 0

R3: 2.41 < Monetary ≤ 2.98 &

-1.06 < Time ≤ 33.06 &

0.44 < Frequency ≤ 0.51 &

0.70 < Recency ≤ 1.01 → 0

R4: 2.41 < Monetary ≤ 2.98 &

-2.44 < Time ≤ 34.44 &

0.44 < Frequency ≤ 0.51 &

0.50 < Recency ≤ 0.90 → 0

R5: 2.41 < Monetary ≤ 2.98 &

0.44 < Frequency ≤ 0.51 &

1.45 < Time ≤ 26.55 → 0

R6: 0.69 < Recency ≤ 1.12 &

-3.45 < Time ≤ 39.45 &

0.17 < Frequency ≤ 1.44 &

2.39 < Monetary ≤ 2.40 → 0

R7: -6.43 < Time ≤ 42.43 &

0.17 < Frequency ≤ 0.43 &

0.93 < Recency ≤ 1.42 &

2.39 < Monetary ≤ 2.40 → 0

R8: 48.54 < Time ≤ 99.46 → 0

R9: 6.60 < Time ≤ 15.41 → 0

R10: 0.32 < Recency ≤ 0.63 &

0.21 < Frequency ≤ 0.39 &

1.99 < Time ≤ 2.0 → 0

R11: 12.43 < Time ≤ 19.57 → 0

R12: 3.99 < Time ≤ 4.0 → 0

R13: 1.12 < Time ≤ 1.64 → 1

R14: 0.75 < Time ≤ 1.48 → 1

R15: 1.25 < Time ≤ 2.03 &

0.87 < Frequency ≤ 1.29 → 1

R16: 0.29 < Time ≤ 1.11 → 1

R17: 1.76 < Time ≤ 1.93 → 1

R18: 1.61 < Time ≤ 1.82 → 1

R19: 1.60 < Frequency ≤ 1.69 → 1

R20: 1.95 < Time ≤ 1.97 → 1

Merged Rules
R1: 18.59 < Time ≤ 99.46 → 0

R2: 2.41 < Monetary ≤ 2.99 &

-2.44 < Time ≤ 34.44 &

0.44 < Frequency ≤ 0.51 &

0.50 < Recency ≤ 1.10 → 0

R3: 0.69 < Recency ≤ 1.42 &

-6.43 < Time ≤ 42.43 &

0.17 < Frequency ≤ 0.44 &

2.39 < Monetary ≤ 2.40 → 0

R4: 6.6 < Time ≤ 19.57 → 0

R5: 0.29 < Time ≤ 1.64 → 1

R6: 1.61 < Time ≤ 1.93 → 1

0.21 < Frequency ≤ 0.39 &

1.99 < Time ≤ 2.0 → 0

R7: 2.41 < Monetary ≤ 2.98 &

0.44 < Frequency ≤ 0.51 &

1.45 < Time ≤ 26.55 → 0

R8: 0.69 < Recency ≤ 1.12 &

-3.45 < Time ≤ 39.45 &

0.17 < Frequency ≤ 1.44 &

2.39 < Monetary ≤ 2.40 → 0

R9: -6.43 < Time ≤ 42.43 &

0.17 < Frequency ≤ 0.43 &

0.93 < Recency ≤ 1.42 &

2.39 < Monetary ≤ 2.40 → 0

R10: 48.54 < Time ≤ 99.46 → 0

R11: 6.60 < Time ≤ 15.41 → 0

R12: 0.32 < Recency ≤ 0.63 &

0.21 < Frequency ≤ 0.39 &

1.99 < Time ≤ 2.0 → 0
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5.4.5.2 Case Study 2: Experiments Conducted on Wine Dataset

The two rule sets listed below are induced using the same 524 training instances

sampled from the same dataset (wine). The 13 original rules were induced by

the base learning algorithm (G-Rules-IQR) before applying the merging approach,

while the 9 merged rules were produced after utilising the RM technique. Both

rule sets, the original and the merged rule sets, are evaluated using the same

test data examples, which consists of the remaining 53 instances. The results

are shown in Table 5.11 using 6 different metrics, and it can be seen that after

applying the RM method, the number of rules is lowered from 13 to 9, i.e. approx.

31% reduction in the rules size. As discussed for case study 1, a more compact

rule set would make it more understandable by a human. Also, the merging does

not cause loss of information, merely the rule order may be influenced. In this

case, no effects of the rule order can be observed with respect to the performance

metrics listed in Table 5.11.

Original Rules

R1: 0.09 < Noflavan phenols ≤ 0.12→ 1

R2: 0.58 < Total phenols ≤ 0.62→ 1

R3: 0.59 < Total phenols ≤ 0.65→ 1

R4: 0.05 < Noflavan phenols ≤ 0.11→ 1

R5: 13.68 < Alcohol ≤ 13.70→ 1

R6: 1.93 < Magnesium ≤ 2.02→ 2

R7: 1.85 < Magnesium ≤ 2.01→ 2

R8: 2.01 < Magnesium ≤ 2.15→ 2

R9: 2.77 < Proline ≤ 2.89 → 2

R10: 0.39 < Total phenols ≤ 0.46→ 3

R11: 509.6 < Proline ≤ 670.4→ 3

R12: 0.34 < Total phenols ≤ 0.43→ 3

R13: 0.57 < Hue ≤ 0.62→ 3

Merged Rules

R1: 0.05 < Noflavan phenols ≤ 0.12→ 1

R2: 0.58 < Total phenols ≤ 0.65→ 1

R3: 1.85 < Magnesium ≤ 0.65→ 1

R4: 0.34 < Total phenols ≤ 0.46→ 1

R5: 13.68 < Alcohol ≤ 2.02→ 1

R6: 2.01 < Magnesium ≤ 2.15→ 2

R7: 2.77 < Proline ≤ 2.89 → 2

R8: 509.6 < Proline ≤ 670.4→ 3

R9: 0.57 < Hue ≤ 0.62→ 3

Table 5.11: Experimental results of Case Study 2.

Metrics Original rule set Merged rule set
Number of Rules 13 9
Abstaining Rate 0.06 0.06
Recall 0.98 0.98
Precision 0.98 0.98
F1 score 0.98 0.98
Accuracy 0.94 0.94
Tentative Accuracy 0.98 0.98
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5.5 Summary

The chapter presented the development of a new predictive ensemble learner

termed ReG-Rules. ReG-Rules’ purpose is to explore if it is possible to create an

explainable predictive ensemble model while benefiting from predictive perfor-

mance of ensemble learning. The chapter first identified G-Rules-IQR algorithm as

the suitable candidate for the base learners’ induction of ReG-Rules. This choice

was because G-Rules-IQR has already been optimised in Chapter 4 to induce a

highly expressive rule set and provides a high classification accuracy in compari-

son with other rule-based learners.

The chapter then further reviewed and discussed the limitations related to

stand-alone learning systems that can be addressed by utilising ensemble learn-

ing methods. The general framework of the ReG-Rules model was introduced in

Section 5.3, which consists of 5 stages: Diversity Generation, Base Classifiers In-

duction, Models Selection, Rules Improvement, and Combination and Prediction.

Each component was illustrated in a different section.

ReG-Rules induces a diverse ensemble based on bagging. The induced base

classifiers are ranked according to their classification performance on different

validation datasets, and only the best performing classifiers are retained and con-

sidered for predicting class labels.

To measure the individual classification performance of these base classifiers,

ReG-Rules uses a new weighting method composed of various metrics, not accu-

racy alone. Also, to rank and then select the best performing models, ReG-Rules

uses a new Ranking-based method. Both integrated methods were developed and

empirically evaluated in this chapter.

The rule sets of these best-ranked base classifiers are further optimised by

merging overlapping rules within each rule set independently, and thus reduc-

ing the average number of rules in the base models. ReG-Rules utilises a new

post-processing approach called ‘local Rule Merging’ to carry out these rules opti-

misations. The approach was also, developed and qualitatively evaluated in this

chapter. Then, based on a weighted voting strategy, ReG-Rules builds a classifica-

tion committee of rules for each classification attempt to decide the final ensemble

prediction decision.

Three experimental studies were conducted in the this chapter, which can be

summarised as follows:

1. ReG-Rules classifier was evaluated empirically and compared with the stand-

alone G-Rules-IQR classifier using two types of evaluation methods (separate

train and test datasets, and five-fold cross validation). It was found that both

empirical evaluation approaches achieved similar results for all performance
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metrics. ReG-Rules outperformed G-Rule-IQR on average and most cases.

In fact, abstaining from classification, which is a typical problem of rule-

based classifiers was almost non-existent in ReG-Rules. Hence, objective 4

(restated below) is met in this chapter:

“To develop an expressive ensemble learner footed upon the base classifier
developed on objective 2 and the Rule Merging technique in objective 3.”

2. The ranking approach, which is integrated in ReG-Rules was examined em-

pirically by implementing another version of ReG-Rules that does not involve

any ranking process to its composite classifiers. It was found that ReG-Rules

with ranking performed equal or better than the other version in all cases.

3. The Rule Merging (RM) algorithm, which is also integrated in ReG-Rules

was evaluated qualitatively using two case studies, displaying the rule sets

before and after merging, and it was found that merged rule sets are more

compact and easier to read. Hence, objective 3 (restated below) is met in

this chapter:

“To improve the quality of rule sets by developing rule merging techniques
for predictive rules and minimising loss of accuracy.’

Overall, it can be said that rule-based predictive models are among the most ex-

pressive classification techniques in data mining. Ensemble learners aim to im-

prove classification performance, but generally, often at the expense of explain-

ability. ReG-Rules successfully provides an approach to harvest the predictive

power of an ensemble learner, while maintaining several explainable aspects of

rule-based predictive models. However, further improvements to the results on

objective 4 can be made. These proposed improvements will be introduced and

empirically evaluated in the next chapter.





Chapter 6

CRC: a Significant Extension of the
Ensemble ReG-Rules Learner

This chapter introduces a number of improvements that can be made to the en-

semble ReG-Rules learner to increase its expressive power, and also to avoid some

potential issues related to computations, and memory resources. These improve-

ments resulted in a predictive ensemble learning system, called CRC (Consoli-

dated Rules Construction), which can be considered a significant extension of the

ensemble ReG-Rules learner. The chapters also, illustrates the new approach in-

corporated in CRC learner, termed ‘CRC consolidator’, which can be utilised by a

rule-based ensemble models to merge multiple rule sets into a single global rule

set.

6.1 Introduction

Several studies in the literature such as [2, 3, 7] argue that most ensemble clas-

sifiers are hardly readable by a human. However, in Chapter 5 a new predictive

ensemble learner called ReG-Rules1 was developed and explored it is possible to

create an explainable ensemble model with rules that are comprehensible to a

human user while benefiting from predictive performance of ensemble learning.

Nevertheless, there are some improvements that can be made to the ReG-Rules

ensemble system to avoid potential issues caused by combining the votes of many

base classifiers in every classification attempt, which might be very expensive in

terms of time and space.

1ReG-Rules, which is an explainable rule-based ensemble classifier, was one of the contributions
from this project and published in [22].
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Therefore, this chapter aims to further improve the results on objective 4 (restated

below) by developing a new method of compressing a rule-based ensemble classi-

fier into a single global model with a single consolidated rule set.

“To develop an expressive ensemble learner footed upon the base classifier
developed on objective 2 and the Rule Merging technique in objective 3.”

This model is a significant extension version of the ensemble ReG-Rules system

that can be more expressive while benefiting from predictive performance of en-

semble learning in comparison with its stand-alone base learners. It is termed

‘CRC’, which is stand for Consolidated Rules Construction and its general frame-

work is expressed in the next section.

Section 6.2) introduces the consolidation approach, which can be utilised to

merge multiple rule sets into a single global one in a way that can be used directly

in the prediction stage. The approach is integrated in CRC learning system and

termed ‘CRC’s Consolidator’. This new method is expressed in Algorithm 11 and

is in line with objective 3:

“To improve the quality of rule sets by developing a rule merging tech-
nique for predictive rules and minimising loss of accuracy.’

6.2 Framework for the Consolidated Rules Construc-

tion System: CRC

As mentioned in the previous section, the purpose of developing CRC ensemble

learner is to increase the expressive power of the ensemble ReG-Rules learner

while maintaining the key advantage of the ensemble systems, which is the high

predictive accuracy comparing with the stand-alone classifiers. The general struc-

ture of CRC as shown in Figure 6.1 consists of five components: (1) Diversity

Generation, (2) Base Classifier Inductions, (3) Models Selections, (4) Stacking

and Consolidation, (5) Prediction. The explanations for each component are pre-

sented here by referring to the general framework (Figure 6.1) and to the lines of

code in Algorithm 10.

Regarding the first three stages, please note that there are many similarities

between CRC and ReG-Rules classifiers and therefore the following sections will

only briefly describe these common stages, while further details are provided for

stages 4 and 5, which describe the new CRC approach.
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Figure 6.1: The General Framework of Consolidated Rules Construction (CRC) Classifier

6.2.1 Stage 1: Diversity Generation

The generation of a set of base classifiers should be as diverse as possible to

assure producing uncorrelated errors and then obtain a more accurate ensem-

ble [24, 73, 92]. The process of obtaining a diverse set of base classifiers in CRC

system is very similar to that of ReG-Rules (see Section 5.3.1). It is based on intro-

ducing randomness into the data sampling technique and then building a group of

different models from diverse training subsets. In other words, as shown in Figure

6.1 and Algorithm 10 (lines 1 to 3 ), CRC like in ReG-Rules uses the following

sampling methods to encourage diversity between its base classifiers:

1. Sample a dataset randomly without replacement into train and test datasets.

While the testing data is used only once to perform the general evaluation

for the ensemble, training data will be used in the second sampling method.

2. Bagging, which is a sampling with replacement approach is used to pro-

duce multiple training and testing datasets from a single data source. In

this method, the size of each training subset is equal to the original train-

ing data, i.e. statistically contains about 63.2% of instances. The remaining

36.8% of the instances that are not selected in the training phase, which

called out-of-bag instances, can be used as a validation dataset to evaluate

an individual classifier [9].
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Algorithm 10: Consolidated Rules Construction: CRC
Notations: M : Number of models, S: Training dataset, V : Validation dataset,

R: rule set, BC: base classifier, Epool: Ensemble Pool
1 Randomly sample dataset without replacement into train and test datasets (train , test)

for i = 1→M do
2 si ← a random sample of train dataset generated by Bagging method (sample with

repalcement)
3 vi ← out-of-bag set
4 Generate a base classifier BCi by applying Algorithm 5 (G-Rules-IQR) on si dataset

and learn a rule set→ Ri

5 Evaluate BCi performance by applying Ri on vi dataset
6 Calculate a weight for each rule induced in previous line
7 Send BCi including its rule set weights to the ensemble pool Epool

8 end
9 Rank all the base classifiers BC collected in Epool according to the criteria described in

Section 5.3.3
10 Eliminate weak BC by selecting the n top models (topBC) ranked in the previous step

according to the following if statement:
11 if models selection type = defualt then
12 n← 20%M models
13 else
14 n← selected models size defined by user
15 Select the top n BC models in line 9
16 SR← stack all the rule sets induced by the n top models (topBC) in one large set
17 Apply Algorithm 11 (CRC Consolidator) to the stacked rules in SR set and produce a

single consolidated rule set
18 Sort the individual rules in the consolidated set according to their quality
19 return CRC Classifier

6.2.2 Stage 2: Base Classifier Inductions

This stage is also very similar to that in ReG-Rules classifier (see Section 5.3.2).

The number of base classifiers that should be generated to construct the ensemble

model is specified simply as a predefined parameter that can be defined by user

or by default value. This is referred to as M in Algorithm 10 and also in Figure

6.1. It can be seen in line 4 that CRC builds its M base classifiers in the same

way as ReG-Rules does, i.e., it uses G-Rules-IQR (Algorithm 5, which was one of

the contributions of this thesis and published in [21]) as the base inducer of these

M base classifiers. Then, between lines 5 and 7, CRC performs the independent

evaluation of each classifier using different validation dataset.

The evaluation method is called a ‘classifier’s performance weighting’ and it

was previously detailed in Section 5.3.2. Briefly, the weighting criteria of this

method contains a combination of: (1) number of rules, (2) CUR: which is a

track record prediction for each Correctly Used Rule during validation phase, (3)

abstaining rate, (4) tentative accuracy. At the end of this stage, each base classifier

will be associated with its weight and sent to the ‘ensemble pool’ as shown in

Figure 6.1. This weight is reflecting the quality of a base classifier’s rule set.
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6.2.3 Stage 3: Models Selections

The number of base learners that should be included in the final model is an impor-

tant factor for building an effective ensemble [24,114]. As previously explained in

Section 5.3.3, by following the theorem of ‘many could be better than all’ [124],

a smaller ensemble model can be extracted from a larger one without causing

loss in its predictive performance. This also may enhance the comprehensibility

of the ensemble. To achieve that, CRC uses a models selection approach, termed

‘Ranking-based CUR’, which is also used by ReG-Rules learner and it is previously

detailed in Section 5.3.3. The process can be briefly described as follows:

1. Rank all the induced base classifiers according to their weights, which are

derived from their classification performance on different validation datasets

(Stage 2).

2. Select the top-ranked models according to a given threshold, which is a fixed

user-specified amount or percentage of models (default = 20 %). Thus, the

weak classifiers will be eliminated as highlighted in Algorithm 10 (lines 10

to 15).

6.2.4 Stage 4: Stacking and Consolidation

The previous stage ended by a group of top-ranked selected base classifiers; each

have an individual rule set. Despite that these base models were constructed

independently using diverse training subsets, their rule sets are still considered

to be induced from the same source of data. Consequently, due to the ‘theory of

overlapping rules’ that most separate and conquer approaches are based on, there

is a possibility that some of these rules are overlapped. This may often result in

smaller rule sets, which are less susceptible to the redundancy problem during

the training phase [43]. However, overlapping rules are generally unnecessary as

they need to be tested at prediction phase and thus incur unnecessary additional

testing.

The ReG-Rules learning system has addressed this problem in Section 5.3.4

by locally applying a rule merging (RM) technique (Algorithm 8) among each

individual rule set. Notably, this post-processing method of the induced rules has

to be repeatedly applied to each base classifier in ReG-Rules. The results of the

experiments conducted in Chapter 5 show that the RM approach is very effective in

lowering the total number of rules. However, this section proposes an alternative

method, called ‘Rules’ Stacking and Consolidation’, that addresses the overlapping

rules issue in which make the testing more efficient.
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In this new method, CRC learner compresses the top base classifiers into a

single global rule-based learner instead of locally merging each rule set indepen-

dently. This is expected to enhance the expressiveness of the ensemble CRC learner

to an extent that it is similar to a predictive standard base learner, thereby meet-

ing the aim of this work. The approach as shown in Figure 6.1 consists of the

following two steps:

1. Stacking: CRC classifier gathers all the rule sets of the top base classifiers and

stacks them in one large set. This is represented by ‘staked rules’ in Figure 6.1

and referred to as ‘ SR ’ in Algorithm 10 (line 16). The key idea of stacking

here is to simply accumulate the rule sets in the same order of their original

ranked base classifiers, without performing any optimisation or filtering to

the rules. Hence, the need to keep the base classifiers themselves no longer

exists in which they can be simply discarded at this level.

2. Consolidation: CRC, in Algorithm 10 (line 17), integrates a method that will

be detailed below to perform the global merging process and produces a

single consolidated rule set.

Integrated Rules Consolidation Approach (CRC Consolidator)

After eliminating the base classifiers and stacking their rules in one large set, the

decision about which rule will be kept, improved or even removed depends on the

rule’s quality (individual weight). The process as shown in Algorithm 11 (CRC

consolidator) begins by initialising a new global rule set (line 1). Then each rule

in the staked rule set (SR) is checked against the replications and the overlaps.

If two rules (e.g. SR1 , SR2) are identical, one of them will be removed (line 6).

Otherwise, SR1 and SR2 will be to considered as candidate overlapped rules. This

is conditioned by the decision returned from Algorithm 7 (Overlap Checking),2,

which is invoked by the CRC Consolidator in line 8 to carry out the examination.

A decision (true/false) about the current rules examination is retuned to the CRC

consolidator.

Next, the CRC Consolidator continues at line 10 where the current overlapped

rules are considered for the final consolidation process and a new iteration will be

started again to examine another two new rules until all the rules in the staked

set (SR) are investigated. Then, a process of constructing a new consolidated rule

from a number of overlapped rules is started in line 14. First, the overlapped rules

are grouped by terms. Then, depending on the type of attribute in each term, the

2 For detailed description of Algorithm 7 (Overlap Checking), the reader is referred to Chapter
5 (Section 5.3.4)
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process will continue. In case of categorical attributes, a new term is generated

in the form (α = v) where α is the attribute name and v is a discrete value that

occurs in all the current overlapped terms. If the attribute type is continuous, a

new term is generated in the form (x < α ≤ y) where x is the smallest lower

bound presented in all the current overlapped terms and y is the largest upper

bound presented in the same overlapped terms. After the term is created, it will

be appended to the new consolidated rule (line 24). Then, a new iteration of the

next term will be started. Finally, in line 26, all the consolidated rules are added to

the global rule set. The weight of each consolidated rule is estimated by averaging

the weights associated to all the overlapped rules used in its generation.

Algorithm 11: Consolidation Approach: CRC Consolidator
1 Initialise new GlobalRules set
2 for (i = 1→ SR ) do
3 OverlappedRules← SRi ;
4 for (j = 1→ SR [−OverlappedRules] ) do
5 if (SRi and SRj are identical rules) then
6 Skip current SRj
7 else
8 OverlapExist← Apply Algorithm 7 (Overlaps Checking) on SRi

and SRj
9 if (OverlapExist = True ) then

10 OverlappedRules← ADD (SRj)
11 end
12 end
13 end
14 if (OveralppedRules list contains rules other than SRi) then
15 ConsoR← empty // a new consolidated rule intialisation
16 foreach ( α in OveralppedRules list) do
17 if (attribute α is categorical) then
18 Create a rule-term αj in the form (α = v) ;
19 else if (attribute α is continuous) then
20 x← smallest lower bound of α ;
21 y ← largest upper bound of α ;
22 Create a rule-term in a fom of (x < α ≤ y)
23 end
24 Append a rule-term built in lines 18 or 22 to the new consolidated rule

ConsoR
25 end
26 GlobalRules set← ADD (ConsoR)
27 end
28 end
29 return new GlobalRules set
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6.2.5 Stage 5: Prediction

Combining multiple individual models’ predictions (votes) promises a consider-

able increase in predictive accuracy compared with a single classifier. However, it

has a number of potential issues in training and testing phases, as mentioned in

Section 6.1. Issues related to the prediction stage can be summarised as follow:

• The number of base classifiers might be a bottleneck for the overall pre-

diction time regardless of the voting method employed to produce the final

ensemble decision.

• Most importantly, the resulting prediction may also be harder to explain or

to justify by a human, which is particularly crucial for rule-based classifiers.

Most predictive ensemble learning systems including ReG-Rules may encounter

the aforementioned obstacles during the prediction tasks. However, ReG-Rules

alleviates these problems by reducing the number of base classifiers that should be

combined to decide the final predictions (see Section 5.3.5). Ideally, the amount

of reduction is determined by the user; however, in the experiments conducted in

Chapter 5, ReG-Rules successfully achieved a 80% reduction in the ensemble size

and offered a greater level of explainability without sacrificing accuracy.

Nevertheless, for each new unlabelled instance, ReG-Rules still needs to com-

bine several or all the base classifiers’ predictions and then build a committee of

rules to decide the final prediction using a weighted voting strategy. In other

words, the expressive power of ReG-Rules may rely on the size of the classifica-

tion committees and the complexity of the datasets. Therefore, in order to assure a

high level of expressiveness in the ensemble predictions, classifying a new instance

should be done the same way as in single rule-based classifiers using a single rule

set. The empirical evaluation, which is presented in the next section shows that

this is successfully provided in stage 4 of CRC learning system using the global

consolidated rule set.

6.3 Empirical Evaluation of CRC Learning Model

The aim of the experimental evaluation in this chapter is to evaluate the perfor-

mance of the proposed ensemble CRC classifier comparing with: (1) the ensemble

ReG-Rules model, which is developed in this research in Chapter 5 and published

in [22], (2) G-Rules-IQR, the stand-alone classifier that has been chosen to be the

base learning algorithm in the ensembles 3.

3G-Rules-IQR is also one of the contributions of this research described in Chapter 4 and pub-
lished in [21]
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6.3.1 Experimental Setup

All the experiments were performed on a 2.9 GHz Quad-Core Intel Core i7 ma-

chine with memory 16 GB 2133 MHz LPDDR3, running macOS Big Sur version

11.4. All the 24 datasets used in the experiments were chosen randomly from

the UCI repository [17], the only conditions being that they contain continuous

attributes and involve classification tasks. The specifications of the datasets are

highlighted in Table 6.1 in terms of number of instances, attributes (including the

type of attribute) and class labels. Datasets 15, 16 and 24 included few missing

values in continuous attributes. To address this issue, the current research adopted

and implemented a common method, found in the literature [5], which is based

on estimating a missing numeric value with the average value for the concerning

attribute.

Table 6.1: Characteristics of the datasets used in the experiments in Chapter 6

No. Dataset No. Attributes No. No.
Classes Instances

1. iris 5 (4 cont) 3 150
2. seeds 8 (7 cont) 3 210
3. wine 14 (13 cont) 3 178
4. blood transfusion 6 (5 cont ) 2 748
5. banknote 6 (5 cont) 2 1,372
6. ecoli 9 (7 cont, 1 name) 8 336
7. yeast 10 (8 cont, 1 name) 10 1,484
8. page blocks 11 (10 cont) 5 5,473
9. user modelling 6 (5 cont) 4 403
10. breast tissue 11 (10 cont) 6 106
11. glass 11 (10 cont, 1 id) 7 214
12. HTRU2 10 (9 cont) 2 17,898
13. magic gamma 12 (11 cont) 2 19,020
14. wine quality-white 13 (12 cont) 11 4,898
15. breast cancer 12 (10 cont, 1 id) 2 699
16. post operative 10 ( 1 cont, 9 categ) 3 90
17. wifi localization 8 (7 cont) 4 2,000
18. indian liver patient 12 ( 10 cont, 1 categ) 2 583
19. sonar 62 (61 cont) 2 208
20. leaf 17 (15 cont, 1 name) 40 340
21. internet firewall 12 (cont) 4 65,532
22. bank marketing 17 (6 cont, 10 categ) 2 45,211
23. avila 11 (10 cont) 12 20,867
24. shuttle 10 (9 cont) 7 58,000

The two ensembles (ReG-Rules and CRC) and their stand-alone inducer (G-

Rule-IQR) have been implemented in the statistical programming language R

[147] 4.

4All the source codes are available in a public online repository at https://github.com/
ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0 and are archived at https://doi.org/10.
5281/zenodo.5557590 [23].

https://github.com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0
https://github.com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0
https://doi.org/10.5281/zenodo.5557590
https://doi.org/10.5281/zenodo.5557590
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The source code used to implement CRC algorithm is similar to that for ReG-

Rules differing only in the methodological aspects described in stage 4 (Sections

6.2.4), and stage 5 (Section 6.2.5). All the algorithms are evaluated against 5

metrics for classifiers, which are presented below:

1. Number of Rules: this is to compare the average number of rules generated

by ReG-Rules’ base classifiers, the average number of rules generated by

CRC’s base classifiers, and the total number of rules induced by the stand-

alone G-Rules-IQR classifier. A low number of rules is desired.

2. F1 score: this is also known as the harmonic mean of precision and recall.

This is a number between 0 and 1. A high F1 score is desired.

3. Accuracy: this is the ratio of instances that have been correctly classified

either using the induced rule set or the majority class strategy in case of

unclassified instances. This is a number between 0 and 1.

4. Tentative Accuracy: this is the ratio of instances that have been correctly

classified using only the induced rule set, i.e. does not count the ones that

are not covered by rules.

5. Abstaining Rate: this is the proportion of cases a classifier abstains from

classification, i.e. the proportion of instances not covered by the rule set.

This is a number between 0 and 1. A low abstaining rate is desired.

6. Execution Time: this is the time needed to complete all the stages and pro-

duce the final decisions.

Please consider that there is a relationship between accuracy, tentative accuracy

and abstaining rate. Tentative accuracy does not consider the abstained instances,

while the accuracy counts them as misclassifications. Hence, the higher the ab-

staining rate, the higher the tentative accuracy and the lower the accuracy.

The methodology used for experimentation with the 24 datasets is hold-out

procedure; each dataset was randomly sampled without replacement into train

and test datasets. While the 70% of the data instances were used to train and

build the ensemble classifier, the remaining 30% were used as a testing dataset.

In case of the ensemble models (ReG-Rules and CRC), the training dataset is used

to generate multiple base classifiers using bagging, which is a method of sampling

with replacement that have been used in this work to ensure a sufficient level of

diversity during the ensemble construction whereas the test set is used only once

to assess the general performance of the classification models.
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6.3.2 Results and Discussion

This section presents the experimental results of CRC ensemble learning model

in comparison with: (1) ReG-Rules ensemble learner and (2) the stand-alone G-

Rules-IQR, which is also the inducer of the base classifiers in both ensembles. In

each table, the # symbol refers to the number of the dataset in Table 6.1. The

best result(s) in the tables for each dataset are highlighted in bold letters. The

tables show the results with respect to the 6 evaluation metrics described in the

previous section. With respect to F1 score, overall accuracy, tentative accuracy

and learning time, Table 6.3 shows the comparison between CRC and ReG-Rules

while Table 6.4 presents the comparison between CRC and G-Rules-IQR in these

metrics, which will be discussed .

Regarding the ‘number of induced rules’ and the ‘abstaining rates’ metrics, Ta-

ble 6.2 shows the results of all the three classifiers. However, considering that

G-Rules-IQR is a stand-alone classifier; it is not reasonable to be compared with

the ensemble classifiers with respect to ‘the number of rules’ measurement. There-

fore, CRC learner is only compared with ReG-Rules ensemble. As can be seen

in the table, the number of consolidated rules produced by CRC is considerably

smaller than the total number of rules produced by ReG-Rules in all datasets,

making it expressive and much easier for the analyst to understand for predic-

tion. In most cases, the size of the rules generated by CRC is reduced by 90%

compared with ReG-Rules’ sizes as shown in Figure 6.2. Abstaining from classifi-

cation, a typical problem of rule-based classifiers, was almost non-existent in both

ensembles (ReG-Rules and CRC) compared with the stand-alone G-Rules-IQR’s ab-

staining rates, which were higher by more than 10% on several datasets compared

with ReG-Rules and CRC. In four datasets (9, 10, 18 and 20) the abstaining rate

in G-Rules-IQR reaches 30%, 19% , 18% and 40% respectively.

Figure 6.2: Differences in percentage of number of rules generated by CRC compared with ReG-
Rules
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Table 6.2: Number of Rules and Abstaining Rates for CRC learner compared with ReG-Rules and
G-Rules-IQR learners

#
Number of Rules Abstaining Rate

G-Rules-IQR ReG-Rules CRC G-Rules-IQR ReG-Rules CRC
1 18 342 44 0.07 0.00 0.00
2 22 386 64 0.03 0.00 0.00
3 13 250 28 0.06 0.00 0.00
4 20 321 38 0.00 0.00 0.00
5 89 1630 128 0.02 0.00 0.00
6 37 649 107 0.02 0.00 0.00
7 99 1648 289 0.04 0.00 0.00
8 131 2348 570 0.02 0.00 0.00
9 57 901 162 0.30 0.00 0.01

10 28 485 87 0.19 0.00 0.00
11 30 505 72 0.11 0.02 0.02
12 35 521 57 0.00 0.00 0.00
13 79 1388 251 0.00 0.00 0.00
14 126 2289 243 0.02 0.00 0.00
15 11 186 28 0.00 0.00 0.00
16 29 451 105 0.11 0.00 0.00
17 59 955 159 0.01 0.00 0.00
18 47 996 368 0.17 0.00 0.00
19 16 270 30 0.13 0.00 0.00
20 124 2015 393 0.40 0.01 0.03
21 21 402 49 0.00 0.00 0.00
22 115 1977 428 0.01 0.00 0.00
23 158 3272 699 0.09 0.01 0.01
24 27 428 38 0.00 0.00 0.00

Comparing with ReG-Rules Ensemble Learner:

Table 6.3 shows the comparison of the performance of CRC and ReG-Rules using

F1 score, overall accuracy, tentative accuracy and learning time. The results of F1

score reveals that CRC performs equal or better than ReG-Rules in 13 out of 24

datasets, as can be seen in Figure 6.3. Also, CRC was very competitive on 4 out

of the remaining datasets in which it was only underperformed by a maximum

difference of 3%.

Please note that the comparison between CRC and ReG-Rules in terms of over-

all accuracy and tentative accuracy are very similar5. The results show that with

respect to both metrics, CRC performs at the same level as ReG-Rules in 14 out of

24 cases. On 5 out of the remaining 10 datasets (2, 6, 11, 18 and 19) where CRC

did not achieve the highest accuracy and tentative accuracy, it was still very close

within 3% of the best results compared with ReG-Rules learner. On one dataset

(#5), the accuracy and tentative accuracy of CRC were lower than ReG-Rules by

about 15%. However, this is also the dataset where the highest compression in the

size of the rules is taking place.

5This is related to the nature of relationship between accuracy and tentative accuracy, which is
based on the abstaining rates, i.e. almost non-existent in CRC and ReG-Rules as Table 6.2 shows.
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Table 6.3: Comparison of the performance of CRC and ReG-Rules using F1 score, Overall Accuracy,
Tentative Accuracy and Learning Time

#
F1 score Accuracy Tentative Accuracy Learning Time (Sec.)

ReG-Rules CRC ReG-Rules CRC ReG-Rules CRC ReG-Rules CRC
1 0.93 0.93 0.93 0.93 0.93 0.93 112.8 94.8
2 1.00 0.97 1.00 0.97 1.00 0.97 232.2 192.6
3 1.00 1.00 1.00 1.00 1.00 1.00 166.2 148.8
4 1.00 1.00 1.00 1.00 1.00 1.00 358.8 322.2
5 0.99 0.87 0.99 0.84 0.99 0.84 3251.4 2939.4
6 0.91 0.91 0.95 0.92 0.95 0.92 384 360
7 0.91 0.83 0.97 0.97 0.97 0.97 3262.8 3096
8 0.87 0.82 0.98 0.98 0.98 0.98 10512 9612
9 0.95 0.87 0.94 0.86 0.94 0.87 733.2 631.2
10 0.97 0.91 0.97 0.91 0.97 0.91 245.4 228.6
11 0.93 0.90 0.95 0.94 0.97 0.95 264 247.2
12 1.00 1.00 1.00 1.00 1.00 1.00 12600 12168
13 1.00 1.00 1.00 1.00 1.00 1.00 18288 17100
14 0.87 0.99 1.00 1.00 1.00 1.00 12240 11880
15 1.00 1.00 1.00 1.00 1.00 1.00 174.6 156
16 0.77 0.77 0.63 0.63 0.63 0.63 193.2 189
17 1.00 1.00 1.00 1.00 1.00 1.00 2833.2 2635.8
18 0.84 0.82 0.73 0.71 0.73 0.71 2095.8 1951.8
19 0.97 0.96 0.97 0.95 0.97 0.95 897.6 864.6
20 0.67 0.61 0.56 0.46 0.57 0.47 2388 2125.8
21 0.90 0.90 1.00 1.00 1.00 1.00 71316 39276
22 0.99 0.99 0.98 0.98 0.98 0.98 41400 32940
23 0.93 0.86 0.92 0.86 0.92 0.86 119232 68292
24 1.00 1.00 1.00 1.00 1.00 1.00 20808 17964

Figure 6.3: Performance of CRC approach compared with the ensemble ReG-Rules approach

Regarding the learning time, Table 6.3 demonstrates that CRC learner is faster

than ReG-Rules on all datasets. The decrease in learning times was up to 45% in

some cases as shown in Figure 6.4.
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Figure 6.4: Differences in percentage of learning times of CRC compared with ReG-Rules

Comparing with Stand-alone G-Rules-IQR Learner

On the other hand, the performance of CRC learning model is also compared with

its stand-alone inducer (G-Rules-IQR algorithm). Table 6.4 shows the results of

this comparison using F1 score, accuracy and tentative accuracy. CRC achieves

the best F1 scores in 14 out of 24 datasets, as can be seen in Figure 6.5. In the

cases where CRC did not outperform G-Rules-IQR, its scores only marginally lower.

For example, the differences in 5 cases (1, 2, 7, 18 and 23) were less than 4%.

In terms of overall accuracy, as can be seen in Table 6.4 and Figure 6.5, CRC

achieves the highest results in most cases (21 out of the 24 datasets). Moreover,

CRC achieves the highest tentative accuracies in 14 out of 24 datasets compared

with G-Rules-IQR classifier. CRC was also very competitive with G-Rules-IQR, in 7

out of the remaining 8 datasets their results are very close. Only on one dataset (#

20), CRC’s tentative accuracy was much lower than the stand-alone G-Rules-IOR.

However, this dataset also causes the highest abstaining rate for G-Rules-IQR in

the current experiments, and therefore it had been classified using the majority

class label method. As mentioned in Section 6.3.1 the abstained instances are not

considered in the tentative accuracy.



Chapter 6. CRC: a Significant Extension of the Ensemble ReG-Rules Learner 164

Table 6.4: Comparison of the performance of CRC and G-Rules-IQR using F1 score, Overall Accu-
racy and Tentative Accuracy

#
F1 score Accuracy Tentative Accuracy

G-Rules-IQR CRC G-Rules-IQR CRC G-Rules-IQR CRC
1 0.96 0.93 0.91 0.93 0.95 0.93
2 1.00 0.97 0.97 0.97 1.00 0.97
3 0.98 1.00 0.94 1.00 0.98 1.00
4 0.98 1.00 0.97 1.00 0.97 1.00
5 0.98 0.87 0.98 0.84 0.99 0.84
6 0.99 0.91 0.96 0.92 0.97 0.92
7 0.87 0.83 0.93 0.97 0.96 0.97
8 0.93 0.82 0.98 0.98 0.99 0.98
9 0.95 0.87 0.72 0.86 0.95 0.87
10 0.77 0.91 0.66 0.91 0.81 0.91
11 0.86 0.90 0.86 0.94 0.97 0.95
12 0.99 1.00 1.00 1.00 1.00 1.00
13 1.00 1.00 1.00 1.00 1.00 1.00
14 0.96 0.99 0.97 1.00 0.99 1.00
15 1.00 1.00 1.00 1.00 1.00 1.00
16 0.49 0.77 0.67 0.63 0.67 0.63
17 1.00 1.00 0.99 1.00 1.00 1.00
18 0.83 0.82 0.71 0.71 0.71 0.71
19 0.95 0.96 0.87 0.95 0.94 0.95
20 0.75 0.61 0.39 0.46 0.65 0.47
21 0.90 0.90 1.00 1.00 1.00 1.00
22 0.99 0.99 0.98 0.98 0.98 0.98
23 0.89 0.86 0.85 0.86 0.88 0.86
24 0.99 1.00 1.00 1.00 1.00 1.00

Figure 6.5: Performance of CRC approach over the stand-alone G-Rules-IQR approach



165 6.4. Summary

6.4 Summary

The purpose of this chapter was to increase the expressive power of rule-based

ensemble learning models while maintaining the key advantage of the ensemble

learners, which is the high predictive accuracy compared with the stand-alone

classifiers. Therefore, a new algorithm was developed in Section 6.2 to compress

the ensemble ReG-Rules learner into a single global classifier, which can be used

directly in predictions without the need to combine multiple classifiers’ votes on

every classification attempt. The new proposed ensemble learner was called Con-

solidated Rules Construction (CRC) and consists of 5 components: Diversity Gen-

eration, Base Classifiers Induction, Models Selection, Stacking and Consolidation

and Prediction.

CRC induces a diverse ensemble based on bagging, just like in ReG-Rules (see

Section 5.3.1). The induced base models are ranked according to their classifica-

tion performance on validation datasets, and only the best performing models are

retained and considered for the global rules’ consolidation process. To measure the

individual classification performance of these base models, CRC uses a weighting

method composed of various metrics (see Section 6.2.2). Moreover, to rank and

then select the best performing models, CRC utilises a ranking-based method (see

5.3.3). The rule sets of these best ranked classifiers are consolidated in a single

global rule set using a new approach called ‘Rules Stacking and Consolidation’,

which was integrated in CRC (see Section 6.2.4).

CRC was empirically evaluated in Section 6.3 and compared with the ensemble

ReG-Rules classifier and the stand-alone G-Rules-IQR classifier. The results of these

comparisons can be summarised as follows:

• Compared with the ensemble ReG-Rules classifier, CRC considerably outper-

formed in terms of number of rules that have been constructed and used for

predictions in all cases. Figure 6.2 shows this significant difference between

the two ensembles, which reaches 90% in most cases. Abstaining from clas-

sification, a typical problem of rule-based classifier, was almost non-existent

in both ensembles. Also Figure 6.3 reveals that CRC was competitive com-

pared with ReG-Rules in terms of F1 score, overall accuracy and tentative

accuracy. Regarding the learning time metric, CRC outperformed ReG-Rules

in all cases. Figure 6.4 shows that the decreases in CRC’s learning times

reached the 45% in some case compared with ReG-Rules.

• Compared with the stand-alone G-Rules-IQR classifier, CRC outperformed in

terms of abstaining rates in all cases. Also, CRC achieved the highest results

on most cases in terms of F1 score, overall accuracy and tentative accuracy.
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Generally speaking, developing the new consolidation approach (CRC Consolida-

tor) in this chapter, which was utilised by CRC learner to merge multiple rule sets

into an expressive global rule set, is in line with the objective 3:

“To improve the quality of rule sets by developing a rule merging tech-
nique for predictive rules and minimising loss of accuracy.’

The global rule set constructed by the CRC learner can assure a high level of

expressiveness in the ensemble predictions, just the same way as in the single

rule-based classifiers. Therefore, this chapter has successfully fulfilled the research

objective 4:

“To develop an expressive ensemble learner footed upon the base classifier
developed on objective 2 and the Rule Merging technique in objective 3.”





Chapter 7

Conclusion and Future Directions

In this concluding chapter, a summary of the research work described in this thesis

is provided in Section 7.1. Section 7.2 presents the contributions to knowledge

and the extent to which the project aim and objectives have been met is examined.

Also, it lists the publications that have been produced during the project. The

chapter then, in Section 7.3 describes some potential areas for future research, by

which this work could be extended.

7.1 Summary of Thesis

In many critical applications, such as medical diagnoses, financial analysis, credit

risk evaluation, terrorism detection, etc. Predictive learning models are required

to be not only reliable and accurate, but also comprehensible to avoid or reduce

the risk of irreversible misclassification. Constructing a single classification model

may lead to overfitting, a common problem in data mining that causes a model

to perform badly on testing data. Often, the standard strategy in data mining to

reduce overfitting involves sacrificing accuracy on the training data for accuracy

of classifying unseen data. However, this trading-off strategy may not be tolerated

by a human especially in critical applications. Alternatively, ensemble learning has

initially been developed in order to address overfitting, while improving (not only

maintaining) the predictive accuracy of the learner. However, this often goes at

the expense of expressiveness and explainability of the predictive model learned,

as the human analyst is presented with a large number of different classification

models. This provided the motivation for the research presented in this thesis,

which aims to develop a predictive learner that can be expressive while retaining

key advantages of ensembles learners.

In Chapter 2, the literature around predictive learning systems has been cat-

egorised into two paradigms: ensemble learning system and stand-alonelearning

168
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system. With respect to the ensemble paradigm, the chapter has illustrated the

general concept and the philosophy of ensemble learning systems. Then a number

of ensemble methods characteristics have been thoroughly explored, followed by

describing a number of criteria for evaluating the predictive performance of en-

sembles. Regarding stand-aloneclassifiers, the chapter has reviewed a number of

predictive data mining algorithms, which involved investigating their expressive-

ness and the extent of being a suitable base learning algorithm for the proposed

ensemble. Modular rule induction has shown to be superior in terms of the expres-

siveness level compared with other classification algorithms. Therefore a choice

was made to develop a rule-based algorithm in relation to the Prism family of

algorithms to be used as the base learners of the ensemble.

The rationale behind this choice was discussed in Chapter 3. The main advan-

tages of Prism family of algorithms have been identified, followed by analysing

a number of practical and computational issues found in existing versions of this

algorithm family. Also, the chapter has reviewed the solutions, which are cur-

rently being deployed to overcome these issues. In particular, the focus was on

approaches to deal with continuous features, which is based on converting them

into categorical features at each stage of the induction process by using frequent

cut-point calculations method (also referred to as binary splitting). A numeric

rule-term that can be produced using this type of local discretisation method is in

the form (α < v and α ≥ v) which is computationally expensive. This problem was

thoroughly investigated in Chapter 3 besides reviewing a number of common (lo-

cal and global) discretisation techniques. Then a computationally more efficient

and expressive approach to induce numeric rule-terms in the form (x ≤ α < y)

has been proposed. This new rule-term structure, which is based on Gaussian

Probability Density Distribution (GPDD) greatly enhances the readability of the

individual rules. Therefore, it has been utilised to develop two new members in

the Prism family of algorithms, namely, ‘G-Prism-FB’ and ‘G-Prism-DB’. The letter

‘G’ stands for Gaussian, ‘FB’ refers to fixed size rule-term boundaries, and ‘DB’

stands for dynamic size rule-term boundaries. An empirical performances evalua-

tion of G-Prism algorithms have been detailed in Chapter 3 which concluded that

(in general) G-Prism-DB performs better than G-Prism-FB and than the original

Prism algorithm in most cases. However, it is possible that this approach could be

improved further.

Therefore, Chapter 4 started by highlighting the shortcomings that exist in G-

Prism-FB and G-Prism-DB algorithms, which are: (1) the more accurate G-Prism-

DB requires a user defined rule-term boundary threshold, (2) both algorithms

assume normally distributed continuous attributes, (3) both algorithms have a

higher abstaining rate than the basic Prism classifier and (4) G-Prism-DB was es-
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timated to have a longer execution time than G-Prism-FB and the basic Prism.

Then the new proposed solutions were deployed to deal with the aforementioned

limitations, resulting in a new rule induction classifier termed ‘G-Rules-IQR’. The

algorithm is based on a combination of Gauss Probability Density Distribution

(GPDD), InterQuartile Range (IQR) and data transformation approach towards

normally distributed data. For comparative purposes, three variations of origi-

nal Prism with different discretisation methods (binary splitting, ChiMerge and

Caim) have been implemented. Also, the implementations of G-Rules-IQR and

G-Prism algorithms have allowed to switch off the transformation to approximate

normal distribution.1 The aforementioned (five) approaches have been empiri-

cally evaluated and compared with each other using six metrics: number of rules,

abstaining rates, F1 score, accuracy, tentative accuracy and execution time. With

respect to number of rules induced, G-Rules-IQR has produced fewer rules com-

pared with G-Prism algorithms but more rules compared with the original Prism.

A small number of rules is desired. This is the only metric where the original Prism

outperforms G-Rules-IQR classifier and G-Prism classifiers. Also, despite that G-

Rules-IQR suffers from high abstaining rates in some cases; the comparisons have

shown that there is no clear winner with respect to this particular metric. With

respect to the rest of the remaining metrics, the results revealed that G-Rules-IQR

with transformation outperformed its competitors in most cases.

Hence, Chapter 5, has presented this improved version of the G-Rules-IQR

as the suitable base inducer of the proposed ensemble classifier, which is termed

‘ReG-Rules’. This choice was because G-Rules-IQR induces a highly expressive rule

set and provides a high classification accuracy in comparison with other rule-

based learners. The purpose of the ensemble ReG-Rules learner is to maximise

the overall accuracy, while maintaining a high level of explainability in terms of

rule examinations needed for tracing individual predictions. The general frame-

work of ReG-Rules model has been demonstrated. It consists of 5 stages: Diversity

Generation, Base Classifiers Induction, Models Selection, Rules Improvement, and

Combination and Prediction. First, ReG-Rules uses bagging to ensure generating a

diverse set of base classifiers (stage 1). Then a new ranking method is developed in

ReG-Rules to rank the base models induced according to their classification perfor-

mance on different validation datasets (stage 2). Only the best performing models

will be selected and considered for predicting class labels, whereas the weak clas-

sifiers will be eliminated (stage 3). Next, a new local rule merging method is

developed in ReG-Rules to further optimise the rule sets of its top-ranked models

1All the source codes are available in a public online repository at https://github.com/
ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0 and are archived at https://doi.org/10.
5281/zenodo.5557590 [23].

https://github.com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0
https://github.com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0
https://doi.org/10.5281/zenodo.5557590
https://doi.org/10.5281/zenodo.5557590
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by merging overlapping rules within each rule set independently (stage 4). Last, to

avoid a potential problem of reliability between the top base models predictions,

a new combination technique based on a weighted voting strategy, is developed in

ReG-Rules to build a classification committee for each unseen instance and thus

determine the final ensemble predictions (stage 5). Several experimental studies

are conducted in Chapter 5 to evaluate empirically and qualitatively the general

performance of ReG-Rules system and the new methods integrated in it. The re-

sults have shown that ReG-Rules has produced fewer rules per base classifier com-

pared with its stand-alone G-Rules-IQR. Also, it was almost never abstained from

classification compared with G-Rules-IQR, which has suffered from high abstain-

ing rate on several datasets. In terms of F1 score, accuracy and tentative accuracy,

ReG-Rules has outperformed G-Rules-IQR in most cases. Overall, the chapter has

concluded that ReG-Rules successfully provides an approach to harvest the predic-

tive power of an ensemble learner, while maintaining several explainable aspects

of rule-based predictive models.

Nevertheless, there are some improvements that can be made to avoid some

potential challenges related to expressiveness, computations and memory resources,

especially when dealing with large datasets. These improvements that have been

presented in Chapter 6 are resulted in a significant extension of the ensemble

ReG-Rules learner, which is called ‘Consolidated Rules Construction (CRC)’ system.

The chapter was aimed to further improve the results on objective 4 (restated

in the next section), by developing a new consolidation approach to compress a

rule-based ensemble learner into a single global classifier. CRC learner assures a

high level of explainability in the ensemble predictions just the same way as in

the single rule-based classifiers while preserving the key advantage of the ensem-

ble, which is the high predictive accuracy compared with the stand-alone classi-

fiers. The general framework of CRC has been demonstrated, and it consists of

5 components: Diversity Generation, Base Classifier Inductions, Models Selection,

Stacking and Consolidation, and Prediction. There have been some similarities be-

tween CRC and ReG-Rules in the first three stages. However, in stage 4, the new

consolidation approach is integrated in CRC to compress all the top selected base

classifiers into a single global classifier, which produces a consolidated rule set that

can be used directly in predictions without the need to combine multiple votes

from multiple classifiers on every classification attempt like in ReG-Rules (stage

5). CRC was empirically evaluated through two different comparisons. First,

comparing with the ensemble ReG-Rules, the results have shown that CRC was

faster and more expressive in all cases. In fact, the number of rules constructed

by CRC have been significantly decreased by 90% in most cases compared with

ReG-Rules. In terms of F1 score, overall accuracy and tentative accuracy, CRC has
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not outperformed ReG-Rules in all cases, but it was very competitive. Regarding

the second comparison, which was with the stand-alone G-Rules-IQR classifier, the

results revealed that the abstaining from classification was almost non-existent in

CRC while it was higher than 10% in several cases in G-Rules-IQR. Also, with

respect to the remaining metrics (F1 score, overall accuracy, tentative accuracy),

CRC learner has performed better in most cases.

Figure 7.1: Overview of how research objectives are met to answer the research question

7.2 Research Findings and Contributions

This section will identify the main findings from the research work presented in

this thesis, beginning with how this work has met the stated objectives highlighted

in Chapter 1 in order to answer the research question. This is followed by a

discussion of some key insights. Last, the contributions to knowledge made by

this PhD project will be described.

7.2.1 Research Findings

To begin with, the main research question to be answered was:

Is it possible to develop a predictive ensemble model, which exhibits

a similar expressiveness as the predictive base learner while

improving its accuracy and lowering its abstaining rate?
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In order to answer this research question, as can be seen in Figure 7.1 four ob-

jectives were required to be met. The work described in the thesis meets each of

these research objectives as follows:

1. To critically assess the predictive learning techniques of rule-based and

ensembles and their limitations.

Various machine learning algorithms exist to induce classification models

that can be used as base classifiers for a predictive ensemble learner. There-

fore, the essential background in predictive data mining algorithms have

been examined in this thesis to find the most appropriate techniques to be

employed to answer the above research question. However, it was of interest

in this study to focus on approaches that share the common goal of produc-

ing models that can be read by a human. Thus, black box approaches such

as SVM, Kernel-based, ANN, deep learning, etc. have been excluded. Also,

tree-based models have been found not sufficiently expressive, as they tend

to be complex when they reach a certain size. On the other hand, it has been

found that modular rule induction approaches are much closer to the white

box models than other techniques.

2. To measure and compare the expressiveness of rule based models and

develop an appropriate rule-based predictive algorithm suitable as base

learner for an ensemble.

Modular rule induction algorithms offer a greater explainability about how

they arrive at a particular prediction compared with decision trees. There-

fore, a choice was made to use a rule induction approach to produce a

human-readable (expressive) rule set required by the objectives. The re-

search has investigated the ability to learn from continuous attributes in a

separate and conquer rule-based algorithm. In particular, the computational

efficiency and the expressive power of rules have been examined and com-

pared with three new proposed rule-based algorithms.

3. To improve the quality of rule sets by developing rule merging tech-

niques for predictive rules and minimising loss of accuracy.

The key challenge in predictive rule-based algorithms lies in the need of

fewer expressive and accurate rules, which is even more challenging in en-

semble systems. After constructing multiple base classifiers induced by a

rule-based algorithm, a post-processing process has been applied to improve

the quality of the rules by making them more compact without loss of infor-

mation.
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4. To develop an expressive ensemble learner footed upon the base classi-

fier developed in objective 2 and the rule merging techniques in objec-

tive 3.

In addition to the high predictive accuracy, which is the main advantage of

ensemble learners, a further consideration is required in the ensembles pro-

posed in this thesis, which is the high level of expressiveness. More specifi-

cally, using the merging techniques developed in (3) to improve the quality

of the rules created by the base learning algorithm developed in (2) makes

the ensembles more explainable and computationally efficient.

7.2.2 Contributions to Knowledge

The main contributions of the research presented in this thesis were presented in

Chapter 1. These are restated here as follows:

1. A novel classification rule induction approach, called G-Prism, which makes

use of Gauss Probability Density Distribution (GPDD) and z-score distribu-

tion to generate a new rule-term structure that improves classification per-

formance of the Prism family of algorithms. The new approach produces

more expressive and computationally efficient numeric rule-terms compared

with converting continuous attributes into categorical ones in the form of fre-

quent discrete intervals. The first version of G-Prism was termed (G-Prism-

FB) and it has been introduced in [19], a paper published in the 36th SGAI

International Conference on Artificial Intelligence.

2. A novel classification rule induction approach, called G-Prism-DB, which is

a second version of G-Prism algorithm that enables it to expand the cover-

age of each numeric rule-term, and thus produces fewer rules which are less

prone to overfitting. The algorithm is based on a new dynamic rule-term

boundaries approach to improve the expressiveness of the rules induced.

The dynamic sized boundary can be defined by the user. The work has been

introduced in [20], a paper published in the 37th SGAI International Confer-

ence on Artificial Intelligence.

3. A novel predictive rule induction algorithm, called G-Rules-IQR, which in-

corporates two new methods in its construction:

• A new more efficient method in learning heuristics to induce numerical

rule-terms directly from continuous attributes based on a combination

of: GPDD function, quartiles, and Interquartile Range (IQR). The new

method enables producing more compact, accurate and expressive rules

using IQR boundaries instead of user defined boundaries.



175 7.2. Research Findings and Contributions

• A new way to address the challenges in assuming normally distributed

attributes in the previous GPDD rule learning algorithms by reducing

the skewness rate of numerical attribute values from the normal distri-

bution. G-Rules-IQR algorithm incorporates a prior testing for normal-

ity for each attribute in the dataset before applying the approximate

normal transformation on the attribute’s values.

The work has been introduced in [21], a paper published in the 17th IEEE

International Conference on Machine Learning and Applications.

4. A novel framework for ensemble rule-based system, called Ranked Ensemble

G-Rules (ReG-Rules) learner, which utilises G-Rules-IQR algorithm as a

learning algorithm for its base classifiers. This ensemble model provides an

approach to harvest the predictive power of an ensemble learner, while main-

taining several explainable aspects of rule-based predictive models. ReG-

Rules incorporates three novel methods in its construction:

• A new Ranking-based method to rank the base classifiers according to

a number of criteria, not only to their accuracies.

• A new local Rule Merging (RM) technique that can reduce the number

of rules induced within each individual base classifier without sacrific-

ing the overall predictive accuracy of the model. The approach can be

considered as a useful aid in improving the quality of the induced rules

and thus developing more expressive rule learners.

• A new combination technique called ‘ReG-Rules Committees’, which

make uses of a weighted voting strategy to decide the final ensemble

predictions. The method addresses the potential problem of reliability

when some base models are more reliable than others.

This work has been introduced in [22], a paper published in IEEE Access

Journal.

5. A significant extension of the ensemble ReG-Rules learner that can be more

expressive while benefiting from the high predictive performance of ensem-

ble learning compared with its stand-alone base classifiers. This system,

which is called ‘Consolidated Rules Construction (CRC)’ incorporates the

following novel method in its construction:

• A new rule consolidation approach, termed ‘CRC Consolidator’, which

can compress multiple classifiers’ rule sets into one global rule set that

can be used directly in predictions without the need to build a commit-

tee of rules for each new classification attempt.
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6. All the aforementioned algorithms have been implemented and empirically

evaluated. All the source codes, which were written in the statistical pro-

gramming language R are available in online repository at - https://github.

com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0 and are archived at

- https://doi.org/10.5281/zenodo.5557590 [23].
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• Almutairi, Manal, Frederic Stahl, Mathew Jennings, Thien Le, and Max
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Artificial Intelligence, pp. 229-235. Springer, Cham, 2016.

• Almutairi, Manal, Frederic Stahl, and Max Bramer. "Improving modular clas-

sification rule induction with g-Prism using dynamic rule term boundaries."

In International Conference on Innovative Techniques and Applications of

Artificial Intelligence, pp. 115-128. Springer, Cham, 2017.

• Almutairi, Manal, Frederic Stahl, and Max Bramer. "A rule-based classifier

with accurate and fast rule term induction for continuous attributes." In 2018

17th IEEE International Conference on Machine Learning and Applications

(ICMLA), pp. 413-420. IEEE, 2018.

• Almutairi, Manal, Frederic Stahl, and Max Bramer. "ReG-Rules: An Explain-

able Rule-Based Ensemble Learner for Classification." IEEE Access 9 (2021):

52015-52035.

7.2.4 Research Limitations

Given that the focus of this project was on improving the explainability of a pre-

dictive ensemble learner, it was not investigated how diversity among individual

classifiers contributes to overall ensemble accuracy. The current work presented

in this thesis was restricted by the methodology of constructing ‘homogeneous en-

sembles’ using a single base learning algorithm; i.e. producing learners of the same

type. However, there is potential that the overall accuracy of the ensemble may be

further improved by implementing further types of expressive rule-based learners

within the same ensemble. Nevertheless, an improved classification accuracy to

a standalone rule-based classifiers was achieved. Furthermore, the experimental

studies presented in this thesis were not specifically designed to deal with massive

https://github.com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0
https://github.com/ManalAlmutairi/PhD_Project_Codes/tree/v1.0.0
https://doi.org/10.5281/zenodo.5557590
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datasets. Though, the ReG-Rules base learners inductions are independent from

each other, and thus a parallel version of ReG-Rules is possible to be designed to

speed up the training of expressive ensemble models. However, parallel ensemble

learning was outside the scope of this research.

7.3 Future Directions

The research presented in this thesis has indicated a number of opportunities to

widen the scope of the investigation into various aspects. These are presented here

as potential future work to expand upon this thesis further, or as an independent

offshoot of this investigation.

7.3.1 Alternative Diversity Generators

The performance of an ensemble model is highly depended on the level of diver-

sity among the group of classifiers that constitute the ensemble. Generating a set

of base classifiers should be as diverse as possible to assure producing uncorre-

lated errors and then obtain a more accurate ensemble [24]. The method that

has been adopted in this research and illustrated in Chapter 5 was based on ma-

nipulating the training samples using bagging, which is a widely used method in

data mining. Then these diverse samples are used to train multiple base classifiers

using the same inducer (learning algorithm). This method was robust, efficient

and successfully integrated in the ensembles proposed in this thesis.

However, investigating more diversity generators can be considered a further

fruitful avenue for future research. For example, (1) diversify individual learners

by using different parameter settings for the base learning algorithm. (2) Utilise

multi-inducer method, i.e. diversity is obtained by using different types of inducers

(multiple induction algorithms). (3) Utilise a hybrid approach based on multi-

strategy ensemble learning to combine several ensemble strategies.

7.3.2 Scaling up Ensemble ReG-Rules Learner to Large Data

Volumes

With the rapid growth in the amount of data collected by information systems,

the need to be able to train a classifier on a massive dataset within a reasonable

amount of time is highly demanded. Random sampling might be a solution in

some cases, but this often goes at the expense of the model’s accuracy. Ensemble

learning methods can improve the overall accuracy of the model, but this often

goes on the expense of the model’s computational efficiency in terms of time and
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Figure 7.2: Parallelising the Base classifiers Inductions (Stage 2) in ReG-Rules Ensemble Learner

space. Therefore, developing methods to address such issues have become very

important. Amongst these methods is building ensemble systems in different com-

puting environments, such as parallel processing and distributed approaches.

Parallel computing can considerably improve the computational efficiency of

ensemble systems on high volume data using a form of multiprocessor architec-

tures. Therefore, investigating and developing an appropriate parallel processing

method to ReG-Rules learning system can be considered a promising area of fu-

ture research. This is expected to allow the explainable ensemble ReG-Rules to

efficiently scale up to massive datasets. For example, Figure 7.2 shows a sug-

gested framework about how to parallelise the second stage of ReG-Rules, which

involves generating independently multiple base classifiers using the same base

learning algorithm (see Chapter 5). As can be seen in the figure, each proces-

sor can be used to build a single or a number of base classifiers. Hence, many

base models can be produced at the same time by executing the same portion of

code concurrently on several processors instead of iteratively working on the same

machine.

Furthermore, distributed computing can make the ensemble rule based sys-

tems (such as ReG-Rules) even more powerful in classifying many new instances

simultaneously. This can distribute the computational workload and allow obtain-

ing fast expressive predictions, which considered to be very beneficial in many

practical and critical applications.
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7.4 Summary of the Chapter

This chapter has summarised the work presented in this thesis in the first section.

Then, in Section 7.2, the contributions to knowledge from this project have been

described. In the same section, the road map to meet the research aim and ob-

jectives has been demonstrated in Figure 7.1 and also the steps taking to achieve

them have been briefly summarised. The final section has identified some poten-

tial avenues of research for further investigation and development.
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