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Abstract

Understanding which environmental processes are responsible for driving the inter-

annual and decadal variability of tropical cyclones (TCs) is important for providing TC

impact-related mitigation and planning information to the responsible agencies and busi-

ness. TC activity in the northern hemisphere is examined in IBTrACS, seven recent

reanalyses and coupled and atmosphere-only simulations at various resolutions from

HadGEM3-GC3.1. Drivers of TC activity are examined for the current climate, on

decadal time scales and in scenarios of a warming climate. Different tools, including

the standard power spectrum method, the wavelets, and the Empirical Teleconnections

method are utilized. TC activity in the North Atlantic (NATL), characterized by high

variability, is primarily influenced on interannual and decadal time scales by the Atlantic

Multi-decadal Oscillation (AMO) via warm local Sea Surface Temperatures (SSTs). The

primary driver for TC activity in the Eastern Pacific (EPAC) and Central Pacific (CPAC)

regions under current climate conditions is the El-Niño Southern Oscillation (ENSO)

with associated warm SSTs and weak Vertical Wind Shear (VWS) in the Pacific, whereas

decadal variability is driven by both ENSO and AMO. Typhoon activity in the Western

Pacific (WPAC) is found to be driven by more than one main driver in observations and

the model. Variability of TC activity in the North Indian Ocean (NIND) is not linked

significantly to the climate modes (ENSO, AMO, PDO) examined in the study. With a

warming climate, ACE increases in NATL, EPAC, CPAC and WPAC and decreases for

NIND. For EPAC there is a westward shift, while for WPAC there is a poleward shift

in TC activity. Finally, a simple, open-source hurricane-catastrophe model is developed

for assessing risk associated with hurricane winds for Bermuda and it is used to test the

sensitivity of hurricane wind risk to variability of the frequency of events, particularly

related to the AMO.
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Chapter 1

Introduction

1.1 Motivation and Research Questions

Tropical Cyclones (TCs) belong to the category of weather systems which bring severe

damage and destruction across many regions of the planet. It is therefore crucial to

understand which environmental processes and phenomena drive their inter-annual and

longer term variability so that impact related mitigation and planning information can

be provided to decision makers and to those strongly affected by TCs such as insurance

companies.

McCarthy et al. (2015) and Goldenberg et al. (2001) have shown that TC activity

around the globe undergoes important variability through the decades. It is believed that

dynamic and thermodynamic environmental conditions are the source of this variability.

This Ph.D. study aims to:

1. Understand what drives the natural variability of TCs and to detect evidence of

anthropogenic influence.

2. Separate and attribute the impact of natural variability and anthropogenic influence

on the variability of TCs.

3. Understand the nature of natural variability under various forcing scenarios and

compare this with a scenario of changing forcing.

4. Explore how decadal variability is related to known modes of variability.

1



1.2. CONDITIONS FOR TC FORMATION - DRIVERS

The thesis is structured as follows: Chapter one provides the theoretical background

on TC formation as well as a literature review. The aim of the literature review is to

understand what other studies have shown regarding the decadal variability of TCs, and

to also identify the gaps in current knowledge of TC variability. The chapter includes

definitions and examples of climate variability as well as how these modes of variability

have been found to influence the different TC basins in previous studies. Furthermore, a

summary of representation of TCs in various datasets (paleo-climate studies, reanalyses,

model simulations) as well as a summary of future TC projections is given. Lastly,

potential drivers of TC variability are introduced.

Chapter two provides the methodology of the study. This includes the various datasets

along with the tools used in order to answer the research questions.

Chapters three, four and five cover the results obtained by the analyses in terms of the

drivers of TC variability under the current climate, under decadal time scales and under

climate change and in future projections, respectively.

As part of this Ph.D. study, a 12-week internship was undertaken on the industrial

aspects of the project. The objective was to develop a hurricane catastrophe model for

assessing the risk associated with hurricane winds for Bermuda. The sensitivity of the

hurricane wind risk to decadal variability of TC events was tested. Results are presented

in chapter six.

Finally, results from the previous chapters as well as future work recommendations are

presented in seventh and final chapter.

1.2 Conditions for TC formation - Drivers

The term tropical cyclone is used to describe a rotating low-pressure weather system orig-

inating in the tropical or sometimes sub-tropical oceanic regions of the planet. Depending

on the region of origin, a TC can be called a hurricane (North Atlantic and Eastern Pacific)

or a typhoon (Western Pacific and Indian Ocean) or a cyclone (Indian Ocean).

In contrast to the mid-latitude cyclone, the structure of a TCs is nearly symmetric

without fronts. They have a warm centre and their typical path is from east to west. Based

on their intensity, TCs can be categorised into three main classes: a tropical depression,

a tropical storm and a TC. TCs in the North Atlantic, Eastern and Central Pacific Oceans

CHAPTER 1 Page 2



1.2. CONDITIONS FOR TC FORMATION - DRIVERS

are classified using the Saffir-Simpson Wind Scale. The scale ranges from category 1

(least intense) to category 5 (most intense) and the categories are defined in table 1.1.

Hurricanes of category 3 and above are occasionally referred to as major hurricanes. A

tropical depression is a tropical storm with 1-minute sustained or 10-minute sustained

low-level wind speeds below 17𝑚𝑠−1. A tropical storm has sustained wind speeds of

17-33 𝑚𝑠−1. Hurricanes have sustained wind speeds larger than 33𝑚𝑠−1.

In the Western Pacific different agencies, including the China Meteorological Admin-

istration (CMA), the Hong Kong Observatory (HKO), the Japan Meteorological Agency

(JMA, RSMC Tokyo) and the United States’ Joint Typhoon Warning Center (U.S. JTWC),

monitor systems occurring in the Western North Pacific, specifically between 100◦𝐸 and

the 180th meridian. The systems are classified by the Typhoon Committee (TyC) as,

shown on Table 1.2, into tropical depressions, tropical storms, severe tropical storms and

typhoons. A tropical depression in the basin is a non-frontal synoptic scale system which

has sustained wind speeds of less than 17𝑚𝑠−1. If the system intensifies and it has wind

speeds between 17 and 24𝑚𝑠−1, it is classified as a tropical storm, whereas if the wind

speeds are between 25 and 32𝑚𝑠−1, the system is classified as a severe tropical storm.

Should a system have sustained wind speeds higher than 33𝑚𝑠−1, it is classified as a

typhoon. This classification, however, can be split into additional categories, depending

on which agency monitors the system. The classifications for each agency are summed up

on Table 1.2 (WMO, 2015).

In the North Indian Ocean, the India Meteorological Department (IMD, RSMC New

Delhi) monitors systems developing between 100◦𝐸 and 45◦𝐸 . Table 1.3 shows the

classification for this basin. Using an averaging period of 3-minute sustained wind speeds,

a system is classified as a depression (17-27 kn), as a deep depression (28-33 kn), as a

cyclonic storm (34-47 kn), as a severe cyclonic storm (48-63 kn), as a very severe cyclonic

storm (64-89 kn), as an extremely severe cyclonic storm (90-119 kn) or as a super cyclonic

storm (winds stronger than 120 kn).

A set of six necessary, but not sufficient, conditions for tropical-cyclone formation

have been defined by numerous studies as:

1. Warm ocean waters of at least 26◦C throughout sufficient depth (at least 50𝑚)

(Briegel and Frank, 1997; Palmen, 1948).

2. Weak vertical wind shear between the surface and the upper troposphere.

CHAPTER 1 Page 3



1.2. CONDITIONS FOR TC FORMATION - DRIVERS

Table 1.1: Saffir-Simpson Wind Scale

Category Central Pressure

(hPa)

1-min Sustained

Wind Speed (𝑚𝑠−1)

Damage

1 ≥ 980 33-42 Minimal

2 965-979 43-49 Moderate

3 945-964 50-58 Extensive

4 920-944 59-69 Extreme

5 < 920 > 69 Catastrophic

3. A warm core initial disturbance: a pre-existing near-surface disturbance with suffi-

cient vorticity (low-level relative vorticity).

4. Relatively moist layers near the mid-troposphere (5𝑘𝑚).

5. Minimum 5◦N or 5◦S of the equator.

6. An atmosphere which cools fast enough with height such that it is potentially unstable

for moist convection (conditional instability).

As outlined in the conditions, large-scale environmental factors, such as Sea Surface

Temperatures (SSTs), Vertical Wind Shear (VWS) and others, are important for TC

formation as well as intensification in regions known as Main Development Regions

(MDRs). These regions are conductive to TC formation, such as the conditions on SSTs

and VWS. Understanding which processes dominate TC activity in the MDRs have been

under investigation ever since the global climatology of TCs was studied by Gray (1968).

Warm SSTs of at least 26◦C act as a source of energy for TCs. The warm water, via

the process of evaporation, leads to warm moist air above the surface which, by latent

heat, gives energy to the system. For intensification, the air temperature at 10m above

the surface must be less than the SST, otherwise the enthalpy flux is cut off, prohibiting

intensification (Cione, 2012).

One of the main dynamical components of whether a TC will form or dissipate is the

VWS, which is defined as the magnitude of the difference between winds at two pressure

levels (usually 850hPa and 250hPa). According to Gray (1968), with the presence of

CHAPTER 1 Page 4



1.2. CONDITIONS FOR TC FORMATION - DRIVERS

Table 1.2: TC Intensity Scale for Western North Pacific

Sustained

winds (𝑚𝑠−1)

17-24 25-32 ≥ 33

TyC 10-min TS STS TY

CMA
2-min TS STS TY

(33-41)

STY

(44-54)

Super TY

(≥ 51)

HKO 10-min TS STS TY

(33-41)

STY

(44-54)

Super TY

(≥ 51)

JRA 10-min TS STS TY

(33-43)

Very Strong

TY (44-54)

Violent TY

(≥ 54)

U.S. 1-min TS TY

(33-66)

Super TY

(≥ 67)

strong VWS, the heat and moisture are ventilated away from the core by the upper level

flow. This leads to convective asymmetries (tilting), therefore preventing the development

of the TC (DeMaria, 1996; Frank and Ritchie, 2001). Conversely, weak VWS has been

found to be beneficial for the development and intensification of TCs.

As mentioned in the conditions for cyclone formation, an initial disturbance is required

in order to organise convection. For the Atlantic basin this is often an African Easterly

Wave (AEW) (Hopsch et al., 2010), while for the Indian and Pacific Oceans, it can

be superclusters in the Madden-Julian Oscillation (MJO) and high-frequency equatorial

waves such as an eastward mixed Rossby/gravity wave. Lastly, for the Bay of Bengal this

is often a depression in the monsoon trough.

A humid environment in conjunction with the warm SSTs can benefit convection over

tropical regions and TCs require a humid environment in order to form and intensify. The

absence of moisture near the mid-troposphere can prohibit TC development. In addition,

according to Emanuel (2008), the presence of moisture is crucial for determining the

amount of time required for the formation of an initial disturbance.

In order for a TC to form and to preserve its cyclonic motion, the presence of enough

planetary vorticity (i.e. the spin due to Earth’s rotation) is necessary. The planetary
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Table 1.3: India Meteorological Department TC Intensity Scale

Category 3-min Sustained Winds in knots (𝑚𝑠−1)

Depression 17-27 (∼ 8-13)

Deep Depression 28-33 (∼ 14-16)

Cyclonic Storm 33-47 (∼ 17-24)

Severe Cyclonic Storm 48-63 (∼ 24-32)

Very Severe Cyclonic Storm 64-89 (∼ 33-45)

Extremely Severe Cyclonic Storm 90-119 (∼ 46-60)

Super Cyclonic Storm ≥ 120 (∼ 61)

vorticity (or Coriolis parameter) is given by:

𝑓 = 2Ωsin𝜙 (1.1)

where Ω is the rate of Earth’s rotation (7.292× 10−5𝑠−1) and 𝜙 is the latitude. At the

equator (𝜙 = 0) 𝑓 becomes equal to 0, hence it is physically impossible for a TC to form on

the equator. A minimum of 5◦N or 5◦S of the equator (corresponding to around 550km)

can provide the necessary amount of vorticity for the development of a TC.

1.3 Definitions and Examples of Natural Climate Vari-

ability

Before examining the decadal variability of TCs and before assessing which factors in-

fluence this variability, it is important to define known modes of climate variability.

According to the Intergovernmental Panel on Climate Change (IPCC) climate variability

is defined as "variations in the mean state and other statistics (such as standard devia-

tions, the occurrence of extremes etc.) of the climate on all spatial and temporal scales

beyond that of individual weather events” (IPCC, 2018, p. 546). Natural (or internal)

variability can be attributed to natural innate processes within the climate system, while

anthropogenic (or external) variability is caused by changes in natural or anthropogenic

forcing (IPCC, 2018).
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Table 1.4: Details (data extent and source) about indices

Index Extent Source

QBO 1948-

present

https://psl.noaa.gov/data/correlation/qbo.data

ENSO 1870-2021 https://psl.noaa.gov/gcos_wgsp/Timeseries/

Nino34/

AMM 1948-

present

https://psl.noaa.gov/data/timeseries/monthly/

AMM/

AMO 1870 - 2021 https://climatedataguide.ucar.edu/climate-data/

atlantic-multi-decadal-oscillation-amo

PDO 1900-2018 http://research.jisao.washington.edu/pdo/PDO.

latest

There are several examples of internal climate variability and they are usually referred

to as modes of natural variability. Some of the modes considered in this study are the

MJO, the Quasi-Biennial Oscillation (QBO), the El-Niño Southern Oscillation (ENSO),

the Atlantic Multi-decadal Oscillation (AMO), the Atlantic Meridional Mode (AMM) and

the Pacific Decadal Oscillation (PDO). Details about the extent of index reconstructions

for the different modes of variability are given on table 1.4.

The QBO is a quasi-periodic variation of the zonal wind between easterlies and west-

erlies in the tropical stratosphere above the equator. Strong winds in the stratosphere travel

around the planet, and every approximately 14 months, these winds reverse direction. A

full cycle of the QBO lasts for around 28 months, therefore making this oscillation the 2𝑛𝑑

most regular slow atmospheric variation after the seasonal cycle. A review on QBO can

be found in Baldwin et al. (2001).

The MJO (Madden and Julian, 1971; Zhang, 2005) is the strongest mode of intrasea-

sonal tropical variability with a period of 30-90 days. The MJO is characterised by

large-scale coupled patterns of deep convection and atmospheric circulation and it prop-

agates towards the east across the tropics. Klotzbach et al. (2019) found that the MJO is

favoured during the boreal winter when the easterly phase of the QBO takes place, whereas

when the westerly phase QBO phase occurs the MJO gets weaker. They stated that this
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1.3. DEFINITIONS AND EXAMPLES OF NATURAL CLIMATE VARIABILITY

relationship has appeared since the beginning of the 1980s and it was suggested that the

appearance of this relationship was the result of climate change.

ENSO is one of the major coupled global modes of variability. It is an interaction

between the ocean and the atmosphere over the tropical Pacific, which occurs roughly every

4-5 years and generally lasts for 1-2 years (Burgers and Stephenson, 1999). It is associated

with the Southern Oscillation Index (which is defined as the pressure difference between

Tahiti and Darwin) (Walker, 1924) and tropical Pacific SSTs (Bjerknes, 1966). During

neutral conditions, trade winds near the equator from east to west bring warm moist air

and warm SSTs towards the western Pacific while keeping the eastern and central Pacific

relatively cool. The warm SSTs drive deep convection releasing heat and moisture in the

atmosphere, and if the atmosphere contains enough moisture, it can lead to the formation

of cumulonimbus clouds and thunderstorms. Then, the air, which is no-longer moist,

travels to the east where it descends over the cool eastern tropical Pacific. This process of

rising air in the west and descending air in the east, along with easterly moving air at the

surface and westerly air high in the atmosphere, is referred to as the Walker Circulation.

During a warm phase of ENSO (El-Niño), the trade winds relax, causing the warm water

to move back into the central and eastern tropical Pacific. Therefore, the thermocline

gradient across the basin reduces, since the thermocline deepens in the central and eastern

part of the basin. SSTs near north Australia fall below normal and the convection is moved

towards the central tropical Pacific. On the other hand, a La Niña event is considered

to be an extension of neutral conditions. During a cold phase of ENSO (La-Niña), the

trade winds become stronger than normal since the Walker Circulation intensifies. This

results in the pool of warm waters to move further into the western tropical Pacific, near

Australia. SSTs in the central and eastern Pacific fall below usual temperatures leading to

the thermocline moving closer to the surface, while in the west convection deepens and

the Walker Circulation intensifies. The index, along with its associated SST and VWS

patterns and power spectral density are shown on figure 1.1.

The AMO is a mode of multi-decadal variability in the North Atlantic Region (NATL),

which manifests as variations of SSTs on decedal time scales in the basin between the

Equator and Greenland (Schlesinger and Ramankutty, 1994). The oscillation is described

by cold and warm phases that can last for periods of 20-40 years. McCarthy et al. (2015)

stated that a noticeable characteristic of the Atlantic Ocean and the climate of influenced
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1.3. DEFINITIONS AND EXAMPLES OF NATURAL CLIMATE VARIABILITY

Figure 1.1: Upper: ENSO index for the 1870-2017 period; Lower left: Associated SST

pattern, obtained by regressing SST anomalies onto the index. The SST anomalies were

computed by subtracting the monthly climatology using the HadISST dataset (Rayner

et al., 2003); Lower centre: Associated VWS pattern, obtained by regressing the 1980-

2013 ERA5 VWS field onto the corresponding period of the index; Lower right: Power

Spectral Density of the ENSO index.

areas is its decadal variability, which is evident in SSTs in the AMO. The index, along with

its associated SST and VWS patterns and power spectral density are shown on figure 1.2.

The AMO is connected to the Atlantic Meridional Overturning Circulation (AMOC) in

the following sense: A further northward transport of warm SSTs in the equatorial NATL

occurs when the AMOC is stronger, while the opposite happens when the AMOC is

weaker. Ting et al. (2011) used Coupled Model Intercomparison Project phase 3 (CMIP3)

simulations for the 20𝑡ℎ, 21𝑡ℎ and pre-industrial periods with 23 IPCC models to confirm

the strong relationship between the Sahel rainfall and the Atlantic multi-decadal variability.

Studies such as Mann and Emanuel (2006) have questioned whether the observed multi-

decadal variability of Atlantic SSTs is due to natural causes. Instead, they argued that the

variability can perhaps be attributed to anthropogenic and volcanic aerosol forcing. Terray

(2012) suggested that anthropogenic forcing mainly drives the resent quick temperature

increase in the tropical and subtropical Atlantic basin.
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Figure 1.2: Upper: AMO index for the 1870-2017 period; Lower left: Associated SST

pattern, obtained by regressing SST anomalies onto the index. The SST anomalies were

computed by subtracting the monthly climatology using the HadISST dataset (Rayner

et al., 2003); Lower centre: Associated VWS pattern, obtained by regressing the 1980-

2013 ERA5 VWS field onto the corresponding period of the index; Lower right: Power

Spectral Density of the AMO index.

The leading mode of the ocean-atmosphere variability in the tropical region of the

Atlantic is called the Atlantic dipole mode or AMM. The index, along with its associated

SST and VWS patterns and power spectral density are shown on figure 1.3. According

to Chiang and Vimont (2004) it is associated with meridional shifts of the Inter-tropical

Convergence Zone (ITCZ), SSTs and winds. On decadal time scales the AMM has a

periodicity of around 11-13 years (Veiga et al., 2020). Even though their studies are

focused on SST patterns rather than the AMM, Chiang et al. (2002) and Czaja et al. (2002)

have shown that changes in the North Atlantic Oscillation (NAO) and ENSO can excite the

AMM. Contributing to this, Vimont and Kossin (2007) found that on decadal time scales

the AMM can be excited by the AMO.

According to Mantua and Hare (2002) the PDO is a pattern of Pacific climate variability

on decadal time scales and it is considered to be the dominant mode of decadal variability

in the Pacific region. It is connected to SSTs north of 20◦N, and impacts the North Pacific
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Figure 1.3: Upper: AMM index for the 1948-2017 period; Lower left: Associated SST

pattern, obtained by regressing SST anomalies onto the index. The SST anomalies were

computed by subtracting the monthly climatology using the HadISST dataset (Rayner

et al., 2003); Lower centre: Associated VWS pattern, obtained by regressing the 1980-

2013 ERA5 VWS field onto the corresponding period of the index; Lower right: Power

Spectral Density of the AMM index.

and North America with a period of approximately 20-30 years. The index, along with

its associated SST and VWS patterns and power spectral density are shown on figure 1.4.

According to Mantua et al. (1997) the phases of PDO influence ENSO and affect the SSTs

in the Pacific region. Henley (2017) used observations and paleo-climate reconstructions

in order to review the Pacific decadal climate variability. They stated that the Pacific

decadal variability is a result of the constant interactions between tropics and extra-tropics

throughout the decades.

1.4 Modes of Variability Affecting TCs

A number of studies have been conducted in an effort to assess what affects the variability

of TCs. A study by Knutson et al. (2010) highlighted the uncertainty on whether changes

in past TC activity can be attributed only on natural causes or whether they have been
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Figure 1.4: Upper: PDO index for the 1900-2017 period; Lower left: Associated SST

pattern, obtained by regressing SST anomalies onto the index. The SST anomalies were

computed by subtracting the monthly climatology using the HadISST dataset (Rayner

et al., 2003); Lower centre: Associated VWS pattern, obtained by regressing the 1980-

2013 ERA5 VWS field onto the corresponding period of the index; Lower right: Power

Spectral Density of the PDO index.

anthropogenically influenced.

According to IPCC (2019), since the 5𝑡ℎ IPCC Assessment Report and Knutson et al.

(2010), more evidence of historical variability on TC activity over the past millennia is

provided by paleoclimatic surveys that have been conducted. Studies by Toomey et al.

(2013), Denommee et al. (2014) and Denniston et al. (2015) showed variations in patterns

of TC activity across different basins. These variations seem to be connected to modes

of climate variability such as ENSO and NAO as well as to variations in atmospheric

dynamics due to changes in sun precession.

While achieving understanding of each one of these modes of variability and their

individual influence on TC activity is important, one should also take into account the

possible interactions between the modes. ENSO has been perhaps the only mode of

variability whose interactions with each of the remaining modes have been researched to a

sufficient degree. Only a few studies have been conducted that fully examine and ascertain
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Figure 1.5: Tropical cyclone basins used in this study.

the dynamics behind the interactions between different modes of variability. Even fewer

studies have taken these interactions into consideration when examining influences on TC

activity either regionally or globally. These interactions must be taken into account when

investigating possible influences on TC activity. And even though the exact dynamics

behind the possible interactions are outside the scope of this study, an attempt will be

made to take them into consideration for the physical interpretation of results. The present

sub-chapter serves as a summary of the studies whose aims have been to examine how

TCs are influenced by modes of variability. The review of the literature will be separated

according to each TC basin. The basins are shown on figure 1.5.

1.4.1 Global Activity

The global interannual variability of TCs for the period 1985-2003 was examined by Frank

and Young (2007). Their belief of global TC counts being less variable than TC counts

in each individual basin was proven wrong. Variability in global number of TCs was not

distinguishable from the variability that was expected in each individual basin. They also

found that large-scale modes of interannual variability like ENSO and NAO significantly

affected global TC variability and particularly major TCs rather than weaker storms.

1.4.2 North Atlantic

The North Atlantic basin is considered to be the best-documented basin when it comes to

TC activity. Maloney (2000) found that during the active phase of the MJO the number

of TCs that form in the Gulf of Mexico and the western Caribbean Sea is four times the

number of storms that form during the suppressed phase. In addition, during the active

phase of the MJO over the Eastern Pacific (EPAC), the location of cyclogenesis in the
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NATL is mitigated towards the north of the Gulf of Mexico.

A few studies have found a relationship between the Sahel rainfall and TCs in the

NATL. The Sahel rainfall has been found to be strongly connected to both long-term

changes in the Saharan Air Layer (SAL) and the VWS in the MDR. A dry SAL at lower

latitudes and an increase of the VWS in the MDR are produced due to a shift of the

African Easterly Jet and the African Eastern Waves towards the east caused by a drying

of the Sahel region (Wu and Tao, 2011). Goldenberg et al. (2001) discovered that when

there is increased rainfall in the Sahel, there is a reduction of up to 7𝑚𝑠−1 in the VWS.

Furthermore, Vecchi and Soden (2007) found that TC activity in the NATL region can be

influenced by the drying of the Sahel through an increase in temperature anomalies in the

upper atmosphere.

Gray (1984) was the first to discover a relationship between the QBO and TC activity

in the Atlantic. They found an increase in TC activity when the QBO was either in or

towards its westerly phase. A statistically significant relationship between Atlantic TC

activity and the QBO for the period between the 1950s and the 1980s was discovered by

Shapiro (1989). Camargo and Sobel (2010) attempted to explore this relationship more

recently and they detected that it has not been present during later years, however, they

were unable to explain why this was the case.

It is well known amongst the scientific community that ENSO influences TC activity in

the NATL region. ENSO events cause changes in the Walker Circulation therefore reducing

or enhancing wind shear in the MDR and Caribbean Sea which can then influence TCs

(Goldenberg and Shapiro, 1996; Knaff, 1997; Madl, 2000). Lander and Guard (1998)

stated that more TCs are produced during La-Niña than El-Niño years, while at the same

time they are more intense during prolonged La-Niña events.

When it comes to local modes of variability, Camargo et al. (2010) found an increase

in TC activity and east- and equator-ward shift in TC genesis during the positive phase

of the AMM. Furthermore, Klotzbach and Gray (2008) have shown that during the warm

phase of the AMO more tropical storms can become strong hurricanes compared to the

respective proportion during the cold phase of the AMO.

Dunstone et al. (2013) and Booth et al. (2012) studied the variations in TC activity

over the North Atlantic basin through the 20th century and they attributed the variability

partially to variations in atmospheric aerosol forcings. On the other hand, various studies
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(Vecchi and Delworth, 2017; Weinkle et al., 2012; Yan et al., 2017; Zhang et al., 2013) have

highlighted the uncertainty of attributing the relative importance of natural and external

variability to TC variability.

1.4.3 Eastern Pacific

Zhao and Chu (2006) found that the periods from 1972 to 1981 and 1999 to 2003 were

inactive in regards to TC activity for the EPAC. The period 1982 to 1998 however was

active. A strong relationship was detected by Frank and Young (2007) between ENSO

and TC counts. Camargo et al. (2008) found a migrarion towards the west in locations of

cyclogenesis that resulted in an increased number of TCs spreading into the region.

1.4.4 Central Pacific

Inactive periods for the region Central Pacific (CPAC) were during 1966-1981 and 1995-

2000, whereas there was one active period (1982-1994) as found by Chu and Zhao (2004).

During the active period favourable conditions for TC development included amongst

others warmer SSTs, lower mean sea level pressure and reduced wind shear. A few studies

(Camargo et al., 2007; Chu and Wang, 1997; Clark and Chu, 2002) determined that due

to reduced wind shear and low-level vorticity, more TCs formed during El-Niño years.

1.4.5 Western Pacific

Due to the vast area covered by the Pacific ocean, it is expected that regions in the Pacific

are more directly influenced by local modes of variability. Indeed, there have been various

studies regarding the relationship between ENSO and TCs in the Western Pacific (WPAC).

A reduction of TCs during the summer after an El-Niño event was found by Chan (2000),

while Wang and Chan (2002) discovered a southeast mitigation of cyclogenesis locations

during El-Niño years, in contrast to a northwest mitigation during La-Niña years. Chan

(2007) found that during El-Niño years typhoons have a longer lifetime and are more

intense due to the southeast displacement of warm waters. In a subsequent study, Chan

(2008) showed that the counts of strong typhoons exhibit a multi-decadal variability, which

they have attributed to both ENSO and the PDO.

According to Camargo et al. (2007) TCs in the WPAC region are controlled by the
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MJO and favourable conditions for TC development occur during its active phase. The

conditions include increased mid-level humidity and low-level vorticity. They also found

that the MJO affects the track densities in the region. Furthermore, the influence of the

QBO on TC tracks in the region was examined by Ho et al. (2009). Their study concluded

that the total number of TCs in the region remained unaffected by the two changing phases

of the QBO. However, during the westerly phase the amount of TCs moving close to the

East China Sea is larger, while the amount of TCs close to Japan is larger during the easterly

phase. The authors associated the reasoning behind this change with the background flow

variations related to QBO.

The summary by IPCC (2019) on TC detection and attribution stated that there is

low to medium confidence that the unusual observed shift of the latitude of maximum

TC intensity towards the pole in the western North Pacific shows an evident change in

climate. However, there is low confidence that the detected migration has a distinguishable

contribution from external forcing, which is thought to be causing a poleward spread of

the tropical circulation with a warmer climate. Even though there is low confidence due

to limited evidence, some studies on observed long-term changes in TC activity suggest

developing anthropogenic signals.

1.4.6 North Indian Ocean

During monsoon seasons, TCs in the North Indian Ocean (NIND) region tend to form.

Singh et al. (2000) stated that TCs are favoured by the monsoon trough over the ocean,

even though the increased wind shear can suppress the TC activity. They also found that

fewer TCs develop between May and November in the Bay of Bengal during El-Niño

years. Lastly, according to Frank and Young (2007) during the positive phase of the NAO

there are fewer TCs in this region. Recent studies (Evan and Camargo, 2011; Evan et al.,

2011; Muni Krishna, 2009; Rajeevan et al., 2013) have highlighted that TC activity in the

Arabian Sea is separated mainly in pre-monsoon and post-monsoon seasons. However,

there are less TCs in the Arabian Sea compared to the Bay of Bengal (Rajeevan et al., 2013).

Evan et al. (2011) reported that during the 1979-2010 period increases in anthropogenic

black carbon and sulfate emissions resulted in more intense TCs in the Arabian Sea during

pre-monsoon seasons (May-June). They proposed that the anthropogenic aerosols resulted

in a reduction of VWS in the basin via anomalous anthropogenic circulation over South
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Asia, condition favourable for TC intensification.

1.5 TCs in Palaeoclimate Studies, Observations and Re-

analyses

Long-term records are important for assessing how TCs have changed over multiple

decades. Scientists have tried to find other means apart from direct observations of TCs

(discussed below) for creating long records in order to assess this variability (Oliva et al.,

2018). Therefore, the field of paleotempestology, meaning the study of past TC activity

by using geological proxies and other historical records, was born. Different studies have

used different proxies which include extreme precipitation events (Frappier et al., 2007),

tree rings (Miller et al., 2006), sediment grain size (Liu and Fearn, 1993), coral (Lough,

2007; Nyberg et al., 2007) and using evidence of intense terrestrial floods (Besonen et al.,

2008; Noren et al., 2002). For the Western North Atlantic region in particular Oliva et al.

(2018) created a new database of paleotempestology records which is publicly available

by NOAA. The database was created using 61 studies published during the 1993 to 2018

period. A paleotempestology study by Haig et al. (2014), for the Australian region, has

shown that TC occurrence in north-east Queensland was higher during the past 1500

years compared to the present. For the Atlantic basin, Brandon et al. (2013) (another

paleotempestology study) found that between ∼1700 and ∼600 year before present (B.P.)

there was increased strong TC frequency, while from∼2500 to∼1700 and from∼600 years

BP to the present there was decreased frequency of intense TCs. However, as Walsh et al.

(2016) concluded, there is a need for paleotempestology records to be extended in time

and to other basins in order to be used in combination with proxy-based and modelling

studies of past climates for determining the reasons for TC variability on centennial and

millennial time-scales. Doing so, could perhaps help in developing a more robust climate

theory of TC formation.

Observations of TCs act as the primary source of knowledge of the variability of

TCs. They come from ship reports, aircraft reconnaissance, weather station data and

satellites. The classification of TCs, according to Velden et al. (2006), is mainly based

on interpreting satellite observations, since aircraft reconnaissance are limited to certain

basins, for example the North Atlantic. Walsh et al. (2016) highlighted the need for aircraft

CHAPTER 1 Page 17



1.5. TCS IN PALAEOCLIMATE STUDIES, OBSERVATIONS AND REANALYSES

reconnaissance to be extended to other basins. Various agencies around the world such

as the Regional Specialized Meteorological Centers (RSMCs), the TC Warning Centers

(TCWCs) as well as other agencies like the Hong Kong Observatory contribute information

regarding the location and intensity of TCs as their postseason analyses of TC tracks which

are collected into the International Best-Track Archive for Climate Stewardship (IBTrACS)

(Knapp et al., 2010).

The use of satellites since the early 1970s has lead to better observations (Chan and

Holland, 1989). A notable example is in the case of the North Indian Ocean, where before

the satellite era, monsoons were reported in the TC observations. Webster et al. (2005)

examined the observed global TC activity for the period of 1970-2004. They found a big

increase in the ratio of hurricanes that achieved intensities of categories 4 and 5 (according

to the Saffir-Simpson Hurricane Wind Scale). The biggest increase was found in the North

Pacific, Indian and South-west Pacific, while the smallest increase was detected in the

North Atlantic region.

However, this difference in the increases in the ratio of hurricanes that reached major

hurricane intensities is probably due to observational biases arising from the fact that

the North Atlantic has been the best-documented basin. In addition to being biased,

the observational records are relatively short and have undergone significant changes in

operational procedures since the early 1900s, something that introduces uncertainties in

the records as well as in the variability of TCs in terms of counts and the Accumulated

Cyclone Energy (ACE) (Landsea, 2007; Landsea et al., 1999, 2010). Even though the

record for the North Atlantic is considered the longest and most comprehensive record, it

suffers from homogeneity issues (Landsea, 2007). For the Western Pacific, the record is

even more problematic since different agencies keep different records (Ren et al., 2011).

Hodges et al. (2017) emphasize that due to these large uncertainties, there should be

caution in using observations when studying TCs and climate. Therefore, they quoted

Gyakum (2011) in recommending a universal methodology for TC classification.

In an effort to reduce uncertainties and biases in the observations, reanalysis can be

used for identification and tracking of TCs. Reanalysis are based on a combination of

observations with a short forecast from a General Circulation Model (GCM). Gridded

datasets, constrained by the observations, are produced.

A few studies have looked into how well TCs are represented in reanalysis datasets.
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Bengtsson et al. (2007) used the European Centre for Medium-Range Weather Forecasts

(European Centre for Medium-Range Weather Forecasts (ECMWF)) 40-yr Reanalysis

(ERA40) (Uppala et al., 2005) and the Japanese 25-yr Reanalysis (Japanese 25-yr Reanal-

ysis (JRA25)) (Onogi et al., 2007). They found that the intensities of the strongest storms

were underestimated when it came to maximum winds.

Hodges et al. (2017) used an objective, feature-tracking algorithm (similar to Bengts-

son et al. (2007) and Strachan et al. (2013)) to identify and track TCs in six different, recent

atmospheric reanaysis datasets: ECMWF ERA-Interim (ERAI; Dee et al. (2011)); JRA25

(Onogi et al., 2007) and Japanese 55-yr Reanalysis (JRA55) Kobayashi et al. (2015); the

National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Anal-

ysis for Research and Applications (Modern-Era Retrospective Analysis for Research and

Applications (MERRA); Rienecker et al. (2011)) and the following version Modern-Era

Retrospective Analysis for Research and Applications version 2 (MERRA2) (Bosilovich

et al., 2015; Molod et al., 2015); and the National Centers for Environmental Prediction

Climate Forecast System Reanalysis (NCEP; Saha et al. (2010)). When they compared

their results to the TCs in IBTrACS, they found that almost all systems in IBTrACS for

the 1979-2012 period can be found in all the reanalysis datasets they examined. However,

as in the case of Bengtsson et al. (2007), there was a clear under-representation of TC

intensities in the reanalyses compared to the observations. In addition, it was shown that

the identification of weaker storms (e.g. tropical depressions, subtropical cyclones and

monsoon depressions) had the largest uncertainties. This is due to the aforementioned

uncertainties in the observations since not all agencies include weak storms in the best-

track data. Hodges et al. (2017) also commented on the improvement of TC representation

in recent, higher-resolution reanalysis datasets by mentioning that MERRA2 performed

better than MERRA and that it is comparable to NCEP and JRA55.

Murakami (2014) also conducted a study on TC representation in six of the above-

mentioned reanalysis datasets. Their key finding was that the reanalysis with the highest

resolution was not always the best in simulating TC climatology. From their work it was

concluded that simulating TCs in reanalyses strongly depends on model configuration

(Schenkel and Hart, 2012).

When it comes to the contrast between the northern and southern hemispheres (NH,

SH) and how TCs are represented in observations and reanalyses, what is particularly
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obvious are the differences between how well reanalysis datasets represented TCs in the

two hemispheres. Most modern reanalyses manage to represent the counts of TCs in the

NH reasonably well. However, compared to IBTrACS, all of them overestimate the counts

in the SH. Hodges et al. (2017) stated that this can be attributed to possible biases in the

observations and to how identification is carried out in the study since no re-tuning is

performed specific to the SH as is the case in other methods. TC basins like the South

Pacific and South Atlantic are not densely inhabited, therefore according to Kucas et al.

(2014), it is possible that less attention is given in detecting TCs in those basins, unless

severe systems are likely to make landfall. Furthermore, tropical depressions and sub-

tropical storms are not included in the best-track data in these SH basins (Hodges et al.,

2017).

Even though reanalyses are very useful, one should keep in mind that they can vary

in how well TCs are represented. These problems can occur due to changes in the

observational system which can result in artificial trends as well as due to the use of

different GCMs with different configurations. Lastly, even though the reanalyses offer

some benefits over direct observations, they cover periods that are generally shorter than

observational data, therefore, they are not ideal for examining decadal variability.

1.6 TCs in General Circulation Models (GCMs)

As mentioned before, observational and reanalysis records are quite short and fairly

inconsistent for the study of TC variability. One of the most important aims of this study

is to use climate simulations for examining decadal variability of TC activity since they

can provide longer, more consistent records. Here the types of models are discussed with

some of their most important components, that have been used to explore TC activity

including the skill in simulating TCs as well as the relationship between TCs and climate

change.

1.6.1 Types of GCMs

General Circulation Models (GCMs) are extremely useful for studying the interaction of

the different processes that govern our atmosphere and oceans. The climate system in its

entirety involves interactions between processes on various temporal and spatial scales.
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These processes are typically formulated in models using non-linear differential equations

which are solved on a 3-D grid by temporal and spatial discretisation. Some of these

processes, however, occur on finer spatial scales than GCMs are able to model. In order to

represent these processes as accurately as possible, their properties in a grid-box must be

parameterized and is one of the main sources of uncertainty in climate model simulations.

Various types and configurations of GCMs have been used for simulating TC activity.

Atmosphere - only GCMs (AGCMs) use SSTs and sea ice distributions obtained from

observations or from low-resolution coupled Atmosphere-Ocean GCMs (AOGCMs) as

boundary conditions. An ocean-only GCM is designed to realistically simulate the state of

the ocean and is run by having surface winds, surface air temperatures and other processes

prescribed. The coupling of an atmosphere model and an ocean model results in an

AOGCM, allowing the components of each model to interact with one another. The use

of the coupling means that some of the observational constraints that the AGCMs have,

are removed. A notable example is that SSTs are no longer prescribed and they are instead

determined by how the atmospheric and oceanic GCMs adjust to the insolation and other

parts of the model.

Another type of a GCM are the Earth System Models (ESMs) which, compared to

AGCMs and AOGCMs, also include physical, chemical and biological processes. ESMs

have the atmospheric and oceanic components of GCMs with added modeled carbon cycle

and other aspects of atmospheric chemistry. These models, even though they can increase

biases and uncertainties, they can provide important understanding into the variability of

the climate and the impact of human activities.

Lastly, Regional Climate Models (RCMs) cover only a specific geographic area, as

their name indicates. Therefore, they can be run at much higher resolutions compared to

GCMs and can model finer-scale-processes, such as those that control TC intensity and

structure. RCMs are useful since their domain can be a whole tropical region or the whole

tropics. Nevertheless, RCMs have a number of handicaps. One is the fact that they require

boundary forcing data to drive the RCM, often taken from reanalyses or low resolution

GCMs. Being dependent on biases in the driving data restricts the use of the model.

But most importantly, RCMs are unable to model effectively any interaction outside the

domain, such as the ENSO-teleconnection relationship with TC activity in the Atlantic.
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1.6.2 Skill in Simulating TCs

The use of GCMs is constrained by computational limitations. Apart from the type of

model (AGCM or AOGCM), these include horizontal resolution, type of domain, length

of experiment, the existence and number of ensemble members and the complexity of the

simulation (i.e. forcing, inclusion of greenhouse gas emissions).

Perhaps the most important aspect of a GCM regarding simulated TC activity is

the horizontal resolution. A range of studies, using both AGCMs and AOGCMs, have

highlighted the impact of horizontal resolution on effectively simulating TC activity around

the globe. With an hierarchy of Hadley Center AGCMs of various resolutions, Strachan

et al. (2013) showed that capturing the location of TCs was achieved at resolutions of

135km or higher. They, along with Roberts et al. (2015) (who used an ensemble of AGCM

simulations), concluded that a resolution of 60km is sufficient for the simulation of TC

variability on interannual time-scales, but inadequate for realistic intensity representation.

Studies like Manganello et al. (2012) and Manganello et al. (2014) (using the ECMWF

Integrated Forecast System), Camargo (2013) (using 14 Coupled Model Intercomparison

Project phase 5 (CMIP5) models), Roberts et al. (2015) (using the Met Office Unified

Model Global Atmosphere 3 configuration), Yamada et al. (2017) (using a High-Resolution

Global Non-hydrostatic Model), Roberts et al. (2020a) (using the High Resolution Model

Intercomparison Project (HighResMIP)-PRIMAVERA multimodel ensemble; Haarsma

et al. (2016)) and Vidale et al. (2021) (using EC-Earth Climate Stochastic Physics High

Resolution Experimentss (SPHINXs) and HadGEM3-GC3.1) highlighted the need for

GCMs to simulate TC activity using 10km grid-spacing, since significant improvement

in the intensity and structure of the most intense TCs has been found to be associated

with simulations of such resolution. These models, however, still have limitations due to

parameterized processes.

Another key aspect of a GCM shown to influence the simulation of TCs are the dy-

namics - the equations that describe the state of atmospheric and oceanic decomposition

- as well as the physics package. According to Vidale et al. (2021), long-established

schemes have depended upon the theory that the equations of the unresolved processes

are independent from the dynamics of the flow. Stochastic Physics (SP) parameterization

schemes aim to account for the uncertainty in parameterized processes. This can have the

effect of giving an apparent increase in resolution at lower computational cost. The use of
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such schemes is becoming very common in operational weather and seasonal forecasts as

stated by various studies (Leutbecher et al., 2017; MacLachlan et al., 2015; Palmer et al.,

2009; Stockdale et al., 2018; Walters et al., 2019). With regard to TCs, approaching the

unresolved processes using SP schemes can potentially complement advances in enhanced

resolution in better TC representation in climate studies. Indeed, some of the models used

by Roberts et al. (2020a) (namely HadGEM3-GC3.1 and ECMWF-IFS) contained such

schemes, but the impact of SP on TC activity was outside the scope of the study. Vidale

et al. (2021) assessed the impact of SP schemes on simulated TC activity using EC - Earth

simulations from the Climate - SPHINXs project and compared results to simulations by

HadGEM3-GC3.1. Apart from confirming the impact of mimicking an increase in resolu-

tion, they concluded that SP leads to further enhancement of TC frequency. Nevertheless,

the impact of such schemes on the decadal variability of TCs has yet to be explored.

1.6.3 TCs and Climate Change

Various studies have investigated the relationship between TCs and climate change using

AGCMs or AOGCMs. Dunstone et al. (2013) used HadGEM2-ES, a coupled ESM,

to examine the relationship between hurricanes and anthropogenic forcing. Their results

showed that the multi-decadal variability of hurricanes was mainly driven by anthropogenic

aerosols throughout the 20𝑡ℎ century.

Holland and Bruyère (2014) concluded that an increase has been observed since 1975

in the percentage of storms reaching category 4 and 5 intensities of around 25− 30%

per 1 degree Celsius of anthropogenic global warming on regional and global scales.

However, a decrease in weaker TCs has also been observed. It is worth mentioning the

abovementioned increase appears to be in response to warming oceans.

Bhatia et al. (2018) used HiFLOR to assess the projected response of TC intensity and

intensification from climate change. They found that HiFLOR is one of the first global

coupled models to also predict major hurricanes as well as to simulate intensification

distributions. They also found that throughout the 21𝑡ℎ century the values for counts,

intensity and intensification rates are increasing, even though caution is needed since their

projection have important uncertainties.

A source of uncertainty in regards to TCs in climate models arises from the fact that

if different methods for TC detection are used in climate models, then different results
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can be gathered from model sensitivity tests (Walsh et al., 2016). Therefore, Walsh et al.

(2016) proposed that the scientific community perhaps converges on a universal method

for detecting TCs in climate models as well as on using coupled models that are capable

of simulating more realistic TCs.

1.7 TCs in the Future

Several studies (Knutson et al., 2015; Manganello et al., 2014; Murakami et al., 2015;

Roberts et al., 2015; Wehner et al., 2015; Yamada et al., 2017) support the 5𝑡ℎ IPCC

Assessment Report that the most intense TCs get more intense while the overall frequency

of TCs decreases. Studies by Emanuel (2013), using a dynamical downscaling technique

with particular assumptions, and Bhatia et al. (2018) differed from other TC studies since

they predict an increase in the global TC frequency. Christensen et al. (2013) projected

that the frequency of TC activity globally will probably decrease or remain stable. At

the same time, the average global TC maximum wind-speed and precipitation amount

is expected to increase, even though there is not much confidence in the prediction of

frequency and intensity for particular regions. Studies by Kim et al. (2014) and Bhatia

et al. (2018) found that coupled atmosphere models continue to strongly predict increasing

TC intensities in a warmer climate.

Even though various studies (Kim and Cai, 2014; Knutson et al., 2015; Li et al., 2010;

Manganello et al., 2014; Murakami et al., 2015; Nakamura et al., 2017; Park et al., 2017;

Roberts et al., 2015; Sugi et al., 2017; Wehner et al., 2015; Yamada et al., 2017; Yoshida

et al., 2017; Zhang et al., 2017) have examined how TC tracks might change under future

climate warming scenarios, there is no clear agreement on projected changes. However,

either an eastward or a poleward spread of TC development over the North Pacific basin

has been found in several of the aforementioned studies.

Studies by Kim et al. (2014), Knutson et al. (2015) and Yamada et al. (2017) found

that in future climate warming scenarios, the size of TC storms is projected to change up

to ± 10% between different basins.

According to IPCC (2019) in the majority of the literature, conclusions about TC event

attribution are generally not supported from a confident detection of a long-term trend

in TC activity that is attributed to climate change. Therefore, confidence in projection
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as well as event attributions is limited due to the lack of confidence in detecting climate

change in most TC metrics. It is stated that:

1. There is medium confidence in the increase of the percentage of TCs that achieve

cat 4 and cat 5 intensities.

2. With an assumption of a 2-degree-rise in global temperatures, there is medium

confidence in 1-10% increase of the average TC intensity.

3. There is medium confidence that the mean amount of TC precipitation per storm

will see an increase by at least 7% per 1-degree Celsius warming on SSTs due to

increased water vapour in the atmosphere.

4. There is low agreement and medium evidence in global TC frequency changes even

though the majority of modelling studies predict a decrease in global TC frequency.

5. There is very high confidence that higher storm surge levels from TCs that occur will

be caused by a rise in sea levels, with the assumption that all other factors remain

stable.

When it comes to modes of variability influencing future TC activity, Bell et al. (2014)

concluded that ENSO and other modes of natural variability will dominate variability of

TC activity in the future, therefore understanding the global ENSO-TC teleconnection

using GCMs is important. The authors stated that the role of ocean coupling on the

simulation of the ENSO-TC connection needs to be further researched.
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Chapter 2

Data and Methods

2.1 Datasets

For the purposes of this study three different kinds of datasets are used; best-track data,

data from seven recent global reanalyses, and multiple model simulations.

2.1.1 Best-track Dataset (Observations)

The tropical warning centres produce the best-track data as a post-season analysis of the

tropical cyclone tracks from all available data. That includes observations from ships, in-

situ, satellites and air-craft reconnaissance. Air-crafts are fitted with multiple instruments

and fly above and through systems, weather radars are used for locating systems within

320𝑘𝑚 from the station and satellites are used for TC tracking. The most valuable (based on

availability) tool for operational measurement of a TC’s maximum intensity is the Dvorak

technique (Dvorak, 1973, 1975, 1984, 1995). The technique includes locating the centre

of the system, determining a pattern and making a measurement from satellites (visible

or infrared), assigning an intensity number and then estimating the current intensity (CI)

according to specific rules by the technique, which is then translated into a maximum wind

speed (Dvorak, 1984). The technique has been developed further in recent years in order to

take advantage of the improved satellite measurements (Olander and Velden, 2007; Velden

et al., 2006). Similar CIs have been developed, used and modified by national agencies in

order to account for the use of various wind-averaging periods and relationships between

pressure and wind. Zehr et al. (2010) showed that the technique has been rather stable

regarding changes to satellite sensor resolution, while it can also be reproducible. A few
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studies (see Knaff et al., 2010) have detected biases and intensity errors, which have been

used for calibrating intensity estimates from the technique for TC forecasts and post-season

best-track analysis.

The best-track data are combined into the International Best Track Archive for Climate

Stewardship (IBTrACS) dataset (Knapp et al., 2010). The data are taken from different

agencies such as the Regional Specialized Meteorological Centers (RSMCs), the Tropical

Cyclone Warning Centers (TCWCs) as well as other national agencies. The IBTrACS

version 4 dataset, which includes data taken from all agencies, is used for this study. Full

details can be found in Knapp et al. (2018). Data are available since the 1840s until

the present. The agencies provide information about the best estimated position of each

storm in terms of longitude and latitude in addition to reporting wind speed and mean

sea level pressure (MSLP) values. The IBTrACS data are provided at 6-hour intervals.

The different agencies use different wind-averaging periods and the values are reported in

knots. However, the data used in this study have the wind speed values converted in 1-min

sustained winds at 10-m height in meters per second. Details about the conversions can

be found in Harper et al. (2010). Such conversions include different factors, depending

on whether a TC is considered to be above sea, off-land or in-land, therefore introducing

uncertainties about their accuracy.

Even though the development of IBTrACS has been a crucial step towards a more

homogeneous dataset for the whole globe, the dataset suffers from limitations. Ironically

the key limitation is global inhomogeneity (Landsea, 2007) and changes or differences

in global observational techniques (Landsea, 2006). The inhomogeneity issue rises from

the fact that the national agencies monitor TC activity in their region of interest and as

a result regions in the CPAC or large southern-hemisphere areas remain completely or

largely unobserved, unless there is development of an intense system that can potentially

make landfall (Kucas et al., 2014). Furthermore, the IBTrACS dataset is formed by data

gathered by the agencies using different procedures (e.g. different averaging periods) or by

changing observational techniques throughout the record (Schreck et al., 2014). Lastly, for

the Pacific basin, different agencies keep different records for the same systems developing

in the basin, which introduces further uncertainties in the IBTrACS record with the regards

to that particular basin (Barcikowska et al., 2012; Ren et al., 2011).

CHAPTER 2 Page 27



2.1. DATASETS

Table 2.1: Details for the reanalysis datasets used in this study. Abbreviations: 4D-Var,

4D variational data assimilation; 3D-Var, 3D variational data assimilation; TL255L60,

triangular truncation 255, with linear grid, 60 vertical levels (approximate horizontal

grid spacing in parentheses); GSI, Grid-point Statistical Interpolation; IAU, Incremental

Analysis Update.

Dataset Assimilation Model Resolution Data Grid

ERAI 4D-Var TL255L60 (80 km) 480×241

ERA5 4D-Var TL1279L137 (31 km) 1440×750

MERRA 3D-Var GSI+IAU 1/2◦×2/3◦ L72 (55 km) 540×361

MERRA-2 GSI+IAU Cubed sphere (50 km) 576×361

NCEP 3D-Var GSI T382L64 (38 km) 720×361

JRA-25 3D-Var T106L40 (120 km) 288×145

JRA-55 4D-Var TL319L60 (55 km) 288×145

2.1.2 Reanalysis Datasets

Reanalysis is a combination of observations with a short-range forecast from a GCM. They

provide gridded datasets, constrained by the observations and they act as a bridge between

the observations and the model simulations using data assimilation. For this study, seven

recent global atmospheric reanalysis datasets are used; the ECMWF Interim Re-Analyses

(ERAI) (Dee et al., 2011); the ERA5 (Hoffmann et al., 2019); The National Aeronau-

tics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research

and Applications (MERRA) (Rienecker et al., 2011); the next version 2 (MERRA-2)

(Bosilovich et al., 2015; Molod et al., 2015); the National Centers for Environmental

Prediction (NCEP) Climate Forecast System Reanalysis (CFS) (Saha et al., 2010); the

Japanese 25-year Reanalysis (JRA-25) (Onogi et al., 2007); and the Japanese 55-year

Reanalysis (JRA-55) (Kobayashi et al., 2015). Details for all datasets are summarised in

Table 2.1. The 2nd column indicates the data assimilation method, the 3rd indicates the

resolution of the datasets, with the approximate horizontal grid spacing in parenthesis,

and the 4th column indicates the grid of the data. The model resolution and data grid

information for all the reanalyses except ERA5 are the same as in Hodges et al. (2017) and

Roberts et al. (2020a).
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Among the reanalyses used in the present study, NCEP is the only coupled atmosphere-

ocean-land surface-sea ice reanalysis dataset, and it underwent an upgrade to CFS2 in

March 2011. NCEP, MERRA and MERRA2 use the Grid-point Statistical Interpolation

(GSI) scheme for 3D variational data assimilation (3D-Var) (Shao et al., 2016). The

Incremental Analysis Update (IAU; (Bloom et al., 1996; Rienecker et al., 2011)) system is

also used as part of the data assimilation process for the two MERRA reanalyses. The two

reanalysis products from the Japan Meteorology Agency (JMA) differ from the rest in terms

of how the tropical wind retrievals (TWR) are assimilated. According to Hatsushika et al.

(2006), data for wind profiles over and around TC centres are taken from historical data

and they are processed and assimilated in the same way as dropsonde observations. This

has been found to improve the intensity of systems in the Japanese reanalysis products.

On the other hand ERAI, ERA5 and JRA55 use 4D-Var data assimilation. Lastly, for

MERRA2 and NCEP, adjustments of the position of the TC to its observed position before

the process of assimilation is used for improved representation of TCs.

2.1.3 High Resolution Climate Model Simulations

Even though IBTrACS and reanalyses are extremely useful for the development and

validation of the techniques used in this Ph.D. study, their records are short and inconsistent

for the purposes of the study. High resolution GCMs provide longer and more consistent

records to work with. Results for TCs from both atmosphere-only and coupled simulations

from the Hadley Centre Global Environment Model 3 - Global Coupled vn 3.1 (HadGEM-

GC3.1) model are used and analysed. A full description of the resolution hierarchy

for the model as it was used in the Coupled Model Intercomparison Project phase 6

(CMIP6) HighResMIP experiments is given by Roberts et al. (2019). A schematic for the

HighResMIP experimental design is shown in Roberts et al. (2019) (see fig. 1), whilst

Tables 2.2, 2.3 and 2.4 summarise the resolutions, simulations and Unified Model (UM)

suite names analysed in this study.

The HighresMIP forcing protocol for CMIP6 was used to force the experiments used

in this study. Even though a full description is given by Haarsma et al. (2016) a short

outline is presented here. The project uses a multi-model approach in order to investigate

the effect of horizontal resolution. According to Haarsma et al. (2016), these experiments

are categorised into three tiers covering a 100-year period (1950-2050).
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Table 2.2: Details about oceanic and atmospheric resolutions with naming conventions

for HadGEM3-GC3.1 simulations.

Model Name Atmospheric resolution

CMIP6 nominal

Ocean resolution CMIP6

nominal

LL 168.4 km (N96) 100km (ORCA1)

LM 168.4 km (N96) 25km (ORCA025)

MM 74.8 km (N216) 25km (ORCA025)

MH 74.8 km (N216) 8km (ORCA12)

HM 31.6 km (N512) 25km (ORCA025)

HH 31.6 km (N512) 8km (ORCA12)

Table 2.3: Details about Atmosphere-only model simulations from HadGEM3-GC3.1

with UM suite names

Model Resolution highresSST-present

(1950-2014)

highresSST-future

(2015-2050)

HadGEM3-GC31-LM u-ai674, u-ak681, u-ak687,

u-bd058, u-bd423

u-bf004, u-bf553, u-bf831,

u-bg139

HadGEM3-GC31-MM u-ai718, u-aj530, u-ak185 u-bf082, u-bf773, u-bg565

HadGEM3-GC31-HM u-ai685, u-aj558, u-aq581 u-bf101, u-bg091, u-bi512

2.1.3.1 Tier 1: HighresSST-present (1950-2014)

The period for these experiments is 1950-2014, and they have been forced by daily 1/4◦

SSTs and sea-ice from the HadISST2 dataset (Titchner and Rayner, 2014). Initial condi-

tions come from the ERA-20C reanaalysis from January 1950, while for anthropogenic

aerosol forcing the recommendation was to use a common, simplified aerosol optical

property scheme (MACv2-SP; (Stevens et al., 2017)).
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2.1.3.2 Tier 2: Control runs

Couple runs are useful because by systematically comparing couple runs with uncoupled

runs, different biased affecting climate models can be identified and explored (Haarsma

et al., 2016). The HighresMIP control runs (hereafter referred as Control-1950) correspond

to the pre-industrial control runs. For this study they are 1950s control runs forced with

fixed 1950s forcing. Greenhouse gases for the forcing include a 10-year mean of 1950s

aerosol climatology. Initial ocean conditions are provided by the Met Office Hadley

Centre EN4 dataset (Good et al., 2013). Differences between historic (hereafter referred

as Hist-1950) and control runs can be used as an estimation of how changing forcing can

impact the state of the climate. The period for Hist-1950 experiments is also 1950-2014.

For each type of resolution there are at least 3 ensemble members and each member is

initialised from a different year at the corresponding control run. The external forcings are

the same as in Tier 1. Lastly the highres-future runs are essentially continuations of the

Hist-1950 runs from 2015-2050. They are taken as the coupled scenario experiments. The

forcing for the future experiments is based on high-end emission scenario of the CMIP6

Shared Socioeconomic Pathways (SSPx). In order to use a simpler terminology when

distinguishing the control experiments from the scenario experiments, the combination of

hist-1950 (e.g. u-ay652) and highres-future (e.g. u-bj590) will be referred to as historic

experiment/run/simulation even when referring to the future (2020-2050) period.

2.1.3.3 Tier 3: HighresSST-future (2015-2050)

Extensions of the atmosphere-only tier 1 experiments to 2050 form the tier 3 runs. The

same forcing scenario as for tier 2 (SSPx) is used. An ensemble mean of the CMIP5

RCP8.5 runs provides the future warming rate.

2.1.4 The HadISST Dataset

The Met Office Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST,

Rayner et al. (2003)) consists of monthly global fields of SSTs and sea ice concentrations

since 1871. The SST data are a blend of SSTs from the Marine Data Bank (MDB,

mainly ship observations), the International Comprehensive Ocean-Atmosphere Data Set

(ICOADS, through 1981), in-situ and satellite-derived SST estimates. Sea ice data are
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taken from historical ship and airborne observations and satellite estimates. Reduced-

space optimal interpolation, followed by super-positioning gridded observations improved

in quality, has been used to reconstruct the HadISST1 dataset in order to restore local

detail (Rayner et al., 2003). For this study, apart from being regressed onto the EOT time

series, the HadISST1 temperatures are used for the computation of various indices.

2.1.5 Climate Indices

Different climate indices are investigated as the source of natural variability of TCs. As

mentioned in section 1.3, these include QBO, ENSO, AMM, AMO and PDO. Due to

the complexity and often ambiguity surrounding the calculation of the various indices,

for the investigation in IBTrACS and reanalyses, data for the indices were taken from

sources outlined in table 1.4. For the model simulations, only the ENSO, AMO and PDO

are computed from the model data. For each model simulation they were derived from

surface temperatures using the methodology presented below.

For ENSO, the Niño3.4 index is computed as followed:

1. Compute the monthly climatology for the period examined (1980-2013 for observed

SSTs; 1950-2050 for models) for the Niño3.4 region (5◦𝑆−5◦𝑁,170◦𝑊 −120◦𝑊)

2. Compute area averaged total SST from the Niño3.4 region

3. Subtract the monthly climatology from the area averaged total SST time series to

obtain anomalies

4. Repeat steps 1-3 for he whole globe (55◦𝑆−70◦𝑁) to obtain global SST anomalies

5. Detrend by subtracting global SST anomalies from Niño3.4 anomalies

6. Remove the mean of the detrended time series and divide by the standard deviation

to derive a standardised Niño3.4 index.

For the AMO index, the same process is followed for the Atlantic region (0 −

65◦𝑁,80◦𝑊 − 0). For the computation of the PDO index the Climate Variability Di-

agnostics Package (CVDP) is used (Phillips et al., 2014).
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2.2 Methodology

Every method used in this Ph.D. study is first applied to IBTrACS and reanalysis data

in order to test the method by obtaining results and drawing conclusions which can be

verified by the literature. Therefore, confidence in the physical interpretation of results

before using the methods on model simulation results can be gained.

2.2.1 Tracking Algorithm

An objective, feature-tracking algorithm described in Strachan et al. (2013) and Bengtsson

et al. (2007), is applied to the reanalysis data to identify and track tropical cyclone-like

features. Firstly, all tropical disturbances are tracked before applying the identification

method according to the tracking methodology outlined in (Hodges, 1994, 1995, 1999).

The domain covered is from 60◦S to 60◦N and vertically averaged. Relative vorticity data

at 6-hourly intervals at 850, 700 and 600 hPa are used for tracking. Triangular truncation

is used for spectral filtering of the data, which removes the noise caused by the finest

spatial scales in the vorticity. This beneficially contributes to the reliability of tracked

data and to eliminate the large-scale background. A maximization scheme (Hodges, 1995)

is used to identify if the off-grid vorticity maxima exceeds the value of 0.5× 10−5𝑠−1 in

each time step, initially using a nearest-neighbour approach to link the maxima. Then

for track smoothness, they are refined by minimization of a cost function, depending on

constraints on track smoothness and distance of displacement. An important advantage of

using vertically averaged vorticity is the improvement of the temporal coherence when a

vorticity maximum changes levels (Fine et al., 2016; Serra et al., 2010) and the detection

of more stages of a system’s life-cycle.

In order for vorticity centre tracks to be kept for further analysis, they need to have

a lifetime of over two days. In order to do that, additional fields must be added to the

tracks. These include T63 vorticity at the 850 and 700-200 hPa levels for the provision of

intensity and warm core criteria. For the addition of the vorticity fields a steepest ascent

maximization method was applied with the B-spline interpolation and a 5◦ radius search

centred on the location of the previous level. Furthermore, fields for minimum MSLP and

maximum winds at 10m and at 925 hPa are added, as surrogate measures of intensity. For

adding the wind field, the maximum winds at up to 6◦ radius from the tracked centre were
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searched directly, while for the MSLP field a steepest descent method was applied to the

B-spline interpolated field along with a 5◦ geodesic radius search centred on the tracked

vortex centre for finding the nearest pressure minimum.

For this study, TCs have been objectively identified based on a set of identification

criteria on intensity and structure. The tracks are considered tropical cyclone-like features

if the following criteria, as outlined by Strachan et al. (2013), are attained:

1. T63 relative vorticity at 850 hPa must attain an intensity threshold of 6×10−5𝑠−1;

2. to establish a coherent vertical structure, a positive T63 vorticity center must exist

at all levels between 850 and 200 hPa;

3. For evidence of a warm core, a reduction in vorticity from 850 to 200 hPa (at T63

resolution) of 6×10−5𝑠−1 is required;

4. criteria 1 to 3 must be attained for a minimum of one day over the oceans.

The methodology used for identification and tracking of TCs is applied at all reanalyses

using common resolution, ensuring that the identification and tracking are as resolution

independent as possible. The tracking was performed to each full year, January - December

for the 1980-2013 period for the NH. Results from the algorithm for each year are extracted

in files that contained the number of storms for the year in question, the longitude and

latitude of each track point of each storm as well as the intensity of the storm at each point

in terms of T63 vorticity, and full resolution MSLP, 10m winds and 925hPa winds. For

IBTrACS only wind speeds at 10m are available.

2.2.2 Defining the tropical cyclone regions

The first step of the process is to define the tropical cyclone regions that will be analysed.

The regions that were chosen are a combination of the regions by the World Meteorological

Organisation (WMO) Tropical Cyclone Programme with the regions by Strachan et al.

(2013). They are shown on figure 1.5.

2.2.3 Time series of annual TC counts and ACE

For each year, for each storm the point of maximum intensity is found. If the intensity is

in terms of vorticity or wind speed, then the maximum intensity is where the maximum of
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the desired quantity is. If the intensity is in terms of mean sea level pressure (MSLP), then

the maximum intensity is where the minimum MSLP is. In case the storm has missing

values (for the windspeed or MSLP) for all the track points, then the maximum intensity

is taken at the middle of the TC track. In case the storm has some missing values (for

windspeed or pressure cases, a problem only for IBTrACS) along the track but there are

also reported values, then the point of maximum intensity is taken as the location of the

minimum or maximum of the reported data. By counting how many storms achieved their

maximum intensity in each of the defined regions, time series of annual TC counts are

created.

To obtain a time series of storms stronger than a tropical depression or storms which

achieved hurricane/typhoon intensity, criteria on wind speeds (or MSLP) values must be

applied. For appropriate threshold values one can refer to the Saffir–Simpson hurricane

wind scale (SSHWS). For example, for storms stronger than a tropical depression a criterion

of the wind speed value being larger than 17𝑚𝑠−1 is applied.

Time series of annual ACE are also computed, since ACE is used as a measure of a

TC-season’s activity. It is computed by:

𝐴𝐶𝐸𝑠𝑒𝑎𝑠𝑜𝑛 = 10−4
∑︁

𝑣2
𝑚𝑎𝑥 (2.1)

where 𝑣𝑚𝑎𝑥 is a storm’s estimated sustained wind speed in knots in 6-hourly intervals. For

the reanalysis and models, wind speeds at the 925 hPa levels are used.

2.2.4 Power Spectral Density of a time series

Once TC counts have been obtained a spectral analysis is performed in order to examine

any periodicities within the time series. The distribution of power into frequency com-

ponents of a time series 𝑥(𝑡) is described by the power spectral density (or simply power

spectrum) 𝑆𝑥𝑥 ( 𝑓 ) of the time series. One estimate of the spectral density of a signal is

the periodogram. The method of averaged periodograms, which is called the Bertlett

method, reduces the variance of the periodogram at the expense of resolution reduction.

The original time series is split up into non-overlapping segments and for each segment

the periodogram is computed with the use of the discrete Fourier Transform and by squar-

ing the magnitude of the result and dividing it by the length of the segment. Lastly, by

averaging the periodograms, the power spectrum is estimated. The 95% confidence level
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based on a white noise spectrum is calculated as well.

Subsequently, in an effort to simplify the results for each basin, the seven individual

reanalysis power spectra are combined into one by firstly calculating the power spectrum

of each individual reanalysis time series and subsequently averaging the seven spectra.

The same process is followed for the two 95% confidence levels.

2.2.5 Wavelet analysis

Wavelet analysis allows the detection of periodicities in localised periods of time. The

analysis performed in this study was based on Torrence and Compo (1998), which is a guide

on how to perform a wavelet analysis. Compared to the well-known Fourier Transforms,

the Continuous Wavelet Transform (CWT, discussed below) compares the time series to

scaled and shifted versions of a wavelet, whereas the Fourier transforms decompose a time

series into sines and cosines of infinite length. This means that the CWT, which is used

for this study, has an advantage over Fourier in time-frequency representation of a time

series with adequate localisation in both domains.

2.2.5.1 Continuous Wavelet Transform

A wavelet is a function with zero average, localised in both time and frequency and its

characterization is based on the localization in time (Δ𝑡) and frequency (Δ𝜔). Two classes

of wavelet transforms exist; The Continuous Wavelet Transform (CWT) and the Discrete

Wavelet Transform (DWT). The important difference between the two transforms depends

on the scaling parameter. The CWT discretization is finer than the DWT one, making the

CWT more appropriate for time-frequency analysis (MathWorks, n.d.). For the calculation

of CWT the Morlet wavelet function was chosen and it is defined as:

𝜓0(𝜂) = 𝜋−1/4𝑒𝑖𝜔0𝜂𝑒−𝜂
2/2 (2.2)

were 𝜔0 and 𝜂 are the non-dimensional frequency and time respectively. Even though a

few studies have used the wavelet method to investigate TC variability, there has not been

a sensitivity analysis regarding which wavelet function is more appropriate. The Morlet

wavelet function is used in this study because, according to Grinsted et al. (2004), with the

Morlet wavelet function (with 𝜔0 = 6) there is a good balance between time and frequency.
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Therefore, it was deemed an appropriate choice when the purpose of using wavelets is to

extract features.

Along with the wavelet function a set of scales s must be chosen. The scales, just as

in Torrence and Compo (1998), are written as fractional powers of two:

𝑠 𝑗 = 𝑠02 𝑗𝛿 𝑗 , 𝑗 = 0,1, ...𝐽 (2.3)

𝐽 = 𝛿 𝑗−1𝑙𝑜𝑔2(𝑁𝛿𝑡/𝑠0), (2.4)

where 𝑠0 is the smallest resolvable scale, while 𝐽 gives the largest scale. According to

Torrence and Compo (1998) 0.5 is the largest value which can also provide adequate

sampling in scale for the Morlet wavelet. For the wavelet analysis in this study 𝛿 𝑗 was set

to 0.125. By varying the scale (𝑠) of the wavelet in order for 𝜂 = 𝑠 · 𝑡 and by normalizing

it, the wavelet is stretched in time. The CWT of a given time series 𝑥𝑛 of length 𝑁 whose

time steps (𝛿𝑡) are uniform, is defined as:

𝑊𝑋
𝑛 (𝑠) =

√︂
𝛿𝑡

𝑠

𝑁∑︁
𝑛′=1

𝑥𝑛′𝜓0 [(𝑛′−𝑛) 𝛿𝑡
𝑠
] (2.5)

essentially the convolution of the time series with the scaled and normalized wavelets.

The function 𝜓(𝜂) is in general a complex function, therefore 𝑊𝑋
𝑛 (𝑠) is complex as well

(Torrence and Compo, 1998). Then the wavelet power spectrum is defined as |𝑊𝑋
𝑛 (𝑠) |2.

2.2.5.2 Cone of Influence

The localization of a wavelet is not complete in time. Consequently, the CWT has edge

effects. The Cone of Influence (COI) is defined as the region of the wavelet power spectrum

in which the edge artefacts can not be ignored. The COI is chosen as the area in which

the wavelet power for a discontinuity at the edges reduces by a factor 𝑒−2 (Torrence and

Compo, 1998), ensuring the negligibility of the edge effects beyond that point.

2.2.5.3 Significance Levels

In order to determine significance levels for wavelet spectra, it is stated in Torrence

and Compo (1998) that choosing a suitable background spectrum is needed. For many

geophysical phenomena, a white noise (which has a flat Fourier spectrum) or a red noise
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(which shows increasing power with decreasing frequency) can be suitable background

spectra. For red noise, a simple model is the first order autoregressive (AR1) process

given by:

𝑥𝑛 = 𝑎𝑥𝑛−1 + 𝑧𝑛 (2.6)

with 𝑎 the assumed lag-1 autocorrelation, 𝑥0 = 0 and 𝑧𝑛 taken from a Gaussian white

noise. Then, after normalization, the discrete Fourier power spectrum of equation (3)

according to Gilman et al. (1963) is:

𝑃𝑘 =
1− 𝑎2

1+ 𝑎2 −2𝑎 cos(2𝜋𝑘/𝑁)
(2.7)

with 𝑘 = 0, ..., 𝑁/2 being the frequency index. Therefore, with a suitable 𝛼, equation

(2.7) can be used to model a red noise spectrum. However, for this Ph.D. study, in order to

analyse TC variability on interannual and decadal time scales in conjunction with a range

of climate indices, annual time series of TC counts and ACE are used, leading to choosing

a value of 𝑎 = 0, which gives a white noise spectrum.

According to Torrence and Compo (1998) the null hypothesis for the wavelet power

spectrum is that the time series is assumed to have a mean power spectrum, possibly

given by equation (2.7); A peak is assumed to be a true feature with a certain percent of

confidence if a peak in the wavelet power spectrum is significantly above the background

spectrum. For this Ph.D. study the 95% confidence level (CL) was chosen.

2.2.5.4 Global Wavelet Spectrum and Averaging In Scale

The global wavelet spectrum and the scale-average wavelet power are calculated as well.

The local spectrum is a vertical slice through the wavelet domain. Therefore, the global

wavelet spectrum is an average over all the local wavelet spectra and it is given by:

𝑊
2(𝑠) = 1

𝑁

𝑁−1∑︁
𝑛=0

|𝑊𝑛 (𝑠) |2 (2.8)

The time series of the average variance in a specific band is the scale-averaged wavelet

power. For the analysis of IBTrACS and the reanalysis datasets for the common period

(1980-2013) the band was chosen between five and ten years. Full details for the global
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wavelet spectrum and the scale-averaged wavelet power can be found in Torrence and

Compo (1998).

2.2.5.5 Cross Wavelet Transform

The cross wavelet transform (XWT) is used to find regions in the time-frequency space

where two time series show high common power. The XWT of two given time series 𝑥𝑛
and 𝑦𝑛, with wavelet transforms 𝑊𝑋

𝑛 (𝑠) and 𝑊𝑌
𝑛 (𝑠) respectively, is defined as 𝑊𝑋𝑌

𝑛 (𝑠) =

𝑊𝑋
𝑛 (𝑠)𝑊𝑌∗

𝑛 (𝑠) where 𝑊𝑌∗
𝑛 (𝑠) is the complex conjugate of 𝑊𝑌

𝑛 (𝑠). Therefore, the cross-

wavelet spectrum is complex and the cross-wavelet power can be defined as |𝑊𝑋𝑌
𝑛 (𝑠) |

(Torrence and Compo, 1998). The local relative phase between the two time series in

time-frequency space is given by the complex argument arg(𝑊𝑋𝑌
𝑛 (𝑠)) (Grinsted et al.,

2004). Assuming that the two time series have background power spectra 𝑃𝑋
𝑘

and 𝑃𝑌
𝑘

(equation 2.7), the theoretical distribution of the cross wavelet power of the two time

series is given in Torrence and Compo (1998) by:

𝐷 (
|𝑊𝑋

𝑛 (𝑠)𝑊𝑌∗
𝑛 (𝑠) |

𝜎𝑋𝜎𝑌
< 𝑝) = 𝑍𝜈 (𝑝)

𝜈

√︃
𝑃𝑋
𝑘
𝑃𝑌
𝑘

(2.9)

with 𝑣 the degrees of freedom and 𝑍𝜈 (𝑝) the CL associated with the probability p for

a probability density function which is defined by the square root of the product of

two 𝜒2 distributions. According to Torrence and Compo (1998), the inverse of the

cumulative distribution function (percent point function - PPF) of a 𝜒2 distribution at the

95% confidence and two degrees of freedom is 𝑍2(95%)=3.999. However, calculating the

PPF using 𝜒2 ppf gives 𝑍2(95%)=5.991. To ensure similar significance intervals as in

Grinsted et al. (2004), one has to use confidence of 86.46%.

2.2.5.6 Wavelet Coherence and Coherence Phase

The wavelet coherence is a measure of the cross-correlation between two time series as

a function of frequency. The coherence finds regions in time-frequency space where the

two time series co-vary, but do not necessarily have high power. It is defined in Torrence

and Compo (1998) as the square of the cross-spectrum normalised by the individual power

spectra and it provides a quantity between zero and one. Grinsted et al. (2004) defined the

coherence of two time series as
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𝑅2
𝑛 (𝑠) =

|𝑆(𝑠−1𝑊𝑋𝑌
𝑛 (𝑠)) |2

𝑆(𝑠−1 |𝑊𝑋
𝑛 (𝑠) |2) · 𝑆(𝑠−1 |𝑊𝑌

𝑛 (𝑠) |2)
(2.10)

where S is a smoothing operator. Grinsted et al. (2004) also highlighted that their definition

is very similar to the definition of the traditional correlation coefficient and can be thought

of as a localised correlation coefficient in the time-frequency space. The smoothing

operator is defined as

𝑆(𝑊) = 𝑆𝑠𝑐𝑎𝑙𝑒 (𝑆𝑡𝑖𝑚𝑒 (𝑊𝑛 (𝑠))). (2.11)

where 𝑆𝑠𝑐𝑎𝑙𝑒 is the smoothing along the axis of the wavelet scale, while 𝑆𝑡𝑖𝑚𝑒 is the

smoothing in time. Grinsted et al. (2004) mentioned that for the Morlet Wavelet an

appropriate smoothing operator is presented in Torrence and Compo (1998) and given by:

𝑆𝑡𝑖𝑚𝑒 (𝑊) |𝑠 =
(
𝑊𝑛 (𝑠) ∗ 𝑐

−𝑡2
2𝑠2
1

) �����
𝑠

, (2.12)

𝑆𝑡𝑖𝑚𝑒 (𝑊) |𝑠 = (𝑊𝑛 (𝑠) ∗ 𝑐2Π(0.6𝑠))
��
𝑛

(2.13)

using the normalisation constants 𝑐1 and 𝑐2, the rectangle function Π and the scale

decorrelation length factor of 0.6 for the Morlet wavelet, which is determined empirically

(Torrence and Compo, 1998). The normalisation constants are computed numerically due

to the fact that the convolutions are performed discretely (Grinsted et al., 2004). Lastly,

the coherence phase is defined in Torrence and Compo (1998) as

tan−1
[ ℑ(𝑊𝑋𝑌

𝑛 (𝑠))
ℜ(𝑊𝑋𝑌

𝑛 (𝑠))

]
(2.14)

Full details can be found in Grinsted et al. (2004).

2.2.5.7 Kernel Density Estimation

In an effort to combine and compare the wavelet spectra for each basin from the multiple

datasets, the distribution of the power within certain bands in investigated. The wavelet

power spectrum of a time series is calculated as described in section 2.2.5.1 and a Kernel

Density Estimation (KDE) is performed on the power within a specific band (for example

the 2-8 year band). The KDE provides a non-parametric way to estimate the probability

density function of a random variable. With the use of this technique, it is possible to
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directly, quantitatively compare wavelet spectra from different datasets and/or different

period bands.

2.2.6 Empirical Mode of Decomposition and Hilbert Analysis

The way the wavelet analysis is performed is characterised by uncertainties. Two notable

sources of uncertainties are the choice of the wavelet function and the padding of the time

series with zeroes. Depending on which wavelet function is chosen and whether the time

series will be padded with zeroes, results can differ.

In order to validate the results of wavelet analysis and to trust that decisions were

appropriate, another method with less arbitrary decisions was used; The Empirical Mode

of Decomposition (EMD) along with the Hilbert spectrum. The EMD method decomposes

a data set into a finite number of "intrinsic mode functions" (IMFs). The decomposition is

based on the local and innate characteristics of the data in respect of time. With the use of

the Hilbert transform, instantaneous frequencies are produced from the IMFs as functions

of time, distinctly identifying embedded features. Finally, the power within the signal in

the time-frequency domain, known as the Hilbert spectrum, is computed. Full details can

be found in Huang et al. (1998).

2.2.7 Empirical Orthogonal Teleconnections

Even though the spectral methods can provide indications of modes of variability influenc-

ing TC activity, they alone cannot explain what mainly drives TC variability. Despite the

fact that one of the standard techniques for analysing the spacial and temporal variability

of data is the Empirical Orthogonal Function (EOF) method, for this Ph.D. study the

Empirical Orthogonal Teleconnections (EOTs) method is used. The EOTs method is an

alternative method used for the empirical and orthogonal calculation of functions from

space-time datasets. One of the advantages of EOTs over EOFs is that the former are

orthogonal in only one direction (time or space) instead of two (space and time) as is the

case for the latter, making the computation less expensive (Smith, 2004; van den Dool

et al., 2000). The EOTs can be thought of as the rotated EOFs (van den Dool et al., 2000).

The EOTs method tries to find the point in space (or time) - base point - which, by

using linear regression, can explain the majority of variance at all other points. The first

spatial pattern is the slope (regression coefficient) between the base point and every other
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point. The first time series (mode) is the time series of the raw data at the base point. The

original data are reduced by subtracting what is explained by the first mode. The process

can be repeated exactly as before for the remaining modes. Full details for the method can

be found in van den Dool et al. (2000).

By using this method the main drivers of the decadal variability of TCs, are investigated.

We have chosen to search for the base point in space which explains most of the variance

in TC track densities. The method is applied on track densities computed using the

seasonal (May to November) statistics methodology based on spherical nonparametric

Kernel estimators as outlined in Hodges (1996). The track densities are computed for

all datasets, but only the track densities at locations were the mean track density over the

period analysed is equal or greater than two TCs per season per unit area are used.

In order to identify which phenomena may be responsible for TC variability, fields

of different drivers such as SSTs and VWS, are regressed onto the EOT time series. By

linearly regressing the driver field onto the EOT time series we aim to find patterns that

resemble and are significantly correlated (at the 90% CL) to known canonical patterns of

climate indices such as ENSO, AMO and others. The term canonical refers to patterns

which are well known in the literature and are results of either Principal Component

Analysis (PCA) or composite analysis. For examining the SSTs as a driver the SST field

obtained from the 1◦×1◦ Hadley Centre Sea Ice and SST data set (Had-ISST; Rayner et al.

(2003)) was regressed onto EOT time series from IBTrACS and reanalyses. For the model

simulations, for each model simulation shown in tables 2.3 and 2.4 the corresponding SST

field was used. It is important to note here that for the investigation of decadal variability

(under the 1950-2050 period) the trend in SSTs is removed, but for the analysis of climate

change, it is not. Lastly, for examining the VWS as a driver, from the reanalysis datasets

only the ERA5 VWS field was regressed onto the ERA5 and IBTrACS EOT time series

following the same process as for the SSTs. For ERA5 and for the model simulations the

VWS was computed as the magnitude of the difference between the zonal and meridional

winds at the 850 and 250 hPa.

For the linear regression, the EOT time series are standardised and then at each

grid point, the linear regression coefficient (slope) is calculated. The resulting patterns

(regression maps) are compared against the canonical patterns for the different climate

indices. The first regression pattern indicates the phenomenon or phenomena responsible
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for the majority of variance in TC activity at the base point. When the influence of

the first phenomenon is removed, the second pattern indicates the phenomenon which is

responsible for the majority of variance at the second EOT point, and so on.

2.2.8 Pearson Correlation Coefficients

Throughout the thesis, the time series of TC counts, of ACE and the EOTs are correlated

using simple Pearson correlation coefficients with the climate indices. The correlations

are considered to be significant at the 90% CL if the corresponding two-tailed p-value is

less than 0.1. Lastly, they are characterised based on Table 2.5.

Table 2.5: Characterising correlations

Absolute value Category

0 - 0.24 Weak

0.25 - 0.49 Moderate

0.5 - 0.74 Strong

0.75 - 1 Very strong
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Chapter 3

Drivers of TC Variability in the Current

Climate, 1980-2013

3.1 Introduction

The drivers of TC variability in the different regions of the northern hemisphere for the

current climate, specifically the 1980-2013 period, are examined in this chapter. For

each region, as well as for the total NH activity, results from the analysis on observations

(IBTrACS) and reanalyses are presented first. In addition, in order to assess the skill

of HadGEM3-GC3.1 in simulating TC activity in the present day and gain confidence

before examining the drivers of decadal TC variability and the impact of climate change,

results from the different model simulations, specified on table 2.3 and 2.4, are compared

against IBTrACS and reanalyses. Results discussed will be mainly focused on the analysis

from spectral methods on time series of TC activity (annual counts and ACE), the EOTs

method on TC track densities as well Pearson correlations between different time series

and climate indices, defined in chapter 1.3. In terms of TC counts, for each basin, figures

of time series as well as results from the spectral methods and from Pearson correlation

coefficients will be presented. In terms of ACE, for each basin, the figures/tables presented

in this chapter will be focused only on Pearson correlation coefficients between the annual

ACE time series and the May-November averaged climate indices. Results from spectral

analysis on EOTs will be discussed, but no figures will be shown. The spectral methods

are used for detecting periodicities within time series of TC counts and ACE, whereas the

EOTs method is used for examining the influence of two main drivers, SSTs and VWS,
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on TC variability. For observations, the QBO, ENSO, AMM, AMO and PDO climate

indices are used, whereas for the models, only the ENSO, AMO and PDO indices are

taken into consideration. Even though the period analysed in this chapter is very short

in order to fully assess the decadal variability of TCs, it is important to examine, both in

observations and in models, whether the decadal modes of climate variability (AMO and

PDO) have had any influence on TC variability. It is true that their respective periodicities

are not expected to be captured by the spectral methods and that examining the influence

by the two decadal modes in this short period is complicated due to biases and artificial

trends in the observations. However, despite the fact that this investigation is not ideal,

it is crucial to examine whether there is any decadal variability associated with the two

decadal modes for completeness and comparison purposes with chapter 4. The present

chapter is structured by the different regions examined: total NH, North Atlantic, Eastern

Pacific, Central Pacific, Western Pacific and North Indian Ocean.

3.2 Total NH Activity

The mean track densities in the NH (0-60◦𝑁) for the 1980-2013 period for IBTrACS,

ERA5 and a range of model simulations by HadGEM3 are presented on figure 3.1. Using

the track density statistics allows the assessment of the ability of a GCM to simulate the

spatial distribution of TCs (Strachan et al., 2013). It can be seen that in all different

NH regions there are higher mean track densities in ERA5 (fig. 3.1b) and the rest of

the reanalyses (not shown) compared to IBTrACS. This can be particularly observed for

the central Pacific region (180 - 140◦𝑊) since very few TCs in that particular region

are included in the IBTrACS. In addition, TC tracks are longer in ERA5 and the rest of

reanalyses compared to IBTrACS, since storms in the reanalyses are tracked even if they

transition into extra-tropical systems. This can influence the EOT analysis resulting in

EOTs located outside the respective MDRs and in high latitudes. More discussion on how

the track densities can influence EOT analysis follows in the next chapters.

Results for the atm-only runs are based on observed SSTs, therefore it is possible to

compare track densities for the atm-only runs (fig. 3.1c, 3.1d) with the ones for IBTrACS

and reanalyses. The comparison, however, will extent to the track densities from the

coupled runs (fig. 3.1e - 3.1j), in order to assess the spatial distribution of TCs in all
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(i) HH Control-1950 simulation (u-ay490)
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(j) HH Hist-1950 simulation (u-ay652)

0°

30°N

60°N

0° 0°40°E 80°E 120°E 160°E 160°W 120°W 80°W 40°W0° 0°
2.000

0 10 20 30 40 50 60 70 80 90

Figure 3.1: Mean track density during in the NH (0-60◦𝑁) for the 1980-2013 period for:

(a) IBTrACS, (b) ERA5, (c) - (d) atm-only runs of low (LM) and high (HM) resolution,

(e) - (j) a coupled control-1950 and one corresponding coupled hist-1950 run of LL, MM

and HH resolution. Red contour indicates where the mean track density is greater that 2

TCs per season, per unit area.

CHAPTER 3 Page 47



3.2. TOTAL NH ACTIVITY

the datasets examined in the study. Similarly to the reanalysis datasets, the tracks in

the model runs are longer compared to the IBTrACS, and in general, it can be seen that

with increasing horizontal resolution there are increases in the mean track densities in the

different regions. Furthermore, the N96-resolution (LM atm-only and LL coupled) runs

show less TCs than observations, particularly in the NATL region, whereas results for the

N216 and N512 runs simulate similar or higher spatial distributions of TCs compared to

the ones in reanalyses.

Summary statistics by basin for the NH TC activity of the 1980-2013 period are

presented on figure 3.2. The upper two rows represent the statistics in terms of TC counts,

while the statistics for ACE are displayed in the lower two rows. The average number of

storms and ACE per year are shown in the centre.

As already found by Hodges et al. (2017), for the TC counts in the NH using the

objective identification there is generally good agreement between the reanalysis datasets

and IBTrACS, except for MERRA. According to the summary statistics for IBTrACS, on

average around 77 TCs occur per year. In the reanalyses the highest annual average is found

for JRA55 with 84 TCs per year, while the lowest is found for MERRA with approximately

50 TCs. NCEP, ERA5 and MERRA2 show more than 79 TCs per year, whereas ERAI

and JRA25 have less than 69 TCs per year. In terms of annual average ACE, the same

picture is found, with NCEP, ERA5, MERRA2 and JRA55 overestimating it compared to

IBTrACS’ value, while the remaining reanalyses underestimate ACE. It is possible that

these differences in the ACE statistics are due to a combination of different TC counts,

representation of wind speeds in reanalyses, missing wind speed data in IBTrACS and the

longer TC tracks in reanalyses.

Studies have shown that in order to correctly simulate the TC variability in models,

it is important to have both a number of ensemble members at a given resolution (Mei

et al., 2019; Yoshida et al., 2017) as well as an ensemble of runs at different resolutions

(Roberts et al., 2015; Zhao et al., 2009). For the former, having a number of ensemble

members at a given horizontal resolution improves the signal-to-noise ratio. For the latter,

even though running a GCM at high resolution provides better representation of TCs, it

can be expensive. Therefore, it is crucial to also have runs at different resolutions. For

this study, at each run presented on tables 2.3 and 2.4, TC activity under the same period

is examined individually.
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Figure 3.2: Northern hemisphere TC activity summary statistics for IBTrACS and reanal-

ysis products for the 1980-2013 period in terms of TC counts (upper two rows) and ACE

(lower two rows). The different colours indicate the basins with the proportion of each

basin’s activity to the total northern hemisphere activity, while mean number of storms

and mean ACE per year are shown in the centre.
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Table 3.1: Pearson correlations between the time series of total NH annual (a) TC counts

and (b) ACE of IBTrACS and reanalyses with the seasonal climate indices for the 1980-

2013 period. Correlations which are significant at the 90% CL are in bold.

QBO AMM ENSO AMO PDO

IBTrACS -0.00 -0.15 -0.08 -0.29 0.05

ERAI -0.16 0.27 -0.08 0.39 -0.57

MERRA -0.17 0.15 0.02 0.23 -0.13

MERRA2 0.09 0.10 0.28 0.04 -0.16

NCEP -0.04 -0.49 0.20 -0.69 0.32

JRA25 -0.12 0.26 0.11 0.21 -0.29

JRA55 -0.01 -0.08 0.03 -0.17 0.01

ERA5 -0.13 0.25 -0.07 0.36 -0.44

(a) TC counts

QBO AMM ENSO AMO PDO

0.03 -0.13 0.52 -0.39 0.32

-0.18 0.18 0.37 0.10 -0.11

-0.16 0.22 0.23 0.23 -0.06

-0.06 0.18 0.55 0.09 -0.12

-0.03 -0.19 0.43 -0.48 0.22

-0.11 0.28 0.36 0.16 -0.16

-0.00 -0.39 0.46 -0.62 0.53

-0.02 0.12 0.45 0.06 -0.05

(b) ACE

In general, the atm-only runs are significantly positively correlated with the time

series from IBTrACS compared to the coupled runs. Furthermore, for all the individual

basins and time periods analysed, annual TC counts and ACE are underestimated for the

N96 model experiments, compared to the N216 and N512 experiments. This result is

in agreement with numerous studies such as Roberts et al. (2020a) which highlight that

skill in simulating TC-like features depends on resolution. As is evident from TC track

densities and time series of TC activity, the low-resolution model simulations significantly

underestimate the number of TCs in all basins in addition to the intensities. Even though

they might not appear ideal for adequate TC representation, they are less computationally

expensive compared to the higher resolution experiments. Hence, they allow the scientific

community to conduct a greater number of experiments much faster than the higher

resolution runs.

For total TC activity in the NH, almost all the atm-only runs showed significant positive

correlations with the IBTrACS time series of total ACE. As indicated on figure 3.3 the

May-November averaged ENSO index has a significant moderate-to-very strong positive

influence on global ACE, particularly for the atm-only experiments. This is similar to the

results seen from IBTrACS and the reanalyses (tab. 3.1). On the other hand, AMO has a

significant negative moderate-to-strong influence on both ACE and counts, particularly for
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the atm-only and the LL or MM coupled experiments. Furthermore, there are significant

moderate correlations between the May-November averaged PDO index and the time series

of global counts for 4 (1 LL, 2 MM and 1 HM) of the atm-only experiments, and significant

moderate anticorrelations for 5 (1 LL hist, the MM control, 1 MM hist, one HM hist and

the HH control) of the coupled simulations examined. For the PDO’s influence of ACE,

similar conclusions can be drawn, since 4 of the atm-only time series displayed significant

moderate positive interaction with the seasonal index, and 3 of the coupled runs showed a

significant moderate anticorrelation with the climate mode.
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Figure 3.3: Pearson correlations between the time series of total NH annual TC counts

and ACE of models with the seasonal climate indices for the 1980-2013 period. Hatched

bars indicate the correlations that are significant at the 90% CL.
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3.3 North Atlantic

3.3.1 Observations - Current Climate

For the 1980-2013 period the NATL region has 20% (fig. 3.2) of the NH’s TC activity

according to IBTrACS. The reanalyses have shown a reasonably good agreement rep-

resenting around 15-19% (fig. 3.2) of the hemisphere’s activity, something that is also

indicated by Pearson correlation coefficients (not shown) between the IBTrACS and the

reanalysis time series. In terms of TC counts, the NATL is the only basin for which the

correlations between IBTrACS and reanalysis time series are significant (at the 90% CL)

and higher than 0.5. In terms of ACE, correlations between IBTrACS and reanalysis time

series are consistently higher than 0.6, highlighting once again how well reanalyses can

simulate TC activity in the basin.

The time series of TC counts and ACE are analysed using the spectral methods outlined

in sections 2.2.4 - 2.2.6. Figures 3.4a and 3.5a present the 1980-2013 time series of TC

counts and ACE for IBTrACS and reanalyses. Results from the standard power spectrum

and wavelet analysis of the time series are presented on figures 3.4b, 3.4c, 3.5b and 3.5c.

The different reanalysis spectra, which are combined into one spectrum (blue line), are

compared against the corresponding IBTrACS spectrum (green line). For the wavelets,

the mean of the wavelet reanalysis spectra is computed (shown with colours) and it is

compared against the IBTrACS wavelet spectrum (black contour lines). The shaded area

indicates the COI.

Significant peaks within the 2-8-year power band are detected from the standard

power spectrum method, a power band typically associated with ENSO, hinting at ENSO

influence on hurricane activity for the 1980-2013 period. Given the short records of TC

counts and ACE that are analysed, there is considerable difficulty in resolving peaks in

power on decadal time scales. Providing the ability to detect peridiocities in localised

time-frequency domain, in terms of the frequency of Atlantic systems, wavelet analysis

results show significant regions within the 2-3 and 5-7 year bands for the 2004-2008

and 1994-2005 periods, respectively (fig. 3.4c). In terms of ACE, there is a consistent

significant signal around the 3-yr-period band, positioned in the mid-1990s, marking the

shift towards more frequent above-normal hurricane seasons (fig. 3.5c).

Tables 3.2a and 3.2b display Pearson correlation coefficients between the time series of
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Figure 3.4: (a) Time series of counts for NATL; b) Standard power spectrum analysis for

the time series. The individual reanalysis spectra are combined into one (blue line) and

they are compared against the IBTrACS power spectrum (green line). The dashed lines

indicate the 95% confidence level. The shaded area indicates the 95% confidence intervals

for the combined spectrum; c) Mean of the seven reanalysis wavelet spectra (colours) and

IBTrACS wavelet spectrum (black contours) of TC counts time series. The shaded area

indicates the COI.
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(a) Time series
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Figure 3.5: (a) Time series of ACE for NATL; b) Standard power spectrum analysis for

the time series. The individual reanalysis spectra are combined into one (blue line) and

they are compared against the IBTrACS power spectrum (green line). The dashed lines

indicate the 95% confidence level. The shaded area indicates the 95% confidence intervals

for the combined spectrum; c) Mean of the seven reanalysis wavelet spectra (colours) and

IBTrACS wavelet spectrum (black contours) of TC counts time series. The shaded area

indicates the COI.
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Table 3.2: Pearson correlations between the time series of NATL annual (a) TC counts and

(b) ACE of IBTrACS and reanalyses with the seasonal climate indices for the 1980-2013

period. Correlations which are significant at the 90% CL are in bold.

QBO AMM ENSO AMO PDO

IBTrACS -0.26 0.54 -0.49 0.58 -0.37

ERAI -0.09 0.64 -0.44 0.62 -0.45

MERRA -0.31 0.58 -0.35 0.63 -0.20

MERRA2 -0.19 0.52 -0.37 0.66 -0.40

NCEP -0.32 0.18 -0.40 0.07 0.06

JRA25 -0.22 0.69 -0.42 0.72 -0.43

JRA55 -0.13 0.53 -0.31 0.47 -0.25

ERA5 -0.30 0.59 -0.48 0.57 -0.38

(a) TC counts

QBO AMM ENSO AMO PDO

-0.13 0.68 -0.44 0.66 -0.32

-0.22 0.65 -0.39 0.65 -0.40

-0.19 0.61 -0.41 0.68 -0.35

-0.19 0.64 -0.36 0.72 -0.42

-0.26 0.54 -0.49 0.53 -0.34

-0.18 0.69 -0.40 0.72 -0.40

-0.21 0.56 -0.41 0.53 -0.25

-0.17 0.62 -0.43 0.62 -0.35

(b) ACE

TC counts and ACE, respectively, from IBTrACS and reanalyses with the May-November

averaged climate indices (QBO, AMM, ENSO, AMO and PDO) for the 1980-2013 period.

It can be seen that both counts and ACE are significantly anticorrelated with ENSO for

all datasets. In addition, for the majority of the datasets, the time series are significantly

correlated with the AMM and the AMO indices, and anticorrelated with the PDO index.

Lastly, for only three of the datasets the time series of counts are significantly anticorrelated

with QBO.

According to the literature, since 1995 there has been an increase in Atlantic TC

activity. This increase has been attributed to a combination of the AMO (through SSTs

and VWS) along with increasing SSTs (due to climate change) influencing TC activity

(Goldenberg et al., 2001). According to Bell and Chelliah (2006), TC activity in the

basin can be influenced by both ENSO and multi-decadal signals. For example, during

a high-activity era such as the one since 1995 (which has been associated with the warm

phase of AMO; Goldenberg et al. (2001)) an El-Niño (like the 1997 event) is likely to

result in a near-normal TC season, while a La-Niña (like the 1998-1999, 2020 events) is

likely to result in an above-normal season. It is, therefore, possible that, even though the

frequency of the AMO may not be detectable, the multi-decadal mode of variability may

still influence Atlantic TC activity through ENSO, whose frequency is detectable in most
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Figure 3.6: NATL ACE index for the 1950-2020 period. Source: U.S. (2021)

reanalysis wavelet spectra during the 1995-2005 period. Various studies (Klotzbach and

Gray, 2008; Knight, 2005; Zhang and Delworth, 2006) have also suggested that fluctuations

in the strength of the AMO likely drive the Atlantic TC variability since the mid-1990s,

whereas Mann and Emanuel (2006) have argued that the increase in TC activity during

this period is more likely to be associated with anthropogenic factors. According to the

ACE index for 1950-2020 (obtained from the Atlantic Hurricane Database Re-analysis

Project; U.S. (2021)), shown on figure 3.6, almost two thirds of the 26 hurricane seasons

since 1995 were categorized as above normal. Given that, since 1995, there has been an

increase in not only ACE (as shown on fig. 3.5a) but in TC counts as well, it is very

difficult to attribute the increasing ACE trend to either only an increase of counts or to an

increase in both counts and intensity.

Upon examining the drivers of TC activity under the current climate using the EOTs

method, results showed that for each dataset the point explaining the majority of variance

in the basin is positioned in the MDR. As shown on figure 3.7a, the EOT1 points are
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(a) Locations for IBTrACS and reanalyses EOTs
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closely located, with the exception of MERRA which is positioned near the Caribbean

Islands, and each one of them explains more than 50% of the variability in the basin (fig.

3.8). It is possible that the agreement in the position of EOT1 in the MDR is attributed to

the high-level of predictability of TCs in the basin. Lastly, it was found that three EOTs

were sufficient in order to explain at least 75% of the variance in the basin.

Spectral analysis of the EOT1 time series shows periodicities on interannual time scales

at frequencies similar to ENSO, but not on decadal time scales. Figures 3.7b and 3.7c,

respectively, present results of the HadISST SST and ERA5 VWS fields being regressed

onto the first three IBTrACS EOT time series. Even though results for the reanalyses are

not shown, they indicate that TC activity in the basin for six of the datasets is influenced

by cold SSTs in the Eastern and Central Pacific, typically associated with La-Niña events

(inverse SST pattern of fig 1.1) and warm SSTs in the western and north western parts of

the basin, conditions typically associated with the cold phase of PDO (inverse SST pattern

of fig. 1.4). Simultaneously, TC activity in the MDR in all datasets is influenced by local

warm SSTs, usually representative of the AMM (SST pattern on fig. 1.3), as well as warm

SSTs in the Northern part of the Atlantic basin (near Greenland) which are associated with

the warm phase of the AMO (SST pattern on fig. 1.2). Lastly, the ERA5 VWS regression

pattern shown on figure 3.7c indicates that increases in TC activity are linked to strong

VWS in Central Pacific and North Indian Ocean and weak VWS in the Atlantic, pattern

usually associated with how the Walker Circulation is modified during a La-Niña event.

In order to back up the qualitative interpretation of the regression patterns, the EOT

time series are correlated with the May-November averages of the climate indices. The

Pearson correlation coefficients are presented on figure 3.7d with the dot indicating which

coefficients are significant at the 90% CL. It can be seen that AMM and AMO have a

robust moderate to strong positive relationship with the TC activity in the MDR for the

first EOT, while ENSO and PDO have a moderate negative influence in more than half of

the datasets. Once the influence of the EOT1 is removed, the base points for the second

mode are no longer clustered and the percentage of variance explained by EOT2 drops to

below 25%. The EOTs that remain in the MDR are moderately positively influenced by

only AMM and AMO via warm SSTs. For IBTrACS the cold phases of ENSO and PDO

and the warm phases of AMM and AMO appear to influence TC activity in the western

tropical part of the region (inside the Gulf of Mexico) for EOT3, which explains around
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Figure 3.8: Percentage of variance explained by the EOTs for NATL. Column 1: Re-

analyses (as an ensemble) against IBTrACS (■); Columns 2-4: ensemble of atm-only

runs split by atmospheric resolution; Column 5: ensemble of LL historic runs against the

control run (♦); Column 6: ensemble of MM historic runs against the MM control (•),

MH control run (+) and MH historic run (▲); Column 7: ensemble of HM historic runs

against HM control run (×), HH control run (★) and HH historic run (▶). Faded circles

(•) show outliers. Dotted lines show the ensemble means.

12% of variance. However, this result was deemed unreliable since the location of EOT3

is very close to the border with EPAC.

Even though the present study investigates the connections to only a few specific

climate modes through only two main drivers, in the future it is important to broaden

the investigation. By examining the relationship between Atlantic TC activity and the

Sahel rainfall, it has been found that the Sahel precipitation as well as the NAO, strongly

influence TC activity in the Atlantic during unfavourable conditions such as the ones during

a negative AMO phase (Fink et al., 2010). Furthermore, during favourable conditions

induced by a warm AMO phase, Caron et al. (2015) determined that Atlantic TC activity

is linked with the variability associated to the solar cycle as well as dust concentrations

over the basin. Li et al. (2015) found that the Interdecadal Pacific Oscillation (IPO), a

Pacific decadal mode which covers a larger portion of the basin compared to PDO, can

suppress TC activity in the Atlantic during its positive phase, likely by shifting the location
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of increased VWS in the Atlantic.

3.3.2 Models - Current Climate
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Figure 3.9: Spectral analysis on NATL TC counts for the coupled HM runs: (a) Power

spectrum: The spectra of the HM hist-1950 ensemble runs are combined into one (blue

line) and are compared against control-1950. The dashed lines indicate the 95% confidence

level. The shaded area indicates the 95% confidence intervals for the mean power spectrum;

(b) Wavelets: The grey contour lines indicate the spectrum for the control run. Colors

indicate the mean spectrum for the ensemble of HM hist-1950 runs. The shaded area

indicates the COI, while the 95% CL for the control run is shown with red contours.

The time series for both frequency and ACE for the atm-only experiments for the

1980-2013 are significantly positively correlated with the corresponding time series from

IBTrACS, in contrast to the coupled runs. Standard spectral and wavelet analysis of the

time series for both counts and ACE, resulted in significant peaks at periodicities similar

to the ones found in the observations. An example of this is presented on figure 3.9 which

shows results from the spectral analysis on time series of TC counts for the coupled HM

runs.

Pearson correlations between the metrics (time series of annual TC counts and ACE)

and the May-November averaged climate indices, presented on figure 3.10, show that

almost all the atm-only experiments have significant moderate-to-strong anticorrelations

with ENSO for both frequency and ACE. However, such relationships are not present for
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Figure 3.10: Pearson correlations between the time series of NATL annual TC counts

and ACE of models with the seasonal climate indices for the 1980-2013 period. Hatched

bars indicate the correlations that are significant at the 90% CL.
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the coupled runs, irrespective of resolution. As it will be seen further on in the study, for

the rest of the basins there is a lack of significant correlations with the ENSO index (except

over Central Pacific) for most coupled runs. It is important to note here that this difference

is only seen for the coupled runs, since they are not forced by the same observed SSTs as

is the case for the atm-only runs. One possible explanation is that this is related to the

teleconnections and to the strength of ENSO events in the coupled runs. It might, also, be

due to the fact that only the May-November averaged climate index is examined across all

basins. Therefore, it is important to additionally examine lagged correlations for the rest

of the basins.

Almost all the atm-only simulations have significant moderate-to strong positive corre-

lations with AMO in terms of counts, whilst only eight of them have significant moderate

or strong positive correlations with the time series of ACE, indicating that the climate

mode has a greater impact on the frequency of TCs rather than on intensity. Additionally,

the majority of MM, MH, HM and HH coupled runs show significant moderate or strong

positive correlations with the AMO index for the two metrics, in contrast to the LL runs

which have weak and not significant correlations with the AMO index. The TC frequency

in 6 of the atm-only and in 1 coupled HM hist-1950 runs appears to be anticorrelated

with the May-November averaged PDO index, while 2 of the coupled runs (1 MM hist

and the HH control) display significant moderate positive correlations with the index. The

climate mode (PDO) appears to have a greater influence on the frequency of TCs for this

particular basin, since more significant correlations are observed between the index TC

counts compared to ACE.

The SST and VWS are also examined as drivers in the model simulations in order to

first examine and understand the current climate in the model before formally assessing

the impact of climate change and longer periods.

Before concentrating on the interpretation of the results for the NA region, it is worth

noting the consistency between results from the hist-1950 runs and the results from the

reanalysis and IBTrACS in terms of the drop in the percentage of variance explained by

EOT1 and EOT2 for the NATL region (fig. 3.8). The respective points explaining the

majority of variance for the LL (control and ensemble of historic) runs are located in the

western part of the basin, near Florida, the Gulf of Mexico and along the TC re-curving

path (fig. 3.11a). This result was expected since TCs in the low-resolution simulations are
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more concentrated in that part of the region instead of the MDR, as was observed from

the mean track density in the basin (fig. 3.1). From the regression plots (not shown) none

of the EOT1 patterns display a robust known canonical pattern. It is possible that this

might be due to the fact that there are less TCs (than observed) found in the low-resolution

simulations as is evident from track densities on figure 3.1 (e and f)), since the skill in

simulating TC-like features depends on resolution (Roberts et al., 2020a).

For the higher resolution simulations (MM and HM), EOT1 for the MM control run is

positioned on Florida (frequently impacted by TCs) as shown on figure 3.11a, while the

respective base point for the HM run is located out of the main region for TC activity for

reasons unknown at this stage, and it is therefore excluded from the analysis. In contrast,

for seven out of eight historic runs the base point explaining the majority of variability is

positioned in the MDR. Results from the linear regression of SSTs and VWS on the EOT

time series are displayed on figures 3.11b and 3.11c, respectively. They show an AMO

or AMM-resembling SST pattern in at least one of the first three EOT regression patterns

for six of the hist-1950 runs, where the base point was positioned in the MDR, such as

the SST pattern shown for EOT2. For the same EOT, the VWS pattern appears to be a

combination of the local pattern associated with the warm phase of the AMM with the

La-Niña VWS pattern over the Atlantic basin.

Compared to the robust La-Niña feature found in the observations, it might be surpris-

ing that the AMM or the AMO appear to have more influence on TC activity in the MDR

than ENSO. This difference can perhaps be attributed to the difference in tele-connections

between GCMs and reanalyses. Reanalyses are constrained by observations, whereas

GCMs are not. Previous versions of this model have been found to not be able to capture

the ENSO-TC teleconnection in the region (Bell et al., 2014). It is, therefore, possible

that for these model simulations the Atlantic modes (AMM and AMO) have a greater

influence on the NATL TC activity compared to the ENSO-TC teleconnection, or that

the SST pattern resembles the AMO’s canonical pattern. In addition, on interannual time

scales the AMM is driven by ENSO (Amaya et al., 2017; García-Serrano et al., 2017;

Oettli et al., 2016), while on decadal time scales it can also be excited via the AMO

(Vimont and Kossin, 2007). The AMM’s frequency is similar to ENSO’s and it would

be difficult to distinguish it from its frequency on a power spectrum. On the other hand,

on decadal time scales, the AMM’s periodicity is around 11-13 years (Veiga et al., 2020).
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(a) Locations of EOTs for all the model runs
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Figure 3.11: EOT results for TC variability in NATL for the model simulations. Location

of EOT is shown with green marker and significance at the 90% CL is indicated with dots

on b and c. Period examined is 1980-2013. For the correlations dark red (blue) colors

indicate how many of the 31 models have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.
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Both frequencies have been found in the power spectra of the EOT time series. Therefore,

it is possible that the presence of the AMM is due to modulation by the other modes of

variability.

Lastly, EOT1 base points for the HH-control run and the respective historic run are

located in the MDR (fig. 3.11a). The amount of variance explained is 80% and 55% for the

control and the historic run, respectively. A weak AMM pattern is found on the regression

map for the control run, but no known canonical pattern is displayed for the historic run.

Even though both EOT2 base points are closely located along the recurving track and

the amount of variance explained by each of them is similar, there is no agreement or

conclusion arising from the equivalent regression maps. Since only one HH control and

one historic run are examined in the study, it is not possible to arrive to a conclusion. In

the future, having more ensemble members of this or higher resolution to analyse might

provide useful insight on the drivers of TC variability in high resolution climate models.

Figure 3.11d presents the Pearson correlation coefficients between the first three EOT

time series for all the model runs and the seasonally averaged climate indices. The figure is

a summary plot of how many EOTs of the model experiments are positively or negatively

correlated with ENSO, AMO and PDO. For example, for 27 of the simulations, EOT1 has

positive correlations with the AMO index (dark red), 52% of which are significant (semi

dark red). In addition, negative correlations, indicated by dark blue, are observed between

EOT1 and ENSO (PDO) for 21 (20) of the runs, 24% (20%) of which are significant

(semi dark blue). These results, further support the conclusion that the Atlantic modes

(AMM and AMO) have a greater, more significant, impact on TC activity compared to the

Pacific modes (ENSO and PDO). A caveat of this analysis is that only three climate indices

are taken into consideration for the analysis of model simulations. It is very important

that future work includes investigation of this climate mode in order to provide further

understanding of the drivers of TC variability in the Atlantic.

3.3.3 Summary

In summary, the observed TC activity in the Atlantic MDR under the current climate (1980-

2013) which exhibits high variability is mainly driven by local warm SSTs associated with

the warm phases of the AMM and the AMO, cold SSTs in the tropical eastern and central

parts of the Pacific ocean linked to La-Niña events and SSTs describing the cold phase
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of PDO. Lastly, VWS conditions associated with the Walker Circulation during La-Niña

events (strong VWS in central Pacific and North Indian Ocean and low VWS in the

Atlantic) also aid increases in TC activity in the Atlantic MDR. The primary driver of

TC variability for the model simulations appears to be the AMO via SSTs in the MDR,

which leads to enhanced convection aiding the formation and development of TCs during

its warm phase and inhibiting it during its cold phase. ENSO influence on TC variability

in the basin under the current climate, albeit not as a robust as the influence by the AMO,

is present in all datasets and tools utilised in the study. It is true that previous versions

of the model have had adequate ENSO representation and that HadGEM3-GC3.1 has

improved both the simulation of ENSO as well as TC-representation (Kuhlbrodt et al.,

2018; Menary et al., 2018; Roberts et al., 2019; Williams et al., 2018). Previous studies

on other models such as Bell et al. (2014) have highlighted the importance of improving

the ENSO-teleconnections relationship. It is possible that further work on HadGEM3,

focusing on this area of research, in conjunction with running the model on finer resolution

can improve the influence ENSO has on TCs in the basin.
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3.4 Eastern Pacific

3.4.1 Observations - Current Climate

According to IBTrACS, TC activity in terms of frequency and ACE for the EPAC accounts

for 22% of the NH’s activity (fig. 3.2). For the reanalyses the percentage is within 17-

24% and 10-17% for frequency and ACE, respectively (fig. 3.2). The time series of TC

counts (fig. 3.12a) do not display any trends, however, there is a noticeable decrease in

the number of TCs and ACE after 1995. There is a larger spread between the different

reanalysis datasets before 1995 compared to after 1995, however the different reanalyses,

with the exception of ERAI and ERA5, display significant (at the 90% CL) moderate to

very strong positive correlations between their time series and those from IBTrACS. In

terms of ACE, the same is true with the exception of ERAI. The rest of the reanalyses

(not MERRA) show strong to very strong positive correlations with the IBTrACS ACE

time series. The reason MERRA does not display such strong correlation with IBTrACS

in terms of ACE is attributed to the fact that MERRA has the weakest maximum wind

speeds (Hodges et al., 2017).

Significant peaks in the 2-5-year-band, hinting at ENSO influence on TC activity in

the basin, are displayed in some the individual reanalysis power spectra, even though none

are seen in the combined reanalysis spectrum, both for ACE and counts (fig, 3.12b). No

robust conclusion is drawn from the wavelet analysis since, in terms of frequency, four

of the reanalysis wavelet spectra displayed significant regions within the 2-5-year-band

(fig. 3.12c), hinting once again on ENSO influence, but not in a common time period.

Just like in the standard power spectrum, for IBTrACS the wavelet spectrum revealed one

significant region in the 7-8-year-band (fig. 3.12c), localised around the early to mid 90’s,

roughly around the time period during which the AMO and PDO changed phases. In terms

of ACE, IBTrACS and JRA25 show exactly the same significant region that was found for

IBTrACS in terms of counts. The rest of the reanalyses (with the exception of NCEP and

JRA55) showed significant peaks mostly within ENSO’s periodicity around 1995.

Moderate significant positive correlations with the May-November average of ENSO

and PDO indices and moderate to strong significant anticorrelations with the AMO index

(in terms of counts) are found for three and four of the reanalysis datasets, respectively,

as shown on table 3.3. Results for ERAI stand out since, instead of an anticorrelation,
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Figure 3.12: (a) Time series of TC counts for EPAC; b) Standard power spectrum analysis

for the time series. The individual reanalysis spectra are combined into one (blue line) and

they are compared against the IBTrACS power spectrum (green line). The dashed lines

indicate the 95% confidence level. The shaded area indicates the 95% confidence intervals

for the combined spectrum; c) Mean of the seven reanalysis wavelet spectra (colours) and

IBTrACS wavelet spectrum (black contours) of TC counts time series. The shaded area

indicates the COI.
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Table 3.3: Pearson correlations between the time series of EPAC annual (a) TC counts and

(b) ACE of IBTrACS and reanalyses with the seasonal climate indices for the 1980-2013

period. Correlations which are significant at the 90% CL are in bold.

QBO AMM ENSO AMO PDO

IBTrACS 0.14 -0.12 0.22 -0.24 0.15

ERAI -0.08 0.30 0.20 0.29 -0.25

MERRA 0.06 0.09 0.16 0.13 0.08

MERRA2 0.29 -0.18 0.38 -0.39 0.34

NCEP -0.08 -0.40 0.18 -0.53 0.34

JRA25 0.07 -0.16 0.30 -0.27 0.24

JRA55 0.03 -0.21 0.13 -0.37 0.34

ERA5 0.20 0.04 0.45 0.12 0.11

(a) TC counts

QBO AMM ENSO AMO PDO

0.20 -0.34 0.26 -0.53 0.37

-0.16 0.18 0.32 0.24 -0.16

0.05 0.03 0.29 0.10 0.17

0.23 -0.24 0.54 -0.38 0.27

0.01 -0.32 0.36 -0.54 0.41

0.12 -0.09 0.19 -0.18 -0.06

0.08 -0.42 0.05 -0.55 0.41

0.16 0.00 0.44 -0.00 0.10

(b) ACE

moderate positive significant correlations are found between the time series of counts

and the two Atlantic modes (AMM and AMO indices). In terms of ACE, for six of the

datasets, moderate to strong positive correlations (five of which are significant) are found

with the May-November average with ENSO and for four of the datasets, moderate positive

(three of which are significant) correlations are detected with the May-November averaged

PDO index. For the Atlantic modes, moderate to strong significant anticorrelations with

the May-November AMO index and moderate significant anticorrelations with the AMM

index are found for four and three of the datasets, respectively (tab. 3.3). NCEP is the

only dataset for which the relationships are significant at the 90% CL .

The EOT analysis shows that the points explaining the majority of variance in the

basin for the reanalysis products are clustered in the eastern part of the tropical EPAC

as displayed on figure 3.13a, while for IBTrACS EOT1 is located in the middle of the

region. More than 57% of the basin is explained by EOT1 for each dataset (fig. 3.14). The

percentage of variance explained by EOT2 drops to a range of 9-25% (fig. 3.14), while

the majority of them relocate towards the centre if the basin (fig. 3.13a). For this region’s

TC activity, two EOTs are sufficient for explaining 75% of the variability.

Spectral analysis of the EOT time series with both the standard power and the wavelet

spectrum have detected periodicities similar to ENSO’s frequency in all datasets for the
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(a) Locations for IBTrACS and reanalyses EOTs
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Figure 3.13: Results of EOT analysis for EPAC under the current climate for IBTrACS and

reanalyses. Locations of EOTs are indicated with a green marker on b and c. Significance

at the 90% CL is indicated with dots on b, c and d.
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Figure 3.14: Percentage of variance explained by the EOTs for EPAC. Column 1: Re-

analyses (as an ensemble) against IBTrACS (■); Columns 2-4: ensemble of atm-only

runs split by atmospheric resolution; Column 5: ensemble of LL historic runs against the

control run (♦); Column 6: ensemble of MM historic runs against the MM control (•),
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against HM control run (×), HH control run (★) and HH historic run (▶). Faded circles

(•) show outliers. Dotted lines show the ensemble means.

first two EOTs. For five of the datasets the May-November averaged ENSO index shows

a positive moderate (significant at the 90% CL in four datasets) relationship with the

EOT1 time series (fig. 3.13d). NCEP is the only dataset for which TC activity at EOT1

is significantly moderately correlated with ENSO and PDO, significantly moderately

anticorrelated with AMM and significantly strongly anticorrelated with the AMO.

From the SST and VWS regression maps for the IBTrACS EOTs presented on figures

3.13b and 3.13c, respectively, it is concluded that increases in TC activity in the eastern

part of the region are associated with the warm phase of ENSO via warm SSTs in the

eastern and central Pacific and low VWS in central Pacific, both of which are conditions

favourable for TC formation and development. Regression maps of reanalysis EOTs (not

shown) for which significant correlations (𝑟 ≥ 0.25 or 𝑟 ≤ −0.25) with the climate indices

are computed such as the one for IBTrACS, are characterised by patterns similar to the ones

seen on the regression maps on figure 3.13. For NCEP, TC activity at EOT1 is additionally
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driven by cold SSTs in the North Atlantic region, associated with the cold phases of the

AMM and AMO. Finally, IBTrACS is the only dataset for which EOT1 and EOT2 are in

the same location and EOT1 is influenced by both ENSO and the AMO, while EOT2 is

driven only by AMO. EOT3 for IBTrACS, which explains around 11% of the variability

in the basin, shows that variations in TC activity deep in the tropics are attributed to all

modes except the QBO, a connection that can be also seen from the Pearson correlation

coefficients on figure 3.13d.

Different studies have investigated the mechanisms responsible for TC activity in

the EPAC, the majority of them focusing on Pacific climate modes (ENSO and PDO).

Boucharel et al. (2016) discovered that an El-Niño event, characterised with warm SSTs

concentrated in the eastern part of the Pacific, via redistributing the warm SSTs meridion-

ally, acts as the main driver of TC activity. Moreover, Li et al. (2015) studied the influence

of IPO, a possible manifestation of the PDO in a wider area of the Pacific ocean (Salinger

et al., 2001), on TC activity in EPAC for a longer period than the one examined in this

study. They found that during the warm phase of this inter-decadal Pacific mode, weaker

VWS shear in the Pacific, leads to more TCs in EPAC, while the reverse occurs during the

negative phase.

Not many studies, however, have been able to link the AMO to TC activity in the EPAC.

It is worth exploring whether AMO has an indirect impact on TC activity in the basin. For

example, Dong et al. (2006) has investigated how the AMO, through its warm phase, can

modulate ENSO. By using a coupled model they showed that warm SSTs in the Atlantic

during the warm AMO phase can generate latent heat anomalies. These anomalies will

suppress convection and will lead to anomalous easterlies over the central and western

part of the equatorial Pacific. As a result the thermocline will deepen in the west Pacific

and it will propagate towards the central and eastern Pacific during the winter and spring,

causing a weakening in coupled instability which is essential for an El-Niño. The study,

however, did not investigate how a cold AMO phase might modulate ENSO. Is it possible

that the inverse mechanism can lead to an enhanced El-Niño in a way that can influence

the EPAC TC activity in coupled models such as NCEP? More investigation is essential

in order to examine this theory.
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3.4.2 Models - Current Climate

For this basin, there is better agreement between the atm-only models and IBTrACS in

terms of frequency, rather than for ACE, as indicated by Pearson correlation coefficients.

Power spectral analysis reveals once again significant peaks on inter-annual time scales,

the majority of them not exceeding a periodicity of around 7 years. An example of standard

power spectrum and wavelet spectrum results is shown on figure 3.15 for the time series

of TC counts for the HM coupled runs.

ENSO influences TCs in terms of frequency and ACE, particularly for the atm-only

experiments, as well as for a few of the higher (MM, MH, HM and HH) resolution coupled

experiments, since moderate or strong significant correlations are found between the time

series and the ENSO index as shown on figure 3.16. For all the MM and HM atm-only

runs, there are significant moderate-to-strong anticorrelations with the May-November

averaged AMO index, for both metrics (TC counts and ACE). Moreover, AMO appears

to have a greater influence on ACE than on counts for the coupled simulations, since

more significant anticorrelations are found for ACE compared to frequency. The PDO

significantly influences TC activity in the EPAC basin in only two atm-only runs in terms

of frequency and in four atm-only and one coupled hist-1950 runs in terms of ACE. The

correlations between the time series and the seasonally averaged index are moderately

positive.

The vast majority of EOT1s from the model simulations, irrespective of resolution and

configuration, are located in the tropical part of the basin below 20◦𝑁 and within 115−

85◦𝑊 , as shown on figure 3.17a. As found by Roberts et al. (2020a), with higher resolution

TC activity shifts slightly towards the south, something that is observed for the locations

of EOT1s when comparing different resolutions. The distribution of variance explained

by the EOTs in the model simulations is similar to the one seen for the observations (fig.

3.14), varying only in the fact that, the EOT1s for the different ensemble members explain

similar amounts of variance. The vast majority of EOT1s, explain more than 55% of the

variance in the basin indicating that there is one primary driver of TC variability, whilst

the percentage of variance explained by EOT2s and EOT3s is very small.

Pearson correlations between the EOTs and the seasonally averaged climate indices,

the summary of which is presented on figure 3.17d, show that, for five atm-only runs

and 1 coupled run, significant positive (negative) correlations are found between EOT1s
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Figure 3.15: Spectral analysis on EPAC TC counts for the coupled HM runs: (a) Power

spectrum: The spectra of the HM hist-1950 ensemble runs are combined into one (blue

line) and are compared against control-1950. The dashed lines indicate the 95% confidence

level. The shaded area indicates the 95% confidence intervals for the mean power spectrum;

(b) Wavelets: The grey contour lines indicate the spectra for the control run. Colors indicate

the mean spectrum for the ensemble of HM hist-1950 runs. The shaded area indicates the

COI while the 95% CL for the control run is shown with red contours

and ENSO (AMO). In general, for 25 of the models anticorrelations with the AMO are

found, whereas positive correlations are observed for with ENSO and PDO for more than

half of the runs. The only coupled run for which significant relationships are found with

both ENSO and AMO is the coupled control-1950 MM run (u-aj368), for which SST and

VWS regression maps are displayed on figures 3.17b and 3.17c. For this run, as well as

for 5 atm-only runs, TC activity at EOT1 is influenced by warm El-Niño-like SSTs in

the Pacific region, as well as cold SSTs in the Atlantic, in a cold-AMO-phase-resembling

pattern. Furthermore, the VWS distribution throughout the globe points again to El-Niño-

like conditions since increases in TC activity at the EOTs location are linked to weak

VWS in the central Pacific and increased VWS in the Atlantic, locations associated with

the ascending and descending branches of the Walker Circulation during such conditions.

Activity at EOT3, which is located further north, near the edge of the tropics, appears to

me more prone to La-Niña conditions as a cold SST tongue is observed in the Pacific and

weak VWS in the Atlantic (fig. 3.17c).
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Figure 3.16: Pearson correlations between the time series of EPAC annual TC counts and

ACE of models with the seasonal climate indices for the 1980-2013 period. Hatched bars

indicate the correlations that are significant at the 90% CL.
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(a) Locations of EOTs for all the model runs
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Figure 3.17: EOT results for TC variability in EPAC for the model simulations. Location

of EOT is shown with green marker and significance at the 90% CL is indicated with dots

on b and c. Period examined is 1980-2013. For the correlations dark red (blue) colors

indicate how many of the 31 models have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.
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3.4.3 Summary

Analysis from IBTrACS and reanalysis shows that TC activity under the present climate

in the EPAC region off the coast of Mexico is primarily positively influenced by the warm

phase of ENSO, while it is anticorrelated with the AMM and AMO. Warm SSTs in the

eastern and central Pacific region, accompanied by low VWS over the central Pacific,

are associated with increases in TC activity in the basin. Correlating the time series of

frequency and ACE with the climate indices examined in the study shows that ENSO has

a greater influence on ACE than on frequency.

ENSO is found to influence TC activity in the range of model simulations from

HadGEM3-GC3.1 for both counts and ACE, especially in the atm-only experiments,

whereas the AMO has a greater influence on ACE than on counts. EOT analysis of

track densities under the present climate in the model shows that ENSO and AMO are

associated with TC activity off the west coast of Mexico. A large number of experiments

have negative correlations with the AMO, however, only a few of them are significant,

whereas 18 out of the 31 runs show positive correlations with ENSO, only 9 of which

are significant. In order to assess which climate mode is more responsible for influencing

TC activity in the basin, it is important to examine how the cold phase of the AMO can

modulate El-Niño events.
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3.5 Central Pacific

3.5.1 Observations - Current Climate

The amount of tracked TC systems in the CPAC region is rather small compared to the other

basins in the NH. Only 3% of the hemisphere’s activity has had its maximum intensity in

this region according to the IBTrACS summary statistics (fig 3.2) in terms of frequency

and 4% in terms of ACE. The different reanalyses consistently overestimate these amounts

with 4-7% for frequency and 7-9% for ACE.

In terms of time series of TC counts, no trends nor big discrepancies are found for the

different datasets (fig. 3.18a). However, in terms of ACE there is a large spread between

the datasets, with ERA5 giving the highest ACE amounts on a nearly yearly basis since

1995. This is potentially due to a combination of ERA5 overestimating how many storms

form in the basin as well as representing wind speeds better than the other reanalyses,

considering that it is the most recent reanalysis dataset used in the study and the one with

the highest resolution. Lastly, it is worth noting that TC activity in some of the datasets

shows a decrease after 1995.

The spectral analysis of the ACE time series resulted in multiple significant peaks

within the 2-6 year band in all datasets except MERRA2, whereas in terms of counts the

IBTrACS power spectrum (green line on fig. 3.18b) showed significant signals in the

2-3 year band with only three of the reanalysis spectra displaying similar results. This

indication of ENSO influence on TC activity in the basin is observed in the wavelet results

(fig. 3.18c) as well, since analysis of the time series of frequency from IBTrACS, ERAI

and ERA5 revealed significant regions in the 2-6 year band, localised around the mid-90’s,

during the period when the AMO shifted towards a warm phase. Furthermore, MERRA

and JRA25 displayed similar regions with respect to periodicity, localised in the mid-to-

late 2000’s. In terms of ACE, seven of the datasets (not JRA25) display similar results,

signifying that the shift of the AMO, via modulation of ENSO, has influenced TC activity

in the basin.

Pearson correlation coefficients (shown in table 3.4) between the time series of counts

and ACE with the May-November average of the climate indices reveal that TC activity

for more than three datasets is affected by the warm phase of ENSO and the cold phases

of the two Atlantic modes (AMM and AMO). This is particularly representative for ACE
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Figure 3.18: (a) Time series of TC counts for CPAC; b) Standard power spectrum analysis

for the time series. The individual reanalysis spectra are combined into one (blue line) and

they are compared against the IBTrACS power spectrum (green line). The dashed lines

indicate the 95% confidence level. The shaded area indicates the 95% confidence intervals

for the combined spectrum; c) Mean of the seven reanalysis wavelet spectra (colours) and

IBTrACS wavelet spectrum (black contours) of TC counts time series. The shaded area

indicates the COI.
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Table 3.4: Pearson correlations between the time series of CPAC annual (a) TC counts and

(b) ACE of IBTrACS and reanalyses with the seasonal climate indices for the 1980-2013

period. Correlations which are significant at the 90% CL are in bold.

QBO AMM ENSO AMO PDO

IBTrACS -0.03 -0.47 0.28 -0.50 0.11

ERAI -0.29 -0.32 0.15 -0.35 0.06

MERRA -0.33 -0.44 0.23 -0.51 0.09

MERRA2 -0.12 -0.19 0.46 -0.28 0.03

NCEP -0.11 -0.33 0.51 -0.51 0.07

JRA25 -0.16 -0.18 0.22 -0.21 -0.14

JRA55 -0.18 -0.24 0.32 -0.40 0.28

ERA5 -0.22 0.00 0.09 -0.08 -0.10

(a) TC counts

QBO AMM ENSO AMO PDO

0.00 -0.45 0.21 -0.42 0.10

-0.22 -0.39 0.54 -0.42 0.27

-0.11 -0.45 0.55 -0.43 0.27

-0.09 -0.31 0.59 -0.36 0.09

-0.03 -0.42 0.49 -0.60 0.20

-0.10 -0.36 0.52 -0.39 0.15

-0.06 -0.47 0.50 -0.64 0.52

-0.06 -0.34 0.47 -0.38 0.28

(b) ACE

since moderate-to-strong correlations and anticorrelations with the AMM, ENSO and

AMO indices are found for almost all datasets. NCEP is the only dataset for which the

relationships between TC frequency and ACE with the May-November averaged AMM,

ENSO and AMO indices are significant.

All the EOT1 base points are located below 20◦N, covering almost the whole longi-

tudinal length of the basin (around 30◦) as shown on figure 3.19a. EOT1 for IBTrACS

explains 90% of the variance in the basin, MERRA explains 60%, while the rest of the

reanalysis EOTs explain between 70-76% (fig. 3.20). Just like the EPAC, power spec-

trum and wavelet analysis of EOT time series detected significant signals within ENSO’s

periodicity, between 2-7 years.

ENSO’s dominant influence on TC activity in the basin can be further established by

the moderate-to-strong positive Pearson correlation coefficients between the EOT1 time

series of seven datasets (six of them being significant) and the May-November averaged

ENSO index as shown on figure 3.19d. Indeed, the SST and VWS patterns highlight

the association of increases in TC activity to El-Niño’s warm SSTs and to weak VWS

shear in the central part of the region. Additionally, for five of the datasets, moderate

anticorrelations with the AMM (three of them being significant) and the AMO (four of

them being significant) show how the cold phases of the Atlantic modes, probably via
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Figure 3.19: Results of EOT analysis for CPAC under the current climate for IBTrACS and

reanalyses. Locations of EOTs are indicated with a green marker on b and c. Significance

at the 90% CL is indicated with dots on b, c and d.
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Figure 3.20: Percentage of variance explained by the EOTs for CPAC. Column 1: Re-

analyses (as an ensemble) against IBTrACS (■); Columns 2-4: ensemble of atm-only

runs split by atmospheric resolution; Column 5: ensemble of LL historic runs against the

control run (♦); Column 6: ensemble of MM historic runs against the MM control (•),

MH control run (+) and MH historic run (▲); Column 7: ensemble of HM historic runs

against HM control run (×), HH control run (★) and HH historic run (▶). Faded circles

(•) show outliers. Dotted lines show the ensemble means.

modulating ENSO can also drive activity in the basin.

3.5.2 Models - Current Climate

The different atm-only simulations appear to have similar TC representation in both

frequency and ACE with the observations. The power spectra of the time series of TC

counts and ACE for the atm-only runs detect significant periodicities within the 2-6 year

band, whereas for some of the coupled runs this range goes up 9 years (not shown). For this

particular basin, the wavelet spectra of the individual time series have shown similarities

between frequency and ACE, both in terms of interannual periodicities, but also in terms

of localisation in time as shown on figure 3.22. The wavelet spectra for the time series of

TC counts for the N216 coupled runs are shown on figure 3.22a, while the corresponding

wavelet spectra for ACE are shown on figure 3.22b. The colors indicate the mean wavelet

spectrum of the ensemble of MM hist-1950 runs on the left and of the MH hist-1950 run
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Figure 3.21: Pearson correlations between the time series of CPAC annual TC counts and

ACE of models with the seasonal climate indices for the 1980-2013 period. Hatched bars

indicate the correlations that are significant at the 90% CL.
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Figure 3.22: Wavelet results for TC variability in CPAC for the N216 coupled model

simulations in terms of TC counts (a) and in terms of ACE (b). Left: Mean wavelet

spectrum the ensemble of MM coupled hist-1950 runs (colours), and wavelet spectrum

of the MM coupled control run (gray contours); Right: Wavelet spectrum of the MH

coupled hist-1950 run (colours) and wavelet spectrum of the MH coupled control run

(gray contours). The 95% significance level of each control run’s wavelet spectrum is

shown with red contours.
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on the right. The corresponding wavelet spectra for the control runs are presented with

gray contours. The red lines indicate where the wavelet spectrum of each control run

is significant at the 95% CL. The region of maximum power for the wavelet of the MH

hist-1950 run which has a periodicity within the 16-32 year band for both ACE and counts,

is not in the COI (shaded area), and it is therefore not taken into account.

The May-November averaged ENSO index has a significant moderate or strong positive

relationship with both frequency and ACE in the basin for at least 17 of the 31 model

experiments examined as shown from Pearson correlations on figure 3.21. Furthermore,

nearly all atm-only simulations show a significant moderate or strong anticorrelation

between the seasonally averaged AMO index and the time series of TC counts. For ACE

in the atm-only experiments, all of the MM and HM runs, as well as two of the LM

experiments, show a significant moderate anticorrelation with AMO. Three of the LL hist

runs, all the N216 runs and two of the high resolution coupled runs also show significant

moderate or strong inverse relationship with the AMO in terms of frequency. The AMO

appears to have a greater impact on the frequency compared to ACE in this basin since,

even though the same relationship is detected in terms of ACE, it is detected in fewer

runs. The May-November averaged PDO index appears to be significantly, moderately to

strongly correlated with the frequency of TCs in 8 of the atm-only runs, and moderately

anticorrelated with 4 of the coupled runs. ACE has the same connection to the seasonally

averaged PDO index by being positively correlated with 7 atm-only and 1 LL hist-1950

runs and negatively correlated with 4 coupled experiments.

The percentage of variance explained by the EOTs is characterised by a big difference

between EOT1 and EOT2 particularly for the atm-only experiments, in distributions

similar to the ones seen for the observations (fig. 3.20). For the coupled experiments,

with increasing resolution the difference between the EOT1 and EOT2 reduces. For

the coupled runs, EOT1s start by being spread out in the basin below 20◦𝑁 , and with

increasing resolution, they cluster into the western tropical part of the region (fig. 3.23a).

This is related to the track densities, since higher track densities are observed as resolution

increases (fig. 3.1). For the atm-only experiments, no similar observation is made, since

there is a low density of TCs in the CPAC region. After the influence by the first mode

is removed, the different EOT2 points spread in the region examined with no apparent

connection. The locations of EOTs for all the model runs are shown on figure 3.23a.
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(a) Locations of EOTs for all the model runs
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(d) Summary statistics about the Pearson correlation coefficients between the CPAC EOT time series

for the different model simulations and the May-November averaged ENSO, AMO and PDO indices.
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Figure 3.23: EOT results for TC variability in CPAC for the model simulations. Location

of EOT is shown with green marker and significance at the 90% CL is indicated with dots

on b and c. Period examined is 1980-2013. For the correlations dark red (blue) colors

indicate how many of the 31 models have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.
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Interestingly, robust significant connections between EOTs and the climate indices,

particularly the AMO and PDO, as observed from Pearson correlations on figure 3.23d,

are seen only for 5 MM and HM atm-only experiments. In general, however, activity at

EOT1 base points in the basin is positively correlated with ENSO for 25 experiments and

with PDO for 15 experiments, while it is anticorrelated with the AMO for 28 experiments.

Similar relationships are found for the remaining two EOTs, as seen on figure 3.23d. One

of the atm-only runs for which relationships with ENSO and PDO was observed is the

u-ai685 (HM). The SST and VWS regression maps for this particular experiment, shown

on figures 3.23b and 3.23c, respectively, show that for the first two EOTs, TC activity is

mainly affected by warm Pacific SSTs and low VWS in the central Pacific, in El-Niño-

and PDO-resembling patterns. Additionally, the cold phase of the AMO, possibly by

strengthening the descending branch of the Walker Circulation over the NATL region due

to colder SSTs (less moisture available) and therefore aiding convection over the central

Pacific, provides additional influence on TCs over the CPAC region.

3.5.3 Summary

ENSO is found to be the dominant climate mode influencing TC activity in IBTrACS and

the reanalysis products, with possible modulation by the AMM and AMO in almost half

of the datasets examined. Similar mechanisms as the ones described for TC activity in the

EPAC can be assumed, with El-Niño creating favourable conditions with warm SSTs and

low VWS in the Pacific region.

The model simulations, particularly the atm-only experiments, yield similar results

for both frequency and ACE in the CPAC region, with ENSO showing once again to be

the main climate mode influencing TC activity in more than half of the model runs. The

AMO appears to influence TC activity in terms of frequency, particularly in the atm-only

experiments, possibly by modulating the Walker Circulation. TC activity in this basin is

not so systematically studied using model simulations, compared to the other basins. It is

important that more studies using both observations and GCMs are conducted in order to

further understand the driving modes of TC activity in this basin.
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3.6 Western Pacific

3.6.1 Observations - Current Climate

For the period examined (1980-2013), the WPAC region has 45% of the hemisphere’s TC

activity in terms of frequency and around 50% in terms of ACE, according to the summary

statistics by IBTrACS (fig. 3.2). For the reanalyses the corresponding percentages of TC

activity range from 40-47% and 47-54%, respectively. A drop in both TC counts (fig.

3.24a) and ACE after 1996 can be observed for IBTrACS and the majority of reanalyses.

Significant moderate-to-strong correlations (except for JRA25) for the time series of

counts, and significant strong-to-very strong correlations for the time series for ACE

indicate good agreement between IBTrACS and reanalyses on TC representation for this

basin.

Spectral analysis shows significant peaks in the 2-4 year band for the combined reanal-

ysis and the IBTrACS spectrum, for both TC counts (fig. 3.24b) and ACE. In contrast to

the Atlantic, the location of the highest power in the wavelet analysis of the time series

of counts, as seen on figure 3.24c, is around 1985, in the 4-5-year band, which is within

ENSO’s power band.

Pearson correlation coefficients between the May-November averaged climate indices

and the time series of frequency and ACE are presented on table 3.5. It can be seen that the

time series for ACE for all datasets are significantly, positively correlated with the May-

November averaged ENSO index. In contrast, for only three of the datasets the time series

of counts have a similar relationship with the ENSO index. Furthermore, for at least half

of the datasets, both the time series of counts and the time series of ACE, are significantly

anticorrelated with the AMM and AMO. Lastly, the PDO index is significantly correlated

with only the IBTrACS time series of counts as well as the time series of ACE for IBTrACS

and JRA55.

During the 1995-2011 period, there has been a significant decrease in TC activity in

the basin (Hsu et al., 2014) compared to the active era before 1995. A possible important

factor for this change is the distribution of SSTs (Choi et al., 2015). A shift of the AMO to a

positive phase during the 1990s may have caused a reduction of ENSO activity (Lübbecke

and McPhaden, 2014), which resulted in the decrease of TC activity. It is possible that the

negative phase of the AMO before the mid-1990s, in combination with the positive phase
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Figure 3.24: (a) Time series of TC counts for WPAC; b) Standard power spectrum analysis

for the time series. The individual reanalysis spectra are combined into one (blue line) and

they are compared against the IBTrACS power spectrum (green line). The dashed lines

indicate the 95% confidence level. The shaded area indicates the 95% confidence intervals

for the combined spectrum; c) Mean of the seven reanalysis wavelet spectra (colours) and

IBTrACS wavelet spectrum (black contours) of TC counts time series. The shaded area

indicates the COI.
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Table 3.5: Pearson correlations between the time series of WPAC annual (a) TC counts and

(b) ACE of IBTrACS and reanalyses with the seasonal climate indices for the 1980-2013

period. Correlations which are significant at the 90% CL are in bold.

QBO AMM ENSO AMO PDO

IBTrACS 0.03 -0.58 0.00 -0.66 0.29

ERAI 0.09 -0.46 0.30 -0.30 -0.05

MERRA 0.04 -0.29 0.14 -0.11 -0.14

MERRA2 0.28 -0.31 0.46 -0.22 -0.04

NCEP 0.27 -0.47 0.24 -0.48 0.17

JRA25 0.09 -0.14 0.37 -0.16 -0.19

JRA55 0.19 -0.46 0.24 -0.41 0.08

ERA5 0.19 -0.31 0.23 -0.19 -0.16

(a) TC counts

QBO AMM ENSO AMO PDO

0.01 -0.40 0.76 -0.59 0.42

0.09 -0.27 0.66 -0.40 0.22

-0.02 -0.27 0.60 -0.33 0.13

0.08 -0.18 0.76 -0.29 0.10

0.11 -0.34 0.64 -0.55 0.25

0.08 -0.23 0.72 -0.38 0.17

0.11 -0.51 0.69 -0.68 0.51

0.07 -0.33 0.77 -0.43 0.20

(b) ACE

of the PDO (Deser et al., 2010), by modulating ENSO (Verdon and Franks, 2006), may

have resulted in a high-frequency TC activity era in the basin.

For the WPAC region, EOT1 base points are not as clustered as in NATL (fig. 3.25a),

and there is not an analogously big difference between the amount of variance explained

by EOT1 and EOT2 (fig. 3.26). This is an indication that TC activity in the region is

influenced by more than one driver. For EOT1, there is a moderate-to-strong significant

positive correlation with the May-November averaged ENSO index for six of the datasets

examined and a similar relationship with the PDO for four of the datasets (fig. 3.25d).

Furthermore, for some of the EOT1s, moderate-to-strong negative correlations with the

AMM and AMO indices are found. For NCEP, these relationships with the climate indices

appear to influence activity at EOT2 instead of EOT1. For this dataset, the first base point

sits closer to the edge of the tropics, whereas EOT2 is located south-east of EOT1, in the

middle of the tropics. This might serve as an explanation of the difference between the

datasets, excluding the fact that NCEP is the only coupled reanalysis product.

Figures 3.25b and 3.25c present the SST and VWS regression maps, respectively,

when the HadISST SST and ERA5 VWS fields are regressed onto the first three EOTs

for IBTrACS. In general, from the regression maps from all the datasets, it is found that

for at least one of the first three EOTs the main mode of influence is ENSO, and more
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(a) Locations for IBTrACS and reanalyses EOTs
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(b) SST regression patterns for IBTrACS. The HadISST SST field is regressed onto the IBTrACS EOTs

(c) VWS regression patterns for IBTrACS. The ERA5 VSW field is regressed onto the IBTrACS EOTs

(d) Correlations between EOTs and May-November average climate indices
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Figure 3.25: Results of EOT analysis for WPAC under the current climate for IBTrACS and

reanalyses. Locations of EOTs are indicated with a green marker on b and c. Significance

at the 90% CL is indicated with dots on b, c and d.
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Figure 3.26: Percentage of variance explained by the EOTs under current climate for

WPAC. Column 1: Reanalyses (as an ensemble) against IBTrACS (■); Columns 2-4:

ensemble of atm-only runs split by atmospheric resolution; Column 5: ensemble of LL

historic runs against the control run (♦); Column 6: ensemble of MM historic runs against

the MM control (•), MH control run (+) and MH historic run (▲); Column 7: ensemble

of HM historic runs against HM control run (×), HH control run (★) and HH historic run

(▶). Faded circles (•) show outliers. Dotted lines show the ensemble means.

specifically the El-Niño, or the warm phase of the PDO, since significant warm SSTs and

weak VWS in the eastern and central parts of the Pacific ocean are displayed. It seems

more probable, however, for the patterns to resemble ENSO rather PDO, simply because

the spectral signals are on interannual time scales.

3.6.2 Models - Current Climate

When comparing the time series of frequency and ACE with the ones in IBTrACS for

the WPAC region, a significant agreement in terms of ACE is found in all the atm-only

experiments, but not in terms of frequency. The power spectra of those time series resulted

in significant signals on interannual periodicities within the 2-7-year band such as the ones

shown on figure 3.27a, something that is also observed for the power spectra of the time

series of TC counts. For the coupled simulations, such signals are present. However, for

some of the higher resolution runs, signals at greater (up to 10 years) periodicities are
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Figure 3.27: Spectral analysis on WPAC ACE for the coupled HM runs: (a) Power

spectrum: The spectra of the HM hist-1950 ensemble runs are combined into one (blue

line) and are compared against control-1950. The dashed lines indicate the 95% confidence

level. The shaded area indicates the 95% confidence intervals for the mean power spectrum;

(b) Wavelets: The grey contour lines indicate the spectra for the control run. Colors indicate

the mean spectrum for the ensemble of HM hist-1950 runs. The shaded area indicates the

COI while the 95% CL for the control run is shown with red contours

also observed such as the ones shown on figure 3.27a which presents the standard power

spectrum for the time series of ACE of the coupled HM runs. Similar periodicities can be

observed on the wavelet spectrum (fig. 3.27b).

The Pearson correlation coefficients between the time series of counts and ACE and

the seasonally averaged climate indices presented on figure 3.28, reveal that for the period

examined ENSO has a greater influence on ACE than on frequency. Significant moderate-

to-strong positive relationships between the ENSO index and ACE are found for all the

atm-only experiments, for 5 out of 6 coupled LL runs, 3 of the MM coupled experiments

and only the HH control run, while for counts none of the higher resolution (MM, MH,

HM and HH) experiments show a significant connection to ENSO. Similarly, AMO has a

greater influence on ACE in the basin than on the frequency, particularly for the atm-only

simulations. Only one of the coupled runs in terms of counts and three of the coupled

runs in terms of ACE show a moderate connection to AMO, whilst the rest show weak

relationships. For the period examined there is no robust conclusion for the influence of the

PDO on TC activity in the region. The May-November averaged PDO index has significant

CHAPTER 3 Page 94



3.6. WESTERN PACIFIC

0.5 0.0 0.5

Atm_only - LM - u-ai674
Atm_only - LM - u-ak681
Atm_only - LM - u-ak687
Atm_only - LM - u-bd058
Atm_only - LM - u-bd423
Atm_only - MM - u-ai718
Atm_only - MM - u-aj530
Atm_only - MM - u-ak185
Atm_only - HM - u-ai685
Atm_only - HM - u-aj558

Atm_only - HM - u-aq581
control-1950 - LL - u-ak306

hist-1950 - LL - u-ak356
hist-1950 - LL - u-ak731
hist-1950 - LL - u-ak743
hist-1950 - LL - u-ak938
hist-1950 - LL - u-bi511

control-1950 - MM - u-aj368
hist-1950 - MM - u-aj354
hist-1950 - MM - u-ak141
hist-1950 - MM - u-ak144
hist-1950 - MM - u-ar599
hist-1950 - MM - u-bi490

control-1950 - MH - u-aj393
hist-1950 - MH - u-bk610

control-1950 - HM - u-ay355
hist-1950 - HM - u-ay585
hist-1950 - HM - u-az094
hist-1950 - HM - u-bb527

control-1950 - HH - u-ay490
hist-1950 - HH - u-ay652

TC Counts

0.5 0.0 0.5

ACE
ENSO AMO PDO

Figure 3.28: Pearson correlations between the time series of WPAC annual TC counts

and ACE of models with the seasonal climate indices for the 1980-2013 period. Hatched

bars indicate the correlations that are significant at the 90% CL.
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(a) Locations of EOTs for all the model runs
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for the different model simulations and the May-November averaged ENSO, AMO and PDO indices.
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Figure 3.29: EOT results for TC variability in WPAC for the model simulations. Location

of EOT is shown with green marker and significance at the 90% CL is indicated with dots

on b and c. Period examined is 1980-2013. For the correlations dark red (blue) colors

indicate how many of the 31 models have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.
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moderate correlations and anticorrelation with only 4 atm-only runs and 1 coupled run,

respectively, in terms of counts. The time series of ACE is significantly moderately

correlated with the index for only 2 atm-only runs and significantly anticorrelated with 3

of the coupled runs.

EOT results for this basin under the current climate for the model simulations show

similarities with the EOT results for IBTrACS and the reanalyses, since the vast majority

of EOT1s are located in the central and western part of the region examined. In addition,

the distribution of percentage explained is similar to the one seen for the observations

presented on figure 3.26. The locations for the first three EOTs for all the model runs are

presented on figure 3.29a.

Compared to the robust connections established through the EOTs for the observations,

forming a clear conclusion about which phenomena significantly influence TC activity in

this region for the model simulations is a difficult task. A first look of this difficulty is

observed through the Pearson correlations between the EOTs and the seasonally averaged

climate indices. Even though for 22 and for 20 of the model runs positive and negative

correlations are found between the EOT1s and ENSO and AMO, respectively, less than

40% of them are significant at the 90% CL, as seen from figure 3.29d. The majority of

them are found for the atm-only runs. Even less significant connections are found for

EOT2s and EOT3s.

EOT regression maps helped to establish some relationships with the climate indices.

Figures 3.29b and 3.29c present the first three EOT SST and VWS regression maps for

the u-aq581 run, one of the high-resolution atm-only simulations. For this particular run,

EOT1 appears to be influenced by warm SSTs in an El-Niño-resembling pattern and cold

AMO-related SSTs in the Atlantic region, while for EOT3 the opposite image can be

seen, with cold SSTs in the the eastern and central Pacific and warm SSTs in the Atlantic.

Activity at EOT1 also appears to be influenced by low VWS over the central Pacific, right

below the ascent branch of the Walker Circulation during El-Niño conditions, whereas for

EOT3 the regions of weak and strong regressions between the EOTs and the VWS field

indicate that TC activity at that location is impacted by La-Niña conditions. Generally,

from the EOT results it is seen that TC activity at EOTs located in the WPAC MDR and

close to the date line is influenced mainly by El-Niño events through warm local SSTs and

low VWS, whilst activity in the tropical western part of the region appears to be influenced
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by La-Niña events.

3.6.3 Summary

As found from the different analysis tools utilised in the study, ENSO and PDO influence

typhoon activity in the western part of the Pacific ocean in both IBTrACS and more than

three reanalysis datasets. It is possible that the connecting mechanism to ENSO is related

to westerlies and an expansion of the monsoon trough towards the east (Wang and Chan,

2002). Moreover, the change of phase of the AMO and the PDO has influenced the strength

of different ENSO events, which consequently impacted TC activity in the basin during

different decades. Results from EOT analysis on observations and model simulations

indicate that TC variability in the basin has more than one main driver. Furthermore,

analysis on model simulations shows that the frequency and ACE of TCs in the region,

mainly for the atm-only runs, are significantly influenced by ENSO and the AMO. Lastly,

from the EOT analysis on the model runs, it is found that, depending on the location of

the EOT, different conditions associated with ENSO influence TC activity in the basin.
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3.7 North Indian Ocean

3.7.1 Observations - Current Climate

The NIND is the second smallest region examined in the study after CPAC. For IBTrACS,

around 10% of the northern hemisphere’s TC activity, in terms of frequency, and around

2%, in terms of ACE, had its maximum intensity in this region under the current climate

(fig. 3.2). The reanalysis products show a relatively good agreement by having around

10-13% of TC activity in the region in terms of frequency, while overestimating ACE with

percentages ranging between 6-8%, due to a lot of missing wind speed data in IBTrACS.

There is an increase in activity in terms of counts after 1989 (fig. 3.30a), possibly

related to better observational procedures, since prior to that year there were no reported

missing data. Good agreement is established between the IBTrACS and the reanalyses,

since significant moderate-to-strong and significant moderate correlations are found (not

shown) in terms of counts and in terms of ACE (except for NCEP).

Power spectral analysis resulted in one significant peak at around 8 years for the

IBTrACS time series of both ACE and counts (fig. 3.30b). For the combined reanalysis

spectrum for both frequency and ACE, one significant peak can be seen at around 2

years. Similar information can be extracted from the wavelets. Figure 3.30c displays

the mean reanalysis wavelet spectrum for the time series of TC counts in colors with

the corresponding IBTrACS wavelet spectrum overlaid in black contours. It can be seen

that the region of maximum power is at around 2010, which is also found in terms of

ACE, with a periodicity of approximately 3 years. During that period two strong La-Niña

events, separated by a strong El-Niño, occurred. In contrast, the region of maximum

power for IBTrACS, with periodicity between 6-8 years, is located during the late 1990s,

during which a very strong El-Niño event (1997-1998) was followed by a prolonged La-

Niña. However, the fact that the periodicity found in IBTrACS is not observed on any

of the reanalysis spectra leads to questions about the realism of the peak due to the poor

observational record for this basin.

Correlations between the time series of frequency and ACE with the May-November

averaged indices show mostly positive significant relationships with the AMM and AMO,

and mostly moderate anticorrelations with ENSO and PDO (tab. 3.6). NCEP stands

out once again with weak anticorrelations with ENSO, AMM and AMO and correlations
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Figure 3.30: (a) Time series of TC counts for NIND; b) Standard power spectrum analysis

for the time series. The individual reanalysis spectra are combined into one (blue line) and

they are compared against the IBTrACS power spectrum (green line). The dashed lines

indicate the 95% confidence level. The shaded area indicates the 95% confidence intervals

for the combined spectrum; c) Mean of the seven reanalysis wavelet spectra (colours) and

IBTrACS wavelet spectrum (black contours) of TC counts time series. The shaded area

indicates the COI.
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Table 3.6: Pearson correlations between the time series of NIND annual (a) TC counts and

(b) ACE of IBTrACS and reanalyses with the seasonal climate indices for the 1980-2013

period. Correlations which are significant at the 90% CL are in bold.

QBO AMM ENSO AMO PDO

IBTrACS 0.18 0.45 0.10 0.36 -0.17

ERAI -0.03 0.39 -0.42 0.53 -0.56

MERRA -0.12 0.32 0.02 0.24 -0.07

MERRA2 -0.16 0.30 -0.28 0.23 -0.33

NCEP 0.01 -0.22 -0.10 -0.38 0.17

JRA25 -0.11 0.13 -0.02 0.08 -0.02

JRA55 0.10 0.25 -0.29 0.35 -0.54

ERA5 -0.25 0.17 -0.35 0.32 -0.46

(a) TC counts

QBO AMM ENSO AMO PDO

0.10 0.31 -0.17 0.37 -0.41

-0.15 0.17 -0.43 0.30 -0.39

-0.17 0.46 -0.04 0.35 -0.05

-0.25 0.31 -0.31 0.29 -0.28

0.15 -0.08 -0.20 -0.25 0.13

-0.23 0.25 -0.04 0.22 0.04

-0.07 0.19 -0.22 0.17 -0.15

0.05 0.32 -0.37 0.44 -0.32

(b) ACE

with the PDO. Lastly, even though no significant correlations between the time series

and the QBO index are found, for more than half of the reanalysis products the wavelet

coherence between the QBO index and the individual reanalysis time series of TC counts

shows significant regions within the 2-3 year power band, localised around the 1997-1998

El-Niño and the prolonged La-Niña event. It is possible that the intensity of those ENSO

events significantly affected TC activity in the NIND ocean.

TC activity in this region is confined in the Bay of Bengal and the Arabian Sea as

shown from the mean track densities on figures 3.1a and 3.1b. For EOT1, all the EOT1

base points are located in the Bay of Bengal with the exception of ERA5, which is located

in the Arabian Sea, as evident on figure 3.31a. Results for this region did not reveal any

robust influence from the climate indices. The percentage of variance explained by EOT1

for the different datasets is within the range 44-73%, while for EOT2 and EOT3 it drops

to 12-31% and 6-20%, respectively (fig. 3.32). For this basin, 75% of the variability in

the basin is covered by either two (for IBTrACS, MERRA and NCEP) or three (for ERAI,

ERA5, MERRA2, JRA25 and JRA55) EOTs.

Spectral analysis of the EOT1 time series detects signals at ENSO’s frequency, however

the most interesting result is the power spectra for the second EOTs which has similar

signals around seven years as the ones found in figure 3.30b. For some of the reanalyses,
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(a) Locations for IBTrACS and reanalyses EOTs
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Figure 3.31: Results of EOT analysis for NIND under the current climate for IBTrACS and

reanalyses. Locations of EOTs are indicated with a green marker on b and c. Significance

at the 90% CL is indicated with dots on b, c and d.
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Figure 3.32: Percentage of variance explained by the EOTs under current climate for

NIND. Column 1: Reanalyses (as an ensemble) against IBTrACS (■); Columns 2-4:

ensemble of atm-only runs split by atmospheric resolution; Column 5: ensemble of LL

historic runs against the control run (♦); Column 6: ensemble of MM historic runs against

the MM control (•), MH control run (+) and MH historic run (▲); Column 7: ensemble

of HM historic runs against HM control run (×), HH control run (★) and HH historic run

(▶). Faded circles (•) show outliers. Dotted lines show the ensemble means.

TC activity at EOT1 is found to be influenced by La-Niña conditions (either canonical or

Modoki) with cold SSTs in the Eastern and Central Pacific and warm SSTs in the Western

Pacific, such as the ones shown on figure 3.31b for ERA5. Such connections to La-Niña

events have been found by Felton et al. (2013). Plus, enhanced VWS in the eastern and

central regions of the Pacific ocean and south of India, possibly associated with the AMM,

appear to affect TC activity in the ERA5 dataset as shown on figure 3.31c. The AMM

connection is detected from the moderate positive correlations for the first two EOTs of

ERA5 as seen on figure 3.31d. Moderate positive correlations are found between EOT1s

and the AMO (AMM) for two (four) datasets. Even though, the cold phases of ENSO

and PDO appear to influence some EOTs, no robust conclusion can be drawn about their

influence on the activity in the basin.

It is possible that the main driver of this region’s TC activity is more indirectly related

to how the MJO and the monsoon seasons are influenced by the different modes of
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interannual and decadal variability.

3.7.2 Models - Current Climate

(a)

0 5 10 15 20
Time [Years]

0

5

10

15

20

25

30

35

40

De
ns

ity
 [C

ou
nt

s2 ]

(b)

1980 1985 1990 1995 2000 2005 2010
Time

2.0

4.0

8.0

16.0

32.0

Pe
rio

d 
[Y

ea
rs

]

0

2

4

6

8

10

12

Po
we

r [
Co

un
ts

2 ]

Figure 3.33: Spectral analysis on NIND TC counts for the atm-only HM runs: (a) Power

spectrum: The spectra of the HM ensemble runs are combined into one (blue line).

The dashed line indicates the 95% confidence level. The shaded area indicates the 95%

confidence intervals for the mean power spectrum; (b) Wavelets: Colors indicate the mean

spectrum for the ensemble of HM runs. The shaded area indicates the COI.

As found by Roberts et al. (2020a), TCs in the model simulations for this basin are

more frequent than in observations. The NIND basin, however, is the only basin from the

ones examined in the study for which model time series do not have significant correlations

with the time series from the observations. Even though significant signals on interannual

time scales are detected for some of the runs in the power spectrum, their overall quantity

is smaller than the ones found in other basins. The distinct periodicity of approximately

7 years that was found in IBTrACS is detected in some of the power spectra of model

runs, particularly the atm-only experiments as shown on figure 3.33a. Lastly, the region of

maximum power in the combined wavelet spectrum of the time series of TC counts from

the ensemble of HM atm-only runs has a similar periodicity as the significant peak in the

power spectrum (fig. 3.33b).

Out of the 31 experiments examined in this study, only 5 of them show a significant

connection to AMO in terms of frequency, 2 of them (coupled LL) showing anticorrelations

CHAPTER 3 Page 104



3.7. NORTH INDIAN OCEAN

0.5 0.0 0.5

Atm_only - LM - u-ai674
Atm_only - LM - u-ak681
Atm_only - LM - u-ak687
Atm_only - LM - u-bd058
Atm_only - LM - u-bd423
Atm_only - MM - u-ai718
Atm_only - MM - u-aj530
Atm_only - MM - u-ak185
Atm_only - HM - u-ai685
Atm_only - HM - u-aj558

Atm_only - HM - u-aq581
control-1950 - LL - u-ak306

hist-1950 - LL - u-ak356
hist-1950 - LL - u-ak731
hist-1950 - LL - u-ak743
hist-1950 - LL - u-ak938
hist-1950 - LL - u-bi511

control-1950 - MM - u-aj368
hist-1950 - MM - u-aj354
hist-1950 - MM - u-ak141
hist-1950 - MM - u-ak144
hist-1950 - MM - u-ar599
hist-1950 - MM - u-bi490

control-1950 - MH - u-aj393
hist-1950 - MH - u-bk610

control-1950 - HM - u-ay355
hist-1950 - HM - u-ay585
hist-1950 - HM - u-az094
hist-1950 - HM - u-bb527

control-1950 - HH - u-ay490
hist-1950 - HH - u-ay652

TC Counts

0.5 0.0 0.5

ACE
ENSO AMO PDO

Figure 3.34: Pearson correlations between the time series of NIND annual TC counts and

ACE of models with the seasonal climate indices for the 1980-2013 period. Hatched bars

indicate the correlations that are significant at the 90% CL.
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with AMO and thr3ee of them (1 atm-only LM, 1 atm-only MM and 1 coupled hist-1950

MM) had a positive relationship (fig. 3.34). A similar picture can be drawn for the

relationship with ACE. On the other hand, ENSO’s influence on TC activity in the basin

appears to be minimal, since only 4 or less of the model runs, irrespective of resolution and

configuration, showed a significant relationship with the May-November averaged index.

The same situation occurs for the influence by the PDO, since only 2 of the experiments

show a connection to the PDO index for both ACE and frequency.

EOT1 base points locations are generally closely located in the eastern side of the

region, mainly in the Bay of Bengal or over India, for the majority of the model simulations,

with the exception of one HM coupled hist-1950 run (u-ay585) which is positioned in the

Arabian Sea (fig. 3.35a). In addition, the first three EOTs for all the N96 runs are located

only in the Bay of Bengal, with no base points in the Arabian Sea. In contrast, for the

N216 and N512 simulations, some of the EOT2s and EOT3s spread towards the Arabian

Sea. Figure 3.35a presents the locations for all the model experiments.

Furthermore, the distribution of variance explained by the first EOTs for the N216

simulations (both atm-only and coupled) appears to have the most similarities with the

observed distribution of variance compared to the ones from N96 and N512 runs, as shown

on figure 3.32. EOT1s for N96 and N512 have a noticeable difference from EOT2s, which

can perhaps be attributed to the fact that there are less TCs in the N96 runs, and therefore,

less variability, since the TCs are mainly in the Bay of Bengal as seen from the mean track

densities (fig. 3.1). For the N512 experiments, the reason for such a difference remains

unknown.

The correlations between the EOT time series and the climate indices for the model

simulations do not reveal any robust significant relationships with the climate modes, as

shown from figure 3.35d, even though 18 of the models show positive (negative) correla-

tions between EOT1 and AMO (ENSO). Following the same footsteps, the overwhelming

majority of the regression maps does not provide any further insight on how the climate

indices influence TCs in the basin. One of the few experiments for which some connection

to the indices can be established from the SSTs and VWS is the u-bk610 (MH) coupled

hist-1950 run. The corresponding SST and VWS maps are shown on figures 3.35b and

3.35c, respectively. For this particular run, the absence of significant known canonical

patterns on the map for EOT1 is noticeable, whereas on map for EOT2, a cold SST tongue
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(a) Locations of EOTs for all the model runs
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Figure 3.35: EOT results for TC variability in NIND for the model simulations. Location

of EOT is shown with green marker and significance at the 90% CL is indicated with dots

on b and c. Period examined is 1980-2013. For the correlations dark red (blue) colors

indicate how many of the 31 models have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.
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in the eastern and central Pacific and warm SSTs in the northeastern Atlantic can be seen.

This, along with strong VWS in the central Pacific and in the north Indian ocean and

weak VWS over the north central Atlantic show that TC activity for this particular run is

influenced by La-Niña and AMO-related conditions.

3.7.3 Summary

Even though connections between TC activity in the NIND basin and ENSO have been

made in a few studies such as (Liu et al., 2021), results of the analysis performed on TC

activity in the basin are characterised by the absence of significant connections to the

climate indices examined in the study, in both observations and model simulations. It is

possible, however, for the climate modes to influence TC activity indirectly, primarily via

affecting the monsoon seasons as several studies have explored (A.A.Deo and D.W.Ganer,

2015; Goswami et al., 2006; Liu et al., 2021; Rajeevan et al., 2013).

3.8 Conclusion

In this chapter, the drivers of TC variability under the current climate (1980-2013) in the

different NH basins are examined in IBTrACS, seven reanalysis datasets and a range of

atmosphere-only and coupled simulations by HadGEM3-GC3.1. A range of techniques

have been utilised for this investigation. The spectral methods (standard power spectrum

and wavelets) have been used in order to detect any periodicities within the time series of

TC activity. Additionally, the EOTs method has been used to analyse seasonal TC track

densities and to identify canonical patterns of known modes of climate variability that

influence TC activity on EOT regression patterns. Lastly, Pearson correlation coefficients

were computed between the climate indices and time series of TC activity (counts, ACE

and EOTs). Table 3.7 presents a summary of the results examined in this chapter on

whether TCs in the different datasets are influenced by the climate modes that were

examined. Given the large number of datasets and techniques utilised, a climate mode

of variability is considered to have a clear influence on TCs if more than 75% of the

analysis results showed a clear connection to the mode. If 50-75% of the results showed a

connection to the mode, then there are indications of its influence on TCs. Otherwise, the

climate mode is not associated with TC variability in the basin.
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During the period examined, TC activity in the well-documented NATL region exhibits

high variability, which has been found to be mainly driven, in all datasets, by warm Atlantic

SSTs associated with the warm phases of the AMM and the AMO, as indicated by the

results of the EOT regression analysis. In addition, further influence by the cold phases of

ENSO and PDO, albeit with less robustness compared to the AMO, is exerted on Atlantic

TCs via cold SSTs and enhanced VWS in the Pacific region. The influence of ENSO and

AMM has been captured in all the different techniques used in the analysis, including the

spectral analysis on EOT time series. As expected, the frequency of AMO and PDO was

not captured by the spectral methods due to the short period that was examined. However,

with the use of Pearson correlation coefficients and the EOT regressions patterns, their

influence on TC activity in the basin has been identified.

Primary driver of the EPAC and CPAC TC activity is the warm phase of ENSO via

warm SSTs and weak VWS in the eastern and central Pacific region, as has been established

by the presence of associated canonical patterns on the EOT regression maps. Further

evidence of this influence stems from the results of spectral analysis on the various time

series as well as from Pearson correlations between the time series of TC activity and the

May-November averaged index. Forming an opposite picture to the one for the NATL,

the AMO has an influence on TC variability in the two regions, but with less robustness.

A caveat of the analysis on the CPAC region is the fact that time series with very low

amount of TCs are analysed. Therefore, it is crucial that more studies using both GCMs

and better observations are undertaken in order to gain more confidence in the results for

this particular region.

The typhoon activity in the WPAC region under the current climate in observations

has been found to be influenced by the change of phase of the AMO and PDO, which

lead to strengthening or weakening ENSO events during different decades. This result is

primarily derived with the use of wavelets, which allow examination of power in both time

and frequency. Even though, the periodicities of the two decadal modes were not captured

by the spectral methods, the localisation of significant signals in the wavelet spectrum is

associated with the change of phases of the two modes. Moreover, TC activity in both

observations and models is found to be driven by more than one main driver.

Lastly, in contrast to the other basins, TC activity in the NIND region does not exhibit

significant connections to the indices examined in the study, as it can be seen particularly
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from the results on the analysis of the model simulations. For this basin it is necessary

to investigate how the different modes of climate variability, namely ENSO, AMM, AMO

and PDO, impact monsoon seasons and the Indian Dipole.
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Chapter 4

Drivers of Decadal TC Variability

4.1 Introduction

This chapter presents results from the analysis of the drivers of TC activity on decadal

time scales using centennial and multi-centennial time series of annual TC counts and

ACE from a range of HadGEM3-GC3.1 simulations, along with track densities for 100

seasons. In terms of TC counts, time series and results from spectral analysis will be

shown. In terms of ACE, for each basin, even though the time series and results from

spectral analysis will be discussed, only figures of Pearson correlations with the climate

indices will be presented. The drivers examined in the chapter are the SST and VWS fields

from the different runs. For each basin, the multi-centennial (∼ 595 years) time series of

TC counts from the MM control run, along with the corresponding standard power and

wavelet spectrum, will be displayed. For the NATL only, additional power spectra from

100-year-long time series will be presented in order to perform a comparison with the

multi-centennial run.

Due to the nature of the atm-only experiments being forced by the same observed SSTs,

all of them, irrespective of atm-resolution have identical climate indices. An example of

the three climate indices analysed in this chapter for one of the HM atm-only runs, is

shown on figure 4.1. The AMO has completed one cold phase from 1960 to around 2000

before shifting to a warm phase until the end of the period. The PDO shows one major

complete warm phase between 1977 until almost 2010, while from 2020 onwards, the

climate mode is in a cold phase. During the warm phase of the AMO, ENSO exhibits

some of the strongest La-Niñas, and some of the smallest in duration El-Niños. The
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longest in duration El-Niño occurs during the period right before the shift of the AMO,

where the PDO is in a warm phase and the AMO is in a cold phase. In addition, the

strongest El-Niño event occurs right after the shift of the AMO, while the PDO is still in

a warm phase.

For the coupled simulations, the climate indices are unique compared to the atm-only

runs. The different indices will not be individually described in this study, however, it

is important to note that the warm and cold phases of the indices, especially for the two

decadal modes, do not always exhibit the expected duration, i.e. 20-30 years for the PDO

and 50-70 years for the AMO. For example, figures 4.2 and 4.3 display the monthly climate

indices for the HM (u-ay355) and HH (u-ay490) coupled control runs, respectively. For

the indices of the HM control run it can be seen that both the AMO and the PDO complete

at least one full phase, i.e. the AMO being in a warm phase for almost 50 years, and

the PDO being in a cold phase for almost 40 years. It is worth noting that the strongest

El-Niño occurs during a small period when both the AMO and PDO monthly indices are

in a warm phase (around 2020 on fig. 4.2). In contrast, for the HH coupled control run

the AMO’s warm and cold phases are noticeably shorter and the expected cycle of AMO

is not captured. It is important to note, however, that the strongest ENSO events occur

around the periods when the two decadal modes shift from one phase to the other.

Results from the atmosphere-only and coupled experiments show that the WPAC

region is the most active tropical cyclone region both in terms of frequency and ACE,

something that is also observed in the investigation of the drivers under the current climate.

Summary statistics for the frequency and ACE of TCs in the basins of the NH are presented

on figures 4.4 and 4.5, respectively. In addition, global TC counts and ACE are lower for

the N216-resolution experiments than for the N512-resolution experiments. This result

was expected as the skill in simulating TC-like features depends on resolution (Roberts

et al., 2015). It is also observed that the counts for the N216-resolution experiments are

lower than the counts in observations, in contrast to the counts for the higher-resolution

experiment which appears to be within the range of counts found in IBTrACS and the

reanalyses.

Standard power spectral analysis of the 100-year length time series of global TC counts

shows that for all the model simulations, with the exception of four LM atm-only runs and

the HM coupled runs, there is evidence of decadal TC variability, whereas in terms of
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Figure 4.1: The AMO, ENSO and PDO indices for one of the HM atm-only experiments

(u-ai685). The gray lines show the monthly indices, while the dark solid lines show the

5-month and 10-year running mean for ENSO and two decadal modes, respectively.
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Figure 4.2: The AMO, ENSO and PDO indices for HM coupled control run (u-ay355).

The gray lines show the monthly indices, while the dark solid lines show the 5-month and

10-year running mean for ENSO and two decadal modes, respectively.
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Figure 4.3: The AMO, ENSO and PDO indices for HH coupled control run (u-ay490).

The gray lines show the monthly indices, while the dark solid lines show the 5-month and

10-year running mean for ENSO and two decadal modes, respectively.

CHAPTER 4 Page 116



4.1. INTRODUCTION

10

20

30

40

TC
 C

ou
nt

s

Atm_only 
 N96

Atm_only 
 N216

Atm_only 
 N512

na ep cp wp ni

10

20

30

40

TC
 C

ou
nt

s

Coupled 
 N96

na ep cp wp ni

Coupled 
 N216

na ep cp wp ni

Coupled 
 N512

LL - control
MM - control

MH - control
MH - hist

HM - control
HH - control

HH - histLL - control
MM - control

MH - control
MH - hist

HM - control
HH - control

HH - hist

Figure 4.4: Summary statistics for the frequency of TCs in the different basins for the

model experiments.
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Figure 4.5: Summary statistics for the ACE of TCs in the different basins for the model
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CHAPTER 4 Page 118



4.1. INTRODUCTION

ACE, only a handful of the model simulations do not exhibit any significant periodicities

on decadal time scales. It is impossible to efficiently summarise the results for the wavelet

analysis, since the individual wavelet spectra show different significant regions localised

at different periods and at different periodicities. It is important to note, however, that most

of the wavelets have small significant regions on inter-annual time scales, while at least

one experiment from each type of configuration and resolution, also displays significant

signals on decadal time scales. It is observed that for the majority of these signals, despite

their respective periodicities, they are localised near a change of phase of the two decadal

modes, particularly towards the second half of the period examined.

The control-runs provide a unique opportunity to look at periodicities on decadal as

well as on multi-decadal time scales, since they provide longer, more consistent records to

work with. The five control-runs analysed in this study provide time series of annual TC

counts and ACE for 600 (LL), 550 (MM), 200 (MH), 153 (HM) and 142 (HH) years. These

time series are analysed using only the standard power spectrum method. Results for total

TC counts and ACE from the LL and MM runs reveal significant peaks on multi-decadal

time scales. Specifically, for both frequency and ACE, peaks can be observed at around

10, 15 and 20 years, while more signals are displayed for counts at around 30 years only

for TC counts. The time series for the MH, HM and HH experiments are significantly

shorter, therefore, even though significant peaks are found on decadal and multi-decadal

time scales, they were at less quantities compared to the LL and MM runs.

Significant moderate anticorrelations for the atm-only experiments and weak anticor-

relations for two coupled runs are observed between the AMO index and the time series

of global TC counts. For ACE, moderate to strong anticorrelations with all the atm-only

runs, and weak to moderate anticorrelations with at least 8 of the 20 coupled runs were

found. Furthermore, the ENSO May-November averaged index has a significant positive

influence on the NH’s total ACE with all but the HH hist-1950 runs and significant positive

correlations with at least half of the simulations in terms of counts. Interestingly, only

the HH hist-1950 run was a weak anticorrelation with the climate mode. Lastly, the PDO

May-November averaged index is significantly (weakly or moderately) correlated with time

series of TC activity for 8 of the atm-only runs and significantly (weakly or moderately)

anticorrelated with 4 and 7 of the coupled runs for counts and ACE, respectively.
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4.2 North Atlantic

(a) Time series: annual TC counts (gray) and 10-year running mean
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95% confidence level (red contours)
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Figure 4.6: Results of spectral analysis for decadal TC variability in NATL annual counts

for the multi-centennial MM control run.

Figure 4.6 presents the time series of annual NATL TC counts for the multi-centennial

MM control run, along with the corresponding power spectral density and wavelet spec-

trum. Figure 4.7a displays the wavelet power spectrum of the multi-centennial time series

of ACE for the NATL region. The distribution of power within certain bands (i.e. 2-8,

10-20, 20-40 and 40-70 years) is shown with KDEs (black lines) on figures 4.7b - 4.7e.

The same time series was split into 5 100-year-long segments and for each segment the

individual wavelet spectrum was computed. Following the same procedure as for the

multi-centennial time series, for each wavelet spectrum the distribution of power within

the above-mentioned bands was examined with KDEs which are presented with colored
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lines on figures 4.7b - 4.7e.

It can be clearly seen that the different 100-year segments can capture the distribution

of power within the 2-8 power band, which covers ENSO’s periodicity, as effectively as the

multi-centennial run. For longer periods, however, 100-year segments are not sufficient for

adequately capturing multi-decadal variability, such as the one associated with the AMO,

as indicated by the increasing spread of the KDEs on figures 4.7b - 4.7e. This clearly

highlights the importance and necessity of longer climate simulations for investigating

multi-decadal variability of both the climate as well as of TC activity.

All the individual standard power spectra of the 100-year long time series show

significant peaks on interannual time scales, at similar periodicities to those observed for

the current climate, pointing once again to QBO and ENSO influence on TC activity.

Decadal signals are detected only in a couple of N96 and N512 atm-only experiments in

terms of counts as shown on figure 4.8a. In contrast, for the time series of ACE, along with

interannual signals, decadal signals (at ∼10 years) were found for at least one ensemble

member from each resolution. Such signals have been detected for all the coupled control

runs with the exception of LL. For at least one hist-1950 ensemble member from each type

of configuration, apart from the HH, similar signals were detected in the time series by

the standard power spectrum analysis. Lastly, power spectra for the multi-centennial time

series of counts and ACE from the control runs, revealed significant peaks around 20, 25

and 50 years (fig. 4.6b), periodicities which are linked to the decadal modes analysed in

the study.

Results from the wavelet analysis of the 100-year long time series from the atm-only

experiments show multiple significant regions on inter-annual time scales, within the 3-

7-year band, as well as on decadal time scales within the 10-32-year band. The majority

of the significant regions are observed within the last 50 years of the simulations, which

is characterised by a warm AMO phase. Figure 4.8b presents the mean wavelet spectrum

of the time series of TC counts from the HM atm-only runs. The maximum of the mean

spectrum serves as an example of an inter-annual signal. Figure 4.8c shows wavelet

spectra from the ACE time series of the N512 coupled runs. The mean wavelet spectrum

for the ensemble of HM coupled hist-1950 runs is shown with colours on the left, with

the wavelet spectrum of the HM control run shown with gray contours. The wavelet

spectra of the HH control and hist-1950 runs are shown on the right with gray contours
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(a) Wavelet Spectrum with COI (shaded area) and 95% confidence level (red contours)
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(b) 2-8-year band
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(c) 10-20-year band
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(d) 20-40 year band
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(e) 40-70 year band
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Figure 4.7: (a) Wavelet spectrum for the NATL time series of ACE of the multi-centennial

MM control run; (b) - (e) KDEs for the wavelet power in different bands for the full run

(black line) against KDEs for the wavelet power of 100-long segments of the run.
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(a) Combined power spectrum of the HM atm-

only time series of TC counts
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(b) Mean wavelet spectrum of the HM atm-only time series

of TC counts
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(c) Left: Mean wavelet spectrum of the time series of ACE from the ensemble of HM coupled hist-1950

runs (colours), and wavelet spectrum of the HM coupled control run (gray contours); Right: Wavelet

spectrum of the HH coupled hist-1950 run (colours) and wavelet spectrum of the HH coupled control

run (gray contours). The 95% significance level of each control run’s wavelet spectrum is shown with

red contours.
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Figure 4.8: Results of spectral analysis of the 100-year long time series of TC activity for

NATL.
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Figure 4.9: Pearson correlations between the time series of NATL annual TC counts and

ACE of models with the seasonal climate indices for the 1950-2050 period. Hatched bars

indicate the correlations that are significant at the 90% CL.
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and colours, respectively. Significance at the 95% CL for the two control runs is shown

with red contours.

In the wavelet spectra of both control runs significant decadal signals are shown

spanning almost the entire last 50 years of the simulations (fig. 4.8c). For the HM control

run, the significant region on inter-annual time scales is localised around the time period

of the strongest El-Niño event and during a maximum in the AMO index (not shown).

The significant region on decadal time scales covers a period during which the AMO is

in a warm phase, the PDO is, for the majority of the period, in a cold phase and La-Niña

events are more frequent. For the HH control run, forming a clear conclusion is more

challenging. Examination of Pearson correlations between the time series of ACE and the

climate indices for this particular run revealed significant correlation with the AMO and

weak anticorrelation with ENSO (fig. 4.9). Therefore, it is possible that the significant

region in the wavelet spectrum for this particular run shows that decadal variability of

ACE during the last years of the simulation is mainly driven by the AMO.

As shown on figure 4.9, for the rest of the models, from the correlations between

time series of ACE and counts with the climate indices it is found that for at least 28

of the simulations examined in terms of frequency, there is a weak to moderate positive

correlation between AMO and TC activity in the basin. The same happens for at least

26 of the experiments in terms of ACE. Additionally, the May-November averaged ENSO

index is significantly (weakly or moderately) anticorrelated with at least 8 out of the 11

atm-only experiments in both ACE and counts. Only a handful of coupled experiments

show similar significant (mainly weakly) anticorrelations between the ENSO index and

frequency and ACE. Furthermore, the time series of TC counts and ACE for 8 of the atm-

only runs are significantly (weakly or moderately) anticorrelated with the May-November

PDO index. Lastly, all the MM and HM experiments display this relationship for both

metrics (frequency and ACE), whereas there is no robust influence on TC activity for the

coupled experiments.

Upon examining the drivers of decadal variability using the EOTs method, just like for

the case of the current climate, the EOT base points for all the low-resolution simulations

examined in the study are positioned in the center or at the western side of the region

(fig. 4.10a). Specifically, EOT1 for the coupled experiments are closely positioned east

of Florida, while EOT1 for the atm-only runs are more spread out along the typical TC
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(a) Locations of EOTs for all the model runs
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(b) SST regression patterns for the MM control run.

(c) VWS regression patterns for the MM control run

(d) Summary statistics about the Pearson correlation coefficients between the NATL EOT time series

for the different model simulations and the May-November averaged ENSO, AMO and PDO indices.
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Figure 4.10: Results of EOT analysis for decadal TC variability in NATL. Location of

EOT is shown with green marker and significance at the 90% CL is indicated with dots

on b and c. Period examined is 1950-2050. For the correlations dark red (blue) colors

indicate how many of the 31 models have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.
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Figure 4.11: Percentage of variance explained by the EOTs for decadal variability for

NATL. Column 1-3: ensemble of atm-only runs split by atmospheric resolution; Column

4: ensemble of LL historic runs against the control run (♦); Column 5: ensemble of MM

historic runs against the MM control (•), MH control run (+) and MH historic run (▲);

Column 6: ensemble of HM historic runs against HM control run (×), HH control run (★)

and HH historic run (▶). Faded circles (•) show outliers. Dotted lines show the ensemble

means.

path. Each EOT1 for the LL coupled runs explains more than 44% of the variance in the

basin, while EOT1 for the atm-only experiments individually describe more than 35% (fig.

4.11). The EOT2 base points remain relatively in the same regions, while the percentage

of variance explained drops to around 15-25%. The EOT1 base points for the higher-

resolution experiments are generally located close together, either in the MDR or near

the eastern coast of Cuba, while EOT2 base points spread out or move out of the tropical

NATL region, as is the case for the N216 coupled EOT2s (fig. 4.10a). The distribution

of variance explained by the EOTs for the higher-resolution experiments is similar to the

one observed in the low-resolution experiment as shown on figure 4.11. It is important to

note however that EOT1s for the MH and HH control runs (both positioned in the MDR,

east of 45◦𝑊) explain the highest amount of variance compared to the rest of the model

simulations in their category.

Results from Pearson correlations between the climate indices and the EOT time series
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are presented on figure 4.10d. Generally, positive correlations (dark red) are found between

the AMO and the EOT1 time series for 30 of the models (77% of which are significant

at the 90% CL; semi dark red), indicating that increases in TC activity are influenced by

the positive phase of the AMO. Furthermore, for 27 and for 17 of the models, negative

correlations (dark blue) are observed between the EOT1 time series and the seasonal

averaged ENSO and PDO indices, respectively, indicating that the cold phases of the two

Pacific modes can also lead to increases in TC activity in the basin. More specifically,

for all the model simulations except the LL coupled runs and two of the LM atm-only

runs, EOT1s are significantly correlated with the seasonal average of the AMO index. In

addition, 9 out of the 11 atm-only runs show significant anticorrelations with the seasonal

average of the ENSO index, while 7 of them show similar relationships with the PDO.

It appears that the skill of the model in capturing the long-term ENSO-teleconnections

relationship for the NATL is stronger in the coupled experiments. Lastly, there is no robust

conclusion from the correlations between the indices and EOT2, EOT3 and EOT4 time

series, even though some connections with the indices, particularly with the AMO, can be

seen.

Figures 4.10b and 4.10c show the EOT regression patterns when the SST and VWS

fields of the MM control run are regressed onto the first four EOT time series for that

particular run. The location of each EOT is indicated with a green marker, while the dots

show where the regression coefficients are significant at the 90% CL. As shown on the

regression maps, TC activity in the MDR for EOT1 is associated with warm local and cold

Pacific SSTs, while simultaneously being linked to low VWS over the Atlantic branch of

the ITCZ and increased VWS in the tropical Pacific. The EOT1 SST patterns resemble

the canonical patterns of La-Niña, PDO and AMO in figures 1.1 (inverse) 1.4 (inverse),

and 1.2, respectively. On the other hand, the overall VWS pattern appears to be the inverse

of the pattern seen on figure 1.1, once again providing a link to La-Niña. Indeed, for this

particular run, the EOT1 time series are significantly correlated with the Atlantic mode

and anticorrelated with the two Pacific modes. Similar patterns can be observed in the

regression maps for the runs which displayed such correlations with the climate indices.

It is worth noting that for EOT3, the location of which lies in the Gulf of Mexico, warm

SSTs, both in the MDR and in the eastern Pacific appear to influence TC activity, while

the VWS pattern appears to be connected only to the warm phase of ENSO.
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Taking all the above into account, it is concluded that TC activity in the MDR is

influenced by local SSTs associated with the AMO, while also being influenced from low

local VWS associated with the changes in the Walker circulation due to the cold phases

of ENSO. In contrast, TC activity outside of the MDR and inside the Gulf of Mexico, can

be more prone to the warm phases of ENSO.
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4.3 Eastern Pacific
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(c) Wavelet spectrum with COI (shaded area) and

95% confidence level (red contours)
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Figure 4.12: Results of spectral analysis for decadal TC variability in EPAC annual counts

for the multi-centennial MM control run.

The standard power spectrum analysis on the 100-year-length time series of ACE

and TC counts, reveals multiple peaks on interannual time scales. More importantly,

for the range of model simulations examined, there is evidence of influence on the TC

activity in the basin from phenomena with periodicities on decadal time scales, particularly

periodicities within the 10-20 year band. Specifically, for the atm-only experiments,

analysis of all N216 and N512 experiments detects decadal signals (near 10 years) for

both ACE and TC counts, while for N96 such signals were observed for only three of the

ensemble members in terms of counts and for only one member in terms of ACE. The

LL control run does not exhibit any significant peaks on decadal time scales for ACE,

in contrast to counts, while the majority of hist-1950 runs show similar significant peaks
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at around 10-20 years in both metrics. The MM control and the two MH runs display

a significant peak at around 20 years, for both ACE and frequency, while the majority

of the ensemble of hist-1950 runs show periodicities in the 10-15 year band. Signals at

around 10-15 years are also observed for the high-resolution experiments for both metrics,

particularly the HM and HH control runs, as well as for at least one of the hist-1950 runs.

Lastly, from the time series of the multi-centennial coupled control runs (fig. 4.12a), TC

activity both in terms of counts (fig. 4.12b) and of ACE showed periodicities at around 15,

25 and 50 years. Significant regions at similar periodicities in the wavelet results appear

for both frequency (fig. 4.12c) and ACE.

Correlating the time series of ACE and counts with the climate indices shows that

the May-November averaged ENSO index is significantly (weakly to strongly) correlated

with TC activity in the basin for both counts and ACE (fig. 4.13). In addition, ENSO

has a greater influence on ACE compared to frequency for the coupled experiments.

There is almost no significant relationship between TCs and ENSO for the low-resolution

coupled runs. The AMO is significantly, moderately anticorrelated with TC activity in

the EPAC (for both counts and ACE) for the MM and HM atm-only experiments. For

the coupled experiments, the AMO appears to have a greater influence on ACE rather

than frequency, particularly for the higher resolution (MM and above) experiments. The

PDO is significantly positively (weak or moderate) correlated with the time series of TC

activity for this basin for at least 6 of the atm-only experiments. In regards to the coupled

runs, less than 3 of the simulations show a significant relationship with the PDO, mostly

described with a weak or moderate anticorrelation.

For this region, the EOT1s from the model simulations, irrespective of their type (e.g.

atm-only or coupled) and resolution, are positioned in locations similar to the ones found

for the reanalyses (see fig. 3.13a). The locations of EOTs for model runs are shown on

figure 4.14a. There is remarkable agreement for the position of EOT1s from the HM

atm-only runs, all of which individually explain more than 66% of the variance in the

basin (fig. 4.15). For the second, third and fourth modes, there is a greater spread in the

basin, and a very low amount of variance explained. Furthermore, as was the case in the

drivers under the current climate, there is a big difference between the amount of variance

explained by EOT1s and EOT2s, particularly for the atm-only experiments (fig. 4.15).

A minimum of two and, in a handful of cases, maximum of four EOTs are sufficient for
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Figure 4.13: Pearson correlations between the time series of EPAC annual TC counts and

ACE of models with the seasonal climate indices for the 1950-2050 period. Hatched bars

indicate the correlations that are significant at the 90% CL.
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(a) Locations of EOTs for all the model runs
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(d) Summary statistics about the Pearson correlation coefficients between the EPAC EOT time series

for the different model simulations and the May-November averaged ENSO, AMO and PDO indices.
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Figure 4.14: Results of EOT analysis for decadal TC variability in EPAC. Location of

EOT is shown with green marker and significance at the 90% CL is indicated with dots

on b and c. Period examined is 1950-2050. For the correlations dark red (blue) colors

indicate how many of the 31 models have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.
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Figure 4.15: Percentage of variance explained by the EOTs for decadal variability for

EPAC. Column 1-3: ensemble of atm-only runs split by atmospheric resolution; Column

4: ensemble of LL historic runs against the control run (♦); Column 5: ensemble of MM

historic runs against the MM control (•), MH control run (+) and MH historic run (▲);

Column 6: ensemble of HM historic runs against HM control run (×), HH control run (★)

and HH historic run (▶). Faded circles (•) show outliers. Dotted lines show the ensemble

means.

explaining at least 75% of the TC variability in the region.

Figures 4.14b and 4.14c show the SST and VWS regression maps, respectively, for

one of the HM atm-only runs. From the SST regression maps, it can be seen that for this

particular run, TC activity at the EOT1 location is influenced by all three climate indices

(ENSO, AMO and PDO), with cold SSTs in the Atlantic, warm SSTs in the eastern and

central tropical Pacific and a PDO-like SST pattern in the north Pacific. However, the

corresponding VWS pattern is nearly identical to the VWS pattern associated with the

positive ENSO phase for this run, with low vertical wind shear in the eastern and central

tropical Pacific and increased VWS in the Atlantic ITCZ. Furthermore, the VWS shear in

the Atlantic region appears to be a combination of the El-Niño VWS pattern and the cold

AMO phase VWS pattern (inverse of figure 1.2).

From figure 4.14d, it can be seen that activity in the basin for 23 of the models is

positively (significantly for 57% of them) correlated with the May-November average of

CHAPTER 4 Page 134



4.3. EASTERN PACIFIC

ENSO, while for 25 of the models it is anticorrelated (significantly for 52% of them) with

the AMO. Out of the 26 runs for which the PDO index was calculated, 12 (14) of them

showed a positive (negative) relationship with the EOT1 time series. TC activity for all the

MM and HM atm-only experiments appear to be positively influenced by the two Pacific

indices (ENSO and PDO), while also negatively affected by the Atlantic decadal mode.
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4.4 Central Pacific
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(c) Wavelet spectrum with COI (shaded area) and

95% confidence level (red contours)
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Figure 4.16: Results of spectral analysis for decadal TC variability in CPAC annual counts

for the multi-centennial MM control run.

Apart from evidence of inter-annual variability in TC activity for the basin, standard

power spectrum and wavelet analysis of the multi-centennial time series of ACE and

counts (fig. 4.16a) from the coupled control runs did not reveal any significant peaks

above 35 years (fig. 4.16b and 4.16c). For the 100-year long time series, decadal signals

are observed for at least one of the ensemble of atm-only runs for both metrics (TC counts

and ACE), irrespective of resolution. Regarding the coupled control runs, such signals

for both counts and ACE are seen only in the power spectra of the HM and HH runs,

while the MH run showed evidence of decadal variability only in TC counts and the MM

and LL control runs revealed no decadal signals. For each type of resolution, except for

the HM and HH runs, at least one of the ensemble members revealed significant decadal
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periodicities.

From correlating the time series of ACE and counts with the climate indices, a robust

significant, mainly moderate, correlation is found between the May-November averaged

ENSO index and TC activity in the basin, as seen from both frequency and ACE on

figure 4.17, for all the model experiments (except one LM run). The AMO appears to

have a greater influence on frequency in the basin rather than ACE, particularly for the

low-resolution atm-only simulations. Significant moderate anticorrelations with the time

series of counts for all atm-only experiments and significant anticorrelations for 8 of the

atm-only experiments in terms of ACE are observed. For the coupled runs, it appears that

the AMO has a negative relationship with TCs for both frequency and ACE, particularly

for the higher resolution simulations. Interestingly, the PDO has a positive influence on

TC activity in the atm-only experiments (at least 9 of them being significant moderate

correlations), but it has a significant weak or moderate anticorrelation with 7 of the coupled

runs for both TC counts and ACE.

Due to the small size of this region, the locations of the EOT1 base points are similar

to the ones seen for the observations, particularly for the higher-resolution experiments

(fig. 4.18a). Once the influence of the first mode is removed, the EOTs start to spread

out and often move out of the tropics. The obvious difference compared to the rest of the

basins is in terms of the distribution of variance explained. There is a gradual decrease

with increasing atmospheric resolution. In addition, CPAC is one of the basins for which

the different EOTs explain similar amounts of variance for each mode, as evident from the

thinness of the boxplots (fig. 4.19). Lastly, in order to explain 75% of the variability in

the basin for the 100 years analysed, three to four EOTs are needed.

Figures 4.18b and 4.18c present the SST and VWS regression maps, respectively, for

the first four EOTs for the HH coupled control run. The SST patterns for EOT1 and

EOT3, which are both located in the tropics near 150◦𝐸 , reveal significant relationship

with warm SSTs in the eastern and central Pacific, typically linked to El-Niño events. The

corresponding VWS patterns closely resemble the El-Niño VWS canonical pattern shown

on figure 1.1. Such patterns appear for at least one of the first three EOTs for all model

experiments. Furthermore, the SST patterns associated with the cold phase of the AMO

also appear in at least one of the first two EOTs for the majority of the models (not shown),

while SSTs linked to the warm phase of PDO are present in almost all the EOT1s for the
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Figure 4.17: Pearson correlations between the time series of CPAC annual TC counts and

ACE of models with the seasonal climate indices for the 1950-2050 period. Hatched bars

indicate the correlations that are significant at the 90% CL.
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(a) Locations of EOTs for all the model runs

0°

20°N

40°N

170°E 170°W 150°W

EOT1

170°E 170°W 150°W

EOT2

LM - u-ai674
LM - u-ak681
LM - u-ak687
LM - u-bd058
LM - u-bd423
MM - u-ai718

MM - u-aj530
MM - u-ak185
HM - u-ai685
HM - u-aj558
HM - u-aq581

LL c - u-ak306
LL h - u-ak356
LL h - u-ak731
LL h - u-ak743
LL h - u-ak938

LL h - u-bi511
MM c - u-aj368
MM h - u-aj354
MM h - u-ak141
MM h - u-ak144

MM h - u-ar599
MM h - u-bi490
MH c - u-aj393
MH h - u-bk610
HM c - u-ay355

HM h - u-ay585
HM h - u-az094
HM h - u-bb527
HH c - u-ay490
HH h - u-ay652

170°E 170°W 150°W

EOT3

170°E 170°W 150°W

EOT4

(b) SST regression patterns for the HH coupled control run

(c) VWS regression patterns for the HH coupled control run

(d) Summary statistics about the Pearson correlation coefficients between the CPAC EOT time series

for the different model simulations and the May-November averaged ENSO, AMO and PDO indices.
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Figure 4.18: Results of EOT analysis for decadal TC variability in CPAC. Location of

EOT is shown with green marker and significance at the 90% CL is indicated with dots

on b and c. Period examined is 1950-2050. For the correlations dark red (blue) colors

indicate how many of the 31 models have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.
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Figure 4.19: Percentage of variance explained by the EOTs for decadal variability for

CPAC. Column 1-3: ensemble of atm-only runs split by atmospheric resolution; Column

4: ensemble of LL historic runs against the control run (♦); Column 5: ensemble of MM

historic runs against the MM control (•), MH control run (+) and MH historic run (▲);

Column 6: ensemble of HM historic runs against HM control run (×), HH control run (★)

and HH historic run (▶). Faded circles (•) show outliers. Dotted lines show the ensemble

means.

atm-only experiments (not shown).

Figure 4.18d presents Pearson correlations between the climate indices and the EOT

time series for the CPAC. Dark red (blue) colors indicate how many of the 31 models have

positive (negative) correlations with each index, medium red (blue) indicate how many

of the dark red (blue) correlations are significant at the 90% CL, while light red (blue)

indicate how many are not significant. Activity at EOT1 base points, appears to have a

positive relationship with ENSO and PDO in 23 and 14 of the models, respectively, while

it is also negatively correlated with the AMO in 26 of the models, even though not all the

relationships are significant. Significant anticorrelations are found between the seasonal

average of the AMO and EOT1 for the LM, at least one of the MM and HM of the atm-only

simulations, while significant positive correlations with the May-November averaged PDO

index for 9 of the atm-only runs. In addition, for EOT2, the majority of the experiments

are correlated with ENSO and anticorrelated with the AMO. This leads to the conclusion
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that for the atm-only simulations, the AMO and the PDO, via SSTs appear to be important

primary drivers for TC activity on decadal time scales in this basin for the atm-only runs,

while ENSO is a secondary driver. For the coupled simulations, there is a larger number

of models for which significant relationships are found between EOT2 and the indices of

ENSO and AMO. Specifically, for 26 (28) of the runs negative (positive) correlations are

found between EOT2 and AMO (ENSO), more of 55% of which are significant. It is,

also, important to note that the vast majority of the EOTs power spectra have detected

significant signals on decadal time scales between 10 and 20 years.
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4.5 Western Pacific

(a) Time series: annual TC counts (gray) and 10-year running mean
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(c) Wavelet spectrum with COI (shaded area) and

95% confidence level (red contours)
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Figure 4.20: Results of spectral analysis for decadal TC variability in WPAC annual

counts for the multi-centennial MM control run.

Upon analysing the time series with the standard spectral method, for all the LM runs

for ACE there are signals on decadal time scales, in the 10-15 year band, whereas only

a couple of the runs show similar signals for TC counts. For the MM experiments, even

though significant peaks at periodicities above 10 years are found in all three individual

power spectra for the time series of ACE, they are not powerful enough to show on the

combined power spectrum. In addition, none of the spectra in terms of TC counts display

such signals. In contrast, for both TC counts and ACE, in the individual spectra for

the HM atm-only runs, as well as the combined, there is robust decadal TC variability.

Absence of significant peaks above a 10-year periodicity is evident for the 100-year-long

LL control run, but for at least 3 of the LL hist-1950 experiments in both metrics, powerful
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decadal signals, enough to be shown on the combined spectrum, were detected. Evidence

of decadal variability for the majority of MM runs both for ACE and TC counts, as well

as only on the frequency of TCs in the basin for the MH runs, is shown from the power

spectra. There is no evidence of decadal influence on ACE for the HH runs in contrast to

the frequency of TCs, but for the control and for at least two of the ensemble of hist-1950

HM runs, such signals are detected for both metrics. Lastly, from the multi-centennial time

series (fig. 4.20a), multiple peaks on multi-decadal time scales are observed, particularly

for the LL and MM runs, but not above 40 years for the standard power spectrum (fig.

4.20b) and not above 65 years for the wavelet spectrum (fig. 4.20c), hinting at a connection

to the PDO.

Only a handful of the 31 runs show a significant relationship between the May-

November averaged ENSO index and the time series of counts from the Pearson correlation

coefficients, as shown on figure 4.21. ENSO seems to have a greater influence on the energy

associated with TCs, since a significant positive relationship can be seen for 28 of the runs.

From this figure it can be seen that the correlations between the climate index and ACE

are higher (in absolute value) compared to the correlations between the index and counts.

This can be indicative of TCs in this basin having longer duration even if the occurrences

decrease. ACE is a metric that takes into account and is affected by both the intensity

and the duration of lifetime of TCs. It is possible to have similar amounts of ACE from a

season with short-lived but very intense TCs and a season with long-lived but less intense

TCs. In a vast basin, such as the WPAC, TCs can have longer life-cycles, compared to

other basins. Environmental conditions such as warm SSTs can affect ACE by providing

a steady flow of energy for the TCs and even prolonging their lifetime.

The May-November averaged AMO index shows a significant anticorrelation with

the time series from both metrics for all atm-only experiments. However, in terms of

the coupled runs, there is greater influence on ACE compared to frequency, since more

significant, albeit weak, anticorrelations can be seen for the former metric than for the latter.

For the period examined, the May-November averaged PDO index has a stronger influence

on ACE compared to frequency, particularly for the atm-only experiments. Significant

weak or moderate correlations are observed for at least 8 of the atm-only runs in terms of

ACE, compared to 3 of them in terms of counts. Furthermore, significant weak, mostly

negative correlations are found for 4 of the coupled runs for both metrics.

CHAPTER 4 Page 143



4.5. WESTERN PACIFIC

0.5 0.0 0.5

Atm_only - LM - u-ai674
Atm_only - LM - u-ak681
Atm_only - LM - u-ak687
Atm_only - LM - u-bd058
Atm_only - LM - u-bd423
Atm_only - MM - u-ai718
Atm_only - MM - u-aj530
Atm_only - MM - u-ak185
Atm_only - HM - u-ai685
Atm_only - HM - u-aj558

Atm_only - HM - u-aq581
control-1950 - LL - u-ak306

hist-1950 - LL - u-ak356
hist-1950 - LL - u-ak731
hist-1950 - LL - u-ak743
hist-1950 - LL - u-ak938
hist-1950 - LL - u-bi511

control-1950 - MM - u-aj368
hist-1950 - MM - u-aj354
hist-1950 - MM - u-ak141
hist-1950 - MM - u-ak144
hist-1950 - MM - u-ar599
hist-1950 - MM - u-bi490

control-1950 - MH - u-aj393
hist-1950 - MH - u-bk610

control-1950 - HM - u-ay355
hist-1950 - HM - u-ay585
hist-1950 - HM - u-az094
hist-1950 - HM - u-bb527

control-1950 - HH - u-ay490
hist-1950 - HH - u-ay652

TC Counts

0.5 0.0 0.5

ACE
ENSO AMO PDO

Figure 4.21: Pearson correlations between the time series of WPAC annual TC counts

and ACE of models with the seasonal climate indices for the 1950-2050 period. Hatched

bars indicate the correlations that are significant at the 90% CL.
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(a) Locations of EOTs for all the model runs
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(b) SST regression patterns for the MM coupled control run

(c) VWS regression patterns for the MM coupled control run

(d) Summary statistics about the Pearson correlation coefficients between the WPAC EOT time series

for the different model simulations and the May-November averaged ENSO, AMO and PDO indices.
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Figure 4.22: Results of EOT analysis for decadal TC variability in WPAC. Location of

EOT is shown with green marker and significance at the 90% CL is indicated with dots

on b and c. Period examined is 1950-2050. For the correlations dark red (blue) colors

indicate how many of the 31 models have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.
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Figure 4.23: Percentage of variance explained by the EOTs for decadal variability for

WPAC. Column 1-3: ensemble of atm-only runs split by atmospheric resolution; Column

4: ensemble of LL historic runs against the control run (♦); Column 5: ensemble of MM

historic runs against the MM control (•), MH control run (+) and MH historic run (▲);

Column 6: ensemble of HM historic runs against HM control run (×), HH control run (★)

and HH historic run (▶). Faded circles (•) show outliers. Dotted lines show the ensemble

means.

The EOT1 base points for the low-resolution atm-only experiments are clustered in

the tropical region over Japan (fig. 4.22a), in contrast to EOT1 base points for the LL

coupled runs which are spread in the basin similarly to the observations (fig. 4.22a). For

the N216 simulations, EOT1 base points for the coupled runs are clustered in two different

locations as seen on figure 4.22a, the tropical region over Japan and the tropical region

between 150−180◦𝐸 , whereas EOT1 for the N216 atm-only and the N512 runs are once

again spread out in the basin. Just like the case for the observations, it becomes extremely

difficult to summarise information regarding the location of EOTs since the base points are

not clustered. In addition, individual EOT1 describe less than 40% variance in the basin for

all the model simulations, except for the ones for N512 atm-only experiments as displayed

on figure 4.23. The similarity in the distribution of percentage of variance explained and

the locations of EOTs by the model simulations with the ones for observations, further

reinforces the argument that there is more than one main driver of TC variability in the
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basin. Lastly, compared to the other basins, in order to explain at least 75% of the variance

in the basin for decadal time scales, it is necessary to use at least five EOTs. It is important

to note at this point, that for at least one of the EOTs analysed, power spectral analysis of

the time series, resulted in significant decadal periodicities.

The SST and VWS regression patterns for this particular basin are more difficult to

interpret, due to the greater spread between the EOTs from the different experiments,

but also because in some cases, EOTs from different runs are found to be in similar

locations whilst the resulting regression patterns are not similar (not shown). For the vast

majority of the atm-only experiments SST regression patterns show significant warm SSTs

in the eastern and central tropical Pacific, associated with ENSO. Whether this result is

partially or primarily attributed to the overestimation of the trend in 2015-2050 for these

experiments, is unknown for the moment. In addition, for 8 of the 11 atm-only runs,

significant cold SSTs, associated with the Atlantic modes are observed.

SST and VWS regression maps for the first 4 EOTs of the MM coupled control run are

presented on figures 4.22b and 4.22c, respectively. For the coupled runs, warm SSTs for

the LL (significant), MM (significant) and MH and cold SSTs for the HM (significant) and

HH control runs are observed from the regression maps. Furthermore, results from the

hist-1950 runs irrespective of resolution are split, since half of them display warm SSTs

in the Pacific while the rest display cold SSTs. For the MM control run, EOT1 is located

in the tropical eastern part of the region analysed (fig. 4.22). Warm SSTs in the equatorial

eastern and central Pacific and cold SSTs in the western part of the region, resembling

the El-Niño-Modoki canonical pattern, are observed for EOT1. Furthermore, the VWS

pattern corresponds to a weak pattern associated with the warm phase of ENSO as seen

on figure 1.1. For the remaining EOTs, EOT2 and EOT4 display cold SSTs in the eastern

equatorial and central Pacific, patterns linked to the cold phases of the two Pacific modes

(ENSO and PDO).

TC activity at EOT1 for 20 and 18 of the models is positively correlated with the

seasonal averaged ENSO and PDO, respectively, as shown on figure 4.22d. For 21 of

the models TCs are anticorrelated with the AMO. More specifically, the vast majority

of atm-only simulations show a significant positive relationship to the May-November

averaged ENSO index, as well as a significant anticorrelation with the seasonal average

of the AMO. EOT3 for two of the LM and two of the MM atm-only runs, show positive
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correlations with both of the Pacific indices and anticorrelation with the AMO. For these

particular simulations, the influence by the AMO can be also seen for one of the first two

EOTs.
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4.6 North Indian

(a) Time series: annual TC counts (gray) and 10-year running mean
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(c) Wavelet spectrum with COI (shaded area) and

95% confidence level (red contours)
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Figure 4.24: Results of spectral analysis for decadal TC variability in NIND annual counts

for the multi-centennial MM control run.

The overall analysis of TC activity in this basin results in no robust conclusions about

drivers of decadal TC variability. The standard power spectrum analysis of the ACE time

series from the multi-centennial coupled control runs shows significant peaks at around

50-years, a periodicity typically linked to the AMO. In terms of counts (fig. 4.24a),

decadal signals (at around 30 years) are detected by both the standard method and the

wavelets only for the LL and MM control runs (fig. 4.24b and fig. 4.24c).

For the 1950-2050 period, at least one of the LM and HM atm-only individual spectra

are able to detect periodicities at decadal time scales for both metrics, something that is

not seen for the MM runs. For the power spectra of ACE and counts for the LL control run,
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there is a significant signal on decadal time scales, however the validity of it is questioned,

since it is associated with periodicities of above 20 years, an uncommon result based

on the results for the other basins. At least one of the hist-1950 experiments, however,

showed signals at decadal time scales (∼10-13 years). Nevertheless, there is evidence

of decadal variability on the MH control experiment, but not for the MM runs for both

metrics. Lastly, decadal variability on TC activity in the basin was found for both metrics

in HM and HH control runs as well as for at least one of the corresponding hist-1950 runs.

Just like for the rest of the basins, the time series of annual ACE and TC counts are

correlated with the three climate indices. No robust conclusion can be drawn from the

correlations between the ENSO index and the time series for this basin (fig. 4.25). Only a

handful of the model simulations show a significant (mostly weak) anticorrelation between

the time series of ACE and the ENSO index, while the same is observed for 8 of the runs in

terms of frequency. A similar picture can be drawn for the influence by the AMO, with only

a few weak relationships between the time series and the index. Perhaps, it is important to

note that for the MH hist-1950 there is a significant, moderate positive relationship with

both the May-November and the yearly averaged AMO index in both metrics. The yearly

averaged index seems to have a greater influence on the frequency of TCs compared to

ACE for some of the coupled MM and MH runs. Lastly, no robust conclusion can be

formed about the PDO’s influence on TC activity, since significant coefficients between

the index and the time series are found for less than 5 of the simulations.

The locations of EOTs for all the model runs are presented on figure 4.26a. For coupled

runs, irrespective of resolution, the EOT1 base points are clustered in the Bay of Bengal.

In contrast, for the atm-only experiments, with increasing resolution, there is a greater

spread between the EOT1s, even though they remain in the eastern part of the region.

For the low-resolution runs, both atm-only and coupled, none of the first four EOT base

points are positioned in the Arabian Sea, compared to the EOTs for the higher resolutions.

In terms of variance explained by the first EOTs, the amount explained by EOT1s of

low-resolution experiments is noticeably higher compared to the corresponding EOTs for

the higher resolution experiments (see fig. 4.27), similar to the distributions for the EOTs

under the current climate (fig. 3.32). Furthermore, the amount of variance explained by

EOT2s for the N96 runs drops noticeably to below 15%. Two EOTs were sufficient for

explaining 75% of the variance in the basin for the low-resolution runs, while three to four
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Figure 4.25: Pearson correlations between the time series of NIND annual TC counts and

ACE of models with the seasonal climate indices for the 1950-2050 period. Hatched bars

indicate the correlations that are significant at the 90% CL.
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(a) Locations of EOTs for the N96 (LL) coupled runs
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Figure 4.26: Results of EOT analysis for decadal TC variability in NIND. Location of

EOT is shown with green marker and significance at the 90% CL is indicated with dots

on b and c. Period examined is 1950-2050. For the correlations dark red (blue) colors

indicate how many of the 31 models have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.
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Figure 4.27: Percentage of variance explained by the EOTs for decadal variability for

NIND. Column 1-3: ensemble of atm-only runs split by atmospheric resolution; Column

4: ensemble of LL historic runs against the control run (♦); Column 5: ensemble of MM

historic runs against the MM control (•), MH control run (+) and MH historic run (▲);

Column 6: ensemble of HM historic runs against HM control run (×), HH control run (★)

and HH historic run (▶). Faded circles (•) show outliers. Dotted lines show the ensemble

means.

EOTs were needed for the rest of the simulations.

No robust connection to the climate indices can be extracted from the SST and VWS

regression maps or from the Pearson correlation coefficients between the EOTs and the

indices. Figures 4.26b and 4.26c present SST and VWS regression maps for the first

4 EOTs for the u-ak356 (LL hist-1950) run, one the few simulations for which known

canonical patterns were displayed on regression maps. For this particular basin, activity

at the Bay of Bengal appears to be influenced by warm SSTs and weak VWS in the central

Pacific and cold SSTs accompanied by strong VWS in Atlantic MDR. Pearson correlations

between EOT1 and the climate indices showed significant positive (negative) correlation

with the May-November averaged ENSO (AMO) index. Once the influence of EOT1 is

removed, EOT2, which is still positioned in the Bay of Bengal but explains considerably

less variance, appears to be influenced by cold SSTs and strong VWS linked to La-Niña.

It is important to note that these results are not representative of the relationship between
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TC activity in the NIND ocean and the climate indices. They just serve as an example of

isolated influence on TC activity by the climate indices examined in the study. Lastly, very

few significant correlations or anticorrelations are found for the 31 model simulations as

shown on figure 4.26d. In the future, it is worth investigating the connection to interannual

climate indices and particularly to the Indian Dipole.

4.7 Conclusion

This chapter is dedicated to examining the drivers of the decadal variability of TCs in the

different basins. Table 4.1 presents a summary of the results examined in this chapter on

whether decadal variability of TCs is influenced by known modes of variability, particularly

ENSO, AMO and PDO. Spectral analysis of the full length of multi-centennial coupled

control runs showed clear evidence of decadal periodicities within the time series of

frequency and ACE in the different basins. These periodicities have been associated in the

literature with the periodicities of the AMO (around 50-70 years) and the PDO (around

20-30 years).

TC activity in the Atlantic during the 1950-2050 period is influenced, with a high

degree of confidence, by the AMO via warm local SSTs, as was evident by the SST

regression patterns. ENSO additionally affects Atlantic hurricanes via changes in the

Walker Circulation, a conclusion that was derived by both the SST and VWS regression

patterns. The AMO’s influence is robust in all the simulations examined, with the exception

of the N96 coupled runs. Pearson correlation coefficients between the time series of TC

activity (counts, ACE, EOTs) with the climate indices further support this conclusion.

In contrast, ENSO and AMO’s impact on TC activity in the EPAC region is more

robustly observed for the atm-only experiments, especially the N216 and N512 runs.

ENSO has a greater influence than AMO on the N216 and N512 coupled simulations in

terms of ACE and frequency. However, both AMO (via cold SSTs) and ENSO (via warm

SSTs and weak VWS) drive TC variability in the basin.

For the CPAC region very robust correlation (anticorrelation) with the ENSO (AMO)

index is found across the model experiments for frequency, ACE and EOT time series. In

contrast, the PDO has a positive relationship with TCs in the atm-only experiments and a

mainly negative one for the coupled runs. It is worth reminding that results for this basin
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must be considered carefully since the amount of TCs analysed is considerably small. As

can be seen from table 4.1, based on the analysis ENSO and PDO have a more robust

influence on TC activity in the basin compared to the AMO.

For the WPAC region, the AMO is significantly anticorrelated with both the frequency

and ACE in atm-only experiments, while ENSO and PDO are correlated mainly with

ACE. The robustness is not observed for the coupled runs. Even though the analysis of

the drivers of decadal TC variability for this basin is challenging due to the vast size of

the region examined, there are indications of ENSO and AMO influence for the coupled

experiments. TC activity in the atm-only experiments is evidently influenced by both

ENSO and AMO, while there are indications of PDO influence. The Pacific decadal mode

does not appear to have a significant influence on TC activity for the coupled experiments.

Lastly, similarly to the investigation under the current climate, decadal variability of

TCs in the NIND region has no robust connection to the climate indices (ENSO, AMO

and PDO). There are indications of ENSO influence, but it is recommended to investigate

the connection to interannual climate indices such as the Indian Dipole and especially how

ENSO, AMO and PDO might influence the Indian Dipole and the monsoon seasons.
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Chapter 5

Drivers of TC Activity under Climate

Change

5.1 Introduction

As mentioned in sections 1.6.3 and 1.7, several studies have examined how TCs might

change in a warming climate. In this chapter, in order to assess the influence of a warming

climate on the variability of TCs, we examine the differences between the drivers of TC

activity between the control and the historic HadGEM-GC3.1 experiments during the first

30 years of the coupled model simulations (1950-1980, hereafter referred to as P1) with

the drivers during the last 30 years (2020-2050, hereafter referred to as P2), and how

they connect with the climate indices. General comments about TC representation will

be made for the atm-only runs, however, results presented will be focused only on the

coupled runs. A brief description will be made of the results for whole NH activity before

addressing TC activity in the different regions individually. Lastly, it must be noted that,

even though the spectral methods have been used for analysing time series of TC activity

in the two periods and they reveal significant periodicities mainly on interannual time

scales, their results do not have any contribution in assessing the impact of climate change

on TC activity. Therefore, in this chapter results from the spectral methods will not be

included. Lastly, in this chapter the correlations between the climate indices and the time

series of annual TC counts and ACE will be discussed, but no figures will be presented.
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5.2. NH ACTIVITY

5.2 NH Activity

Figures 5.1 and 5.2 present the difference in global mean track densities in the two periods

examined for the LL, MM and HH control and historic runs as well as global mean track

densities (of equal or greater than 2 TCs per reason per unit area) for the two runs during

P1 and P2. It can be seen that for the historic run there are greater differences in mean

track densities between the two periods compared to the control run.

Figure 5.3 shows the difference in the average annual number of TCs and ACE in terms

of total NH activity for P1 (green) and P2 (purple). The model simulations with common

resolution are taken as an ensemble, and are presented as a boxplot. The different control

runs and the stand-alone hist-1950 runs are indicated by symbols. These results for both

metrics of TC activity show once again how increases in model resolution can lead to

better simulation of TC activity. Furthermore, with increasing resolution, there is a more

gradual increase in the mean annual ACE, whereas in terms of TC counts, the annual

average of TCs in the NH for the N216 simulations is either slightly less or on the same

level with the N512 simulations as seen on figure 5.3.

For the atm-only runs, differences between the two periods reveal an overall global

decrease in P2, for both metrics, in the annual means of TC activity in the NH. In contrast,

for the coupled runs, the ensemble means of annual ACE as well as ACE for the individual

control (except HH) experiments, and the MH and HH historic runs show an increase in

P2 compared to P1 (fig. 5.3b). In terms of frequency, the ensemble means of annual

TC counts remain relatively the same, the control runs show slight increases, whereas

the MH and HH hist-1950 runs show slight decreases (fig. 5.3a). These results are in

agreement with studies suggesting an increase in more intense TCs (Knutson et al., 2015;

Manganello et al., 2014; Murakami et al., 2015; Roberts et al., 2020b, 2015; Wehner et al.,

2015; Yamada et al., 2017) whilst the frequency of TCs remains stable or shows slight

decrease (Christensen et al., 2013).

Upon examining the metrics of total TC activity in the NH further, correlations between

the time series (of TC counts and ACE) and the climate indices (ENSO, AMO and PDO)

show that the seasonal ENSO’s influence is greater on ACE compared to counts in both

periods examined. In addition, the ENSO’s influence is greater for P2 than for P1.

Specifically, for P1, there is almost no significant relationship between the seasonal ENSO

index and TC frequency. However, for all the LL coupled runs, 4 N216 runs, 3 N512 runs
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Figure 5.1: (a) - (b) Difference in mean track density for the LL control and historic runs;

(c) - (f) Mean track density during the P1 and P2 periods for the LL control and historic

runs; (g) - (h) Difference in mean track density for the MM control and historic runs; (i) -

(l) Mean track density during the P1 and P2 periods for the MM control and historic runs;

Red contour indicates where the mean track density is greater that 2 TCs per season, per

unit area.
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Figure 5.2: (a) - (b) Difference in mean track density for the HH control and historic

runs; (c) - (g) Mean track density during the P1 and P2 periods for the HH control and

historic runs, as well as for IBTrACS during P1. Red contour indicates where the mean

track density is greater that 2 TCs per season, per unit area.
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Figure 5.3: Annual average of (a) TC counts and of (b) ACE in the NH for P1 (green) and

P2 (purple). Column 1: ensemble of LL historic runs against the control run (♦); Column

2: ensemble of MM historic runs against the MM control (•), MH control run (✚) and

MH historic run (▲); Column 3: ensemble of HM historic runs against HM control run

(✖), HH control run (★) and HH historic run (▶). Faded squares (■) show outliers. Dotted

lines show the ensemble means.

and 3 of the LM and MM atm-only runs, there is a moderate or strong positive correlation

with the seasonal ENSO index. For P2, the global ACE is significantly, moderately or

strongly, correlated with ENSO for at least 22 out of the 31 runs examined. In terms of

frequency, for all the MM and HM atm-only experiments, significant (mostly moderate)

positive correlations are observed with the seasonal ENSO index. Interestingly, none of

the time series of total NH TC counts for the coupled control runs show a significant

relationship with the index. Moreover, the AMO’s influence on TCs is stronger in P2

compared to the other period, which is particularly obvious for the atm-only runs. Even

though there is not a robust influence by the AMO for P1, the AMO has a significant

moderate anticorrelation with ACE in all but one of the hist-1950 LL coupled runs. For

the later period, the May-November AMO averaged index is significantly, moderately

anticorrelated with the time series of counts (ACE) in 4 (6) out of the 6 higher-resolution

atm-only experiments. Lastly, the PDO index has a more robust connection to TC activity

during P2 period compared to P1, mainly for the atm-only runs, since the number of

significant relationships with the index increase from one period to the other. There is no

robust conclusion from the coupled runs.
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Figure 5.4: Annual average of (a) TC counts and of (b) ACE in NATL for P1 (green) and

P2 (purple). Column 1: ensemble of LL historic runs against the control run (♦); Column

2: ensemble of MM historic runs against the MM control (•), MH control run (✚) and

MH historic run (▲); Column 3: ensemble of HM historic runs against HM control run

(✖), HH control run (★) and HH historic run (▶). Faded squares (■) show outliers. Dotted

lines show the ensemble means.

The differences in the average annual number of TC counts and ACE for the NATL

region in P1 and P2 are presented in figures 5.4a and b, respectively. An increase can

be seen for the annual average NATL ACE in P2 compared to P1 for all the ensembles

examined, as well as for the control-1950 and hist-1950 runs shown with markers, except

for the MH hist-1950. In terms of TC counts, the annual means for the atm-only ensembles

irrespective of resolution, as well as for the LL coupled runs, show increases during P2.

Lastly, the annual means for the coupled N216 and N512 ensembles and the MH and HH

hist-1950 runs decrease. For the atm-only runs, it is found that, in terms of frequency the

MM and HM have similar annual averages, whilst in terms of ACE the N512 show much

higher means, a result which is in agreement with Roberts et al. (2020b). It is possible

that this difference between ACE and frequency is attributed to having more intense TCs

in the basin in a warming climate, particularly for HadGEM3.

By correlating the time series (of TC counts and ACE) with the seasonally averaged

climate indices for the two periods, no robust influence from ENSO on TC activity in
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Figure 5.5: EOT locations for the coupled simulations for TC activity in NATL during P1

(top) and P2 (bottom). The different colors indicate the simulations of a given resolution,

while the symbols differentiate the runs for each resolution. For each color, the first

symbol indicates the control run, and the remaining symbols indicate the corresponding

hist-1950 runs.
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Figure 5.6: Amount of variance explained by EOTs during P1 and P2 for NATL. Column

1: ensemble of LL historic runs against the control (♦); Column 2: ensemble of MM

historic runs against the MM control (•), MH control (✚) and MH historic run (▲);

Column 3: ensemble of HM historic runs against HM control (✖), HH control (★) and

HH historic run (▶). Faded squares (■) show outliers. Dotted lines show the ensemble

means.
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the NATL basin during P1 is detected, since less than 5 experiments show a significant

connection (anticorrelation) to the index. Even for P2, less than 10 runs (the majority of

them being atm-only runs) showed a significant connection to ENSO.

The AMO’s influence on TCs appears to be stronger in P2 compared to P1. There is no

robust conclusion from the correlations for the influence of the AMO on the frequency of

TC activity in the region during P1. In contrast, for at least one run from each configuration

and resolution, a significant, moderate or strong positive correlation can be seen between

the May-November averaged AMO index and the time series of counts and ACE. For P2

more model simulations are significantly, moderately or strongly correlated with the AMO

index, compared to P1. Only one of the LL hist-1950 runs has an anticorrelation with the

climate mode, however this coefficient is weak and not significant.

The PDO appears to have a greater influence on TC activity during P2 compared to P1,

mainly for the atm-only runs, since the number of significant moderate anticorrelations

between the May-November averaged PDO index and the time series increase from 2 to

5 (2 to 6) for frequency (ACE). No significant connection to the climate mode is found

for TC counts in the coupled simulations during the two periods examined. However, in

terms of ACE, two of the coupled runs show significant, moderate anticorrelations with

the index during P1, while 4 of the coupled models show significant correlations during

P2.

Track densities for both periods reveal once again that TCs in the N96 runs are

concentrated in the western part of the region (not shown). For the N216 and N512 runs,

track densities extend in the MDR as well, and in the majority of the runs examined two

distinct regions of maximum mean track density are observed as shown on figure 5.2; one

in the MDR and one along the East Coast of the US.

Analysing the locations for EOT1s is a complicated matter since no consensus can

be observed about how they differ between the two periods. Figure 5.5 presents the

locations for the first three EOTs for all the coupled runs. The different colors indicate

the simulations of a given resolution, while the symbols differentiate the runs for each

resolution. For each color, the first symbol indicates the control run (for example LL

c - u-ak306), and the remaining symbols indicate the corresponding hist-1950 runs (for

example LL h - u-ak356). The top row presents the results for P1 and the bottom row

presents the results for P2. The N96 EOTs are positioned in the western part of the region
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along the east coast of the US, due to the concentration of track densities, between 20 and

40N in both periods (fig. 5.5). The vast majority of N216 EOTs for P1 are positioned in

the MDR or in the Caribbean, with the exception of the MM control run which is in the

middle of the subtropical Atlantic (fig. 5.5). For P2, the majority of N216 EOT1s move

towards the north or northeast, while one of the MM hist-1950 EOT1s moves from Florida

towards the Caribbean and EOT1 for the MM control run moves above Cuba (fig. 5.5).

One base point of the MM and the MH hist-runs move out of the tropics during P2 (fig.

5.5). The N521 EOT1s are spread out in the basin during P1, but the majority of them

relocate to below 25◦𝑁 . The HM control run is an exception since the associated EOT1

during P1 is positioned in the MDR, but relocates towards Cuba during P2 as shown on

figure 5.5. As was the case in the previous chapters, EOT2s and EOT3s are more spread

out in the basin and, as seen on figure 5.5, most of them are outside the tropics and along

the path that most TCs take as they re-curve and undergo extra-tropical transition. The

mean variance explained by EOT1 from the ensemble of hist-1950 in the N96 and N216

experiments decreases in P2, whereas the variance for EOT1 of the N512 ensemble runs

increases during P2 (fig. 5.6). Lastly, the overall distribution of variance explained by the

first three EOTs remains similar to the ones observed in the previous chapters.

Examining the influence of SSTs and VWS proves to be no easier task, therefore, only

EOT1 is considered, particularly the ones positioned below 30◦𝑁 . Results show that for

the different control runs during P1, when EOT1 is located between 60◦𝑊 and 0 and

below 30◦𝑁 , TC activity is associated with significant warm SSTs in the Atlantic as seen

in figure 5.7a. If the EOT is located above 15◦𝑁 , the VWS appears to be not an important

driver (not shown). However, if the EOT1 is within the same longitudinal range and below

15◦𝑁 , as is the case on figure 5.7a, then TC activity is additionally associated with cold

(sometimes significantly) SSTs in the eastern Pacific and weak VWS over the Caribbean

(fig. 5.7c).

During P2, when EOT1 for the control runs are below 30◦𝑁 and between 75◦𝑊 and

65◦𝑊 , as shown on figure 5.7e, TC activity at the base points is associated with warm

SSTs both in the Atlantic MDR (significantly), in an AMO-resembling pattern, and in the

eastern equatorial Pacific. Additionally, it appears that TC activity at those base points is

influenced by low VWS over the Caribbean (fig. 5.7g). Conversely, if the longitudinal

range is between 65◦𝑊 and 0, TC activity is associated with cold SSTs in the Atlantic
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Figure 5.7: EOT1 SST and VWS regression maps for the HM control-1950 (left) and one

hist-1950 (right) runs during P1 and P2 for NATL. Plots in blue/red colours indicate the

SST maps. Plots in purple/orange colours indicate the VWS maps. Location of EOT is

indicated with a green marker. Significance at the 90% CL is indicated with dots.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Examples of EOT1 SST regression maps for the NATL region; (a)-(c) for P1;

(d)-(f) for P2
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and the Pacific (not shown) and low VWS over the Caribbean and the Atlantic ITCZ (not

shown).

Results for the SST and VWS show that depending on the location of each EOT,

different conditions can influence the TC activity. Therefore, in order to study the drivers

associated with EOT1 for the historic runs during P1, it is important to separate the EOTs

by location into three cases:

1. Between 75 and 60 ◦𝑊 :

(a) Between 20 and 15 ◦𝑁: TC activity is associated with only cold SSTs in the

Pacific (not shown)

(b) Other latitudes: No known pattern is observed

2. Between 60 and 45 ◦𝑊 :

(a) Below 15 ◦𝑁: TC activity is either influenced by significant cold Pacific SSTs

as (fig 5.7b) or by warm AMM-resembling Atlantic SSTs (fig. 5.8a).

(b) Between 15 and 20 ◦𝑁: TC activity is significantly connected to both warm

SSTs in Atlantic and cold SSTs in Pacific (fig. 5.8b) and low VWS over the

Caribbean as shown on (fig 5.7d).

(c) Between 20 and 30 ◦𝑁: No EOT1s are found

3. Between 45 ◦𝑊 and 0:

(a) below 15 ◦𝑁: TC activity is mostly significantly associated with warm Atlantic

and warm eastern Pacific SSTs (fig. 5.8c), in addition to low VWS over

Caribbean and the Atlantic ITCZ and strong VWS in central Pacific (fig 5.7d).

(b) Other latitudes: No EOT1s are found

For P2, the EOT1s are split into two main categories depending on their longitudinal

coordinates:

1. Between 60 ◦𝑊 and 0: 2 EOT1s are found, but no known canonical patterns are

observed (fig. 5.8d)

2. Between 75 and 60 ◦𝑊 : the majority of EOT1s are located within this region
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Figure 5.9: Summary statistics about the Pearson correlation coefficients between the

NATL EOT time series for the 20 coupled model simulations and the May-November

averaged ENSO, AMO and PDO indices during P1 and P2. Dark red (blue) colors

indicate how many of the runs have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.

(a) Below 15 ◦𝑁: No EOT1s are found

(b) between 15 and 30 ◦𝑁: 6 EOTs are found, 2 of which are not linked to any

known patterns (fig. 5.8e), whilst 4 of them show only cold SSTs in the central

equatorial Pacific (fig. 5.8f) accompanied by low VWS over the Caribbean

and strong VWS in the central Pacific (not shown).

Generally, TC activity at the majority of EOT1s for both periods is positively correlated

with the seasonally averaged AMO index and anticorrelated with ENSO as shown on figure

5.9. Specifically, during P1, for 15 of the experiments positive correlations are computed

between the EOT1 time series and AMO, 9 of which are significant. This number

increases to 18 during P2, 6 of which are significant. It is important to note that the

majority of the significant correlations are seen for the higher-resolution (MM and above)

runs. Similarly, during P1, 13 of the model runs are anticorrelated with ENSO, but only 1

of them is significant at the 90% CL. In contrast, during P2, 12 of the experiments show

anticorrelations, 4 of which are significant. For PDO, during P1, EOT1s for 7 (8) of the

runs are positively (negatively) anticorrelated with the index, but only 1 of the correlations

is significant. During P2, however, 10 (5) are positively (negatively) correlated with the
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index. One notable difference between the two periods is that the control experiments

switch signs from one period to the other, i.e. the LL, HM and HH switch from positive

to negative, and the MM switches from negative to positive correlations.
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Figure 5.10: Annual average of TC counts (a) and of ACE (b) in EPAC for P1 (green) and

P2 (purple). Column 1: ensemble of LL historic runs against the control run (♦); Column

2: ensemble of MM historic runs against the MM control (•), MH control run (✚) and

MH historic run (▲); Column 3: ensemble of HM historic runs against HM control run

(✖), HH control run (★) and HH historic run (▶). Faded squares (■) show outliers. Dotted

lines show the ensemble means.

Annual averages of EPAC TC counts and ACE for P1 and P2 are presented in figure

5.10. For the atm-only runs there is a decrease in terms of TC counts for all resolutions

and a decrease in terms of ACE, except for the N512 runs. For the coupled runs, the

ensemble means are slightly higher in P2 for both ACE and TC counts. In terms of the

runs indicated with markers, for TC frequency, decreases can be observed for the LL and

MH control runs, as well as for the MH and HH historic runs. Increases can be seen for

the MM, HM and HH control runs for the frequency of TCs, whereas the exact opposite

is observed in terms of ACE.

Just as for the NATL, ENSO’s influence on EPAC TC activity is greater in P2 compared

to P1 as detected by the Pearson correlations, and the influence is more evident in terms of

ACE rather than counts for both periods. More specifically, in P1 only 4 of the atm-only

and 1 of the coupled runs display a significant relationship to ENSO in terms of counts,

while for ACE the numbers correspond to 6 atm-only and 7 coupled runs. In contrast,

during P2, ENSO’s positive influence on TC activity in the basin is evident from the
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Figure 5.11: EOT locations for the coupled simulations on EPAC TC activity during P1

(top) and P2 (bottom). The different colors indicate the simulations of a given resolution,

while the symbols differentiate the runs for each resolution. For each color, the first

symbol indicates the control run, and the remaining symbols indicate the corresponding

hist-1950 runs.
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Figure 5.12: Amount of variance explained by EOTs during P1 and P2 for EPAC.

Column 1: ensemble of LL historic runs against the control (♦); Column 2: ensemble of

MM historic runs against the MM control (•), MH control (✚) and MH historic run (▲);

Column 3: ensemble of HM historic runs against HM control (✖), HH control (★) and

HH historic run (▶). Faded squares (■) show outliers. Dotted lines show the ensemble

means.
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Figure 5.13: EOT1 SST and VWS regression maps for the MH control-1950 (left) and

one hist-1950 (right) runs during P1 and P2 for EPAC. Plots in blue/red colours indicate

the SST maps. Plots in purple/orange colours indicate the VWS maps. Location of EOT

is indicated with a green marker. Significance at the 90% CL is indicated with dots.
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correlations for all 6 higher-resolution atm-only and for 12 coupled runs in terms of ACE,

in addition to 7 atm-only and 13 coupled runs in terms of frequency.

Similarly to ENSO, AMO has a stronger influence on TCs in the EPAC for both

metrics in P2 and its influence can be particularly observed for the atm-only experiments.

In detail, the AMO index is significantly moderately anticorrelated with 1 (2) atm-only

run in terms of frequency (ACE) during P1, while it is significantly moderately or strongly

anticorrelated with 7 atm-only runs for both metrics in P2. For the coupled runs, the index

is significantly moderately anticorrelated with 5 (4) runs in terms of TC counts (ACE)

during P1, but only with 4 runs for both metrics during P2.

PDO’s influence on TC activity in at least 4 of the atm-only experiment is found for

both periods examined, for both metrics from significant, moderate or strong correlations

with the May-November averaged index. The index displays significant moderate anticor-

relations with only 3 of the coupled runs for P1 and with only 1 coupled run for P1 in

terms of TC counts. In terms of ACE, the PDO index appears to have a lesser significant

influence during P2 on the atm-only runs.

The locations for the first three EOTs for the coupled runs are presented in figure 5.11.

The different colors indicate the simulations of a given resolution, while the symbols

differentiate the runs for each resolution. For each color, the first symbol indicates the

control run, and the remaining symbols indicate the corresponding hist-1950 runs. The

top row presents the results for P1 and the bottom row presents the results for P2. It can

be seen that during P1 all N216 EOT1s are localised below 20◦𝑁 and between 115 and

85 ◦𝑊 , whereas during P2 the majority of them move westwards. The same can be seen

for EOT1 for the low-resolution experiments, however for the N512 the EOT1s remain

clustered between 105 and 85 ◦𝑊 and below 15◦𝑁 with the exception of the HH control

run which moves westwards during P2. This westward shift is associated with the spread

of the maximum of the mean track density towards the west in the future period as seen

from figure 5.2. All the EOT2 and EOT3 base points, irrespective of resolution, are spread

out over the entire basin as seen in figure 5.11 and there is no robust conclusion about how

their locations differ from one period to the other.

Figure 5.12 presents how the distribution of variance explained by the first three EOTs

changes from P1 to P2. It can be seen that for the LL and MM experiments, the percentage

of variance explained by EOT1 for the control runs increases from P1 to P2, whereas the
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Figure 5.14: Summary statistics about the Pearson correlation coefficients between the

EPAC EOT time series for the 20 coupled model simulations and the May-November

averaged ENSO, AMO and PDO indices during P1 (left) and P2 (right). Dark red (blue)

colors indicate how many of the runs have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.

ensemble mean of the percentage reduces. In contrast, for the MH runs the amount of

variance explained by the control run drops, while the corresponding percentage for the

hist-1950 run increases. Moreover, for all the HM as well as the HH hist-1950 runs the

amount of variance increases, whereas the percentage for the HH control run decreases.

These differences, particularly the opposite changes between control and historic runs,

albeit interesting, appear to be unrelated to the changes in the EOT1 positions from one

period to the other. Lastly, the overall distribution of percentage between the first three

EOTs for this basin is similar to the ones observed in chapters 3.4.2 and 4.3.

Examining SSTs and VWS for the control runs reveal that, during P1, EOT1 for 3

of the control runs are significantly (at the 90% CL) associated with cold SSTs in the

equatorial Pacific as shown on figure 5.13a, while the remaining two (specifically the MM

and HM) are linked to warm SSTs (not significant) in the same area (not shown). In

addition, as can be seen on the same figure, in some of the control runs linked to cold

Pacific SSTs, cold Atlantic SSTs appear to additionally influence TC activity (fig. 5.13a).

Contributing to this, VWS in an AMM-resembling pattern (inverse of fig. 1.3), confined

in the western part of the Atlantic can be seen (fig. 5.13c), while the eastern and central
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tropical Pacific are characterised by low VWS. It is possible that TC activity at that specific

location during P1 is more susceptible to conditions occurring in the Atlantic MDR and

Gulf regions simply due to proximity. In contrast, during P2, activity for all EOTs for the

control runs are associated with warm SSTs in the eastern and central Pacific and cool

SSTs in the Atlantic. Significance for the Pacific SSTs is seen only for the MH control run

(fig. 5.13e), which is additionally significantly associated with low VWS over the central

Pacific (fig. 5.13g).

Results from the hist-1950 runs during both periods appear to not be of significance.

The only conclusion that can be drawn from the results is that during P1 activity at

the first base points is almost equally linked to warm and cool SSTs in the Pacific and

simultaneously linked to mostly cool SSTs in the Atlantic as seen from figure 5.13b. The

VWS appears to be not an important local driver as seen from figure 5.13d. In contrast

to P1, during P2 a greater number of runs are found to be associated with warm Pacific

SSTs, while the amount of runs associated with cool SSTs in the Atlantic remain relatively

the same. Such conditions can be seen on figure 5.13f. This difference between the two

periods might be one of the impacts of a warming climate.

Figure 5.14 presents summary statistics for the Pearson correlations between the EOT1

time series and the three seasonally averaged climate indices (ENSO, AMO and PDO) for

EPAC TC activity during P1 and P2. Generally, it can be seen that activity associated with

the EOT1 base points is anticorrelated with the AMO index during both periods with more

than 17 of the runs, even though only a small portion of them are significant. In contrast

to the stability observed for the Atlantic mode, ENSO has a greater, positive influence

on TC activity during P2 compared to P1, since during P1 9 of the runs are positively

correlated with EOT1, whereas this number increases to 16 during P2. This change can

be particularly seen for the higher resolution runs and similarly to the AMO, only a small

portion of the correlations are significant. The relationship with the decadal Pacific mode

follows the relationship with ENSO, since the number of the models for which the EOT1s

are correlated with the index increase. It is important to note, however, that during P2

there are no significant relationships with the PDO index.
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Figure 5.15: Annual average of TC counts (a) and of ACE (b) in CPAC for P1 (green) and

P2 (purple). Column 1: ensemble of LL historic runs against the control run (♦); Column

2: ensemble of MM historic runs against the MM control (•), MH control run (✚) and

MH historic run (▲); Column 3: ensemble of HM historic runs against HM control run

(✖), HH control run (★) and HH historic run (▶). Faded squares (■) show outliers. Dotted

lines show the ensemble means.

Figure 5.15 presents how the annual mean of TC counts and ACE changes for the

historic and future periods. Results show decreases in both the mean annual number of

CPAC TC counts and ACE for atm-only runs, whereas increases are detected for both

metrics for the ensembles of coupled hist-1950 runs. Furthermore, for both metrics the

annual means of TC activity for the LL control and the HH hist-1950 run slightly increase

in P2, whilst for the MM, HM and HH control runs they decrease. Lastly, even though the

annual average frequency of the MH runs increases, the opposite is shown for the annual

average of ACE.

The CPAC basin is the basin in which TC activity is mostly influenced by the ENSO

index for both metrics (TC counts and ACE). TC activity in this basin is significantly

positively influenced by ENSO. The key difference between the two periods examined is

that for P1, only two atm-only LM and one atm-only MM experiments showed significant

positive correlations with ENSO, while for P2 all the atm-only MM and HM runs displayed

such relationships (not shown). For the coupled runs, however, the number of experiments
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Figure 5.16: EOT locations for the coupled simulations on CPAC TC activity during P1

(top) and P2 (bottom). The different colors indicate the simulations of a given resolution,

while the symbols differentiate the runs for each resolution. For each color, the first

symbol indicates the control run, and the remaining symbols indicate the corresponding

hist-1950 runs.
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Figure 5.17: Amount of variance explained by EOTs during P1 and P2 for CPAC.

Column 1: ensemble of LL historic runs against the control (♦); Column 2: ensemble of

MM historic runs against the MM control (•), MH control (✚) and MH historic run (▲);

Column 3: ensemble of HM historic runs against HM control (✖), HH control (★) and

HH historic run (▶). Faded squares (■) show outliers. Dotted lines show the ensemble

means.
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that are significantly influenced by ENSO reduce from 15 to 13 and from 17 to 13 in terms

of counts and ACE, respectively.

In terms of the influence by the decadal modes, for the relationship with the AMO,

there is a greater influence from the May-November averaged index during P2 compared to

P1. For both metrics and and both periods, significant moderate or strong anticorrelations

are found. For this basin, the number of significant correlations between the seasonal

PDO index and the time series of TC counts increases for the atm-only runs, whereas in

terms of ACE the increase is noticeable for the coupled runs as well. What is particularly

noteworthy for this basin is that in both metrics and in both periods the vast majority of

atm-only runs are positively correlated with the index, whilst most of the coupled runs are

anticorrelated, indicating how the coupling of GCMs can impact how the coupled climate

modes might influence TC activity.

The EOT analysis does not provide a clear understanding of how drivers of TC vari-

ability in this ocean basin change in a warming climate in the coupled simulations of

HadGEM3-GC3.1. However, an attempt will be made to document the results. Figure

5.16 presents the locations for the first three EOTs for all the coupled runs. The different

colors indicate the simulations of a given resolution, while the symbols differentiate the

runs for each resolution. For each color, the first symbol indicates the control run, and

the remaining symbols indicate the corresponding hist-1950 runs. The top row presents

the results for P1 and the bottom row presents the results for P2. A general observation

from the EOT1 base points of the coupled runs is that for both periods the base points are

spread in the basin, except for the EOT1 for the high resolution runs. The N512 EOT1s

during the future period concentrate below 20◦𝑁 and between 170 and 150◦𝑊 .

Figure 5.17 presents the distribution of variance explained by the first three EOTs

for the different coupled simulations. The drop in the mean variance explained by the

ensemble of historic runs is consistent across atmospheric resolutions. The same occurs

for the LL control and the two MH runs, whereas for the rest of the runs the amount of

variance explained increases. In general, the overall distribution of variance during P1

and P2 is similar to the one seen in previous chapters for TC activity in the CPAC region.

Even though there are no particular differences between the drivers of TC activity

during the two periods that can be observed systematically through the regression maps,

figure 5.18 presents, as an example, SST and VWS regression maps for the MM control run
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Figure 5.18: EOT1 SST and VWS regression maps for the MH control-1950 (left) and

one hist-1950 (right) runs during P1 and P2 for CPAC. Plots in blue/red colours indicate

the SST maps. Plots in purple/orange colours indicate the VWS maps. Location of EOT

is indicated with a green marker. Significance at the 90% CL is indicated with dots.
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Figure 5.19: Summary statistics about the Pearson correlation coefficients between the

CPAC EOT time series for the 20 coupled model simulations and the May-November

averaged ENSO, AMO and PDO indices during P1 and P2. Dark red (blue) colors

indicate how many of the runs have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.

and one of the corresponding historic runs. No connection is found between the location

of EOT1 and how they are influenced by the two drivers. The vast majority of runs during

both periods are mainly linked to warm SSTs in the eastern and central Pacific and cool

SSTs in the Atlantic region as shown on figures 5.18a, b, e and f. Where the influence by

the SSTs is significant, further influence by VWS is observed, mainly described by low

VWS over the equatorial Pacific and strong VWS over the Atlantic ITCZ, as shown on

figures 5.18d, g and h.

Figure 5.19 displays the summary statistics for the Pearson correlations between the

seasonally averaged climate indices and the EOT time series. In general, during P1,

EOT1 is anticorrelated with the two decadal modes (AMO and PDO) and correlated with

ENSO. Similar relationships can be been for AMO and ENSO during P2, but for PDO 4

of the model runs switch from negative to positive signs. Just as was observed for the two

previous basins only a small amount of the correlations are significant at the 90% CL.
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5.6 Western Pacific
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Figure 5.20: Annual average of TC counts (a) and of ACE (b) in WPAC for P1 (green)

and P2 (purple). Column 1: ensemble of LL historic runs against the control run (♦);

Column 2: ensemble of MM historic runs against the MM control (•), MH control run (✚)

and MH historic run (▲); Column 3: ensemble of HM historic runs against HM control

run (✖), HH control run (★) and HH historic run (▶). Faded squares (■) show outliers.

Dotted lines show the ensemble means.

The annual averages of TC counts and ACE in the coupled model simulations for

WPAC for the two periods examined are displayed on figure 5.20. For the atm-only runs,

the mean annual frequency and ACE decrease in a warming climate. For the coupled

runs, a decrease in the LL ensemble mean annual frequency of TCs can be seen, whereas

the mean annual ACE remains relatively the same. On the other hand, increases in the

ensemble means for N216 for both metrics can be seen, as well as for the N512 ensemble

mean for ACE, whereas a decrease in the N512 ensemble mean for TC counts is observed.

For the simulations indicated by markers, the mean TC frequency increases for the MM and

HH control runs as well as the MH hist-1950 run, whereas slight decreases are observed

for the HM control and HH hist-1950 runs. In contrast, the annual mean ACE decreases

for the MH control and the HH hist-1950, increases for the MH hist-1950 run and remains

relatively the same for the MM, HM and HH control runs.

There is no robust influence from ENSO on the frequency of TCs in the WPAC region

during P1, since from the 6 significant correlation coefficients found between ENSO and
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the time series of counts, 4 of them describe a negative relationship with the index, while

the remaining 2 describe a positive relationship. In terms of ACE however, all the LL

coupled runs as well as half of the N216 coupled runs show a significant moderate positive

relationship with the seasonal index. In P2, only 4 out of the 31 the correlations computed

show a significant positive influence on the time series of counts from the seasonal ENSO

index. In contrast, for ACE at least half of the runs, the majority of whom are atm-only,

are significantly moderately or strongly correlated with the index.

Of the two decadal modes, the AMO exerts a greater influence on TC activity during P2

compared to P1, particularly for ACE as seen from significant anticorrelations between the

time series (of TC counts and ACE) and the index. On the other hand, the May-November

averaged PDO index appears to have a significant (weak or moderate) anticorrelation with

5 out of the 31 model simulations examined in terms of counts and with 3 out of 31 model

simulations in terms of ACE during P2.

TC track densities appear to generally move towards the north/northwest during the

future period as shown from the locations of regional maxima on figure 5.2, which are in

agreement with other studies (Kossin et al., 2016, 2014; Roberts et al., 2020b). Following

the EOT analysis results from the other two Pacific regions, it is nearly impossible to find

a robust connection between the position of EOTs in the two periods examined, except

perhaps for the N512 experiments. Figure 5.21 presents how the first three EOTs of the

coupled model experiments are distributed in the basin. The different colors indicate

the simulations of a given resolution, while the symbols differentiate the runs for each

resolution. For each color, the first symbol indicates the control run, and the remaining

symbols indicate the corresponding hist-1950 runs. The top row presents the results for

P1 and the bottom row presents the results for P2. In contrast to what is shown by the

mean track densities, the majority of the EOT1 base points move southeast during P2 with

the exception of the HH control run, which moves outside of the tropics. For the rest of

the EOTs, irrespective of the experiments’ resolution, EOT2 base points are spread in the

entire basin, while EOT3 base points move closer to the continent.

The overall distribution of variance explained by the first three EOTs is presented in

figure 5.22 and follows a similar pattern to that in chapters 3.6.2 and 4.5 since there is

generally small difference between EOT1 and EOT2. The LL control and ensemble mean

percentage of variance explained is lower during P1. In contrast, the amount of variance
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Figure 5.21: EOT locations for the coupled simulations on WPAC TC activity during P1

(top) and P2 (bottom). The different colors indicate the simulations of a given resolution,

while the symbols differentiate the runs for each resolution. For each color, the first

symbol indicates the control run, and the remaining symbols indicate the corresponding

hist-1950 runs.
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Figure 5.22: Amount of variance explained by EOTs during P1 and P2 for WPAC.

Column 1: ensemble of LL historic runs against the control (♦); Column 2: ensemble of

MM historic runs against the MM control (•), MH control (✚) and MH historic run (▲);

Column 3: ensemble of HM historic runs against HM control (✖), HH control (★) and

HH historic run (▶). Faded squares (■) show outliers. Dotted lines show the ensemble

means.
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Figure 5.23: EOT1 SST and VWS regression maps for the HH control-1950 (left) and

one hist-1950 (right) runs during P1 and P2 for WPAC. Plots in blue/red colours indicate

the SST maps. Plots in purple/orange colours indicate the VWS maps. Location of EOT

is indicated with a green marker. Significance at the 90% CL is indicated with dots.
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Figure 5.24: Same as fig. 5.23 but for EOT2
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Figure 5.25: Summary statistics about the Pearson correlation coefficients between the

WPAC EOT time series for the 20 coupled model simulations and the May-November

averaged ENSO, AMO and PDO indices during P1 and P2. Dark red (blue) colors

indicate how many of the runs have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.

explained by the MM ensemble and the MH hist-1950 run shows an increase, whereas the

percentages for the MM and MH control runs show a decrease. For the N512 experiments

the ensemble mean remains the same, the amount of variance for the HM control run

increases slightly and for the two HH runs it decreases.

The SST and VWS regression maps show that during P1, 3 of the EOT1 base points

for the control runs that are positioned in the western part of the region are associated with

warm (cold) SSTs in the west (equatorial eastern and central) Pacific as shown on figure

5.23a, as well as weak (strong) VWS over the same regions as displayed on figure 5.23c.

For P2, no robust conclusion can be drawn from the SST regression maps, however, the

EOT1 base points appear to be located in regions of weak VWS. In contrast, EOT1s for

the different historic runs appear to be positioned in regions between warm and cool SSTs

and strong and weak VWS as shown from figures 5.23b, f, d and h, respectively.

As indicated by the amount variance explained by the EOTs, for this basin it is

important to investigate more EOT modes once the influence of EOT1 is removed. Figure

5.24 presents SST and VWS regression maps for EOT2 for the same runs as in 5.23. It

appears that the conditions influencing the control run in EOT1 now influence EOT2 for

the historic run. In addition, the conditions influencing EOT2 during P1 are similar to the

CHAPTER 5 Page 187



5.6. WESTERN PACIFIC

conditions influencing EOT2 during P2 considering that the latter is positioned near the

continent. The conditions are described by significant cold La-Niña-resembling patterns

in the eastern and central Pacific accompanied by strong VWS, causing TCs to form and

develop further west. It is possible that the difference between the two periods for EOT2

indicates that in a warming climate, during La-Niña events, the variability of TCs will be

further confined in the western part of the region.

The most striking observation from figure 5.25, which presents the summary statistics

for the Pearson correlation coefficients between the EOTs and the ENSO, AMO and PDO

indices, is the fact that very few significant relationships with the indices are found during

both periods. Moreover, it appears that the number of correlations and anticorrelations

with the AMO index reverse from one period to the other, whereas the relationships with

ENSO and PDO remain relatively the same.
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5.7 North Indian Ocean
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Figure 5.26: Annual average of TC counts (a) and of ACE (b) in NIND for P1 (green) and

P2 (purple). Column 1: ensemble of LL historic runs against the control run (♦); Column

2: ensemble of MM historic runs against the MM control (•), MH control run (✚) and

MH historic run (▲); Column 3: ensemble of HM historic runs against HM control run

(✖), HH control run (★) and HH historic run (▶). Faded squares (■) show outliers. Dotted

lines show the ensemble means.

The ensemble means for annual number of TCs and ACE in the NIND region decrease

in terms of the coupled runs (fig. 5.26) and the atm-only N96 runs. For the N216 atm-only

runs the ensemble mean of annual frequency stays the same but the corresponding mean

for ACE decreases, whereas for the N512 experiments the mean frequency drops and ACE

increases. For the individual experiments, for both metrics, increases for the LL control,

MM control, MH control, HH control and HH hist-1950 runs are observed from one period

to the other. In contrast, the annual means for the MH hist-1950 run decrease, while the

average number of yearly counts for the HH control run increases and ACE increases.

Even though no robust influence from ENSO is observed for TC activity in the NIND

region, significant moderate anticorrelations are found for some of the coupled runs in

both metrics and for both of the periods examined in this chapter. The differences between

the two periods which were found for the other basins, are not observed for TC activity

in this basin. Just like in the case of current climate, no robust conclusion can be formed

about which climate modes, especially in a changing climate, can influence TC activity
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Figure 5.27: EOT locations for the coupled simulations on NIND TC activity during P1

(top) and P2 (bottom). The different colors indicate the simulations of a given resolution,

while the symbols differentiate the runs for each resolution. For each color, the first

symbol indicates the control run, and the remaining symbols indicate the corresponding

hist-1950 runs.
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Figure 5.28: Amount of variance explained by EOTs during P1 and P2 for NIND.

Column 1: ensemble of LL historic runs against the control (♦); Column 2: ensemble of

MM historic runs against the MM control (•), MH control (✚) and MH historic run (▲);

Column 3: ensemble of HM historic runs against HM control (✖), HH control (★) and

HH historic run (▶). Faded squares (■) show outliers. Dotted lines show the ensemble

means.
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Figure 5.29: EOT1 SST and VWS regression maps for the HH control-1950 (left) and

one hist-1950 (right) runs during P1 and P2 for NIND. Plots in blue/red colours indicate

the SST maps. Plots in purple/orange colours indicate the VWS maps. Location of EOT

is indicated with a green marker. Significance at the 90% CL is indicated with dots.
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Figure 5.30: EOT2 SST and VWS regression maps for the HH control-1950 (left) and

one hist-1950 (right) runs during P1 and P2 for NIND. Plots in blue/red colours indicate

the SST maps. Plots in purple/orange colours indicate the VWS maps. Location of EOT

is indicated with a green marker. Significance at the 90% CL is indicated with dots.

CHAPTER 5 Page 192



5.7. NORTH INDIAN OCEAN

ENSO

AMO

PD
O

6

14

9

11
9

6

17%

83%

14%

86%

11%

89%

0%

100%

22%
78%

33%

67%

P1

ENSO

AMO

PD
O

7

13

11

9
5

10

0%

100%

15%

85%

18%

82%

0%

100%

20% 80%
20%

80%

P2

Positive r
90% sig
not sig
Negative r
90% sig
not sig

Figure 5.31: Summary statistics about the Pearson correlation coefficients between the

NIND EOT time series for the 20 coupled model simulations and the May-November

averaged ENSO, AMO and PDO indices during P1 and P2. Dark red (blue) colors

indicate how many of the runs have positive (negative) correlations with each index,

medium red (blue) indicate how many of the dark red (blue) correlations are significant at

the 90% CL, while light red (blue) indicate how many are not significant.

in the this region. Even from the few significant relationships found from the Pearson

correlation coefficients, there is no agreement on whether the AMO is positively or

negatively anticorrelated with TC activity. For P1, there is no PDO influence observed for

any of the atm-only experiments in both metrics, while there are contradictory significant

correlations for some of the coupled simulations. For P2, two of the atm-only runs display

significant positive correlations with the May-November averaged PDO index. For the

coupled runs, only 2 of them display a significant, this time negative, correlation with the

index.

Even though it appears that during P2, the control runs have more TCs in the Bay of

Bengal than the historic runs, compared to P1 (fig. 5.2), results of EOT analysis appear

to be inconclusive. Figure 5.27 presents the locations for the first three EOTs for all the

coupled runs. The different colors indicate the simulations of a given resolution, while

the symbols differentiate the runs for each resolution. For each color, the first symbol

indicates the control run, and the remaining symbols indicate the corresponding hist-1950

runs. The top row presents the results for P1 and the bottom row presents the results for

P2. For the N96 runs, all EOT1 base points are clustered very close in the Bay of Bengal

during both periods examined. This result is expected since, according to the mean track
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density above 2 TCs per season per unity area over the period examined, there are no track

densities in the Arabian Sea (fig. 5.1c - 5.1f). For the N216 experiments, during P1 all

the EOT1s are once again in the Bay of Bengal, but they are not as closely located as in

the case of the N96 experiments. During P2, all EOT1s for the historic runs are clustered

again in the Bay of Bengal, but EOT1 for the MM control run is located in the Arabian

Sea (fig. 5.27). These results are linked back to the track densities, since in both periods,

the majority of TCs are in the Bay of Bengal but, the mean track densities extend in the

Arabian Sea (in contrast to the N96 runs), as seen on figures 5.1i - 5.1l. In addition,

compared to the historic runs, it seems like the MM control run has more TCs in the

Arabian Sea during P2 (fig. 5.1i -5.1k), which might explain why EOT1 for that particular

run is not in the same location as the ones for the historic runs. For the N512 simulations,

EOT1s during P1 are again in the eastern part of the NIND region, the majority of them

being in the Bay of Bengal, as shown on figure 5.27. During P2, EOT1s are no longer

collectively in the eastern part of the region, since for half of the simulations examined

(specifically one HM historic run and the two HH runs), EOT1s are located in the Arabian

Sea or near the west coast of India. During both periods, the HM historic runs show more

TCs in the Arabian Sea than the corresponding control run (not shown). In addition, the

HH control run has more TCs both in the Bay of Bengal and the Arabian Sea than the HM

control run (not shown). Lastly, during P2 there are more TCs in both areas for both HH

runs compared to P1 (fig. 5.2), which is perhaps the reason why more EOT1s are in the

Arabian Sea during P2 compared to P1.

The overall distribution of variance explained by the first three EOTs as presented on

figure 5.28, is similar to the ones shown in chapters 3.7.2 and 4.6. It can be seen that,

irrespective of resolution, all the ensemble means of the amount variance explained by

EOT1 increase during P2. In contrast, for all the individual runs shown with markers,

except the HH hist-1950 (which is the one relocating in the Arabian Sea), the percentages

of variance explained drop during P2.

Based on the differences between the SST and VWS regression maps for the control

and historic runs during the two periods examined, no robust conclusion can be drawn

about how a warming climate will impact TCs in the region. An example of this is shown

on figures 5.29 and 5.30, which present the SST and VWS regression maps for the first

two EOTs, respectively, for the HH control and corresponding historic run.
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For the control run EOT1, which is located in the eastern part of India, is associated

with cold SSTs in the northern subtropical Pacific in both periods (fig. 5.29a and e)

accompanied by negative PDO-resembling VWS conditions (fig. 5.29 c and g). The

regression patterns are the reverse of the patterns shown on figure 1.4. The only difference

between the two periods is that EOT1 during P2 is located in the Arabian Sea and the

significant regressions are largely in the central north Pacific, whereas during P1 the same

conditions extended in the northwestern part of the basin. In contrast, EOT1 for the HH

historic run during P1, is located over the continent above the Bay of Bengal and it is

associated with significant warm equatorial and southern Pacific SSTs (fig. 5.29b) in the

eastern and central Pacific, accompanied by weak VWS conditions over the same region

(5.29d). During P2, EOT1 is located over the west coast of India near the Arabian Sea,

and it is significantly linked to cold SSTs (fig. 5.29f) and strong VWS (fig. 5.29h) in the

central equatorial Pacific.

For this region and for the two high-resolution runs, it is found that the EOT2s explain

more than 20% of the variance once the influence from the first mode is removed, deeming

it necessary to look at the conditions linked to the second modes. During P1, TC activity

at EOT2 for the HH control run appears to be associated with cold equatorial SSTs in the

eastern and central Pacific (fig. 5.30a), accompanied by strong VWS conditions over the

same region (fig. 5.30c). During P2, however, EOT2 is significantly linked to warm SSTs

in the Arabian Sea and to weak VWS in the tropical NIND region. For the HH historic

run, EOT2 is not associated with any significant conditions (fig. 5.30b and f), whereas

during P2, EOT2 is in relatively the same position as EOT1 during P1, but it does not

appear to be related to any significant conditions either (fig. 5.30d and h).

This lack of robust conclusions can be further observed from the Pearson correlations

coefficients between the EOTs and the climate indices. Only a handful of the coefficients

are significant, and the number of correlations and anticorrelations with the AMO index

reverse from P1 to P2. In addition, the overall anticorrelation with ENSO remains almost

constant between the two periods, whereas the relationship with PDO reverses as seen

from the summary statistics on figure 5.31.
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5.8 Conclusion

In summary, the impact of climate change on the drivers of TC activity, particularly SSTs

and VWS, is assessed by comparing the drivers between control and historic runs during

the 1950-1980 period with those during the 2020-2050 period. Table 5.1 presents the

main impacts of climate change on TC activity regarding changes in intensity, frequency

or shifts the activity in the region. Information on any clear influence by the climate modes

of variability or SST and VWS connection is also included.

Results for the NATL region show an overall increase in TC ACE, whereas they appear

to be inconclusive about whether there is a north/northeast or south shift of TC activity in

a warming climate. In addition, the influence of SSTs and VWS associated with climate

modes on historic and future runs depends on the locations of EOT1 base points, with

TC activity generally correlated with the decadal Atlantic mode and anticorrelated with

ENSO. A westward shift in the future is found for TC activity in the EPAC region, but

no robust conclusion is formed on which SST or VWS conditions are the main source of

influence. In addition, an increase in the ensemble means of both ACE and frequency

for the coupled runs has been found. For TC activity in the CPAC region, an increase in

activity is found for the coupled simulations during the 2020-2050 period. Additionally,

TC activity is found to be generally driven by warm SSTs in the central Pacific and cold

SSTs in the Atlantic. For TC activity in the WPAC region, an increase in the ensemble

mean of ACE for the coupled N216 and N512 experiments and a poleward shift of TC

activity was found. However, results have been inconclusive regarding the dynamic and

thermodynamic drivers of this basin’s activity in a warming climate. Lastly, for the NIND

region, results are inconclusive except for a decrease in the ensemble means of ACE and

frequency for the coupled experiments.

Admittedly, a warming climate can lead to stronger TCs since warmer SSTs can provide

more favourable conditions for TC formation as well as a greater source of energy useful

for intensification. Investigating climate indices with a length of only 100 years limits our

ability to examine how climate indices might be impacted by a warmer climate, and by

extend how the corresponding climate modes might influence TC activity in the different

basins. Studies such as the one by Freund et al. (2020), which investigates the impact of

warming patters on El-Niño in CMIP5 and CMIP6 models, are essential in understanding

these future changes.
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Chapter 6

Development of a simple, open-source

hurricane wind risk model for Bermuda

with a sensitivity test on decadal

variability

Abstract A hurricane-catastrophe model was developed for assessing risk associated

with hurricane winds for Bermuda by combining observational knowledge with property

value and exposure information. The sensitivity of hurricane wind risk to decadal vari-

ability of events was tested. The historical record of hurricanes passing within 185km

of Bermuda was created using IBTrACS. A representative exposure dataset of property

values was developed by obtaining recent governmental Annual Rental Value data, while

Miller et al. (2013) provided a vulnerability relationship between increasing winds and

damage. With a probabilistic approach, new events for 10,000 years were simulated for

three different scenarios using (1) the complete record of annual TC counts; (2) two high-

frequency periods and; (3) two low-frequency periods. Exceedance probability curves

were constructed from event loss tables, focusing on aggregating annual losses from

damaging events. Expected losses of low-frequency scenarios were less than losses of

high-frequency scenarios or when the whole historical record was used. This framework

suffers from uncertainties due to different assumptions, and biases within IBTrACS. Small

data sizes limit our ability to conduct a formal model validation and results should be

interpreted in this context. In the future, sensitivity tests on the different components of
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6.1. INTRODUCTION

the model will be performed.

6.1 Introduction

Tropical cyclones (TCs) belong to the category of weather systems which bring severe

damage and destruction across many regions of the planet in respect to rain, winds and

storm surge. Studies by McCarthy et al. (2015) and Goldenberg et al. (2001) have shown

that TC activity around the globe undergoes important variability through the decades.

Insurance and re-insurance companies can be particularly impacted by TCs, especially in

countries that are more likely to see a TC making landfall.

Table 6.1 provides information about the ten costliest Atlantic hurricanes (Kishore

et al., 2018; NOAA, 2020a; U.s. Bureau of Labor Statistics, n.d.). It can be seen that

four of them occurred during the last Atlantic hurricane seasons (2017 and 2018) while

nine of them occurred during the past twenty years. The columns indicate: name; year;

maximum achieved intensity; total numbers of fatalities; total cost in billions of US dollars

unadjusted for inflation; and adjusted total cost for 2017 in billions of US dollars. Deaths

and damage costs refer to the total numbers of fatalities (direct and indirect) and damages

across all the affected areas and countries. It should be highlighted that when thinking

about damage and impact from a hazard, it is useful to use a metric of the affected area’s

wealth, for example the Gross Domestic Product (GDP). Hurricane Maria (2017) can be

seen as a notable example: even though the total damage caused by the hurricane was

around $91.6 bn, the impact on Dominica was way more significant than the impact on

the United States. The damage after adjusting for inflation was 244% of Dominica’s 2017

GDP. In addition, the uncertainty and large range of fatalities (particularly in Puerto Rico)

caused by Hurricane Maria can be attributed to the fact that the assessment of deaths

was difficult to perform and to that many people died because of delays (or inability) in

receiving medical care (Kishore et al., 2018).

Insurance and re-insurance companies often use catastrophe models to quantify the risk

associated with hurricanes. A catastrophe model is used for assessing financial impacts

of catastrophes, for estimating physical damages of properties and assigning probabilities

to the range of potential outcomes (RMS, 2020). There are three main components:

hazard (in this case, information about tropical cyclones), exposure (information about
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properties) and vulnerability (information about the damage a property can get). The goal

of catastrophe modelling is to combine the three main components for the estimation of

financial loss from hazards.

The aim of the study is to combine what is known from the historical hurricane

record with information about property values, exposure and vulnerability in order to

develop a hurricane catastrophe risk model to assess the risk for Bermuda. It is worth

noting that the intent of this study is not to rigorously reproduce the methodology of

traditional catastrophe model development used by insurers and re-insurers. However,

we use the conceptual process as a guide to develop our hurricane wind risk model.

Figure 6.1 presents time series of annual numbers of tropical cyclones. The red line

indicates the time series for the whole North Atlantic basin, while the black bars present

the number of storms that came within 185km (or 100nm) of Bermuda. The historical

record of hurricanes is created by using the International Best-Track Archive for Climate

Stewardship (IBTrACS) (Knapp et al., 2010). Recent Annual Rental Value (ARV) data,

taken from the Bermuda Government (Land Valuation Department, 2019), are used for

the development of a representative dataset of property values for each of the thirty-six

electoral constituencies in Bermuda. Miller et al. (2013) have performed damage analysis

for Hurricane Fabian (2003) that shows the estimation of damage functions incorporating

effects of topography. The study concluded that when topographic effects are taken into

consideration for the near-surface wind speeds, there is a correlation between increasing

damage and elevation.

6.2 Methodology

6.2.1 Data

For the purposes of this study, IBTrACS was used for obtaining a historical record for

storms that have impacted Bermuda. In addition, ARV data from the Bermuda Govern-

ment, are used for developing a representative dataset of property values for each of the

thirty-six electoral constituencies in Bermuda.
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Table 6.1: Top 10 costliest Atlantic Hurricanes (as of 2019)

NAME YEAR Category Deaths Cost in bn Cost 2017 in bn

Katrina 2005 5 1200 $125 $164.9

Harvey 2017 4 68 $125 $129.5

Maria 2017 5 estimates up

to > 8500

$91.6 ≥ $94.9

Irma 2017 5 47 $77.2 $66.5

Sandy 2012 3 233 $68.7 $76.3

Ike 2008 4 103 $38 $43.3

Wilma 2005 5 23 $27.4 $34.4

Andrew 1992 5 26 $27.3 $47.6

Ivan 2004 5 92 $26.1 $33.9

Michael 2018 5 74 $25.1 $25.1 (US)

6.2.1.1 Best-track Dataset (Observations)

IBTrACS is a combination of the best track data taken from different agencies such as the

Regional Specialized Meteorological Centers (RSMCs), the Tropical Cyclone Warning

Centers (TCWCs) as well as other national agencies. The IBTrACS-ALL (v03r03) dataset,

which includes data taken from all agencies, is used for this study. Full details can be found

in Knapp et al. (2010). Data are available since 1877 until 2018. The agencies provide

information about the best estimated position of each storm in terms of longitude and

latitude in addition to reporting wind speed and mean sea level pressure (MSLP) values.

The different agencies use different wind-averaging periods and the values are reported in

knots. For the North Atlantic data are derived from the Hurricane Databases (HURDAT2)

and they are provided at 6-hour intervals. The wind speeds are 1-min sustained winds at

10m and they have been converted from knots to meters per second (multiplied by 1.94).
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Figure 6.1: Time series of annual numbers of tropical cyclones. Red line shows the time

series for the whole North Atlantic basin. The black bars show the time series of storms

that came within 185km of Bermuda.

6.2.2 Exposure

6.2.2.1 Annual Rental Value Data

The Government of Bermuda’s Land Valuation Department collects information about

locations, types of property, size of living accommodation, size of any ancillary accom-

modation, amenities and characteristics (Land Valuation Department, 2019). They provide

the Land Valuation List which includes location, type and annual rental value (ARV) data.

The ARV data used in this study are from 2009, but accessed in 2019, since more recent

data were unavailable. A few representative examples of the ARV data are shown in Table

2.1. In order to protect the householders’ personal information, the addresses displayed

on the table are anonymized. The annual rental value is converted to estimated actual

property value (PV) by multiplying by a factor of 50.

In operational catastrophe models developed for re/insurance applications, building

parameters such as construction type and number of stores are often used as second-order

modifiers. In the case of the current analysis, secondary modifiers such as property type
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and location are available in the ARV dataset, and could be used in future to refine and

enhance this modelling framework.

Table 6.2: Examples for the ARV data.

2009

ARV

PV Description Address (not real) Parish

$15.600 780.000 APARTMENT 5 HARRY STREET

HM01

CITY OF

HAMILTON

$21.600 1.080.000 SHOP 8 HARRY STREET

HM01

CITY OF

HAMILTON

$13.800 690.000 APARTMENT 2 RONALD ROAD

HM38

DEVONSHIRE

$33.600 1.680.000 HOUSE 8 FRED LANE MA12 SANDYS

$40.800 2.040.000 HOUSE 11 FLER LANE GE14 ST. GEORGE’S

6.2.3 Bermuda’s Historical Record of Hurricanes

The first step of the process was to obtain a historical record of hurricanes that have

either made landfall or that have been in close proximity to Bermuda. Therefore, by using

the complete record for IBTrACS (1877 - 2018), for every year, for every storm, every

track point which came within 185km of Bermuda (32.39◦N, 64.68◦W) along with the

wind speed information is kept for further analysis. The choice of 185km is based on

the threat parameter used by the Bermuda Weather Service (BWS, 2020). The process is

summarised on figure 6.2 (left). Figure 6.2 (right) presents all the points that were kept

for further analysis. Bermuda is indicated with a black cross.

For each point that is kept, the distance from Bermuda is calculated by using the

Haversine formula given by:

𝑑 = 𝑟 ∗ 𝑐 (6.1)

where 𝑟 = 6371𝑘𝑚 is the Earth’s radius and 𝑐 is given by:

𝑐 = 2∗ arctan(
√
𝑎

√
1− 𝑎

) (6.2)
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Figure 6.2: Left: Schematic of the methodology for creating the dataset of storms for

Bermuda. Right: Tropical cyclones that passed within 185km from Bermuda (black

cross).

where

𝑎 = sin2( 𝜙2 −𝜙1
2

) + cos(𝜙1) ∗ cos(𝜙2) ∗ sin2(𝜆2 −𝜆1
2

) (6.3)

with 𝜙1 and 𝜆1 the latitude and longitude coordinates of the storm track point in radians

and 𝜙2 and 𝜆2 the latitude and longitude coordinates of Bermuda in radians. For each

point, a radius of maximum wind (𝑟𝑚𝑎𝑥) was chosen as followed:

𝑟𝑚𝑎𝑥 =



200𝑘𝑚, 𝑣 ≤ 17𝑚𝑠−1

125𝑘𝑚, 18 ≤ 𝑣 ≤ 32𝑚𝑠−1

95𝑘𝑚, 32 < 𝑣 ≤ 42𝑚𝑠−1

50𝑘𝑚, 42 < 𝑣 ≤ 49𝑚𝑠−1

30𝑘𝑚, 49 < 𝑣 ≤ 58𝑚𝑠−1

25𝑘𝑚, 58 < 𝑣 ≤ 70𝑚𝑠−1

20𝑘𝑚, 𝑣 > 70𝑚𝑠−1

(6.4)

where 𝑣 is the intensity from IBTrACS. The values for 𝑟𝑚𝑎𝑥 were chosen empirically based

on a collection of data from H*WIND (NOAA, 2020b) which included tropical cyclones

that affected Bermuda during the period 2006-2014. Then for each point that was saved,
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the intensity of the storm at Bermuda is calculated by:

𝑣𝐵𝐷𝐴 =


𝑣 ∗

√︃
𝑟𝑚𝑎𝑥

𝑑
, 𝑑 > 𝑟𝑚𝑎𝑥

𝑣, 𝑑 ≤ 𝑟𝑚𝑎𝑥

(6.5)

where 𝑑 is given by the aforementioned Haversine formula. The first part of equation

6.5 is a variation of the Rankine Vortex (Holland et al., 2010). Afterwards, for each

year, for each storm, the point with the highest estimated intensity at Bermuda is retained.

Eventually, all the points of the highest estimated intensities for all the storms that passed

within 185km of Bermuda are obtained. By sorting the data according to distance and

fitting a logarithmic curve, a relationship between the distance of a storm from Bermuda

and its estimated wind speed at Bermuda is obtained. The relationship is presented in

figure 6.3 and it is described by:

𝑓 (𝑥) = 63.1−8.05∗ ln(𝑥), (6.6)

where 𝑥 is the distance (𝑑) in 𝑘𝑚 and 𝑓 (𝑥) is the wind speed in 𝑚𝑠−1.

A very important component of a catastrophe model is the relationship between wind

and damage. According to Sealy and Strobl (2017) the appropriate way to simulate the

relationship is by varying the damage of the property with the cubic power of the wind

speed. For the purposes of this study, a damage index, f, proposed by Emanuel (2011) is

used for the calculation of the proportion of damage as a function of wind speed, V:

𝑓 =
𝑢3
𝑖

1+𝑢3
𝑖

(6.7)

where

𝑢𝑖 =
𝑀𝐴𝑋 [(𝑉𝑖 −𝑉𝑡ℎ𝑟𝑒𝑠ℎ),0]

𝑉ℎ𝑎𝑙 𝑓 −𝑉𝑡ℎ𝑟𝑒𝑠ℎ
(6.8)

where𝑉𝑖 is the estimated wind speed at Bermuda (calculated by equation 6.6),𝑉𝑡ℎ𝑟𝑒𝑠ℎ is the

wind speed below which no damage occurs and 𝑉ℎ𝑎𝑙 𝑓 is the value of wind speed at which

half of the property is damaged. Different studies (Elliott et al., 2015; Emanuel, 2011;

Sealy and Strobl, 2017) have used a threshold of around 25.7𝑚𝑠−1 (50kts) for 𝑉𝑡ℎ𝑟𝑒𝑠ℎ,

while for 𝑉ℎ𝑎𝑙 𝑓 different values were chosen based on the nature of each study. For this

study, in order to choose appropriate thresholds, the data by Miller et al. (2013) were used.

They found a threshold of approximately 37.5𝑚𝑠−1 for the occurrence of roof damage.
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Therefore, by using 𝑉𝑡ℎ𝑟𝑒𝑠ℎ = 37.5𝑚𝑠−1 and by varying 𝑉ℎ𝑎𝑙 𝑓 to best fit the Miller et al.

(2013) data (see figure 6.4), it was found that at 𝑉ℎ𝑎𝑙 𝑓 = 95𝑚𝑠−1 half of the property was

damaged.
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Figure 6.3: Plot of estimated wind speeds at Bermuda against the distance from Bermuda

(orange line). The blue line indicates a fitted logarithmic curve.

Figure 6.4: Relationship between damage and wind speed. Black dots indicate an estimate

of the Miller et al. (2013) figure 12 data. Left: Fitting the data with the different damage

index curves by varying 𝑉ℎ𝑎𝑙 𝑓 ; Right: projection of the different curves that were fitted to

the data.
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6.2.4 Generating New Datasets

The next step of the study involved using the historical record of annual number of storms

for Bermuda shown in figure 6.1 to generate new random events. In order to do that,

the probability of a number of hurricanes occurring was calculated. Previous studies

(Emanuel, 2011; Jagger et al., 2001; Klotzbach, 2010; Scherb et al., 2015; Sealy and

Strobl, 2017) have suggested using the Poisson distribution since it provides a simple

method for computing the probability of hurricane occurrence. The Poisson distribution

is given by:

𝑃(𝑋 = 𝑘) = 𝜆𝑘

𝑘!
exp−𝜆 (6.9)

where 𝜆 is taken as the average annual number of hurricanes (𝜇 = 0.86) for Bermuda

from the historical record. Afterwards, random events (fig. 6.6) for the period of ten

thousand years were generated from the Poisson distribution. To each event, a randomly

generated number for distance (in km) between 0 and 185 was assigned. Then, by using

equations 6, 7 and 8 a wind speed and a damage ratio value are calculated and assigned

to each event. Eventually, by using the PV data, the potential loss for each event can be

estimated and then the sum of all the losses in each year is calculated. The process of

generating the new datasets is summarized in figure 6.5.

Figure 6.5: Schematic of the process of generating the new datasets

6.2.5 Incorporating Decadal Variability

Numerous studies have shown that on decadal time scales TC activity in the North Atlantic

can be influenced by the Atlantic Multidecadal Oscillation (AMO) through variations of

sea surface temperatures (Goldenberg et al., 2001; Hallam et al., 2021; Mann et al., 2021;

McCarthy et al., 2015; Murakami et al., 2020; Ting et al., 2019). The associated warm
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and cold phases of the AMO can last for 20-40 years and they can lead, either directly

or via modulation of other modes, such as the El-Niño Southern Oscillation (ENSO), to

more or less active hurricane seasons (Klotzbach and Gray, 2008; Knight, 2005; Zhang

and Delworth, 2006). Therefore, the final step of the study was to test the model for

different climate scenarios. In order to do that, different time periods with either increased

or decreased TC activity within the time series were examined. The different periods were

chosen based on the following steps:

1. Find the mean (𝜇𝑎𝑙𝑙) of the time series for the annual number of tropical storms in

Bermuda.

2. Calculate the 10-year moving average of the time series (centred–red solid line in

figure 6.7).

3. Find the mean of the 10-year moving average (𝜇10 – red dashed line in figure 6.7).

4. For high-frequency phases, take at least 10 consecutive years for which the 10-

year moving average is greater than 𝜇10. Two high frequency phases were found:

1973-1989 and 1999-2014.

5. For low-frequency phases, take at least 10 consecutive years for which the 10-year

moving average is less or equal than 𝜇10. Two low-frequency phases were found:

1882-1895 and 1897-1930.

Then, for each phase, by using the mean of the phase, new events were randomly generated

by following the process outlined in section 6.2.4.
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Figure 6.6: Time series of simulated events for 10000 years.
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Figure 6.7: Time series for Bermuda (black bars). The 10-year moving average is shown

with the red solid line and its mean is shown with the dashed red line.

6.3 Results

The output of a catastrophe model is the loss amount from a catastrophic peril. This is

given in the form of an Event Loss Table – the format and a data sample is shown in

Table 6.3. By looking at the time series of simulated events on figure 6.6, the maximum

number of events in a single year in that scenario is seven individual events. Therefore,

for Table 6.3 column 1 corresponds to the year number, columns 2 to 8, correspond to

the losses from the individual events and column 9 corresponds to the amount of loss in a

year (the sum of losses from the individual events). It can be seen that there were years

with no events (e.g. year 7), years with a single non-damaging event (e.g. year 1), years

with a single damaging event (e.g. year 0), years with multiple non-damaging events (e.g.

year 4), years with multiple damaging events (e.g. year 8) and years with both damaging

and non-damaging events (e.g. year 3). From this tabulated output one can construct an

Exceedance Probability (EP) curve. The EP curve describes the annual probability that an

amount of loss will be exceeded. For constructing the EP curves we focus on aggregating

annual losses. If a more granular analysis were needed, effort would have been made

to establish a specific identifier for each event. However, it is worth noting here that

the model output has been constructed from an Aggregate Exceedance Probability (AEP)

perspective, and neglects further analysis of individual contributions to the annual losses
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Table 6.3: Example Event Loss Table

Year Event1 Event2 Event3 Event4 Event5 Event6 Event7 Sum

0 14512670 - - - - - - 14512670

1 0 - - - - - - 0

2 0 0 - - - - - 0

3 0 0 0 10238454 - - - 10238454

4 0 0 0 0 - - - 0

5 45319873 - - - - - - 45319873

6 0 8749651 45319873 - - - - 54069523

7 - - - - - - - 0

8 13099546 14512670 - - - - - 27612216

9 16005999 0 - - - - - 16005999

10 0 10238454 - - - - - 10238454

(Occurrence Exceedance Probability (OEP)). A future refinement would be to assess the

variability of loss events on an annual basis via an OEP analysis.

Figure 6.8 presents the Cumulative Distribution Function (CDF) of expected losses on

all properties in all parishes of Bermuda when the whole time series of annual counts of

tropical storms for Bermuda is used for simulating new events. The histogram (empirical

results) indicates the actual losses from events that were intense enough to cause damage,

meaning events that had an estimated wind speed at Bermuda greater than 37.5𝑚𝑠−1

(based on Miller et al. (2013)). The black dashed line indicates the theoretical CDF,

meaning what one would expect to observe if there was an infinite amount of damaging

events. Non-damaging events were excluded from the analysis, but we present all the

model output. For example, by looking at the histogram from the empirical results, there

is a 21.9% chance that during a year with at least one damaging event, losses will exceed

$1bn.

Examination of the decadal variability of TCs revealed two high-frequency and two

low-frequency phases. High-phases A and B correspond to the periods 1973-1989 (with

mean 𝜇=1.18) and 1999-2014 (with mean 𝜇=1.31), respectively, during which the 10-year

moving average was greater than the mean of the 10-year moving average. Low-phases

CHAPTER 6 Page 210



6.3. RESULTS

Figure 6.8: Cumulative distribution function (CDF) of expected AEP losses on all prop-

erties, all parishes of Bermuda when the 1877-2018 record for Bermuda was used for

simulating new events. The histogram indicates the empirical CDF of losses from dam-

aging events.

A and B correspond to the periods 1882-1895 (with mean 𝜇=0.64) and 1897-1930 (with

mean 𝜇=0.68), respectively, during which the 10-year moving average was less or equal

than the mean of the 10-year moving average.

For each one of the four phases the mean was calculated and used as described in

section 2.4 to find the Poisson rate probability of number of events occurring, from which

new events were randomly generated for each phase. Empirical and theoretical CDFs were

plotted for each phase, as well as for the CDF shown in figure 6.8 (hereafter referred to as

no-phase), and are shown in figure 6.9.

Results showed that losses from damaging events sampled from both high-frequency

scenarios were larger than the losses from damaging events sampled from the two low-

frequency scenarios and the no-phase scenario. In addition, the annual exceedance proba-

bilities for low-phase B were smaller than the ones for low-phase A, while the probabilities

for high-phase B were greater than the ones for high-phase A. It should be noted that, since

the process of simulating new events is random, the output of the model will not always

resemble the results presented here.

Furthermore, the amount of simulated events is dependent on the average annual

number of hurricanes. For this study, the means of the different phases ranged from 0.64
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Table 6.4: Exceedance probability and return period values for different loss amounts.

No-Phase High-A High-B Low-A Low-B

Loss

($bn)

EP

(%)

RP

(Yr)

EP

(%)

RP

(Yr)

EP

(%)

RP

(Yr)

EP

(%)

RP

(Yr)

EP

(%)

RP

(Yr)

0.50 84.8 1.2 85.2 1.2 85.5 1.2 84 1.2 83.1 1.2

1.00 68.9 1.5 69.3 1.4 70.1 1.4 67.4 1.5 65.7 1.5

2.00 38.7 2.6 40.0 2.5 41.2 2.4 36.7 2.7 33.7 3

3.00 17.1 5.8 18.3 5.5 19.4 5.2 15.4 6.5 13.1 7.6

4.00 5.7 17.8 6.6 15.3 7.2 13.9 4.9 20.6 3.7 27.2

5.00 1.3 75.9 1.8 54.5 2.1 47.4 1.2 86.6 0.7 138.5

to 1.13 hurricanes per year. It is expected that a significantly higher annual average will

result in significantly increased number of simulated events, and thus to larger losses.

Lastly, it is important to highlight that, based on equation 6, the highest wind speed

of a simulated event can be up to 63.1𝑚𝑠−1, while the lowest damaging wind speed is

37.5𝑚𝑠−1. It is certain that if the former value were higher or if the latter value were lower,

the resulting EP curves would be very different, showing greater losses particularly in a

high-frequency scenario. In future work, the sensitivity of the model on both the effect

of the average annual rate of hurricanes and the estimated wind speed at Bermuda will be

explored.

Information about return periods (RP) of catastrophic events can be obtained from EP

curves. The return period (in years) corresponds to 1/EP. Table 6.4 presents examples

of EP values and the corresponding RPs for all five scenarios shown in figure 6.9 for six

different loss amounts. The loss amounts are shown in column 1, EPs and RPs for the

no-phase scenario are in columns 2 and 3, for the two high-phase scenarios in columns

4-7 and for the two low-phase scenarios in columns 8-11. For example, in the no-phase

scenario there is a 5.7% probability that an amount of $4bn will be exceeded in a year

with at least one damaging event. This probability corresponds to a RP of around 17.5

years. The probability that the same amount will be exceeded rises for both high-frequency

scenarios and dips for both low-frequency scenarios.
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Table 6.5: Loss amounts for different return period values.

RP

(Years)

EP

(%)

Loss ($bn)

No-Phase High-A High-B Low-A Low-B

5 20 2.8 2.9 3 2.7 2.6

10 10 3.5 3.6 3.7 3.4 3.2

25 4 4.3 4.4 4.5 4.1 3.9

50 2 4.7 4.9 5 4.6 4.4

75 1.3 5 5.2 5.3 4.9 4.7

100 1 5.2 5.4 5.5 5.1 4.8

200 0.5 5.5 5.8 6 5.5 5.2

Table 6.5 presents examples of estimated losses for certain return periods of catas-

trophic events. The first and second columns indicate the return periods and corresponding

exceedance probabilities, while expected losses for each scenario are shown in the remain-

ing columns. For example, a once-in-two-hundred-years catastrophic event is expected to

cause $5.5bn worth of damage across all parishes and all types of buildings in a no-phase

scenario, compared to $6bn in a high-phase B scenario. These losses are halved for a

catastrophic event with a return period of once-per-five-years.

Event Loss Tables and EP curves provide the ability to yield indicative return periods

of threshold loss events (or changes in magnitude of losses for a given return period). This

is very important for insurance and re-insurance companies since they are provided with

necessary information that can help in the process of decision making.

6.4 Limitations and Future Work

This study serves as a simple catastrophe model for assessing annual hurricane wind risk in

Bermuda, with a scientifically informed sensitivity test on long-term frequencies. It does

not intend to reproduce traditional catastrophe modelling methodologies widely used by

insurance and re-insurance companies, but to merely serve as a guide for the development

of a hurricane wind risk model.

The process of building a catastrophe model entails various sources of uncertainties in
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Figure 6.9: EP curves for all five scenarios.

all the different components. Firstly, a key limitation of the study is the use of the observa-

tional record. Despite the fact that the record for the North Atlantic basin is considered to

be the longest and most comprehensive record compared to other basins (Strachan et al.,

2013), it suffers from homogeneity problems due to changes in operational procedures

(Landsea, 2007), whose most important source of uncertainty is the observational error

(Tolwinski-Ward, 2015). In addition, evaluation of the model with historical losses is

problematic, as there are only a few very recent official reports from damaging storms

affecting Bermuda that can be used for calibration purposes. So, not only are the basin-

wide statistics a source of uncertainty, the damaging impacts in Bermuda are insufficient

to effect a useful calibration of the model.

Secondly, different decisions made in the process of exploring the relationship between

the distance of a storm from Bermuda and the estimated intensity at the country (see section

6.2.1.1) is another source of uncertainty. These decisions include the arbitrary choices

for 𝑟𝑚𝑎𝑥 , the use of the variation of the Rankine vortex, the different conversions and the

curve fitting. In the future it would be really beneficial to explore different techniques for

simulating hurricane intensity such as the ones outlined in Holland et al. (2010), Justus

et al. (1978) and Jagger and Elsner (2006). In addition, wind asymmetries, the exclusion
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of which can have a negative impact on TC risk assessment (Alvehag and Söder, 2011;

Pahwa, 2007), could be addressed following suggestions by studies such as Olfateh et al.

(2017) and Chang et al. (2020).

Thirdly, it is important to highlight the lack of studies in Bermuda that explore the

relationship between the intensity of a storm and the proportion of damage on properties.

Since the vulnerability component of a catastrophe model is of great importance, there is

a necessity for more studies like Miller et al. (2013) to be conducted in future catastrophic

events, since they will provide an opportunity for updates and sensitivity tests on this

model framework.

Lastly, the impact of decadal variability of TCs on potential losses has been examined

only in terms on frequency. It will be of great interest to explore the impact in terms of

intensity as well. The reasoning behind this comes from the fact that, particularly for the

North Atlantic basin, it has been shown that even during low-activity hurricane seasons,

very intense tropical cyclones can cause a lot of damage and destruction should they make

landfall.

6.5 Discussion

We have developed a simple model for the assessment of hurricane wind risk. Despite the

limitations of the study outlined above, this methodology may be useful for jurisdictions

with limited availability of property exposure or vulnerability datasets. In the absence of a

set of robust engineering studies or readily available property exposure data, assessments

of the variability of risk can still be achieved, especially for small island jurisdictions. In

our study, we utilized a real estate dataset and a published damage survey as the bases

for development of exposure and vulnerability inputs, respectively. The hazard portion of

this model is constructed by randomly generating multiple location-centric events that are

constrained using the historical record. However, this approach is simple compared to the

Monte Carlo simulations used to develop the stochastic storm track datasets in commercial

catastrophe models (RMS, 2019). Our method can quickly and easily be applied to assess

the variability of wind hazard in different climate regimes, such as ENSO or the NAO,

or can utilize other input such as historical anecdotal document archives (e.g. Chenoweth

and Divine (2008)), climate model simulations of future storm regimes (e.g. Wehner
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et al. (2015)) or geological proxy datasets, such as those provided in Wallace et al.

(2014). The simple nature of the model may also be of benefit in quick sensitivity tests of

modelled losses to changes in hazard, vulnerability or exposure. This may be especially

useful for the purposes of teaching different aspects of risk and its estimation. The code

underlying the model itself is written in Python, and it is accessible freely via Github here

https://github.com/PinelopiLoizou/Risk_Model.
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Chapter 7

Concluding Remarks and Future Work

7.1 Introduction

Tropical cyclones are known for causing severe damage and destruction, including loss of

life, across many regions of the planet. Understanding which dynamic and thermodynamic

conditions mainly drive their inter-annual and decadal variability is crucial for decision

makers. The focus of the present Ph.D. study is to understand which processes drive

the variability of TCs and to assess any evidence of anthropogenic influence. Different

tools, including the standard power spectrum method, wavelets and EOTs method have

been applied to multiple datasets - IBTrACS, seven recent reanalysis products (ERAI,

ERA5, MERRA, MERRA2, NCEP, JRA25, JRA55) and a range of atm-only and coupled

simulations from HadGEM3-GC3.1 for current and future climate. As outlined in chapter

1.1, the aims of the study are to:

1. Understand what drives the natural variability of TCs and to detect evidence of

anthropogenic influence.

2. Separate and attribute the impact of natural variability and anthropogenic influence

on the variability of TCs.

3. Understand the nature of natural variability under various forcing scenarios and

compare this with a scenario of changing forcing.

4. Explore how decadal variability is related to known modes of variability.
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By investigating TC variability in the current climate in certain basins understanding

some of the drivers of the natural variability of TCs, namely the SSTs and VWS, and

exploring the relationship of inter-annual and decadal variability to known modes of

variability is addressed. Additionally, the response of TC activity in the different regions

of the NH under different forcing scenarios was investigated by comparing TC activity in

the first 30 years against the last 30 years of the model simulations.

7.2 Synthesis of Results

7.2.1 Understand what drives the natural variability of TCs and de-

tect any evidence of anthropogenic influence

The connection between the variability of TCs in the different basins and some of the

known modes of variability was examined throughout the study. However, in order to

address this research question, we particularly focus on the results examined in chapter 3.

The drivers of natural variability under the current climate (1980-2013) were investigated

in IBTrACS, the reanalysis products and the different model simulations.

TC activity in the well-documented NATL region exhibits high variability compared

to the other basins. In both observations and model simulations, TC activity in the

basin undergoes inter-annual variability as found by examining the present climate in the

different datasets. This interannual variability is driven primarily by the AMO via warm

local SSTs. Further influence on Atlantic hurricanes is exerted by the cold phases of

ENSO and the PDO via cold SSTs and enhanced VWS in the Pacific regions, conditions

linked to the displacement of the Walker Circulation during such events.

Primary driver of TC activity in the EPAC region is the warm phase of ENSO via

warm SSTs and weak VWS in the eastern and central Pacific regions under the current

climate. ENSO’s influence has been robust across the majority of techniques applied on

the different datasets. The AMO (via cold Atlantic SSTs) also appears to have an important

influence on this basin’s activity, albeit with less robustness compared to ENSO.

Similarly to the EPAC, TC activity in the CPAC region under the 1980-2013 period is

driven primarily by ENSO via its warm phase and by the AMO via its cold phase. The

PDO does not appear to influence TC activity in observations and reanalysis products, but
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it has a consistent presence, especially by influencing TCs in the basin via its warm phase,

in the atm-only experiments.

The WPAC basin is the region known to have the majority of TC activity in the NH.

Typhoon activity in the basin has been found to be driven by more than one main driver

in both observations and models. Under the current climate TC variability is linked to

the strengthening or weakening of ENSO events according to the change in the phases of

the AMO and PDO. The Atlantic decadal mode also appears to have an influence on the

basin’s activity, in observations, reanalyses and atm-only experiments. PDO’s influence

is only observed for TC activity in IBTrACS and reanalyses.

Consistent results are found of analysis regarding TC activity in the NIND ocean, since

in the different periods and datasets examined in the study TC variability in the basin was

not linked significantly to the climate modes of variability. The overall conclusion for TC

variability in this basin is that, in order to understand the main drivers, it is necessary to

investigate the connection to interannual climate modes such as the Indian Dipole. It is

also recommended to examine how climate modes such as ENSO, AMO and PDO might

influence the Indian Dipole and the monsoon seasons.

Even though the present study has examined the potential impact of climate change on

the variability of TCs (discussed in section 7.2.2), it does not provide a clear detection of

evidence of major anthropogenic influence on the variability of TCs. Increases in SSTs are

of course observed in both observations and model simulations (due to the nature of the

experimental design). A warmer climate can have an impact on the conditions that favour

TC formation and intensification. However, in order to fully understand the potential

impact of climate change and whether or not anthropogenic influence will take a leading

role in influencing TC activity, it is crucial to assess how the known modes of variability

will vary in a warming climate.
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7.2.2 "Separate and attribute the impact of natural variability and

anthropogenic influence on the variability of TCs" and "Un-

derstand the nature of natural variability under various forcing

scenarios and compare with a scenario of changing forcing"

In this section we address whether research questions 2 and 3 have been answered with the

investigation performed in the study. The two questions are combined in order to avoid

re-iteration of the main conclusions.

The impact of natural variability has been examined in chapters 3 (the synthesis

of which is discussed in section 7.2.1) and 4 (the synthesis of which is discussed in

section 7.2.3), whereas the impact of climate change has been examined in chapter 5. By

comparing results of the analysis on coupled control-1950 runs against results for the hist-

1950 runs during P1 (1950-1980) and P2 (2020-2050) in scenarios with anthropogenic

forcing, results show an overall increase in NATL TC intensity but they appear inconclusive

on whether there is a north/northeast or south shift of TC activity. EOT analysis shows

that influence by the dynamic and thermodynamic drivers examined in the study depends

on the location of EOTs, but is generally associated with AMO and ENSO. A westward

shift is found for TC activity in the EPAC region as well as an increase in ACE irrespective

of the resolution, but no robust conclusion is formed on which SST or VWS conditions

are the main source of influence. For the CPAC region, an increase in both frequency

and ACE of TCs is found but there are no particular differences between the drivers of

TC activity in the current and future climate. For this particular basin, it is important to

note that results must be considered with caution since only a small amount of TCs are

analysed. Under climate change, a slight increase in ACE and a poleward shift of WPAC

TC activity in the basin was found, a result in agreement with the literature (IPCC, 2019).

Lastly, similarly to section 7.2.1, results for the NIND basin appear inconclusive about

how climate change can impact TC activity in the basin.

7.2.3 Explore how decadal variability is related to known modes of

variability

Chapter 4 was dedicated in examining the drivers of natural decadal TC variability.

Spectral methods (standard power spectrum and wavelets) were applied onto centennial

CHAPTER 7 Page 220



7.2. SYNTHESIS OF RESULTS

and multi-centennial time series of annual counts and ACE from a range of atm-only and

coupled simulations by the HadGEM3-GC3.1 GCM in order to detect decadal periodicities

associated with the AMO and PDO within the time series. The EOTs method was applied

on centennial seasonal (May-November) TC track densities. SST (detrended) and VWS

fields were regressed onto the EOT time series in an effort to identify any known canonical

patterns, which would further indicate the influence of known modes of variability on the

variability of TCs. Lastly, spectral analysis of EOT time series and Pearson correlation

coefficients between the time series of TC activity (count, ACE, EOTs) and the seasonally

averaged indices complement the analysis.

For the NATL basin, TC activity has been found to undergo decadal variability, a

result that is in agreement with studies such as Goldenberg et al. (2001) and McCarthy

et al. (2015). This decadal variability is primarily driven by AMO and ENSO, a result

that was robustly observed by the analysis performed on model simulations irrespective of

resolution and configuration. Indications of additional PDO influence have been shown

from the MM and HM atm-only runs. The decadal variability of TCs in the basin is

positively correlated with the AMO and anticorrelated with both ENSO and PDO, i.e. a

warm AMO and cold ENSO and PDO phases lead to increases in NATL hurricane activity,

while the opposite leads to decreases in activity.

For the EPAC region, primary driver of the basin’s TC decadal variability is ENSO

via local warm SSTs and weak VWS as was evident by all the techniques applied on the

model simulations. The AMO appears to additionally drive the basin’s activity, at least

in the higher resolution runs via cold Atlantic SSTs, associated with Walker Circulation

conditions during El-Niño events. Lastly, there are indications of influence by the PDO’s

warm phase, albeit with less robustness across the different simulations.

Decadal variability in the CPAC region is driven by the warm phase of ENSO across

the model experiments. PDO also appears to be a main source of influence, however, the

climate index is correlated with TC activity in the atm-only experiments and anticorrelated

in the coupled experiments. A possible explanation for this difference is that the SSTs that

are used for the computation of the PDO index are prescribed in the atm-only experiments.

Lastly, there are strong indications of additional AMO influence on the basin’s activity,

particularly the cold phase of the decadal Atlantic mode.

Typhoon activity in the WPAC has been found once again to be driven by more than
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one main driver. The decadal variability in the atm-only experiments is correlated with the

warm phases of ENSO and PDO and anticorrelated with the AMO. However, the presence

of the PDO is less robust than the influence of the other two modes.

Finally, results of the analysis on the NIND’s activity on decadal timescales remains

consistent with the results on the drivers of the current climate. TC activity in the basin

cannot be linked significantly to the climate indices. There are indications of ENSO’s

influence on TCs in the basin, but this is most likely due to the fact that ENSO’s high

frequency is easily captured in long time series by the spectral methods. It is once again

recommended to examine the relationship between the modes already examined in this

study (ENSO, AMO, PDO) and the Indian Dipole and monsoon seasons.

7.3 Limitations and Future Work

The methodology used in the present study relies on a range of datasets. Observations

of TCs are the primary source of knowledge of the variability of TCs, but their records,

apart from being short in length, suffer from biases and homogeneity issues. Reanalyses

can reduce uncertainties, however the records used in the study are also short. Centennial

reanalyses such as the ERA-20C (Poli et al., 2016) are available, but their low resolution

and proneness to unreal trends due to changes in the observational system (Poli et al.,

2015) are not ideal for our area of research. Model simulations provide longer, more

consistent records to work with, especially for the investigation of decadal variability. In

this study, centennial and multi-centennial runs were analysed and it was found that it

is important, if not necessary, to have longer climate simulations for the investigation of

decadal variability.

Regarding the tools utilised in the study, the spectral methods are simple tools which

allow the easy and quick detection of periodicities within the time series, whereas the

EOTs method is a more complex, computationally expensive and quantitative tool, which

enables the temporal and spatial investigation of variability of TCs in this study but depends

on track densities computed from relatively small annual TC samples. By using a range

of tools on multiple datasets more confidence is provided especially where results are

consistent between datasets and methods.

Following the framework of the study, future work can extend in various ways. Pri-
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marily, as evident particularly from the analysis on model simulations, it is imperative to

examine the relationship between TC variability and different climate indices. A caveat

of the study is that only a few climate indices are examined, especially for the model

simulations, since only the May-November averaged ENSO, AMO and PDO indices were

taken into consideration. Moreover, for certain basins such as the NATL, it is worth exam-

ining lagged effects, such as how the December-February averaged ENSO can impact TC

variability in the basin. In addition, it is possible that some of the decadal variations of TC

activity, particularly in the NIND region, are more indirectly related to modes of decadal

variability through modulation of interannual modes. In the future, it would be beneficial

to examine how the decadal modes, as simulated in the model, can impact interannual

modes such as QBO, the MJO and the Indian Dipole and then examining their impact on

TC activity.

Furthermore, the regression of two different fields, SSTs and VWS, onto the EOT

time series provides important results in linking dynamic and thermodynamic conditions

associated with modes of climate variability to TC variability. However, taking into

consideration the conditions that favour TC formation and intensification, it is important

to examine more drivers such as humidity and low-level vorticity following the same

analysis. Apart from providing additional information on drivers of TC variability which

will enable the scientific community to form a better understanding, it is possible that,

for some basins, for example the WPAC, the lack of significant relationships with SSTs

and VWS linked to the climate indices examined, might be improved by examining more

drivers. Lastly, in the present study only the seasonal SST and VWS fields are examined,

therefore in the future lagged regressions, i.e. as regressing the December-February SST

field onto the EOT time series, can be explored.

The different tools utilised in the present study have provided us with important infor-

mation on what drives the variability of TC activity with a certain degree of confidence,

since TC activity is examined in a range of datasets using the same analysis. Even though a

part of the analysis, namely the EOT regression, is computationally expensive, performing

this analysis in the future on simulations from different models, particularly of multiple

ensemble members with finer resolution, can perhaps help in improvements in better TC

representation in climate models and in examining model uncertainty. In addition, the

different ensemble members of HadGEM3-GC3.1 are examined separately in order to in-
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crease the amount of simulations examined. It is worth repeating the same analysis on the

ensemble means, which will also allow researchers to examine different models. Lastly,

the number of ensemble members used in the present study is small, particularly for the

high resolution runs. Having a larger ensemble can be useful in additional confidence in

the results presented.

The focus of this study is on the regions in the NH, but TCs in the SH should not be

neglected. It is important for scientists to better observe and study not only TC activity in

the SH, but also how the different climate modes can influence TC variability in the SH,

especially since the SH hemisphere is covered by more water than land. It is agreeable

amongst the scientific community that there are biases in the observational procedures

in the SH compared to the NH, particularly because the former is less densely inhabited.

However, conditions that can affect TCs in the NH hemisphere, can also impact TCs in

the SH. Therefore, understanding the drivers of TC variability in the world as a whole can

perhaps further benefit our understanding in the two hemispheres individually.

Lastly, TCs do cause severe damage and destruction in many regions of the planet.

Providing insurance and re-insurance companies, who are strongly impacted by TCs, with

impact-related mitigation and planning information based on understanding what drives

the variability of TCs, is incredibly important. A simple model for assessing the hurricane

wind risk associated with Bermuda was developed as part of the present study. Despite

the model’s simplicity and limitations, the framework of the study may be useful for

jurisdictions with limited availability of property exposure or vulnerability datasets, since

it can be easily applied in investigating the variability of TC intensity in different climate

regimes. Future work on this model should focus on sensitivity tests on the various model

components.
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Figure 7.1 presents a comparison between the wavelet and Hilbert spectra both for the

ERA5 NATL time series of annual TC counts as well as for the mean reanalysis spectrum

of the NATL time series of counts. It can seen that despite the fact that the Hilbert

spectrum is more localised than the wavelet spectrum, the locations of high power within

the Hilbert spectrum are in similar regions to the wavelet spectrum. These regions are

within the 2 to 8 year power band, indicating an ENSO influence on TCs. Results from this

analysis show complementary results between the two spectral methods in the majority of

datasets and individual regions, with very few exceptions, providing greater confidence in

the results by the wavelet analysis.

Figure 7.2 presents the wavelet spectra for the time series of NATL TC counts of the

full LL and HM coupled control runs along with the KDEs of the power in the 2-8, 10-20,

16-32, 32-75 year band. Even though the range of the runs is different, it can be seen that

there is more power in the wavelet spectrum on decadal time scales. Furthermore, the

KDEs are able to reflect the distribution of power within certain bands. For example, for

the HM control run, the majority of power is within the 16-32 year band. This can be seen

from the the corresponding KDE since it has a larger tail compared to the rest.
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(a) Wavelet spectrum for ERA5
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(b) Hilbert spectrum for ERA5
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(c) Mean reanalysis wavelet spectrum
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(d) Mean reanalysis Hilbert spectrum
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Figure 7.1: Comparison between wavelet and Hilbert spectrum for NATL TC counts
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(a) Wavelet spectrum for LL control run
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(b) KDEs for different power bands in a
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(c) Wavelet spectrum for HM control run
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(d) KDEs for different power bands in c
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Figure 7.2: Wavelet spectra for the full LL and HM coupled control runs and correspond-

ing KDEs for the 2-8, 10-20, 16-32 and 32-75 year power band.
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