Background pycnocline depth constrains future Ocean Heat Uptake Efficiency

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of newsom.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Newsom, E., Zanna, L. and Gregory, J. orcid id iconORCID: https://orcid.org/0000-0003-1296-8644 (2023) Background pycnocline depth constrains future Ocean Heat Uptake Efficiency. Geophysical Research Letters, 50 (22). e2023GL105673. ISSN 1944-8007 doi: 10.1029/2023GL105673

Abstract/Summary

The Ocean Heat Uptake Efficiency (OHUE) quantifies the ocean's ability to mitigate surface warming through deep heat sequestration. Despite its importance, the main controls on OHUE, and on its two-fold spread across contemporary climate models, remain unclear. We argue that OHUE is primarily controlled by mid-latitude ventilation strength in the background climate, itself related to pycnocline depth and stratification. This hypothesis is supported by a strong correlation between mid-latitude (30–60°) OHUE and the near-global average (60°S–60°N) pycnocline depth in CMIP5 and CMIP6 AOGCMs under RCP85/SSP585, and in a parameter perturbation ensemble of ocean GCM (MITgcm) experiments. This correlation explains about 70% of the CMIP5-6 spread in global OHUE. The relationship provides a pathway toward observationally constraining OHUE, and thus reducing uncertainty in projections of future global climate change and sea level rise.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/113868
Identification Number/DOI 10.1029/2023GL105673
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > NCAS
Publisher American Geophysical Union
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar