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Abstract

Studying genetic variations can help improve understanding of cancer aetiology
and provide scientists with inspirational perspectives of tumour cells growth. So-
matic mutations play a significant role in the development of cancer. Therefore,
substantial effort has been expanded in order to identify somatic mutations. In
light of this, in this research, we develop a novel method for detecting the impact
of somatic mutations by matching tumour and normal sequences taken from an in-
dividual based on the score test and implementing the generalised higher criticism
(GHC) test correction. The proposed score test is appraised and compared to the
binomial exact test by utilising simulations. Results of a wide range of simulations
show that our method controls type I error and is more effective than the binomial
exact test.

Another way we propose with regard to association analysis of somatic mutations is
to account for the uncertainty of discovering mutations. Since standard association
methods do not take into account possible calling errors for somatic mutations,
they are limited in their suitability for investigating functional consequences of
such mutations. A recent somatic mutation association test with measurement
errors (SAME) that addresses this issue via the likelihood ratio test has shown
that taking account of uncertainty in somatic mutation calling improves power for
detecting an association. In the spirit of SAME, the proposed score test procedure
in this thesis models actual somatic mutation as an unobservable variable and
uses read-depth to increase the mutation calls. The score test is computationally
efficient as only optimisation under the null model is required for each genetic
variant. Additionally, the risk of non-convergence of optimisation routines is re-
duced. These computational advantages are particularly beneficial in genomewide
settings. The score test is evaluated using simulations. Results of extensive evalua-
tions and comparisons with the SAME procedure and GLM that does not consider
mutation calling errors reveal that our proposed approach preserves type I error
and is more efficient than the SAME and GLM methods.
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Introduction

Many complex diseases, including cancer, are believed to include genetic variations

in the causal pathways. Consequently, numerous scientific and therapeutic research

efforts are dedicated to discovering the functions of genetic mutations. With the

fast development and substantial advances in technologies, it is possible to align

and analyse the whole genome sequences in order to investigate the impact of

genetic variants. Even though genomewide association study approaches have

discovered a considerable number of diseases that are thought to be associated with

particular genetic mutations by applying single-variant association tests, GWAS

typically searches only for common variants, defined as variants whose frequency

is higher than 5% in a population (Hindorff et al., 2009).

For this reason, methods have been proposed for the purpose of dealing with

low-frequency mutations, described as variants whose frequency is between 1%

and 5%, and rare mutations that have a frequency of ≤ 1%. Association ap-

proaches of low-frequency and rare genetic variants include the cohort allelic sums

test (CAST) (Morgenthaler and Thilly, 2007), combined and multivariate collaps-

ing (CMC) test (Li and Leal, 2008), weighted-sum statistic (WSS) (Madsen and

1
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Browning, 2009), Morris and Zeggini (MZ) test (Morris and Zeggini, 2010), variable

allele-frequency threshold (VT) test (Price et al., 2010), sum of square score (SSU)

test (Pan, 2009), sequence kernel association test (SKAT) (Wu et al., 2011), C-

alpha test (Neale et al., 2011), SKAT-O (Lee et al., 2012), Fisher method (Derkach

et al., 2013) and MiST (Sun et al., 2013). These approaches, discussed in Chapter

Three, adopt the set-based technique and aggregate the entire genetic information

from multiple variants within a region, such as a gene, due to the fact that con-

sidering each single low-frequency variant may lead to a loss of power in statistical

association procedures.

In terms of genetic association studies of cancer, it is expected that somatic mu-

tations have a considerable effect on cancer outcomes, and their roles are much

more critical than germline mutations. As a result, exploring somatic mutations

and studying the extent of the influence of somatic mutations have become a no-

table phase in cancer aetiology. In spite of the fact that somatic mutations have

a low-frequency and rare frequency, the developed approaches of low-frequency

and rare genetic variants mentioned above are not appropriate for dealing with

somatic mutations. It is assumed because these approaches do not account for

somatic mutation calling errors. The uncertainty of calling somatic mutations can

affect the accuracy of the association testing analysis.

The aim of this thesis revolves around investigating the effect of somatic muta-

tions. We present a development of a score test procedure based on applying the

generalised higher criticism (GHC) test (Barnett et al., 2017) in order to com-

pare cancerous and healthy samples sequenced from the same patients. Another
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approach we present in this research with the objective of somatic mutation as-

sociation analysis is to evaluate somatic mutations’ consequences while taking

mutation calling errors into consideration. We propose a novel association method

for the purpose of testing the association between a single somatic mutation or

multiple somatic mutations combined within a whole gene and a cancer subtype

outcome.

The composition of the thesis is as follows. Chapter One provides a basic introduc-

tion to human genetics and gives a background of cancer genetics and terminologies

of epidemiology. Then, it presents an overview of the 100,000 Genomes Project as

the work in the thesis is motivated by the objectives of this project. Chapter Two

exhibits common statistical approaches used in this thesis. One of the included

methods is the GHC test as we apply it to the proposed score test in Chapter

Four.

Chapter Three is a literature review on the analysis of association and detection

of genetic variants. It begins to give details of the association analysis procedures

used to test the effect of a single mutation or multiple mutations grouped within a

genetic construct, such as a gene, on a disease outcome. Since this thesis aims at

studying the impact of somatic mutations on a cancer-related outcome, an overview

of detecting approaches for calling somatic mutations is presented in the second

part of Chapter Three. Finally, the chapter concludes by offering an introduction

to a recent method produced in order to evaluate the relationship between somatic

mutations and a cancer subtype outcome. In Chapter Four, a novel methodology

with the objective of assessing a set of somatic mutations gathered within a gene
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is proposed and evaluated. Our developed score method compares diseased and

disease-free strings sampled from the same person. A simulation study in a wide

range of scenarios is presented in order to evaluate our proposed test in terms of

type I error and power.

In Chapters Five and Six, we develop a methodology for somatic mutation associ-

ation analysis. Novel score tests are constructed in order to study the relationship

between a single somatic mutation and gene-level somatic mutations and a cancer

subtype outcome while taking the somatic mutation calling errors into consider-

ation. Simulation studies showing a range of effect sizes and mutation rates are

provided at the end of both chapters to assess our proposed single somatic mu-

tation and gene-based somatic mutations procedures regarding type I error and

power.



Chapter 1

Cancer genetics

This chapter introduces human genetics and the role of genes in the development

of cancer. Genetic principles and terminologies used in this thesis are showed. The

focus is on genetic variations, including somatic mutations, and the role genes play

in cancer development. Finally, the chapter is concluded with an overview of the

100,000 Genomes Project.

5
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1.1 Introduction to human genetics

It is widely recognised that the human body is composed of trillions of cells,

and they are the fundamental unit of all organisms, including humans. The cells

have miscellaneous functions, such as providing structure for the body, creating

metabolic reactions and supporting the body with energy by converting nutrients

obtained from food. In addition to these tasks, cells strain the human body’s

genetic materials, which are encoded in chromosomes within a nucleus. Thus, the

nucleus is considered the control room of a cell and is located in the middle of it,

as shown in Figure 1.1.

Figure 1.1: A nucleus in a cell. (National Human Genome Research Institute
(NHGRI))
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In humans, the genome comprises 23 pairs of chromosomes, and this means that

the human genome has 46 chromosomes in total. The lengths of the chromosomes

vary as displayed in Figure 1.2. The largest chromosome is Chromosome 1, and it

includes around 248 million base pairs. By contrast, the smallest chromosome is

Chromosome 21 that contains about 47 million base pairs (Richards and Hawley,

2011). With regard to chromosome classifications, there are two types of chro-

mosomes. Specifically, 22 pairs of chromosomes are assorted as autosomes, and a

pair of chromosomes is classified as sex chromosomes. Males and females have the

same 22 pairs of autosomes, but they are different in the pair of sex chromosomes.

Males’ sex chromosomes are XY while females’ chromosomes are XX, as illustrated

in Figure 1.3. One set of 22 pairs of chromosomes is inherited from a father, whilst

the other is from a mother. In terms of the sex chromosomes, a male obtains the

Y chromosome from his father and the X chromosome from his mother, whereas

a female takes a pair of the X chromosome from each parent. In the sex chro-

mosomes, the pseudoautosomal region (PAR) is a particular element which has

known functions in male meiosis and fertility (Helena Mangs and Morris, 2007).

Every chromosome is composed of deoxyribonucleic acid (DNA). DNA is defined

as a duple chain of nucleotides, while a nucleotide consists of three elements.

The components are a five-carbon sugar, a phosphate group and a base of four

nitrogenous bases. The four chemical bases of nitrogen are classified as adenine

(A), thymine (T), cytosine (C), and guanine (G). Figure 1.4 shows a close image

of the DNA structure and demonstrates that the nitrogenous bases come with

each other. Adenine goes with thymine, and guanine pairs with cytosine in order
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Figure 1.2: Length of the chromosomes in base pairs in the human genome.

to build the double-strand. There are approximately 3 billion base pairs in the

human genome.

A specific sequence in the DNA string that encodes for one protein is described

as a gene, as shown in Figure 1.5. Coiled DNA to form chromosomes in a cell

nucleus provides the complete information for the cell, and genes are the functional

subunits of DNA. Each gene carries a unique set of instructions, usually coding

for a particular protein or specific function. There are around 20, 000 − 25, 000
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Figure 1.3: Pairs of chromosomes. 22 pairs are autosomes and a pair is sex chro-
mosomes. (The Tech Interactive)

genes distributed in the 23 pairs of chromosomes with diverse sizes. Figure 1.6

demonstrates that Chromosome 1 is composed of the most number of genes as

it contains approximately 3000 genes, while Chromosome 2 is the second-largest

human chromosome and contains around 2500 genes. In contrast, Chromosome Y

is the least chromosome in genes since it encompasses around 200 genes (Richards

and Hawley, 2011). Genes differ in length from hundreds of base pairs to more

than 2 million base pairs.

A location of a gene or any genetic marker is termed a locus (plural loci). A genetic

marker is characterised as any part of the DNA sequence that can be a single base

pair or a DNA series, such as a gene.
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Figure 1.4: The chemical structure of deoxyribonucleic acid (DNA). (US National
Library of Medicine)

1.1.1 Genetic variation

The genetic information of a genetic marker in a specific locus is called a genotype,

and it produces a physical expression called a phenotype. Thus, even though the

human genome is relatively the same among people, genetic variations can cause

diversity in phenotypes and make different characteristics. On the other side, it

is believed that some genetic variations are natural and harmless; therefore, they
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Figure 1.5: Illustration of a chromosome in the nucleus of a cell and its DNA
sequences. (National Human Genome Research Institute (NHGRI))

might not affect phenotypes.

A genetic variation can occur in a single nucleotide as a change of the nucleotide to

another. In this case, the alteration of a genotype is called a point variant or mu-

tation. This genetic variant can be recognised as a single nucleotide polymorphism

(SNP) if it presents at least 1% or a single nucleotide variant (SNV) if its frequency

is less than 1% in a population (He et al., 2014). Generally, based on the frequency

of a genetic variant in a population, it can be divided into three classes. They are

a common variant when its frequency is greater than 5%, a low-frequency variant

when its frequency is between 1% and 5% and rare variants when its frequency is

less than 1%. A population determines the frequency of variants, and this means

that a variant can be common in a particular population, but it might be rare in
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Figure 1.6: Estimated number of genes in every chromosome in the human genome.
Numbers are obtained from (Richards and Hawley, 2011).

another population.

In addition to a point mutation, a genetic variation may appear as an insertion

or deletion of a DNA sequence. This kind of variation is named insertion/deletion

polymorphism (indel). As displayed in Figure 1.7, unlike a point mutation which

is a substitution that replaces one of the nucleotides without changing the number

in a DNA sequence, an indel can insert some nucleotides into a DNA sequence

or delete nucleotides from it. Lastly, another possible type of genetic variation is
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known as a structural variant. This form includes several genetic modifications,

such as a copy number variation(CNV), duplication, and translocation.

A gene can have one or more genetic variations, and different forms of a gene are

called alleles. It is possible to have different alleles for the same gene, and they

contribute to various observed phenotypes, such as eye colour, hair colour and skin

colour.

Figure 1.7: An example of a genetic variation called an insertion/deletion poly-
morphism (indel). (EMBL-EBI)

1.2 The genetics of cancer

Cancer is often a severe and fatal disease. Because it has become a common dis-

ease, the conducted studies in cancer research increase every year. In the UK, just

fewer than 160,000 people died from cancer in 2011, with over 330,000 new cases

reported every year (Caulfield et al., 2017). Cancer is deemed a genetic disease,

and mutations in the DNA sequences are believed to be a possible cause of cancer.

Several factors have been discovered, and they are thought to be the cause of the

DNA mutations such as tobacco, age, viruses and bacteria, Ultraviolet (UV) radia-

tion, organic and inorganic chemicals and family history (Parsa, 2012). Therefore,
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studying the DNA mutations is a prime interest to expand the knowledge of cancer

causes and treatments.

1.2.1 Types of genetic mutations in cancer

An average number of sequencing reads at each nucleotide on the genome is defined

as the read-depth or coverage. In order to call or detect a genetic variant at

a certain degree of confidence, it requires a sufficient read-depth rate. In other

words, the higher the read-depth value, the more certainty specialists can have

in discovering a genetic variant. For the whole genome sequencing, the typical

value of read-depth can be 20x to 40x (from 20 to 40 times) (Liu et al., 2018).

The read-depth value can be computed from the length of the genome (G), the

number of reads (N), and the average read length (L) as N × L/G. For instance,

if a genome size is 100 Mbp (100 million base pairs) and 20 M (20 million) reads

have been sequenced of 100 bp (100 base pairs) size, then the read-depth value

at genome level would be 20x. A related term for the read-depth that should be

considered in the genetic variant discovery method is the alternative reads number.

The alternative reads number is the total number of reads covering the alternative

genotype alleles in the same genomic position.

In cancer studies, matching normal and tumour DNA sequences, which have been

taken from the same patient, is a reliable approach to identify the differences be-

tween them. The detection process of variants leads to exploring several models

of genetic mutations. There are multiple types of genetic mutations. They are

described as acquired mutations and inherited mutations. Acquired mutations are
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defined as when a causal factor makes a change in the DNA sequences, so genetic

mutations occur in a tumour cell but not in a normal cell. These acquired mu-

tations are called somatic mutations. Inherited mutations happen when genetic

mutations occur in both the healthy and diseased cells. In this case, these mu-

tations are called germline mutations. There is a scenario that is not impossible,

but its possibility for rising is rare (Roth et al., 2012). It is that when genetic

mutations happen in a normal cell but not in a tumour cell. In this situation, it is

believed that these mutations may not be related to cancer outcomes. Therefore,

they are probably considered as an error of the machine when mutations are being

detected.

In cancer aetiology, as cancer is considered a complex disease and is accompanied

by other related traits, it is a good idea to study the association between genetic

mutations and cancer subtype outcomes (He et al., 2018). For instance, in the

diagnosis of liver cancer, α-fetoprotein (AFP) and prothrombin time are regularly

evaluated as they can relate to liver cancer, so measuring them is necessary for

the disease diagnosis (Lai et al., 1995). Furthermore, it is believed that all types

of cancer have subtypes (Liu et al., 2021).

A genetic mutation in cancer can be found as a point mutation, described as an

exchange in a single nucleotide. Alternatively, it can happen as other types of

variations, such as indels, duplications and copy number variations. The type of

duplication can appear when one or more nucleotides are copied and repeated. A

copy number variation refers to abnormalities among individuals in the number

of a particular gene for a specific trait in a genome. The most common genetic
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mutation that scientists focus on to investigate the cause of cancer and exam-

ine the relationship between mutations and associated traits of cancer is a point

mutation (Liu et al., 2021).

This thesis concentrates on a point mutation and considers this type of genetic

mutation to be of interest. Moreover, we focus on somatic mutations rather than

germline mutations, as somatic mutations are thought to play the most important

role in the development of cancer (Luzzatto, 2011).

1.2.1.1 Somatic mutations

Somatic mutations, unlike germline mutations, can not be transmitted by parents

to offspring as they happen in bodily tissues and are produced by physical factors.

Figure 1.8 explains the difference between somatic mutations and germline muta-

tions. It shows that a germline mutation happens in a sperm cell or an egg cell,

and as the embryo grows, the mutation can be copied into every cell in the body.

On the other hand, an embryo can be affected by a somatic mutation due to an

environmental factor, but it will not spread to the whole body when the embryo

grows. Instead, the mutation will remain in a specific area in the body.

On the subject of cancer, exploring somatic mutations and studying their impact

are deemed a significant action in the studies of cancer treatment for the reason

that somatic mutations are speculated to be a substantial stimulus for cancer (Liu

et al., 2018). However, the principal challenge in investigating somatic mutations

is the low frequency of them (He et al., 2018).
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Figure 1.8: The difference between somatic mutations and germline mutations.
(BioNinja Website)

1.3 The 100,000 Genomes Project

The 100,000 Genomes Project (100kGP) (Caulfield et al., 2017) is a government

initiative established in order to sequence whole genomes from National Health

Service (NHS) patients in England, Wales, Scotland and Northern Ireland. The

project aims to study genomes of patients with rare diseases and their blood rel-

atives and patients with cancer seeking to help scientists and doctors understand

the underlying causes of diseases and provide them with new insights into the
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predictions and prevention of diseases. Also, it aims to help patients by creating a

new genomic medicine service, as the project pursues to track patients’ conditions,

drive the development of new drugs and find new uses for existing drugs.

The study of rare diseases, defined as diseases that affect fewer than one in 2, 000

people in a population, has become one of the project’s focuses due to the consid-

erable number of rare genetic diseases in the UK. Precisely, it is estimated that

there are around 7, 000 different conditions of rare diseases in the UK, which means

that there are around 3 million affected people (Taylor and Frankl, 2012). For each

participant in the project, two family members are sequenced to assist in detecting

disease causal mutations. It means that more than 50, 000 individuals are included

in the branch of the rare disease. More than 120 rare diseases are considered in the

100,000 Genomes Project based on the need for better clinical therapies (Caulfield

et al., 2017).

Concerning cancer, the genomic project applies the method of matching the tu-

mour and normal sequencing data. There are 50, 000 sequenced genomes from

25, 000 independent individuals. Two genomes are sequenced from each patient;

one sample is from tumour cells, while the second sample is from normal cells.

Comparing cancerous and healthy cells can identify genetic regions likely to be a

cause of cancer development. The project aims to investigate all types of cancer.
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1.4 Discussion

This chapter discussed preliminary information to assist in understanding cancer

genetics. It introduced a summary of human genetics, including genetic notions

and terminologies and genetic variations. Next, as the focus of this thesis is on

cancer data, an introduction to the genetics of cancer and types of cancer genetic

variants is exhibited. The chapter concluded by offering a short sight of the 100,000

Genomes Project as its data is of interest.

The next chapter concerns a number of primary statistical methods employed in

this research.



Chapter 2

Statistical principles

This chapter is constituted of some critical, fundamental statistical techniques that

are utilised in the thesis. It starts with illustrating the logistic regression model

as in this research; we concentrate on dichotomous responses. Then, the chapter

moves on to introduce matched pairs analysis as this study design is used in the

research for analysing two matched pairs of the genome for detecting an associa-

tion. The logistic regression model of matched data and binomial exact test are

introduced in the framework of matched pairs. By the same token, the chapter

continues to present some of the genetic association procedures utilised for cate-

gorical outcomes. Introduced methods are the chi-square test, Cochran-Armitage

Trend Test (CATT) and Wilcoxon rank-sum test. For large samples, three tests

are presented. They are the likelihood ratio test, the Wald test and the score

test. Conducting multiple hypotheses increases the chance of type I error; there-

fore, the Bonferroni correction procedure adopted in many places in this thesis and

GHC test used in somatic mutation association analysis are also introduced in this

20
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chapter. Finally, the chapter ends with brief coverage of Bayesian statistics and

machine learning methods that have been adopted for somatic mutation analysis.

2.1 Generalised linear models

The logistic regression model is presented in this section within the context of a

generalised linear model. The generalised linear model (GLM) is a generalisation of

a linear model (LM), and it contains three elements which are a response variable,

predictor variables and a link function (Nelder and Wedderburn, 1972). In the

GLM, response values Yi, i = 1, . . . , n, for a sample size n, are deemed independent,

and can be indicated as a binary outcome. In other words, Yi can be coded 0 or 1

depending on whether or not an individual carries a trait of interest. In this case,

Yi follows a Bernoulli distribution.

The second element that the GLM includes is the set of predictors or explanatory

variables. A predictor variable is a factor that can influence the response outcome.

An example of a predictor is a genetic variant. Lastly, the third component in

the GLM is a link function, which expresses the relationship between the expected

value or mean of the response variable and explanatory variables in the linear

predictor, and can be a nonlinear function.

2.1.1 Logistic regression model

Logistic regression is a predictive analysis approach adopted in many fields, includ-

ing medical and biological fields and machine learning techniques, to interpret the
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effect of predictor variables on a binary outcome. The effect is expressed in terms

of the odds, defined as the ratio between the probability of the occurrence the event

and the probability that the event will not occur. If P denotes the probability of

an event occurring, the probability of not occurring is (1− P ). Consequently, the

odds can be expressed as

Odds =
P

1− P
.

The link function for the logistic regression model is the logit link. Then, the log

of the odds is modelled with a linear combination of explanatory variables, each

of which can be a discrete or continuous variable.

Consider a study with n independent individuals and a set of j variants gathered

within a particular gene of the ith individual indicated as zi = (zi1, . . . , zij), i =

1, . . . , n, and let the binary response variable Yi denote outcome of a trait of

interest. The outcome Yi can be modelled by a generalised linear model as

logitP (Yi = 1) = β0 + βzi, i = 1, . . . , n, (2.1)

where β0 is the intercept, and β = (β1, . . . , βj)
′
are the regression coefficients of the

genotypes. The association test is regarding β, so the hypothesis test is H0 : β = 0

that is β1 = β2 = · · · = βj = 0.
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2.2 Matched pairs analysis

The study of matched pairs analysis is an observational study employed to discover

factors related to outcomes. In the case-control study design, it is most generally

performed as a 1 – 1 design, where a case, defined as an individual who has the

development of a particular disease, is matched or compared to a control, defined

as an individual who is similar to the case sample but does not carry the disease

outcome. This is probably due to its practicality, since a 1:1 matched design may

not have the optimal power. However, the matched pairs case-control study is to

conduct matching pairs analysis where the case and control samples are obtained

from the same individual. This study design is introduced in this section as we

utilise it in Chapter Four when proposing a novel association method based on

comparing dependant pairs in order to evaluate the effect of somatic mutations

that occur in only tumour cells. Presented methods in this section are logistic

regression analysis of matched data and the binomial exact test.

2.2.1 Logistic regression analysis of matched data

Conditional logistic regression, originated by Breslow et al. (1978), is a develop-

ment of logistic regression that allows taking the stratification and matching into

consideration. It is mainly used in epidemiology and is deemed the most adopted

method in matched data as it has the feature of controlling for covariates.

Suppose a study where two genetic sequences are sequenced from each individual.
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One set is taken from tumour cells, while the second is from normal cells. Denote

the ith patient’s tumour cells by y1i = 1 and the healthy cells by y2i = 0. The

conditional likelihood function for the ith individual is given by

P (Y1i = 1, Y2i = 0 | Z1i, Z2i, Y1i + Y2i = 1)

=
P (Y1i = 1 | Z1i)P (Y2i = 0 | Z2i)

P (Y1i = 1 | Z1i)P (Y2i = 0 | Z2i) + P (Y1i = 0 | Z1i)P (Y2i = 1 | Z2i)

=

[
eβ0+βz1i

1+eβ0+βz1i
× 1

1+eβ0+βz2i

]
[

eβ0+βz1i

1+eβ0+βz1i
× 1

1+eβ0+βz2i

]
+
[

1
1+eβ0+βz1i

× eβ0+βz2i

1+eβ0+βz2i

]
=

eβz1i

eβz1i + eβz2i
,

where z1i = (z1i1, . . . , z1ij) is a vector of the ith patient’s genotypes for the j

mutations within a gene of tumour cells, and z2i = (z2i1, . . . , z2ij) is a vector of the

ith patient’s genotypes for the j mutations within a gene of normal cells. Finally,

β = (β1, . . . βj)
′
is a vector of the genotypes coefficients. The association test is

regarding β, so the hypothesis test is H0 : β = 0 that is β1 = β2 = · · · = βj = 0.

2.2.2 Exact tests for binary responses

Several exact tests can be applied to dichotomous outcomes. The binomial exact

test is a type of these tests that is used for rate comparison. It is demonstrated

here within the context of study comparing normal and tumour cells because we

utilise it in Chapter Four in order to estimate the validity of our proposed score

test.
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2.2.2.1 Binomial exact test

Here the binomial exact test is introduced within the context of a comparison

of normal and tumour samples within an individual. Consider that z1ix is the

genotype of the ith patient for the xth genetic marker within a gene of tumour

cells, and z2ix is the genotype of the ith patient for the xth genetic marker within

a gene of normal cells. Given that the genetic mutation is observed in the xth

marker, if there is no genetic effect on the disease outcome, the probability that

the variant occurs in the tumour cells and does not occur in the disease-free cells

is 0.5.

Normal cells
A mutation
present

A mutation
not present

Tumour
cells

A mutation
present

N11 N10

A mutation
not present

N01 N00

For the xth mutation, let N = N10 +N01 be the discordant pairs where N10 is the

total number of individuals with the variant in the tumour cells and N01 is the

total number of individuals with the variant in the disease-free cells. Assume N is

fixed,

N10 ∼ b(N,ω),

where ω is the conditional probability that the genetic variant occurs in the dis-

eased cells and does not occur in the normal cells, given that the genetic variant

is observed in either the tumour or healthy cells. The exact p-value for the test of
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no genetic effect at the xth mutation is

2pr (N10 ⩾ n10|no genetic effect) = 2
N∑

k=n10

(
N

k

)
× (0.5)k × (0.5)N−k,

where n10 ⩾ N/2 is the observed number of individuals with the variant in the

diseased cells but not in healthy cells.

2.3 Association procedures of genetic stud-

ies for categorical outcomes

In association analysis of genetic studies, many statistical approaches aimed at

investigating the impact of genetic variation on categorical phenotype responses

can be applied. This section introduces three association methods used in the

genomewide association study to compare the frequency of genotypic alleles at a

specific locus, usually single-nucleotide polymorphisms (SNPs). Presented meth-

ods are the chi-square test, CATT and Wilcoxon rank-sum test.

2.3.1 Chi-square test

The chi-square test (Pearson, 1900) is a hypothesis testing procedure performed

to evaluate the relationship between two categorical variables. On the subject

of genotypic association analysis, the chi-square test can be used to determine

whether or not the presence of a mutation within a genetic marker is associated
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with a particular disease outcome by comparing the observed distribution to the

expected distribution if there is no association.

Consider a case-control study, and we are interested in detecting if a genetic variant

at a specific locus is related to a binary disease outcome. Let zx be the genotype

of the xth genetic marker where zx follows a genetic additive model and can be

0, 1 or 2. The contingency table in this study design can be given as

zx = 0 zx = 1 zx = 2 Sum
Diseased individuals Nd0 Nd1 Nd2 R1

Healthy individuals Nh0 Nh1 Nh2 R2

Sum C1 C2 C3 N

where Nd0 is the total number of diseased individuals who do not carry a variant

in the xth genetic marker, Nd1 is the total number of diseased individuals who

have one copy of variant in the xth marker and lastly Nd2 is the total number of

diseased individuals who have two copies of variant in the xth marker. In the same

manner, Nh0 indicates the total number of healthy individuals who do not carry

a variant in the xth marker, Nh1 is the total number of healthy individuals who

have one copy of variant in the xth marker and Nh2 is the total number of healthy

individuals who have two copies of variant in the xth genetic marker. The test

statistic is given by

χ2 =
∑ (observed values - expected values)2

expected values
.

The chi-square test statistic follows an asymptotic chi-square distribution with (R

– 1)(C – 1) degrees of freedom.
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2.3.2 Cochran-Armitage Trend Test (CATT)

The second procedure adopted in categorical data analysis is CATT (Armitage,

1955). Similarly to the chi-square test, the CATT method aims to measure the

impact of a genetic mutation on a binary disease outcome. However, this approach

is explicitly used when there is an ordinal predictor variable with more than two

categories. By applying the 2× 3 above contingency table, the trend test statistic

T is given by

T =
3∑

k=1

tk(NdkR2 −NhkR1),

where tk is the genotype weight of the kth category, and weights are selected by a

user depending on the genetic model. Since an additive genetic model is considered

here, tk = 0, 1, 2 for k = 1, 2, 3, respectively, as there are three categories. The

standardised test is T/
√

V ar(T ) ∼ N(0, 1) where

V ar(T ) =
R1R2

N

( 3∑
k=1

t2kCk(N − Ck)− 2
2∑

k=1

3∑
l=k+1

tktlCkCl

)
.

2.3.3 Wilcoxon rank-sum test

The Wilcoxon rank-sum test, also called Mann–Whitney U test (Mann and Whit-

ney, 1947), is introduced here as some set-based approaches, discussed in Chapter

Three, use this procedure in order to discover the relationship between a collaps-

ing genetic score of a candidate region, such as a gene, and disease outcome. The

Wilcoxon rank-sum test can be applied to assess whether there is a difference in
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a predictor variable for two independent samples. In the context of detecting the

genetic association, it can be used to test whether there is a difference in a ge-

netic variant within a particular marker for diseased and healthy individuals. The

Wilcoxon rank-sum test statistic U is the smaller value of the statistics of the

diseased individuals sample Ud and the healthy individuals sample Uh where

Ud = Rank Sumd −
nd(nd + 1)

2
,

and

Uh = Rank Sumh −
nh(nh + 1)

2
,

where Rank Sumd is the sum of the ranks in the diseased individuals’ sample,

Rank Sumh is the sum of the ranks in the healthy individuals’ sample and nd and

nh are the sample sizes of the diseased and healthy individuals, respectively.

For large sample sizes (sample sizes above 20), U is approximately normally dis-

tributed, and the standardised value is given by

z =
U − ndnh

2√
ndnh(nd+nh+1)

12

.

2.4 Large sample tests

When the sample size is very large, particular statistical hypothesis tests are used

to test the null hypothesis H0. In this section, three important statistical tests,

which are applied through the thesis, are discussed. The tests considered are the
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likelihood ratio test, the Wald test and the score test.

2.4.1 Likelihood ratio test

The likelihood ratio test is a tool to assess the goodness of fit of two competing

statistical models. The test is based on the ratio of their likelihoods. Let Y1, . . . , Yn

be independent identical distribution variables with a probability density function

f(y; θ) where the scalar parameter θ is unknown. The null hypothesis test is

H0 : θ = θ0 while the alternative hypothesis is H1 : θ ̸= θ0. The likelihood ratio

test statistic is given as

LR = −2[ℓ(θ0)− ℓ(θ̂)], (2.2)

where θ̂ is the maximum likelihood estimate of θ under the alternative hypothesis,

and θ0 is the value of θ under the null hypothesis. The distribution of the likeli-

hood ratio test statistic is asymptotically chi-square distribution with 1 degree of

freedom.

2.4.2 Wald test

The Wald test statistic is defined as

W =
(θ̂ − θ0)

2

var(θ̂)
, (2.3)

where θ̂ is the maximum likelihood estimate of θ under the alternative hypothesis,

θ0 is the value of θ under the null hypothesis, and var(θ̂) is the variance of θ̂.
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The variance can be calculated from the inference of Fisher Information. Under

the null hypothesis, the Wald test statistic asymptotically follows the chi-square

distribution with 1 degree of freedom.

2.4.3 Score test

The score test, also called the Lagrange multiplier test (LM test), is a procure

that does not require an estimate of parameters under the alternative hypothesis;

therefore, the score test has this advantage compared to the likelihood ratio test

and Wald test. The test is based on the score function which is given by

U(θ) =
∂ℓ(θ)

∂θ
,

and the observed Fisher Information which is expressed as

I(θ) = −∂2ℓ(θ)

∂θ2
.

Finally the score test statistic is given by

V =
U(θ0)

2

I(θ0)
. (2.4)

Under the null hypothesis, the distribution of the score test statistic is asymptot-

ically chi-square distribution with 1 degree of freedom.
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2.5 Testing multiple hypothesis

In this section, we discuss the ways of managing the multiple hypothesis tests. The

well-known Bonferroni correction procedure is introduced due to its popular usage

when many statistical tests are conducted. The Bonferroni adjustment is utilised

in many places in the thesis. In addition to the Bonferroni method, the GHC

test (Barnett et al., 2017) is demonstrated because it is adopted in our proposed

technique for studying gene-based somatic mutation association analysis explained

in Chapter Four.

2.5.1 The Bonferroni correction

In the association studies of the whole genome, many studies are conducted by

utilising single-variant tests. However, when there are multiple hypotheses tested,

the chance of the incorrect decision of rejecting the null hypothesis increases (Mit-

telhammer et al., 2000). For adjusting the multiple testing burden, an adjust-

ment procedure is applied. Therefore, determining the correct p-value threshold

for the significance is crucial, and there are several techniques used in GWAS.

They include the Bonferroni correction, Sidak correction and permutation-based

approaches. Permutation-based methods that are based on resampling from ob-

served data are computationally intensive. The most conservative method for

selecting a threshold for the statistical significance is the Bonferroni correction

procedure (Kaler and Purcell, 2019).
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The Bonferroni correction approach divides the significance level at each locus by

the number of tests. In other words, it tests each hypothesis at a significance level

of α/j, where α is the selected significance level in a genetic marker, and j is the

number of genetic markers within a set such as a whole genome. For example, for

a significance level set at 0.05, and 100, 000 SNPs were tested, this would yield

an α = 5.0 × 10−7. Correspondingly to the Bonferroni correction method, Sidak

correction, where α = 1 − (1 − 0.05)1/j, gives a close result to the Bonferroni

correction when j is large (Gao et al., 2008).

Even though both the Bonferroni and Sidak procedures preserve the rate of false-

positive discoveries, they are inappropriate for some GWAS studies (Ziegler et al.,

2010). That is believed due to the fact that some genetic markers are thought to

be related. However, the Bonferroni and Sidak corrections do not account for the

correlation between some SNPs and deal with them independently.

2.5.2 The generalised higher criticism test

This part introduces a recently proposed test procedure called the GHC test (Bar-

nett et al., 2017). It computes the test statistic for each of the individual variables,

called marginal test statistics, and combines information over these statistics, al-

lowing for the correlation between these marginal test statistics. The GHC test

is a generalisation of the higher criticism (HC) test (Donoho et al., 2004) which

assumes that the marginal test statistics are independent.
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The higher criticism test statistic

Let Vx be the test statistic for the xth genetic marker, where x = 1, 2, . . . , j.

Assuming independence, and under the null of no genetic association, the number

of marginal tests significant at a selected significance level α follows a binomial

distribution with mean jα and variance jα× (1− α). The HC statistic is defined

as

HC = supα⩾0

{
[(observed number of tests significant at α)− jα]√

jα× (1− α)

}
, (2.5)

and the test statistic asymptotically follows a Gumbel distribution (Barnett and

Lin, 2014).

In recognition of the fact that the HC test has restricted applications in genetic

association studies because variants within a genetic structure such as a gene are

possible to be correlated, a new statistical approach has been developed by Hall

et al. (2010), called the innovated higher criticism (iHC) test. The iHC proce-

dure (Hall et al., 2010) was proposed in order to deal with the structure of the ar-

bitrary correlation among the individual marginal tests. The idea was to transform

the correlated test statistics V to independent test statistics V ∗ using Cholesky de-

composition of the correlation matrix and then apply the higher criticism method

directly.
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The innovated higher criticism statistic

Let V ∗ = (V ∗
1 , . . . , V

∗
j ) be a transformed vector of V = (V1, . . . , Vj) given by

V ∗ = Σ
1
2V,

where Σ is the variance-covariance matrix for (V1, . . . , Vj). For example, if the Vx’s,

x = 1, . . . , j, are score test statistics then Σ is the expected Fisher Information

matrix. Assume Vx follows a standard normal distribution and for some given t,

let

R∗(t) =

j∑
x=1

I(|V ∗
x |⩾t),

be the number of tests for which |V ∗
x | ⩾ t. Because the V ∗

x ’s are independent, under

the null hypothesis H0, it follows that R∗(t) is a binomial random variable with

probability of success 2Φc(t), where Φc(t) = 1 − Φ(t) is the distribution function

of the standard normal random variable. It follows that E [R∗(t)] = 2jΦc(t),

V ar [R∗(t)] = 2jΦc(t)(1− 2Φc(t)) and the standardised value of R∗(t) is

R∗(t)− 2jΦc(t)√
2jΦc(t)(1− 2Φc(t))

,

for a given value of t. Following the HC test, the innovated higher criticism test

statistic is defined as

iHC = supt⩾0

{
R∗(t)− 2jΦc(t)√
2jΦc(t)(1− 2Φc(t))

}
. (2.6)
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The iHC approach asymptotically follows a Gumbel distribution (Barnett and Lin,

2014).

When genetic variants located in a genetic unit are correlated or even moderately

correlated, the iHC test can commit a significant loss of power that may happen

due to diluting the sparse signals after being mixed in the process of the transfor-

mation (Barnett et al., 2017).

Due to the possibility of the correlation among the mutations within a genetic set,

such transformation in the association analysis is not optimal. This motivation

leads to develop the GHC test (Barnett et al., 2017). The GHC test is an associa-

tion test that uses single marker statistics and their correlation matrix to construct

a new test statistic and its distribution. The GHC test was developed to liber-

ate the limitations of applying the higher criticism test in the genetic association

approached and use the original marginal test statistics V .

The GHC statistic

Suppose instead of using the transformed test statistics V ∗
j , we define

R(t) =

j∑
x=1

I(|Vx|⩾t).

R(t) is no longer binomial distributed because the correlation among genetic mu-

tations will increase the variance. The generalised higher criticism test statistic is
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defined as

GHC = supt⩾0

{
R(t)− 2jΦc(t)√

v̂ar(R(t))

}
, (2.7)

where v̂ar(R(t)) is computed from the estimated correlation Σ̂ between the test

statistics Vx’s, x = 1, . . . , j. To do so, the covariance of R(tx) and R(tx′) is shown

to be (Barnett et al., 2017),

cov {R(tx), R(tx′)} = j[2Φc(max {tx, tx′})− 4Φc(tx)Φ
c(tx′)]

+ 4j(j − 1)ϕ(tx)ϕ(tx′)×
∞∑
i=1

H2i−1(tx)H2i−1(tx′)r2i

(2i)!
,

where ϕ(t) is the dispersion parameter evaluated at t, Hi(t) is the Hermite poly-

nomials and r2i is given by this expression rn = 2
j(j−1)

Σ1≤x≤x′≤j(Σxx′)n. The

generalised higher criticism test statistic asymptotically follows a normal distribu-

tion (Barnett et al., 2017).

The GHC approach was implemented and evaluated by Barnett et al. (2017) in

terms of type I error and power through simulation studies while considering cor-

relation structures among SNPs. They showed that the GHC test controls the

type I error at different significance levels. In contrast, the type I error of the

original higher criticism is anticonservative. Regarding power, the GHC test was

compared to the iHC, SKAT and MinP approaches. It was shown that the perfor-

mance of the GHC test is better than iHC in all of the various correlation settings

and sparsity situations. High sparsity in a genetic set, such as a gene, means

that when the number of causal variants is less than
√
j, where j is the number
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of variants in the set. Compared to SKAT, the GHC test performs better than

SKAT, particularly in sparse situations with low correlation rates between causal

and noncausal variants. The GHC’s performance is similar to the MinP approach;

However, the GHC test outperforms MinP when the correlation among SNPs is

high, and sparsity is decreased (Barnett et al., 2017).

2.6 Bayesian statistics

In this section, a brief of Bayesian statistics principles is introduced. Concepts

that are discussed here include conditional probability, the law of total probability

and Bayes’ theorem.

Conditional probability

Consider two events B and E with P (E) > 0. The conditional probability of B

given E written as P (B | E) is the probability that B occurred given that E has

already occurred. Mathematically,

P (B | E) =
P (B ∩ E)

P (E)
,

if B and E are not independent, then the probability of both events occurring

simultaneously is given as P (B ∩ E) = P (B | E)P (E), and it is called the multi-

plicative rule. However, if B and E are independent, the conditional probability

P (B | E) = P (B).
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Law of total probability

A collection of disjoint events B1, . . . , Bn where P (Bi) > 0, i = 1, . . . , n is said to

be a partition of a sample space S if ∪n
i=1Bi = S. If E is any event within S then

E = (E ∩B1) ∪ (E ∩B2) ∪ . . . ∪ (E ∩Bn).

Since events E ∩Bi, i = 1, . . . , n are disjoint,

P (E) = P (E ∩B1) + P (E ∩B2) + . . .+ P (E ∩Bn).

Applying the multiplicative rule gives

P (E) = P (E | B1)P (B1) + P (E | B2)P (B2) + . . .+ P (E | Bn)P (Bn),

which is called the law of total probability.

Bayes’ theorem

For a partition B1, . . . , Bn of S and any event E with P (E) > 0, the Bayes’

theorem is given as

P (Bi | E) =
P (E | Bi)P (Bi)∑n

x=1 P (E | Bx)P (Bx)
, i = 1, . . . , n.
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2.7 Machine learning methods

Statistical learning or machine learning methods are of two kinds, supervised learn-

ing and unsupervised learning approaches. Unsupervised learning techniques pri-

marily focus on grouping or clustering observations with similar characteristics and

discovering hidden patterns. Common methods include K-means clustering and

hierarchical clustering. Supervised learning techniques focus on predicting one or

more outcome variables based on independent or predictor variables. Two general

kinds of supervised learning approaches are regression and classification for con-

tinuous and categorical outcomes, respectively. While many standard statistical

modelling techniques (multiple linear regression, spline regression, logistic regres-

sion) are used in supervised learning, there are also methods such as Regression

and Classification Trees, Support Vector Machines (discussed below) and Neural

Networks which are not found in the typical statistical toolbox.

Tree-based methods can be designed to serve both regression and classification

analysis. The foundation of all tree-based models is known as decision tree models,

and two components construct a decision tree model. They are nodes and branches,

whereas, at each node, one of the features (predictor variables) in the model is

evaluated to divide the observations. In general, a decision tree model partitions

the prediction space into disjoint regions and run a simple model on each region.

Let X = (X1, . . . , Xj) be the set of j predictor variables, Y be an outcome and

{R1, . . . , RM} be the partitions of the predictor space X. A tree-based regression
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model can be given as

f(X) =
M∑

m=1

cmI{X ∈ Rm}, (2.8)

where cm is the predicted value of the response variable at the mth region Rm. For

example, based on the minimum sum of squares criteria, cm is simply the mean

of Y in the region Rm. A greedy algorithm can be run to find a partition that

minimises an appropriate objective function, such as the sum of squares.

Compared to other machine learning algorithms, decision tree models are consid-

ered simply manageable. Also, another advantage of decision tree models is that

they can handle missing values (Friedman, 2017). However, in many practical

cases, a single decision tree method is inaccurate, so it cannot produce a reliable

prediction. Therefore, bagging, also known as bootstrap aggregation, is a tech-

nique employed to increase accuracy. It is a simple yet powerful idea that builds

many decision tree models by randomly sampling with replacement, or bootstrap-

ping, from the original dataset and taking the average of the estimated prediction

function. The random forest technique (Breiman, 2001) is a powerful statistical

learning approach that combines multiple decision tree models using a way similar

to bagging. A regression or classification tree is built on a bootstrap sample using

a randomly chosen subset of variables in random forest models. Let the number

of bootstrap sample be B and Tb represent a tree based on the bth bootstrap sam-

ple, i.e., Tb follows the model in equation (2.8). In random forest methods, the
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prediction at new data points x is made as

1

B

B∑
b=1

Tb(x).

Since a pair of trees in the random forest approach shares some data, the outcome

of the pair of trees may be correlated. It is recognised that as the number of

trees grow in the forest, the effect of the correlation on the precision of prediction

decreases.

The Bayesian counterpart of random forest is the Bayesian additive regression trees

(BART) (Chipman et al., 2010). While tree parameters are considered fixed in the

random forest models technique, BART treats the parameters characterizing the

ensemble of trees as random. A prior distribution is assigned to each parameter,

and a backfitting MCMC is used. Regularization of the model through carefully

chosen prior distribution is a distinctive feature of BART.

Another procedure of supervised machine learning methods that can also be utilised

for classification and regression purposes is support vector machines (SVMs) (Boser

et al., 1992). The idea of the SVMs algorithm is to find a hyperplane or line that

is a function applied to separate the observations into classes. Maximising the

margin distance of data points from the hyperplane increases the confidence that

the data points are classified correctly. Support vectors are defined as the nearest

points of the data to the hyperplane, and they are considered critical to determine

the hyperplane. The SVMs technique works relatively well on small and clean

datasets, and accuracy is one of its advantages. However, it becomes less efficient
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when there are some noises in datasets (Ray, 2019).

There are supervised learning approaches that can be used only for classification

analysis, such as logistic regression. On the other hand, simple linear regression,

multiple linear regression and polynomial regression analysis are examples of al-

gorithms employed for regression designs.

2.8 Discussion

The chapter began to present an introduction to the generalised linear models and

discussed the logistic regression model considering that this thesis focuses on bi-

nary responses. Next presented was matched pairs analysis since this study design

is used to compare two dependent sequences taken from the same person. Logistic

regression analysis of matched data and the binomial exact test were discussed in

this chapter within the context of comparing tumour and healthy cells to detect

the impact of somatic mutations located in tumour cells. Three association ge-

netic methods used for categorical data, including the chi-square test, CATT and

Wilcoxon rank-sum test, were introduced as they are adopted in association anal-

ysis of genetic variants, discussed in the following chapter. Moreover, large sample

tests, including the likelihood ratio test, the Wald test and the score test, were

mentioned. The Bonferroni correction and GHC procedures used for adjusting

multiple testing burden were presented in this chapter. Finally, the chapter ended

by giving a short brief of Bayesian methods and machine learning techniques.

In the following chapter, some evaluative approaches for genetic association anal-
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ysis are discussed. Furthermore, as this thesis focuses on somatic mutations, a de-

tection analysis of somatic mutations is presented beside a newly released method

for studying somatic mutations’ effect.



Chapter 3

Association analysis of genetic mu-

tations

Using advanced technologies (next-generation sequencing) assists in determining

genetic mutations as complex diseases, including cancer, are triggered by genetic

variations. In consequence, investigating the relationship between each of genetic

variants and a disease trait outcome helps examine the degree of a variant’s impact.

Even though the GWAS successfully identified thousands of variants using single-

variant association tests, it works only on common variants. Note also that GWAS

findings have been used in fine-mapping, which involves rare variants, e.g., through

target sequencing. Set-based association methods have been developed with the

aim of dealing with low-frequency and rare variants.

Before applying genetic association approaches in cancer studies, it is pivotal to

introduce some somatic mutation calling methods as we in this thesis are interested

in this type of mutation. Somatic variant calling methods are proposed owing to

45
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the fact that low-frequency mutations are not easy to identify.

In this chapter, we first discuss the association analysis of single-variant methods.

A simulation study is conducted to evaluate and compare a selection of single asso-

ciation tests. Then, we explore a number of standard statistical techniques applied

to test the relationship between low-frequency and rare mutations grouped within

a genetic unit and a trait outcome. Next, a comparative simulation analysis of

rare variant association tests is offered to appraise their performances in terms of

type 1 error and power. Later on, we broach the ideology of finding somatic mu-

tations and introduce various approaches adopted in the somatic mutation calling

procedure. Lastly, a very recent association approach that has been constructed

for testing the effect of somatic mutations on a cancer subtype outcome is included

at the end of this chapter.

3.1 Association testing for genetic vari-

ants

Two primary forms of tests can be applied in genetic association analysis. The

first type is to test the probable association of a single mutation with a disease

outcome. This type of tests is called a single-variant association test. Another

form of association tests is named set-based association tests. This kind of test is

proposed for testing the relationship between an entire genetic set of mutations,

for example, a gene or pathway, and a disease outcome.
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3.1.1 Data description and model

Before discussing the two main categories of genetic variant association tests, we

introduce a model used to illustrate the association testing analysis. Consider a

study with n independent individuals and a set of j variants grouped within a

gene of the ith individual indicated as zi = (zi1, . . . , zij), i = 1, . . . , n. We assume

an additive genetic model so that zix = 0, 1 or 2 where x = 1, . . . , j represents the

number of genetic alleles for the xth variant of the ith individual. We suppose

that the model does not include non-genetic covariates. The variable Yi denotes

a binary outcome of a disease. The outcome Yi can be modelled by a generalised

linear model as

logitP (Yi = 1) = β0 + βzi, i = 1, . . . , n, (3.1)

where β0 is the intercept, and β = (β1, . . . , βj)
′
are the regression coefficients of the

genotypes. The association test is regarding β, so the hypothesis test is H0 : β = 0

that is β1 = β2 = · · · = βj = 0.

3.1.2 Single-variant association tests

Every SNP marker in for example GWAS approaches is tested through a single-

marker association marginal test. A linear model can be implemented for contin-

uous outcomes and logistic regression for binary outcomes. Although thousands

of disease-associated SNPs have been identified in the way of the GWAS, the
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approach only works well for common variants, defined as alleles that have a fre-

quency of more than 5% (Hindorff et al., 2009). Additional examples of methods

that can be applied in the GWAS to evaluate the relationship between a single

variant and disease outcome comprise the chi-square test and CATT.

We appraise in the following section the performances of some standard single-

variant association tests that can be utilised in the additive genetic model to

determine the relationship between a single genetic mutation and binary disease

outcome.

3.1.2.1 Simulation studies and results

A simulation study was created in order to examine the performance of the chi-

square test, CATT and GLM in terms of type I error and power. The assessment

of the methods was composed of 1, 000 replications at significance level 0.05 with

various rates of variant allele frequency. In terms of evaluating type I error, it

was done by simulating the data under the null hypothesis (β=0). In terms of

evaluating the power, we set β = 0.4, 0.8, 1.2, 1.6, 2.0.

A dataset of a sample size of n = 400 was conducted, and the genotype for a

genetic variant of the ith individual zi was simulated with a pre-selected variant

allele frequency (V AF = 0.1, 0.05, 0.01). A dichotomous outcome Yi was simulated

by a Bernoulli distribution with probability of success pi, and log(pi/(1 − pi)) =

−0.5 + βzi.
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3.1.2.1.1 Type I error and power

Based on the investigation, the chi-square test, CATT and GLM control the type

I error. In terms of power, all methods can obtain high rates of power at a ge-

netic variant frequency VAF ≥ 0.05 and large effect size. In other words, the tests

produce more than 99% and 93% powers when a genetic variant has a frequency

of VAF =0.1 and VAF =0.05, respectively, for effect size β ≥ 1.2 as shown in

Figure 3.1. However, the performance of the single-variant association tests de-

creases for a low frequency (VAF =0.01) even when the effect size is very large

(β = 2). For instance, the chi-square test and CATT approach achieve 71% power

while the GLM obtains 43% power for VAF=0.01 and β = 2. For this sample size

(n = 400), this finding can confirm that single-variant tests are powerful when a

genetic variant is deemed common (e.g., its frequency is ≥ 0.05). However, their

performance decreases for analysing low-frequency and rare variants (variants have

a frequency of < 0.05).

3.1.2.2 Conclusion

In summation, single-association tests can be robust in genetic studies when a

genetic variant has a standard frequency rate. Based on cancer mutation analysis,

single variant association approaches can be employed to examine genetic asso-

ciations of germline mutations as their recurrence is frequent. Since it is widely

known that somatic mutations are considered low-frequency and rare, these devel-

oped methods might be inapplicable for the purpose of exposing somatic mutations
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Figure 3.1: Comparison of type I error and power for single-mutation analysis of
the chi-square test (red bars), Cochran-Armitage Trend Test (CATT) (green bars)
and GLM (blue bars) with various rates of variant allele frequency (VAF) and
effect size β. The comparison is based on a sample size of (n = 400).
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association to a cancer subtype outcome. A new strategy has been suggested in

order to study the impact of low-frequency mutations on disease outcomes. It is

to aggregate the genetic effects of the variants within a genetic unit such as a gene

to enhance genetic association signals and avoid penalties that may occur when

multiple tests are made.

3.1.3 Set-based association tests

Set-based, also called region-based association tests, have become more desirable

in genetic studies to inspect the effect of rare and low-frequency mutations. This

is believed due to the fact that considering every single low-frequency mutation

may produce a deficiency in statistical association approaches as there will be a

dearth of variation in data (Sugasawa et al., 2017). Set-based association tests

combine the complete genetic information from multiple mutations grouped in a

genetic set such as a gene to investigate the relationship between this genetic set

and trait outcomes. The most common gene-based association tests follow two

classes of tests. The first type is burden tests, while the second type is variance-

component tests. In addition, there are some set-based association tests that use

a combination of burden tests and variance-component tests. Table 3.1 compiles

a number of common association tests.

3.1.3.1 Burden tests

The purpose of this sort of test is to epitomise the whole genetic information

from the j genetic markers within a target gene or any genomic unit for each
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Set-based association methods
Type Description Tests

Burden tests
collapse rare variants
into genetic scores

CAST, CMC
test, WSS, Mz test, VT test

Variance-component
tests

test variance of genetic
effects

SSU test,
SKAT, C-alpha test

Combined tests
combine burden tests and
variance-component tests

SKAT-O, Fisher
method, MiST

Table 3.1: A summary of some set-based association tests.

individual into one genetic score in order to use this burden score for the association

procedure. Burden tests include the cohort allelic sums test (CAST) (Morgenthaler

and Thilly, 2007), combined and multivariate collapsing (CMC) test (Li and Leal,

2008), weighted-sum statistic (WSS) (Madsen and Browning, 2009), Morris and

Zeggini (MZ) test (Morris and Zeggini, 2010), variable allele-frequency threshold

(VT) test (Price et al., 2010).

3.1.3.1.1 Cohort allelic sums test (CAST)

The cohort allelic sums test (CAST) (Morgenthaler and Thilly, 2007) follows a

collapsing strategy for rare genetic variants. It assumes that the risk of a disease

can be risen by the attendance of any rare mutation in a genetic set. The genetic

score of the ith individual in the CAST is given by

Bi = I{
∑j

x=1 zix>0}, (3.2)

where I is an indicator function that takes 0 or 1, and zix is the genotype of the

ith individual at the xth variant that is formed of (0, 1, 2). Then, the chi-square
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test can be applied in order to evaluate the association of the burden score and

binary trait outcome.

3.1.3.1.2 Combined and multivariate collapsing (CMC) test

The combined and multivariate collapsing (CMC) test (Li and Leal, 2008) is a

technique that is designed to analyse both rare and common variants. In the same

manner as the CAST, the CMC test collapses genetic variants but in different

categories of the variant allele frequency and appraises the combined effect of

common and rare variants by utilising Hotelling’s t-test. The stages of the CMC

test can be formulated as follows:

• Collect genetic variants based on their allele frequency.

• Collapse each group by using the CAST method.

• Perform Hotelling’s t-test.

The CMC test improves the power when a genetic set includes common variants.

This means that when a genetic set does not contain common variants, the CMC

method becomes similar to the CAST.

3.1.3.1.3 Weighted-sum statistic (WSS)

Different assumptions about the relationship between a genetic set and trait out-

come can be produced in the weighted-sum statistic (WSS) method (Madsen and

Browning, 2009). The WSS approach is a collapsing procedure that is proposed

to give more weight to rare variants, and its summary genetic score of the ith
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individual is given as

Bi =

j∑
x=1

wjzix. (3.3)

A suggested weight is given as wj = I{V AFx<ζ}, where V AFx is the allele frequency

of the xth variant and ζ is a pre-determined threshold for the allele frequency.

Another weight is suggested as wj = 1/
√
V AFx(1− V AFx). In order to test the

association, the Wilcoxon rank-sum test is applied in the WSS approach.

3.1.3.1.4 The limitations of burden tests

The burden methods assume that all of the genetic variants grouped in a gene

or any genomic unit are causal and have the same direction and magnitude of

effect. Consequently, this means that it might result in a loss of power when this

assumption is violated. Another limitation is that in order to obtain sufficient

power by using burden tests, the methods need large rates of variants that are

causal. Some of the burden approaches such as the CAST, CMC test, and WSS

have been constructed to deal with qualitative data, and they do not incorporate

covariates as they use the collapsing model.

3.1.3.2 Variance-component tests

Instead of grouping variants, proposed techniques use a variance-component test

to assess the association by evaluating the distribution of the effect of a set of rare

variants. Approaches that utilise the type of variance-component test are the sum

of square score (SSU) test (Pan, 2009), C-alpha test (Neale et al., 2011), sequence
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kernel association test (SKAT) (Wu et al., 2011).

3.1.3.2.1 C-alpha test

The C-alpha test is a good and robust procedure for the presence of a mixture of

biased and unbiased coins (Neyman and Scott, 1965; Zelterman and Chen, 1988).

Neale et al. (2011) develops the C-alpha test to evaluate the association of a group

of rare variants. Assuming that the rare variants are randomly distributed across

the individuals, the probability of observing a particular variant m1 times in the

affected subjects out ofm total is evaluated by the binomial distribution (m, p). On

the assumption that the sample consisting of affected and unaffected individuals is

in equilibrium, it can indicate that p = 0.5 and m1 is 0, 1 and 2 are expected with

probabilities of 0.25, 0.5, and 0.25, respectively. It is natural to observe a higher

proportion of m1 = 0 or m1 = 2 than expected if some variants are protective or

harmful.

For the xth variant observed mx times, it is assumed that m1x follows the binomial

distribution (mx, px) under the null hypothesis H0 : px = p0 (p0 =
1
2
if the number

of affected and unaffected individuals is equal, so rare variants are expected to be

in either sample at random). The C-alpha test statistic T compares the variance of

each observed count with its expected variance under the assumption of a binomial

distribution.

T =
m∑

x=1

[(m1x −mxp0)
2 − (mxp0(1− p0))],

where m1x is the number observations of the xth variant in the affected subjects
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out of n individuals, and mx is the number of copies of the xth variant.

In order to standardise the test statistic, c is required which is the variance of T

and given by

c =
maxn∑
n=2

m(n)
n∑

u=0

[(u− np0)
2 − np0(1− p0)]

2f(u | n, p0),

where m(n) is the number of variants with n copies, and f(u | n, p0) indicates the

probability of observing u copies of the xth variant assuming the binomial model.

The resulting test statistic is defined as Z = T/
√
c. We reject the null hypothesis

when Z is larger than expected using a one-tailed standard normal distribution for

reference (Neale et al., 2011).

3.1.3.2.2 Sequence kernel association test (SKAT)

The sequence kernel association test (SKAT) (Wu et al., 2011) is a regression

approach that tests the effect of variants located within a genetic set on a trait.

Genetic variants are possible to be common or rare variants, and SKAT allows

the variants to have different direction and magnitude. Moreover, SKAT can deal

with continuous and dichotomous traits and adjust the covariates, which could be

age, gender or any environmental variable. The idea of SKAT is that it aggregates

the entire genetic information from variants within a genetic unit such as a gene

set and gives all variants the same weight.

Recall model 3.1, SKAT assumes that each βx, x = 1, . . . , j follows an arbitrary

distribution with mean 0 and variance wxτ where wx is a pre-specified weight of
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the xth variant, and τ is a variance component. The null hypothesis H0 : β1 =

β2 = · · · = βj = 0 is equivalent to testing H0 : τ = 0.

The variance component score statistic for SKAT is given by

Q = (y − µ̂)TK(y − µ̂),

where µ̂ is the predicted mean of y under the null hypothesis H0 that is in our

model µ̂ = logit−1(β0) for the dichotomous outcomes, and K is the kernel matrix.

There are several types of pre-specified kernels, including linear, weighted linear,

IBS, weighted IBS and quadratic. The kernel matrix for the weighted linear kernel

is K = ZWWZ where Z is a genotypes matrix, and W is a diagonal weight matrix

that contains the weights of the j variants. Good choices of weights can improve

power. SKAT authors suggest using
√
wx = Beta(V AFx; a1, a2) where V AFx is

the allele frequency of the xth variant, and it is recommended setting a1 = 1 and

a2 = 25 as it enhances the weight of rare mutations while still giving proper non

zero weights for low-frequency mutations with allele frequency 1%–5% (Wu et al.,

2011). The Q statistics has a mixture of chi-square distributions under the null

hypothesis that can be evaluated explicitly and used as a reference distribution to

compute the p-value.

The sequence kernel association test (SKAT) becomes comparable to the C-alpha

approach (Neale et al., 2011) in the event of investigating the association between

an assemblage of genetic variants and a dichotomous outcome in the absence of

covariates; therefore, it means that the C-alpha test is a particular case of the
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SKAT.

The following section evaluates the performance of some selected approaches of

burden tests and variance-component tests in terms of type I error and power.

3.1.3.3 Simulation studies and results

In this section, we made different setups of simulation studies to evaluate the

abilities of the cohort allelic sums test (CAST), weighted-sum statistic (WSS) and

C-alpha test. The performance assessment of the gene-based association methods

was made in terms of type I error and power through 1, 000 replications. Similar to

assessing the analysis of single-variant approaches, evaluating type I error was done

by generating the data under the null hypothesis (β = 0). In terms of testing the

power, the genetic effect size β was set to be a nonzero value. Diverse situations

were designed in order to test the power of the tests.

A dataset of a sample size of n = 400 was constructed, and we assume that a

candidate gene contains 10 genetic mutations. For the ith individual, each mu-

tation from the 10 genetic mutations zix, x = 1, . . . , 10, was simulated with a

pre-selected variant allele frequency (V AFx = 0.01, 0.008, 0.005). A binary out-

come Yi was simulated by a Bernoulli distribution with probability of success pi,

and log(pi/(1− pi)) = −0.5 + βzi.

In the first scenario, it is supposed that all of the 10 mutations within a gene are

causal and have the same effect magnitude. In the second scenario, we assume

that some of the 10 genetic variants are not causal, and four cases are considered.
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In the first case, 3 of the 10 mutations are expected to be natural and do not have

an effect on a trait outcome. In the second and third cases, it is presumed that

5 and 7 mutations are not causal, respectively. In all of these three cases, the

active mutations that are deemed to produce an impact on a trait outcome have

the same effect size. Finally, in the fourth case, we assume that only 1 mutation

within a gene is causal; namely, the remaining 9 mutations are harmless and do

not have an impact on a disease trait.

3.1.3.3.1 Type I error and power

In all of the simulated frameworks, the type I error was protected by all of the

gene-based methods. With relevance to tests power, as Figure 3.2 illustrates, when

assuming that all mutations that are gathered within a gene have a contribution

to a trait outcome, the burden tests, the cohort allelic sums test (CAST) and

weighted-sum statistic (WSS), can perform productively (obtaining in excess of

90% power) when the effect size β > 0.8 for a sporadic genetic mutation frequency.

In contrast, the C-alpha test requires an effect size β > 1.2 to get more than 90%

power.

In the second scenario, when supposing that some mutations within a gene do

not affect a trait outcome, the WSS procedure continues to perform better than

the CAST and C-alpha methods as displayed in Figure 3.3. However, all the ap-

proaches carry out inadequately in this sample size (n=400) when most mutations

of the 10 genetic variants do not influence a trait outcome. To put it another way,

the WSS method’s power does not surpass 68% for VAF=0.01, while the CAST
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Figure 3.2: Comparison of type I error and power for gene-level mutation analysis
of the cohort allelic sums test (CAST) (red bars), weighted-sum statistic (WSS)
(green bars) and C-alpha test (blue bars) with various rates of variant allele fre-
quency (VAF) and effect size β. In the comparison, the sample size is (n = 400),
and the number of variants within a gene is 10. It is assumed that all of the 10
mutations are causal and have the same magnitude and direction of the associa-
tion.
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and C-alpha tests reach less than 53% and 27% power, respectively, when 7 mu-

tations within the 10 variants are assumed to be harmless. Moreover, none of the

procedures overtops 20% power when only 1 mutation is believed to be leading to

a trait outcome, as demonstrated in Figure 3.4.

3.1.3.4 Conclusion

When a genetic region contains a number of causal variants that hold the same

direction of the association, burden tests can excel variance-component tests. On

the contrary, variance-component tests might be more potent than burden tests in

the circumstance that a genetic region is composed of variants with different di-

rections of the association (detrimental and protective variants) (Lee et al., 2014).

Because both of the cases are possible to occur, several methods have been devel-

oped that combine burden tests and variance-component tests (Lee et al., 2014).

Approaches that use a combination of burden tests and variance-component tests

include the SKAT-O (Lee et al., 2012), Fisher method (Derkach et al., 2013) and

MiST (Sun et al., 2013).

3.2 Genetic mutation analysis in cancer

In the light of the analysis of cancer genetic mutations, it is too important to

recognise that the detection procedure of germline mutations or somatic mutations

is a critical stage that needs to be studied and considered prior to testing the

potential associations. As long as in the thesis, we are interested in a point somatic
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Figure 3.3: Comparison of type I error and power for gene-level mutation analysis
of the cohort allelic sums test (CAST) (red bars), weighted-sum statistic (WSS)
(green bars) and C-alpha test (blue bars) with various rates of variant allele fre-
quency (VAF) and effect size β. In the comparison, the sample size is (n = 400),
and the number of variants within a gene is 10. In case 1, it is assumed that
7 of the 10 mutations are causal, while in cases 2 and 3, 5 and 3 mutations are
supposed to cause an effect, respectively. The effective variants are assumed to
have the same magnitude and direction of the association.
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Figure 3.4: Comparison of type I error and power for gene-level mutation analysis
of the cohort allelic sums test (CAST) (red bars), weighted-sum statistic (WSS)
(green bars) and C-alpha test (blue bars) with various rates of variant allele fre-
quency (VAF) and effect size β. In the comparison, the sample size is (n = 400),
and the number of variants within a gene is 10. In this setup, it is assumed that
only 1 mutation is causal.
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mutation; this section presents an introduction to some common somatic mutation

calling approaches. Then, it proceeds to introduce a recent technique that has been

released in order to study the association between somatic mutations and a cancer

subtype outcome.

3.2.1 Somatic mutation calling methods

Next-generation sequencing (NGS) technologies, also known as massively parallel

sequencing, have provided essential and sophisticated help in medical and biologi-

cal fields. The remarkable feature of the NGS technologies, unlike Sanger sequenc-

ing, is that millions of DNA fragments are simultaneously aligned so that the whole

chain of the genome can be sequenced (Behjati and Tarpey, 2013). It is believed

that a variant given enough coverage (read-depth) can be identified irrespective of

the variant allele frequency (VAF) or the variant position. However, calling the

variant with certainty is not a simple task due to possible errors of reads when

the genomic sequences are scanned (Xu, 2018). Abundant bioinformatic methods

have been released to call mutations. In respect to cancer data, calling somatic

mutations is thought to be more challenging compared to germline mutations as

somatic variants are considered low frequency and rare (Liu et al., 2018).

Several techniques have been conducted for identifying somatic mutations, such

as heuristic methods, probabilistic methods and machine learning methods. Some

somatic mutation calling methods are constructed only to call the type of single

nucleotide variants (SNVs) of a somatic mutation, while other methods can detect

SNVs and insertion/deletion polymorphisms (indels). Few methods can detect all
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types of genetic variation, (i.e. they can call SNVs, indels and structural variations

(SV)). Table 3.2 summarises some common somatic mutation calling methods and

classifies their categories and variation types. Some other approaches are not

mentioned in the table.

3.2.1.1 Heuristic methods

Normal and tumour cells are separately analysed to detect a somatic mutation in

light of the heuristic calling approach. Then, the results are compared to each

other. The heuristic methods are used by Koboldt et al. (2012); Hansen et al.

(2013); Radenbaugh et al. (2014); Lai et al. (2016).

The VarSan2 approach (Koboldt et al., 2012) is a heuristic method that looks for

a genotype with a variant with a minimum frequency level (0.20 by default) and

is adjustable by a user. If genotypes do not match in normal and tumour cells,

then one-tailed Fisher’s exact test is used in order to examine for a significant

difference between the two sets of cells. A genotype is called somatic if the normal

sample is a homozygous reference in case of a significant difference. Otherwise,

the genotype can be called loss-of-heterozygosity (LOH) if the normal sample is a

heterozygous reference and called unknown if the normal sample is a homozygous

variant (non-reference) and the tumour sample does not match.

The Shimmer approach (Hansen et al., 2013) is a method that follows VarScan2’s

idea. It applies the Fisher’s exact test but conducts multiple testing correction

to control the type 1 error. In addition to these two somatic mutation calling

methods, the approaches of RADIA (Radenbaugh et al., 2014) and VarDict (Lai
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et al., 2016) adopt the notion of heuristic methods.

Somatic mutation calling methods
Somatic mutation callers Type of variation Category

JointSNVMix2 SNV Probabilistic method
MutationSeq SNV Machine learning

MuTect SNV Probabilistic method
SAMtools SNV, indel Probabilistic method
RADIA SNV Heuristic method
Shimmer SNV, indel Heuristic method
SNooPer SNV, indel Machine learning

SomaticSeq SNV Machine learning
SomaticSniper SNV Probabilistic method

VarDict SNV, indel, SV Heuristic method
VarScan2 SNV, indel Heuristic method

Table 3.2: A summary of some methods used for detecting somatic mutations.

3.2.1.2 Probabilistic methods

In this method, the tumour and normal cells are diploid, and the likelihood of joint

genotypes are evaluated. Examples of approaches that use this type of method are

SAMtools (Li, 2011), SomaticSniper (Larson et al., 2012), JointSNVMix2 (Roth

et al., 2012) and MuTect (Cibulskis et al., 2013).

The SomaticSniper procedure (Larson et al., 2012) is based on a Bayesian method

and calculates the posterior probability of a genotype across tumour and normal

cells given the observed reads and calculate prior genotype likelihoods depending

on some genetic information such as somatic mutation rate, population mutation

rate and sequencing error rate (Roberts et al., 2013). SomaticSniper discovers a

somatic mutation by constructing a somatic score for each genetic position that
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there is no difference in the genotypes of tumour and healthy cells. The somatic

score is given by

−10log10P (ZT = ZN | DT , DN),

where ZT , ZN are genotypes of tumour and normal cells, respectively, and DT , DN

are read-depth values in tumour and normal cells, respectively. A higher somatic

score means that the genetic position is more likely to have different genotypes in

tumour and normal samples. Therefore, that position has a high possibility to be

called somatic.

3.2.1.3 Machine learning methods

Some developed methods use machine learning techniques for detecting somatic

mutations, such as mutationSeq (Ding et al., 2012), SomaticSeq (Fang et al., 2015)

and SNooPer (Spinella et al., 2016). The MutationSeq method (Ding et al., 2012)

utilises genotypes and other genetic features on every genetic position to train four

classifiers. The trained classifiers are random forests, Bayesian adaptive regression

tree, support vector machine and logistic regression. The learning methods were

tested on naive datasets based on the features. A mutation could be somatic if

validated, or it is considered non-somatic if it was found a wild-type or germline

variant. All of these four machine learning methods were found to be reasonable

compared to the subtraction method. The SNooPer approach (Spinella et al.,

2016) is a technique that follows the machine learning methods, and it only uses a

random forest classifier and claims it works well on low-coverage data (Xu, 2018).
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3.2.2 A recent proposed method of somatic mutation as-

sociation analysis

After introducing the detection analysis of genetic mutations in cancer and dis-

cussing a number of somatic mutation calling approaches as we are interested in

somatic mutations rather than germline mutations, in this part, we present a re-

cently developed technique to analyse the effect of somatic mutation on a trait

outcome.

The burden tests and variance-component tests mentioned in Section 3.1 might

not be suitable for analysing somatic mutations due to the false positive and false

negative rates that the calls of somatic mutations regularly have (Liu et al., 2018).

Therefore, a recent somatic mutation association approach, called Somatic muta-

tion Association test with Measurements Errors (SAME) (Liu et al., 2018), has

been released to study the effect of a single somatic mutation or gene-level so-

matic mutations on a continuous or binary outcome of cancer trait-related with

considering the uncertainty of calling somatic mutations.

The SAME test uses read count data (read-depth and alternative reads) to model

the potential errors of the somatic mutation calling procedure and applies the

likelihood ratio test to investigate the relationship between somatic mutations and

a cancer subtype outcome. The SAME test has been compared to the GLM that

does not account for the uncertainty of somatic mutation calling, and it has been

shown that the SAME test performs better than the GLM. It indicates that taking

the uncertainty of somatic mutation calling can improve the association analysis
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of somatic mutations.

3.3 Discussion

The association analysis of single genetic variants was firstly discussed in this chap-

ter by introducing some approaches used in the genome-wide association study

(GWAS). Also, a simulation study was shown in order to evaluate a selection

of single-variant tests. Next presented was the theory of the set-based analysis

of genetic variants as single-variant tests do not perform sufficiently in rare ge-

netic variants. A number of region-based approaches, including burden tests and

variant-component tests, was mentioned and evaluated via simulation studies. Due

to the fact that this thesis is interested in cancer genetic mutations, specifically in

somatic mutations, the identification procedure of somatic mutations was disclosed

in the chapter. Furthermore, several approaches of calling somatic mutations, in-

cluding heuristic methods, probabilistic methods and machine learning methods,

were considered. In conclusion, the chapter ended by displaying an introduction to

a new approach produced to test the effect of somatic mutations on cancer subtype

outcomes.

In the next chapter, we propose a novel score test procedure based on using the

GHC test in order to compare two genetic sequences taken from the same patient

with the objective of detecting the effect of somatic mutations that tumour samples

contain.



Chapter 4

Novel use of GHC in somatic mu-

tation association analysis

Somatic mutation calling methods, introduced in Chapter Three, aim to discover

a single somatic mutation by utilising statistical tests. Somatic mutations are

found in tumour cells but not in healthy cells, and their significant role in devel-

oping cancer leads to investigating the influence of somatic mutations on cancer

outcomes. The work motivation in this chapter has been risen by the 100,000

Genomes Project (100kGP) (Caulfield et al., 2017) since two samples received

from an individual are matched, seeking to study the crucial impact of somatic

mutations. This chapter proposes a score test procedure to detect an association

of a set of somatic mutations assorted within a gene and cancer outcomes based

on applying the GHC test. For the sake of examining the validity of our proposed

method, it is evaluated through different scenarios of simulation studies, in terms

of type I error and power, and compared to the performance of the binomial exact
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test corrected by the Bonferroni correction.

4.1 Score test for matched pairs data

Consider a study where two genomes are taken from each person. One sample

is sequenced from tumour cells, and the second sample is sequenced from normal

(healthy) cells. Denote the ith patient’s tumour cells by y1i = 1 and the disease-free

cells by y2i = 0. Following the conditional probability approach used in matched

pairs case-control designs, the likelihood function for the ith patient is given by

Li =
eβz1i

eβz1i + eβz2i
, (4.1)

and its log likelihood function is

li = βz1i − log(eβz1i + eβz2i), (4.2)

where z1i = (z1i1, . . . , z1ij) is a vector of the ith patient’s genotypes for the j

mutations within a gene of tumour cells, and z2i = (z2i1, . . . , z2ij) is a vector of

the ith patient’s genotypes for the j mutations within a gene of normal cells.

We suppose an additive genetic model and let z1ix = 0, 1 or 2 and z2ix = 0, 1

or 2 indicate the number of variant allele counts where x = 1, . . . , j. Finally,

β = (β1, . . . βj)
′
is a vector of the genotypes coefficients.

The score function for the ith individual for βx is the first derivative of li with
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respect to βx, x = 1, . . . , j, and it is given as

ui =
∂li
∂βx

= z1ix −
z1ixe

βz1i + z2ixe
βz2i

eβz1i + eβz2i
. (4.3)

Under the null hypothesis H0 : β = 0 that is β1 = β2 = · · · = βj = 0, the score

function for the xth marker becomes

ui =
z1ix − z2ix

2
. (4.4)

The Fisher Information of βx, βx′ is given as

Ii = −E

[
∂li

∂βx′∂βx

]
=

−z1ixz1ix′eβz1i + z2ixz2ix′eβz2i

eβz1i + eβz2i

+
(z1ixe

βz1i + z2ixe
βz2i).(z1ix′eβz1i + z2ix′eβz2i)

(eβz1i + eβz2i)2
.

(4.5)

The Fisher Information under the null becomes

Ii =
(z1ix − z2ix)(z1ix′ − z2ix′)

4
. (4.6)

It follows that the score test statistic for the xth marker is

V =
(
∑n

i=1 ui)
2∑n

i=1 Ii
=

(
∑n

i=1 z1ix − z2ix)
2∑n

i=1(z1ix − z2ix)2
. (4.7)

The performance of the proposed score test corrected by the GHC test correction is

evaluated below in terms of type I error and power and compared to the binomial

exact test based on the Bonferroni correction.
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4.2 Simulation studies and results

Recall from Chapter One in the 100,000 genomes project, tumour and normal

sequences were compared in cancer patients to detect somatic mutations that are

likely to be a cause of cancer. In this section, we made a variety of simulation

configurations in order to assess the performance of our developed gene-based

method for detecting the impact of somatic mutations grouped within a gene and

compare it to the binomial exact test in terms of type I error and power. The

evaluation procedure was produced 1, 000 replications at a significance level of

0.05. The score test statistic for association at each marker and the correlation

matrix for the score test statistics are calculated to compute the GHC test. For

comparison, the binomial exact tests corrected by the Bonferroni correction are

computed.

Two sets of genotypes are simulated for each individual. One set is for tumour

cells, and the other set is for normal cells. The rare variants are simulated with

a pre-selected variant allele frequency (VAF = 0.01, 0.008, 0.005) and with the

majority occurring in both tumour and healthy cells. In other words, these rare

variants that present in both cells are not considered somatic mutations.

Evaluating the type I error was performed by assuming that the simulated se-

quences of a gene of tumour cells do not contain somatic mutations. In terms of

evaluating the power, we set a number of somatic mutations in tumour sequences.

Different scenarios are considered in order to assess the proposed approach’s abil-

ity.
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In the first case, a dataset of a sample size of n = 400 was generated. In this case,

we supposed that there are 10, 7, 5, 2 or 0 mutations within a total of 50 rare

variants that occur in tumour sequences, and they are deemed somatic mutations.

In the second and third cases, we constructed simulation setups in the same way

as in the first case, but we changed the length of genes to contain 100 and 150 rare

variants, respectively. In specific, in the second case, it is assumed that tumour

sequences include 10, 7, 5, 2 or 0 somatic mutations within a total of 100 rare

variants, whereas within 150 rare variants in the third case.

4.2.1 Type 1 error and power

The proposed gene-based score test and binomial exact test protect the level of

type I error in all of the various simulated cases. Regarding power, in the first

case, when a gene contains 50 rare variants, the proposed score test performs much

better than the binomial exact test at all different mutation rates, as displayed in

Figure 4.1. The score test procedure works perfectly (obtaining more than 98%

power) when a tumour gene includes more than 5 somatic mutations with a variant

allele frequency (VAF=0.01). In comparison, the binomial exact test obtains only

85% power even when a gene has a chance to include 10 somatic mutations at a

frequency rate of 0.01.

When a gene gets longer to include 100 and 150 rare variants in the second and

third cases, respectively, the power drop rates are less than 1.5% and 5%, respec-

tively, for our proposed method when 10 somatic mutations occur in a tumour

sequence at a mutation frequency of 0.01. In contrast, the rates are 17.3% and
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37%, respectively, for the binomial exact test as shown in Figures 4.2 and 4.3. This

finding implies that the proposed test is robust and is not sensitive to the gene’s

length when there are 10 somatic mutations with frequency ≥ 0.01.

It is evident that at this sample size (n = 400), the performance of our developed

method decreases when a gene includes less number of somatic mutations. How-

ever, the proposed test can obtain around 99% and 88% powers when 7 and 5

somatic mutations happen, respectively, in a tumour sample with 50 rare variants

at VAF=0.01, as exhibited in Figure 4.1. Compared to the binomial exact test, it

obtains only 77% and 60.2% powers for 7 and 5 somatic mutations, respectively,

occur in a gene with 50 rare variants at the probability of 0.01.

When a rare variant gets extremely low frequency (VAF<0.01), the tests’ perfor-

mance decreases. However, it is possible to have more than 98% and 75% powers

by using the proposed test when 10 somatic mutations occur in a gene with 50 and

100 rare variants, respectively, at VAF=0.008. In contrast, the binomial test per-

forms inadequately and gets only 47% and 25% powers, respectively, for the rare

mutation frequency. As Figure 4.1 illustrates, the proposed test does not perform

well at a sample size of n = 400 for VAF=0.005 even when a gene contains 50 rare

variants. Therefore, we double the sample size to be n = 800 in order to expand

our proposed test’s evaluation procedure.

At a sample size of n = 800, as Figure 4.4 exhibits, it is likely to have a high

rate of power (≥ 90% power) by using the proposed test when there are 5 or more

somatic mutations in a gene with 50 rare variants at an extremely low frequency

(VAF=0.005). In contrast, the binomial exact test can give only 65.2 power in
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Figure 4.1: Comparison of type I error and power for the gene-level score test based
on using the GHC test (red bars) and the binomial exact test (green bars) corrected
by the Bonferroni procedure with various rates of the variant allele frequency
(VAF) and different numbers of somatic mutations occurring in a gene of tumour
cells that includes 50 rare variants at a sample size of n = 400.
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Figure 4.2: Comparison of type I error and power for the gene-level score test based
on using the GHC test (red bars) and the binomial exact test (green bars) corrected
by the Bonferroni procedure with various rates of the variant allele frequency
(VAF) and different numbers of somatic mutations occurring in a gene of tumour
cells that includes 100 rare variants at a sample size of n = 400.
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Figure 4.3: Comparison of type I error and power for the gene-level score test based
on using the GHC test (red bars) and the binomial exact test (green bars) corrected
by the Bonferroni procedure with various rates of the variant allele frequency
(VAF) and different numbers of somatic mutations occurring in a gene of tumour
cells that includes 150 rare variants at a sample size of n = 400.
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that case. The score test has robustness, as shown in Figures 4.5 and 4.6, since

its rates of power drop by less than 1% and 5% when 10 somatic mutations occur

in a gene with 100 and 150 rare variants, respectively, at VAF=0.005. However,

the binomial exact test’s power decreases by 19% and 41%, respectively. This

can confirm that the binomial exact test is insufficient for the very low frequency

(VAF=0.005) even after doubling the sample size.

4.3 Discussion

Matching tumour and normal sequences is an excellent way to understand the

impact of somatic mutations. It can lead to identifying the potential association

between a set of somatic mutations and a cancer trait. In this chapter, we proposed

a novel use of the GHC test with the object of detecting the effect of an entire

gene. Our developed method was evaluated in terms of type I error and power

by comparing it to the exact binomial test adjusted by the Bonferroni correction

through various simulated cases. The simulation results discovered that both of

the tests controlled well type I error. Regarding power, the performance of our

gene-based score test was better than the binomial exact test in the different

scenarios.

A novel association approach is proposed to evaluate a single somatic mutation

while considering somatic mutation calling errors in the next chapter.
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Figure 4.4: Comparison of type I error and power for the gene-level score test based
on using the GHC test (red bars) and the binomial exact test (green bars) corrected
by the Bonferroni procedure with various rates of the variant allele frequency
(VAF) and different numbers of somatic mutations occurring in a gene of tumour
cells that includes 50 rare variants at a sample size of n = 800.
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Figure 4.5: Comparison of type I error and power for the gene-level score test based
on using the GHC test (red bars) and the binomial exact test (green bars) corrected
by the Bonferroni procedure with various rates of the variant allele frequency
(VAF) and different numbers of somatic mutations occurring in a gene of tumour
cells that includes 100 rare variants at a sample size of n = 800.
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Figure 4.6: Comparison of type I error and power for the gene-level score test based
on using the GHC test (red bars) and the binomial exact test (green bars) corrected
by the Bonferroni procedure with various rates of the variant allele frequency
(VAF) and different numbers of somatic mutations occurring in a gene of tumour
cells that includes 150 rare variants at a sample size of n = 800.



Chapter 5

Association analysis of a single so-

matic mutation and cancer subtype

outcome

Since somatic mutations, unlike germline mutations, are not easy to be confidently

called as they are assumed to be low-frequency and rare mutations, there might

be extremely low coverage reads in reading the whole genome sequencing data for

somatic mutations. Therefore, it is essential to take the uncertainty of somatic

mutation calling into consideration. In this chapter, we introduce a model for

studying the relationship between a single somatic mutation and cancer subtype

outcome that takes the uncertainty of somatic mutation calling into consideration.

Estimating the parameters in this model is a considerable analytical and compu-

tational challenge. We construct a novel score test for the association between a

single-mutation and cancer subtype outcome and evaluate its performance by com-
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paring it to the recently proposed mSAME test, introduced in Chapter Two, and

the commonly used GLM. Simulation results on type I error and power for a wide

range of scenarios are presented. Lastly, we apply our developed single-mutation

score test on multiple somatic mutations using multiple testing correction and

compare it to the mSAME test and GLM. We then give an introduction to the

extension of the single-mutation score test to a gene-based setting.

5.1 Introduction

Scrutinising the potential relationship between mutations and cancer outcomes

can help develop a good understanding of cancer aetiology and provide scientists

with an inspirational perspective of tumour cells growth. Moreover, it can assist

in producing effective cancer treatments. Although it is believed that somatic

mutations play the most significant role in the development of cancer (Kuijjer

et al., 2018), few computational approaches have been proposed to inspect the

association between somatic mutations and cancer outcomes. Liu et al. (2018)

postulate that the reason for the lack of studies on somatic mutation association

is that somatic mutation data are relatively new, arising from recent technological

developments, and the focus has therefore been on methodology to detect these

mutations reliably.

Some association approaches have been developed to study the relationship be-

tween germline mutations and cancer subtype outcomes and have considered the

calling uncertainty, such as in (Lin and Zeng, 2006; Tzeng and Zhang, 2007). Still,
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these approaches do not suit somatic mutations because they are not proposed

for low-frequency mutations (Liu et al., 2018). Liu et al. (2018) have developed a

test that accounts for the uncertainty of somatic mutation calling using the likeli-

hood ratio test. While the approach of taking the uncertainty of somatic mutation

calling into account is a good way in genetic association analysis, instead of the

likelihood ratio test, a score test may be more attractive primarily as it only re-

quires one optimisation for each hypothesis test, which is under the null model.

Reducing the number of optimisations is particularly helpful in a genome-wide

setting with a vast number of tests. A score test for a single-mutation setting is

developed and evaluated below.

5.2 A score test

Consider a study with n independent individuals and, for the ith individual, let the

actual somatic mutation status and the mutation call (observed mutation status)

be denoted as Si and Oi, respectively, i = 1, 2, . . . , n. The actual status Si can be

equal to either 1 or 0, where 1 means this mutation is present in the ith individual,

and 0 means it is not present. The mutation call Oi depends on the read-depth

Di. A mutation is called only if there is enough coverage, i.e. Di ≥ D0, where

D0 is a selected threshold used in mutation calling methods. In this case Oi is

1 or 0 depending on whether or not the mutation was observed. If Di < D0

then Oi cannot be observed. The number of alternative reads is indicated by Ai.

The outcome of cancer subtype for the ith individual is indicated by Yi and all
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covariates are indicated by the vector Ci. Finally let ρ0 = P (Si = 0) denote the

probability that the specific somatic mutation in the ith individual is not present,

and let ρ1 = P (Si = 1) = 1 − ρ0 denote the probability that the specific somatic

mutation is present.

5.2.1 The likelihood function

As here Si is not observed and ignoring the covariates Ci for the time being, we can

write the probability for the ith individual, P (Yi, Ai, Di, Oi, Si) = P (Si)P (Yi, Ai, Di, Oi |

Si), as the sum over all possible values, or marginal probability,

1∑
x=0

P (Si = x)P (Yi, Ai, Di, Oi, | Si) =
1∑

x=0

ρxP (Yi, Ai, Di, Oi | Si). (5.1)

Written in this form we can see that the probability is a two-component mixture,

with ρx being the mixing proportion. The right hand side of the above can be

decomposed by a second application of the chain rule for probabilities to get

P (Yi, Ai, Di, Oi | Si) = P (Yi | Si)P (Oi | Yi, Si)P (Ai, Di | Yi, Oi, Si). (5.2)

Now given Si, we assume Yi carries no additional information about Oi and further,

has no more additional information about Ai and Di. Taking this into account

gives the complete marginal likelihood for the data as L =
∏n

i=1 Li, where

Li =
1∑

x=0

ρxf(yi | Si = x)f(oi | Si = x)f(ai, di | Oi, Si = x), (5.3)
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is the likelihood function for the ith individual and f(yi | Si), f(oi | Si) and

f(ai, di, | Oi, Si) are probability functions characterising the conditional probabil-

ities P (Yi | Si), P (Oi | Si) and P (Ai, Di | Oi, Si).

The outcome Yi given somatic mutation Si can be modelled by a generalised linear

model with mean E(Yi) = g−1(β0C
T
i + βSi), for some canonical link function

g. Here β0 and β are the regression coefficients and primary interest is inference

regarding β. For a continuous outcome, f(yi | Si) in equation (5.3) can be replaced

by a normal density function and for a binary outcome by a Bernoulli density.

The terms f(oi | Si) and f(ai, di | Oi, Si) capture the uncertainty in correctly

calling Si. The first term is modelled by Bernoulli distributions and the second by

beta-binomial distributions. Further details of this approach will be provided in

section 5.3.

5.2.2 The score and Fisher Information for binary out-

comes

The score and Fisher Information for the parameter β are derived here. We assume

that the other parameters in the model given by equation (5.3) do not affect

the variance of the score statistic and thus we only require the first and second

derivatives of the log-likelihood with respect to β. We also assume there are no

covariates in the model. These assumption are for convenience and leads to a

much simpler problem. For notational convenience in the derivation we write

kix = ρxf(ai, di | Oi, Si = x) and fx(yi) = f(yi | Si = x). Then the score function
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for β for the ith individual and assuming a binary outcome is given by

ui =
∂

∂β

[
log

1∑
x=0

kixf(oi | Si = x)fx(yi)

]

=

∑1
x=0 kixf(oi | Si = x)∂fx(yi)

∂β∑1
x=0 kixf(oi | Si = x)fx(yi)

,

where fx(yi) = pyiix(1− pix)
1−yi for logit pix = β0 + βx and

∂fx(yi)

∂β
=

∂

∂pix

[
pyiix(1− pix)

1−yi

]
∂pix
∂β

. (5.4)

Now as the partial derivatives

∂

∂pix
pyiix(1− pix)

1−yi =
fx(yi)

pix(1− pix)
(yi − pix), (5.5)

and

∂pix
∂β

= xpix(1− pix), (5.6)

the score function for the ith individual can be written

ui =

∑1
x=0 kixf(oi | Si = x)xfx(yi)∑1
x=0 kixf(oi | Si = x)fx(yi)

(yi − pix). (5.7)

The score test is evaluated under the null hypothesis H0 : β = 0. In this case,

fx(yi) = pyiix(1− pix)
1−yi =

(
eβ0

1 + eβ0

)yi ( 1

1 + eβ0

)1−yi

=
eβ0yi

1 + eβ0
, (5.8)
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and the score function given by equation (5.7) evaluates to

ui =
ki1

f(oi | Si = 0)ki0 + f(oi | Si = 1)ki1

[
yi −

eβ0

1 + eβ0

]
f(oi | Si = 1). (5.9)

The second derivative of logLi is

∂ui

∂β
=

∂

∂β

(∑1
x=0 kixf(oi | Si = x)xfx(yi)∑1
x=0 kixf(oi | Si = x)fx(yi)

(yi − pix)

)
. (5.10)

Now

∂

∂β
[fx(yi)(yi − pix)] =

∂fx(yi)

∂β
(yi − pix)− fx(yi)

∂pix
∂β

,

which using equations (5.4)-(5.6) can be written as,

= xfx(yi)
[
(yi − pix)

2 − pix(1− pix)
]
.

Using the above in evaluating equation (5.10) gives the observed Fisher Information

Ii =
1

(
∑1

x=0 kixf(oi | Si = x)fx(yi))2

[(
1∑

x=0

kixf(oi | Si = x)

xfx(yi)(yi − pix)

)2

−

(
1∑

x=0

kixf(oi | Si = x)fx(yi)

)
(

1∑
x=0

kixf(oi | Si = x)x2fx(yi)[(yi − pix)
2 − pix(1− pix)]

)]
.

(5.11)
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The observed Fisher Information evaluated under the null becomes

Ii =
1

(ki0f(oi | Si = 0) + ki1f(oi | Si = 1))2

[(
ki1f(oi | Si = 1)

(yi −
eβ0

1 + eβ0
)

)2

−

(
(ki0f(oi | Si = 0) + ki1f(oi | Si = 1))

)
(
ki1f(oi | Si = 1)(yi −

eβ0

1 + eβ0
)2 − (

eβ0

(1 + eβ0)2
)

)]
.

(5.12)

It follows therefore that, as

E(yi −
eβ0

1 + eβ0
)2 = var(yi) =

eβ0

(1 + eβ0)2
,

the expected Fisher Information under the null is given by

E(Ii) =

(
ki1f(oi | Si = 1)

(ki0f(oi | Si = 0) + ki1f(oi | Si = 1)

)2
eβ0

(1 + eβ0)2
. (5.13)

Finally the score test statistic

V =
(
∑n

i=1 ui)
2∑n

i=1 Ii
∼ χ2

1. (5.14)

The score test here is evaluated by comparing its performance, in terms of type I

error and power, with the mSAME test that was developed in (Liu et al., 2018)

and the GLM. Like the score test, the mSAME test accounts for the uncertainty

in somatic mutation calling, but this uses the likelihood ratio procedure. On the

other hand, the GLM ignores the uncertainty in observing the somatic mutation
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and simply treats the observed somatic mutation Oi as the truth.

5.3 Parameter estimation

The mSAME test requires estimating the parameters in the likelihood L =
∏n

i=1 Li,

where Li is given by equation (5.3), under both the null H0 : β = 0 and alternative

hypotheses, whereas the score test requires estimating the parameters only under

the null. First notice that the conditional density f(ai, di | Oi, Si) in Li can be

decomposed as f(ai | Oi, Si, Di)f(di | Si). Assuming read depth Di does not

depend on Si, the term f(di | Si) can be ignored in the estimation procedure. The

term f(ai | Oi, Si, Di) is modelled using beta-binomial distributions that depends

on the mutation call Oi and actual somatic mutation status Si.

When there is enough coverage (Di ≥ D0),

f(ai | Oi, Si, Di) =



f(ai | Di, π00, φ00) if Oi = 0, Si = 0,

f(ai | Di, π01, φ01) if Oi = 0, Si = 1,

f(ai | Di, π10, φ10) if Oi = 1, Si = 0,

f(ai | Di, π11, φ11) if Oi = 1, Si = 1,

(5.15)

where π00, π01, π10, π11 and φ00, φ01, φ10, φ11 are mean and over-dispersion param-

eters for the beta binomial distributions, and the probability density function of
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the beta-binomial distribution is given by

f(ai|Di, π, φ) =
Γ(di + 1)

Γ(ai + 1)Γ(di − ai + 1)

Γ(ai + π)Γ(di − ai + φ)

Γ(di + π + φ)

Γ(π + φ)

Γ(π)Γ(φ)
.

(5.16)

On the other hand, when there is not enough coverage (Di < D0), the mutation

call Oi is not observed and the conditional density f(ai | Si, Di) can be written as

f(ai | Si, Di) =


f(ai | Di, π0, φ0) if Si = 0,

f(ai | Di, π1, φ1) if Si = 1,

(5.17)

where π0, π1 and φ0, φ1 are mean and over-dispersion parameters for the distri-

butions, and the probability density function of the beta-binomial distribution is

defined as equation (5.16).

The conditional density f(oi | Si) can be modelled using Bernoulli distributions

that depends on the somatic mutation status Si. In particular,

f(oi | Si) =


f(oi, 1− γ0) if Si = 0,

f(oi, γ1) if Si = 1,

(5.18)

where γ0 and γ1 are the specificity (1- false positive rate) and the sensitivity (1-

false negative rate) of somatic mutation calls. Based on evaluation of somatic

mutation calling methods (Xu et al., 2014), suggested values for γ0 and γ1 are 0.98

and 0.9, respectively.
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In summary, the parameters in the likelihood that now need to be estimated are

ρ0, β0, β, π00, π01, π10, π11, φ00, φ01, φ10, φ11, π0, π1, φ0, φ1.

Now, a single mutation does not provide enough information to estimate the

mean and over-dispersion parameters π00, π01, π10, π11, φ00, φ01, φ10, φ11 in equa-

tion (5.15). Instead, they are estimated by pooling the data across all genes and

samples in the study. In this evaluation these parameters are estimated using real

data in (Liu et al., 2018). The remaining parameters are estimated using an EM

algorithm.

5.3.1 EM algorithm for estimating the parameters

In a population, it is commonly seen that different groups or clusters of obser-

vations follow different distributions. To attain flexibility in such a situation, a

mixture of distributions are fit to the data. In most cases, the groups or clusters

of observations are not known or observed (latent). Therefore, we fit the data

into a model that assumes latent variables and fits the sample to a finite mixture

distribution. Depending on the nature of the latent variable, such models have

different names in the literature, but in general, they are known as finite mixture

models.

The Expectation Maximisation (EM) algorithm is an iterative process for maxi-

mum likelihood estimation of the model parameters that depend on unobserved

variables. Each iteration of the EM algorithm consists of two steps; the expectation
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(E) step and the maximisation (M) step. In the E-step, a function is created for the

expectation of the log-likelihood evaluated at the current estimates of the parame-

ters. In the M-step, the parameters are estimated by maximising the function from

the E-step. An EM algorithm is used to estimate θ = {ρ0, β0, β, π0, π1, φ0, φ1}.

In the finite mixture model framework, the observed data Yi, Ai, Di, Oi for i =

1, . . . n are viewed as being incomplete as the vectors of component labels are

missing. The data we are missing here are whether an observation has a true mu-

tation or not (S = 0 or 1). The missing data can be modelled as a two dimensional

latent class vector si, i = 1, . . . , n, defined as

six =


1 if the ith observation comes from S=x,

0 otherwise,

for x = 0, 1. The component-label vectors six are taken to be a realisation of the

Bernoulli random vectors with density function

f(six) =
1∏

x=0

ρsixx = ρsi00 ρsi11 .

The complete data likelihood is given by

L(θ|Y,A,D,O,S) =
n∏

i=1

1∏
x=0

f(yi, ai, di, oi|Si = x)sixρsixx ,
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and the log-likelihood is given by

ℓ(θ|Y,A,D,O,S) =
n∑

i=1

1∑
x=0

[six log f(yi, ai, di, oi|Si = x) + six log ρx] .

Let θ(t) be the current estimate of the parameters. On the expectation step of the

EM algorithm, we need E[S|Y,A,D,O, θ(t)] which is calculated as

ηix = E[Six|Yi, Ai, Di, Oi,θ
(t)] =

ρxf(yi, ai, di, oi|Si = x,θ(t))∑1
x=0 ρxf(yi, ai, di, oi|Si = x,θ(t))

.

Using the expected values ηix, the expected log-likelihood in the E-step can be

written as

Q = ES|Y,A,D,O;θt logL(θ;Y,A,D,O, S) =
n∑

i=1

1∑
x=0

ηix log ρxf(yi, ai, di, oi|Si = x,θ(t))

=
n∑

i=1

1∑
x=0

ηix log ρx +
n∑

i=1

1∑
x=0

ηix log f(yi|Si = x)

+
n∑

i=1

1∑
x=0

ηix log f(ai | Si, Di)IDi<D0

+
n∑

i=1

1∑
x=0

ηix log f(ai | Oi, Si, Di)IDi≥D0f(oi | Si).

(5.19)

Maximising equation (5.19) with respect to ρ0 and recognising the second, third

and fourth sums in equation (5.19) as constants gives

ρ
(t+1)
0 = argmax

ρ0

[
n∑

i=1

η
(t)
i0 log ρ0 +

n∑
i=1

η
(t)
i1 log ρ1

]
=

1

n

n∑
i=1

η
(t)
i0 , (5.20)
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similarly

ρ
(t+1)
1 =

1

n

n∑
i=1

η
(t)
i1 = 1− ρ

(t+1)
0 . (5.21)

Now, in order to estimate β0 and β, we need to maximise Q with respect to β0

and β and the other terms in equation (5.19) are constants

Q ≈
n∑

i=1

1∑
x=0

ηix log f(yi | Si = x)

=
n∑

i=1

ηi0 log f(yi | Si = 0) +
n∑

i=1

ηi1 log f(yi | Si = 1).

The above shows that Q is a sum of two weighted logistic regression likelihoods.

Substituting for the density functions give,

Q ≈
n∑

i=1

ηi0 [yi log (pi0) + (1− yi) log (1− pi0)]

+
n∑

i=1

ηi1 [yi log (pi1) + (1− yi) log(1− pi1)] .
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Using the logit transformation to parametrising the probabilities in terms of β0

and β, we get

Q ≈
n∑

i=1

ηi0

[
yi log

(
eβ0

1 + eβ0

)
+ (1− yi) log

(
1− eβ0

1 + eβ0

)]
+

n∑
i=1

ηi1

[
yi log

(
eβ0+β

1 + eβ0+β

)
+ (1− yi) log

(
1− eβ0+β

1 + eβ0+β

)]
=

n∑
i=1

ηi0

[
yiβ0 − yi log

(
1 + eβ0

)
+ (1− yi) log

(
1

1 + eβ0

)]
+

n∑
i=1

ηi1

[
yi(β0 + β)− yi log

(
1 + eβ0+β

)
+ (1− yi) log

(
1

1 + eβ0+β

)]
=

n∑
i=1

ηi0
[
yiβ0 − log

(
1 + eβ0

)]
+

n∑
i=1

ηi1
[
yiβ0 + yiβ − log

(
1 + eβ0+β

)]
.

The estimates of β0 and β are updated on the (t+1)th iteration of EM algorithm

as

(β
(t+1)
0 , β(t+1)) = argmax

β0,β

[ n∑
i=1

ηi0 (yiβ0 − log(1 + exp(β0)))+

n∑
i=1

ηi1 (yiβ0 + yiβ − log(1 + exp(β0 + β)))
]
.

(5.22)

Finally, we need to estimate π0, φ0, π1, φ1, and note that only the third term of

equation (5.19) depends on π0, φ0, π1, φ1. Therefore, the updated estimates are

given as

(πt+1
0 , φt+1

0 ) = argmax
π0,φ0

n∑
i=1

ηi0 log f(ai | Di; π0, φ0)IDi<D0 , (5.23)

(πt+1
1 , φt+1

1 ) = argmax
π1,φ1

n∑
i=1

ηi1 log f(ai | Di; π1, φ1)IDi<D0 . (5.24)



Chapter 5. Association analysis of a single somatic mutation and cancer subtype
outcome 98

All optimisations are done in R using the optim function. We can ignore the fourth

term of equation (5.19) because it does not contain any unknown parameters. The

iteration process of E-step and M-step will be terminated if ||θ(t+1) − θ(t)||∞ < ϵ

for some pre-set threshold ϵ.

5.4 Simulation studies and results

In this section, multiple simulation setups were composed in order to compare the

performance of our developed score test to the mSAME test that was developed

in (Liu et al., 2018) and the GLM in terms of type I error and power. The mSAME

test accounts for the uncertainty of somatic mutation calling and performs the

likelihood ratio test. In contrast, the GLM does not account for the uncertainty

of somatic mutation calling, and it deals with the observed somatic mutation Oi

as actual somatic mutation status.

The evaluation of the performance of tests was made 1, 000 replications at signif-

icance level 0.05 with different settings of somatic mutation probabilities (ρ1 =

0.02, 0.05, 0.1). In terms of evaluating type I error, it was done by simulating the

data under the null hypothesis (β=0). In terms of evaluating the power of test

procedures, we set β = 0.4, 0.8, 1.2, 1.6, 2.0.

The main simulation setup

A dataset of a sample size of n = 400 was generated. The true somatic mutation

status for the ith sample Si was simulated by a Bernoulli distribution with prob-
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ability of success ρ1, and a binary outcome Yi was simulated by a Bernoulli distri-

bution with probability of success pi, logit[p(Yi = 1)] = −0.5 + βSi. The observed

mutation call Oi was simulated by a Bernoulli distribution with the sensitivity

value (1- false negative rate) γ1 = 0.9 and specificity value (1- false positive rate)

γ0 = 0.98. The sensitivity and specificity values are set according to suggestions

in (Xu et al., 2014). The read-depth values Di were simulated in two stages. First

step, the mean read-depth for each mutation was simulated by a negative binomial

distribution with mean µ = 113 and over-dispersion 3.28. Second step, the read-

depth for each mutation across samples was simulated by a negative binomial dis-

tribution with mean value that was simulated in the first step and over-dispersion

1.9. When there is a high coverage which means (Di ≥ D0 = 20), the number

of alternative reads Ai was simulated by a beta-binomial distribution with pa-

rameters (π00, π01, π10, π11) = (0.001, 0.002, 0.1179, 0.3207) and (φ00, φ01, φ10, φ11)

= (0.0006, 0.3457, 0.0001, 0.1018). On the contrary, when there is a low coverage

(Di < D0 = 20), in this case, the number of alternative reads Ai was simulated

by a beta-binomial distribution with parameters π0 = 0.001, φ0 = 0.001, π1 =

0.146, φ1 = 0.10.

From the investigation using this simulated dataset when β = 0, it can be seen in

Figure 5.1, all of our proposed score method, the mSAME and GLM procedures,

control the type I error. In terms of power, our proposed score test has higher

power than the mSAME test and GLM in most scenarios, significantly when the

somatic mutation frequency, ρ1 diminishes. To illustrate, for mutation frequency,

ρ1 = 0.05, our score test can have more than 80% power when the effect size,
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Figure 5.1: Comparison of type I error and power for single-mutation analysis of
our developed score test (red bars), the mSAME test (green bars) and GLM (blue
bars) with various rates of mutation frequency ρ1 and effect size β. This setup is
the main simulation model of the single-mutation analysis, which is constructed
of a sample size of n=400.
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β ≥ 1.6 while the mSAME test and GLM necessitate β = 2 to surpass this rate

of power. Additionally, for somatic mutation low-frequency, ρ1 = 0.02 and β = 2,

our proposed score method has the power of 0.575, but the mSAME test and

GLM have the power of 0.355 and 0.314, respectively. The power rates of all

the approaches are not adequate for low-frequency mutation and small effect size.

Accordingly, we extended the evaluation procedure by increasing the sample size.

Sample size and error rates

Analogously to the main simulation setup, datasets of sample sizes of n = 800, 1000,

3000 and 5000 were generated. Evaluating our proposed method, the mSAME test

and GLM based on these datasets with increased sample sizes, all of the methods

control the type I error. In relation to power, our proposed score test outperforms

the mSAME test and GLM for low-frequency mutation, as Figure 5.2 presents. By

doubling the sample size (n = 800), our score test can gain more than 80% power

for low-frequency mutation, ρ1 = 0.02 and effect size, β = 2 while the mSAME and

GLM methods can not reach 60%. Our proposed method’s performance continues

to operate better when the sample size is increased to be n = 1000. Case in point,

for low-frequency mutation, ρ1 = 0.02, our method can attain 80% power with

β = 1.6 and more than 92% power when β = 2. However, the mSAME test and

GLM have the powers of 58% and 55%, respectively, for effect size, β = 1.6, and

both have less than 71% power when β = 2. In a state of n = 3000, our developed

method requires an effect size of β ⩾ 1.2 to get above 95% power for low-frequency

mutation, ρ1 = 0.02, whereas the mSAME test and GLM demand an effect size of
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β ⩾ 1.6 to possess this rate of power. Even though all of the methods may perform

similarly with the large sample size (n = 5000), our score test acts better when

the frequency mutation lowers, and the effect size becomes small. For mutation

frequency, ρ1 = 0.05, our score test tops 65% power at an effect size of β = 0.4,

but the mSAME test and GLM have below 62% and 52% power, respectively.

Moreover, for low-frequency mutation, ρ1 = 0.02, our proposed method has the

power of 0.864 when β = 0.8 whilst the mSAME test and GLM have 0.699 and

0.589 power, respectively.

This finding can verify that for the various sample sizes investigated, despite the

fact that single-mutation association tests might not be robust to detect the as-

sociation when genetic mutations are low-frequency and rare, our proposed score

test performed better than the mSAME test and GLM for low-frequency somatic

mutations (ρ1 = 0.02).

Low read-depth and error rates

In the previous simulation parts, it is apparent that accounting for the error in

somatic mutation calling process can improve the performance of the approaches

as our developed score test and the mSAME test, which consider the somatic mu-

tation calling uncertainty, have higher power than the GLM that does not. The

GLM is less powerful even with relatively high read-depth (average read-depth of

a somatic mutation was 113). To elongate the methods testing framework and

compare our proposed score test to the mSAME test and GLM, we generated a

dataset of a sample size of n = 400 identically to the main simulation setup; how-
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Figure 5.2: Comparison of type I error and power for single-mutation analysis
of our developed score test (red bars), the mSAME test (green bars) and GLM
(blue bars) with various rates of mutation frequency ρ1 and effect size β. The
comparison is based on the sample sizes (n).
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ever, the read-depth of a somatic mutation was simulated by a negative binomial

distribution with mean 40 and over-dispersion 1.9.

Applying this setup, the type I error is well-controlled by all methods, but in terms

of power, decreasing the read-depth values affects the GLM approach much more

than our score method and the mSAME procedure. This is because the GLM does

not consider the error of the somatic mutation calling procedure, and the observed

call Oi needs high coverage to be called. For instance, as displayed in Figure 5.3,

for somatic mutation frequency, ρ1 = 0.1, and effect size, β = 1.2, the power of

GLM is above 82% power for high read-depth data, but it does not reach 72%

power when the read-depth reduces. Furthermore, the GLM loses around 12%

power when the somatic mutation rate, ρ1 = 0.05 and effect size, β = 1.6 and

β = 2.

Our developed score method obtains the highest power even though reducing the

mutations read-depth has an effect on its power. A second reduction that might

influence the methods’ achievement is diminishing the mutation calling accuracy.

Somatic mutation calling accuracy and error rates

To examine the association methods’ performance under different situations, we

set two datasets of a sample size of n = 400 comparatively to the main simulation

setup. However, in these cases, we decreased the mutation calling accuracy. In

the first case, we lower only the specificity value, i.e., the observed mutation Oi

was simulated by a Bernoulli distribution with the sensitivity value γ1 = 0.9 and
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Figure 5.3: Comparison of type I error and power for single-mutation analysis
of our developed score test (red bars), the mSAME test (green bars) and GLM
(blue bars) with various rates of mutation frequency ρ1 and effect size β. The
comparison is based on the read-depth values of somatic mutations. In the default
case (the main simulation setup), the mean of the somatic mutation read-depth
was simulated by a negative binomial distribution with mean µ = 113 and over-
dispersion 3.28, whereas, in the low-read depth case, the mean was set 40.
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specificity value γ0 = 0.95. In the second case, both the sensitivity and specificity

values are lessened so that the observed mutation Oi was simulated by a Bernoulli

distribution with the sensitivity value γ1 = 0.85 and specificity value γ0 = 0.95.

Based on these simulation setups, it can be evident in Figure 5.4 that the methods

preserve the type I error. In reference to power, all of our method, the mSAME

test and GLM, show robustness in their performances for the different cases. Our

developed score test is still the most effective approach and acts better than the

mSAME test and GLM in all scenarios. For example, when the false rate of

somatic mutation calling increases, our developed score’s power exceeds 91% level

of power for mutation frequency, ρ1 = 0.05 and effect size, β = 2. By contrast,

the mSAME test and GLM have less than 85% and 83% powers, respectively. For

low-frequency mutation, ρ1 = 0.02, our developed method has higher power in the

case of the somatic mutation calling is defective than the mSAME test and GLM

when the somatic mutation calling technique is accurate. It is achievable by using

our developed score test to have beyond 55% power for inexact mutation calling

procedure. On the other side, the mSAME test and GLM have less than 36% and

32% power even with a high certainty level of mutation calling.

Summary

Several simulation arrangements were constructed with the intention of analysing

the performance of our proposed score method and compare it to a compatible test

(mSAME) that accounts for mutation calling uncertainty. In addition to opposing

our proposed approach to the mSAME test, it is a good idea to correspond to



Chapter 5. Association analysis of a single somatic mutation and cancer subtype
outcome 107

Default Case1 Case2

ρ
1 =

0.02
ρ

1 =
0.05

ρ
1 =

0.1
0.

0
0.

4
0.

8
1.

2
1.

6
2.

0

0.
0

0.
4

0.
8

1.
2

1.
6

2.
0

0.
0

0.
4

0.
8

1.
2

1.
6

2.
0

0.0

0.2

0.4

0.6

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

1.00

β

P
ow

er

Methods
Score
mSAME
GLM

Figure 5.4: Comparison of type I error and power for single-mutation analysis of
our developed score test (red bars), the mSAME test (green bars) and GLM (blue
bars) with various rates of mutation frequency ρ1 and effect size β. The comparison
is based on the somatic mutation calling accuracy. In the default case (the main
simulation setup), the sensitivity and specificity values are set, γ1 = 0.9 γ0 = 0.98,
respectively. In case1, the sensitivity value is remaining as in the default setting,
γ1 = 0.9 ,but the specificity value is decreased to be, γ0 = 0.95. In case2, both
values are decreased so that the sensitivity value, γ1 = 0.85, and specificity value,
γ0 = 0.95.
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the commonly used GLM approach, which does not care about somatic mutation

calling, and it treats the observed mutation Oi as true mutation.

According to the simulation results, considering the somatic mutation calling un-

certainty can advance the association testing methods even if the read-depth is

high, and the mutation calling method is accurate. The techniques’ ability was

assessed through varying sample sizes. It was demonstrated that when the mu-

tation frequency ρ1 = 0.1, our score test and the mSAME test have relatively

similar performance, and they have better work than the GLM. When the muta-

tion frequency becomes low (0.05 - 0.02), this affects the mSAME test and GLM

performance much more than our developed score. We finally set datasets at low

read-depth and less exact mutation calling to evaluate the methods under differ-

ent circumstances. Our proposed score method has better performance than the

mSAME test and GLM in both of the cases.

5.5 Evaluating the association of multi-

ple somatic mutations using the single

analysis of association tests

It is believed that some disease outcomes are linked or induced by multiple genetic

markers rather than a single marker. In order to evaluate our proposed single

test and compare its performance to the mSAME and GLM methods in light

of this study framework, we generated a dataset of a sample size of n = 400.
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We assume that 10 somatic mutation markers are expected to provoke a cancer

subtype outcome. The dataset was made similar to the main simulation setup,

so the actual somatic mutation status Si, mutation calls Oi, read-depth Di and

alternative reads Ai of the ith individual were simulated in the same way of the

main simulation setting. It is supposed that all of the 10 somatic mutations have

the same effect size. We applied our single score test, adopted the Bonferroni

procedure for multiple testing correction, and compared its performance to the

mSAME and GLM methods corrected by the Bonferroni correction.

In this simulation frame, as shown in Figure 5.5, it is within the bounds of possi-

bility to obtain more than 30% power by using our combined single score tests for

somatic mutation frequency, ρ1 = 0.1 when β ≥ 1.6. In comparison, the combined

mSAME tests need β = 2 to produce 30% power. The GLM does not reach 30%

even with large effect size, β = 2. The methods perform insufficiently when the

mutation frequency declines. Our combined score tests’ power is 0.298, and the

mSAME tests and GLM get powers of 0.297 and 0.0.268, respectively, for muta-

tion frequency, ρ1 = 0.05. All of the approaches produce less than 10% power for

ρ1 = 0.02.

By doubling the sample size to be n = 800, Figure 5.6 displays that all of the

approaches extend their power. The increase rate of power of using our proposed

method is 56%, and it is 57% by using the mSAME test and GLM when the somatic

mutation frequency, ρ1 = 0.1 and effect size, β = 2. It was not accomplishable

at a sample size of n = 400 to approach a level of 10% power for low-frequency

mutation, ρ1 = 0.02 regardless of the effect size β; however, by increasing the
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Figure 5.5: Comparison of type I error and power for our developed single score
tests (red bars), the mSAME tests (green bars) and GLM (blue bars) corrected by
the Bonferroni correction with various rates of mutation frequency ρ1 and effect
size β of a sample size of n=400 and number of mutation=10.
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sample size to be n = 800, all of the approaches can develop and attain 40%

power.

In addition to expanding the sample size, detracting the targeted mutations can

result in satisfactoriness in the methods’ performance. We set a dataset of a sample

size of n = 400 and reduce the number of mutations to be 5. What can be clearly

seen in Figure 5.7 is the growth of the ability in all of the approaches. To be

specific, for somatic mutation frequency, ρ1 = 0.1 and β = 1.6, the powers of our

combined score tests and the mSAME tests rise from 30% and 27%, respectively, to

reach the level of 70%. Also, the GLM’s power increase by 42% when the number

of mutations shrinks. For somatic mutation frequency, ρ1 = 0.05 and β = 2, using

our score method and the mSAME test can lead to 60% power while the GLM

obtains 0.462 power. However, it is still not likely to receive more than 20% power

when the somatic mutation frequency is low, ρ1 = 0.02.

In summary, considering each of the single mutations to assess the association

of multiple somatic mutation markers and a cancer subtype outcome does not

lead to good results even with high-frequency mutation, ρ1 = 0.1 with a sample

size of n = 400. In spite of the fact that doubling the sample size or reducing

the number of targeted mutations, which are thought to be associated with a

cancer trait-related outcome, can improve the performance of our combined score

tests, the mSAME and GLM methods, the approaches are still less effective for

low-frequency mutation and small effect size. These limitations and challenges

motivate developing a set-based association approach to deal with a whole genetic

set instead of dealing with every genetic marker.
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Figure 5.6: Comparison of type I error and power for our developed single score
tests (red bars), the mSAME tests (green bars) and GLM (blue bars) corrected by
the Bonferroni correction with various rates of mutation frequency ρ1 and effect
size β of a sample size of n=800 and number of mutation=10.
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Figure 5.7: Comparison of type I error and power for our developed single score
tests (red bars), the mSAME tests (green bars) and GLM (blue bars) corrected by
the Bonferroni correction with various rates of mutation frequency ρ1 and effect
size β of a sample size of n=400 and number of mutations=10 and 5.
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5.6 Extension of a single-mutation method

to a gene-based setting

Reviewing the association of a single mutation and a trait outcome by utilising

single-variant association tests can be efficient for working with common variants

denoted by variant allele frequency (VAF > 5%). In addition to this, single-

variant association tests are possibly powerful for low-frequency variants when the

sample size is large enough. However, they become less powerful when mutations

frequencies are rare (Madsen and Browning, 2009).

Since somatic mutations are considered low-frequency and rare, it might be more

appropriate to consider a gene-based association analysis rather than studying a

single somatic mutation. Grouping mutations into sets (such as a gene) combines

the effects of multiple mutations to increase power and reduce the number of tests

performed in the whole -genome study.

5.7 Discussion

Understanding the association between somatic mutations and cancer subtype out-

comes is an essential procedure of cancer treatment. In view of the fact that the

frequency of somatic mutations is sparse, they are arduous to be indubitably iden-

tified. On account of this, taking the uncertainty of the somatic mutation calling

procedure into consideration can produce computational power. In this chapter, we
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developed a score test for a single-mutation framework to test the relationship be-

tween a single somatic mutation and cancer subtype outcome. The developed score

method was compared to the mSAME test, which uses the likelihood ratio test,

and the GLM through simulation studies under different scenarios. The simulation

results revealed that all of the approaches preserved the type I error, and in terms

of power, our developed score test performed better than the mSAME test and

GLM. At the end of this chapter, the ability of our proposed single-mutation score

method was evaluated based on the idea of exploring the association of multiple

somatic mutations and a cancer subtype outcome using multiple testing correction

and compared to the performance of the mSAME test and GLM. It was disclosed

that applying the single association tests is unproductive when the sample size is

not large enough, and it is inappropriate for low-frequency mutations. Instead, it

is suggested to scrutinise the association of multiple somatic mutations within a

complete genetic unit such as a gene.



Chapter 6

Association analysis of gene-based

somatic mutations and a cancer sub-

type outcome

Considering somatic mutations are assumed to be low-frequency and rare mu-

tations, examining a single-mutation association might be infeasible. Therefore,

appraising the whole genetic unit, such as a gene, becomes more desirable. In

this chapter, we introduce a model for investigating the relationship between gene-

based somatic mutations and a cancer subtype outcome that takes the uncertainty

of somatic mutation calling into consideration. We evaluate our gene-based score

test by comparing its performance to the gSAME test and GLM. Simulation stud-

ies on type I error and power for a wide range of scenarios are provided.

116
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6.1 Introduction

In view of the fact that a substantial portion of heritability of a large number of

diseases is now presumed to be due to low-frequency and rare genetic variants,

several approaches have been proposed in an effort to study and analyse the low-

frequency and rare mutations seeking to detect the association between an entire

genetic set such as genes, gene networks or pathways and disease outcomes. As-

sociation analysis testing approaches for rare and low-frequency variants, such as

burden tests and variance-component tests, can be applied to identify the effect

of somatic mutations on cancer subtype outcomes. However, due to the challenge

and difficulty in calling the somatic mutations confidently, it is vital to consider

the uncertainty of somatic mutation calling.

None of the set-based association methods considers the uncertainty of the muta-

tion calling; subsequently, this makes them inappropriate to investigate somatic

mutations. In contrast, the gSAME test is an extended test from the single-

mutation test mSAME (Liu et al., 2018) and accounts for the error in the somatic

mutation calling process. We extend our proposed score test of a single-mutation

to gene-based form analysis. Our gene-based score test collects the genetic infor-

mation of somatic mutations within a gene to examine their effect on a cancer

subtype outcome considering the somatic mutation calling uncertainty. We com-

pare our gene-based score test performance to the gSAME test and GLM for the

evaluation. A gene-based score test is developed and evaluated below.
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6.2 A gene-based score test

Assume that there are j mutation markers in a gene, and for the sake of nota-

tional clarification, we use m and g to refer to the settings of mutation-level and

gene-level data. The actual somatic mutation status and the mutation calls for

the ith individual are denoted by Sm
i = (Sm

i1 , . . . , S
m
ij ) and Om

i = (Om
i1 , . . . , O

m
ij ),

respectively, i = 1, 2, . . . , n. Also, the read-depth and the number of alternative

reads are denoted by Dm
i = (Dm

i1 , . . . , D
m
ij ) and Am

i = (Am
i1, . . . , A

m
ij ), respectively.

The gene-level mutation is denoted by Sg
i and can be equal to 1 if there is at least

one mutation within the gene or 0 if there is no mutation in that gene.

Sg
i =


1 if any Sm

ix = 1,

0 if all Sm
ix = 0.

The outcome of cancer subtype and all covariates are indicated as in the single

somatic mutation analysis by Yi and the vector Ci, respectively. Finally let ρg0 =

P (Sg
i = 0) denote the probability that the targeted gene in the ith individual does

not have any somatic mutation, and let ρg1 = P (Sg
i = 1) = 1 − ρg0 denote the

probability that the targeted gene contains at least one somatic mutation.

6.2.1 The likelihood function

As the actual somatic mutation status for a gene Sg
i is not observed and ignor-

ing the covariates Ci for the time being, the probability for the ith individual



Chapter 6. Association analysis of gene-based somatic mutations and a cancer
subtype outcome 119

P (Yi, A
m
i , D

m
i , O

m
i , S

g
i ) can be written as the sum over all possible values,

1∑
x=0

P (Sg
i = x)P (Yi, A

m
i , D

m
i , O

m
i | Sg

i ) =
1∑

x=0

ρgxP (Yi, A
m
i , D

m
i , O

m
i | Sg

i ). (6.1)

The probability P (Yi, A
m
i , D

m
i , O

m
i | Sg

i ) can be decomposed as in the single somatic

mutation analysis

P (Yi, A
m
i , D

m
i , O

m
i | Sg

i ) = P (Yi | Sg
i )P (Om

i | Yi, S
g
i )P (Am

i , D
m
i | Yi, O

m
i , S

g
i ),

(6.2)

and recall that given Sg
i , we assume Yi carries no additional information about

Om
i and has no more additional information about Am

i and Dm
i . In the gene-based

setting, the outcome Yi is modelled as a function of Sg
i , so the likelihood function

for the ith individual can be given by

Li =
1∑

x=0

ρgxf(yi | S
g
i = x)f(omi | Sg

i = x)f(ami , d
m
i | Om

i , S
g
i = x). (6.3)

Because the data of read-depth Dm
i , alternative reads Am

i and observed calls Om
i

are obtained for each mutation, their distributions can be modelled given Sm
i

as in the single-mutation analysis, and we need to model Sm
i conditional on Sg

i .

Therefore, the equation (6.3) can be written as

Li =
1∑

x=0

ρgxf(yi | S
g
i = x)P (Sm

i | Sg
i = x)f(omi | Sm

i = x)f(ami , d
m
i | Om

i , S
m
i = x),

(6.4)
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where f(yi | Sg
i ), f(o

m
i | Sm

i ) and f(ami , d
m
i | Om

i , S
m
i = x) are probability func-

tions characterising the conditional probabilities P (Yi | Sg
i ), P (Om

i | Sm
i ) and

P (Am
i , D

m
i | Om

i , S
m
i ).

It is obvious that when Sg
i = 0, Sm

ix = 0 for all j mutations within the gene.

However, when Sg
i = 1, this indicates that Sm

i has 2j − 1 potential values. This

procedure means that it is computationally hard when j is large. In genetics, it

is believed that to call a somatic mutation for a genetic marker, its alternative

read should be larger than 0, i.e., Am
ix > 0, which is reasonable. When Am

ix = 0,

Sm
ix is set to be 0 directly, and this assumption helps to reduce the computational

difficulty of the possible combinations. Consequently, the number of combinations

can be minimised to 2j
′ − 1 where j′ is the number of mutations with Am

ix > 0.

For a specific combination, the tth combination, in the ith individual, the true

mutation status are sti = sti1, . . . , s
t
ij where t = 1, . . . , 2j

′ − 1, we have

P (Sm
i = sti | S

g
i = 1) =

P (Sm
i = sti, S

g
i = 1)∑2j′−1

l=1 P (Sm
i = sli)

=
δit∑2j′−1

l=1 δil
, (6.5)

where

δit = P (Sm
i = sti) =

j∏
x=1

w
stix
x (1− wx)

1−stix , (6.6)

and wx = P (Sm
ix = 1) and can be estimated through the observed frequency of the

xth mutation across all samples, or in an external reference population.

Given the above models, the likelihood function for the ith individual in equa-

tion (6.4) can be re-written as a summation of two likelihood functions Li0 and
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Li1 when Sg
i = 0 and Sg

i = 1, respectively,

Li = Li0 + Li1, (6.7)

where

Li0 = ρg0f(yi | S
g
i = 0)

j∏
x=1

f(omix | Sm
ix = 0)f(amix, d

m
ix | Om

ix, S
m
ix = 0), (6.8)

and

Li1 = ρg1f(yi | S
g
i = 1)

2j
′−1∑
t=1

δ∗it

j∏
x=1

f(omix | Sm
ix = stix)f(a

m
ix, d

m
ix | Om

ix, S
m
ix = stix),

(6.9)

and δ∗it = P (Sm
i = sti | S

g
i = 1). The outcome Yi given the somatic mutation status

of the entire gene Sg
i can be modelled by a generalised linear model as in the single

somatic analysis with mean E(Yi) = g−1(β0C
T
i + βSg

i ), for some canonical link

function g. Here β0 and β are the regression coefficients, and primary interest

is inference regarding the gene-based effect size parameter β. For a continuous

outcome, f(yi | Sg
i ) can be replaced by a normal density function, and for a binary

outcome by a Bernoulli density.
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6.2.2 The score and Fisher Information for binary out-

comes

Recalling that we assume the other parameters in the model given by equation (6.7)

do not affect the variance of the score statistic and thus we only require the first

and second derivatives of the log-likelihood of Li with respect to β. We also assume

there are no covariates in the model. For notational convenience in the derivation

we write f0(yi) = f(yi | Sg
i = 0) and in similar way f1(yi) = f(yi | Sg

i = 1). Also,

we write

∆i0 = ρg0

j∏
x=1

f(omix | Sm
ix = 0)f(amix, d

m
ix | Om

ix, S
m
ix = 0),

and

∆i1 = ρg1

2j
′−1∑
t=1

δ∗it

j∏
x=1

f(omix | Sm
ix = stix)f(a

m
ix, d

m
ix | Om

ix, S
m
ix = stix).

Then the score function for β for the ith individual and assuming a binary outcome

is given by

ui =
∂ logLi

∂β
=

∂
∂β
(Li1)

Li0 + Li1

=

∂
∂β
∆i1f1(yi)

∆i0f0(yi) + ∆i1f1(yi)
.

The function f1(yi) = pyii1(1−pi1)
1−yi for logit pi1 = β0+β, so the partial derivative

can be written

∂

∂β
∆i1f1(yi) = ∆i1f1(yi)(yi − pi1), (6.10)



Chapter 6. Association analysis of gene-based somatic mutations and a cancer
subtype outcome 123

as

∂f1(yi)

∂β
= f1(yi)(yi − pi1). (6.11)

The score function for the ith individual can be written

ui =
∆i1f1(yi)(yi − pi1)

∆i0f0(yi) + ∆i1f1(yi)
. (6.12)

The score test is evaluated under the null hypothesis H0 : β = 0. In this case,

f1(yi) = pyii1(1− pi1)
1−yi =

(
eβ0

1 + eβ0

)yi ( 1

1 + eβ0

)1−yi

=
eβ0yi

1 + eβ0
, (6.13)

and the score function given by equation (6.12) evaluates to

ui =

∆i1

(
eβ0yi

1+eβ0

)(
yi − eβ0

1+eβ0

)
∆i0

eβ0yi

1+eβ0
+∆i1

eβ0yi

1+eβ0

=

∆i1

(
yi − eβ0

1+eβ0

)
∆i0 +∆i1

.

(6.14)

The second derivative of logLi is

∂ui

∂β
=

∂

∂β

(
∆i1f1(yi)(yi − pi1)

∆i0f0(yi) + ∆i1f1(yi)

)
, (6.15)
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and this gives the observed Fisher Information

Ii =
1(

∆i0f0(yi) + ∆i1f1(yi)

)2

[(
∆i1f1(yi)(yi − pi1)

)2

−

(
∆i1f1(yi)

[
(yi − pi1)

2 − pi1(1− pi1)
])(

∆i0f0(yi) + ∆i1f1(yi)

)]
.

(6.16)

The observed Fisher Information evaluated under the null becomes

Ii =
1(

∆i0
eβ0yi

1+eβ0
+∆i1

eβ0yi

1+eβ0

)2

[(
∆i1

eβ0yi

1 + eβ0

(
yi −

eβ0

1 + eβ0

))2

−

(
∆i1

eβ0yi

1 + eβ0

[(
yi −

eβ0

1 + eβ0

)2

− eβ0

(1 + eβ0)2

])(
∆i0

eβ0yi

1 + eβ0
+∆i1

eβ0yi

1 + eβ0

)]
.

(6.17)

The expected Fisher Information under the null is given by

E(Ii) =

(
∆i1

eβ0yi

1+eβ0

∆i0
eβ0yi

1+eβ0
+∆i1

eβ0yi

1+eβ0

)2
eβ0

(1 + eβ0)2

=

(
∆i1

∆i0 +∆i1

)2
eβ0

(1 + eβ0)2
.

(6.18)

Finally, the score test statistic

V =
(
∑n

i=1 ui)
2∑n

i=1 Ii
∼ χ2

1. (6.19)
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The performance of the gene-based score test is appraised and compared, in terms

of type I error and power, to the gSAME test that was developed in (Liu et al.,

2018) and the GLM. The gene-based score test and gSAME test account for the

somatic mutation calling error. On the other side, the GLM ignores the uncertainty

in observing the somatic mutations.

6.3 Parameter estimation

Since the read-depth Dm
i , alternative reads Am

i and observed calls Om
i are cal-

culated for each single somatic mutation, the conditional density of the ith indi-

vidual for the xth mutation that is given by equation (6.4), f(amix, d
m
ix | Om

ix, S
m
ix),

can be modelled as in the same method as in the single somatic mutation anal-

ysis. The conditional density f(amix, d
m
ix | Om

ix, S
m
ix) can be written as f(amix |

Om
ix, S

m
ix , D

m
ix)f(d

m
ix | Sm

ix), and the term f(dmix | Sm
ix) can be ignored in the esti-

mation as Dm
ix does not depend on Sm

ix . When there is enough coverage for the

xth somatic mutation (Dm
ix ≥ D0), the term f(amix | Om

ix, S
m
ix , D

m
ix) is modelled by

using beta-binomial distributions as given by equation (5.15), and the parameters

π00, π01, π10, π11, φ00, φ01, φ10 and φ11 can be pre-estimated in a similar manner

to the single-mutation analysis. On the other hand, When there is not enough

coverage for the xth somatic mutation (Dm
ix ≥ D0), the mutation call of the xth

mutation Oix is not observed, and the term f(amix | Sm
ix , D

m
ix) is modelled by using

equation (5.17). In the gene-level analysis, there are plenty of low-coverage data,

so to reduce the complexity of the model, the parameters π0, π1, φ0 and φ1 are
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estimated by pooling together all the low read-depth data of all individuals and

mutations within the gene set and fitting a mixture of two beta-binomial distribu-

tions. The conditional density f(omix | Sm
ix) can be modelled by using Bernoulli dis-

tributions as in equation (5.18), and the parameters γ0 and γ1 are pre-determined

as in the single analysis.

Now, the parameters ρg0, β0 and β can be estimated using the EM algorithm. Let

θ(t) be the current estimate of the parameters, the density of Sg
i conditional on

observed data is given

ηi0 =
ρg0f(yi, a

m
i , d

m
i , o

m
i | Sg

i = 0,θ(t))∑1
x=0 ρ

g
xf(yi, ami , d

m
i , o

m
i | Sg

i = x,θ(t))
. (6.20)

The parameters ρg0, β0, β are updated using functions (5.20)-(5.22) in the single-

mutation association analysis. Under the null hypothesis, we can estimate β0 using

the maximum likelihood estimator under the null model and use the EM algorithm

in order to estimate ρg0.

6.4 Simulation studies and results

In this section, various simulation setups were designed to examine our developed

gene-based score test performance and compare it to the gSAME test that was

developed in (Liu et al., 2018) and the GLM in terms of type I error and power.

The proposed gene-based score and gSAME tests account for the uncertainty of

calling the somatic mutations within a gene, whereas the GLM does not consider

the uncertainty and deals with the observed mutation as actual status.
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The evaluation of the performance of tests was made 1, 000 replications at signif-

icance level 0.05 with different settings of gene-based somatic mutation frequen-

cies ρg1. In the single somatic analysis, the mutation-level frequencies ρ1 were

considered to be 0.02, 0.05 or 0.1. The gene-based mutation frequencies are usu-

ally higher than mutation-level frequencies, so we set ρg1 = 0.05, 0.1 or 0.15. In

terms of evaluating type I error, it was done by simulating the data under the

null hypothesis (β=0). In terms of evaluating the power of the tests, we set

β = 0.4, 0.8, 1.2, 1.6, 2.0.

The study aim in the gene-based association analysis is to test the relationship

between a disease subtype outcome Yi and a gene-based mutation Sg
i . The fre-

quency of gene-based mutation is indicated as P (Sg
i = 1) = ρg1. The true mu-

tation statuses for a single mutation in the ith individual Sm
ix , x = 1, . . . , j were

generated independently by a Bernoulli distribution with probability of success

P (Sm
ix = 1) = 1 − (1 − ρg1)

1/j. By collapsing the single-mutation data Sm
ix , we

can obtain the gene-based mutation Sg
i . The variable Sg

i is set to be 1 if a

gene has at least one mutation, and it is set 0 if the gene does not contain any

mutation. The binary outcome Yi was simulated from a Bernoulli distribution,

logit[p(Yi = 1)] = −0.5 + βSg
i .

The main simulation setup

Our main simulation framework was generated with a sample size of n = 400,

and it is assumed that there are 10 somatic mutations within a gene, i.e., j = 10.

For each of the somatic mutations, the xth mutation, the calculation of its read-
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depth was done equivalently to the single-mutation analysis. The mean read-

depth of the xth mutation Dm
ix was simulated by a negative binomial distribution

with mean µ = 113 and over-dispersion 3.28. Then, the read-depth of that xth

mutation was simulated by a negative binomial distribution with the simulated

mean and over-dispersion 1.9. Also, the alternative reads number Am
ix and the

observed mutation call Om
ix were simulated by a beta-binomial distribution and

Bernoulli distribution, respectively, as they were produced in the single-mutation

analysis. If the xth mutation receives enough red-depth which means (Dm
ix ≥

D0 = 20), its alternative reads number, Am
ix was simulated by a beta-binomial

distribution with parameters (π00, π01, π10, π11) = (0.001, 0.002, 0.1179, 0.3207) and

(φ00, φ01, φ10, φ11) = (0.0006, 0.3457, 0.0001, 0.1018), and Om
ix was simulated by a

Bernoulli distribution with the sensitivity value γ1 = 0.9 and specificity value

γ0 = 0.98. In contrast, if the read-depth of the xth mutation is low, i.e., (Dm
ix <

D0 = 20), Am
ix was simulated by a beta-binomial distribution with parameters

π0 = 0.001, φ0 = 0.001, π1 = 0.146, φ1 = 0.10, and in this case, Om
ix is not observed.

In this simulated dataset framework, all our proposed gene-based score method,

the gSAME test and GLM, control the type I error. On the question of power, as

sown in Figure 6.1, our developed gene-based score test has greater power than the

gSAME test and GLM in all of the scenarios. Using our developed gene-based score

leads to more than 78% power for gene-level mutation frequency, ρg1 = 0.15 and

effect size, β = 1.2. In opposition, the gSAME test and GLM do not reach 64%.

When β = 1.6, our method has 0.893 power while the power of the gSAME test

and GLM are 0.821 and 0.822, respectively. For gene-based mutation, ρg1 = 0.1, our
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proposed method’s power exceeds 81% and 94% when the effect size, β = 1.6 and 2.

Contrastingly, the gSAME test and GLM have smaller than 76% for β = 2. Even

though all of the methods’ power is not satisfactory for the low-frequency gene-level

mutation in this sample size (n = 400), our method obtains much higher power

than the gSAME test and GLM. For example, for low-frequency cases, ρg1 = 0.05

when β = 2, our score test has 0.681 power, but the gSAME test and GLM have

0.325 and 0.328, respectively. A simple way to increase power is to enlarge the

sample size.

Sample size and error rates

In a similar fashion to the main simulation setup, datasets of sample sizes of

n = 800, 1000, 3000 and 5000 were constructed. As Figure 6.2 illustrates, the type

I error is preserved by all of the methods. In terms of power, when the base

sample size is doubled (n = 800), the power of our proposed gene-based score

method increases to reach 0.82 and 0.958 levels of power for low-frequency gene-

based mutation, ρg1 = 0.05 and effect sizes, β = 1.6 and β = 2, respectively. By

contrast, the gSAME test and GLM are still much lower than a satisfactory level,

and their power rates are 0.424 and 0.425, respectively, for β = 1.6, and 0.555 and

0.559, respectively, for β = 2. The gSAME test and GLM are not sufficient for

obtaining over 65% power for a low-frequency situation even at a sample size of

n = 1000. At the same time, it is acquirable to pass this level of power (65%) by

using our developed gene-level method even at a smaller sample size (n=400).

Testing the methods’ performance at high sample size, n = 3000, 77% power
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Figure 6.1: Comparison of type I error and power for gene-based mutation analysis
of our developed score test (red bars), the gSAME test (green bars) and GLM
(blue bars) with various rates of gene-based mutation frequency ρg1 and effect size
β. This setup is the main simulation model of the gene-based analysis, which is
constructed of a sample size of n = 400 and number of mutations j = 10.
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is accomplished by applying our method and not more than 62% utilising the

gSAME test and GLM approach when the gene-level somatic mutation, ρg1 = 0.15

and β = 0.4. For low-frequency gene-level mutation, ρg1 = 0.05, our gene-based

score test can gain more than 90% power when β ≥ 0.8, whereas the gSAME test

and GLM require β = 2 to amount to this rate of power. The gSAME test and

GLM need higher β than our developed gene-based score method requires even

with a larger sample size of n = 5000. Specifically, for low-frequency of gene-level

mutation, ρg1 = 0.05, the gSAME test and GLM obtain 92% power when β = 1.2

while our gene-based score test gains 97% power with β = 0.8.

In conclusion, we evaluated the approaches with different sample sizes, and the

difference in the power of the methods is more significant by using our developed

score test. Our method has better performance than the gSAME test and GLM at

all of the sample sizes. In the following simulation setup, we changed the number of

mutations within a gene (j) to analyse the methods at varying possible scenarios.

Number of somatic mutations and error rates

In human genetics, somatic mutations are considered low-frequency variants; there-

fore, to expand the framework of testing the performance of our developed gene-

based score test and compare it to the gSAME test, we set a dataset of a sample

size of n = 400 with a reduced number of mutations (j = 5) per gene. For each

of the single somatic mutations, the read-depth values, alternative reads, actual

somatic mutation status and observed somatic mutation calls were simulated in
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Figure 6.2: Comparison of type I error and power for gene-based mutation analysis
of our developed score test (red bars), the gSAME test (green bars) and GLM (blue
bars) with various rates of gene-based mutation frequency ρg1 and effect size β. The
comparison is based on the sample sizes (n).
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the same prior process.

Figure 6.3 exhibits that the type I error is well-controlled by all of the procedures.

With regard to power, shortening the number of variants within a gene makes an

impact and difference on the gSAME test and GLM performance more considerable

than it does on our developed gene-level score method. It can indicate that the

gSAME test and GLM are more sensitive to increasing the number of somatic

mutations within a genetic set. To give examples, for gene-level mutation, ρg1 =

0.15 and effect size, β = 0.8, the powers of gSAME test and GLM increase by

16.8% and 17.4%, respectively, whilst our gene-based method gain an increase of

6.8%. When β = 1.2, our method’s increase power is 4.8%, but it is 18.6% and

18.2% for the gSAME test and GLM, respectively.

However, the gSAME test and GLM still have less power than our proposed method

when the frequency of gene-level mutation decreases. For instance, even though

the gSAME and GLM approaches obtain increases of 15% and 14.4% power, re-

spectively, for ρg1 = 0.05 and effect size β = 2, they are less potent than our score

test as their level of power is smaller than 0.48 while our method has 0.746 power.

Data quality and error rates

Recalling that, our developed gene-based method and the gSAME test account for

the uncertainty of somatic mutation calling and deal with the true somatic muta-

tion status as an unobservable variable. They use the read-depth and alternative
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Figure 6.3: Comparison of type I error and power for gene-based mutation analysis
of our developed score test (red bars), the gSAME test (green bars) and GLM (blue
bars) with various rates of gene-based mutation frequency ρg1 and effect size β. The
comparison is based on the number of somatic mutations within a gene (j).
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reads data to raise the probability of mutation calls. In the somatic mutation

association analysis, the typical read-depth of a mutation for the whole genome

sequencing can be 20x to 40x (Liu et al., 2018), so in our main simulation setup,

the adopted threshold of read-depth (D0) was chosen to be 20x. When a somatic

mutation, the xth mutation, is covered, there are two potential cases. Firstly, if the

read-depth of the xth mutation is less than (D0 = 20), the observed mutation call

Om
ix is not observed. Otherwise, Om

ix can be observed and modelled by a Bernoulli

distribution with the sensitivity value γ1 = 0.9 and specificity value γ0 = 0.98.

In this simulation part, we aim to assess the performance of our proposed gene-

level method and match it to the gSAME test and GLM in different levels of data

quality. Datasets of a sample size of n = 400 and the number of mutations j = 10

were created similar to the main simulation setup with changing the read-depth

threshold D0 of a somatic mutation to be 10, 30 and 40.

Figure 6.4 reveals that the procedures preserve the type I error in all of the con-

ditions. Pertaining to power, our proposed score method performs much better

based on these simulation setups than the gSAME test and GLM for high-quality

data (when D0 > 20). Namely, for gene-based mutation frequency, ρg1 = 0.15

and effect size, β = 1.2, the power of our proposed method is under 70% for low-

quality data (D0 = 10), and it increases to become above 85% when D0 = 30 and

D0 = 40. Conversely, the gSAME test and GLM obtain not more than 67% for

all the scenarios. With the same gene-level mutation frequency when β = 1.6, our

developed score increases by 10% and gets 92% power for high-quality samples

while using the gSAME test and GLM not reach 80%. For a low-frequency muta-
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tion and effect size, β = 2, our proposed method’s power escalates from 0.557 with

low-quality data to become 0.746 by using the high-quality data. By contrast, the

gSAME test and GLM powers decline from 0.310 and 0.314 to be 0.295 and 0.296,

respectively. This finding can signify that improving the quality of the data can

help our score test perform better.

Since observing and modelling the observed somatic mutation call Om
i depends on

the selected read-depth threshold D0, in the next simulation part, we tested the

procedure’s ability based on the model parameters of the observed mutation call.

Low somatic mutation calling accuracy and error rates

Another critical scenario of examining the implementation of the methods that

should be studied is to reduce the accuracy of the somatic mutation calling pro-

cedure (e.g., changing the sensitivity value γ1 and specificity value γ0). Two cases

were constructed. In the first scenario, we made a dataset of a sample size of

n = 400 and the number of mutations j = 10 in an identical process to the pri-

mary simulation setting. However, in this case, we reduced only the specificity

value, so the observed call of the xth mutation Om
ix was simulated by a Bernoulli

distribution with the sensitivity value γ1 = 0.9 and specificity value γ0 = 0.95. In

the other scenario, we changed both the sensitivity and specificity values so that

the observed mutation call of the xth mutation Om
ix, in this case, was simulated by

a Bernoulli distribution with γ1 = 0.85 and γ0 = 0.95.

From the investigation based on these two cases, all of our proposed score test,
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Figure 6.4: Comparison of type I error and power for gene-based mutation analysis
of our developed score test (red bars), the gSAME test (green bars) and GLM (blue
bars) with various rates of gene-based mutation frequency ρg1 and effect size β. The
comparison is based on the data quality, so the methods’ performance is evaluated
under different read-depth thresholds (D0).
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the gSAME test and GLM, control the type I error. In the matter of power, it

is manifest as Figure 6.5 demonstrates that the impact of reducing the somatic

mutation calling accuracy (by decreasing only the specificity value or both the

sensitivity and specificity values) is considerably more significant on the gSAME

test and GLM than our developed method. Our proposed gene-based score test is

much more robust comparing to the gSAME test and GLM. By way of illustration,

when the gene-level mutation frequency, ρg1 = 0.15 and effect size, β = 2, the

powers of the gSAME test and GLM slump from 0.943 and 0.937 to become 0.675

and 0.677, respectively, when only the specificity value is decreased, and their

abilities continue declining to become 0.595 and 0.592, respectively, when both the

sensitivity and specificity values are reduced. On the other hand, our developed

gene-based test obtains more than 95% power even after dropping the specificity

value or both the sensitivity and specificity values. Reducing the somatic mutation

calling accuracy obstructs the gSAME test and GLM to excel the 40% level of

power for ρg1 = 0.1 and β = 2 while it is still likely to have more than 85% power by

employing our developed gene-based method even if the somatic mutation calling

is less precise. For the low-frequency gene-level mutation, ρg1 = 0.05, the powers of

the gSAME test and GLM dip to be under 15%, whereas our developed method

still holds more than 61% when β = 2.

In contrast to this simulation setup, we dilated our proposed method’s evalua-

tion procedure by increasing the somatic mutation calling accuracy in the next

simulation part.
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Figure 6.5: Comparison of type I error and power for gene-based mutation analysis
of our developed score test (red bars), the gSAME test (green bars) and GLM (blue
bars) with various rates of gene-based mutation frequency ρg1 and effect size β. The
comparison is based on the somatic mutation calling accuracy. In the default case
(the main simulation setup), the sensitivity and specificity values are set, γ1 = 0.9
γ0 = 0.98, respectively. In case1, the sensitivity value is remaining as in the default
setting, γ1 = 0.9 ,but the specificity value is decreased to be, γ0 = 0.95. In case2,
both values are decreased so that the sensitivity value, γ1 = 0.85, and specificity
value, γ0 = 0.95
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High somatic mutation calling accuracy and error rates

Analogously to the previous cases, but in this setup, the quality of somatic mu-

tation calling procedure is elevated. A dataset of a sample size of n = 400 and

the number of mutations j = 10 was constructed in the same process as the main

simulation. In this case, we increased the sensitivity value and specificity value, so

the observed call of the xth mutation Om
ix was simulated by a Bernoulli distribution

with the sensitivity value γ1 = 0.95 and specificity value γ0 = 0.99.

Employing this arrangement, increasing the mutation calling method lifts all of

the methods’ performance, as explained in Figure 6.6. For somatic gene-level

mutations, ρg1 = 0.15 and effect size, β = 1.6, it is possible to produce 0.97 power

by using our gene-based score test, the gSAME test or GLM when the somatic

mutation calling is more accurate. However, when the frequency of gene-based

somatic mutations is low (ρg1 = 0.05), the gSAME test and GLM still have low

power. Specifically, for ρg1 = 0.05 and β = 2, the powers of gSAME and GLM are

0.504 and 0.508, respectively, while our proposed method’s power is 0.791. It can

imply that the gSAME test and GLM do not perform sufficiently for low-frequency

mutation even if the somatic mutation calling is relatively perfect.

Summary

Various simulation studies were constructed in order to evaluate our proposed

gene-level score test’s type I error and power and compare its performance to

the gSAME test and GLM. In all of the scenarios, all of the procedures control
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Figure 6.6: Comparison of type I error and power for gene-based mutation analysis
of our developed score test (red bars), the gSAME test (green bars) and GLM
(blue bars) with various rates of gene-based mutation frequency ρg1 and effect size
β. The comparison is based on the somatic mutation calling accuracy. In the
default case (the main simulation setup), the sensitivity and specificity values
are set, γ1 = 0.9 γ0 = 0.98, respectively. In the increasing accuracy case, both
the sensitivity and specificity values are increased so that the sensitivity value,
γ1 = 0.95, and specificity value, γ0 = 0.99
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the type I error. Concerning power, our developed gene-level score test has higher

power than the gSAME test and GLM. In the gene-level analysis; unlike the single-

variant analysis which the mSAME test’s power is approximating to the power of

our single developed method for the high-frequency somatic mutation (ρ1 = 0.1),

our gene-based score method acts much better than the gSAME test for the gene-

level high-frequency mutation (ρg1 = 0.15).

Decreasing the number of somatic mutations within a gene can improve the per-

formance of our gene-based method, the gSAME test and GLM. It might be due to

the possibility of committing measurement errors of mutation-level is less when the

number of mutations lessens. Nevertheless, the impact size of raising the number

of mutations within a gene is more distinguished on the gSAME test and GLM

than our gene-level score test. To give an example, when the gene-level mutations

frequency, ρg1 = 0.1 and effect size, β = 1.6, our score test has 81% power for

the case of 10 mutations within a gene are studied, i.e., j = 10., and the power

increases to be 88% for j = 5. On the other side, the power levels of the gSAME

test and GLM approach grow from 60% to 80% for the cases of j = 10 and j = 5,

respectively.

Our gene-based score method works much better than the gSAME test and GLM

with high data quality. Moreover, one significant feature of our gene-based score

method is that it is more robust than the gSAME test and GLM as it has sturdy

performance even when the somatic mutation calling is less accurate. In the single-

variant analysis, the mSAME and GLM were solid when the mutation calling’s

reliability reduces; however, in the gene-level analysis, the performance of the
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gSAME test and GLM weaken with lower accurate mutation calling procedure.

6.5 Discussion

Studying a set of somatic mutations within a gene can help realise a compre-

hensive and better understanding of somatic mutations’ critical role in a cancer

consequence as they are deemed low-frequency and rare mutations. A consider-

able number of set-based association techniques have been proposed to discover

the association of a group of genetic mutations that are located within a genetic

construct in character with a gene, pathway or any genetic set. However, these

set-based methods do not account for the variant calling. In this chapter, a novel

approach was established using a score test to detect the association of gene-based

somatic mutations and a cancer subtype outcome considering the somatic mutation

calling method. Our developed gene-level model was then appraised by compar-

ing its performance, in terms of type I error and power, with the gSAME test,

which considers the error of somatic mutation calling procedure, and the GLM.

The GLM deals with the observed somatic mutation Oi as actual status, and it

does not take the somatic mutation calling into consideration. The simulation

results determined that all of the approaches control the type I error. In terms

of power, our developed gene-based test has better performance than the gSAME

test and GLM under diverse situations.



Chapter 7

Discussion and future work

This final chapter gives a discussion of the outcomes achieved and the conclusions

of the thesis. Moreover, some insights into alluring future work based on the results

in the thesis are introduced in this chapter. The research has focused on statisti-

cal methodologies for identifying genomic regions linked to disease outcomes. As

cancer is often deemed a severe and fatal disease, and somatic mutations play the

most significant role in cancer development, novel methods for investigating and

testing the association between somatic mutations and cancer outcomes have been

developed in this thesis.

In Chapter Three, we presented several standard association analysis methods of

set-based rare variants and made a preliminary observation through simulation

studies. An additional investigation that can be added to improve the numerical

comparison of the approaches is to study the impact of multiple rare mutations

within a gene with different effect magnitudes and various directions of the associa-

tion. This adjustment in the simulations can help variance-component procedures

144
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expel collapsing techniques in detecting the impact of gene-level rare mutations on

a disease trait outcome.

In Chapter Four, since exciting bioinformatics tools have been proposed in order

to identify a single somatic mutation, we developed an approach based on adopt-

ing the GHC test to compare tumour and normal cells and examine the effect of

somatic mutations grouped within a gene. This designed method was assessed

by comparing its performance through simulation studies for different scenarios

in terms of type 1 error and power to the binomial exact test corrected by the

Bonferroni correction. The results of using our gene-based score test were promis-

ing; therefore, a further evaluation procedure can be produced by simulating the

sequences of genetic variants being in linkage disequilibrium (LD). This modifica-

tion can help the GHC test perform better as mutations will be correlated within

a gene by an LD structure.

Concerning the association analysis of somatic mutations with accounting for the

uncertainty of the mutation calling process, as mentioned, standard association

methods of rare genetic variants do not account for calling errors for somatic

mutations and are restrained in their abilities to analyse the functional effect of

somatic mutations. A new somatic mutation association test with measurement

errors (SAME) addresses this issue through the likelihood ratio test. It has demon-

strated that considering the uncertainty in somatic mutation calling increases the

power of an association. We developed and evaluated a score procedure that mod-

els actual somatic mutation as an unobservable variable and uses read-depth to

increase the mutation calls. The score test is computationally efficient as only op-
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timisation under the null model is required for each genetic variant. Additionally,

the risk of non-convergence of optimisation routines is reduced. These computa-

tional advantages are particularly beneficial in genomewide settings.

In Chapter Five, the score test was developed to examine the association between

a single somatic mutation and binary outcome of cancer subtype. Chapter Six

extended the method to study the relationship between a group of somatic muta-

tions within a gene and binary trait of cancer subtype. The developed score test

was evaluated by comparing its performance in terms of type I error and power

to the SAME test and the GLM. Throughout a variety of genetic cases of simula-

tion studies, our proposed score procedure controlled type I error and performed

better than the SAME test and GLM. Therefore, one of the future interests is to

apply our single and gene-based score approaches in different real cancer genomic

datasets in order to compare them to existing methods.

The promising results that we obtained in Chapters Five and Six motivate us to

produce additional work to extend our proposed score test procedure to evalu-

ate the effect of somatic mutations on continuous or multinomial cancer subtype

outcomes. In the case of continuous outcomes, the variables will be modelled to

follow a normal distribution. For multinomial outcomes, we can use a multino-

mial regression framework. In both of the cases, we need to derive the score test

statistic and evaluate it through simulation studies in order to check type I error

and investigate the power of the score test.



Appendix A

Results of GHC on somatic muta-

tion association analysis

This appendix contains the results of our developed score test based on applying

the generalised higher criticism (GHC) test and the binomial exact test corrected

by the Bonferroni correction for comparing tumour and healthy sequences.
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Number of somatic mutations= 0 within 50 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.026 0.024
0.008 0.018 0.022
0.005 0.004 0.003

Number of somatic mutations= 2 within 50 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.384 0.338
0.008 0.128 0.114
0.005 0.019 0.013

Number of somatic mutations= 5 within 50 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.881 0.602
0.008 0.564 0.229
0.005 0.062 0.02

Number of somatic mutations= 7 within 50 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.989 0.765
0.008 0.813 0.365
0.005 0.126 0.017

Number of somatic mutations= 10 within 50 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 1 0.85
0.008 0.984 0.471
0.005 0.371 0.034

Table A.1: Type I error and power for the gene-level score test based on using
the GHC test and the binomial exact test corrected by the Bonferroni procedure
with various rates of the variant allele frequency (VAF) and different numbers of
somatic mutations occurring in a gene of tumour cells that includes 50 rare variants
at a sample size of n = 400.
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Number of somatic mutations= 0 within 100 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.012 0.014
0.008 0.003 0.005
0.005 0.001 0.003

Number of somatic mutations= 2 within 100 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.187 0.223
0.008 0.057 0.067
0.005 0.005 0.007

Number of somatic mutations= 5 within 100 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.648 0.45
0.008 0.231 0.131
0.005 0.014 0.01

Number of somatic mutations= 7 within 100 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.864 0.545
0.008 0.437 0.195
0.005 0.026 0.006

Number of somatic mutations= 10 within 100 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.988 0.677
0.008 0.754 0.251
0.005 0.091 0.008

Table A.2: Type I error and power for the gene-level score test based on using
the GHC test and the binomial exact test corrected by the Bonferroni procedure
with various rates of the variant allele frequency (VAF) and different numbers
of somatic mutations occurring in a gene of tumour cells that includes 100 rare
variants at a sample size of n = 400.
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Number of somatic mutations= 0 within 150 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.008 0.011
0.008 0.004 0.008
0.005 0.002 0.002

Number of somatic mutations= 2 within 150 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.115 0.127
0.008 0.04 0.034
0.005 0.004 0.003

Number of somatic mutations= 5 within 150 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.462 0.29
0.008 0.127 0.063
0.005 0.007 0.003

Number of somatic mutations= 7 within 150 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.731 0.387
0.008 0.278 0.104
0.005 0.015 0.001

Number of somatic mutations= 10 within 150 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.955 0.474
0.008 0.581 0.15
0.005 0.041 0.002

Table A.3: Type I error and power for the gene-level score test based on using
the GHC test and the binomial exact test corrected by the Bonferroni procedure
with various rates of the variant allele frequency (VAF) and different numbers
of somatic mutations occurring in a gene of tumour cells that includes 150 rare
variants at a sample size of n = 400.
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Number of somatic mutations= 0 within 50 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.029 0.025
0.008 0.025 0.019
0.005 0.026 0.02

Number of somatic mutations= 2 within 50 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.998 0.997
0.008 0.937 0.918
0.005 0.374 0.35

Number of somatic mutations= 5 within 50 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 1 1
0.008 1 0.997
0.005 0.898 0.652

Number of somatic mutations= 7 within 50 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 1 1
0.008 1 1
0.005 0.987 0.755

Number of somatic mutations= 10 within 50 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 1 1
0.008 1 1
0.005 1 0.874

Table A.4: Type I error and power for the gene-level score test based on using
the GHC test and the binomial exact test corrected by the Bonferroni procedure
with various rates of the variant allele frequency (VAF) and different numbers of
somatic mutations occurring in a gene of tumour cells that includes 50 rare variants
at a sample size of n = 800.
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Number of somatic mutations= 0 within 100 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.035 0.021
0.008 0.027 0.02
0.005 0.02 0.02

Number of somatic mutations= 2 within 100 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.981 0.986
0.008 0.831 0.863
0.005 0.196 0.218

Number of somatic mutations= 5 within 100 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 1 1
0.008 1 992
0.005 0.653 0.466

Number of somatic mutations= 7 within 100 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 1 1
0.008 1 1
0.005 0.868 0.552

Number of somatic mutations= 10 within 100 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 1 1
0.008 1 1
0.005 0.991 0.684

Table A.5: Type I error and power for the gene-level score test based on using
the GHC test and the binomial exact test corrected by the Bonferroni procedure
with various rates of the variant allele frequency (VAF) and different numbers
of somatic mutations occurring in a gene of tumour cells that includes 100 rare
variants at a sample size of n = 800.
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Number of somatic mutations= 0 within 150 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.024 0.025
0.008 0.035 0.032
0.005 0.018 0.02

Number of somatic mutations= 2 within 150 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 0.965 0.962
0.008 0.762 0.745
0.005 0.108 0.118

Number of somatic mutations= 5 within 150 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 1 0.999
0.008 0.997 0.97
0.005 0.491 0.282

Number of somatic mutations= 7 within 150 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 1 1
0.008 1 1
0.005 0.75 0.376

Number of somatic mutations= 10 within 150 rare variants
Variant allele frequency (VAF) The GHC test The binomial exact test

0.01 1 1
0.008 1 1
0.005 0.957 0.458

Table A.6: Type I error and power for the gene-level score test based on using
the GHC test and the binomial exact test corrected by the Bonferroni procedure
with various rates of the variant allele frequency (VAF) and different numbers
of somatic mutations occurring in a gene of tumour cells that includes 150 rare
variants at a sample size of n = 800.



Appendix B

Results of somatic mutation asso-

ciation analysis

This appendix includes the results of our developed score test procedures, the

Somatic mutation Association test with Measurement Errors (SAME) test and

the generalised linear model (GLM). We have explored the performance of the

methods over a range of effect sizes ranging from 0.4, which is considered a small

effect, to 2, which is typically deemed to be large.

B.1 Association analysis of a single somatic

mutation

This section contains the results of our single score test, the mSAME test and

GLM for testing the relationship between a single somatic mutation and cancer
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subtype outcome.

Type I error and power when ρ1 = 0.02
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.036 0.084 0.189 0.311 0.45 0.575
mSAME 0.077 0.075 0.116 0.218 0.286 0.355
GLM 0.036 0.058 0.095 0.148 0.257 0.314

Type I error and power when ρ1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.041 0.107 0.323 0.615 0.816 0.924
mSAME 0.053 0.097 0.275 0.532 0.722 0.866
GLM 0.045 0.087 0.267 0.512 0.69 0.839

Type I error and power when ρ1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.045 0.168 0.534 0.855 0.972 0.996
mSAME 0.062 0.185 0.539 0.847 0.968 0.995
GLM 0.053 0.185 0.522 0.828 0.962 0.994

Table B.1: Type I error and power for single-mutation analysis of our developed
score test, the mSAME test and GLM with various rates of mutation frequency ρ1
and effect size β of a sample size of n=400.
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Type I error and power when ρ1 = 0.02
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.044 0.117 0.291 0.502 0.685 0.843
mSAME 0.054 0.095 0.185 0.324 0.463 0.599
GLM 0.042 0.081 0.179 0.318 0.427 0.572

Type I error and power when ρ1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.04 0.185 0.508 0.855 0.967 0.996
mSAME 0.053 0.169 0.476 0.806 0.933 0.988
GLM 0.046 0.161 0.443 0.785 0.849 0.98

Type I error and power when ρ1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.042 0.287 0.8 0.992 1 1
mSAME 0.045 0.301 0.8 0.989 1 1
GLM 0.044 0.3 0.752 0.99 1 1

Table B.2: Type I error and power for single-mutation analysis of our developed
score test, the mSAME test and GLM with various rates of mutation frequency ρ1
and effect size β of a sample size of n=800.
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Type I error and power when ρ1 = 0.02
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.042 0.103 0.208 0.527 0.8 0.925
mSAME 0.045 0.08 0.178 0.366 0.58 0.704
GLM 0.044 0.077 0.065 0.289 0.553 0.7

Type I error and power when ρ1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.042 0.221 0.554 0.899 0.99 1
mSAME 0.044 0.175 0.536 0.878 0.982 0.997
GLM 0.044 0.168 0.423 0.778 0.969 0.995

Type I error and power when ρ1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.04 0.321 0.903 1 1 1
mSAME 0.057 0.33 0.9 1 1 1
GLM 0.047 0.323 0.895 1 1 1

Table B.3: Type I error and power for single-mutation analysis of our developed
score test, the mSAME test and GLM with various rates of mutation frequency ρ1
and effect size β of a sample size of n=1000.
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Type I error and power when ρ1 = 0.02
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.052 0.202 0.694 0.959 0.997 1
mSAME 0.056 0.155 0.486 0.829 0.956 0.991
GLM 0.054 0.141 0.467 0.79 0.923 0.982

Type I error and power when ρ1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.036 0.46 0.981 1 1 1
mSAME 0.037 0.432 0.948 1 1 1
GLM 0.036 0.366 0.947 1 1 1

Type I error and power when ρ1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.032 0.778 0.996 1 1 1
mSAME 0.044 0.778 0.969 1 1 1
GLM 0.045 0.753 0.9 1 1 1

Table B.4: Type I error and power for single-mutation analysis of our developed
score test, the mSAME test and GLM with various rates of mutation frequency ρ1
and effect size β of a sample size of n=3000.
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Type I error and power when ρ1 = 0.02
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.052 0.383 0.864 0.998 1 1
mSAME 0.051 0.263 0.699 0.96 0.997 1
GLM 0.054 0.265 0.589 0.937 0.994 1

Type I error and power when ρ1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.038 0.658 1 1 1 1
mSAME 0.047 0.616 1 1 1 1
GLM 0.037 0.516 1 1 1 1

Type I error and power when ρ1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.024 0.94 1 1 1 1
mSAME 0.055 0.94 1 1 1 1
GLM 0.048 0.932 1 1 1 1

Table B.5: Type I error and power for single-mutation analysis of our developed
score test, the mSAME test and GLM with various rates of mutation frequency ρ1
and effect size β of a sample size of n=5000.
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Type I error and power when ρ1 = 0.02
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.038 0.065 0.135 0.26 0.378 0.497
mSAME 0.068 0.068 0.119 0.197 0.279 0.346
GLM 0.027 0.038 0.078 0.129 0.191 0.216

Type I error and power when ρ1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.036 0.096 0.302 0.517 0.738 0.892
mSAME 0.048 0.098 0.27 0.461 0.677 0.836
GLM 0.042 0.089 0.226 0.365 0.565 0.723

Type I error and power when ρ1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.026 0.13 0.458 0.817 0.949 0.996
mSAME 0.048 0.15 0.48 0.82 0.95 0.994
GLM 0.045 0.13 0.407 0.718 0.901 0.975

Table B.6: Type I error and power for single-mutation analysis of our developed
score test, the mSAME test and GLM with various rates of mutation frequency ρ1
and effect size β of a sample size of n=400 with low read-depth. In this detaset, the
somatic mutation read-depth was simulated by a negative binomial distribution
with mean 40 and over-dispersion 1.9.
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Type I error and power when ρ1 = 0.02
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.051 0.081 0.173 0.294 0.45 0.571
mSAME 0.061 0.066 0.111 0.194 0.268 0.348
GLM 0.036 0.056 0.091 0.159 0.238 0.308

Type I error and power when ρ1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.033 0.109 0.311 0.603 0.808 0.917
mSAME 0.044 0.09 0.255 0.522 0.72 0.844
GLM 0.036 0.079 0.256 0.51 0.783 0.824

Type I error and power when ρ1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.024 0.156 0.525 0.834 0.973 0.999
mSAME 0.037 0.173 0.522 0.829 0.965 0.997
GLM 0.033 0.165 0.504 0.781 0.951 0.995

Table B.7: Type I error and power for single-mutation analysis of our developed
score test, the mSAME test and GLM with various rates of mutation frequency ρ1
and effect size β of a sample size of n=400. In this dataset, the sensitivity value γ1
is set as in the default setting (γ1 = 0.9), but the specificity value γ0 is decreased.
Consequently, the observed mutation Oi was simulated by a Bernoulli distribution
with the sensitivity value γ1 = 0.9 and specificity value γ0 = 0.95.
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Type I error and power when ρ1 = 0.02
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.04 0.082 0.153 0.269 0.404 0.552
mSAME 0.049 0.061 0.114 0.188 0.262 0.34
GLM 0.029 0.049 0.101 0.167 0.237 0.303

Type I error and power when ρ1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.031 0.102 0.303 0.586 0.757 0.914
mSAME 0.04 0.089 0.26 0.517 0.68 0.843
GLM 0.032 0.087 0.236 0.476 0.642 0.817

Type I error and power when ρ1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.049 0.158 0.516 0.765 0.971 0.995
mSAME 0.057 0.172 0.523 0.79 0.967 0.995
GLM 0.044 0.157 0.499 0.629 0.962 0.992

Table B.8: Type I error and power for single-mutation analysis of our developed
score test, the mSAME test and GLM with various rates of mutation frequency ρ1
and effect size β of a sample size of n=400. In this dataset, both the sensitivity
value γ1 and the specificity value γ0 are decreased. Consequently, the observed
mutation Oi was simulated by a Bernoulli distribution with the sensitivity value
γ1 = 0.85 and specificity value γ0 = 0.95.
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Type I error and power when ρ1 = 0.02
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.004 0.01 0.012 0.026 0.036 0.082
mSAME 0.001 0.003 0.014 0.018 0.027 0.071
GLM 0.001 0.004 0.011 0.017 0.039 0.076

Type I error and power when ρ1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.002 0.015 0.05 0.133 0.207 0.298
mSAME 0.001 0.011 0.06 0.128 0.207 0.297
GLM 0.003 0.014 0.044 0.138 0.21 0.268

Type I error and power when ρ1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.004 0.018 0.094 0.194 0.303 0.317
mSAME 0.001 0.021 0.091 0.189 0.272 0.31
GLM 0.001 0.008 0.095 0.182 0.255 0.297

Table B.9: Type I error and power for our developed single score tests, the mSAME
tests and GLM corrected by the Bonferroni correction with various rates of mu-
tation frequency ρ1 and effect size β of a sample size of n=400 and number of
mutation=10.
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Type I error and power when ρ1 = 0.02
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.011 0.017 0.06 0.166 0.268 0.4
mSAME 0.004 0.013 0.072 0.159 0.266 0.4
GLM 0.003 0.017 0.061 0.127 0.278 0.4

Type I error and power when ρ1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.004 0.022 0.117 0.363 0.617 0.733
mSAME 0.003 0.039 0.118 0.346 0.601 0.709
GLM 0.004 0.029 0.126 0.338 0.615 0.74

Type I error and power when ρ1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.002 0.063 0.244 0.618 0.781 0.878
mSAME 0.001 0.043 0.26 0.579 0.76 0.88
GLM 0.003 0.06 0.27 0.598 0.771 0.866

Table B.10: Type I error and power for our developed single score tests, the
mSAME tests and GLM corrected by the Bonferroni correction with various rates
of mutation frequency ρ1 and effect size β of a sample size of n=800 and number
of mutation=10.
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Type I error and power when ρ1 = 0.02
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.005 0.018 0.047 0.094 0.157 0.185
mSAME 0.003 0.012 0.042 0.1 0.147 0.19
GLM 0.001 0.017 0.04 0.102 0.158 0.19

Type I error and power when ρ1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.005 0.028 0.105 0.225 0.485 0.601
mSAME 0.004 0.036 0.102 0.229 0.49 0.61
GLM 0.007 0.034 0.096 0.253 0.465 0.462

Type I error and power when ρ1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.006 0.046 0.15 0.473 0.7 0.841
mSAME 0.008 0.047 0.137 0.458 0.71 0.85
GLM 0.006 0.032 0.132 0.456 0.676 0.839

Table B.11: Type I error and power for our developed single score tests, the
mSAME tests and GLM corrected by the Bonferroni correction with various rates
of mutation frequency ρ1 and effect size β of a sample size of n=400 and number
of mutation=5.
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B.2 Association analysis of gene-based so-

matic mutations

This section contains the results of our gene-based score test, the gSAME test

and GLM for testing the relationship between somatic mutations that are grouped

within a gene and a cancer subtype outcome.

Type I error and power when ρg1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.043 0.078 0.189 0.306 0.499 0.681
gSAME 0.052 0.066 0.116 0.155 0.211 0.325
GLM 0.052 0.067 0.119 0.158 0.216 0.328

Type I error and power when ρg1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.026 0.093 0.233 0.654 0.815 0.949
gSAME 0.04 0.076 0.213 0.441 0.604 0.754
GLM 0.037 0.073 0.216 0.442 0.596 0.753

Type I error and power when ρg1 = 0.15
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.042 0.143 0.462 0.782 0.893 0.981
gSAME 0.047 0.134 0.357 0.636 0.821 0.943
GLM 0.048 0.136 0.354 0.637 0.822 0.937

Table B.12: Type I error and power for gene-based mutation analysis of our de-
veloped score test, the gSAME test and GLM with various rates of gene-based
mutation frequency ρg1 and effect size β of a sample size of n = 400 and number
of mutations j = 10.
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Type I error and power when ρg1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.037 0.091 0.311 0.667 0.82 0.958
gSAME 0.052 0.061 0.139 0.273 0.424 0.555
GLM 0.052 0.057 0.139 0.282 0.425 0.559

Type I error and power when ρg1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.041 0.174 0.508 0.875 0.98 0.993
gSAME 0.055 0.142 0.366 0.702 0.858 0.933
GLM 0.056 0.139 0.371 0.703 0.863 0.94

Type I error and power when ρg1 = 0.15
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.031 0.251 0.671 0.966 0.999 1
gSAME 0.057 0.211 0.612 0.893 0.993 1
GLM 0.059 0.219 0.617 0.899 0.993 1

Table B.13: Type I error and power for gene-based mutation analysis of our de-
veloped score test, the gSAME test and GLM with various rates of gene-based
mutation frequency ρg1 and effect size β of a sample size of n = 800 and number
of mutations j = 10.
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Type I error and power when ρg1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.041 0.11 0.405 0.734 0.811 0.954
gSAME 0.047 0.074 0.19 0.349 0.463 0.636
GLM 0.044 0.071 0.195 0.347 0.465 0.641

Type I error and power when ρg1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.031 0.188 0.622 0.97 1 1
gSAME 0.041 0.15 0.425 0.819 0.954 0.985
GLM 0.042 0.151 0.423 0.822 0.953 0.985

Type I error and power when ρg1 = 0.15
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.03 0.373 0.648 0.973 0.999 1
gSAME 0.05 0.242 0.638 0.898 0.997 1
GLM 0.052 0.242 0.641 0.898 0.997 1

Table B.14: Type I error and power for gene-based mutation analysis of our de-
veloped score test, the gSAME test and GLM with various rates of gene-based
mutation frequency ρg1 and effect size β of a sample size of n = 1000 and number
of mutations j = 10.
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Type I error and power when ρg1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.041 0.301 0.907 0.975 0.995 0.998
gSAME 0.051 0.127 0.455 0.723 0.852 0.914
GLM 0.053 0.126 0.458 0.73 0.861 0.925

Type I error and power when ρg1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.035 0.532 0.998 1 1 1
gSAME 0.051 0.379 0.908 0.997 1 1
GLM 0.049 0.378 0.9 0.997 1 1

Type I error and power when ρg1 = 0.15
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.043 0.771 0.984 1 1 1
gSAME 0.05 0.609 0.981 1 1 1
GLM 0.048 0.614 0.982 1 1 1

Table B.15: Type I error and power for gene-based mutation analysis of our de-
veloped score test, the gSAME test and GLM with various rates of gene-based
mutation frequency ρg1 and effect size β of a sample size of n = 3000 and number
of mutations j = 10.
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Type I error and power when ρg1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.033 0.452 0.97 1 1 1
gSAME 0.047 0.226 0.66 0.928 1 1
GLM 0.051 0.233 0.663 0.925 1 1

Type I error and power when ρg1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.034 0.804 1 1 1 1
gSAME 0.047 0.563 0.993 1 1 1
GLM 0.046 0.564 0.993 1 1 1

Type I error and power when ρg1 = 0.15
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.026 0.876 0.999 1 1 1
gSAME 0.049 0.802 1 1 1 1
GLM 0.05 0.799 1 1 1 1

Table B.16: Type I error and power for gene-based mutation analysis of our de-
veloped score test, the gSAME test and GLM with various rates of gene-based
mutation frequency ρg1 and effect size β of a sample size of n = 5000 and number
of mutations j = 10.
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Type I error and power when ρg1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.043 0.081 0.164 0.266 0.592 0.746
gSAME 0.059 0.06 0.127 0.215 0.369 0.475
GLM 0.053 0.06 0.129 0.215 0.372 0.472

Type I error and power when ρg1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.021 0.121 0.318 0.708 0.882 0.924
gSAME 0.054 0.121 0.304 0.625 0.799 0.878
GLM 0.05 0.124 0.304 0.624 0.801 0.875

Type I error and power when ρg1 = 0.15
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.037 0.135 0.53 0.83 0.95 0.992
gSAME 0.053 0.151 0.525 0.822 0.949 0.985
GLM 0.052 0.157 0.528 0.819 0.95 0.984

Table B.17: Type I error and power for gene-based mutation analysis of our de-
veloped score test, the gSAME test and GLM with various rates of gene-based
mutation frequency ρg1 and effect size β of a sample size of n = 400 and number
of mutations j = 5.
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Type I error and power when ρg1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.045 0.081 0.197 0.258 0.412 0.557
gSAME 0.065 0.061 0.097 0.187 0.243 0.31
GLM 0.06 0.058 0.096 0.185 0.246 0.314

Type I error and power when ρg1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.041 0.083 0.337 0.64 0.834 0.965
gSAME 0.059 0.073 0.232 0.414 0.616 0.78
GLM 0.06 0.07 0.238 0.418 0.61 0.786

Type I error and power when ρg1 = 0.15
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.032 0.133 0.322 0.69 0.819 0.998
gSAME 0.057 0.142 0.352 0.662 0.833 0.954
GLM 0.053 0.14 0.355 0.656 0.84 0.954

Table B.18: Type I error and power for gene-based mutation analysis of our de-
veloped score test, the gSAME test and GLM with various rates of gene-based
mutation frequency ρg1 and effect size β of a sample size of n = 400 and number
of mutations j = 10. In this dataset, the read-depth threshold D0 = 10.
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Type I error and power when ρg1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.043 0.077 0.157 0.388 0.503 0.663
gSAME 0.035 0.063 0.088 0.142 0.221 0.251
GLM 0.037 0.062 0.085 0.142 0.223 0.251

Type I error and power when ρg1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.029 0.111 0.358 0.622 0.782 0.916
gSAME 0.061 0.092 0.214 0.384 0.55 0.697
GLM 0.059 0.092 0.213 0.381 0.556 0.701

Type I error and power when ρg1 = 0.15
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.037 0.113 0.377 0.857 0.858 0.98
gSAME 0.051 0.108 0.311 0.662 0.759 0.926
GLM 0.047 0.104 0.312 0.663 0.749 0.922

Table B.19: Type I error and power for gene-based mutation analysis of our de-
veloped score test, the gSAME test and GLM with various rates of gene-based
mutation frequency ρg1 and effect size β of a sample size of n = 400 and number
of mutations j = 10. In this dataset, the read-depth threshold D0 = 30.



Appendix B. Results of somatic mutation association analysis 174

Type I error and power when ρg1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.028 0.064 0.17 0.409 0.59 0.746
gSAME 0.042 0.059 0.086 0.161 0.233 0.295
GLM 0.041 0.057 0.086 0.161 0.237 0.296

Type I error and power when ρg1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.024 0.095 0.324 0.591 0.876 0.974
gSAME 0.046 0.076 0.215 0.347 0.609 0.732
GLM 0.041 0.075 0.218 0.35 0.611 0.733

Type I error and power when ρg1 = 0.15
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.032 0.128 0.381 0.856 0.921 0.988
gSAME 0.041 0.106 0.287 0.662 0.789 0.93
GLM 0.038 0.104 0.288 0.662 0.79 0.929

Table B.20: Type I error and power for gene-based mutation analysis of our de-
veloped score test, the gSAME test and GLM with various rates of gene-based
mutation frequency ρg1 and effect size β of a sample size of n = 400 and number
of mutations j = 10. In this dataset, the read-depth threshold D0 = 40.
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Type I error and power when ρg1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.033 0.056 0.161 0.298 0.48 0.634
gSAME 0.048 0.059 0.058 0.104 0.109 0.137
GLM 0.044 0.058 0.058 0.104 0.111 0.134

Type I error and power when ρg1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.038 0.049 0.211 0.597 0.81 0.852
gSAME 0.055 0.062 0.125 0.202 0.293 0.402
GLM 0.053 0.059 0.125 0.198 0.294 0.394

Type I error and power when ρg1 = 0.15
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.03 0.115 0.443 0.696 0.864 0.989
gSAME 0.049 0.097 0.209 0.341 0.513 0.675
GLM 0.047 0.094 0.205 0.345 0.51 0.677

Table B.21: Type I error and power for gene-based mutation analysis of our de-
veloped score test, the gSAME test and GLM with various rates of gene-based
mutation frequency ρg1 and effect size β of a sample size of n = 400 and number of
mutations j = 10. In this dataset, the sensitivity value γ1 is set as in the default
setting (γ1 = 0.9), but the specificity value γ0 is decreased. Consequently, the ob-
served mutation of the xth mutation Oix was simulated by a Bernoulli distribution
with the sensitivity value γ1 = 0.9 and specificity value γ0 = 0.95.
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Type I error and power when ρg1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.041 0.07 0.144 0.274 0.457 0.617
gSAME 0.053 0.05 0.082 0.085 0.134 0.132
GLM 0.054 0.047 0.079 0.081 0.131 0.132

Type I error and power when ρg1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.034 0.069 0.172 0.547 0.8 0.855
gSAME 0.047 0.069 0.101 0.203 0.295 0.386
GLM 0.046 0.065 0.099 0.199 0.295 0.383

Type I error and power when ρg1 = 0.15
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.042 0.094 0.376 0.665 0.865 0.96
gSAME 0.053 0.063 0.18 0.332 0.452 0.595
GLM 0.053 0.062 0.177 0.331 0.448 0.592

Table B.22: Type I error and power for gene-based mutation analysis of our de-
veloped score test, the gSAME test and GLM with various rates of gene-based
mutation frequency ρg1 and effect size β of a sample size of n = 400 and number of
mutations j = 10. In this dataset, both the sensitivity value γ1 and the specificity
value γ0 are decreased. Consequently, the observed mutation of the xth mutation
Oix was simulated by a Bernoulli distribution with the sensitivity value γ1 = 0.85
and specificity value γ0 = 0.95.
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Type I error and power when ρg1 = 0.05
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.052 0.078 0.222 0.523 0.529 0.791
gSAME 0.054 0.074 0.151 0.308 0.39 0.504
GLM 0.051 0.071 0.153 0.31 0.391 0.508

Type I error and power when ρg1 = 0.1
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.034 0.126 0.372 0.749 0.827 0.948
gSAME 0.039 0.123 0.351 0.637 0.828 0.938
GLM 0.039 0.121 0.353 0.637 0.829 0.94

Type I error and power when ρg1 = 0.15
Test β = 0 β = 0.4 β = 0.8 β = 1.2 β = 1.6 β = 2

Score test 0.041 0.184 0.573 0.854 0.975 1
gSAME 0.059 0.186 0.576 0.877 0.969 0.995
GLM 0.055 0.189 0.573 0.877 0.97 0.995

Table B.23: Type I error and power for gene-based mutation analysis of our de-
veloped score test, the gSAME test and GLM with various rates of gene-based
mutation frequency ρg1 and effect size β of a sample size of n = 400 and number of
mutations j = 10. In this dataset, both the sensitivity value γ1 and the specificity
value γ0 are increased. Consequently, the observed mutation of the xth mutation
Oix was simulated by a Bernoulli distribution with the sensitivity value γ1 = 0.95
and specificity value γ0 = 0.99.
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