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The Unequal Implications of Industry 4.0 Adoption: 

Evidence on Productivity Growth  

and Convergence across Europe 

 

 

 

Abstract 

Do new manufacturing technologies of the Industry 4.0 (I4.0) boost TFP growth? By adopting a 

distance-to-frontier framework, this paper explores whether the adoption of (advanced) digital 

technologies affect the sectoral TFP growth rates across manufacturing industries of 14 European 

countries, during the period 2009–2019. We rely on a novel measure of adoption of I4.0 technologies 

(namely, advanced industrial robots, additive manufacturing and industrial internet of things), 

exploiting highly detailed (8-digit level) information on imports of capital goods embodying such 

technologies. Our results suggest that adopting new digital manufacturing technologies of the I4.0 

brings quantitatively important and statistically significant contributions to sectoral TFP growth rates, 

although these are mostly concentrated in countries close to the technology frontier. In turn, these 

technologies seem to have hampered the process of convergence between European technological 

leaders and laggards over the last decade. 

 

Keywords: Industry 4.0; fourth industrial revolution; technology diffusion; total factor productivity 

(TFP); technological convergence. 

 

JEL classification: O11; O33; O47. 
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1. Introduction 

Over the last decade, academics, policymakers, and practitioners ranging from engineers to 

managers and entrepreneurs have looked at technological changes in production processes – 

embodied by the advent of new digital and ‘smart’ technologies – with a growing interest 

(Brynjolfsson and McAfee, 2014). The fourth industrial revolution (4IR), also known as ‘Industry 

4.0’ (I4.0) in manufacturing (Skilton and Hovsepian, 2017), is leading to new digital paradigms 

driven by the diffusion of a vast array of automation technologies. 

 The combination of robots, additive manufacturing (or 3D printing), the internet of things, 

big data, artificial intelligence, and other new digital technologies enables the creation of cyber-

physical systems which integrate seamlessly physical operations with digital insight (Davies, 2015; 

Eurofound, 2018; Kagermann et al., 2013; Mariani and Borghi, 2019), enabling the creation of 

smart factories (Wang et al., 2016). 

Overall, digital manufacturing and automation technologies of the 4IR can provide firms 

with new capabilities to perform flexibly, collaboratively and resiliently (Dalenogare et al., 2018; 

Frank et al., 2019; Marcucci et al., 2021), leading to higher cost-efficiency and productivity 

(Kagermann et al., 2013; Müller, Buliga and Voigt, 2018) while also benefitting the market 

competition and contribute to overall economic and productivity growth, particularly in more 

developed economies. 

As such, the growing diffusion of I4.0 technologies may offer the opportunity to revert the 

downward trend in productivity growth (Mokyr, 2018; Pompei and Venturini, 2022) and the 

process of divergence between more productive (frontier) and laggard firms (Andrews et al., 2019).  

Despite the attention given to the 4IR by academics and institutional actors, the empirical 

evidence concerning these phenomena is still limited, along with suitable measures of I4.0 

technology adoption enabling the investigation of their effects across countries, industries and over 

time. In particular, the 4IR-productivity nexus has attracted an increasing amount of research in the 
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last few years. However, most empirical contributions focus on the adoption of specific 

technologies, mainly industrial robots (Cette et al., 2021; Du and Lin, 2022; Graetz and Michaels, 

2018) or look at a single country (Acemoglu et al., 2020; Ballestar et al., 2020; Bonfiglioli et al., 

2020). Other works provide only descriptive evidence on the adoption pattern across countries (e.g., 

Foster‐McGregor et al., 2019), while most studies focusing on technologies of the 4IR primarily 

investigate the impact of adoption on occupation and jobs (e.g., Acemoglu and Restrepo, 2020; 

Dauth et al., 2021). 

We take stock of this growing literature and move it forward by exploring the role played by 

a larger set of technologies in generating productivity growth and convergence, using a panel of 13 

manufacturing industries across 14 European countries over the 2009–2019 period. Specifically, we 

focus on three ‘physical’ advanced manufacturing technologies of the I4.0 technologies – namely, 

advanced industrial robots (AIRs), additive manufacturing (AM) and industrial internet of things 

(IIoT) – considered as potentially ‘game-changing’ (i.e., disrupting) in manufacturing (Eurofound, 

2018, p. 3),1 and we test whether their adoption triggers additional productivity gains, potentially 

facilitating the catching-up of countries and sectors more distant from the frontier or further 

deepening the technological gap between more developed and laggard economies across Europe. 

Beyond consistent physical and monetary investments, they also require a certain level of 

absorptive capacity, prior investments in enabling technologies to be effectively adopted. In turn, 

the presence of such barriers to an effective adoption of these technologies may slow down or even 

‘disable’ the process of technological convergence. This motivates our interest towards the 

 

1 Their disruptive potential results from their potential for a widespread application across every manufacturing industry 

due to their “versatility and complementarity” (Eurofound, 2018, p. 3). Furthermore, while we already acknowledged 

the impact I4.0 technologies have on manufacturing operations – e.g., higher operational flexibility, higher production 

efficiency and quality, lower set-up costs and integration along the value chain, resulting in higher productivity and 

better performance overall (see also Skilton and Hovsepian, 2017; Eurofound, 2018) – additional high-level impact 

resides in the world of work and, in general, the entire society. On the one hand, a general concern around the “risks of 

new monopolies, mass redundancies, spying on workers, and the extension of precarious digital work” (Davies, 2015, 

p. 9) emerges. On the other hand, this transformation calls for a policy debate on the upcoming changes in the task 

content and occupational profiles of manufacturing employment (Frey and Osborne, 2017; Eurofound, 2018). 
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existence of potentially different effects across countries and industries, depending on the relative 

distance to the technology frontier. 

Guided by these premises, the present study investigates the productivity effects associated 

with the adoption of I4.0 technologies by looking at: (i) their effects on total factor productivity 

(TFP) growth; (ii) the potential heterogenous effect across different technologies; and (iii) their 

potential role of enablers of productivity catch-up (convergence) across manufacturing industries of 

European economies. We follow a robust empirical approach, that is the distance-to-frontier (DTF) 

framework, widely used in previous works looking at different levels of aggregation (Andrews et 

al., 2019; Cameron et al., 2005; Griffith et al., 2004; Griffith et al., 2009; Mason et al., 2020; 

Minniti and Venturini, 2017; Pompei and Venturini, 2022). 

The empirical analysis exploits a panel of 13 manufacturing industries across 14 European 

countries over the 2009–2019 period. We measure I4.0 technology adoption by using import data 

for highly disaggregated (8-digit) product categories related to AIRs, AM and IIoT since they are 

embodied technologies, requiring the physical installation of specialised capital goods (Domini et 

al. 2021). Our results highlight that I4.0 technologies brought relevant contributions to TFP growth 

rates over the last decade. Looking at individual technologies, we find that AM and AIRs are the 

most beneficial (on average) for European economies across manufacturing industries, while the 

effect of IIoT on TFP growth is weaker and mostly confined to more developed economies. At the 

same time, we find that productivity gains from I4.0 technology adoption mostly concentrate in 

countries closer to the technology frontier, thus suggesting that (on aggregate) these technologies 

are not currently helping productivity convergence. 

We contribute to the literature in two main ways: first, we address the debate on global 

productivity slowdown and secular stagnation by analysing the effect that adopting new 

technologies of the 4IR may have on reverting such trends. While our results indicate that the 

diffusion of I4.0 technologies may indeed result in sustained TFP growth in the long-run, so far this 

has been happening at a different pace across European countries, thus hindering convergence. This 
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evidence provides support to the recent discussion on these technologies’ requirements in terms of 

absorptive capacity and investments in enabling technologies (Ciffolilli and Muscio, 2018; 

Corradini et al., 2021). Second, from a methodological and empirical standpoint, our work is one of 

the first to use highly detailed import data for several I4.0 technologies and across countries to 

measure sectoral adoption. As compared to other data sources (e.g., surveys, data on IT staff/AI 

expert hirings/expenditure), our approach is scalable over time and across countries, and provides 

comparable estimates across different technologies. Additionally, while the focus of this paper is at 

a national and sectoral level, trade data is increasingly available at the establishment level, thus 

allowing to adopt our proposed methodology at this much granular level of analysis. Indeed, several 

statistical offices are allowing researchers to access detailed import and export data at the 

transaction level. 

The rest of the paper is structured as follows. Section 2 discusses the relevant literature on 

the topic, Section 3 highlights the analytical framework and the empirical strategy for our empirical 

investigation. Section 4 discusses the data used, while Section 5 presents and discusses the results 

of our econometric analysis and the related robustness tests. Finally, Section 6 discusses results, the 

related policy implications, and concludes by discussing limitations and outlining future research. 

 

2. Background literature 

The 4IR and its technologies have been at the core of academics’ debate for over a decade now. 

From a conceptual standpoint, these technologies represent a new and more advanced form of 

capital. By substituting or complementing traditional types of automated machinery, I4.0 

technologies can perform a growing number of tasks in a faster and more efficient way, in turn, 

rising productivity, but also generating new ideas and boosting innovation. 

 In the smart factory, latest improvements in dynamic programming paired with the use of 

smart sensors enable advanced industrial robots (AIRs) to perform a broader range of tasks as 
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compared to their predecessors, offering accuracy, flexibility, and both collaborative (human-

machine) and autonomous applications (Davies, 2015; Eurofound, 2018; Frey and Osborne, 2017). 

At the same time, additive manufacturing (AM) provides firms with the possibility to expand their 

product range, for instance by creating new niche markets, offers new opportunities for real-time 

customization, enabling to speed up the entire product development cycle, and paves the way to 

innovative business models (Bogers et al., 2016; Rayna and Striukova, 2016), while also reducing 

the number of production stages, production (e.g., material consumption) and logistic costs, and 

overall operational complexity (Felice et al., 2022; Weller et al., 2015). Furthermore, the extensive 

adoption of sensors, actuators and distributed systems (e.g., NFC microchips, RFID tags and GPS) 

enables the creation of industrial internet of things (IIoT) environments (Atzori et al., 2010) which 

provide high communication and integration potential, eventually empowering a more efficient 

management of industrial operations and digital integration between firms operating along the value 

chain (Wang et al., 2016). This infrastructure allows to pull together a variety of data from 

interconnected devices (e.g., efficiency, machine usage, energy consumption), which are used to 

increase reliability of productive assets and for predictive maintenance, to automate and optimise 

production, minimise costs and improve output quality, but also to increase communication and 

coordination along the supply chain (Dalenogare et al., 2018; Frank et al., 2019; Marcucci et al., 

2021; Müller, Buliga and Voigt, 2018), ultimately increasing productivity. 

However, given the lack of extensive and detailed sources of information on the adoption of 

I4.0 technologies (Brynjolfsson et al., 2019; Cockburn et al., 2019), most of the studies in the field 

have focused on AIRs thanks to data from the International Federation of Robotics (IFR), mostly 

looking at the occupational and wage effects of robotisation at different level of analysis (e.g., 

Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020; Dauth et al., 2021). 

Recently, a growing body of works has looked at the productivity effects (both labour 

productivity and TFP) deriving from the adoption of specific ‘physical’ automation or I4.0-related 
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technologies.2 Using the growth accounting approach and looking at 30 OECD countries, Cette et 

al. (2021) find that aggregate AIR adoption does not appear to have been a quantitatively significant 

source of productivity growth between 1975 and 2019. Similarly, also Edquist et al. (2019) and 

Espinoza et al. (2020) leverage on growth accounting to investigate productivity gains associated 

with the adoption of IoT. The former authors use data on licensed IoT connections across 82 

countries for the period 2010–2017 finding that a 10% increase in the growth rate of IoT 

connections per inhabitant is associated with a 0.23% increase in economy-wide TFP growth. 

Espinoza et al. (2020) combine earlier findings on the contribution of ICT to (labour) productivity 

growth with new cross-country data on IoT expenditure, estimating the share of ICT-related 

productivity gains coming from IoT investments to be about 0.01 percentage points (pp) in the US 

and 0.006 pp across EU10 countries. 

Looking at industry-level growth, Graetz and Michaels (2018) estimate that the rising 

adoption of AIRs can explain from 0.4 to 1% of the increase in labour productivity and from 0.3 to 

0.8% of TFP growth between 1993 and 2007, in a sample of 17 OECD economies. Similarly, Du 

and Lin (2022) exploit sectoral data on AIR adoption to measure robotisation rates across Chinese 

regions – following the empirical approach by Acemoglu and Restrepo (2020) – and uncover a U-

shaped relationship with TFP growth for which productivity gains are mostly located in regions 

showing high robotisation. 

At the firm level, Jäger et al. (2015) find significant higher labour productivity gains 

associated with AIR adoption in manufacturing operations by looking at around 1,400 Swiss and 

Dutch businesses. Similarly, Ballestar et al. (2020) analyse a sample of Spanish firms between 2008 

 

2 In this work, we focus on studies addressing the implications of ‘physical’ I4.0 technology adoption. We stress the 

difference between ‘physical’ (i.e., capital embodied) and ‘digital’ (i.e., software-related) I4.0 technologies as such 

characteristic represents a crucial distinction, as also observed by Foster‐McGregor et al. (2019). In so doing, we 

intentionally avoid a detailed review of studies addressing the productivity implication of I4.0 technology development 

and innovation (e.g., patenting artificial intelligence; for a recent contribution, see Venturini, 2022) as this would fall 

outside the purpose of our research. Notwithstanding, we redirect the reader to recent studies from Czarnitzki et al. 

(2023) and Müller, Fay and Brocke (2018) who explore the productivity effects of ‘digital’ I4.0 technology adoption, 

i.e. artificial intelligence and big data, respectively. 
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and 2015, uncovering a rise in productivity of about 3% across small and medium sized firms 

(SMEs) associated with AIR adoption, but no effect on large companies. Acemoglu et al. (2020) 

and Bonfiglioli et al. (2020) look at AIR adoption across French firms, although uncovering mixed 

findings: while the former authors find unconclusive and not robust evidence on the impact of AIR 

adoption on TFP growth between 2010 and 2015, the latter find a positive and significant effect 

over a longer period from 1994 to 2013, robust to several checks. 

Although previous studies have moved the debate forward, they bear some limitations. First, 

they measure the adoption of single technologies (mostly AIR and, in some cases, IoT) and neglect 

the implications coming from a wider and more complete nexus of technologies. Second, they focus 

on different levels of aggregation (country vs sector vs firm level) and on different periods, thus 

making it hard to compare insights. Furthermore, while providing interesting insights, these works 

base their analysis on different and only partially comparable measures for the same technology: 

e.g. IFR data in Graetz and Michaels (2018), Cette et al. (2021) and Du and Lin (2022), AIR 

adoption dummy in Ballestar et al. (2020), and AIR imports in Acemoglu et al. (2020) and 

Bonfiglioli et al. (2020). Finally, some of these works bear important limitations from an empirical 

standpoint: on the one hand, cross-sectional data (Ballestar et al., 2020; Jäger et al., 2015) or too 

short time series (Edquist et al., 2019) do not allow to investigate causal relationships; on the other 

hand, studies performing sensitivity analyses do not enable to produce accurate estimates (Espinoza 

et al., 2020). 

This study addresses these limitations by providing a unified measurement framework for 

different I4.0 technologies, testing their effect on productivity growth of 14 European countries and 

13 manufacturing industries over a decade (2009–2019). We employ a panel data econometric 

model which assumes that in each industry there is a stable, long-run, relationship between TFP 

levels of frontier and laggard countries. 

 All the above discussion conceptualises, with empirical support, a direct effect of I4.0 

technologies and productivity. However, the effect of the adoption could generate catching-up 
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mechanisms helping lagging countries to reduce their distance to the technological frontier. 

Following this line, some recent studies looking at innovation activities of I4.0 related technologies 

have found a catching-up effect, where companies introducing I4.0 patents enjoy significantly 

higher TFP growth, proportional to their distance from frontier firms (Pompei and Venturini, 2022). 

However, I4.0 technologies are characterised by peculiar features and embody some of the most 

recent forms of technological change, hence they could require both absorptive capacity and 

complementarity with existing enabling technologies to be efficiently adopted (Ciffolilli and 

Muscio, 2018; Corradini et al., 2021). 

 Thus, while at the aggregate level we expect positive TFP gains from adopting I4.0 

technologies, their effect might be larger and concentrated in more developed economies and not 

consistently beneficial for technological laggards. Moreover, we expect differential patterns and 

magnitudes when distinguishing between I4.0 technologies, since some countries might have easier 

access – in terms of capital requirements – and higher capabilities to use and exploit some 

technologies (e.g., additive manufacturing) rather than others (e.g., industrial internet of things), due 

to their peculiar characteristics. 

3. Empirical setting 

In line with our conceptualisation, our analysis of the sectoral productivity effects of I4.0 

technologies is based on the distance-to-frontier (DTF) framework (Bernard and Jones, 1996), 

which assumes that, in each industry, there is a stable, long-run, relationship between TFP levels of 

frontier (𝐹) and laggard countries (𝑖). In laggard countries 𝑖, TFP in sector 𝑗 can grow as a result of 

technological improvements at the frontier 𝐹 and technology transfer from the frontier. TFP (𝐴) is 

allowed to vary across countries, industries and time and is derived from the following production 

function: 

𝑌𝑖𝑗𝑡 = 𝐴𝑖𝑗𝑡𝐺𝑖𝑗(𝑋𝑖𝑗𝑡, 𝐿𝑖𝑗𝑡, 𝐾𝑖𝑗𝑡) (1) 
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where 𝑌 denotes gross output produced in each country using intermediate inputs 𝑋, labour 𝐿 and 

capital 𝐾 inputs; function 𝐺(·,·) is assumed to be homogeneous of degree one and to exhibit 

diminishing marginal returns to the accumulation of each individual production factor and constant 

returns to scale. The model also allows any country to switch endogenously from being a frontier to 

a non-frontier country and vice versa, in a way that in steady state the frontier for sector 𝑗 will be 

whichever country featuring the highest TFP level in that sector. Each non-frontier country 𝑖 will be 

at an equilibrium distance behind the leader 𝐹 such that all countries feature the same TFP growth 

rate. 

Under the standard assumptions discussed above, the relationship between the TFP level of 

laggard countries and the TFP level at the frontier can be formalised as an equilibrium correction 

model (ECM) representation, featuring a first-order autoregressive distributed lag model 

(ADL(1,1)) which assumes a long-run cointegrating relationship between a country’s own TFP and 

technological leader’s TFP: 

𝑙𝑛𝐴𝑖𝑗𝑡 = 𝜆1𝑙𝑛𝐴𝑖𝑗𝑡−1 + 𝜆2𝑙𝑛𝐴𝐹𝑗𝑡 + 𝜆3𝑙𝑛𝐴𝐹𝑗𝑡−1 + 𝑢𝑖𝑗𝑡. (2) 

where 𝑙𝑛𝐴𝑖𝑗𝑡 denotes TFP level of laggard countries and 𝑙𝑛𝐴𝐹𝑗𝑡  denotes TFP level of the frontier, in 

each sector 𝑗. Assuming long-run homogeneity (𝜆1 + 𝜆2 + 𝜆3 = 1), Eq. (2) can be expressed as: 

∆𝑙𝑛𝐴𝑖𝑗𝑡 = 𝜆2∆𝑙𝑛𝐴𝐹𝑗𝑡 + (1 − 𝜆1)𝑙𝑛 (
𝐴𝐹
𝐴𝑖
)
𝑗𝑡−1⏟      

𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1

+ 𝑢𝑖𝑗𝑡 
(3) 

where the term 𝑙𝑛(𝐴𝐹 𝐴𝑖⁄ )𝑗𝑡−1 (i.e., 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1) represents the distance-to-frontier expressed as a 

function of the lagged productivity differentials in sector 𝑗 between country 𝑖 and country 𝐹, 

capturing the potential for country 𝑖’s productivity growth from catching-up. The rationale for Eq. 

(3) is that, for a non-frontier country 𝑖 the potential for catching-up to the leader (𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1) is 

positive and larger the further away country 𝑖 lies from the frontier in sector 𝑗, rising the potential 

for productivity gains. In the case of the frontier instead, the sole source of productivity growth 

resides in domestic innovation, such that the second term in the right-hand side of Eq. (3) is null. 
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Following the literature on endogenous growth we recognise the role variables such as 

R&D, international trade and ICTs have in determining productivity growth. At the same time, 

following the convergence literature, we assume these variables can affect TFP growth through both 

domestic innovation and technology transfer. In addition to these traditional determinants of TFP 

growth, here we augment the model with variables measuring the adoption of I4.0 technologies. 

Our final econometric specification becomes: 

∆𝑙𝑛𝐴𝑖𝑗𝑡 = 𝛼1∆𝑙𝑛𝐴𝐹𝑗𝑡 + 𝛼2𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 + 𝛼3𝐼40𝑖𝑗𝑡−1 + 𝛼4𝐼40𝑖𝑗𝑡−1 × 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 

+𝛼5𝑋𝑖𝑗𝑡−1 + 𝛼6𝑋𝑖𝑗𝑡−1 × 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 + 𝜂𝑖𝑗 + 𝜏𝑡 + 𝜀𝑖𝑗𝑡 
(4) 

where ∆𝑙𝑛𝐴𝑖𝑗𝑡, ∆𝑙𝑛𝐴𝐹𝑗𝑡 and 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 are defined as above, 𝐼40𝑖𝑗𝑡−1 is our main explanatory 

variable capturing the stock of investments in the three I4.0 technologies (i.e., AIRs, AM and IIoT) 

at the country-sector level and 𝑋𝑖𝑗𝑡−1 is a vector of control variables. A positive value for 𝛼2 

implies that technology transfer is relevant for technological laggards, thus translating in 

productivity catch-up. If I4.0 technology adoption spurs productivity gains, 𝛼3 should be positive; 

at the same time, if it brings greater TFP growth for countries closer to (farther away from) the 

frontier 𝛼4 should be negative (positive). 

As described in Castellani et al. (2022), the 4IR technologies investigated here show a 

distinct pattern of diffusion across Europe. Following the discussion in Section 2, we expect 

positive TFP gains from I4.0 technologies adoption (i.e., a positive 𝛼3), while it is likely that their 

effect will be very limited for technological laggard. Hence, we expect a negative 𝛼4. 

Eq. (4) includes unobserved heterogeneity arising from country-industry characteristics not 

captured by our explanatory variables, affecting rates of TFP growth, and possibly correlated with 

our controls. For instance, there may be some specific characteristics related to the production 

technology in specific countries and sectors that might push TFP to grow faster in exactly those 

country-sector pairs showing higher intensities in investments in I4.0 technologies, R&D or trade 

patterns. For this reason, our identification strategy is based on the within-groups estimator, i.e. we 
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include country-sector fixed effects (𝜂𝑖𝑗, hereafter FE). We further include time FE (𝜏𝑡) to capture 

the potential component of technical change, evolving over time, which is common to all countries 

and sectors, as well as common macroeconomic trends and shocks. Since heteroskedasticity is 

pervasive in our industry-level data, and hypotheses tests on our sectoral variables indicates that 

variances are heterogeneous across country-sector groups, we estimate all specifications of Eq. (4) 

by Weighted Least Squares (WLS) using value added shares in total economy as weights. In 

Section 5.3, we discuss the robustness of our results to potential endogeneity concerns by providing 

several econometric checks, and we test the robustness of our main results to a range of alternative 

specifications. 

 

4. Data 

4.1. TFP growth and levels 

To compute our dependent variable, TFP growth rate, we use sectoral data on gross output, value 

added, labour, total capital stock and intermediate inputs for European countries, the US and Japan 

from the 2021 release of EU KLEMS database (February 2022 revision). We complement EU 

KLEMS data with comparable information from OECD STAN data set. 

We adopt the superlative index approach first introduced by Caves et al. (1982). The 

approach assumes that the underlying production function is translog and is widely used in cross-

country analysis at various levels of aggregation (Cameron et al., 2005; Griffith et al., 2004; Griffith 

et al., 2009; Mason et al., 2020; Pompei and Venturini, 2022; Venturini, 2015). Following 

Jorgenson et al. (2005), we compute TFP growth rates as: 

∆𝑙𝑛𝐴𝑖𝑗𝑡 = ∆𝑙𝑛𝑌𝑖𝑗𝑡 − 𝑣̆𝑖𝑗𝑡
𝑋 ∆𝑙𝑛𝑋𝑖𝑗𝑡 − 𝑣̆𝑖𝑗𝑡

𝐾 ∆𝑙𝑛𝐾𝑖𝑗𝑡 − 𝑣̆𝑖𝑗𝑡
𝐿 ∆𝑙𝑛𝐿𝑖𝑗𝑡 (5) 

where 𝑣̆𝑖𝑙𝑡
𝑋 , 𝑣̆𝑖𝑙𝑡

𝐾  and 𝑣̆𝑖𝑙𝑡
𝐿   represent the share of nominal intermediate inputs, the share of capital 

compensation and the share of labour compensation in gross output, respectively. Terms 𝑣̆𝑖𝑗𝑡 
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represent the ‘divisia index’ and are computed as 𝑣̆𝑖𝑗𝑡 = 0.5(𝑣𝑖𝑗𝑡 + 𝑣𝑖𝑗𝑡−1). Assuming constant 

returns to scale implies that 𝑣̆𝑖𝑗𝑡
𝑋 + 𝑣̆𝑖𝑗𝑡

𝐾 + 𝑣̆𝑖𝑗𝑡
𝐿 = 1.  

We measure TFP levels using the same approach, evaluating TFP relative to a common 

reference point (i.e., the geometric mean of the TFP levels of all other countries): 

ln𝐴𝑖𝑗𝑡 = 𝑙𝑛 (
𝑌𝑖

𝑌̅
)
𝑗𝑡
− 𝑣̃𝑖𝑗𝑡

𝑋 𝑙𝑛 (
𝑋𝑖

𝑋̅
)
𝑗𝑡
− 𝑣̃𝑖𝑗𝑡

𝐾 𝑙𝑛 (
𝐾𝑖

𝐾̅
)
𝑗𝑡
− 𝑣̃𝑖𝑗𝑡

𝐿 𝑙𝑛 (
𝐿𝑖

𝐿̅
)
𝑗𝑡

 (6) 

where 𝑌̅, 𝑋̅, 𝐾̅ and 𝐿̅ denote the country-level geometric means of gross output, intermediate inputs, 

aggregate capital stock and labour, and 𝑣̃𝑖𝑗𝑡 = 0.5(𝑣𝑖𝑗𝑡 + 𝑣̅𝑖𝑗𝑡) are the averages of nominal input 

cost shares and their geometric means. In each time 𝑡 and sector 𝑗, we take the country with the 

highest TFP level as the frontier, so that 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡 is computed as the difference between 𝑙𝑛𝐴𝐹𝑗𝑡  and 

𝑙𝑛𝐴𝑖𝑗𝑡. 

In order to better specify our econometric model using the DTF framework, although we 

look at European countries, we also use data on the US and Japan to compute TFP levels and 

growth rates to expand the range of more developed economies possibly featuring as the frontier. 

We also deal with measurement issues related to differences across countries in hours 

worked and skills levels by computing alternative TFP measures, adjusted for differences in hours 

worked and skills levels. Appendix A reports details on how we compute these alternative TFP 

measures. 

 

4.2. Measuring I4.0 technology adoption 

To compute our main variables of interest, the adoption of the three I4.0 technologies considered in 

the study (i.e., AIRs, AM and IIoT), we use country-level highly disaggregated trade data from 

Eurostat’s Comext database, providing fine-grained 8-digit product codes related to such 

technologies. Comext dataset includes virtually complete information on trade transactions, since 

intra- and extra-EU trade data are electronically collected through customs when goods transit 

EU28’s borders, granting full coverage. 
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Product codes reported in Comext data follow the Combined Nomenclature (CN), a more 

detailed breakdown of the Harmonised System. We followed a structured approach to identify 

product codes in the CN specifically capturing trade of I4.0 technologies. Details on the 

methodology followed for the identification and the validation of I4.0-related product codes are 

reported in Appendix B. We checked for changes occurred in the CN classification between 2009 

and 2019 in each year, so to track all potential changes related to the selected codes. Whenever the 

CN classification changed over time, we followed Van Beveren et al. (2012), creating ‘synthetic’ 

codes grouping together the relevant CN codes. The procedure grants full consistency in the 

correspondence between trade data over time and has been increasingly used in recent works 

looking at highly disaggregated trade dynamics (e.g., Castellani and Fassio, 2019; Bontadini and 

Vona, 2023). 

We then computed our measures proxying the adoption of I4.0 as the sum of the import 

values for all product codes relating to AIRs AM and IIoT, for each country and year of 

observation. This measure is inspired by Caselli and Coleman (2001) and similar measures of 

technology adoption have been used in some recent studies (Acemoglu et al., 2020; Acemoglu and 

Restrepo, 2022; Bonfiglioli et al., 2020; Domini et al., 2021; 2022;). However, these works look at 

more aggregated (6-digit) product categories, capturing a broader definition of automation 

technologies and reaching outside the boundaries of the 4IR. 

Since sectoral import data at a high level of detail (allowing an accurate identification of 

I4.0-related products) is not available, we follow the approach used in previous studies (Acemoglu 

and Restrepo, 2020; Felice et al., 2022; Venturini, 2022), building our sectoral I4.0 measure as 

import-weighted shares of technology adoption.3 We exploit: i) the information on each country’s 

 

3 This measure is similar to the robot exposure index proposed by Acemoglu and Restrepo (2020) to measure robot 

adoption at the local labour market level, used in several empirical studies, and to the import-weighted measures of I4.0 

technology production proposed by Felice et al. (2022) and Venturini (2022). 
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share of imported I4.0-related goods over total imports from I4.0-producing sectors;4 ii) cross-

country and cross-sector data on imported intermediate inputs from WIOD data set (Timmer et al., 

2015). In so doing, we assume that each industry adopts I4.0 technologies in the same proportion as 

it uses I4.0-related inputs from the sector producing each specific technology (i.e., 28 for AIRs and 

AM, 26 for IIoT): 

𝑀𝑖,𝑗,𝑡
𝐼40 = (𝑀𝑖,𝑡

𝐴𝐼𝑅 × 𝜑𝑖
𝐴𝐼𝑅 ×

∑ 𝑖𝑛𝑡𝑖,𝑗
𝑐,28

𝑐

∑ ∑ 𝑖𝑛𝑡𝑖,𝑗
𝑐,𝑠

𝑠𝑐

) + (𝑀𝑖,𝑡
𝐴𝑀 × 𝜑𝑖

𝐴𝑀 ×
∑ 𝑖𝑛𝑡𝑖,𝑗

𝑐,28
𝑐

∑ ∑ 𝑖𝑛𝑡𝑖,𝑗
𝑐,𝑠

𝑠𝑐

) 

+(𝑀𝑖,𝑡
𝐼𝐼𝑜𝑇 × 𝜑𝑖

𝐼𝐼𝑜𝑇 ×
∑ 𝑖𝑛𝑡𝑖,𝑗

𝑐,26
𝑐

∑ ∑ 𝑖𝑛𝑡𝑖,𝑗
𝑐,𝑠

𝑠𝑐

) 

(7) 

where 𝑖 and 𝑗 denote the country and the sector buying intermediates (i.e., the destination); 𝑐 and 𝑠 

denote the country and the sector selling intermediates (i.e., the source); 𝜑𝑖
𝐴𝐼𝑅 = 𝑀𝑖

𝐴𝐼𝑅 𝑀𝑖
28⁄  

denotes, in each country 𝑖, the share of AIR imports in all imports of goods produced by sector 28; 

𝜑𝑖
𝐴𝑀 = 𝑀𝑖

𝐴𝑀 𝑀𝑖
28⁄  denotes the same share for AM; 𝜑𝑖

𝐼𝐼𝑜𝑇 = 𝑀𝑖
𝐼𝐼𝑜𝑇 𝑀𝑖

26⁄  denotes the share of IIoT 

imports in all imports of goods produced by sector 26. The last term in each parenthesis of Eq. (7) 

(e.g., ∑ 𝑖𝑛𝑡𝑖,𝑗
𝑐,28

𝑐 ∑ ∑ 𝑖𝑛𝑡𝑖,𝑗
𝑐,𝑠

𝑠𝑐⁄ ) represents, for each country 𝑖 and sector 𝑗, the share of intermediates 

produced by the I4.0-producing sector and imported from any other country in all imported 

intermediates. 

Formally, for each country 𝑖, sector 𝑗 and year 𝑡, I4.0 imports (𝑀𝑖𝑗𝑡
𝐼40) are equal to the sum of 

imports of each I4.0 technology in each country, weighted by the ratio of I4.0-related intermediate 

goods bought by sector 𝑗 of country 𝑖 from the sector producing each specific technology (i.e., 28 

for AIRs and AM, 26 for IIoT) in all other countries (𝑐 ≠ 𝑖) over total intermediate goods used by 

sector 𝑗 in country 𝑖 (𝑖𝑛𝑡𝑖𝑗). We take predetermined weights (i.e., in 2008) in order to avoid 

potential reverse causality bias. The idea behind this measure is that true sectoral I4.0 technology 

 

4 This information is computed by matching the 8-digit CN product codes for I4.0-related capital and intermediate 

goods with the corresponding 8-digit codes in Prodcom classification. In the Prodcom list, the first 4 digits of each 

product code coincide with the 4-digit NACE sector producing the good (Eurostat, 2021). 
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adoption (unfortunately, not available for all technologies, countries and years) should be positively 

correlated with our measure, i.e. the more a sector buys I4.0-related inputs from I4.0 producing 

sectors, the larger its level of adoption. 

We then compute the stock of sectoral I4.0 imports (𝐼40𝑖𝑗𝑡) following the perpetual 

inventory method as 𝐼40𝑖𝑗𝑡 = 𝑀𝑖𝑗𝑡
𝐼40 + (1 − 𝛿)𝐼40𝑖𝑗𝑡−1, assuming a depreciation rate of 15%. We 

also test specifications of our model in which we delve into the specific relationship, and related 

magnitude, of each single I4.0 technology. The related measures for AIRs, AM and IIoT are built 

following the same methodology.5 All these measures are included in our models as shares in value 

added. 

 

4.3. Other independent variables  

In addition to country-sector and year fixed-effects, we include controls for R&D and ICT capital 

stocks as shares of value added. To avoid that our I4.0 adoption variables pick up a general effect 

from imported goods, we also control for the share of imports in value added. All these variables 

vary over countries, sectors, and years. We sourced this information from EU KLEMS database, 

OECD STAN, ANBERD and BTDIxE data sets. When building all our variables, we adjusted 

current values using specific sectoral deflators from OECD STAN and converting all data in USD.6 

Our sample consists of 14 European countries7 and 13 manufacturing industries8 over the 

2009–2019 period. Table 1 below presents summary statistics of all variables, while Table C1 in 

Appendix C reports a detailed description of all variables and a summary description.  

 

5 Data on I4.0 adoption measures (i.e., flows and stocks, aggregate and for each technology) are available upon request. 
6 We do not use sectoral PPPs, which would enable a more precise comparison across countries and sectors, since these 

are hardly available for all countries, sectors and years in our analysis. However, this is a lesser concern for our work as 

by using the within-groups estimator we should be able to filter out cross-country and cross-sector differences in prices. 
7 Country list: Austria (AUT), Belgium (BEL), Czech Republic (CZE), Germany (DEU), Denmark (DNK), Spain 

(ESP), Finland (FIN), France (FRA), United Kingdom (GBR), Italy (ITA), Netherland (NLD), Portugal (PRT), Slovak 

Republic (SVK), Sweden (SWE). 
8 Manufacturing industries list (NACE rev.2): 1 - Food products, beverages and tobacco (10-12); 2 - Textiles, wearing 

apparel, leather and related products (13-15); 3 - Wood and paper products; printing and reproduction of recorded 

media (16-18); 4 - Coke and refined petroleum products (19); 5 - Chemicals and chemical products (20); 6 - Basic 
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-------------------------- 

Table 1 around here 

-------------------------- 

 

5. Results 

5.1. Main results 

Before presenting our main results, we test the presence of unit roots in the data used for our 

analysis by employing Im, Pesaran and Shin (2003) test. Table 2 shows that all the variables 

included in our models are stationary. We further test the long-run cointegrating relationship among 

the variables included in our model by using the panel cointegration test proposed by Pedroni 

(2004). The results presented in Table 3 confirm a long-run cointegrating relationship among model 

variables testing residuals of both Phillips–Perron (PP) and Augmented Dickey–Fuller (ADF) 

regressions, all significant at the 1% level. 

-------------------------- 

Tables 2 and 3 around here 

-------------------------- 

Table 4 shows our estimates of the model described by Eq. (4). Our starting point is to estimate a 

benchmark model including only determinants of TFP growth extensively studied in the literature, 

i.e. R&D, imports and ICT intensity. 

We begin in column (1) by estimating the long-run relationship between TFP growth rates 

and R&D, import and ICT variables between 1995 and 2019. This baseline model provides us with 

 

pharmaceutical products and pharmaceutical preparations (21); 7 - Rubber and plastics products, and other non-metallic 

mineral products (22-23); 8 - Basic metals and fabricated metal products, except machinery and equipment (24-25); 9 - 

Computer, electronic and optical products (26); 10 - Electrical equipment (27); 11 - Machinery and equipment n.e.c. 

(28); 12 - Transport equipment (29-30); 13 - Other manufacturing; repair and installation of machinery and equipment 

(31-33). 
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a robust starting point for the analysis, increasing comparability with prior studies. TFP growth of 

the frontier (∆𝑙𝑛𝐴𝐹) and the distance-to-frontier (𝑙𝑛𝐷𝑇𝐹) terms are positive and statistically 

significant at the 1% level. This indicates that, within each manufacturing industry, European 

countries benefitted from both technological progress at the frontier and from productivity gains 

associated with catching-up. This result is in line with prior sector-level evidence for developed 

economies spanning between the 70s and early 2000s (Griffith et al., 2004; Cameron et al., 2005; 

Mc Morrow et al., 2008; Minniti and Venturini, 2017; Mason et al., 2020), and persistent up to 

before the Covid-19 pandemic, as shown by our results. 

Along with other studies (Griffith et al., 2004; Madsen et al., 2010), we find a positive and 

statistically significant (at the 1% level) relationship between R&D investments and TFP growth 

rates, but these gains are concentrated in countries closer to the frontier (i.e., the interaction with the 

𝑙𝑛𝐷𝑇𝐹 term is also statistically significant and negative). Conversely, import intensity seems to 

feature a negative direct relationship with TFP growth, but at the same time facilitates catching-up 

(both coefficients are significant at the 5% level), in line with prior works (Griffith et al., 2004). 

Finally, and similarly to other studies (Bakhshi and Larsen, 2005; Martínez et al., 2010; Venturini, 

2015; Bergeaud et al., 2016), our estimates highlight that ICT investments had a positive effect on 

TFP growth rates (significant at the 5% level), yet mostly concentrated in more developed European 

economies. 

In columns (2) and (3) we then split the sample period, looking at the period 1995–2008 in 

column (2) and at the period 2009–2019 in column (3). As discussed by Castellani et al. (2022), the 

year 2009 represents a meaningful starting point for our investigation since: i) only after the 2008 

global financial crisis these technologies started receiving increasing attention from European 

policymakers and the worldwide demand for advanced mechanical and automation equipment 

returned to normal (Kagermann et al., 2013; De Backer et al., 2018); ii) several core patents 

protecting AM technologies, such as fused deposition modelling and selective laser sintering, 
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expired between 2009 and 2014 (Felice et al., 2022), leading to a proliferation of spill-over 

inventions and machinery producers. 

From column (2), we note that imports had a no significant effect between 1995 and 2008. 

Similarly, the effect of ICT investments is estimated less precisely and turns out not significant, 

pointing at similar results as found in some studies looking at manufacturing industries over the 

same period (Mc Morrow et al., 2008; Edquist and Henrekson, 2017). Conversely, looking at the 

2009–2019 period in column (3), ICT investments appear to have a positive and significant effect 

on TFP growth rates across manufacturing industries, again concentrated in more developed 

countries. This finding provides updated evidence of the role of ICTs both as a driver of 

productivity growth and as a facilitator of catching-up for laggard countries, highlighting that the 

downward trend observed in previous studies (Bergeaud et al., 2016; Chung, 2018) has partially 

reversed, especially in the more technologically advanced European countries.9 

Finally, we introduce our measure of sectoral I4.0 technology adoption alone (column (4)) 

and allowing it to have an effect on the productivity growth of lagging countries (column (5)). In 

column (4), the direct effect of adopting I4.0 technologies is estimated with little precision, 

resulting not statistically different from zero. However, when accounting for the role of I4.0 

technologies as facilitators of catching-up (𝐼40 × 𝑙𝑛𝐷𝑇𝐹) in column (5), the I4.0 adoption variable 

increases in magnitude and become statistically significant at the 1% level, while the interaction 

term enters our specification with a negative and statistically significant (1% level) coefficient. This 

result suggests that I4.0 technologies bring productivity gains for economies closer to the frontier 

while countries lagging behind the frontier do not enjoy any additional I4.0-related technological 

catch-up. 

In columns from (6) to (8) we explore additional specifications where TFP measures reflect 

cross-country differences in the skill composition of the workforce (column (6)), in hours worked 

 

9 See, for instance, Cardona et al. (2013) and Schweikl and Obermaier (2020) for recent surveys of the literature on ICT 

and productivity. 
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and skill composition (column (7)), and account for an alternative definition of the technology 

frontier10 (column (8)). Our main results are robust and qualitatively unchanged cross these 

specifications, confirming a positive effect of adopting I4.0 technologies on productivity growth. 

Notably, the specifications correcting TFP measurement for hours worked and skills also highlight 

that accounting for these factors reduces the importance of spill-overs from the leader’s growth (i.e., 

∆𝑙𝑛𝐴𝐹 's coefficient reduces in magnitude and is no longer significant), while it also uncovers a 

consistently bigger role of R&D investments (in column (6), 𝑅𝐷’s coefficient becomes three times 

bigger than in column (5), while its interaction with 𝑙𝑛𝐷𝑇𝐹 remains virtually unchanged) and a 

more uncertain role of ICTs (𝐼𝐶𝑇’s coefficients are less precisely estimated in column (7)). 

-------------------------- 

Table 4 around here 

-------------------------- 

In Table 5, we test the sensitivity of our main results when using three different and disaggregated 

measures for each I4.0 technology, i.e. we estimate Eq. (4) including disaggregated measures for 

AIRs, AM and IIoT. In column (1) we only consider the direct relationship between AIR adoption 

on TFP growth, which results positive and statistically significant at the 10% level. When we also 

consider the (𝐴𝐼𝑅 × 𝑙𝑛𝐷𝑇𝐹) interaction term in column (2), we observe a positive direct effect of 

AIR investments, which increases in magnitude, and a negative sign for the interaction term (both 

statistically significant at the 10% level). This result suggests similar implications as for the I4.0 

variable: while AIRs spur TFP gains across manufacturing industries, these gains are larger for 

 

10 The model described in Section 3 assumes that it is not the identity of the technology frontier that is relevant in Eq. 

(4), but the distance from the frontier itself, capturing the potential for technological catch-up. As the model allows for 

any country to switch endogenously from being a frontier to a non-frontier country and vice versa, only requiring that 

the 𝑙𝑛𝐷𝑇𝐹 term correlates with the potential for technology transfer and productivity gains from catching-up. Thus, in 

column (8) we test an alternative specification of our model in which we measure 𝑙𝑛𝐷𝑇𝐹 using the average TFP level 

for the two countries featuring the highest value as the frontier, and by computing ∆𝑙𝑛𝐴𝐹 as the average growth rate 

between these two countries. 
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European economies closer to the frontier as AIRs do not favour additional catching-up 

mechanisms. 

Columns (3) and (4), (5) and (6) replicate the same specifications considering the adoption 

of AM and IIoT, respectively. While our results for both the main and the moderated relationships 

are qualitatively unchanged across specifications reported in Table 5 as compared to the main 

results of Table 4, the estimates presented in columns (2), (4) and (6) of Table 5 highlight that each 

specific I4.0 technology exerts a different (in magnitude) direct effect on TFP growth and catching-

up from the frontier. 

-------------------------- 

Table 5 around here 

-------------------------- 

 

5.2. Quantitative importance of the estimated effects 

In this Section, we focus on the interpretation of the estimated coefficients – which represent rates 

of return (see, for instance, Griffith et al., 2004) – and on their quantitative importance. 

-------------------------- 

Figure 1 around here 

-------------------------- 

The average marginal effect of I4.0 adoption on TFP growth rates across all countries and sectors in 

our sample computed as 𝛼3 + 𝛼4 × 𝑙𝑛𝐷𝑇𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅ is positive (i.e., 0.329–0.313×0.899=0.047), based on 

estimates from column (7) of Table 4, meaning that a 10% increase in I4.0 adoption implies a 

positive average marginal effects across all countries and manufacturing industries in our sample of 

+0.047 percentage points (pp). To get a more in-depth view, Figure 1 plots the marginal effects of 

adoption, considering heterogeneity across countries. The box-plot graph shows, for each country, 

the mean, the median, the interquartile range and the upper and lower adjacent values (excluding 

outliers). 
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Between 2009 and 2019, imports of I4.0 technologies had a positive effect on TFP growth in 

many sectors and countries in our sample. In 5 out of 14 countries (i.e., Germany, the UK, France, 

Italy and Spain), the adoption of I4.0 technologies has boosted productivity growth in virtually all 

manufacturing industries. In the Netherlands, about 75% of the sector-year distribution experienced 

positive gains, together with just more than 50% of the distribution for Austria, Belgium and 

Sweden. Conversely, in Finland and Czech Republic, more than 50% of the sector-year distribution 

experienced a negative effect on TFP growth rates. Denmark, Portugal and Slovakia were the 

European countries less able to harness benefits from the I4.0 adoption, with about 75% of sector-

year observations showing a negative effect on TFP growth.11 

In quantitative terms, more developed countries like Germany, the UK, France and Italy 

experienced a positive average (black dots) marginal effects across all manufacturing industries 

ranging between +0.1 pp and +0.18 pp associated with a 10% increase in I4.0 adoption. Conversely, 

Portugal and Slovakia suffered a negative average marginal effect, mild in the case of Portugal (i.e., 

about –0.024 pp), more severe for Slovakia (i.e., about –0.062 pp). 

Figure 2 explores differences in the average marginal effect of adopting each I4.0 

technology singularly (i.e., AIRs, AM and IIoT) on TFP growth, based on estimates from columns 

(2), (4) and (6) of Table 5. Decomposing the aggregate measure helps identifying which technology 

of the 4IR has contributed more, on average, to productivity growth between 2009 and 2019. Our 

estimates highlight that a 10% increase in the adoption of AIRs resulted in about +0.194 pp rise in 

TFP growth (black dot), while the same increase in AM adoption spurred a mean growth of about 

+0.308 pp. The lower contribution we estimate is associated with IIoT adoption (i.e., +0.062 pp, on 

average). In the case of AIRs and IIoT, the estimated marginal effects are positive for the large 

majority of the country-sector distribution (i.e., more than 75%): productivity gains from the former 

 

11 While such result may be related to the yet mentioned lack of necessary conditions (e.g., a certain level of absorptive 

capacity) in the case of Slovakia and, to a certain extent, Portugal, the findings for Denmark may relate to the sectoral 

composition of the country, with a small and decreasing share of manufacturing as compared to services (similarly to 

other Nordic countries in our sample, i.e. Sweden and Finland). 
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spans over a larger positive range (i.e., up to about +0.7), while those associated with the latter are 

much lower (i.e., only up to about +0.22 pp). Most strikingly, our results highlight that AM 

adoption boosted TFP growth across European manufacturing industries the most amongst I4.0 

technologies investigated: even the bottom percentiles of the distribution experienced moderate 

positive marginal effects and TFP gains above the 25th percentile of the distribution range between 

+0.23 and +0.55 pp. 

Compared to previous studies, our results on AIR and IIoT adoption are on average more 

conservative, but in line with evidence from Graetz and Michaels (2018) and Edquist et al. (2019). 

To the best of our knowledge, so far there is no evidence on the relationship between AM adoption 

and productivity measures and this work represents the first attempt of quantifying AM contribution 

to TFP growth. 

-------------------------- 

Figure 2 around here 

-------------------------- 

In Figure 3, we further delve into the heterogeneity of effects associated with each different I4.0 

technology by plotting marginal effects for the European countries considered here. In the case of 

AIRs and IIoT, most countries enjoyed net TFP gains from their adoption above the 25th percentile 

of the distribution. Only Portugal and Slovakia present a consistent portion of their sector-year 

distribution (i.e., about 50% or more) experiencing negative marginal effects of TFP growth. 

However, TFP gains and losses from IIoT adoption spans over a narrower range compared to that 

resulting from AIR adoption. Furthermore, almost all countries and sectors experience positive 

marginal effects from AM adoption (except the bottom percentiles of the Slovak distribution), 

reflecting the pattern seen in Figure 2. 

 To conclude, findings presented in Figure 3 suggest that AM adoption spurs a more 

homogeneous overall positive effect on productivity growth across countries and manufacturing 

sectors, i.e. accounting for both the direct adoption effect and indirect effect by facilitating (or 
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hampering) catching-up mechanisms. Moreover, the effect of AIRs and IIoT is positive for most (if 

not all) sectors in European countries closer to the technology frontier and negative in many 

industries in laggard countries. 

-------------------------- 

Figure 3 around here 

-------------------------- 

 

5.3. Robustness checks 

Endogeneity: The first concern might relate with the effect of 4IR technologies on TFP growth 

rates not being properly estimated by our main econometric strategy. Specifically, it could be 

overestimated because firms operating within sectors in our sample might import, invest in, and 

adopt more I4.0 technologies in periods of faster productivity growth. Since our specifications in 

Tables 4 and 5 highlight a strong correlation between our measures proxying the I4.0 adoption and 

TFP growth, we need to be cautious in interpreting our results as causal, as we cannot rule out 

reverse causality. To address this issue, we employ the (System-)GMM estimator (Blundell and 

Bond, 1998) considering all our regressors as endogenous, and instrumenting them with their 

appropriate lags (i.e., lags one and two).12 Since it assumes that current shocks in the error term do 

not affect lagged values of the regressors and that lagged values of the regressors do not directly 

affect current values of the dependent variable, the GMM estimator is particularly efficient to deal 

with reverse causality. Although we acknowledge that using external instruments would be the ideal 

option to deal with endogeneity, we also recognise that it is difficult to find appropriate exogenous 

instruments for the adoption of both I4.0 technologies overall and for each specific technology, 

varying across countries, sectors and years. For this reason, the traditional instrumental variables 

approach may not efficiently solve our potential endogeneity issues. 

 

12 We followed Roodman (2009) guidelines in the choice of the number of instruments. 
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Some studies (e.g., Bogliacino et al., 2012) highlight that GMM estimator perform poorly 

when the panel is characterised by a low number of units (like the 176 country-sector units in our 

study), as additional check we employ Bruno’s (2005) Least Squares Dummy Variable Corrected 

(LSDVC) estimator, which is initialised by a GMM estimator and then recursively corrects the bias 

of the FE estimator. We confirm statistical significance by computing bootstrapped standard errors 

(50 iterations). Finally, we further test the consistency of the GMM estimator by computing the 

Feasible Generalized Least Square (FGLS) estimator (Parks, 1967). Beyond heteroscedasticity 

across panels and panel-specific serial correlation, the FGLS estimator also control for cross-

sectional dependence, which may lead to more efficient estimates (Chen et al., 2010). Table C2 in 

Appendix C shows estimates replicating the main specifications from Tables 4 and 5, highlighting 

qualitatively similar and statistically robust results, thus indicating our main estimates not to be 

affected by reverse causality issues. 

Alternative I40 variables: Our main explanatory variables capturing overall I4.0 adoption 

and the adoption AIRs, AM and IIoT at the sector level are built as exposure measures, by 

accounting for the existing linkages between aggregate I4.0 imports and sectoral trade patterns. 

Despite these variables should proxy true sectoral imports of 4IR technologies, not otherwise 

available, their construction is based on the assumption that the I4.0 adoption of each industry is 

proportional to its use of I4.0-related inputs sourced from I4.0 producing sectors from every other 

country. To provide further robustness to our main results, we relax this assumption and use 

observed I4.0 imports at the country level as a measure of adoption. We estimate specifications of 

the model described in Eq. (4) in which our adoption variables only exploit variation across 

countries and time. This implies that, differently from our main results, these estimates should be 

interpreted only as the average relationship between I4.0 technology adoption and TFP growth 

across countries. Table C3 in Appendix C presents estimates replicating specifications in Tables 4 

and 5.  
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Additionally, we check the sensitivity of the main results by estimating Eq. (4) including 

sectoral measures of I4.0 technology adoption computed using sectoral depreciation rates specific 

for each type of capital, as provided by EU KLEMS (results are reported in Table C4 in Appendix 

C). Specifically, we used the depreciation rate for machinery and equipment “OMach” for 

computing our AIR and AM variables, and alternatively (a) the average of sectoral depreciation 

rates for information technologies “IT” (0.315), computing technologies “CT” (0.115) and software 

and databases “Soft_DB” (0.315), which results in a depreciation rate of 0.248, and; (b) a fixed 

depreciation rate of 0.315, for computing our IIoT variable. Results are qualitatively unchanged and 

statistically robust, confirming our main findings. 

Alternative TFP growth measure: In our econometric analysis we account for two main 

factors which might lead to deviations from real patterns when measuring TFP growth (i.e., 

differences in hours worked and skill composition). Likewise, we acknowledge that there are other 

potential sources of measurement error which might affect the measurement of TFP growth rates. In 

order to provide robustness the adopted methodology to measure TFP growth (Caves et al., 1982) 

and to our main results by using an alternative approach, we use data on TFP growth rates provided 

by EU KLEMS13 to measure our dependent variable ∆𝑙𝑛𝐴𝑖𝑗𝑡 and one of the explanatories (i.e., TFP 

growth at the frontier, ∆𝑙𝑛𝐴𝐹𝑗𝑡). Table C5 in Appendix C reports estimates comparable to that in 

Tables 4 and 5: our main results are robust to the use of this alternative measure. Nonetheless, we 

note that using EU KLEMS’ TFP growth measure as dependent variable – which better accounts 

changes in for skills, hours worked and capital inputs – results in much larger coefficients for the 

distance-to-frontier (𝑙𝑛𝐷𝑇𝐹) term, for the ICT variable and for their interaction term (also, more 

stable and statistically significant for the ICT and for the (𝐼𝐶𝑇 × 𝑙𝑛𝐷𝑇𝐹) variables). Conversely, the 

large contribution to TFP growth from R&D investments observed in our main estimates here 

 

13 Computed following the growth accounting approach as described Stehrer et al. (2019). 
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appears to be limited. This potentially suggests that the effect of ICT investments and catching-up is 

underestimated in our baseline results, while that of R&D might be overestimated. 

Unweighted/differently weighted regressions: Our main results are estimated through WLS-

FE (i.e., using the within-groups estimator). We use industry-level shares of value added in total 

economy to account for differences in size across manufacturing industries and in their relative 

weight on total economy when compared across countries. Thus, our model implies that I4.0 

adoption might have a relatively more important role in some sectors, depending on their relative 

importance in the whole economy. To further test the robustness of our main results, in Table C6 in 

Appendix C we report estimates from unweighted regressions, estimated through OLS-FE 

(comparable to those reported in Tables 4 and 5). In so doing, we test the less restrictive assumption 

that all sectors have the same relative weight across countries. 

Additionally, we also test for the sensitivity of our main results by estimating weighted 

regressions using industry-level shares of employment in total economy as weights (Table C7 in 

Appendix C shows results comparable to those reported in Tables 4 and 5). Our main findings are 

robust to these further checks. 

Additional checks: Finally, we checked for the sensitivity of our main results by excluding 

country-sector-year observations presenting extreme values (i.e., outliers) and excluding initial 

years (i.e., 2009 and 2010) in order to eliminate the potential bias associated to the potential 

overshooting of industry-level TFP growth after the 2008 global financial crisis. Results are 

qualitatively unchanged and available upon request. 

 

6. Discussion and conclusions 

Total factor productivity has been stagnating across European economies ever since the second half 

of the 90s and throughout the early 2000s as a result of the inability of European countries to 

harness the benefits of investments R&D, human capital accumulation and the diffusion of ICTs 
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(Mc Morrow et al., 2008). Overall economic convergence has been hampered by institutional 

factors (e.g., weak policy), existing structural rigidities and the economic downturns observed in 

Europe after the 2008 global financial crisis (ECB, 2015; Bergeaud et al., 2016; Eurofound, 2020), 

culminating in 2020 with the Covid-19 pandemic. This evidence signs a clear break with the pattern 

of TFP growth and convergence observed in several empirical works looking at earlier decades, i.e. 

between the 70s and early 90s (Griffith et al., 2004; Cameron et al., 2005). Similarly, recent firm-

level studies reaffirm this pattern by highlighting an ongoing process of divergence between most 

productive and laggard firms (Andrews et al., 2019; Pompei and Venturini, 2022). 

This study investigates to what extent the adoption of I4.0 technologies could contribute to 

end this pattern of sluggish productivity growth. Our results suggest that I4.0 technologies could 

play an important role in the long-run to reverse the observed productivity growth stagnation. 

However, we find that gains related to the rising adoption of embodied 4IR technologies are 

unevenly distributed across Europe, with countries closer to the technology frontier benefitting 

more, while technological laggards seem unable to exploit I4.0-enabled technology transfer. For 

instance, one of the most technologically advanced European economies, Germany, is a leading 

actor in I4.0 (UNIDO, 2018; Martinelli et al., 2021). Conversely, other European countries like 

Portugal and Slovakia still lag behind in the adoption of enabling technologies, in the development 

of 4IR-related competences and in the implementation of dedicated policies (Ciffolilli and Muscio, 

2018; Corradini et al., 2021). Overall, this hampers productivity gains potentially deriving from 

investments in I4.0 and may contribute to widen the productivity gap between more developed and 

laggard countries, ultimately increasing inequality across European countries. 

Furthermore, our analysis sheds light on the heterogeneous productivity effects of different 

technologies, offering estimates based on comparable adoption measures. Our results on AIRs and 

IIoT are in line with evidence from previous studies (Graetz and Michaels, 2018; Edquist et al., 

2019), although we find more conservative estimates of the associated productivity gains. At the 

same time, to the best of our knowledge, our work provides a first quantification of productivity 
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gains deriving from the adoption of AM. Notably, our results suggest such gains to be positive and 

quantitatively important as much as that coming from AIRs. 

Contextualised in our DTF framework, the adoption of AIRs and AM seem to bring larger 

contributions to productivity gains across European manufacturing sectors, while TFP growth 

coming from IIoT adoption is found to be lower. Furthermore, while such gains are more evenly 

distributed across countries in the case of AM (suggesting the technology can facilitate catching-up 

for lagging countries), only most technologically advanced economies (closer to the technology 

frontier) are found to benefit from AIRs and IIoT adoption. Potential reasons behind these results 

might relate with either the level of technological maturity associated with different I4.0 

technologies or with the differences in the associated investment costs, acting as a barrier.14 

Chiacchio et al. (2019) and Martinelli et al. (2021) also discuss how high investment costs and lack 

of sufficient absorptive capacity remain two of the main factors limiting the adoption of these 

technologies, especially for SMEs, while large companies (mostly multinationals) are better suited 

to efficiently adopt 4IR technologies. 

Another barrier to the adoption of 4IR technologies is the lack of precise and unified 

standards (above all, technical) across countries and industries (Martinelli et al., 2021), enabling 

interoperability between different technologies. While leading producers sponsor proprietary 

standards, adopters ask for more open and universal standards like the Reference Architectural 

Model Industrie 4.0 (Schweichhart, 2017) or alternatives emerging under the supervision of 

international bodies like the International Telecommunication Union (ITU) or the ISO. This issue is 

 

14 According to estimates from Acemoglu and Restrepo (2020), the average price of AIR ranges between 50,000 and 

100,000 USD, while the average price for an industrial AM machine is between 200,000 and 250,000 USD according to 

our computations based on data from all major AM producers worldwide and reported by Senvol. Senvol’s data are 

available at http://senvol.com/machine-search/. Concerning IIoT, the total cost of deployment greatly varies depending 

on the sector and on the scale of the project. Using total cost of ownership (TCO) calculator for IoT applications by 

NOKIA, we estimate cost for a medium-sized factory to range between 1.6mln and 0.8mln USD. NOKIA’s IoT TCO 

calculator is available at https://pages.nokia.com/T007K9-Compare-Wireless-Critical-Connectivity-Options. 

http://senvol.com/machine-search/
https://pages.nokia.com/T007K9-Compare-Wireless-Critical-Connectivity-Options
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particularly important for IIoT, given its crucial and infrastructural role within the I4.0 architecture 

(Atzori et al., 2010). 

Finally, this paper also adds to the literature on investment-specific technological change 

(Greenwood et al., 1997, 2000), which recognises the role of capital investments in specific types of 

machinery and equipment as one of the most relevant sources of productivity growth. Since, from 

an empirical standpoint, we model the technological change associated with I4.0 by studying the 

adoption of the new technologies of the 4IR, embodied in capital goods, our work goes along 

several studies looking at the role played by ICT (vs non-ICT) investments in determining 

productivity growth (Bakhshi and Larsen, 2005; Chung, 2018; Martínez et al., 2010; Venturini, 

2015). Just as we found here, these works highlight how investments in technologies like ICTs 

bring productivity effects which are not fully measured via growth accounting due to excess returns 

beyond capital accumulation (Edquist and Henrekson, 2017; Hulten, 2010). Furthermore, this paper 

contributes to the debate on the source of differences in productivity across countries and their 

implications for economic and technological convergence (Bergeaud et al., 2016; Cameron et al., 

2005; Griffith et al., 2004; Madsen et al., 2010; Mason et al., 2020; Minniti and Venturini, 2017). 

 

6.1. Policy implications 

The above discussion leads directly to the debate on whether the bulk of dedicated I4.0 policy 

initiatives put in place by European countries over the last decade has led to significant results in 

boosting the diffusion of such advanced technologies (lately, the 2021-2026 Next Generation EU 

initiative launched in the aftermath of the Covid-19 pandemic). While more traditional top-down, 

science-driven industrial policies may still be relevant, it becomes paramount to boost policy 

incentives fostering innovation and I4.0 adoption across SMEs. This would bring more widespread 

benefits across European economies, given the major role played by these firms: a more integrated 

approach across different technologies must go along with dedicated incentives and approaches for 

individual technologies, which are more exposed to inefficient implementation. 
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At the same time, these initiatives need to be paired with a broader recognition among 

policymakers that integrating economic incentives with local dissemination of competencies and 

specific I4.0 knowledge content. For instance, the creation of industry-university clusters would 

provide the adequate stock of skills to the local workforce, tax credits would boost private R&D 

spending, infrastructural investments (e.g., high-speed broadband connections, 5G) would boost 

technology adoption by providing enabling conditions for more advanced I4.0 systems. All these 

actions eventually promoting knowledge transfer and resulting in faster and more effective 

technology diffusion. Similarly, coordinated national and regional policies across the continent (i.e., 

following a common framework and standards) would create the potential for larger gains, not 

confined to productivity growth alone but also in terms of aggregate economic growth and better 

employment conditions in the decades ahead. 

 

6.2. Limitations and future research 

Our findings should be considered under the light of the caveats that characterise our analysis: as 

trade data for highly disaggregated products are not directly available at the industry level, we can 

only link them to the importing sector by means of input-output tables, i.e. by creating proxies of 

sectoral adoption. This is a limitation of our approach as compared to studies exploiting purely 

sectoral variables (e.g., Du and Lin, 2022; Graetz and Michaels, 2018). Nonetheless, these studies 

focus on a single technology, while our research follows an established approach (e.g., Acemoglu 

and Restrepo, 2020; Felice et al., 2022) and offers the advantage of a cross-country and cross-sector 

perspective on the effects of adopting multiple (embodied) I4.0 technologies on TFP growth. 

Furthermore, we acknowledge that our I4.0 adoption measures are based on import data 

alone. At the same time, more developed European countries also feature as major producers of 

these technologies worldwide (e.g., Germany’s KUKA and EOS producer; see also Castellani et al., 

2022). Since our findings highlight that more technologically advanced countries, like Germany, are 

those benefitting the most from I4.0 adoption, we recognise that our estimates could underestimate 



33 

the real impact of these technologies across I4.0 producing countries. However, following Caselli 

and Coleman (2001), two proxies adoption can be calculated: imports of AMT capital goods, and 

𝑛𝑒𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = (𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑖𝑚𝑝𝑜𝑟𝑡 − 𝑒𝑥𝑝𝑜𝑟𝑡). The latter accounts for two sources of 

capital investments determining adoption of AMTs, that is domestic and foreign production. 

Nevertheless, Castellani et al. (2022) show that the two measures of adoption are highly correlated 

at the country level. Since the second measure is not available for all countries and technologies 

considered, as production data on goods embodying AMTs are in some cases missing or not 

reliable, we rely on the proxy based on imports. 

Since our import-based measure of I4.0 adoption provides robust results which are in line 

with prior findings in the literature, it could be used to delve into several possible avenues for future 

research. Since import data at the fine-grained product level are available for a growing number of 

countries and for long and constantly updated time series, our measure is scalable and can be used 

to analyse larger samples of countries and industries. Furthermore, international transaction-level 

data are available and increasingly accessible in many countries. This can allow an extension of this 

analysis to the firm level, possibly linking adoption of 4IR technologies to firm productivity, 

international competitiveness, offshoring and reshoring or employment dynamics and composition.  

Further research in this area might investigate the role of different contextual conditions in 

explaining why we witness heterogeneous results in the way European countries benefits from I4.0 

adoption. As discussed above, following the wave of I4.0 policy initiatives introduced by European 

countries during latest years, incentives targeted more towards some technologies than others might 

have had a role in explaining the differences documented here. Another interesting direction of 

research should investigate the underlying mechanisms at place, which might either help or hinder 

productivity effects of 4IR technology adoption, such as the degree of capital/labour 

complementarity featured by each of these technologies. 
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Tables and Figures 

Table 1. Summary statistics of the main variables 

  ∆𝑙𝑛𝐴𝑖𝑗𝑡  ∆𝑙𝑛𝐴𝐹𝑗𝑡  𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 𝑅𝐷𝑖𝑗𝑡−1 𝑀𝑖𝑗𝑡−1 𝐼𝐶𝑇𝑖𝑗𝑡−1 𝐼40𝑖𝑗𝑡−1 𝐴𝐼𝑅𝑖𝑗𝑡−1 𝐴𝑀𝑖𝑗𝑡−1 𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1 

Mean 0.0082 0.0165 0.8992 0.0599 4.2768 0.0973 0.2436 0.3438 0.3583 0.2368 

SD 0.0610 0.0844 0.3298 0.0938 24.2155 0.3909 0.2212 0.2394 0.4750 0.2190 

Max 0.8993 0.6955 2.0327 1.8348 981.4395 15.6755 1.4864 2.7346 6.0443 1.4432 

Median 0.0035 0.0064 0.9295 0.0299 2.1856 0.0648 0.1692 0.2667 0.2068 0.1637 

Min -0.4817 -0.1321 0.1303 -0.0043 0.2567 0.0003 0.0007 0.0013 0.0005 0.0007 

Notes: Sample size for all variables is 1,760 observations over the 2009–2019 period. Table C1 in Appendix C reports a full 
description of how variables are defined. ∆𝑙𝑛𝐴𝑖𝑗𝑡, ∆𝑙𝑛𝐴𝐹𝑗𝑡  and 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 variables include controls for differences in hours 

worked and skill composition. We discuss potential multicollinearity concerns in Appendix B. 

 

Table 2. Panel unit root test 

Variables Im, Pesaran and Shin (2003): Integration order I(1) 
  t Standardised t p-value 

∆𝑙𝑛𝐴𝑖𝑗𝑡  -3.8361 -17.2055 0.0000 
∆𝑙𝑛𝐴𝐹𝑗𝑡  -2.2471 -7.8142 0.0000 
𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 -3.4265 -15.5618 0.0000 
𝑅𝐷𝑖𝑗𝑡−1 -2.8077 -10.0887 0.0000 
𝑀𝑖𝑗𝑡−1 -2.5229 -9.1750 0.0000 
𝐼𝐶𝑇𝑖𝑗𝑡−1 -2.3497 -5.9674 0.0000 
𝐼40𝑖𝑗𝑡−1 -2.3239 -5.2674 0.0000 
𝐴𝐼𝑅𝑖𝑗𝑡−1 -2.1187 -2.4660 0.0068 
𝐴𝑀𝑖𝑗𝑡−1 -3.4108 -14.8992 0.0000 
𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1 -3.4433 -14.9749 0.0000 

Notes: AR parameter is assumed to be panel-specific, panel means and time trend are 
included. Critical values for t are: -2.420 (1%), -2.340 (5%), -2.300 (10%). The null 
hypothesis is that all panels have a unit root. The alternative hypothesis is that the fraction 
of panels that are stationary is non-zero. Significance levels: *** p < 0.01, ** p < 0.05, * p < 
0.1. 

 

Table 3. Panel cointegration test 

Pedroni (2004) t p-value 

Common AR parameter 

 PP (𝐼40𝑖𝑗𝑡−1 regressions) -53.3666 0.0000 

 ADF (𝐼40𝑖𝑗𝑡−1 regressions) -45.7697 0.0000 

 PP (𝐴𝐼𝑅𝑖𝑗𝑡−1 regressions) -51.9008 0.0000 

 ADF (𝐴𝐼𝑅𝑖𝑗𝑡−1 regressions) -45.2471 0.0000 

 PP (𝐴𝑀𝑖𝑗𝑡−1 regressions) -43.2549 0.0000 

 ADF (𝐴𝑀𝑖𝑗𝑡−1 regressions) -38.5914 0.0000 

 PP (𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1 regressions) -43.0745 0.0000 

 ADF (𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1 regressions) -37.6625 0.0000 
Panel-specific AR parameter 

 PP (𝐼40𝑖𝑗𝑡−1 regressions) -63.5133 0.0000 

 ADF (𝐼40𝑖𝑗𝑡−1 regressions) -52.5356 0.0000 

 PP (𝐴𝐼𝑅𝑖𝑗𝑡−1 regressions) -59.5140 0.0000 

 ADF (𝐴𝐼𝑅𝑖𝑗𝑡−1 regressions) -51.0050 0.0000 

 PP (𝐴𝑀𝑖𝑗𝑡−1 regressions) -51.2505 0.0000 

 ADF (𝐴𝑀𝑖𝑗𝑡−1 regressions) -43.6695 0.0000 

 PP (𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1 regressions) -49.1412 0.0000 

  ADF (𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1 regressions) -43.4648 0.0000 

Notes: The null hypothesis is no cointegration. The 
alternative hypothesis is that the variables are 
cointegrated in all panels. 
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Table 4. WLS-FE estimates: relationship between sectoral I4.0 technology adoption and TFP growth 

 1995-2019  1995-2008  2009-2019 

∆𝑙𝑛𝐴𝑖𝑗𝑡  (1)   (2)   (3) (4) (5) (6) (7) (8) 

            
∆𝑙𝑛𝐴𝐹𝑗𝑡  0.163***  0.199***  0.257*** 0.258*** 0.258*** 0.021 0.029 0.299*** 
 (0.030)  (0.047)  (0.036) (0.036) (0.035) (0.050) (0.057) (0.092) 
𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 0.102***  0.167***  0.243*** 0.244*** 0.238*** 0.207*** 0.223*** 0.311*** 
 (0.012)  (0.026)  (0.036) (0.036) (0.036) (0.029) (0.037) (0.042) 
𝑅𝐷𝑖𝑗𝑡−1 0.177***  0.134***  0.282*** 0.282*** 0.243*** 0.892*** 1.236*** 1.274*** 
 (0.039)  (0.045)  (0.071) (0.071) (0.067) (0.173) (0.250) (0.216) 
(𝑅𝐷 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.248***  -0.175**  -0.965*** -0.970*** -0.849*** -0.874*** -1.150*** -1.228*** 
 (0.070)  (0.075)  (0.237) (0.239) (0.235) (0.195) (0.254) (0.240) 
𝑀𝑖𝑗𝑡−1 -0.001**  0.004  -0.003*** -0.003*** -0.004*** -0.005*** -0.010*** -0.009*** 
 (0.000)  (0.002)  (0.001) (0.001) (0.001) (0.002) (0.003) (0.003) 
(𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 0.002**  -0.004  0.006*** 0.006** 0.007*** 0.005*** 0.008*** 0.009*** 
 (0.001)  (0.002)  (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) 
𝐼𝐶𝑇𝑖𝑗𝑡−1 0.052**  0.045  0.197*** 0.189*** 0.216*** 0.181 0.491** 0.465** 
 (0.025)  (0.037)  (0.061) (0.058) (0.045) (0.129) (0.234) (0.198) 

(𝐼𝐶𝑇
× 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 

-0.083*  -0.046  -0.387*** -0.379*** -0.400*** -0.157 -0.526* -0.568** 

(0.046)  (0.055)  (0.143) (0.137) (0.114) (0.163) (0.279) (0.262) 
𝐼40𝑖𝑗𝑡−1      -0.007 0.292*** 0.206*** 0.329*** 0.311*** 
 

     (0.029) (0.057) (0.059) (0.102) (0.089) 
(𝐼40 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1       -0.544*** -0.247*** -0.313*** -0.323*** 

       (0.096) (0.059) (0.089) (0.087) 

           
TFP controls -  -  - - - s h,s h,s,2c 

Observations 4,048  2,291  1,757 1,757 1,757 1,757 1,760 1,760 

R-squared (within) 0.488  0.577  0.423 0.422 0.439 0.324 0.305 0.339 

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-
group estimator) and are estimated through WLS using value added shares in total economy as weights. TFP controls are h: hours 
worked; s: skill composition; 2c: two-country frontier. The dependent variable is the growth rate of TFP. ∆𝑙𝑛𝐴𝐹𝑗𝑡  is the 

contemporaneous growth rate of TFP for the frontier; 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 is the lagged distance from the technology frontier;  

𝑅𝐷𝑖𝑗𝑡−1 is the lagged sectoral share of R&D stock in value added; 𝑀𝑖𝑗𝑡−1 is lagged sectoral share of imports in value added;  

𝐼𝐶𝑇𝑖𝑗𝑡−1 is lagged sectoral share of ICT stock in value added; 𝐼40𝑖𝑗𝑡−1 is lagged sectoral share of I4.0 technologies import stock in 

value. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 5. WLS-FE estimates: relationship between sectoral AIR, AM and IIoT adoption measures and TFP growth 

∆𝑙𝑛𝐴𝑖𝑗𝑡  (1) (2) (3) (4) (5) (6) 

        
∆𝑙𝑛𝐴𝐹𝑗𝑡  0.032 0.030 0.029 0.034 0.029 0.030 

 (0.057) (0.057) (0.057) (0.057) (0.057) (0.057) 

𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 0.191*** 0.202*** 0.188*** 0.209*** 0.197*** 0.219*** 

 (0.035) (0.037) (0.032) (0.033) (0.035) (0.039) 

𝑅𝐷𝑖𝑗𝑡−1 1.270*** 1.323*** 1.208*** 1.260*** 1.294*** 1.254*** 

 (0.245) (0.254) (0.242) (0.237) (0.248) (0.250) 

(𝑅𝐷 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -1.180*** -1.226*** -1.139*** -1.162*** -1.210*** -1.163*** 

 (0.249) (0.256) (0.245) (0.235) (0.252) (0.254) 

𝑀𝑖𝑗𝑡−1 -0.009*** -0.011*** -0.005* -0.008*** -0.009*** -0.010*** 

 (0.003) (0.004) (0.002) (0.003) (0.003) (0.003) 

(𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 0.007*** 0.010*** 0.004 0.006** 0.008*** 0.008*** 

 (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) 

𝐼𝐶𝑇𝑖𝑗𝑡−1 0.435** 0.538** 0.189 0.357** 0.464** 0.493** 

 (0.215) (0.247) (0.165) (0.171) (0.195) (0.198) 

(𝐼𝐶𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.481* -0.589** -0.250 -0.445* -0.515** -0.530** 

 (0.265) (0.296) (0.213) (0.234) (0.249) (0.247) 

𝐴𝐼𝑅𝑖𝑗𝑡−1 0.267* 0.788*     

 (0.160) (0.424)     
(𝐴𝐼𝑅 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1  -0.661*     

  (0.401)     
𝐴𝑀𝑖𝑗𝑡−1   0.024 0.596***   

   (0.017) (0.193)   
(𝐴𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1    -0.320***   

    (0.109)   
𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1     0.081** 0.248*** 

     (0.034) (0.076) 

(𝐼𝐼𝑜𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1      -0.207*** 

      (0.068) 

       

TFP controls h,s h,s h,s h,s h,s h,s 

Observations 1,760 1,760 1,760 1,760 1,760 1,760 

R-squared (within) 0.291 0.298 0.287 0.309 0.295 0.302 

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group 
estimator) and are estimated through WLS using value added shares in total economy as weights. TFP controls are h: hours 
worked; s: skill composition. The dependent variable is the growth rate of TFP. ∆𝑙𝑛𝐴𝐹𝑗𝑡  is the contemporaneous growth rate of TFP 

for the frontier; 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 is the lagged distance from the technology frontier; 𝑅𝐷𝑖𝑗𝑡−1 is the lagged sectoral share of R&D stock 

in value added; 𝑀𝑖𝑗𝑡−1 is lagged sectoral share of imports in value added; 𝐼𝐶𝑇𝑖𝑗𝑡−1 is lagged sectoral share of ICT stock in value 

added; 𝐴𝐼𝑅𝑖𝑗𝑡−1 is lagged sectoral share of advanced industrial robots import stock in value added; 𝐴𝑀𝑖𝑗𝑡−1 is lagged sectoral 

share of additive manufacturing import stock in value added; 𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1 is lagged sectoral share of industrial internet of things 

import stock in value added. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Figure 1. Marginal effect of I4.0 technology adoption on TFP growth rates, by country 

 
Notes: Authors’ own estimates. Average marginal effects of I4.0 technology adoption on TFP growth rates computed as 𝛼3 +
𝛼4 × 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡, using 𝛼3 = 0.329 and 𝛼4 = −0.313 from column (7) of Table 4. The black dot indicates the mean value across 

sectors; the line inside the box indicates the median sector; the box shows the interquartile range (IQR); the extreme values are the 
lower adjacent value (25th %ile – 1.5*IQR) on the left and the upper adjacent value (75th %ile + 1.5*IQR) on the right; outliers are 
excluded. 
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Figure 2. Marginal effect of AIR, AM and IIoT adoption on TFP growth rates 

 
Notes: Authors’ own estimates. Average marginal effects of AIR, AM and IIoT adoption on TFP growth rates computed as 𝛼3 +

𝛼4 × 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡, using 𝛼3
𝐴𝐼𝑅 = 0.788 and 𝛼4

𝐴𝐼𝑅 = −0.661 from column (2) of Table 5, 𝛼3
𝐴𝑀 = 0.596 and 𝛼4

𝐴𝑀 = −0.320 from 

column (4) of Table 5, and 𝛼3
𝐼𝐼𝑜𝑇 = 0.248 and 𝛼4

𝐼𝐼𝑜𝑇 = −0.207 from column (6) of Table 5. The black dot indicates the mean value 
across sectors; the line inside the box indicates the median sector; the box shows the interquartile range (IQR); the extreme values 
are the lower adjacent value (25th %ile – 1.5*IQR) on the left and the upper adjacent value (75th %ile + 1.5*IQR) on the right; 
outliers are excluded. 
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Figure 3. Marginal effect of AIR, AM and IIoT adoption on TFP growth rates, by country 

 
Notes: Authors’ own estimates. Average marginal effects of AIR, AM and IIoT adoption on TFP growth rates computed as 𝛼3 + 𝛼4 × 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡, using 𝛼3

𝐴𝐼𝑅 = 0.788 and 𝛼4
𝐴𝐼𝑅 = −0.661 from 

column (2) of Table 5, 𝛼3
𝐴𝑀 = 0.596 and 𝛼4

𝐴𝑀 = −0.320 from column (4) of Table 5, and 𝛼3
𝐼𝐼𝑜𝑇 = 0.248 and 𝛼4

𝐼𝐼𝑜𝑇 = −0.207 from column (6) of Table 5. The black dot indicates the mean value 
across sectors; the line inside the box indicates the median sector; the box shows the interquartile range (IQR); the extreme values are the lower adjacent value (25th %ile – 1.5*IQR) on the left 
and the upper adjacent value (75th %ile + 1.5*IQR) on the right; outliers are excluded. 
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Appendix A: Alternative TFP measures 

We compute different TFP measures, correcting for two different characteristics which may be 

sources of cross-country differences: (a) we adjust the measure of labour inputs for differences in 

the skill composition of the workforce; (b) we adjust the measure of labour inputs for differences in 

hours worked. 

Differences in the skill composition of the workforce: Our baseline TFP measures uses the 

number of people employed in sector 𝑗 of country 𝑖 as a measure of the labour input in the 

production function. First, we control for differences in the quality of the labour inputs. Using a 

similar index to that proposed by Griffith et al. (2004), we express employment in each country, 

sector, and year as: 

𝐿𝑖𝑗𝑡 = (𝐸𝑖𝑗𝑡 ×𝐻_ℎ𝑖𝑗𝑡)
𝑊_ℎ𝑖𝑗𝑡

× (𝐸𝑖𝑗𝑡 × 𝐻_𝑚𝑖𝑗𝑡)
𝑊_𝑚𝑖𝑗𝑡

× (𝐸𝑖𝑗𝑡 × 𝐻_𝑙𝑖𝑗𝑡)
𝑊_𝑙𝑖𝑗𝑡

 (A1) 

where 𝐸𝑖𝑗𝑡 denotes the number of people employed in sector 𝑗 of country 𝑖, at time 𝑡; 𝐻_ℎ𝑖𝑗𝑡, 

𝐻_𝑚𝑖𝑗𝑡 and 𝐻_𝑙𝑖𝑗𝑡 denote shares of hours worked by employees with high, medium and low 

education level across manufacturing sectors, respectively; 𝑊_ℎ𝑖𝑗𝑡, 𝑊_𝑚𝑖𝑗𝑡 and 𝑊_𝑙𝑖𝑗𝑡 denote 

shares of workers with high, medium and low education level in the wage bill across manufacturing 

sectors, respectively. Since our analysis only covers manufacturing industries and information on 

the skill composition of the workforce in EU KLEMS dataset are available only at the 1-digit level 

of sectoral aggregation (i.e., the whole manufacturing), shares of hours worked and wages by 

employees with different education are proportionally derived by weighting 1-digit manufacturing 

data on composition by the share of hours worked in each 2-digit manufacturing industry. 

Differences in hours worked: The second adjustment we make is using the number of hours 

worked by people employed. This is a sector-specific adjustment.  
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Appendix B: Identification of I4.0-related product codes 

As explained in Section 4.2, we use highly disaggregated data (at the 8-digit level) on the value of 

import flows from Eurostat’s Comext data set. A complete overview of the identification procedure 

for selecting the CN product codes strictly related to Industry 4.0 (I4.0), of the technical caveats 

associated with Comext data, and of the validation process corroborating the selected product codes 

is described in Castellani et al. (2022). In sum, the procedure followed these steps: 

1. Analysis of different sources of information to gather knowledge and understanding of the 

technologies of interest (e.g., standard international terminology approved by ASTM 

International and International Organisation for Standardization (ISO) for AM technologies, 

concepts and definitions on IIoT provided by International Telecommunication Union 

(ITU); product catalogues of worldwide leaders in I4.0 production and sales; the World 

Customs Organisation (WCO) and Eurostat); 

2. Definition of a set of keywords capturing technological characteristics, machinery, 

equipment, and components associated with I4.0 technologies, as well as related processes; 

3. Use of keywords to identify product codes in the CN classification by means of matching 

with detailed product descriptions, subsequent screening of false-positive and false-negative 

matches at different levels of disaggregation (i.e., 8-, 6- or 4-digit codes) and final 

disambiguation of the 8-digit product codes strictly related to I4.0; 

4. Validation of the identified CN product codes by: (a) means of a survey sent to 229 

producers of industrial robots, additive manufacturing/3D printing machines, and industrial 

IoT and automation equipment in order to collect information on the CN product codes used 

by I4.0 producers when exporting their products worldwide; (b) consulting experts from the 

Italian Customs Agency and practitioners working at a private customs broker and logistic 

service provider operating in two Milan (IT) airports. 

Table B1 below reports the detailed list of 8-digit CN product codes identified, 4-digit HS 

categories and product descriptions. Hereafter, we report for each technology considered in this 

work the 8-digit product categories embodying I4.0 technologies. 

 

Advanced industrial robots: These capital goods are defined by the 6-digits HS code 

847950 and the 8-digits CN code 84795000. In fact, no substantial difference exists between the 6- 

and the 8-digits product codes; hence, trade data associated with the two codes are fundamentally 

the same. This code was previously identified and used in other works (e.g., Acemoglu and 

Restrepo, 2022; Domini et al., 2021), providing confidence in its goodness. The authors also 
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identify the 6-digits HS code 847989 as a further set of automatic and dedicated machinery 

potentially including industrial robots. Yet, by looking at more disaggregated product codes 

stemming from 847989, we find no 8-digits CN code specifically referring to alternative forms of 

advanced industrial robots of the type we are interested, but only references to older types of 

automatic machines. Thus, we only consider CN code 84795000. 

Additive manufacturing: Seven different additive manufacturing processes having distinct 

technical characteristics, embodied in different types of machinery and using different types of 

material can be identified; these are: (1) binder jetting, (2) directed energy deposition, (3) material 

extrusion, (4) material jetting, (5) powder bed fusion, (6) sheet lamination and (7) vat 

photopolymerization. These capital goods are captured by different 8-digits CN codes. Machinery 

embodying processes (1) and (7) involve either the deposition of chemical liquid bonding agents or 

shaping objects by selectively curing liquid polymers with light and should be consistently captured 

by CN code 84778011 (Machines for processing reactive resins). Processes (2) and (5) require 

machines using focused thermal energy to melt materials as they are deposited on the building 

surface, or to selectively melt shapes on the surface of a powder bed composed of different 

materials (metallic, ceramic, etc.); the CN code including machinery adopting this process is CN 

code 84639000 (Machine tools for working metal or cermets, without removing material). Also, 

machinery adopting process (6) achieve the desired 3-dimensional object by bonding together 

sheets of material, usually metals, and should be traded under CN code 84639000. Finally, CN 

codes 84778019 and 84778099 refer to machinery for working plastic products, and other chemical 

materials (e.g., foam) and hence should capture capital goods embodying processes (3), (4), and 

partially (1) and (5), as they involve the extrusion of material and the deposition of either droplets 

of building or bonding materials, usually photopolymers, wax or foam. 

Industrial internet of things: This category includes both 8-digits CN codes referring to 

intermediates and capital goods.15 Specifically, capital goods referring to wireless sensors and 

actuators should be traded under CN codes 84718000 and 84719000 as they capture network 

communications equipment (e.g., hubs, routers, gateways) for LANs and WANs and other network 

and similar cards for automatic data processing machines. Non-wireless communication equipment 

should be captured by CN code 85176200 (Machines for the reception, conversion and transmission 

or regeneration of voice, images or other data, including switching and routing apparatus). CN 

codes 85269120 and 85269200 relates to radio navigational apparatus, receivers and controls, thus 

they should capture distributed systems such as RFID tag and GPS. Microchips (including NFC 

 

15 In identifying the product codes in which some capital and intermediate goods referring to IIoT are traded we refer to 

guidelines provided by Eurostat and available at https://trade.ec.europa.eu/tradehelp/classifying-computers-software. 

https://trade.ec.europa.eu/tradehelp/classifying-computers-software
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chips) and integrated circuits are traded under CN codes 85423111, 85423119, 85423190, 

85423911, 85423919 and 85423990. Automatic regulating or controlling instruments and apparatus 

used in industrial processes are traded under CN codes 90321020, 90321080, 90322000, 90328100 

and 90328900. 

 

Table B1. List of initially identified CN product codes related to I4.0 technologies 

4-digits HS product codes, 8-digits CN product codes and CN product descriptions  
Advanced Industrial Robots   

 

8479 Machines and mechanical appliances having individual functions, not specified or included elsewhere in this 
chapter 

 

 
84795000 Industrial robots, not elsewhere specified or included 

Additive Manufacturing   

 8463 Other machine tools for working metal or cermets, without removing material 

 

 
84639000 Other machine tools for working metal or cermets, without removing material; Other 

 

8477 Machinery for working rubber or plastics or for the manufacture of products from these materials, not specified 
or included elsewhere in this chapter 

 

 
84778011 Machines for the manufacture of foam products; Machines for processing reactive resins 

 

 
84778019 Machines for the manufacture of foam products; Others 

 

 
84778099 Other machinery; Other; Other 

Industrial Internet of Things   

 

8471 Automatic data-processing machines and units thereof; magnetic or optical readers, machines for transcribing 
data onto data media in coded form and machines for processing such data, not elsewhere specified or included 

 

 
84718000 Other units of automatic data-processing machines 

 

 
84719000 Other 

 

8517 Telephone sets, including telephones for cellular networks or for other wireless networks; other apparatus for the 
transmission or reception of voice, images or other data, including apparatus for communication in a wired or 
wireless network (such as a local or wide area network), other than transmission or reception apparatus of 
heading 8443, 8525, 8527 or 8528 

 

 
85176200 Machines for the reception, conversion and transmission or regeneration of voice, images or other 

data, including switching and routing apparatus 

 8526 Radar apparatus, radio navigational aid apparatus and radio remote control apparatus 

 

 
85269120 Radio navigational aid apparatus; Radio navigational receivers 

 

 
85269200 Radio remote control apparatus 

 8542 Electronic integrated circuits 

 

 
85423111 Processors and controllers, whether or not combined with memories, converters, logic circuits, 

amplifiers, clock and timing circuits, or other circuits; Goods specified in note 9(b)(3 and 4) to 
chapter 85; Multi-component integrated circuits (MCOs) 

 

 
85423119 Processors and controllers, whether or not combined with memories, converters, logic circuits, 

amplifiers, clock and timing circuits, or other circuits; Goods specified in note 9(b)(3 and 4) to 
chapter 85; Other 

 

 
85423190 Processors and controllers, whether or not combined with memories, converters, logic circuits, 

amplifiers, clock and timing circuits, or other circuits; Other 

 

 
85423911 Other; Goods specified in note 9(b)(3 and 4) to chapter 85; Multi-component integrated circuits 

(MCOs) 

 

 
85423919 Other; Goods specified in note 9(b)(3 and 4) to chapter 85; Other 

 

 
85423990 Other; Other 

 9032 Automatic regulating or controlling instruments and apparatus 

 

 
90321020 Thermostats; Electronic 

 

 
90321080 Thermostats; Other 

 

 
90322000 Manostats 

 

 
90328100 Other instruments and apparatus; Hydraulic or pneumatic 

 

 
90328900 Other instruments and apparatus; Other 

Notes: The reference CN classification is the 2017 version. 
Source: Castellani et al. (2022). 
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Caselli and Coleman (2001) also argue that an alternative approach would be to exploit both 

production and trade data, so to account for both domestic and foreign sources of adoption of a 

technology. Such a measure would capture the net consumption (i.e., production + import – export) 

of a technology. In the case of the I4.0 technologies studied here, Castellani et al. (2022) highlight 

that the availability of production data is constrained by the actual presence of local producers 

across European countries. However, for producing countries, the authors also show that, import 

and net consumption measures are highly correlated, thus reassuring on our import-based measure 

being a good proxy of I4.0 technology adoption across European countries. 

 

 Potential multicollinearity concerns: Since ICT and some I4.0 technologies are quite close 

in nature (particularly, IIoT), one might be concerned about potential multicollinearity issues 

between our ICT capital stock variable and our I4.0 import stock variables. Similarly, another 

concern might arise to the extent to which capital goods used to compute our I4.0 variables are 

already accounted for in the ICT stock. To ease such potential concern, we highlight that the 

identification procedure we followed to create our IIoT variable (as well as the AIRs and the AM 

variables) using Comext CN 8-digit data should exclude such issue. Specifically, in order to avoid 

double counting with any ICT control variable, we specifically checked product categories 

capturing computing equipment as described by Caselli and Coleman (2001) and we excluded them 

from our selection of product categories for I4.0-related product categories (e.g., in the case of IIoT, 

we only focused on sensors, actuators, and all other IoT specific capital equipment). Still, we 

controlled for the potential presence of multicollinearity by computing variance inflation factors 

(VIF): these are never above the critical value of five for any of our I4.0-related variables. 
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Appendix C: Additional Tables 

 

Table C1. Description of the variables 

Variable Label Variable Description 

∆𝑙𝑛𝐴𝑖𝑗𝑡  Growth rate of total factor productivity (TFP) 

∆𝑙𝑛𝐴𝐹𝑗𝑡  Growth rate of total factor productivity (TFP) of the frontier country 

𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 1-year lagged distance from the technology frontier 

𝑅𝐷𝑖𝑗𝑡−1 
1-year lagged ratio between sectoral stock of R&D investments and sectoral value 
added 

𝑀𝑖𝑗𝑡−1 
1-year lagged ratio between sectoral imports from the rest of the world and sectoral 
value added 

𝐼𝐶𝑇𝑖𝑗𝑡−1 1-year lagged ratio between sectoral stock of ICT investments and sectoral value added 

𝐼40𝑖𝑗𝑡−1 
1-year lagged ratio between sectoral stock of I4.0 technology imports (AIRs + AM + 
IIoT) and sectoral value added 

𝐴𝐼𝑅𝑖𝑗𝑡−1 
1-year lagged ratio between sectoral stock of advanced industrial robot imports (AIRs) 
and sectoral value added 

𝐴𝑀𝑖𝑗𝑡−1 
1-year lagged ratio between sectoral stock of additive manufacturing imports (AM) and 
sectoral value added 

𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1 
1-year lagged ratio between sectoral stock of industrial internet of thing imports (IIoT) 
and sectoral value added 

Notes: Data on aggregate imports comes from Eurostat’s Comext data sets; data on sectoral variables comes 
from EU KLEMS, STAN, ANBERD and BTDIxE data sets. 
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Table C2. Econometric checks: productivity effects of I4.0 technology adoption 

 System-GMM  LSDVC  FGLS 

∆𝑙𝑛𝐴𝑖𝑗𝑡 (1) (2) (3) (4)   (5) (6) (7) (8)   (9) (10) (11) (12) 
 

              
∆𝑙𝑛𝐴𝐹𝑗𝑡 0.025 0.032 0.037 0.028  0.028 0.029 0.032 0.029  0.007 0.010 0.012 0.008 
 (0.066) (0.066) (0.034) (0.066)  (0.020) (0.020) (0.020) (0.020)  (0.009) (0.009) (0.009) (0.009) 
𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 0.027** 0.010 0.010 0.016  0.219*** 0.199*** 0.208*** 0.217***  0.021*** 0.020*** 0.015*** 0.020*** 
 (0.011) (0.012) (0.010) (0.010)  (0.023) (0.023) (0.023) (0.024)  (0.003) (0.003) (0.003) (0.003) 
𝑅𝐷𝑖𝑗𝑡−1 0.617*** 0.484*** 0.505** 0.391***  1.266*** 1.339*** 1.311*** 1.284***  0.403*** 0.442*** 0.422*** 0.403*** 
 (0.170) (0.168) (0.173) (0.145)  (0.153) (0.148) (0.150) (0.151)  (0.043) (0.045) (0.043) (0.043) 
(𝑅𝐷 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.555*** -0.452*** -0.487** -0.337**  -1.193*** -1.256*** -1.222*** -1.208***  -0.382*** -0.413*** -0.395*** -0.380*** 
 (0.167) (0.161) (0.191) (0.137)  (0.146) (0.142) (0.144) (0.145)  (0.045) (0.046) (0.045) (0.045) 
𝑀𝑖𝑗𝑡−1 -0.004*** -0.003*** -0.000 -0.004***  -0.009*** -0.011*** -0.008*** -0.009***  -0.003*** -0.003*** -0.002*** -0.003*** 
 (0.002) (0.001) (0.002) (0.001)  (0.001) (0.001) (0.001) (0.001)  (0.001) (0.001) (0.000) (0.001) 
(𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 0.004*** 0.003** -0.001 0.004***  0.008*** 0.009*** 0.006*** 0.007***  0.002*** 0.002*** 0.001** 0.002*** 
 (0.001) (0.001) (0.002) (0.001)  (0.001) (0.001) (0.002) (0.001)  (0.001) (0.001) (0.001) (0.001) 
𝐼𝐶𝑇𝑖𝑗𝑡−1 0.197* 0.103 -0.056 0.238**  0.495*** 0.536*** 0.354*** 0.490***  0.146*** 0.123*** 0.066** 0.137*** 
 (0.118) (0.066) (0.065) (0.106)  (0.080) (0.078) (0.068) (0.072)  (0.035) (0.032) (0.027) (0.035) 
(𝐼𝐶𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.169 -0.038 0.142* -0.221*  -0.535*** -0.591*** -0.447*** -0.533***  -0.128*** -0.096*** -0.043 -0.122*** 
 (0.148) (0.080) (0.067) (0.132)  (0.089) (0.086) (0.082) (0.083)  (0.038) (0.032) (0.028) (0.038) 
𝐼40𝑖𝑗𝑡−1 0.153**     0.332***     0.100***    
 (0.065)     (0.047)     (0.023)    
(𝐼40 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.137***     -0.307***     -0.073***    
 (0.051)     (0.056)     (0.020)    
𝐴𝐼𝑅𝑖𝑗𝑡−1  0.310*     0.813***     0.342***   
 

 (0.175)     (0.148)     (0.101)   
(𝐴𝐼𝑅 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1  -0.323*     -0.665***     -0.307***   
 

 (0.175)     (0.152)     (0.091)   
𝐴𝑀𝑖𝑗𝑡−1   0.103***     0.577***     0.028  
 

  (0.022)     (0.092)     (0.049)  
(𝐴𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1   -0.044**     -0.312***     -0.013  
 

  (0.017)     (0.053)     (0.030)  
𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1    0.120**     0.245***     0.080*** 
 

   (0.051)     (0.043)     (0.019) 
(𝐼𝐼𝑜𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1    -0.095**     -0.196***     -0.058*** 
 

   (0.037)     (0.053)     (0.017) 

               
TFP controls h,s h,s h,s h,s  h,s h,s h,s h,s  h,s h,s h,s h,s 
Observations 1,760 1,760 1,760 1,760  1,760 1,760 1,760 1,760  1,760 1,760 1,760 1,760 
Groups 176 176 176 176  176 176 176 176  176 176 176 176 
AR(1) test (p-value) 0.001 0.001 0.000 0.001           
AR(2) test (p-value) 0.326 0.286 0.437 0.313           
Hansen test (p-value) 0.704 0.606 0.681 0.691                     

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator). Models (1) to (4) present estimates from System-GMM estimator: Hansen tests for 
overidentifying restrictions confirm the validity of instruments used (all regressors are assumed to be endogenous and instrumented with lags 1 and 2); AR(1) tests are rejected but AR(2) tests cannot be rejected. Models (5) to (8) 
present estimates from LSDVC estimator: bootstrapped standard errors (50 iterations) in parentheses (see Bruno, 2005). Models (9) to (12) present estimates from FGLS estimator: AR process is assumed to be panel-specific. TFP 
controls are h: hours worked; s: skill composition. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table C3. WLS-FE estimates: relationship between aggregate I4.0 technology adoption measures and TFP growth  

∆𝑙𝑛𝐴𝑖𝑗𝑡 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

             
∆𝑙𝑛𝐴𝐹𝑗𝑡 0.257*** 0.332*** 0.040 0.040 0.354*** 0.028 0.035 0.029 0.032 0.029 0.040 
 (0.036) (0.038) (0.046) (0.053) (0.091) (0.057) (0.053) (0.058) (0.055) (0.058) (0.053) 

𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 0.244*** 0.307*** 0.246*** 0.259*** 0.358*** 0.183*** 0.237*** 0.183*** 0.221*** 0.183*** 0.258*** 
 (0.036) (0.040) (0.032) (0.040) (0.045) (0.032) (0.037) (0.032) (0.035) (0.032) (0.040) 

𝑅𝐷𝑖𝑗𝑡−1 0.283*** 0.248*** 0.855*** 1.168*** 1.204*** 1.239*** 1.148*** 1.251*** 1.266*** 1.262*** 1.173*** 
 (0.071) (0.064) (0.153) (0.224) (0.195) (0.245) (0.227) (0.243) (0.228) (0.242) (0.226) 

(𝑅𝐷 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.969*** -0.816*** -0.793*** -1.046*** -1.122*** -1.164*** -1.041*** -1.176*** -1.159*** -1.185*** -1.051*** 
 (0.244) (0.233) (0.166) (0.223) (0.208) (0.247) (0.227) (0.247) (0.226) (0.247) (0.224) 

𝑀𝑖𝑗𝑡−1 -0.003*** -0.002*** -0.003*** -0.005*** -0.005*** -0.006*** -0.007*** -0.006*** -0.006*** -0.006*** -0.005*** 
 (0.001) (0.001) (0.001) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

(𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 0.006*** 0.006*** 0.004*** 0.006*** 0.006*** 0.007*** 0.008*** 0.007*** 0.008*** 0.007*** 0.006*** 
 (0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

𝐼𝐶𝑇𝑖𝑗𝑡−1 0.196*** 0.109** 0.060 0.183 0.180* 0.224 0.345** 0.256* 0.255** 0.256* 0.182 
 (0.060) (0.048) (0.070) (0.117) (0.108) (0.150) (0.138) (0.147) (0.126) (0.144) (0.118) 

(𝐼𝐶𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.384*** -0.171 -0.020 -0.209 -0.254 -0.280 -0.419** -0.310 -0.327* -0.314 -0.207 
 (0.139) (0.121) (0.104) (0.166) (0.168) (0.201) (0.196) (0.198) (0.186) (0.199) (0.167) 

𝐼40𝑖𝑡−1 -0.001 0.093*** 0.288*** 0.370*** 0.401***       
 (0.014) (0.026) (0.054) (0.079) (0.083)       
(𝐼40 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1  -0.367*** -0.438*** -0.507*** -0.600***       

  (0.082) (0.079) (0.104) (0.118)       
𝐴𝐼𝑅𝑖𝑡−1      -0.038*** 0.229***     

      (0.013) (0.054)     
(𝐴𝐼𝑅 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1       -0.262***     

       (0.051)     
𝐴𝑀𝑖𝑡−1        -0.003 0.113***   

        (0.008) (0.025)   
(𝐴𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1         -0.155***   

         (0.032)   
𝐼𝐼𝑜𝑇𝑖𝑡−1          0.006 0.376*** 

          (0.019) (0.082) 

(𝐼𝐼𝑜𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1           -0.511*** 

           (0.106)             
TFP controls - - s h,s h,s,2c h,s h,s h,s h,s h,s h,s 

Observations 1,757 1,757 1,757 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 

R-squared (within) 0.422 0.457 0.376 0.359 0.409 0.289 0.353 0.285 0.323 0.285 0.357 

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator) and are estimated through WLS using value added shares in total economy as weights. TFP 
controls are h: hours worked; s: skill composition; 2c: two-country frontier. The dependent variable is the growth rate of TFP. ∆𝑙𝑛𝐴𝐹𝑗𝑡 is the contemporaneous growth rate of TFP for the frontier; 𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 is the lagged distance from 

the technology frontier; 𝑅𝐷𝑖𝑗𝑡−1 is the lagged sectoral share of R&D stock in value added; 𝑀𝑖𝑗𝑡−1 is lagged sectoral share of imports in value added; 𝐼𝐶𝑇𝑖𝑗𝑡−1 is lagged sectoral share of ICT stock in value added; 𝐼40𝑖𝑡−1 is lagged country 

share of I4.0 technologies import stock in value added; 𝐴𝐼𝑅𝑖𝑡−1 is lagged country share of advanced industrial robots import stock in value added; 𝐴𝑀𝑖𝑡−1 is lagged country share of additive manufacturing import stock in value added; 
𝐼𝐼𝑜𝑇𝑖𝑡−1 is lagged country share of industrial internet of things import stock in value added. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table C4. WLS-FE estimates: relationship between sectoral I4.0 adoption measures (computed using specific depreciation rates) and TFP growth  

∆𝑙𝑛𝐴𝑖𝑗𝑡 (1) (2) (3) (4) (5) (6) (7) (8) 

         
∆𝑙𝑛𝐴𝐹𝑗𝑡 0.031 0.030 0.029 0.034 0.029 0.029 0.029 0.029 
 (0.057) (0.057) (0.058) (0.057) (0.057) (0.057) (0.057) (0.057) 
𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 0.190*** 0.202*** 0.183*** 0.202*** 0.183*** 0.225*** 0.183*** 0.225*** 
 (0.035) (0.037) (0.032) (0.034) (0.032) (0.037) (0.032) (0.037) 
𝑅𝐷𝑖𝑗𝑡−1 1.268*** 1.323*** 1.223*** 1.229*** 1.305*** 1.231*** 1.302*** 1.233*** 
 (0.244) (0.254) (0.237) (0.233) (0.248) (0.248) (0.248) (0.248) 
(𝑅𝐷 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -1.180*** -1.227*** -1.152*** -1.146*** -1.215*** -1.145*** -1.213*** -1.146*** 
 (0.249) (0.256) (0.241) (0.234) (0.252) (0.253) (0.252) (0.253) 
𝑀𝑖𝑗𝑡−1 -0.008*** -0.011*** -0.005* -0.008*** -0.009*** -0.009*** -0.009*** -0.009*** 
 (0.003) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 
(𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 0.007*** 0.010*** 0.005 0.005 0.008*** 0.008*** 0.008*** 0.008*** 
 (0.002) (0.003) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) 
𝐼𝐶𝑇𝑖𝑗𝑡−1 0.426** 0.530** 0.209 0.365** 0.439* 0.470** 0.436* 0.468** 
 (0.213) (0.244) (0.169) (0.177) (0.232) (0.231) (0.231) (0.230) 
(𝐼𝐶𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.474* -0.581** -0.265 -0.432* -0.487* -0.506* -0.484* -0.504* 
 (0.263) (0.294) (0.220) (0.234) (0.283) (0.276) (0.282) (0.276) 
𝑑𝑟𝐴𝐼𝑅𝑖𝑗𝑡−1 0.225 0.685*       
 (0.138) (0.371)       
(𝑑𝑟𝐴𝐼𝑅 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1  -0.583       
  (0.373)       
𝑑𝑟𝐴𝑀𝑖𝑗𝑡−1   0.015 0.496***     
   (0.023) (0.165)     
(𝑑𝑟𝐴𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1    -0.257***     
    (0.087)     
𝑑𝑟𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1     0.100 0.463***   
     (0.072) (0.138)   
(𝑑𝑟𝐼𝐼𝑜𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1      -0.466***   
      (0.127)   
𝑑𝑟𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1

0.315       0.117 0.555*** 
       (0.085) (0.164) 
(𝑑𝑟𝐼𝐼𝑜𝑇0.315 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1        -0.561*** 

        (0.151) 

         
TFP controls h,s h,s h,s h,s h,s h,s h,s h,s 
Observations 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 
R-squared (within) 0.290 0.298 0.285 0.305 0.290 0.305 0.290 0.305 

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator) and are estimated through WLS using value added shares in total economy as weights. TFP 

controls are h: hours worked; s: skill composition. All variables are defined as in Table C1, but 𝑑𝑟𝐴𝐼𝑅𝑖𝑡−1, 𝑑𝑟𝐴𝑀𝑖𝑡−1, 𝑑𝑟𝐼𝐼𝑜𝑇𝑖𝑡−1 and 𝑑𝑟𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1
0.315, which are computed using sectoral- and capital-specific depreciation rates as discussed in 

Section 5.3. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table C5. WLS-FE estimates: relationship between sectoral I4.0 technology adoption measures and TFP growth using alternative measure from EU KLEMS 

 1995-2019  1995-2008  2009-2019 

∆𝑙𝑛𝐴𝑖𝑗𝑡 (1)   (2)   (3) (4) (5) (6) (7) (8) (9) (10) (11) 

               
∆𝑙𝑛𝐴𝐹𝑗𝑡 0.337***  0.416***  0.376*** 0.349*** 0.355*** 0.308*** 0.375*** 0.361*** 0.388*** 0.350*** 0.354*** 
 (0.089)  (0.096)  (0.059) (0.069) (0.069) (0.073) (0.069) (0.061) (0.063) (0.069) (0.070) 

𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 0.414***  0.538***  0.692*** 0.719*** 0.813*** 0.709*** 0.770*** 0.590*** 0.875*** 0.719*** 0.808*** 
 (0.068)  (0.094)  (0.160) (0.168) (0.164) (0.144) (0.151) (0.169) (0.189) (0.169) (0.164) 

𝑅𝐷𝑖𝑗𝑡−1 0.900***  0.487***  0.704* 0.756** 0.654* 0.680* 0.633* 0.619 0.590 0.755** 0.652* 
 (0.204)  (0.171)  (0.393) (0.384) (0.363) (0.365) (0.361) (0.406) (0.385) (0.384) (0.363) 

(𝑅𝐷 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -1.236***  -0.718***  -0.606 -0.776 -0.560 -0.697 -0.411 -0.229 -0.919 -0.770 -0.545 
 (0.352)  (0.259)  (0.982) (0.944) (0.951) (0.911) (0.954) (0.991) (0.964) (0.945) (0.952) 

𝑀𝑖𝑗𝑡−1 0.022**  0.022**  0.018 0.017 0.016 0.019 0.018 0.013 0.006 0.017 0.016 
 (0.009)  (0.009)  (0.016) (0.015) (0.012) (0.015) (0.014) (0.015) (0.012) (0.015) (0.012) 

(𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.020*  -0.026***  -0.016 -0.014 -0.010 -0.017 -0.013 -0.008 0.002 -0.015 -0.010 
 (0.010)  (0.009)  (0.028) (0.028) (0.021) (0.028) (0.024) (0.026) (0.022) (0.028) (0.021) 

𝐼𝐶𝑇𝑖𝑗𝑡−1 0.629***  -0.162  1.078*** 0.998*** 0.704* 0.998*** 0.910** 1.070*** 0.952*** 1.000*** 0.705* 
 (0.197)  (0.178)  (0.412) (0.375) (0.363) (0.379) (0.388) (0.383) (0.368) (0.377) (0.363) 

(𝐼𝐶𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.778**  0.270  -2.679*** -2.638*** -1.805** -2.578*** -2.318** -2.949*** -2.611*** -2.636*** -1.802** 
 (0.315)  (0.243)  (0.933) (0.889) (0.871) (0.887) (0.911) (0.911) (0.873) (0.890) (0.869) 

𝐼40𝑖𝑗𝑡−1      0.042 0.341***       
 

     (0.073) (0.122)       
(𝐼40 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1       -1.070***       

       (0.351)       
𝐴𝐼𝑅𝑖𝑗𝑡−1        -0.051 0.126*     

        (0.031) (0.066)     
(𝐴𝐼𝑅 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1         -0.430**     

         (0.189)     
𝐴𝑀𝑖𝑗𝑡−1          0.104* 0.301***   

          (0.053) (0.073)   
(𝐴𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1           -0.396***   

           (0.111)   
𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1            0.041 0.338*** 

            (0.073) (0.123) 

(𝐼𝐼𝑜𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1             -1.089*** 

             (0.361) 

              
Observations 3,827  2,227  1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 

R-squared (within) 0.951  0.979  0.688 0.777 0.878 0.867 0.746 0.647 0.879 0.756 0.880 

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator) and are estimated through WLS using value added shares in total economy as weights. Data 
on TFP growth rate for manufacturing industries in Portugal are missing in EU KLEMS dataset. The dependent variable is the growth rate of TFP as taken from EU KLEMS data. All other variables are defined as in Table C1. Significance 
levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table C6. OLS-FE estimates: relationship between sectoral I4.0 technology adoption measures and TFP growth (unweighted) 

∆𝑙𝑛𝐴𝑖𝑗𝑡 (1) (2) (3) (4) (5) (6) (7) (8) 

          
∆𝑙𝑛𝐴𝐹𝑗𝑡 0.029 0.029 0.032 0.030 0.029 0.033 0.029 0.030 
 (0.061) (0.061) (0.061) (0.061) (0.062) (0.061) (0.061) (0.061) 
𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 0.187*** 0.227*** 0.197*** 0.206*** 0.195*** 0.215*** 0.203*** 0.224*** 
 (0.036) (0.040) (0.039) (0.043) (0.034) (0.038) (0.040) (0.043) 
𝑅𝐷𝑖𝑗𝑡−1 1.361*** 1.274*** 1.316*** 1.354*** 1.277*** 1.320*** 1.336*** 1.294*** 
 (0.318) (0.327) (0.309) (0.327) (0.300) (0.305) (0.317) (0.324) 
(𝑅𝐷 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -1.259*** -1.184*** -1.221*** -1.254*** -1.201*** -1.215*** -1.248*** -1.199*** 
 (0.309) (0.314) (0.305) (0.319) (0.296) (0.293) (0.309) (0.314) 
𝑀𝑖𝑗𝑡−1 -0.009** -0.010*** -0.009*** -0.011*** -0.005 -0.008** -0.009*** -0.010*** 
 (0.004) (0.004) (0.003) (0.004) (0.003) (0.003) (0.003) (0.003) 
(𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 0.008*** 0.009*** 0.007*** 0.010*** 0.004 0.007 0.008*** 0.008*** 
 (0.003) (0.003) (0.002) (0.004) (0.004) (0.004) (0.003) (0.003) 
𝐼𝐶𝑇𝑖𝑗𝑡−1 0.474* 0.507* 0.450* 0.553* 0.201 0.368* 0.477** 0.505** 
 (0.276) (0.272) (0.250) (0.285) (0.200) (0.205) (0.225) (0.226) 
(𝐼𝐶𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.524 -0.544* -0.499 -0.605* -0.267 -0.459 -0.530* -0.545* 
 (0.336) (0.323) (0.308) (0.342) (0.257) (0.281) (0.289) (0.282) 
𝐼40𝑖𝑗𝑡−1 0.087 0.338***       
 (0.060) (0.127)       
(𝐼40 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1  -0.319**       

  (0.126)       
𝐴𝐼𝑅𝑖𝑗𝑡−1   0.282 0.829*     

   (0.190) (0.441)     
(𝐴𝐼𝑅 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1    -0.700*     

    (0.396)     
𝐴𝑀𝑖𝑗𝑡−1     0.024 0.609***   

     (0.018) (0.124)   
(𝐴𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1      -0.328***   

      (0.071)   
𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1       0.084** 0.254*** 

       (0.038) (0.093) 
(𝐼𝐼𝑜𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1        -0.210** 

        (0.087) 

         
TFP controls h,s h,s h,s h,s h,s h,s h,s h,s 
Observations 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 
R-squared (within) 0.232 0.246 0.232 0.239 0.228 0.251 0.236 0.244 

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator) and are estimated through OLS. TFP controls are h: hours worked; s: skill composition. All 
variables are defined as in Table C1. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table C7. WLS-FE estimates: relationship between sectoral I4.0 adoption measures and TFP growth (employment weighted) 

∆𝑙𝑛𝐴𝑖𝑗𝑡 (1) (2) (3) (4) (5) (6) (7) (8) 

          
∆𝑙𝑛𝐴𝐹𝑗𝑡 0.030 0.030 0.033 0.031 0.031 0.035 0.030 0.031 
 (0.056) (0.056) (0.056) (0.056) (0.056) (0.056) (0.056) (0.056) 
𝑙𝑛𝐷𝑇𝐹𝑖𝑗𝑡−1 0.182*** 0.222*** 0.190*** 0.201*** 0.188*** 0.209*** 0.197*** 0.218*** 
 (0.031) (0.037) (0.034) (0.036) (0.032) (0.033) (0.035) (0.038) 
𝑅𝐷𝑖𝑗𝑡−1 1.301*** 1.218*** 1.253*** 1.306*** 1.193*** 1.243*** 1.279*** 1.239*** 
 (0.245) (0.244) (0.240) (0.249) (0.238) (0.232) (0.244) (0.245) 
(𝑅𝐷 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -1.204*** -1.133*** -1.163*** -1.209*** -1.122*** -1.144*** -1.195*** -1.147*** 
 (0.248) (0.249) (0.245) (0.251) (0.241) (0.232) (0.248) (0.250) 
𝑀𝑖𝑗𝑡−1 -0.009*** -0.009*** -0.008*** -0.011*** -0.004* -0.008*** -0.009*** -0.009*** 
 (0.003) (0.003) (0.003) (0.004) (0.002) (0.003) (0.003) (0.003) 
(𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 0.008*** 0.008*** 0.007*** 0.010*** 0.004 0.006** 0.008*** 0.008*** 
 (0.003) (0.003) (0.002) (0.003) (0.003) (0.003) (0.002) (0.002) 
𝐼𝐶𝑇𝑖𝑗𝑡−1 0.442* 0.473** 0.422** 0.523** 0.182 0.347** 0.453** 0.479** 
 (0.227) (0.226) (0.209) (0.240) (0.160) (0.166) (0.189) (0.192) 
(𝐼𝐶𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1 -0.487* -0.506* -0.466* -0.571** -0.239 -0.430* -0.501** -0.514** 
 (0.277) (0.270) (0.258) (0.289) (0.206) (0.227) (0.243) (0.240) 
𝐼40𝑖𝑗𝑡−1 0.078 0.321***       
 (0.053) (0.099)       
(𝐼40 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1  -0.309***       
  (0.087)       
𝐴𝐼𝑅𝑖𝑗𝑡−1   0.258* 0.760*     
   (0.156) (0.416)     
(𝐴𝐼𝑅 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1    -0.636     
    (0.420)     
𝐴𝑀𝑖𝑗𝑡−1     0.024 0.587***   
     (0.017) (0.192)   
(𝐴𝑀 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1      -0.315***   
      (0.108)   
𝐼𝐼𝑜𝑇𝑖𝑗𝑡−1       0.079** 0.243*** 

       (0.034) (0.074) 
(𝐼𝐼𝑜𝑇 × 𝑙𝑛𝐷𝑇𝐹)𝑖𝑗𝑡−1        -0.204*** 

        (0.067) 

         
TFP controls h,s h,s h,s h,s h,s h,s h,s h,s 
Observations 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760 
R-squared (within) 0.291 0.305 0.291 0.298 0.288 0.310 0.295 0.302 

Notes: Robust standard errors in parentheses. All regressions include a full set of time and country-industry dummies (within-group estimator) and are estimated through WLS using employment shares in total economy as weights. TFP 
controls are h: hours worked; s: skill composition. All variables are defined as in Table C1. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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