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1.  Introduction
The El Niño–Southern Oscillation (ENSO), which arises from large-scale coupled air-sea interactions over the 
tropical Pacific (e.g., Bjerknes, 1969; Jin, 1997; Neelin et al., 1998; Wyrtki, 1975), is the predominant signal of 
seasonal-interannual variability in the global climate system (Hu et al., 2020). Given the profound climate effects 
of ENSO which lead to flooding, heat waves and other serious natural disasters (Hu et al., 2020) via atmospheric 
teleconnections (e.g., Alexander et al., 2002; Wang, 2006; Wang et al., 2000; Yang et al., 2018), the factors influ-
encing ENSO evolution draw widespread research attention in the scientific community.

One important issue in previous studies is the interaction between ENSO and other oceans (Wang, 2019), espe-
cially the Atlantic which is the focus of this study. ENSO exerts a strong influence on tropical Atlantic variability, 
but it is also affected by Atlantic forcing. Previous studies have suggested a strong interaction of ENSO with 
sea surface temperature anomaly (SSTA) over the tropical Atlantic, including the tropical North Atlantic (e.g., 
Ding et al., 2012; Ham et al., 2013; Wang et al., 2017) and equatorial Atlantic (e.g., Carton & Huang, 1994; 
Keenlyside & Latif, 2007; Polo et al., 2015; Zebiak, 1993). During the El Niño decaying spring, a warm SSTA 
with broad significant positive SSTA appears over the tropical North Atlantic (Alexander & Scott, 2002; Enfield 
& Mayer, 1997; Klein et al., 1999; Lee et al., 2008; Wu et al., 2020; Wu & He, 2019), which in turn facilitates the 
development of La Niña during the subsequent boreal winter (Wang et al., 2017; Yang et al., 2018). Similarly, the 
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temperature anomaly (SSTA) and the El Niño-Southern Oscillation (ENSO) and focuses on how the Pacific 
Decadal Oscillation (PDO) modulates this relationship. Results suggest a significant but non-stationary 
interannual TSA-ENSO relationship which undergoes a significant decadal shift. A strong TSA-ENSO 
relationship is observed during the positive PDO phase, while this relationship is weak during the negative 
PDO phase. Two processes, involving the anomalous Pacific Walker circulation (PWC) and the intensity of 
air-sea interactions over the Pacific, are proposed for this decadal shift. During the positive PDO phase, the 
weak and variable PWC and strong air-sea interaction facilitate the development of SSTA in the tropical Pacific 
triggered by TSA SSTA, resulting in a strong TSA-ENSO relationship and vice versa. These findings emphasize 
the important role of the modulation of PDO on the TSA-ENSO relationship.

Plain Language Summary  The present study finds a significant TSA-ENSO relationship that 
anomalous warm (cold) TSA sea surface temperature (SST) in the preceding winter is closely linked to the 
cold (warm) ENSO in the subsequent summer and winter. However, the TSA-ENSO interannual relationship 
is non-stationary, which is strong during the positive PDO phase and weak during the negative PDO phase. 
Two processes responsible for this non-stationary relationship are proposed. During the positive PDO 
phase, the weak and variable PWC is more susceptible to the TSA forcing, resulting in a strong TSA-ENSO 
relationship. Meanwhile, the strong air-sea interaction in the tropical Pacific also facilitates the development 
of SSTA triggered by TSA SSTA, leading to a strong and robust TSA-ENSO relationship. During the negative 
PDO phase, the situations of PWC and air-sea interaction are opposite and thus lead to a weak TSA-ENSO 
relationship. These findings could help to improve our understanding of the decadal variability of the ENSO 
evolution.
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boreal summer cooling over the equatorial Atlantic could modulate the Walker circulation and enhance  the devel-
opment of El Niño events during the subsequent winter (Chikamoto et al., 2020; Ding et al., 2012; Keenlyside 
et  al.,  2013; Martin-Rey et  al.,  2015), even though the linear relationship between the equatorial Atlantic 
SSTA and preceding winter ENSO is insignificant (Chang et al., 2006; Lubbecke & McPhaden, 2012; Richter 
et al., 2013; Tokinaga et al., 2019). However, little is known about the relationship between ENSO and the trop-
ical South Atlantic (TSA). The variation of TSA SSTA is a major rotated empirical orthogonal function mode 
over the tropical Atlantic (Enfield et al., 1999; Handoh, Bigg, et al., 2006, Handoh, Matthews, et al., 2006; Huang 
et al., 2004). Recent studies have suggested that the TSA could be a driver in climate anomalies over Eurasia and 
East Asia (Sheng et al., 2022; Yang et al., 2023; Zhang et al., 2022). To date, the link between TSA SSTA and 
subsequent ENSO remains unclear yet, especially whether the TSA SSTA in the preceding winter-spring could 
influence the following ENSO.

The interannual relationship associated with ENSO is usually modulated by low-frequency multidecadal variabil-
ities. Several studies have highlighted the strong dependence of ENSO properties on the background climate state 
of the Pacific, which can be affected by decadal changes in tropical Pacific (Fedorov & Philander, 2000, 2001). 
The structure and propagation of the ENSO mode have undergone significant changes since the Pacific climate 
shift of the late 1970s (Fedorov & Philander,  2000; Wang & An, 2002). Despite the associated mechanisms 
remaining elusive, decadal changes in the background state can certainly influence ENSO properties (An & 
Jin, 2000; Hu & Fedorov, 2018; Kang et al., 2014; Wang & An, 2002). For instance, extratropical decadal vari-
ations can be transmitted to the tropical ocean via atmospheric bridges (Wang & An, 2002). Observational and 
coupled general circulation model studies have provided evidence that the intensity of the atmospheric response 
to ENSO depends on the state of the North Pacific Ocean, represented by the Pacific Decadal Oscillation 
(PDO) (Barlow et al., 2001; Bond & Harrison, 2000; Feng et al., 2014; Kwon et al., 2013; Lee et al., 2002; Liu 
et al., 2021; Yu & Zwiers, 2007). The PDO has been proposed to play a crucial role in affecting ENSO tele-
connections. Nevertheless, whether the PDO has the potential ability to modulate the TSA-ENSO relationship 
remains an open question.

After identifying the TSA-ENSO relationship, the present study mainly focuses on how the PDO modulates this 
relationship. The rest of the paper is organized as follows. Section 2 presents the data and methodology. Section 3 
presents the main results. The summary and discussion are presented in Section 4.

2.  Data and Methodology
Monthly mean variables archived at the pressure level, including three-dimensional wind and sea level pressure, 
are obtained from ERA5 (Hersbach et al., 2020). The horizontal resolution of ERA5 data used in this study is 
1° × 1° (longitude × latitude). Sea surface temperature (SST) data are obtained from Hadley Center Sea Ice and 
SST version one on a 1° × 1° resolution (Rayner et al., 2003).

Our analyses focus on 1951–2020 and anomalies for all variables are computed as the deviations from the clima-
tological mean over this period. The linear trend at each grid point is removed from all data sets. Seasonal mean 
values calculated over December, January, and February, March, April, and May, and June, July, and August are 
used to represent the conditions of boreal winter, spring, and summer, respectively. The season with the label 
(−1), (0) and (+1) represents that in the previous year, present and the following year.

The normalized area-averaged SST over the region covering 0–20°S and 30°W–10°E in the Atlantic is used to 
define the TSA index (TSAI; Enfield et al., 1999) during the boreal winter-spring season [D(−1)JFMAM(0)]. 
The Niño 3.4 index is defined as the area-averaged SSTA in the region of 5°S–5°N and 170°–120°W for the 
summer and winter seasons [JJA(0) and D(0)JF(1)]. The 13-year centered running mean is applied to the annual 
averaged PDO index to extract its interdecadal variability. The PDO features two negative phases (1951–1975, 
2003–2020) and one positive phase (1976–2002). All above indices can be obtained from https://psl.noaa.gov/
data/climateindices/list/. The linear trends of all indices are removed. The strength of the Pacific Walker circu-
lation (PWC) is measured by the difference between sea level pressure averaged over the eastern (5°S−5°N, 
160°−80°W) and western (5°S−5°N, 80°−160°E) tropical ocean (Choi et al., 2016; Vecchi & Soden, 2007). The 
statistical significance of correlations, regressions or composites is assessed based on a two-tailed Student's t-test. 
The statistical significance of variance change is assessed using F-test.
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3.  Results
3.1.  Relationship Between TSA and ENSO and Its Decadal Shift

The time series of the TSAI and Niño3.4 are shown in Figure 1a. Interannual correlation coefficients between the 
winter-spring TSAI and subsequent summer and winter Niño3.4 are −0.43 and −0.34, respectively, both passing 
the 0.01 significance level, indicating a close interannual linkage between the preceding TSA SSTA and ENSO. 
This TSA-ENSO relationship suggests that La Niña events in summer to winter are typically accompanied by a 

Figure 1.  (a) Normalized time series of the TSA index (TSAI) (bar), Niño3.4 in JJA(0) (pink) and D(0)JF(+1) (blue). (b) 
Time series of the PDO (bar), the multi-year running correlation between TSAI and Niño3.4 in JJA(0) (green lines). (c) Same 
as (b), but for the Niño3.4 in D(0)JF(+1). The blue (red) dashed line denotes that the correlation coefficients are significant at 
the 0.1 (0.05) significance level based on a two-tailed Student's t-test. “***” indicates a significance level exceeding 0.01.
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preceding warm TSA SSTA, and vice versa for El Niño events. The candidate driving this relation is the anoma-
lous Walker circulation over the equatorial Pacific (Figure S1 in Supporting Information S1). The anomalous wind 
embedded within the Walker circulation over the equatorial Pacific can promote the development of ENSO through 
positive feedback of atmosphere-ocean interactions (Bjerknes, 1969; Chikamoto et al., 2020; Ding et al., 2012). 
However, this TSA-ENSO relationship is nonstationary and exhibits a prominent decadal fluctuation (Figures 1b 
and 1c). Multi-year running correlation coefficients (Figures 1b and 1c, green solid curves) with different sliding 
windows show a clear nonstationary relationship that is strong in the positive PDO phase and weak in the negative 
PDO phase. The correlation coefficient between TSAI and Niño3.4 is −0.59 (passing the 0.01 significance level) 
during the PDO positive phase. However, during the PDO negative phase, the correlation coefficients are −0.25 
and −0.37 which does not pass the 0.1 significance level. This nonstationary relationship is insensitive to the sliding 
window. We also calculate the correlation coefficients between PDO (Figures 1b and 1c; bar) and the TSA-ENSO 
relationship averaged in different sliding windows (Figures 1b and 1c; averaged lines), and results yield −0.54 in 
the following summer (Figure 1b) and −0.59 in the following winter (Figure 1c). The above results indicate that 
(a) there is a significant TSA-ENSO relationship that the warm (cold) TSA SSTA in the preceding winter-spring 
favors  the development of La Niña (El Niño) in the following summer and winter and (b) this TSA-ENSO relation-
ship is enhanced during the positive PDO phase and is weakened during the negative PDO phase.

We define an ENSO event appearing when the summer Niño 3.4 index exceeds 1 standard deviation (1 σ corre-
sponds approximately to 0.66°C). Following this definition, 10 El Niño events and 11 La Niña events are identified. 
Figure 2a shows that during the positive PDO phase, both El Niño and La Niña events match well the TSA-ENSO 
relationship that the warm (cold) TSA corresponds to the subsequent La Niña (El Niño) event. However, the 
TSA-ENSO relationship is a little different in the negative PDO phase. A more visible result can be seen in Figure 2b. 
In the positive PDO phase (red bar in Figure 2b), El Niño (La Niña) tends to follow a cold (warm) TSA SSTA. 
However, this relationship breaks in the negative PDO phase (blue bar in Figure 2b). These results further confirm 
that the TSA-ENSO relationship is strong during the positive PDO phase and weak during the negative PDO phase.

3.2.  Mechanism

3.2.1.  Walker Circulation

A previous study has proposed that the atmospheric bridge rapidly conveys the effects of extratropical decadal 
variations to the tropics and that the Pacific decadal climate shift since the 1970s may have influenced El Niño 
properties by altering the background tropical winds (Wang & An, 2002). This suggests that the PDO may affect 
the TSA-ENSO relationship through the Walker circulation. In the following analysis, we investigate the potential 
mechanism by which the PDO modulates the TSA-ENSO relationship.

Figure 3 shows the seasonal evolution in spatial patterns of SSTA and 850-hPa wind associated with the TSAI during 
the different PDO phases. From winter to spring in all periods (first two rows in Figure 3), a significant SSTA mainly 
occurs over the TSA, and the SSTA over the tropical central and eastern Pacific is relatively weak. In the subsequent 
summer among the different PDO phases (bottom row in Figure 3), large differences in the SSTA and 850-hPa wind 
occur especially over the tropical Pacific, which corresponds to large differences in anomalous Walker circulation 

Figure 2.  (a) Selected El Niño-Southern Oscillation events (bar) based on the Niño3.4 in JJA(0) and the corresponding preceding TSAI. (b) Composite TSAI in El 
Niño and La Niña events during the positive (red) and negative (blue) PDO phases.
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(bottom row in Figure S2 in Supporting Information S1). During the positive PDO phase, a remarkable negative 
SSTA and significant easterlies emerge over the tropical Pacific (Figure 3f; Figure S2f in Supporting Information S1). 
During the negative PDO phase, SSTA and wind anomalies over the Pacific are weak and insignificant (Figures 3c 
and 3i; Figures S2c and S2i in Supporting Information S1). When the impacts associated with Niño3.4 in D(−1)JF(0) 
are removed by linear regression, the results remain almost unchanged (figure not shown). These findings suggest 
that the PDO may affect the TSA-ENSO relationship through the anomalous equatorial Walker circulation, which is 
associated with anomalous zonal winds over the tropical Pacific and the Bjerknes feedback (Bjerknes, 1969).

Figure 4 shows the atmospheric Walker circulation associated with the PDO. Compared with the climate mean of 
Walker circulation (Figure 4a), the anomalous Walker circulation almost shows a reversed pattern in the positive 
PDO phase (Figure 4b). Specifically, there is a notable anomaly in the low-level zonal wind over the equatorial 
central and eastern Pacific, characterized by a persistent westerly wind anomaly (Figure 4b). This anomaly would 
weaken the climate mean easterly wind and weaken the climate mean SST gradient over the equatorial Pacific. To 
investigate further the difference in anomalous Walker circulation between the positive and negative PDO phases, 
we adopt the Monte Carlo bootstrapping method to estimate the probability density function of PWC strength 
(defined in Section 2) during both PDO phases (Figure 4c). The resampling process is executed 100,000 times. The 
probability density functions in the different phases of PDO are significantly separated from each other. Specif-
ically, the anomalous PWC tends to be negative significantly in the positive PDO phase (Figure 4c), consistent 
with the low-level westerly wind anomalies (Figure 4b). In contrast, the PWC tends to be positive significantly in 
the negative PDO phase. The strength of PWC is significantly related to the PDO, with a correlation coefficient of 
−0.88 (Figure 4d), passing the student's t-test with a 0.01 significance level. Moreover, the variance of PWC during 
the negative PDO phase (81.93 Pa 2) is less than that during the positive phase (204.48 Pa 2). The variance differ-
ence of PWC is significant, passing the F-test with a 0.01 significance level, which indicates that PWC is more 
robust during the negative PDO phase than that in the positive PDO phase. Consequently, the TSA-ENSO connec-
tion is weak through a less variable Walker circulation during the negative PDO phase (Figure 4c). Conversely, 
during the positive PDO phase, the TSA-ENSO relationship is enhanced through a more variable PWC.

3.2.2.  Air-Sea Interaction

We also examine the influence of low-level air–sea interactions on the TSA-ENSO relationship during different 
PDO phases. Similar to the linear equation for SST anomalies (Jin et al., 2006), the surface air temperature equa-
tion can be written as follows:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −

(

𝑢𝑢
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑣𝑣

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜔𝜔

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

+𝑄𝑄𝑄� (1)

Figure 3.  Spatial patterns of the regressed sea surface temperature anomaly (shading; units: K) and the regressed 850-hPa wind (vector; units: m/s) on TSAI during 
different PDO phases. (a), (b), and (c) represent the results averaged in D(−1)JF(0), MAM(0), and JJA(0) during the negative PDO period (1951–1975), respectively. 
(d)–(f) Same as (a)–(c), but for the positive PDO period (1976–2002). (g)–(i) Same as (a)–(c), but for the negative PDO period (2003–2020). The green vectors and 
white dots indicate the area exceeding the 0.05 significance level based on a two-tailed Student's t-test.
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where (T, u, v, ω) represent the surface air temperature and three-dimensional wind; Q represents for net diabatic 
heating rate. For a zonal wind-dominated case in the equatorial central Pacific (Niño 3.4 area), Equation 1 can 
be simplified as:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
≈ −𝑢𝑢

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+𝑄𝑄𝑄� (2)

Based on Jin et al. (2006) and Connolly and Lentz (2014), Q is approximately parameterized as a linear function 
of air-sea temperature difference (SST−T2m). Terms in Equation 2 denote in order that the local tendency of 
temperature, zonal advection term showing the temperature advected by zonal wind, and the net diabatic heat-
ing rate. The composite zonal advection term in the PDO positive (negative) phase is calculated by averaging 
the zonal advection term during the PDO positive (negative) phase. The diagnostic results regarding the zonal 
advection term and the air-sea temperature difference associated with the diabatic heating term are presented in 
Figures 5a and 5b, respectively.

During the positive (negative) PDO phase, the impact of zonal advection is weaker (stronger) than that of the 
climate mean (Figure 5a), while the air-sea temperature difference is stronger (weaker) than that of the climate 
mean (Figure 5b). This suggests that in the positive PDO phase, the low-level atmosphere is more vulnerable to 
the influence of air-sea temperature difference and is more easily influenced by the SST signal rather than the 
atmospheric interior zonal advection, as compared to the negative PDO phase. The altered atmospheric circulation 
can, in turn, effectively affect the SSTA in the positive PDO phase via the Bjerknes feedback (Bjerknes, 1969) 
of air-sea interaction. Furthermore, following the previous study (Liu et al., 2021), we have also used the air-sea 
interaction index (ASI) to measure the air-sea interaction strength. The ASI is calculated as the correlation coef-
ficient between the Niño 3.4 index and the zonal 850-hPa wind anomalies over the equatorial central Pacific (i.e., 
Niño 4 region). It is observed that the correlation coefficient between ASI and PDO is 0.71 (Figure 5c; passing 
the 0.05 significance level). The ASI is higher in the positive PDO phase than that in the negative PDO phase, 
which further confirms a stronger air-sea coupling in the positive PDO phase (Figure 5c). Through this strong 
air-sea coupling, the ENSO events triggered by TSA SSTA can develop and maintain (Figures 3e and 3f), and the 
resultant enhanced TSA-ENSO relationship appears in the positive PDO phase.

Figure 4.  (a) Climatological mean of the Walker circulation (averaged from 5°S to 5°N) in MAMJJA(0) (vector: u,units: 
0.1 m/s; −10 × ω, units: Pa/s). (b) Composite anomalous Walker circulation for the difference between the positive and 
negative PDO phases in MAMJJA(0) (vector: u, units: m/s; −100 × ω, units: Pa/s). The gray shading indicates the area where 
anomalies exceed the 0.1 significance level based on a two-tailed Student's t-test. (c) Probability density function (colored 
line) and average (vertical dashed line) of the Pacific Walker circulation (PWC) in MAMJJA(0) were estimated from 100,000 
bootstrapped samples in the positive (red) and negative (blue) PDO phases. (d) Normalized time series of the PDO (bar) and 
13-year centered running correlation between TSAI and PWC (black line). “***” indicates a significance level exceeding 0.01.
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4.  Summary and Discussion
The present study investigates the decadal modulation of the TSA-ENSO relationship by PDO and the possible 
mechanisms. The results are summarized as follows:

1.	 �We identify a significant interannual TSA-ENSO relationship that the warm (cold) TSA SSTA in the preced-
ing winter-spring is closely linked to the cold (warm) Niño3.4 in subsequent summer and winter. However, 
this TSA-ENSO relationship exhibits a nonstationary feature that undergoes a significant decadal shift. The 
TSA-ENSO relationship is strong during the positive PDO phase and weak during the negative PDO phase. 
During the positive PDO phase, most El Niño (La Niña) events are accompanied by a significant preceding 
cold (warm) TSA SSTA, whereas during the negative PDO phase, the TSA-ENSO relationship is less clear. 
Two reasons are proposed to elucidate this decadal shift.

2.	 �The PWC associated with anomalous zonal winds, is proposed as a mechanism that affects the TSA-ENSO 
relationship. During the positive PDO phase, the weak and variable PWC is more susceptible to TSA forces, 
resulting in a strong TSA-ENSO relationship. In contrast, during the negative PDO phase, the PWC tends to 
be strong, robust, and less responsive to the forces of TSA SSTA, leading to a weak TSA-ENSO relationship.

3.	 �The intensity of air-sea interactions in the tropical Pacific differs between the positive and negative PDO 
phases, significantly impacting the TSA-ENSO relationship. Specifically, during the positive PDO phase, the 
strong air-sea interaction facilitates the development of SST anomalies triggered by TSA SSTA, which leads 
to a strong and robust TSA-ENSO relationship. In contrast, the weak air-sea interaction during the negative 
PDO phase results in a weak TSA-ENSO relationship.

The mean state of TSA SST itself may also have an impact on the decadal shift of the TSA-ENSO relationship. We 
examine the TSA SST mean state and variance during the different PDO phases. In the composite analysis of 
PDO, changes in both mean state SST and SST variance over tropical and subtropical Atlantic are insignificant 

Figure 5.  (a) Composite zonal advection of temperature in climate mean state, positive and negative PDO phases during 
MAM(0) and JJA(0) (units:10 −6 K/s) over Niño3.4 region. (b) Same as (a), but for the difference between SST and surface 
air temperature (units: K). (c) Normalized time series of the PDO (bar) and multi years run of air-sea interactions index (ASI: 
purple lines). “**” indicates a significance level exceeding 0.05.
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(Figure S3 in Supporting Information S1). However, compared with the negative PDO phases (Figures 3c and 3i), 
the TSA SSTA is more persistent in the positive PDO phase (Figure 3f). This suggests that the influence of the 
persistence of TSA SSTA may also play a role in the decadal shift of the TSA-ENSO relationship and deserves 
further study. The processes of PWC and air-sea interaction in the tropical Pacific are two aspects behind one 
fact, but it is still of interest to examine their relative contributions. This work will be conducted in the future. 
Furthermore, future changes in anthropogenic emissions may also influence this TSA-ENSO relationship and the 
performance of CMIP6 models in repeating this relationship and its interdecadal change are still unknown, which 
also requires further study.
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