Fawkes, J. M., Gould, N. I. M. and Scott, J. A. ORCID: https://orcid.org/0000-0003-2130-1091
(2023)
Approximating sparse Hessian matrices using large-scale linear least squares.
Numerical Algorithms.
ISSN 1572-9265
doi: 10.1007/s11075-023-01681-z
Abstract/Summary
Large-scale optimization algorithms frequently require sparse Hessian matrices that are not readily available. Existing methods for approximating large sparse Hessian matrices have limitations. To try and overcome these, we propose a novel approach that reformulates the problem as the solution of a large linear least squares problem. The least squares problem is sparse but can include a number of rows that contain significantly more entries than other rows and are regarded as dense. We exploit recent work on solving such problems using either the normal equations or an augmented system to derive a robust approach for computing approximate sparse Hessian matrices. Example sparse Hessians from the CUTEst test problem collection for optimization illustrate the effectiveness and robustness of the new method.
Altmetric Badge
Item Type | Article |
URI | https://reading-clone.eprints-hosting.org/id/eprint/113557 |
Item Type | Article |
Refereed | Yes |
Divisions | Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics |
Publisher | Springer |
Download/View statistics | View download statistics for this item |
Downloads
Downloads per month over past year
University Staff: Request a correction | Centaur Editors: Update this record