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Abstract 

The frequency of floods is rising and constitutes one of the main causes of detrimental 

consequences arising from natural disasters, not only in Kenya, but across the globe. The 

anticipation, forecasting and accumulation of science-based evidence of floods is a vital 

component in managing, preparing for and mitigating the impacts of severe events, from local to 

international scales. This research aims to explore ways to improve flood modelling and 

forecasting at the national scale. To achieve this, a multi-stage approach is adopted, first, to 

understanding the key aspects to consider when selecting an appropriate model for flood 

forecasting and modelling, secondly, to understanding the application of global reanalysis 

precipitation datasets to hydrological modelling as potential alternatives due to data scarcity 

challenges, and thirdly, to undertaking an analysis of trend detection in floods and possible shifts 

in flood timing. 

Five criteria are applied to a hydrological model selection framework following a filter sequence; 

an evaluation of twelve potential models is performed, and four potential model candidates are 

selected for flood applications for a Kenyan national forecasting centre. Model selection has shown 

that not all models are good at capturing and/or representing the important processes relevant to 

flood generation and a single model would not be applicable to the entire country, due to stark 

differences in the hydroclimatic characteristics of catchments, and model developments and 

upgrades should allow incorporation of such differing characteristics. Four reanalysis precipitation 

datasets are evaluated for their ability to be used for hydrological modelling. The choice of 

precipitation input is found to be the dominant component of the hydrometeorological modelling 

chain, creating the need to aggregate both sensitivity indices and performance statistics.  

Improvements have arisen from the introduction of ERA5 as a source of meteorological data. 

Performance varies by season and catchment, with wetland catchments obtaining relatively better 

scores compared to those in the semi-arid regions. Examination of trends in river flow series 

identified statistically increasing trends in annual floods for stations in proximity to each other, 

which is evidence of a spatially coherent pattern. and increasing flood frequency across Kenyan 

catchments, with observations showing a shift in timing and variability in flood occurrences in 

most parts of the country. 

This research has explored and provided an enhanced understanding of the avenues of improving 

flood modelling and forecasting in Kenya in terms of models, data, and historical flooding trends 

as well as seasonality and shifts in flood timing, which can inform future developments and 

operational flood forecasting for the end-users of an early warning system that can help mitigate 

the effects of floods in data-scarce regions such as Kenya.  
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Chapter 1  

1 Introduction 

The introductory chapter of this research thesis provides an overview of the research background. 

Firstly, background information on flooding events and flood risk in Kenya is presented (Section 

1.1), with a discussion of the factors (natural and human induced) contributing to extreme events 

across the country (Section 1.2), and flood early warning and response at global and regional level 

(Section 1.3). Secondly, the chapter sets out the motivation of this research by outlining some of 

the challenges, associated with flood modelling and forecasting in data-scarce regions, confronting 

Kenya (Section 1.4). This will be followed by an account of the research aims, objectives and 

research questions to be addressed. Finally, Section 1.5 provides an outline of the remainder of the 

thesis.  

1.1 Flood risk in Kenya 
According to the Global Climate Risk Index (GCRI), Kenya is ranked among the countries with 

the highest climate risk in the world.  Kenya is prone to climate and weather extremes, particularly 

droughts and floods (Eckstein et al., 2019), with the latter being the most common climatic extreme 

and the leading hydro-meteorological disaster in East Africa (EA) (Huho and Kosonei, 2014). 

Floods commonly affect the low-lying areas located in Kenya’s nine densely populated drainage 

basins, with Lake Victoria Basin (LVB) being the worst affected (Huho and Kosonei, 2014). This 

contributes to relatively high exposure and vulnerability levels, with much of the population 

affected in some way (Kilavi et al., 2018; Otiende, 2009).  

Kenya has experienced several major flood events recently (EM-DAT & Owour, 2000). Floods 

occur during rainy months, with flash and riverine floods occurring after torrential rains (Wanzala 

and Ogallo, 2020). The typical population affected per event is estimated to be approximately 

70,000 (Parry et al., 2012).  Between 1964 and 2021, 20 major flood events were recorded, with 

the floods of 1961, 1997–1998, 2002, 2003, 2006, 2010, 2012 and 2018 having particularly high 

impact (Table 1), and being declared national disasters (Parry et al., 2012; Kilavi et al., 2018). 

During the first quarter of 2010, flash floods claimed the lives of 73 people and 1,864 livestock 

countrywide. Over 3,375 households were displaced, affecting 14,585 people. In addition, at least 

16 bridges were destroyed in Rift Valley province (Kenya Floods, 2010). Flash floods caused by 

the 2012 long rains killed 84 people, displaced around 30,000 and affected over 280,000 (Kenya 

Floods, 2012). Following the long rains season of 2018 at least 311,164 people were displaced by 

floods across 40 counties in Kenya and, according to the National Disaster Management Agency 

(NDMA), this particular flood event claimed the lives of approximately 150 people (OCHA, 2018; 

Kenya Floods, 2019). The most recent severe flood was during the 2019 enhanced short rains 

season which affected most parts of the country. According to the Kenya Red Cross Society 

(KRCS), more than 160,000 people, including nearly 18,000 households, were displaced 

countrywide by floods or landslides, with approximately 330,000 people affected and 132 deaths 

reported, including those of 72 people whose houses were buried in a landslide  in West Pokot 

County in North-Western Kenya (Kenya Floods, 2019; UNICEF, 2019). 
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Flooding in Kenya occurs annually, with an annual average economic loss to the country 

approximated at 5.5% of gross domestic product (GDP) (Connor, 2015) from damage to roads, 

water systems, buildings, and communication networks; direct costs of treatment for waterborne 

diseases; and crop and livestock loss (Warner and Van der Geest, 2013). With the changing 

climate, enhanced precipitation is expected to increase the frequency of major flood events in 

Kenya (Huho and Kosonei, 2014). For instance, from October to December 2019, Kenya 

experienced one of the wettest short rains seasons on record, with rainfall totals ranging up to 400 

percent of the average (FEWSNET, 2019; Kenya Floods, 2019). This led to countrywide floods 

resulting in a huge economic loss from damage to roads, energy supplies, and buildings 

infrastructure (Njogu, 2021). Additionally, some of these extreme rainfall events are influenced 

by phenomenon such as -Southern Oscillation (ENSO) causing El Niño floods (see Table 1), and 

detailed description of these phenomena in Section 1.2. 

1.2 Factors contributing to extreme events and increased vulnerability in 

Kenya 
Precipitation is arguably the most important driver of catchment hydrological response, 

particularly of floods, but is hard  to estimate, like other components of the hydrological cycle 

(Tapiador et al., 2012; Beck, van Dijk, et al., 2017). Accurate measurement of precipitation is 

made difficult by the high spatio-temporal variability of rainfall events (Vischel et al., 2011), 

especially in the tropics, where most of the rainfall is controlled by mesoscale convective systems. 

This is also compounded by the general scarcity of precipitation gauging networks, except for a 

few dense networks operated by dedicated organizations or programmes (Gosset et al., 2013).  

There is a great deal of variability in the spatial and temporal patterns of Kenyan rainfall (Asnani 

and Kinuthia, 1979; Ogallo, 1984). These variations are caused by the presence of large inland 

lakes, complex topography, the Indian Ocean to the east, and the seasonal migration of the 

Intertropical Convergence Zone (ITCZ) (Ayugi et al., 2018). The ITCZ, though not properly 

defined over land, migrates through this region twice as the sun moves overhead (Nicholson, 

2018), and together with the North Equatorial Trough (NET) and the Indian Ocean Dipole (IOD), 

control the seasonal behaviour of the migration of the precipitation zone (Nyenzi, 1988). The 

seasonal rainbelts shift northwards and southwards with the ITCZ, with rainfall patterns in some 

locations modified by local features such as lakes and highlands (Ongoma, Chen and Omony, 

2018). Throughout the year, the northern coastal strip, mountains, and areas near water bodies 

receive a significant amount of precipitation. In addition, rainfall events  over Kenya is greatly 

influenced by weather phenomena such as El Niño -Southern Oscillation (ENSO) (Ayugi et al., 

2020; Ojara et al., 2021; Onyutha, 2016) and play a major role in extreme rainfall events and inter-

annual variability (Ongoma et al., 2015). For example, the warm phase of ENSO/El Niño results 

in unusually heavy rainfall, causing rare floods like the 1997/1998 occurrence (Takaoka, 2005).   

Near the equator, there are two separate rainy seasons (bimodal), whereas further south and in the 

northeast, the country has a single lengthy summer rainy season (unimodal) (Camberlin and 

Okoola, 2003; Camberlin et al., 2009). The bimodal rainfall seasons occur during March-April-

May (MAM) and October- November-December (OND) and are commonly known as the ‘short 
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and ‘long’ rains respectively (Omondi et al., 2014; Ongoma et al., 2015; Kilavi et al., 2018) . This 

seasonal pattern is caused by the rainfall migrating northward at a slower rate than it migrates 

southward (Nyenzi 1988). 

Table 1: History of flood occurrences and the affected areas in Kenya (Huho et al.,2014; Kenya Floods, 2010-

2019) 

Year Area of occurrence Impacts 

2019 West Pokot landslide and widespread flooding 330,000 people affected, 132 killed including 72 

landslide victims 

2018 ** Mandera, Garissa, Isiolo, Tana River, Taita Taveta, 

Western Kenya and parts of Nairobi city 

186 people killed, 300,000 displaced, 800,000 people 

affected 

2017 Tana River (Taita Taveta), Mombasa 5 people killed, 5,000 displaced 

2016 Nairobi, Northern Kenya (Wajir, Marsabit, Turkana) 13,129 people affected, 16 people killed in a collapsed 

building in Huruma estate, Nairobi. 

2015 Widespread 15 people killed and thousands displaced 

Infrastructure destroyed 

2014 Narok town, Nairobi City Property and infrastructure destroyed 

2013 Tana River County 82,000 people displaced 

2012** Nyanza/ Western (Nzioa River basin, Nyando Basin  84 people killed, 30,000 displaced 

Approximately 280,0000 people affected 

2010 ** Budalang’i, Tana River, Turkana 73 killed, 14,585 people affected 

2008 Rift valley, Kitale, Makueni, Kibwezi, Budalang’i 24 people killed, 2,396 affected 

2006 ** Widespread 7 deaths, 6,500 people displaced 

2004 Nyeri, Othaya, Kihuri 5 people killed 

2003 ** Nyanza, Western and Tana River Basin 60,000 people affected  

2002 ** Nyanza, Busia, Tana River Basin 150,000 people affected 

1997-

1998*** 

Widespread 1.5 million people affected 

1985 Nyanza/Western 10,000 people affected 

1982 Nyanza 4,000 people affected 

1961*** Athi River, Lamu, Tana River Basin, Nzioa and 

Nyando Basin 

 

*** El Niño flood, ** National disaster 

Most flood events in Kenya occur during the two rainy seasons. The huge impacts of these floods 

are partly due to overreliance on seasonal forecasts (with lead times of one month ahead and 

longer) by users of climate information (such as government authorities, planners and policy 

makers  (Graham et al., 2011). These forecasts are uncertain and have low skill in forecasting 
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hydrological variables at the timescales relevant for floods in most parts of the world (e.g., Shukla 

et al., 2019; Mishra et al., 2019; Coelho et al., 2010). In Eastern Africa seasonal forecasts are 

correlated with large-scale climate drivers (Nicholson, 2017), such as the El Niño-Southern 

Oscillation (ENSO), the Indian Ocean Dipole (IOD) modes and the Madden- Julian Oscillation 

(MJO) (MacLeod et al., 2021). This can sometimes be helpful in anticipating floods:, for example, 

a positive IOD in 1997, 2005 and 2019 is likely to have caused the enhanced rains during those 

years (Bethel and Dusabe, 2021). A positive IOD event in the Indian Ocean is associated with 

anomalously warm Sea Surface Temperatures (SSTs) in the western Indian Ocean, near to Eastern 

Africa, and anomalously cold SSTs in the eastern Indian Ocean (Saji et al., 1999). Westerly winds 

in the middle equatorial Indian Ocean move moisture away from Eastern Africa during the long 

rains season (OND). During extreme positive IOD events, the north-central Indian Ocean 

experiences strong low-level easterly wind anomalies, which weakens the westerly flow that 

normally transports moisture away from Eastern Africa, resulting in wetter conditions over Eastern 

Africa and drier conditions in the central and eastern Indian Ocean basin (Wainwright et al., 2021). 

However, the long rains have less spatial and temporal coherence and a weak correlation with most 

of these large-scale drivers. As a result, the long rains season is far less predictable than the short 

rains season (Dutra et al., 2013), hence most parts of the country are adversely impacted during 

this particular season, e.g.,   by the MAM 2018 rainfall events (Kilavi et al., 2018).  

Flood preparedness and early action in the face of an incipient flood event depend on correct flood 

forecast information and timely dissemination of early warning messages, to relevant 

organizations involved in flood management and to vulnerable communities (WMO 2003; Njogu, 

2021). Kenya, like many other countries, is currently grappling with the global COVID-19 

pandemic (Lone and Ahmed, 2020), with much attention and many resources diverted to tackle its 

impacts. For example, by September 2020, the number of deaths due to covid was  approximately 

1,000, according to a study by Ombajo et al. (2020),  and rose by 20 percent by June 2022 (WHO, 

2022; Ombajo et al., 2022); the  Global Fund requested the Ministry of Health (MoH) to reallocate 

USD 5million to the COVID-19 response (Barasa et al., 2021). Yet at the same time, floods 

continued to kill people in their thousands. For example, thousands of people had been displaced 

in Kenya due to flooding in Lakes Baringo and Bogoria, which disrupted many livelihood activities 

and social infrastructure, eroded farmlands, and threatened cross-contamination of water between 

the two lakes (Aura et al., 2020). As the flood waters recede, some semblance of ‘normal’ life’ 

returns: the “flood memory” is short and the recovery of affected communities is quickly forgotten 

by the authorities, news media and the international community (Njogu, 2021), until the onset of 

another flood event. People forget floods quickly and so there is an inadequate understanding and 

perception of flood risks in Kenya both by the authorities and those affected. News of devastation, 

such as broken bridges (Kenya , 2021) and massive landslides caused by the raging floodwater, 

hit mainstream and social media for only a matter of hours and then other topics  take their place, 

and it becomes a forgotten story (Nyakundi, Mwanzo and Yitambe, 2010). 

Compare, for example, the flooding events in Europe (e.g., Germany and the UK in 2021) and 

Africa (e.g., Kenya, Nigeria, Somalia). There is a remarkable difference in terms of response and 

recovery, forecasting, the dissemination of information, and media coverage. For instance, flood 



5 

 

forecasts for Germany were issued by the European Flood Awareness System (EFAS) before the 

event, and bulletins sent to relevant authorities (Cloke, 2021). Despite this, there were still fatalities 

(NBC News, 2021), but there was also a significant media presence and there were subsequent 

discussions about what went wrong and what lessons could be learnt for the future (Da Costa, 

2021). Parliamentary inquiries and post disaster “Lessons learned” exercises are important 

components of improving resilience to future floods (Stephens and Cloke, 2014; HM Government, 

2016). Even though flood disasters are common in Kenya, no such initiative has been brought 

forward by Kenyan authorities and could be alluded to the incapacity to deal with issues of such 

magnitude yet.  

In Kenya there are distinct challenges and limitations in the production and dissemination of flood-

specific early warning to relevant authorities, and in associated media coverage, as well as in 

response and recovery efforts (Wanzala and Cloke, 2021). The connection between the 

media and science communication, knowledge and behaviour are beneficial in reducing the 

impacts of natural hazards such as floods. For example, the media promote an increased 

understanding of the onset and evolution of extreme events, the mobilization of response efforts, 

a discussion of these subjects with others, and the facilitation of online debates on matters 

surrounding climate change and their potential impacts on communities   (Barnston et al., 2010; 

Weisheimer and Palmer, 2014). Therefore, the media are critical in the dissemination of 

information: they should work more closely, collaboratively, and vibrantly with other actors than 

at present. Mass media can also play an important role in influencing inquiries and policy change. 

The visibility of the Europe 2021 flood event in news, discussions and media interviews with 

climate scientists contributed to the triggering of an official parliamentary committee inquiry into 

the flood catastrophe (Cloke, 2021)  

1.3 Flood early warning and response in Kenya 
Flood Forecasting (FF) is an important tool in reducing vulnerabilities and flood risks as well as 

improving the resilience of communities through well informed response and adaptation measures. 

Reliable flood forecasts (with medium to seasonal timescales) have recently become possible in 

many parts of the developed world. This is due to the progressive advancements in Numerical 

Weather Predictions (NWP), because of the expansion of data assimilation techniques (English et 

al., 2013), improvements in precipitation datasets (Nowak and Hodson, 2013), higher computing 

power (Bauer et al., 2015), improvement in numerical modelling techniques (Yamazaki et al., 

2011), and the incorporation of ensemble modelling (Cloke and Pappenberger, 2009). 

However, in many developing countries, there is still no tangible evidence of the benefits resulting 

from these advancements. Mr Mwai, the deputy director at the Kenya Meteorological Department 

(KMD), noted that “presently, FF in Kenya is limited due to inadequate tools (models), model 

source codes, data, personnel, forecast lead-time, and inadequate documented research to back up 

operations”, which hinders informed flood preparedness actions. With the advancements in 

computing, various hydrological models have been developed to improve flood modelling and 

forecasting in many parts of the world. However, the application of these tools is challenging, for  

several reasons, such as  inadequate observational data, lack of informed forecast model skills, 

uncertainty in forecast skills, limited applications due to geographical constraints and models 
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without open-source codes (Thiemig, De Roo and Gadain, 2011). For instance, in Kenya, the 

Kenya Meteorological Department (KMD) runs an operational flood forecast system only in Nzioa 

catchment out of the nine flood prone catchments. The model adopted for this system is the Soil 

Moisture Accounting and Routing Model (SMAR) incorporated in the Galway Flow Forecasting 

System (GFFS) (O’Connor, 2005)(see Section 2.4.3 for detailed description of SMAR model). 

The choice and use of the SMR model was an entirely subjective matter, mainly driven by the 

project funding following the push to implement a FF system in Nzioa and for its simplicity and 

comparatively low data requirements. Further detailed discussion of FF system in Kenya can be 

found in Section 4.5.5 of the thesis. 

Flood Early Warning Systems (FEWS) are important in the context of flood incident management 

activities including evacuation, protection of vital infrastructure, relief and rescue operations, 

emergency medical support etc. An early warning system has four parts: forecasting, 

transformation of the forecast into a warning, dissemination of the warning to local decision 

makers and users, and translation of the warning into remedial action (ISDR, 2004). According to 

the Kenya Meteorological Department (KMD), a flood-specific EWS is currently operational only 

in one out of the nine flood prone catchments in Kenya: the Nzoia River in Western Kenya 

(Thiemig, De Roo and Gadain, 2011), as it was the only catchment to have a reliable long time 

series of observational discharge data. No published documentation on this forecast modelling 

approach exists, and so there is neither information explaining the informed choice of the 

modelling approach, nor a skill assessment of the model used in this catchment.  Extensive research 

in other flood prone catchments in Kenya is severely hampered by the lack of reliable observational 

data (precipitation and discharge data) (Njogu, 2021) and thus there is no understanding of how 

the hydrology in these catchments is changing through time. In addition, a review of the public 

experience of early warnings suggests that lead times are often insufficient for effective action 

(Opido et al., 2017), and there is consequently a need for flood forecasts with a longer lead time.  

One of the ways by which improved flood EWS is supported in flood vulnerable regions such as 

Kenya is through global initiatives, such as the Global Flood Awareness System (GLOFAS), 

which is part of the Copernicus Emergency Management Service for floods, 

(www.globalfloods.eu). GloFAS provides 30 days extended lead-time flood forecast information 

using ensemble meteorological forecasts from the European Centre for Medium-range Weather 

Forecasts (ECMWF) for the major river basins across the world (Alfieri et al., 2013). GloFAS, 

however, has only recently (2019) added operational monitoring points on the major rivers in the 

flood prone areas in Kenya. There is thus a new opportunity to explore the use of GloFAS in 

Kenya.  

1.4 Forecasting and modelling floods 

1.4.1. Challenges associated with data scarcity 

Forecasting floods in data-scarce regions is very challenging. Data at different spatial and temporal 

timescales is vital for the processing and production of actionable flood forecast information  

(Zanchetta and Coulibaly, 2020). However, with the current observational data scarcity issues, 

combined with a lack of human and computational resources, network connectivity, and adequate 

http://www.globalfloods.eu/
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maintenance resources, there is often a preference among operational agencies for simpler 

modelling tools (Mr Mwai, personal communication). Such tools require less data but necessarily 

have a simpler process representation and may not yield the detailed information required for 

forecasting floods. These subjective choices of which model to use for flood forecasting, based on 

the requirement for simplicity in undertaking the modelling, have the potential to affect forecasting 

efforts significantly. It is therefore necessary to establish an objective pre-selection criterion for 

models, which informs the first objective of this research, further detailed in Chapter 4. 

Models cannot be run in practice if the necessary input data are not available, and extra efforts 

should be made to estimate the input data from freely available sources. Other sources of 

precipitation data, such as those from satellite remote sensing, are now available, but they come 

with their own uncertainties, including random and systematic errors (Sun et al., 2018; 2020). 

This, combined with model uncertainties, may result in a worse level of performance. Additionally, 

some of the datasets are at a very coarse scale and downscaling to finer scales to run the model in 

a fine grid size leads to extra work and may not result in better performance statistics. Therefore, 

these datasets suffice as best alternatives but first, assessment of their performance in area-specific 

applications is crucial, which was adequately addressed by the second objective of this research, 

further detailed In Chapter 5. 

There is a growing concern that major flooding events in many parts of Kenya in the past decade 

are indicative of the effects of a changing climate (Wainwright at al 2021; Wanzala and Ogallo, 

2020). Understanding flood characteristics such as frequency, magnitude and timing is important 

for informing policy for disaster risk management, infrastructure design and agriculture, amongst 

other hydrological applications (Rosner, Vogel and Kirshen, 2014; Bezak, Brilly and Šraj, 2016). 

In addition, consideration of the trends in flood data series may result in more accurate flood 

timing, magnitude and frequency estimations (Berghuijs et al., 2017, 2019; Mangini et al., 2018; 

Sa’adi et al., 2019). Trend analysis can be used to investigate whether there is any evidence of an 

increase in river floods in the observational river discharge data, which is adequately addressed by 

third objective and further detailed in Chapter 6. 

Therefore, the aim of this research is to contribute to a better understanding of the uncertainties in 

models and datasets intended to inform flood modelling and applications in data-scarce regions, 

and provide evidence of change in the frequency and magnitude of flood events to inform and 

improve flood modelling and forecasting in Kenya. 

1.4.2.  Research objectives and questions 

Research Objective 1: - Design and propose an objective model pre-selection criterion for a 

Kenyan national flood centre. 

• Research Question 1.1. What are the important factors to consider in objective choice of 

models for flood applications in Kenya amidst data scarcity issues and varied 

physiographic settings?  

• Research Question 1.2. How practical and effective is the proposed pre-selection 

criterion? 
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Research Objective 2: - Evaluate the utility of different reanalysis precipitation datasets for 

hydrological modelling through performance statistics and parameter identifiability to establish 

their influence on the catchment streamflow simulations. 

• Research Question 2.1: - Can reanalysis datasets be used in hydrological modelling and 

how are the model parameters impacted by different precipitation datasets?  

• Research Question 2.2. How does the performance of a hydrological model vary with 

different reanalysis datasets and is a higher resolution dataset any better in simulating 

streamflow?  

• Research Question 2.3. Which of the model parameters is most sensitive and how does 

this vary across the different precipitation datasets in simulating catchment streamflow? 

Research Objective 3: - Assess the historical trends in flood series and possible shifts in flood 

timing across Kenyan catchments. 

• Research Question 3.1. What are the historical trends of flood events in the observed flood 

series in Kenya and how has this changed over time?  

• Research Question 3.2. What are the trends in the GR4J model simulated discharge across 

Kenya for the period of 1981 – 2016. How do they compare with the trends in the 

observations?  

• Research Question 3.2. Has there been a shift in the occurrence and timing of floods 

across Kenya? 
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1.5. Thesis Structure 
The thesis continues with a detailed literature review, description of data and methods used, three 

research papers which form the main body of the thesis, discussion, and conclusions as illustrated 

in Figure 1.1. 

 

 
Figure 1.1:- Thesis structure: small, coloured circles indicate the main chapters with 4, 5 and 6 being the analysis 

chapters. The speech bubble at the top and the bottom introduces and concludes my thesis respectively. 
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Chapter 2 is a comprehensive literature review on hydrological models (2.1 & 2.4) and classes 

(2.2), catchment discretization (2.3) model parameterizations (2.6), input datasets for hydrological 

modelling (2.5) and trends and seasonality of floods (2.7). These form the literature context for 

Chapters 4, 5 and 6 of the thesis. 

Chapter 3 covers data (3.1) and methods (0) used to achieve the objectives in 1.4.2. 

Chapter 4 is the first paper presented in this research and addresses the first objective (I). It 

provides an in-depth model selection framework for a national flood forecasting centre, with focus 

on Kenyan hydroclimates and challenges associated with data scarcity. The research proposes 

modelling tools that can be adopted for operational flood forecasting that can help mitigate the 

effects of floods in data-scarce regions such as Kenya. 

Chapter 5 is the second paper and addresses the second objective (II). It assesses the performance 

of reanalysis datasets relative to observations at catchment scale considering both the performance 

statistics and uncertainty quantifications. The findings are important in informing future 

applications of reanalysis products for setting up hydrological models that can be used for flood 

forecasting, early warning and early action in ungauged catchments in Kenya.  

Chapter 6 is the third paper and addresses objective (III) on the trends in river flow series and 

possible shifts in flood timing and predictability. The conclusions provide evidence of patterns in 

trends in frequency and the magnitude of flood events for catchments in proximity. 

Chapters 7 contain the discussions (7.1) and key messages of the research, with its challenges and 

limitations (7.2), presented in the three papers, scientific advances of the research findings (7.3) 

the key conclusions (7.4) and recommendations for future work (7.5).  

The three research papers presented in this thesis have been reformatted as thesis chapters but 

exactly correspond to the work as published. The published versions of Chapters 4 and 5 are 

provided in Appendix A2 and A3. At the time of submission, Chapter 6 was still at the reviewing 

stages of publication, but the online review copy can be found in Appendix A4. Statements of 

authors’ contributions are given at the beginning of each of the chapters. 
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Chapter 2 

2 Literature Review 

This chapter presents a detailed review of the different types of hydrological models and their 

characteristics, catchment discretization, input datasets for hydrological modelling and their 

evaluation, uncertainty and sensitivity analysis of model parameters, and the concepts of 

equifinality in modelling, model parameterization, non-stationarity, calibration, and validation. 

2.1 Hydrological models 
Hydrological models are important tools for understanding natural processes in water resources 

(Jyathilake, 2019), usually predicting hydrological variables such as river flow or soil moisture. A 

model can be defined as a set of constructs, derived from explicit assumptions about how a system 

responds to specified inputs (Beven, 2012). For example, a hydrological model would model the 

interaction of inputs (e.g., climate) with the system (e.g., catchment), to produce an output (e.g., 

the outflow hydrograph) through representation of the physical, biological and chemical 

characteristics of a catchment and simulation of the natural hydrological processes  (Jain & Singh, 

2019). Hydrological models therefore incorporate runoff generation and river routing processes to 

simulate hydrological response to meteorological variations  (Sutanudjaja et al., 2018). They can 

be used to represent a real-world hydrological system to better understand various water and 

environmental processes, predict system behavior and provide consistent impact assessment 

(Beven, 2012; Devia et al., 2015; Towner et al., 2019), particularly where data is scarce 

(Sutanudjaja et al., 2018). They are used in a range of hydrological applications such as short to 

extended-range flood forecasting (Alfieri et al., 2013; Emerton et al., 2018,., climate assessment 

(Tamm, Luhamaa and Tamm, 2016; Hattermann et al., 2017; Lu et al., 2018), hazard and risk-

mapping (Artan et al., 2001; Ward et al., 2015), drought prediction (Van Huijgevoort et al., 2014), 

and water resource assessment ) (Dessu et al., 2016; Mutie, 2019; Praskievica and Sang, 2009; 

Sood and Smakhtan, 2015). 

At the global scale, a distinction can be made between Land Surface Models (LSMs) and Global 

Hydrological Models (GHMs), although the division between these classes is becoming less and 

less distinct as LSMs become more complex and there is a move towards earth system modelling 

(Harrigan, Cloke and Pappenberger, 2020). Whereas LSMs describe the vertical exchange of heat 

and water, GHMs are not only focused on water resources and the lateral transfer of water 

(Haddeland et al., 2011; Trambauer et al., 2013), but also parameterize ground water processes 

for simulating ground water recharge and water table depth from the perspective of water resources 

assessment (Koirala et al., 2014). Different hydrological models make use of different inputs, 

variables at different temporal timescales (e.g., rainfall, air temperature) and static variables (e.g., 

soil characteristics, topography, vegetation, hydrogeology, and other physical parameters) (Devia 

and Dwarakish, 2015). In some cases, little input data exists, and the model can be used to estimate 

the runoff and river flow in ungauged catchments. The choice and application vary across different 

classes of models and a comprehensive review of some of the models is covered in Section 2.4 of 

this thesis. This review is important as it provides more information about the different 
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classifications of` hydrological models and their differing parameters and data requirements, as 

well as applications in various hydrological studies in different parts of the world. The reviewed 

models also provide the contextual information for the model evaluation presented in Chapter 4, 

which aids in the pre-selection process of suitable models for operational flood forecasting and 

flood applications at national level. The subsequent sections of this chapter provide a  

comprehensive review of different classes of models (Section 2.2), an account of  catchment 

discretization in models (Section 2.3) and a brief overview of the hydrological models and their 

characteristics (Section 2.4), before considering input datasets for hydrological modelling (Section 

2.5), and model parameterization (Section 2.6). 

2.2 Classification of hydrological models 
Models can be classified  . into two broad categories, based on: - (i) mathematical representation 

(conceptual, empirical and physically based models) and (ii) spatial configuration (lumped, semi-

lumped, distributed and semi-distributed), but not all models fit in these classifications (Devia et 

al., 2015; Quang, 2016). Hydrological models can be initialized in a continuous or event-based 

mode. Continuous model initialisation requires running a model in a warm-up period to let the 

model states reach values that no longer depend on arbitrarily chosen initial values. Usually, a 

standard one climatic year is used, but this warm-up depends on the model and the catchment 

memory of past conditions (Berthet et al., 2009). However, in some catchments influenced by 

large aquifers, the warm-up period  may take several years (Le Moine, 2008). Running a model in 

continuous state, however, requires a long continuous precipitation time series, which may be 

difficult to provide. In addition, it may be difficult to gather a long enough data series before 

issuing the first forecast at new locations (Berthet et al., 2009). Event-based model initialisation 

requires a separate method to derive the initial values of model states. For example, if the model 

states reliably represented measurable physical quantities, recent measurements or values based 

on climatology would be solutions, as shown in the findings of Brocca et al.(2009) that 

assimilating soil moisture measurements into the event-based SCS-CN model can be useful for 

flow simulation on a small catchment. A detailed description of model classification can be found 

in Section 2.2.1. Summary characteristics, advantages and disadvantages of physically based, 

conceptual and empirical and lumped, semi-distributed, and distributed models are shown in Table 

2 and Table 3 respectively. Detailed information of some of these models’ categories and their 

application is found in Section 2.4. An example of general classification is represented in Figure 

2.1, which follows the description of model classification terminologies in Jajarmizadeh, Harun 

and Salarpour (2012)( but not all models can fit in this classification. The subsequent sub-sections 

provide descriptions of different classes of models. 

2.2.1 Based on mathematical representation 

2.2.1.1 Conceptual models 

Conceptual (also known as grey-box) models incorporate conceptual representation of catchment 

information by means of simple concepts, such as representing soil storage as a leaky bucket, and 

are characterized by parameters that usually have no direct, physically measurable identity 

(Wheater et al., 2007). They incorporate conceptual representations of preceding information and 
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important processes and are thus easy to run and calibrate. Parameters need to be calibrated, which 

requires fitting them to an observed data set to obtain an appropriate set of parameter values, using 

either a manual or automatic procedure (Wheater et al., 2007);  2007)see further details in Section 

2.6.3.The model structures are characterized by catchment  physical features and their semi-

empirical nature. The hydrological unit is a combination of a transport routing system and storage 

for elements such as surface, soil and groundwater. Routing modules may include one or more 

linear or non-linear stores. Model parameters vary depending on the process descriptions and the 

number of processes; thus, the models are moderately complex.  

2.2.1.2 Empirical models 

Empirical (also known as black-box) models are based on observations or experience and do not 

contribute to physical understanding of the catchment (Quang, 2016). They make use of 

mathematical equations which are derived from the input and output data series, and hence valid 

only within boundaries, e.g., the unit hydrograph method. The functional relationships between 

the model inputs and outputs are built from the regression and correlation equations applied within 

the set boundaries. Artificial neural networks and fuzzy regression are some of the machine 

learning techniques used in hydro informatics methods. 

2.2.1.3 Physically based models  

Physically based models compute flows and energy fluxes from physical equations (Beven and 

Kirby, 1979; Booker & Woods, 2014). They can be semi-distributed or fully distributed in terms 

of discretization and parameter allocation. These models explicitly incorporate theoretically 

derived understanding of the catchment characteristics using hydrologic state variables and fluxes 

(Beven, 2010; Beven, 1989; Fatichi et al., 2016). These models can be used in a closure of assumed 

forms of the laws of conservation of mass, energy, and momentum at temporal scales in reference 

to underlying physical processes. When applied spatially at catchment scale, physically based 

distributed models can incorporate the space–time variability of the primary forcing, such as 

precipitation and radiation, and variations of land-surface properties (e.g., soils, vegetation, and 

topography) at the sub-catchment scale, while resolving the subsurface domain in horizontal and 

vertical directions (Fatichi et al., 2016). Thus, they can be easily applied at regional scales. 

The complex and heterogeneous internal conditions within a catchment are often difficult to apply 

and solve. Therefore, distributed models are useful in this case, as they describe internal states and 

fluxes whilst considering preservation of mass, energy, and momentum budgets. These models are 

good at explaining specific variables at the local scale that can be simulated only with detailed 

representations, such as snowmelt (Johnson, Zhang and Downer, 2013), land management (Mutie, 

2019), landslide occurrence(Anagnostopoulos, Fatichi and Burlando, 2015) and snowpack 

evolution (Lehning et al., 2006). 
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2.2.2 Based on spatial configuration 

2.2.2.1.  Lumped models 

In lumped models the parameters, inputs, and outputs are spatially averaged and take a single value 

for the entire catchment. Lumped models have a range of advantages in their application at the 

catchment scale. i) They give a general picture of how the catchment works as a whole, since it is 

hard to predict the response of any natural land-surface to a given rainfall event. ii) Each of the 

building blocks of any given distributed model is itself a lumped rainfall-runoff model. However, 

models of this kind have a limitation in the sense that, if an event parameter cannot be uniquely 

identified, then it cannot be linked to catchment characteristics, and that is a major problem in 

application to ungauged catchments. Similarly, it is difficult to represent catchment change if the 

physical significance of the parameters is unclear. In between is a semi-lumped model which may 

adopt a lumped representation for individual sub-catchments (Wheater et al., 2007). 

2.2.2.2.  Semi-distributed models 

In semi-distributed models, parameters, inputs, and outputs are allowed to vary spatially. It divides 

the whole catchment into Hydrologic Response Units (HRUs) based on other variables in addition 

to land use and land cover, soil type, and slope and simulates the various hydrological processes 

in each HRU. Further description of HRUs can be found in section 2.3 of this thesis. models. 

Compared to lumped models, semi-distributed, and distributed models better account for the 

spatial variability of hydrologic processes, input, boundary conditions, and watershed 

characteristics. While lumped models like GR4J (Perrin, Michel and Andréassian, 2003) present 

an entire river basin in one unit, the spatial variability of the basin is represented by distributed 

models like the MIKE SHE model (Abbott et al., 1986). 

2.2.2.3. Fully distributed models 

In fully distributed rainfall-runoff models, the catchment is divided into a number of cells whose 

physical properties are assumed homogeneous and characterised by a series of reservoirs linked 

vertically and representing different hydrological processes. In each cell, these hydrological 

processes are represented by linearised approximations of the non-linear differential equations that 

govern the movement of water (Beven 2012). 
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Figure 2.1:- Example of ways of classifying hydrological models.
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All these classifications make use of common forcing data such as rainfall, potential 

evapotranspiration, pumping schedules, irrigation schedules, etc., and each model has distinct 

parameters.  Model parameters are quantities intended to characterize the inherent properties of a 

modelled system (both observational and physical) (Kavetski, 2019), and vary from one model to 

another. Lumped conceptual models, such as GR4J (Perrin et al., 2003) have just a handful of 

parameters (four), representing production store, groundwater exchange, routing store, and time 

base of the unit hydrograph.  Semi-distributed physically based models like SWAT (Arnold et al., 

1998) may have many parameters describing soil hydraulic properties, crop growth rates, surface 

lags, etc., and describe processes, parameter estimation approaches, time scales, and spatial 

resolution of input data and simulations by spatial discretization, where a catchment is divided into 

Hydrological Response Units (HRUs) (Xu et al., 2012; Haddeland et al., 2011), which is explained 

in Section 2.3 of this thesis. 

2.3. Catchment discretization and hydrological response units (HRUs) 
HRUs are “distributed, heterogeneously structured areas with common land use, soil and geology 

controlling their unique hydrological dynamics”: the dynamics of hydrological processes within 

an HRU vary only by a small amount compared to the dynamics among different HRUs (Flügel, 

1995; Savvidou et al., 2016). For a better representation of catchment processes, HRUs can be 

classified into topographic based (Leavesley et al., 1983) and homogeneous HRUs (Flügel, 1995). 

A homogeneous HRU requires threshold specifications for land cover, soil and slope classes, 

which are  then used to delineate HRUs (Neitsch et al., 2011). The process involves the division 

of catchments into several sub-catchments, which are further divided into discontinuous 

landmasses through aggregate delineation. A user defines thresholds for soil types, slope ranges 

and land use within each sub-catchment. A spatial overlay scheme based on the Geographical 

Information System (GIS) is then used to produce “unique combination” HRUs with homogeneous 

characteristics. The resultant HRUs represent percentages of the sub-catchment area whose 

contributions differ from the entire catchment responses. Topographic-based HRUs permit the 

simulation of lateral fluxes within the hillslope and vertical fluxes into the soil due to their ability 

to integrate the topological flow routing between HRU subareas into the process-based distribution 

concept (Savvidou et al., 2016). For catchments with areas less than 200 km2, homogeneous HRUs 

are much preferred as they provide a better representation of the catchment processes (Bongartz, 

2003). 

However, in most distributed hydrological models, a catchment is assumed to be an assembly of 

discrete entities in the form of grid cells, with different properties, that contribute differently to its 

responses (Efstratiadis et al., 2008). Thus, HRUs denote spatial elements of pre-determined 

geometry, while the parameterization of the hydrological processes is dictated by the model 

discretization (Daniel et al., 2011; Nalbantis et al., 2011).  
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 Table 2:-  Summary Characteristics of Physically based, Conceptual and Empirical Models 

Classification/ 

Descriptive 

characteristics/ 

Physically based Models Conceptual Models Empirical Models 

Model classification Mechanistic or white box models. Parametric or grey box models. Data based or metric or black box 

models 

Description of hydrological 

processes 

Based on spatial distribution, evaluation of parameters 

describing physical characteristics 

Based on modelling of reservoirs and includes semi 

empirical equations with a physical basis. 

Involve mathematical equations, 

derive value from available time 

series. 

Data requirement for model 

parameterization 

Require data about initial state of models and 

morphology of catchment. 

Parameters are derived from field data and 

calibration. 

 

Little consideration of features 

and processes of system. 

Computer and power to run 

the models 

Complex models. Require human expertise and 

computation capability. 

Simple and can be easily implemented in computer 

code. 

High predictive power, low 

explanatory depth. 

 Length of 

hydrometeorological data 

for calibration of parameter 

sets and scale & model 

examples 

Suffer from scale related problems. SHE or MIKESHE 

(Abbott et al., 1986), GeoSFM (rtan. et al., 2004), VIC 

(Liang et al., 1994). 

Require much hydrological and meteorological data 

GR4J (Perrin et al., 2003), HBV model (Berglöv et 

al., 2009), TOPMODEL Beven and Kirby, 1979), 

PDM (Moore, 2007). 

Cannot be generated to other 

catchments. 

ANN, unit hydrograph. 

Validity range in 

application 

Valid for a wide range of situations, e.g., applied to any 

set of data over which physical laws are valid. 

Calibration involves curve fitting; makes physical 

interpretation difficult.  

Valid within the boundaries of 

given domain and calibration 

data range. 
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Table 3: Summary Characteristics of Lumped, semi-distributed and distributed models 

Characteristic/ classification Lumped Models Semi distributed Models Distributed Models 

Variability of input parameters 

within the catchment 

Input parameters do not vary spatially 

within the basin. 

Input parameters are allowed to vary partially 

in space. 

Input parameters are allowed to vary fully in space at a 

resolution chosen by the user. 

Response of output to individual 

sub-basins 

Response or output is evaluated only at the 

outlet without considering the response of 

individual sub-basins. 

Response is evaluated by dividing the basin 

into several smaller sub-basins. 

Response is evaluated by dividing whole basin into 

small sub-basins. 

Ease of simulating event-based 

processes 

Not applicable to event-based processes. Lie between lumped and distributed models. Applicable to event-based processes. 

Physical meaning of parameters Parameters do not represent physical 

features of hydrologic processes; model 

parameters area weighted average 

Require less data than the fully distributed 

models 

Consider the hydrologic processes taking place at 

various points in space and define the model variables 

as functions of the spatial dimensions. 

Data requirement Low data requirements. Lower data requirement than distributed 

models. 

Require large amount of data. 

Simplicity Easy to use. Lie between.  Require expertise.  

Accountability of point hydrological 

process 

Prediction results are at catchment outlet 

only 

Lie between. Prediction results can be obtained at any location and 

time. 

Computational speed and capacity Simple in nature and require minimal 

computational time. 

Lie between requiring more computation 

speed and time 

Requires much computational time due to being 

cumbersome in nature. 

Common examples Examples: GR4J (Perrin et al., 2003), 

PDM (Moore, 2007), NAM (Nielsen and 

Hansen, 1973), SMAR (O’Connor and  

Zhang, 1970).1970). 

Examples: SWAT (Arnold et al., 1998), 

GeoSFM (Artan. et al., 2004), HBV-96 

(Berglöv et al., 2009). 

Examples: LISFLOOD (van der Knijff et al., 2010), 

MIKE SHE (Abbott et al., 1986), TOPMODELv3 

(Beven and Kirby, 1979). 

Treatment and inclusion of the 

physical process at prediction stage 

They do not consider governing processes 

during result predictions. 

Lie i between Consider detailed governing physical processes down 

the modelling chain. 

Accuracy in simulating observations Not very accurate.  Highest accuracy is achieved if accurate data are 

available. 
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2.4. Overview of hydrological models 
This section provides a detailed review of several hydrological models. This section is important 

because the information is used to develop a hydrological model selection framework with criteria 

(Chapter 4), and the models considered in the evaluation are those outlined in this section. Im 

model selection, sampling is done from a many available models. In this thesis, convenient 

sampling (which models are the authors familiar with) was partially considered and much weight 

given to judgemental sampling (models are included based on expert judgement). I sampled the 

models from a predetermined number of models widely applied to Kenyan studies as well as 

trialled in the FF prototypes, thus lower weighting factor given to convenient sampling. Judgement 

sampling is much considered after the detailed evaluation presented in Table 9 in Section 4.6.2 in 

Chapter 4 of the thesis. Also, Chapter 5 looks at evaluation of precipitation datasets for 

hydrological applications, in which the GR4J model (Section 2.4.1 and detailed processes outlined 

in 3.3.2.2.1) is calibrated and validated over Kenyan catchments. The sub-sections here provide 

summary descriptions, with their applications, of twelve hydrological models that have been 

applied globally across different catchments. In some models, a description of the parameters, 

variables and processes is given, and a summary of their real meaning outlined in Table 4. Key 

references of the models are also summarised in Table 8. The strengths and weaknesses, processes, 

and data etc. of each model are summarised in Table 9.  

2.4.1. GR4J 

The GR4J model, known as modèle du Génie  Rural à 4 paramètres au pas de temps Journalier 

(Perrin, Michel and Andréassian, 2003; Ficchì, Perrin and Andréassian, 2019), is a simple daily 

continuous lumped conceptual rainfall-runoff model with only 4 parameters. The GR4J model is 

the modified version of the GR3J model which originally focussed on the soil moisture 

compartment.  Typical meteorological input data used in the GR4J model are precipitation (P) and 

evapotranspiration (E) at daily time steps (Figure 2.2). P is an estimate of the areal catchment 

rainfall that can be computed by any interpolation method from available rain gauges and PE is 

estimated from the average value of evaporation. A schematic diagram for the GR4J model, 

illustrating input data, processes and parameters and a corresponding FORTRAN code is available 

on the Cemagref Website. The airGR package in Coron (2019) has now been released to ease the 

implementation of the GR models. 

There are four free main parameters to be optimized in GR4J model, namely: maximum capacity 

of production store (X1, mm), groundwater exchange coefficient (X2, mm), maximum capacity of 

non-linear routing store (X3, mm), and time base of the unit hydrograph (X4, days) (Ficchì, Perrin 

and Andréassian, 2019) and fixed parameters, whose values were set in Perrin, Michel and 

Andréassian (2003) ( 

Table 5). The processes represented include interception, evaporation, groundwater, runoff, and 

routing components. A production store and a routing store are the main conceptual reservoirs in 

the model. The production store controls the water infiltration into the ground following the 

characteristics of a conceptually unsaturated reservoir. The role of the routing store is to disconnect 

the groundwater reservoir and contribute to the water routing out of the system.  Water is routed 
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linearly by two-unit hydrographs (UH1 and UH2), with a fixed contribution of 90% and 10% 

respectively. The conceptual nature of the model coupled with this routing method are useful in 

simulating the time lag between a rainfall event and the corresponding peak discharge (Perrin, 

Michel and Andréassian, 2003; Arnal, 2014). 

Due to its very simple design, GR4J can be calibrated relatively quickly, and so various versions 

of this model have been used in a range of studies worldwide for different applications (Oudin et 

al., 2004; Berglöv et al., 2009; Tian, Xu and Zhang, 2013; Van Esse et al., 2013; Humphrey et al., 

2016; Mostafaie et al., 2018; Ficchì, Perrin and Andréassian, 2019; Lerat et al., 2020). For 

instance, Mostafaie et al. (2018) compare different multi-objective functions in calibrating a 

conceptual rainfall runoff model in the Danube River Basin. Van Esse et al. (2013) compare model 

structures to assess their effectiveness in different climates between the calibration and validation 

periods, in catchments with flashy flows, and in catchments with unexplained variations in low 

flow measurements within French catchments. Humphrey et al. (2016) apply a hybrid monthly 

streamflow forecasting approach to explore the simulation of soil moisture from the GR4J model 

to represent initial catchment conditions in a Bayesian artificial neural network (ANN) statistical 

forecasting model in Southeast Australia catchments. Results indicate a good performance in 

forecasting high flows in terms of the accuracy of the median forecasts, as well as reliability and 

resolution of the forecast distributions. 

 
Figure 2.2: Schematic representation of the GR4J rainfall-runoff model (Source: Perrin et al., 2003). P is rainfall 

depth; E is potential evapotranspiration estimate; Q is total streamflow; Xi are the model parameters; all other 

letters are model variables or fluxes summarized in Table 4. 
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The GR4J model has been used in several studies over a range of catchments in Africa. For 

instance, Kodja et al. (2018) analysed the performance criteria of the GR4J model for  reproducing 

high water flows in the Ouémé catchment in West Africa.  The results showed that GR4J 

overestimated the streamflow during the low water period and underestimated flow at high water. 

Ruelland et al. (2010) simulated hydro-climatic variability over Sudano-Sahelian catchments and 

found that GR4J provided a near approximate estimate of cumulated discharge. Traore et al. (2014)  

used the GR4J and GR2M models to evaluate the availability of water in the basin of Koulountou 

Rivern, a tributary of the Gambia River, and the results show a good performance,ion depicted by 

a high NSE value. Tegegne et al. (2017) compared three models (GR4J, IHACRES and SWAT) 

in the Upper Blue Nile Basin to assess their usefulness in water resources assessment. Results 

show that GR4J performed best for the simulation of high, mid-range, and dry flows in a range of 

catchments. 

Consequently, the GR4J model was adopted for further analysis in this thesis and a detailed 

description of the model processes and equations are provided in Section 3.3.2.2.1 of Chapter 3. 

2.4.2. NAM 

NAM (Danish: Nedbør-Afstrømnings-Model) is a lumped conceptual rainfall–runoff model 

developed at the Technical University of Denmark  (Nielsen and Hansen, 1973) and later 

incorporated into the MIKE11 river modelling system, which includes a user interface and a multi-

objective autocalibration scheme (Madsen, 2000). The schematic representation of the NAM 

model is shown in Figure 2.3. 

 

Figure 2.3: Schematic overview of the NAM model (Nielsen and Hansen 1973). 
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Flow in NAM is divided into overland flow (surface flow), interflow (subsurface flow) and base 

flow. The model contains four water storage components: surface storage, snow storage, root zone 

storage and groundwater.  In addition to these storages the NAM model also incorporates the other 

depletions with the help of irrigation and ground water pumping modules. The NAM model has 

nine model parameters which are used to route water through the mutually connected storages 

(Nielsen and Hansen, 1973). The snow storage is considered only in cases where snowmelt 

contributes considerably to runoff; of the other three main storages, the upper zone storage 

represents vegetation, depressions and near surface (cultivated) soil, and the lower zone storage 

represents the root zone and the main soil horizons, while the groundwater storage represents 

water-bearing rocks.  

The basic meteorological data inputs into the NAM model are precipitation, potential 

evapotranspiration, and temperature at daily timesteps. The model utilizes these to produce output 

in the form of catchment runoff, subsurface flow contributions to the channel, and information 

about other elements of the land phase of the hydrological cycle, such as soil moisture content and 

groundwater recharge (Agrawal and Desmukh, 2016). Like GR4J, NAM is simple and easy to 

calibrate and so it has been applied in several studies around the globe to simulate flow values in 

respect of rate, timing, and volume. For example, it has been used for design flow and stage 

computations (Rahman et al., 2011), reservoir inflows (Razad et al., 2018), climate change 

scenarios and impact projections (Vansteenkiste et al., 2014), rainfall-runoff modelling  (Doulgeris 

et al., 2011; Lin et al. 2014; Singh et al., 2014) and ecosystems and water resource management 

(Doulgeris et al., 2012). For flood applications, the NAM model has been used in several studies. 

For example, Katuva et al. (2018) used NAM to assess water allocation and hydrological 

simulation in the Mukurumudzi River Basin in Kenya.  Through an abstraction survey conducted 

along the entire length of the river followed by a low flow study and water balance modelling, they 

established remarkable differences in simulated and observed flows at source and mouth during 

the dry months of July and August. Wara et al. (2014) assessed climate change impacts on the 

water cycle and river flow regime of the Nyando River Catchment using the NAM model. They 

established that climate change would result in stream-flow alteration and increased frequency and 

intensity of flooding, with consequences for water availability and agricultural productivity. Odiyo 

et al. (2012) conducted a study on the Latonyanda River Quaternary catchment using the MIKE 

11 NAM model. Results show that observed and simulated flow at catchment scale correlated well 

except for underprediction of peak events and a few low flows. In addition to this, a few 

overpredictions occurred due to illegal irrigation abstractions as they reduce the observed values 

and are not captured in the modelling. The study of Nguyen and Tran (2010) on the Ben Hai River 

basin, which combines auto calibration with the trial-and-error approach of the MIKE 11 NAM 

model, concludes that the good agreement between simulation and observation of the hydrograph’s 

shape and total flow volume indicates the model parameters are consistent.  An additional detailed 

review on applications of the NAM model can be found in  Agrawal and Desmukh (2016).  

2.4.3. Soil Moisture Accounting and Routing Model (SMAR) 

The SMAR model is a lumped conceptual rainfall-evaporation-runoff model introduced by 

O’Connor and Zhang (1970) and modified by Khan (1995) and Liang (1992). SMAR consists of 
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a water balance component and a routing component: the former simulates in a very simplified 

manner the various physical phenomena governing the runoff generation process, and the latter 

transforms therunoff generated by the water balance component into discharge at the catchment 

outfall (Tan and O’Connor, 1996). A schematic diagram showing the structure of the standard 

SMAR model, incorporating the modifications suggested by Khan (1995) and Liang (1992),  

Figure 2.4. 

 
Figure 2.4: Schematic diagram of SMAR model (Liang 1992; Khan, 1995). 

The main meteorological inputs of the SMAR model are rainfall and temperature at daily 

timescales. In total, the SMAR model has nine parameters, namely Z, T, H, Y, C, G, N, NK, 

and Kg. Z  is the combined water storage depth of the layers, T is a parameter (less than unity) that 

converts the given evaporation to potential, C Evaporation decay parameters, facilitating the lower 

evaporation rates from the deeper layers, H  is the direct runoff coefficient,  Y is the maximum 

infiltration capacity, N is the shape parameter of the Nash gamma function model, a routing 

parameter,  NK is the scale parameter of the Nash gamma function model, a routing parameter, G 

is the groundwater weighting parameter and Kg is the  storage coefficient of the linear reservoir, a 

routing parameter. Some of these parameters may be fixed at appropriately chosen values, while 

the values of the rest are usually estimated empirically by optimization to minimize the objective 

function in the form of the sum of the squares of the errors between the observed and estimated 

flows (Kachroo, 1992; Goswami and O’Connor, 2010). Detailed technical description of the 

SMAR model, optimization of the parameters and updating modules can be found in Zhang (1970).  

For flood applications, SMAR has been applied to several studies across the globe, due to its 

simplistic nature. For instance, the SMAR-AR Model was used for real-time river flow forecasting 

on the Blue Nile catchment at a location near the Sudanese-Ethiopian border (Shamseldin et al., 

2009). The SMAR-AR model discharge forecasts were compared with those of SAMFIL for the 

flood season (August-September) and  the discharge forecasts of the SMAR-AR model proved to 

be  far more reliable than those of the SAMFIL.  An assessment of the applicability of the Galway 
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River Flow Forecasting and Modelling System (GFFMS) for Lake Tana Basin, Ethiopia, which 

included the SMAR model, established that the SMAR model gives reliable forecast results with 

an NSE value of 0.78 (Dessalegn et al., 2017). Fazal et al. (2005) records the assessment of the 

potential of the SMAR model to  estimate groundwater recharge using only rainfall, evaporation 

and groundwater level data in Miyakojima Island, Japan.  Using the Genetic Algorithm (GA) 

optimization technique, the authors established that the estimated recharge by the SMAR model 

was 45% of the mean annual rainfall and concluded that the model could be a viable choice since 

it could estimate dependable recharge with a minimum of input data. Three flood forecasting 

techniques were assessed to determine the most efficient model for flood forecasting in the Nzoia 

Basin, Kenya: SMAR-LTF, ANN-NARX and LPM-LTF;  SMAR -LTF and ANN-NARX were 

the better performers (Gathee and Odera, 2015).. 

2.4.4.  Probability Distribution Model (PDM) 

The Probability Distribution Model is a conceptual rainfall-runoff model which transforms 

potential evaporation and rainfall data to flow at a catchment outlet (Moore, 2007).  The most 

commonly used PDM model configuration comprises a probability-distributed soil moisture 

storage, a surface storage, and a groundwater storage component (Moore, 2007). A probability-

distributed soil moisture storage component is based on a Pareto distribution of soil moisture 

storage capacity over a catchment and separates direct runoff from subsurface runoff. A surface 

storage component transforms direct runoff to surface runoff using a two-linear reservoir cascade 

formulated as a transfer function with dependence on two past outputs and current and previous 

input. The groundwater storage component receives drainage water from the distributed soil 

moisture storage as input and contributes the ground water component of total runoff as output. 

The schematic representation of the PDM model is shown in Figure 2.5. 

 

Figure 2.5:The PDM rainfall runoff model: s1 is the recharge, s2 is the surface storage, s3 is the groundwater 

storage, qs is the surface runoff, qb is the baseflow, E is evapotranspiration and P is precipitation  (Moore, 2007) 
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Runoff production at a point in a catchment is controlled by the absorption capacity of the soil 

(taken as canopy and surface detention) to take up water. A runoff production model which 

integrates point runoffs can be formulated, taking into consideration variation in the catchment 

storage capacities and the spatial variation of capacity described by probability distribution. The 

groundwater recharge from the soil moisture store passes into subsurface storage. The outflow 

from the surface and subsurface storages and any compensation releases from the reservoir or 

constant abstractions form the model output (Moore, 2007). The main meteorological inputs into 

the PDM model are rainfall and evapotranspiration at hourly time steps. The PDM has several 

parameters detailed in Moore (2007). 

PDM has been applied in studies in different parts of the world. For example, Bennet et al. (2016) 

assessed the performance of models including the PDM when calibrated with hourly rainfall 

disaggregated from daily forcing for streamflow forecasting applications, to show an improvement 

in model performance over mesoscale catchments. Willems et al.  (2014) assessed the performance 

of NAM and PDM models in capturing the peak and/or low flow extremes, and changes in these 

extremes, for impact investigations on such hydrological extremes in Grote Nete and Nyando 

rivers in Belgium and Kenya respectively. Their findings reveal that identification of the model 

structure in a case-specific way does not lead to higher accuracy than the traditional NSE, which 

do not necessarily reflect the model performance for high and low flow extremes, and sub-models 

or sub-flows. A study by Srivastava et al. (2014) showed a poor performance of dynamically 

downscaled daily precipitation from ERA interim using the conceptual PDM in simulating the 

observed streamflow for the Brue catchment (UK). Ngaina (2014) assessed the capability of PDM 

using the Ensemble Kalman Filter (EnKF) to forecast flood events over the Nzoia sub-basin, 

Kenya. Results show a better performance in terms of RMSE and the Coefficient of Efficiency 

(CoF), and thus potential for improving flood forecasting to enable the management of flood 

related risk on a real time basis over the sub-basin. 

2.4.5. Hydrologiska Byråns Vattenbalansavdelning- 96 (HBV-96) 

HBV-96 is a conceptual semi-distributed hydrological model, for continuous calculation of runoff, 

originally created at the Swedish Meteorological and Hydrological Institute (SMHI) in 1996 from 

a re-evaluation of the lumped HBV hydrological model (Lindström et al., 1997; Berglöv et al., 

2009; Arnal, 2014). The model’s name is an abbreviation of Hydrologiska Byråns 

Vattenbalansavdelning (Hydrological Bureau Water Balance Department). The schematic 

representation of the HBV -96 model and the representative model parameters and routines are 

illustrated in Figure 2.6. 
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Figure 2.6: Schematic representation of the HBV-96 model (after Lindström et al. 1997) with routines for snow, 

soil, and runoff response represented by SP, SM and Q respectively. 

HBV-96 runs at hourly time steps using the following input meteorological data: hourly 

precipitation and air temperature and potential evapotranspiration monthly mean averages. Sub-

basins are subdivided into zones defined by elevation and spatial distribution of vegetation. Four 

different land use classes are used within the model: open areas, forests, lakes and glaciers 

(Berglöv et al., 2009). Lakes have a significant impact on runoff dynamics and the routing in major 

lakes is therefore modelled explicitly. It has a simple interception storage for forested areas, but 

interception is neglected for open areas. The response function of the model transforms excess 

water from the soil moisture routine to discharge to each sub-basin. It consists of two reservoirs 

connected in series by constant maximum percolation rate and one transformation function 

(Lindström et al., 1997) 

The structure of HBV-96 follows multiple routines, namely i) the precipitation routine, ii) the soil 

moisture routine and iii) the runoff response routine. The latter is composed of two zones, an upper 

non-linear reservoir and a lower linear reservoir. The upper zone reservoir generates a quick runoff 

flux, while the lower reservoir produces as an output a baseflow component (Arnal, 2014); they 

are then summed before being subjected to the MAXBAS transformation function, a triangular 

weighting function that is used as a routing function to compute simulated runoff (Bergstrom, 

1995; Lindström et al., 1997; Berglöv et al., 2009). Over the years, the HBV-96 model has been 

under development and this has led to improvements, such as the data interpolation method, 

evaporation calculations and precipitation and temperature updating for forecasting (Berglöv et 

al., 2009). 

The HBV model has been used in global and regional flood forecasting studies in different parts 

of the world without the modification of its structure. A number of studies have shown that HBV-

96 produces good flood forecast simulations because of its simple design and low number of model 

parameters, so is applicable to an extensive number of cases, especially large sub-basins such as 

the Rhine basin  (Berglöv et al., 2009; Arnal, 2014). More specifically, HBV-96 has been applied 
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in assessment of satellite precipitation datasets as alternatives to hydrological model inputs to 

simulate streamflows  (Worqlul et al., 2017), and model effects of deforestation and land use 

changes on streamflow (Muli, 2007; Rientjes et al., 2011), behavioural changes in water levels 

and streamflow (Birundu & Mutua., 2017), and impacts of climate change on hydrological 

response  (Booij et al., 2011; Nobel, 2011; Abraham et al., 2018). 

2.4.6. TOPography based hydrological MODEL (TOPMODEL) 

The first lumped version of the TOPMODEL model was developed by (Beven and Kirby 1979). 

This version of TOPMODEL treats a catchment as a set of homogeneous sub-catchment units in 

hydrologic response through the channel network method and so they have to be modelled 

separately (Beven et al., 1984). This version of the model is driven by a set of model parameters 

including maximum interception storage, infiltration storage level, overland flow velocity, field 

capacity, subsurface flow, channel velocity and sub-catchment topographic constant. Due to the 

complexity of the model and the numerous model parameters to be calibrated, there has been 

developments in the structure and physics of the TOPMODEL. The schematic representation of 

the lumped version of TOPMODEL adopted from Beven and Kirby (1979) is as shown in Figure 

2.7. 

 

Figure 2.7: Schematic diagram of the components of TOPMODEL (Beven and Kirkby 1979). 

Gao et al., (2015) developed the physically based spatially distributed version of the TOPMODEL. 

Unlike the lumped version, this uses grid cells as computational units, downscaling runoff 

production equation from catchment to cell scale, derived from the original version.  A new module 

on the basis of the multiple‐direction flow theory of Quinn et al.,(1991) and the Darcy‐Weisbach 

equation is used to describe the overland flow (Gao, Holden and Kirkby, 2017).  The flow direction 
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depends on the depth of water, surface roughness, topography, velocity and slope. Within this 

module, a stochastic algorithm is used to describe the routing of overland flow. TOPMODEL has 

two main components: the water balance at the soil surface useful for runoff prediction and the 

routing component, useful for transfer of runoff to the basin outlet. The transfer component is 

divided into two phases: the first representing the transfer along the slopes towards the drainage 

network and the second representing transfer along the drainage network to the basin outlet. 

The meteorological input datasets for TOPMODEL include rainfall and potential 

evapotranspiration at daily or hourly timesteps. Five parameters optimized in TOPMODEL 

include; M - the parameter of the exponential transmissivity function or recession curve (m), Ln 

(To) -  the natural logarithm of the effective transmissivity of the soil when just saturated in which 

a homogenous soil throughout the catchment is assumed (m2/h), SRmax - the soil profile storage 

available for transpiration, i.e. an available water capacity (m), SRint - the initial storage deficit in 

the root zone (m) and ChVel - routing velocity for scaling the distance over area – also called 

network width function whereby a linear routing is assumed (m/h) (Holden et al., 2008; Gao, 

Holden and Kirkby, 2017). The physical processes represented are vegetation interception 

capacity, surface runoff from saturation and infiltration excesses. Vegetation interception capacity 

is represented by a reservoir with a capacity of SRmax. The water is extracted from the reservoir at 

the potential evapotranspiration rate; when net precipitation is more than the capacity SRmax it 

reaches the soil and forms the input for the subsequent model components. The saturated hydraulic 

conductivity of the soil follows the negative exponential law verses the depth, assuming the water 

table is parallel to soil surface. 

The model had been used in flood forecasting and water related applications. For example, flood 

forecasting in ungauged catchments in humid temperate climate  (Beven et al., 1984; Gumindoga 

et al., 2011), flash flood forecasting (Serrat‐Capdevila, Valdes and Stakhiv, 2014), impacts of 

water abstraction such as reservoirs retention and discharging capacity (Peng et al., 2016), water 

resources management  (Chen et al., 2012) and climate change studies (Dietterick, Lynch and 

Corbett, 1999; Cameron, Beven and Naden, 2000). 

2.4.7. Soil Water Assessment Tool (SWAT) 

Soil Water Assessment Tool (SWAT) is an operational, process based, semi-distributed conceptual 

model that has been incorporated into an ArcGIS interface (ArcSWAT; Di Luzio et al. (2002). 

SWAT operates on a daily time step and is used to predict the impact of land management on 

water, sediment and agricultural chemical yields in large ungauged basins (Arnold et al., 1998; 

Neitsch et al., 2005). The SWAT model requires five basic input data sets: topography, soil, land 

use, climatic data and management data. The climate data includes daily precipitation, 

temperature, solar radiation, wind speed and relative humidity (Malag, Bouraoui and Roo, 2018). 

The schematic representation of the SWAT model, and the associated processes is illustrated in 

Figure 2.8. 
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Figure 2.8: Schematic of SWAT model components (adapted from Neitsch et al., 2005). 

In SWAT, a catchment is divided into multiple sub-basins, which are further subdivided into 

hydrologic response units (HRUs) that consist of a unique combination of soil, land use/cover, and 

slope (Tamm, Luhamaa and Tamm, 2016). The SWAT model simulates sub-basin components 

which are classified into eight major divisions: hydrology, weather, sedimentation, soil 

temperature, crop growth, nutrients, pesticides, and agricultural management. The overall 

hydrologic balance is simulated at daily time steps for each HRU, summarized at the sub-basin 

level, and then routed through the stream network to the catchment outlet (Abbott et al., (1986a; 

1986b)). A command structure is used for routing runoff and chemicals through a catchment 

through streams and reservoirs, adding flows, and inputting measured data on point sources, thus 

the model can simulate a basin subdivided into grid cells or sub-watersheds (Tamm, Luhamaa and 

Tamm, 2016).   

SWAT is currently being utilized in several large area projects.  Intercomparing and hydrological 

modelling studies have shown relatively good streamflow simulations using SWAT. SWAT has 

global and regional applications over a range of large-scale catchments due to its simple design, 

readily available inputs and computational efficiency (Awan et al., 2016; Xu et al., 2016; Le and 

Pricope, 2017). For example, Denmark, Karlson et al. (2016) modelled the combined effect of land 

use and climate changes on hydrology and evaluated the sensitivity of the results from three 

hydrological models, NAM, SWAT and MIKE SHE. Results showed similar performance during 

calibration, the mean discharge response to climate change varied up to 30%, and the variations 

were even higher for extreme events (10th and 99th percentile). Land use changes appeared to 

cause little change in mean hydrological responses and little variation between hydrological 

models. Alemayehu et al. (2018) evaluated the efficiency of Climate Forecast System Reanalysis 

(CFSR) and Water and Global Change (WATCH) rainfall in simulating the observed streamflow 

SWAT model in the Mara Basin (Kenya/Tanzania). Studies by Baker and Miller (2013), Githui et 
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al. (2009), Hunink et al. (2013) and Sang et al. (2005) used the SWAT model in Kenyan 

catchments to assess the impact of land use changes and reservoirs on water resource management. 

2.4.8 Geospatial Streamflow Simulation Model (GeoSFM) 

The GeoSFM is a physically based semi-distributed hydrologic model developed by the U.S. 

Geological Survey Earth Resources Observation and Science (USGS EROS) Center (Artan. et al., 

2004; 2001; 2007; Asante et al., 2008). The GeoSFM is a catchment-scale hydrologic model and 

simulates runoff processes using remotely sensed global data sets using a few parameters and 

variable input data (rainfall and evapotranspiration). The model consists of two components: a 

Graphical User Interface (GUI) component and a rainfall-runoff simulation component. The GUI 

component is useful in input data preparation and visualization of model outputs and is run within 

a Geographical Information System (GIS).  The schematic illustration of the GeoSFM process map 

model is shown in Figure 2.9 and detailed description of the processes can be found in the manual 

at (https://pubs.usgs.gov/of/2007/1441/pdf/ofr2008-1441.pdf). 

 

 
Figure 2.9: Process map and system diagram for the Geospatial Stream Flow Model. (Asante et al., 2008) 

Normally, the catchment is subdivided into several sub-catchments based on the digital elevation 

model (DEM) data in the pre-processing module. Most of the model parameters, topography, 

landcover and soils, derived from the continental-scale datasets, have a physical meaning. The 

rainfall-runoff component of the GeoSFM model is characterized by three main modules. These 

modules include the water balance, catchment routing and distributed channel routing. Daily water 

https://pubs.usgs.gov/of/2007/1441/pdf/ofr2008-1441.pdf


31 

 

balance calculations which determine how much water enters the stream network from each sub-

catchment are a subject of sub-catchments in the water balance module. Also, in this module, the 

soil is treated in two zones: an active soil layer characterized by active soil– vegetation–atmosphere 

interaction processes, and the groundwater zone. The active soil layer is further divided into two: 

an upper thin soil layer where evaporation and transpiration both predominantly occur and a lower 

soil layer where only transpiration takes place. Excess precipitation runoff, direct runoff from 

impermeable areas of the basin, rapid subsurface flow (interflow) and base flow contribution from 

groundwater are the main catchment runoff mechanisms within the GeoSFM model (Asante et al., 

2008).  

The water balance module produces a runoff which is routed in two phases: from the sub-basin 

level to its outlet, then through the main river channel network. In the latter, the subsurface runoff 

is routed using a set of two conceptual linear reservoirs whereas the surface runoff routing is 

enabled through a diffusion wave equation modified for use in a GIS environment (Olivera and 

Maidment, 1999). To determine the rate at which runoff is transported to the catchment outlet from 

the generation point, the DEM and the land cover are used. The linear Muskingum–Cunge scheme 

(Artan et al., 2001; Asante et al., 2008) is useful in routing the water within the river channel 

network. 

The GeoSFM model has been applied and tested in a range of catchments across the world, such 

as the Nile River, to assess the effects of land management practices (e.g., irrigation and water 

abstraction (Mutie et al., 2006; Serrat-Capdevil et al., 2006), to assess the suitability of remotely 

sensed data for streamflow simulations)  (Artan et al., 2007), in flood forecasting and streamflow 

simulations   (Kiluva et al., 2011; Dessu et al., 2016) and climate change and risk assessment 

(Blanc and Strobl, 2013; . These studies found some comparable results in model simulations and 

the ability of GeoSFM to effectively account for water balance. 

2.4.9.  MIKE SHE 

The MIKE SHE model is a physically based, surface-subsurface integrated, coupled, fully 

distributed hydrological model developed by the Danish Hydraulic Institute (DHI; DHI 2002) on 

the basis of the SHE (Système Hydrologique Européen) code (Abbott et al., 1986; Ma et al., 

2016).. In terms of structure, MIKE SHE represents spatially distributed catchment parameters, 

climate variables and hydrological processes. This is achieved through an orthogonal grid network 

and column of horizontal layers at each grid square in the horizontal and vertical, respectively. The 

flexibility in MIKE SHE’s process-based framework allows each process to be solved at its own 

relevant spatial and temporal scale. Detailed developments in the MIKE SHE model, and 

associated parameters can be found in Ma et al. (2016). M. The schematic representation and 

processes of the MIKE SHE model are shown in Figure 2.10. 
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Figure 2.10:  Schematic representation of components of a physically based distributed hydrologic model MIKE 

SHE (Refsgaard, 1995). 

The meteorological input data used in the MIKE SHE model include precipitation, air temperature 

and solar radiation at daily time steps. MIKE SHE has three modules, for precipitation, 

evapotranspiration and flow. Precipitation and evapotranspiration are represented by processes 

like interception, drainage, evaporation and uptake of water from the canopy, ponded water and 

soil. The flow component is divided into unsaturated zone, surface, channel and saturated zone 

flows. Infiltration, moisture distribution and moisture deficit contribute to the unsaturated zone, 

whereas the saturated zone is facilitated by the groundwater flow and exchange. The surface and 

channel flow are accounted for by detention storage, surface runoff and flow routing in rivers and 

flooding respectively. Each of these processes can be solved at its own relevant spatial and 

temporal scale (Ma et al., 2016; Refsgaard et al., 1996).  MIKE SHE can also combine conceptual 

and physics-based methods based on data availability (Graham and Butts, 2005). 

MIKE SHE has been widely employed in research on hydrology and water resources and 

modelling the ecohydrological processes that are subject to human activities and nonstationary 

climate such as land-use change (Im et al., 2009; Viney et al., 2009), wetland management 

(Thompson et al., 2004; Graham and Butts, 2005),  groundwater extraction (Demetriou and 

Punthankey,1998; Foster and Allen, 2015) 2015) ,  irrigation-drainage (Jayatilaka et al., 1998; 

Singh. et al., 1999) (Jayatikala et al., 1998; Singh et al., 1999), and climate change (Karlsson et 

al., 2016), as well as the simulation of water quality and soil erosion (Refsgaard et al., 1996). 

These studies found some comparable results in model simulations and the ability of MIKE SHE 

to effectively account for water balance. 
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2.4.10.  The Variable Infiltration Capacity (VIC) Model 

Variable Infiltration Capacity (VIC) is a single layer land surface hydrological model implemented 

in the Geophysical Fluid Dynamics Laboratory general circulation model (GCM) (Liang et al., 

1994). It is a hybrid of physically based and conceptual components, as illustrated in Figure 2.11. 

 
Figure 2.11: Schematic representation of the three-layer structure of VIC (Liang et al., 1994). 

The meteorological inputs for the model are daily precipitation and temperature and total 

evaporation consisting of three components: evaporation from canopy, bare soils and transpiration 

at daily and hourly timesteps. The latter is represented using an architectural and a canopy 

resistance formulation. The surface energy balance is iterated to solve for the land surface 

temperature at each time step from latent heat flux computations (Liang et al., 1994; Cherkauer, 

Bowling and Lettenmaier, 2003). 

The VIC model focusses on runoff processes within each vegetation class characterized by the 

variable infiltration curve and a representation of nonlinear baseflow. The infiltration curve is a 

function of parameterization of the effects of sub-grid variability in soil moisture holding capacity, 

whereas the baseflow is represented using the empirically based Arno baseflow curve. These two 

distinguishable processes makes it different from other Soil–Vegetation–Atmosphere Transfer 

schemes (SVATS) (Liang et al., 1994; Cherkauer, Bowling and Lettenmaier, 2003). The routing 

model facilitates the explicit representation of reservoirs. VIC has numerous model parameter 

which could not summarised in Table 4 but can be accessed at :-  

https://vic.readthedocs.io/en/master/Documentation/Drivers/Image/Params/. 

VIC has been applied and tested in a range of catchments across the world, such as the  Mekong 

river, to assess the effects of land management practices (e.g., irrigation and water abstraction  

(Tatsumi and Yamashiki, 2015), land cover and energy balance  (Hengade and Eldho, 2016; Chen 

et al., 2018) and the effects of climate change on landcover (Lu et al., 2018). These studies found 

that VIC has difficulties in reproducing observed stream flow in the arid basins attributed to 

https://vic.readthedocs.io/en/master/Documentation/Drivers/Image/Params/
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groundwater-surface water interactions which are not modelled by VIC (it does not include a 

mechanism to account for deep groundwater recharge and drainage to streams). The model does 

not have an explicit mechanism to produce infiltration excess flow and it does not represent 

capillary rise in the soil zone. 

2.4.11.  LISFLOOD 

LISFLOOD is a GIS-based hydrological model designed to simulate all the hydrological processes 

in a given catchment (van der Knijff, Younis and de Roo, 2010). LISFLOOD is a spatially 

distributed grid-based rainfall runoff and channel routing model, run using any desired time 

interval and on any spatial grid size. To simulate the longer-term catchment water balance and 

individual rapid flood events (e.g., flash floods), LISFLOOD can be run using, respectively, daily 

and sub-daily time steps (e.g., hours). The schematic representation of the LISFLOOD model is 

shown in Figure 2.12 and a detailed description of the parameters, variables and key processes can 

be accessed at https://ec-jrc.github.io/lisflood-model/Lisflood_Model.pdf. 

 
Figure 2.12: Schematic representation of Flowchart of the LISFLOOD model, showing the key processes 

included (van der Knijff et al., 2010). P: precipitation; E: evaporation & evapotranspiration; SnCoef: snow melt; 

bxin: infiltration; ChanN2: surface runoff; GWperc: drainage from upper- to lower groundwater zone; Tuz: outflow 

from upper groundwater zone; Tlz: outflow from lower groundwater zone; Rch: drainage from subsoil to upper 

groundwater zone; drainage from top- to subsoil; Cpref: preferential flow to upper groundwater zone. 

LISFLOOD is driven by the following meteorological variables: precipitation rate, P (mm day -1), 

potential evapotranspiration rate with a closed canopy, ETo (mm day -1), potential 

evapotranspiration rate from the bare soil, ESo (mm day -1), potential evapotranspiration rate from 

an open surface, EWo (mm day -1) and average 24-hour temperature, Tavg (
oC). ETo, ESo, and EWo 

are calculated before running the model. A separate set of equations for pre-processing standard 

https://ec-jrc.github.io/lisflood-model/Lisflood_Model.pdf
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meteorological observations (e.g., temperature and radiation) and calculating the different 

potential evapotranspiration rates has been proposed as a companion part to the model.  

LISFLOOD has been used in several studies globally. Examples include flash flood forecasting 

within the Global Flood Awareness System (GloFAS) (Alfieri et al., 2013), flood forecasting for 

Europe (Bartholmes et al., 2009; de Roo et al., 2011; Pappenberger, Thielen and Del Medico, 

2011), assessing water resources (Sepulcre-Canto et al., 2012; Mubareka et al., 2013), climate 

change impact assessment (Rojas et al., 2012) and recently inr  Africa (Thiemig et al., 2015; 

Bisselink et al., 2016).  The study by Bisselink et al., (2016)  for example, considered the 

performance of a differential split-sample test to calibrate the LISFLOOD hydrological model 

using different precipitation sources, to show differences in model parameters and to ensure a 

minimum standard for operational validation of this simulation model in the head waters of South 

Africa. The results indicate large discrepancies in terms of the linear correlation, bias, and 

variability between the observed and simulated stream flows when using different precipitation 

estimates as model input. However, the best model performance was obtained with products which 

were blended with gauge data for bias correction. The study by Thiemig et al.  (2015) examined 

the forecasting capacity of the Pan-African Flood Forecasting System (AFFS) which used the 

LISFLOOD hydrological model to assess its ability to detect and predict flood events and its 

overall performance to predict streamflow. Results indicate that the system has a good capability 

of predicting riverine flood events well in advance, whereas it shows limitations for small-scale 

and short duration flood events. 

2.4.12. The European Hydrological Predictions for the Environment (HYPE) model 

HYPE is a conceptual semi-distributed process-based model (Lindström et al.,2010 

http://hypecode.smhi.se/). The model domain may be divided into sub-basins (Figure 2.13, left), 

which are either independent or connected by rivers and a regional groundwater flow. Each sub-

basin can in turn be divided into classes, which are the smallest computational spatial unit, defined 

by HRUs. 

 

Figure 2.13: Left: schematic division into sub-basins and land classes according to elevation, soil type, vegetation 

and lake classes. Right: schematic model structure within a land class (i.e. a combination of a soil type and a 

http://hypecode.smhi.se/
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crop), simulated using three soil layers. Solid and dashed arrows show fluxes of water and elements, respectively 

(Lindstrom et al., 2010). 

The meteorological forcing requirements for the HYPE model are daily precipitation and 

temperature at daily or sub-daily time steps. The processes represented include snow melt, 

evapotranspiration, surface runoff, infiltration, percolation, macropore flow, tile drainage, and 

lateral outflow to the stream from soil layers. Calculations of the flow path based on the above 

processes for each HRU start in each sub-basin (further detailed in Section 2.3). Each sub-

catchment may consist of any combination of HRU types and each HRU can be divided vertically 

into three distinct soil layers (e.g., top-soil, root zone and the remaining soil). HRUs are connected 

directly to the stream and act in parallel. Water is routed between sub‐basins through the river 

network and through lakes, reservoirs, and wetlands on its path to the river outlets. The HYPE 

model has several parameters which may be general across the domain (e.g., river routing 

parameters) or may depend on the soil type (e.g., field capacity), or land cover (e.g., 

evapotranspiration coefficient).  The values of the parameters are contained in a stepwise manner 

and are determined in the model set-up procedure. Parameters for a HRU have no connection to 

locality or catchment but are specific for a given soil type/land cover combination and are then 

applied anywhere in the domain where that combination of soil type/land cover exists. Detailed 

process description of the HYPE model can be found in Donnelly et al. (2016). 

HYPE is used operationally, and different versions have been implemented in Europe (E-HYPE) 

and in West Africa (Niger-HYPE). For example,  the E-HYPE version was applied to  European 

catchments and the results show good model performance of long-term means and seasonality and 

less good representation of short-term daily variability, especially for Mediterranean and 

mountainous areas (Donnelly et al., 2016).. HYPE was also used in 6,000 sub-basins in India to 

evaluate flow signatures and performance metrics, using both multiple criteria and multiple 

variables, and independent gauges for "blind tests" (Pechlivanidis and Arheimer, 2015). The 

results reveal that despite the strong physiographical gradient over the subcontinent, a single model 

can describe the spatial variability in dominant hydrological processes at the catchment scale. 

Exploration of the process improvement in the developed Niger-HYPE revealed that the original 

model concept could simulate the annual cycle of discharge, but not processes such as 

precipitation, evaporation, surface runoff, infiltration, soil storage, reservoir regulations, aquifer 

recharge, and flooding and river‐atmosphere exchange, which all required improvements if 

accurate flood forecasts were to be achieved in the Inner Niger Delta. In Anderson et al. (2015), 

the application of Niger-HYPE for flow signature statistics reveals the forecasting capacity of the 

model over the basin with reasonable deviations of about 17%. 

2.4.13. Summary classification of the reviewed Models 

The models under consideration are summarized in Figure 2.14, a four quadrant Cartesian plane 

with colour coded distributed drops representing different categories of models outlined in Section 

2.2 in each quadrant. Blue coded drops represent fully lumped conceptual models (e.g., GR4J, 

PDM, and MIKE NAM). The green represents semi lumped conceptual models (e.g., SMAR). 

Yellow represents semi-distributed, physics-based models such as GeoSFM, whereas the grey 

drops are for the semi-distributed conceptual models such as HBV-96. The black category is for 
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the distributed conceptual, models such as the SWAT, VIC and HYPE, whereas the pink shades 

are for the fully distributed physics-based models such as LISFLOOD, MIKE SHE and 

TOPMODEL. 

 
Figure 2.14: Categorical summary of the reviewed models following the model classification in Section 2.2.The  

colour coded distributed drops representing different categories of models outlined in each quadrant: fully 

lumped conceptual (blue), semi-lumped conceptual (green), semi-distributed, physics-based (yellow), semi-

distributed conceptual (grey),  distributed, conceptual (black), and  fully distributed physics-based (pink). 

The models reviewed have been applied in hydrological studies over several catchments in 

different parts of the world and the results show variations in model performance in different 

catchments of different characteristics. This points to the complexity of modelling the physical 

processes operating in different environments and the model parameters required to capture 

geographical heterogeneity. It is therefore necessary to compromise when using models for 

operational applications in different geographical areas. It can be inferred that settling on an 

appropriate tool for hydrological modelling and flood forecasting in Kenya is a complex and 

challenging task, hence the need for a decision framework, which is further discussed in Chapter 

4 of this thesis. 

Some studies suggest that most models may fail to provide good representations of  processes such 

as runoff, soil moisture and other hydrogeological features, which are important process in flood 

modelling and forecasting (Andersson et al., 2015). Furthermore, , ground water flow and surface 

and sub-surface flows are relevant to water balance in catchments, buthowever, some studies have 

shown that several models fail to represent them  (e.g., Nijssen et al., 1997; Trambauer et al., 

2013). For example, VIC has difficulties in reproducing observed stream flow in the arid 

catchments, attributed to groundwater-surface water interactions which are not modelled by VIC 

(it does not include a mechanism to account for deep groundwater recharge and drainage to 

streams). The model does not have a specific mechanism to produce infiltration excess flow and it 
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does not represent capillary rise in the soil zone. Moreover, the processes responsible for channel 

losses are not represented by the routing component. Its distributed physical nature allows 

independence of long time period gauge data, and complete integration of overland and ground 

water. However, as noted by Abbot et al. (1986), Beven (2010) and Ma et al. (2016),  1986; Beven, 

2010; Ma et al., 2016) distributed models have several shortcomings. For example, numerous 

specific hydraulic properties, complex spatial distribution of environmental factors, complicated 

physically based algorithms for the hydrological processes and a strong nonlinear relationship 

between parameters and simulation results are common.  

At the catchment scale, significant factors affect hydrological processes, including latitude, 

temperature, topography, geology and land use (Thompson, 2017). Therefore, modelling is an 

essentially probabilistic application, with uncertainty intensified at each stage of the process, from 

scenario generation to issues of scale, simulation of hydrological processes, and  management 

impacts (Jayathilake, 2019). The four main sources of uncertainty include input uncertainty, 

parameter estimation uncertainty, structural uncertainty and initial conditions uncertainty (Renard 

et al., 2010). Uncertainty induced by model structures can be more significant than uncertainty 

from parameter estimation and input data uncertainty, but such uncertainties are difficult to assess 

explicitly or to separate from other uncertainties during the calibration process (Beven et al., 1992), 

hence the need for a comprehensive uncertainty and sensitivity analysis in modelling. A detailed 

discussion of the concept of uncertainty and sensitivity analysis in hydrological modelling appears 

in Section 2.6.1 of this thesis. 

Additionally, the uncertainty in all the forcing data (mainly precipitation) is also an important issue 

that cannot be overlooked. Even a perfect model, if forced with biased precipitation, will fail to 

produce accurate representations of runoff, soil moisture and other hydrological fluxes. Data 

scarcity issues, discussed in the later sections, impose massive limitations on the proper 

identification of the limitations of each model. In  this respect, many remotely sensed and 

reanalysis products suffice as the best alternatives to observations and many studies have evaluated 

their potential for hydrological modelling and applications in many parts of the world, including 

ungauged Kenyan catchments (Le and Pricope, 2017). Details of input data into hydrological 

models and their evaluation are discussed in Section 2.5 of this thesis. 
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Table 4:- Description of the some of the model parameters, variables and the physical meaning of symbols 

mentioned in in the intext in overview of the individual models. Further model references and institutions 

(developers) can be found in Table 8. 

Model Parameter Parameter description Variable description Variable 

GR4J 

(Perrin et al., 

2003) 

X1 

X2 

X3 

 

X4 

Capacity of the production store (mm).  

Groundwater exchange coefficient (mm)  

Capacity of the nonlinear routing store (mm). 

Hydrograph time base (days). 

Areal catchment rainfall 

Percolation leakage 

Net rainfall 

Total quantity of water 

reaching the routing 

function 

Amount of net rainfall 

that goes directly to the 

production store 

Amount of net rainfall 

that goes directly to the 

routing store 

Potential areal 

evapotranspirationNet 

evapotranspiration 

capacity 

Actual evaporation rate 

Groundwater exchange 

term  

Water content in the 

production store 

Water content in the 

routing store 

Total stream flow 

Output of UH2 

Output of UH1 

Routed flow component 

Direct flow component 

Unit hydrographs 

 

P (mm) 

Perc () 

Pn 

Pr 

 

Ps 

 

 

Pn – Ps 

 

 

 

E (mm) 

En   

 

Es 

F(X2) 

 

S ( mm) 

EP (mm) 

R 

 

Q1 

Q9 

Q 

Qr 

Qd 

UH1, UH2 

(days) 

 

NAM 

Nielsen & 

Hansesn, 

1973) 

U max(mm) 

L max(mm) 

CQ OF (-1) 

CKIF (h) 

CK1,2 (h) 

TIF (-) 

TOF (-) 

CKBF(h) 

TG (-) 

Max. water content in the surface storage 

Max. water content in the lower zone storage 

Overland flow runoff coefficient 

Time constant in the interflow 

Time constant of the overland interflow flow 

Threshold value for interflow 

Threshold value for overland flow 

Time constant of baseflow 

Threshold value for ground water storage 

Surface storage water 

content 

Lower storage soil water 

content 

Actual 

evapotranspiration 

Potential 

evapotranspiration 

Infiltration root zone 

Groundwater recharge 

Excess rainfall 

 

U(mm) 

L(mm) 

E act (mm) 

E pot(mm) 

ΔL (mm) 

G (mm) 

PN (mm) 

PDM 

Goswami et 

al.,201o) 

cmax 

b 

 

mfl 

rtq 

rts 

%(q) 

bypass 

Maximum storage capacity of the catchment 

(mm) 

Degree of spatial variability of storage capacity 

in the catchment (-) 

Snow retention factor (-) 

Residence time quick flow reservoir (dt) 

Residence time slow flow reservoir (dt) 

Percentage flow through quick flow (-) 

Bypass of the rainfall to routing components (-) 

Precipitation  

Potential evaporation 

Surface runoff 

Baseflow 

Moisture storage 

Surface storage  

Groundwater storage 

 

P (mm) 

E (mm) 

qs 

qb 

S1 

S2 

S3 

HBV- 96 
(Lindström et 

al., 1997) 

FC 

LP 

 

Maximum soil moisture (mm) 

Soil moisture threshold for reduction of 

evapotranspiration (-) 

Snow 

Rain 

Evapotranspiration 

SF 

RF (mm) 

EA 
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K0 

K1 

K2 

UZL 

PERC 

 

MAXBAS 

Shape coefficient (-) 

Near surface flow coefficient (1/dt) 

Recession coefficient for lower tank (1/dt) 

Near surface flow threshold (mm) 

Maximum flow from upper to lower groundwater 

storage (mm/dt) 

Transfer function parameter (day) 

Snow cover 

Infiltration 

Recharge 

Soil moisture 

Capillary transport 

Storage in the lower 

reservoir 

Fast runoff component 

Slow runoff component 

Total runoff 

SP 

IN 

R 

SM 

CFLUX 

UZ 

PERC 

LZ 

Q0 

Q1 

SWAT 

(Arnold et 

al., 1998)  

(Only 

streamflow 

parameters 

listed) 

ALPHA_BF 

Ch _K2 

Ch _N2 

CN2 

ESCO 

GW_DELAY 

GWQMN 

 

 

GW_REVAP 

REVAPMN 

SOL_AWC* 

 

SOL_K* 

SOL_Z* 

OV_N* 

 

HRU_SLP 

 

Baseflow alpha factor (d-1) 

Effective channel hydraulic conductivity (mm h-

1) 

Manning coefficient of main channel 

SCS runoff curve number for moisture condition 

II 

Soil evaporation compensation factor 

Groundwater delay (d) 

Threshold depth of water in the shallow aquifer 

required for return flow to occur (mm) 

Groundwater ‘revap’ coefficient 

Threshold depth of water in the shallow aquifer 

for revap to occur (mm) 

Available water capacity of the soil layer (mm 

mm_1) 

Soil saturated hydraulic conductivity (mmh-1) 

Depth from soil surface to the bottom of layer 

(mm) 

Overland Manning roughness 

Average slope steepness (m m-1) 

Precipitation 

Surface runoff 

Lateral flow 

Percolation 

Revap 

Groundwater flow 

Recharge 

 

p 

SMAR 

(O’Connor, 

2005) 

T 

H 

Y 

C 

G 

N 

NK 

Kg 

Z 

Conversion to potential rate 

Direct runoff coefficient 

Rainfall in excess of infiltration capacity 

Evaporation decay 

Moisture in excess of soil capacity 

Nash gamma shape parameter (linear routing) 

Nash gamma scale parameter (linear routing) 

Linear reservoir routing coefficient 

Soil moisture storage 

Precipitation 

Evapotranspiration  

Evaporation 

Excess rainfall 

Direct runoff 

Lateral flow from in 

excess infiltration 

moisture 

Lateral flow from in 

excess soil moisture 

Total generated surface 

runoff 

R (mm) 

E (mm) 

C (mm) 

X (mm) 

r1 

r2 

 

r3 

 

r4 

TOPMODEL 

Beven & 

Kirby, 1979) 

M 

Ln (To, (m)) 

SRmax 

SRint 

ChVel 

 

 

Exponential transmissivity function 

Natural logarithm of effective soil transmissivity 

Soil profile storage 

Initial storage deficit in root zone 

Routing velocity (network width function) 

Precipitation 

Evapotranspiration 

Root zone storage 

Storage in the 

unsaturated zone 

Drainage flux from the 

unsaturated zone to 

groundwater 

Groundwater flow 

Base flow 

R (mm) 

E (mm) 

Srz (m) 

Suz (m) 

qv(mg-1) 

 

qof 

qb 

VIC (Gao et 

al., 2010) 

b 

 

Smin 

 

h 

 

y 

 

kc 

Parameter controlling the curvature of the storage 

distribution 

Minimum storage required for saturated area 

formation. 

Evaporation exponent; property of soil and 

vegetation types 

Capillary fringe thickness 

Baseflow recession coefficient 

Precipitation  

Evapotranspiration 

Surface runoff 

Subsurface runoff 

Scaled soil moisture  

Total soil moisture 

p (mm) 

ea 

qs 

qb 

v 

w 
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LISFLOOD 

(van der 

Knijff et al., 

2010) 

SnCoef 

bxin 

ChanN2 

GWperc 

Tuz 

Tlz 

Rch
 

Cpref 

Snowmelt 

Infiltration 

Surface runoff 

Drainage from upper to lower groundwater zone 

Outflow from upper groundwater zone 

Outflow from lower groundwater zone 

Drainage from subsoil to upper groundwater zone 

Preferential flow to upper groundwater zone 

Precipitation 

Evaporation  

Potential 

evapotranspiration rate 

with closed canopy  

Potential 

evapotranspiration rate 

from bare soil. 

Potential 

evapotranspiration from 

open surface 

 

P (mm d-1) 

E 

GeoSFM 

(Artan et al., 

2001; 

2004;2007) 

Multi-

parameter, 

detailed in 

Artan et al., 

(2001)   

Detailed model parameters available at 

https://pubs.usgs.gov/of/2007/1441/pdf/ofr2008-

1441.pdf 

Evapotranspiration 

Shallow and deep 

ground water exchange 

Snow cover 

Sub-soil interchange 

Linear lake reservoir 

Runoff 

Routing 

Energy balance 

 

HYPE 

(Lindstrom et 

al., 2010) 

Multi-

parameter, 

detailed in 

Lindstrom et 

al., (2010)   

Detailed model prameters available at 

http://hypecode.smhi.se/ 

Precipitation 

Surface runoff  

Interception 

Evapotranspiration 

Ground water exchange 

Routing 

Groundwater flow 

 

No symbols 

used in the 

text 

 

MIKE SHE 

(Abbott et al 

1986) 

Multi-

parameter, 

detailed in 

Keilholz et 

al.,(2015 

Multi-parameter, detailed in Keilholz et al.,(2015 Precipitation 

Evapotranspiration 

Interception 

Runoff 

Infiltration 

Exchange through 

seepage 

Ground water exchange 

Routing 

Snow cover 

Sub-soil interchange 

Energy balance 

No symbols 

used in the 

text 

 

2.5. Input datasets for hydrological modelling 
Data play an important role in hydrological modelling irrespective of the processes represented in 

the model. These datasets can take different forms, so that some variables are considered to vary 

with time (e.g., rainfall, air temperature) and some are considered to be static in time (e.g., soil 

characteristics, topography, vegetation, hydrogeology and other physical parameters) (Devia, 

Ganasri and Dwarakish, 2015).  However, like other components of the modelling chain, data has 

its own inherent unquantified uncertainties and errors which may cause problems in modelling.  

Moreover, data scarcity poses challenges in modelling, an issue which has been highlighted in 

some studies (e.g., Fuka et al., 2014; Beck et al., 2017; Wanzala et al., 2022). As a result, there 

are several global or near-global remotely sensed satellite precipitation datasets at different spatial-

temporal resolutions (Fortin et al., 2015; Sun et al., 2018),  which have been used as substitutes 

https://pubs.usgs.gov/of/2007/1441/pdf/ofr2008-1441.pdf
https://pubs.usgs.gov/of/2007/1441/pdf/ofr2008-1441.pdf
http://hypecode.smhi.se/
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for in situ observations in ungauged catchments. This has in turn made precipitation evaluation 

studies an important topic of discussions within research communities. 

Ground validation of precipitation rainfall products is a challenging task, both in terms of 

assessment and ground observation methodologies. Of primary concern is the quality of the ground 

truthing methodologies and their dependency on the spatial and temporal resoulutions of data 

(Gribbon and Bailey, 2004; Vischel et al., 2011; Hu et al., 2016). Several studies attempt to 

quantify and account for the sampling uncertainties when satellite and reanalyses are compared to 

observations (e.g., Tarek, Brissette and Arsenault, 2021). Measurement and sampling of rainfall 

has been hampered by its high spatiotemporal variability and its intermittent nature, especially in 

the Tropics, where most of the rainfall is controlled by the mesoscale convective systems. This is 

also compounded by the general scarcity of the operational gauge networks, except for a few dense 

networks operated by dedicated organizations or programmes (Nicholson et al., 2019), e.g.,  the 

African Hydromet Programme at 

(https://www.worldbank.org/en/programs/africa_hydromet_program) and the African Group on 

Earth Observations (AfriGEO, https://earthobservations.org/afrigeo.php ). 

Like many other places in the world, Kenya suffers from several severe problems with 

observational data scarcity. The available precipitation gauging stations are sparse and/or not 

available at all (Figure 2.16). Most of the catchments studied in Chapters 4, 5 and 6 have either 

one or two stations, which leads to very sparse coverage. Not only that, but the data series is short 

and includes massive gaps. For example, the Tana River catchment, one of our study catchments 

is 96,000 km2 but has only four precipitation gauging stations. These stations are unreliable and 

have large data gaps (Figure 2.15).  

 
Figure 2.15: Unreliability of the Tana precipitation datasets: missing data in days for the four rainfall gauging 

stations in Tana catchment. 

https://www.worldbank.org/en/programs/africa_hydromet_program
https://earthobservations.org/afrigeo.php
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Figure 2.16:  Locations of the rainfall gauging stations in each of the catchments of study. 

2.5.1. Evaluation of precipitation datasets at global scale 

Several precipitation evaluations for hydrological applications have been carried out globally and 

regionally at basin scale level. Most of these studies considered only a few precipitation datasets, 

did not consider reanalysis-based precipitation datasets, or did not recalibrate the hydrological 

model for each precipitation dataset (e.g., Bitew et al., 2012; Tang et al., 2020).  However, some 

studies have used global reanalysis weather data for various hydrological applications and yielded 

meaningful results (Lavers et al., 2012; Najafi, Moradkhani and Piechota, 2012; Quadro et al., 

2013; Smith and Kummerow, 2013; Fuka et al., 2014). For example, Lavers et al. (2012) used five 

atmospheric reanalysis products — CFSR, ERA-Interim, 20th Century Reanalysis (20CR), 

MERRA, and NCEP-NCAR (National Center for Atmospheric Research) — to detect atmospheric 

rivers and their links to British winter floods and large-scale climatic circulation. Their study 

provided valuable evidence of generally good agreement on atmospheric river occurrences 

between the products. Quadro et al. (2013) evaluated the hydrological cycle over South America 

using CFSR, MERRA, and the NCEP Reanalysis II (NCEP-2). They observed general agreement 

in precipitation patterns among the three products and the observed precipitation over much of 

South America. They reported that the CFSR precipitation showed the smallest biases. Wu, Chen 

and Huang (2013) used the CFSR dataset to study the water budgets of three tropical cyclones that 

passed through the Taiwan Strait. They assessed the quality of CFSR for tropical cyclone studies 

by comparing CFSR precipitation data with TRMM precipitation data. They concluded that the 

CFSR data were reliable for studying tropical cyclones in this area. 
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2.5.2. Evaluation of precipitation datasets at regional scale: - Eastern Africa 

In Eastern Africa, several studies have evaluated precipitation datasets at different spatial and 

temporal scales. These include Dinku et al. (2007; 2008;2011); Hirpa et al. (2010); Romilly and 

Gebremichael, (2011); Worqlul et al. (2014); Young et al. (2014); Maidment et al. (2013; 2014); 

Diem et al. (2014); Awange et al. (2016); Maidment et al. (2017) and Dinku et al. (2019).  

However, none of these studies has evaluated the potential of these products for hydrological 

applications or incorporated a comparison of reanalysis datasets. For example, Dinku et al.  (2018) 

carried out an evaluation of CHIRPS at daily, dekadal (10-day) and monthly time-scales in East 

Africa for Ethiopia, Kenya and Tanzania by comparing the satellite products with rain-gauge data 

from about 1,200 stations but did not evaluate the reanalysis precipitation datasets and did not 

consider catchment scale evaluation for hydrological applications. 

For hydrological applications, studies have been carried out on several catchments in East Africa.  

Most of these studies just compared one reanalysis dataset with the gauge observations in 

simulating catchment runoff. For example, a study by Artan et al. (2007) used GeoSFM, a 

physically-based semi-distributed hydrologic model, to show the significance of satellite 

precipitation datasets in simulating streamflow over four basins in East Africa. Results show the 

usefulness of remotely sensed precipitation data for hydrologic modeling when the hydrologic 

model is calibrated with such data. However, they note that the remotely sensed rainfall estimates 

cannot be used confidently with hydrologic models that are calibrated with rainfall measured by 

rain gauges, unless the model is recalibrated. Dile and Srinivasan (2014) compared  the 

performance of Climate Forecast System Reanalysis (CFSR) with that of gauge observations in 

simulating observed streamflow at four river gauging stations in the Lake Tana basin, the upper 

part of the Upper Blue Nile basin, using the SWAT model. They found out that the gauge 

observations perform better than the CFSR data, but recommend the use of satellite data in data-

scarce regions where there are few gauge observations. Worqlul et al.  (2017) evaluated CFSR and 

TRMM Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 as input to HBV and 

Parameter Efficient Distributed (PED) hydrological models. They found that both the gauged and 

the CFSR reanalysis data were able to reproduce the streamflow well for Gilgel Abay and Main 

Beles in the Ethiopian highlands.

2.5.3. Evaluation of precipitation datasets at country scale - Kenya  

Kenyan basins are poorly gauged, according to the quantity, spatial distribution and quality of 

precipitation data (Le and Pricope, 2017). A low quantity and spatial distribution of rainfall gauge 

stations can cause overgeneralization and inaccurate quantification of water availability, while 

unreliable or incomplete datasets can be unable to identify seasonal or larger range temporal 

patterns correctly, or at all; they can alsor miss key events entirely.  In such cases satellite and or 

reanalysis precipitation datasets are used in data-scarce areas, which proves the usefulness of 

evaluating these precipitation datasets. The role of reanalyses in climate and land monitoring 

applications is now widely recognized. For instance, ECMWF’s reanalysis ERA5 is periodically 

used, together with other datasets, as input to the WMO annual assessment of the State of the 

Climate, routinely presented at the Conference of the Parties of the United Nations Framework 

Convention on Climate Change (UNFCCC, WMO, 2021). Reanalyses are also a resource used to 
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produce Essential Climate Variables (ECVs) and Climate Indicators recommended by the Global 

Climate Observing System (GCOS, Lavergne et al., 2022). By optimally combining both satellite 

and conventional observations with a high-quality forecast model, reanalyses indeed provide 

consistent "maps without gaps" of ECVs and strive to ensure integrity and coherence in the 

representation of the main Earth system cycles (e.g., water, energy and carbon) (Muñoz-Sabater 

et al., 2021; Rabier et al., 2021). The consistency shown by reanalysis over several decades 

provides justification for using both tools to support the monitoring of heatwaves, droughts, or 

other extreme events such as floods. They are used to create observational and reanalysis-based 

climatologies that serve as a reference to detect anomalies in time series, either in the study of past 

events or in the prediction of future extremes (Hoffmann et al., 2019). 

Khan et al. (2011) evaluated TRMM-3B42 V6 using a distributed hydrologic model, Coupled 

Routing and Excess STorage (CREST), to simulate the spatiotemporal variation of water fluxes 

and storage. Results showed the potential of TRMM-3B42 V6 not only for the investigation of 

water balance but also for addressing issues pertaining to sustainability of water resources at the 

catchment scale. Le and Pricope (2017) evaluated the performance of the CHIRPS dataset in 

simulating streamflow using SWAT (see Section 2.4.3) over the Nzoia Basin in western Kenya. 

Comparisons of results between estimation of streamflow using in situ rainfall gauge station data, 

the CFSR and the CHIRPS dataset showed simulated streamflow estimates based on rainfall gauge 

station data were poor but improved significantly with the CFSR and CHIRPS datasets. 

Most of the findings in the highlighted studies show variations in the performance of the different 

precipitation datasets in relation to geographic location. It is therefore important to assess the 

performance of precipitation datasets at catchment scale, due to inherent stark differences in 

catchment characteristics, whilst communicating uncertainties associated with each of the datasets 

and how they influence model parameters. To provide background information on model 

parameterization and uncertainty, Section 2.6 outlines the concept of hydrological model 

parameters, delving into uncertainty (2.6.1) and sensitivity analysis (2.6.2) as well as non-

stationarity and equifinality in hydrological models (2.6.4, & 2.6.5). 

2.6. Hydrological model parameterization 
A hydrological model parameter is an internal model configuration variable which plays an 

important role in model simulation (Bárdossy and Singh, 2008; Kavetski, 2019). Beven (2001) 

defines model parameters as typically integral coefficients built into the structure of models to 

define the characteristics of the catchment area or flow domain. Model parameters are usually 

assumed to be constant in time, although the influence of human activities and temporal variations 

in climatic conditions may mean model simulations would benefit from continuously varying 

parameters (although this makes heavy demands on data and computational resources) (Patil and 

Stieglitz, 2015). For example, urbanization and dam construction  may result in underlying surface 

changes, leading to changes in model parameters which represent the transient catchment 

characteristics (Legesse, Vallet-Coulomb and Gasse, 2003). Also, while calibrated parameters are 

expected to correct for model structure and observational data issues, model parameters may 

possibly vary with climatic temporal fluctuations (e.g., timing and frequency) (Merz, Parajka and 

Blöschl, 2011). Thus, it is important to consider the effects of such outcomes when estimating 
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hydrological model parameter values and carefully communicate the uncertainties: this is further 

discussed in Section 2.6.1. 

Physically based model parameter values are usually derived, whenever feasible, from accessible 

field data (Refsgaard and Knudsen, 1996) and parameter estimation values are then typically 

evaluated in relation to physically acceptable ranges. In general, parameter variables within a 

certain range follow some specified probability distributions, whose shape can significantly be 

significantly affected by the parameter range (Xing et al., 2018), but also the nature of the 

parameter (Cloke, Pappenberger and Renaud, 2008). For example, parameter values of a 

physically based catchment scale model can be fully determined but may not be right,   owing to 

experimental restrictions and scaling issues, such as discrepancies in measurement and model grid 

scale, creating  the need for time-to-time adjustments (Madsen, 2003). 

2.6.1. Concept of uncertainty 

Uncertainty arises from the intrinsic structural complexity of the modelling system and errors and 

assumptions within the entire modelling system, and is thus an inevitable element of hydrological 

processes (Boelee et al., 2017). Uncertainties can be characterized as Natural uncertainty (also 

known as aleatory uncertainty, inherent variability and type-A uncertainty) and Epistemic 

uncertainty (also known as lack-of-knowledge uncertainty, ignorance and type-b uncertainty 

(Merz and Thieken, 2005). In catchment runoff estimation, epistemic uncertainties may relate to 

spatial heterogeneity in rainfall, transformation of variables (e.g., discharge rating curves) or lack 

of knowledge of  boundary conditions (e.g., losses to deep water groundwater) (Beven, 2011, 

2012). Natural uncertainty can be corrected for by statistical probabilistic methods, but in most 

cases it may be hard to identify a suitable model to apply, whereas for epistemic uncertainties, 

where a formal source of error is unknown, statistical methods can be used only to provide an 

approximation (McMillan, Krueger and Freer, 2012). 

Baldassarre and Montanari (2009) summarize the four main sources of uncertainty in hydrologic 

modelling as:  (i) structural uncertainty, (ii) input uncertainty, (iii) parametric uncertainty, and  (iv) 

output uncertainty (Renard et al., 2010). Structural uncertainty may arise because of the inability 

of hydrological models to perfectly schematize the physical processes (Gupta, Beven and 

Wagener, 2006; Refsgaard et al., 2006), which include unknown defined hydrological processes 

(perceptual model) and description of processes (conceptual model) (Zhang et al., 2011) and their 

mathematical implementation. Uncertainty induced by model structures can be more significant 

than parameter and input data uncertainty, but such uncertainties are difficult to assess explicitly 

or to separate from other uncertainties during the calibration process (Beven et al., 1992). The 

identification of the most appropriate model and model structure, with its associated uncertainty, 

to be implemented in a flood modelling system is crucial, since the acceptable reproduction of 

hydrological processes builds reliability into the hydrological model. Input uncertainty arises from 

approximation in the observed hydrological variables used as input or calibration/validation data 

(e.g., rainfall, temperature, and river). Parameter uncertainty is induced by imperfect calibration 

of hydrological models. The schematic representation of common sources of uncertainty and errors 

is illustrated in (Figure 2.17). 
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Figure 2.17:- Sketch for the relationship between sources of uncertainty (Source:  Moges at al., 2020) and the 

process of uncertainty and sensitivity analysis (Source: Song et al., 2015) of model parameters. 

2.6.2. Sensitivity analysis of model parameters 

Models often include substantial uncertainties with respect to the input data, forcing data, initial 

and boundary conditions, model structure, and parameters due to a lack of data and poor 

knowledge of hydrological response mechanisms (Gupta, Beven and Wagener, 2006). However, 

more complex models could have a serious interaction between parameters, causing  uncertainty 

in the results (Herrera, Marazuela and Hofmann, 2022). As a result, a wide range of optimization 

algorithms have been developed to resolve this problem (Beven and Binley, 1992; Zhang et al., 

2009; Qi et al., 2016). Obtaining an efficient optimization by including all model parameters in 

the calibration process may, however, be unfeasible (Nossent, Elsen and Bauwens, 2011). This 

problem can be solved by sensitivity analysis (SA).  

A sensitivity analysis (SA) allows a reduction of the number of parameters incorporated in the 

optimization by determining the most influential parameters of a model (ranking) (Saltelli, 

Tarantola and Campolongo, 2000a). For example, this may be done by by setting non-influential 

parameters to a fixed value, i.e. factor fixing (FF), or focusing on the parameters that have the 

potential to maximally reduce the output uncertainty, i.e. factor prioritization (FP) (Sobol’, 1990; 

Saltelli et al., 2004). Besides, a SA also facilitates the understanding and interpretation of models 

by providing information such as the use of the parameters, the influence of specific parameter 

values (also known as mapping) and the associated model processes and model outcomes (also 

known as screening) (Saltelli, Tarantola and Campolongo, 2000a). As a result, models are said to 

be structurally sound in events where most or all of the parameters are sensitive: therefore, 

modellers can trust a model result (Shin and Kim, 2017). This, however, varies depending on the 

study areas (Shin 2013), hence the need for a SA in studies incorporating hydrological models and 

new data.  
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SA is classified into two categories:- global and local methods (Song et al., 2015; Pianosi et al., 

2016). Global sensitivity analysis (GSA) involves evaluating the sensitivity of a model for a large 

variation of input, i, (Saltelli et al., 2008). GSA is useful in identifying the most significant 

parameters and regions in the parameter space where the model produces extreme values and can 

be implemented prior to model calibration (van Griensven et al., 2006). Several GSA methods 

exist whose details can be found in Saltelli et al. (2008). However, most are computationally 

intensive, especially in cases where there are many input parameters. GSA methods dependent on 

random or probabilistic sampling of the parameter space can be applied to a given mathematical 

model with multiple inputs to produce multiple outputs (Pianosi et al., 2016). This can be achieved 

by defining the locations of the parameter space which maximize the amount of information that 

can be extracted from an optimal model input, e.g., the maximum and the minimum values of the 

model outputs. On the other hand, local sensitivity analysis (LSA) is based on computation of the 

sensitivity matrix, also known as the Jacobian, J.  Model sensitivity with respect to each of the 

parameters corresponds to the coefficient J: a detailed explanation can be obtained from Devak 

and Dhanya (2017). Where there is interaction between model parameters, global SA methods are 

appropriate as this may result in a non-linear output (Saltelli et al., 2010). In recent years, this 

broad range of possibilities has made sensitivity analysis a main area of research in hydrological 

modelling (e.g., Arlimasita and Lasminto, 2020; Rafiei Emam et al., 2018). 

2.6.3. Model parameter estimation 

Kavetski (2019) outlines two main model parameter estimation strategies, namely: a priori 

estimation and calibration. A priori estimation refers to establishing parameter values from 

measured physical system properties, presupposing that the model parameters have a sufficiently 

reliable representation (Beven and Pappenberger, 2003). Parameter estimation in models of natural 

systems may therefore require measurements and tests. For example, in assessing the hydraulic 

conductivity of soils using MODFLOW (Harbaugh, 2005), a physically based groundwater model, 

parameter estimation may be done using laboratory analysis of core samples in in situ tests and/or 

geology maps (Fetter, 2018). The a priori estimation method is effective in modelling well 

instrumented locations using environmental physical equations (Clark et al., 2015). However, 

when this method is applied to conceptual models, it becomes hard to relate their parameters to 

available information (Duan et al., 2006), though in some cases, it is possible to deduce useful 

relationships (Samaniego, Kumar and Attinger, 2010). The spatial variability of vegetation and 

soils within and across catchments (Miller and White, 1998) and the frequent non-

commensurability of modelled and observed quantities (Kuczera, 2002) have made it difficult to 

estimate model parameters through catchment characteristics.  With advances in physical process 

representation, it has been suggested that models can only be described as “truly” physical if their 

parameters are specified independently from observed responses (Grayson, Moore and McMahon, 

1992). Thus, any hydrological models typically require calibration of model parameters to some 

degree (Beven, 1989; Duan et al., 1992), due to the heterogeneity of hydrologic processes and the 

scale-dependence of parameters. Parameter variables within a certain range follow some specified 

probability distributions, whose shape can significantly be affected by the parameter range (Xing 

et al., 2018) but also the nature of the parameter (Cloke et al., 2007). Model calibration aims at 
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parameter estimation values which are typically evaluated in relation to physically acceptable 

ranges. 

Model calibration is carried out by adjusting model parameters manually or automatically until the 

observed and simulated catchment responses match as closely as possible (Moriasi et al., 2012). 

Manual calibration visually compares the observed and simulated outputs, whereas automatic 

calibration is commonly performed using optimization techniques/algorithms that ensure the best 

possible match between model outputs and observations to measure the goodness-of-fit of model 

simulations (Arnold et al., 2012; Moriasi et al., 2012). A good automatic parameter estimation 

methodology has four elements: i) an objective function; ii) an optimization algorithm; iii) 

termination criteria and iv) calibration data. An objective function (goodness-of-fit) is a quantity 

which shows how well the model reproduces the calibration data (Sorooshian & Gupta, 1995). For 

example, the most commonly used are: the sum of squared errors (SSE) (Merriman, 1877), root 

mean squared error (RMSE) (Gupta et al., 2009) and Nash-Sutcliffe efficiency (NSE) (Nash and 

Sutcliffe, 1970). However, single-objective approaches are often inadequate to match different 

aspects of a model response (Savic, 2002). Because of this, multi-objective approaches have 

gained in popularity by focusing on representing additional process representations such as peak 

flows, general and low flows (Gupta et al., 1998; Madsen, 2000; Moussa and Chahinian, 2009). 

The model parameters may be restricted to physically plausible parameter range. The upper and  

lower bounds of the model space are defined as hypercube functions of the parameter space 

(Madsen, 2003). 

Model calibration criteria seek to optimize the numerical measures (objective functions) that 

compare observations of the state of the system with corresponding simulated values, using 

optimization algorithms (Madsen, 2003). An optimization algorithm is a mathematical technique 

which analytically or numerically finds parameter optima within a model space. The optimization 

algorithm searches the response surface for the parameter values that optimize (minimize or 

maximize) the numerical value of the objective function, constrained to the pre-defined allowable 

ranges of the parameters (Pechlivanidis et al., 2011).. For example, Sorooshian and Gupta (1995) 

classify optimization algorithms as “local” and “global”. Local search algorithms may be further 

divided into “direct” and “gradient-based” methods. Direct search methods use only information 

on the objective function value, whereas gradient-based methods also use information about the 

gradient of the objective function (Madsen, 2003). For multi-model objective functions, global 

search methods have been developed that are especially designed to locate the global optimum and 

avoid being trapped in local optima.  Global population-evolution-based algorithms are more 

effective than multi-start local search procedures, which in turn perform better than pure local 

search methods (Duan et al., 2006; 1992; Madsen, 2003). The most widely applied is MOCOM-

UA (Khu and Madsen, 2005; Yapo et al., 1998).  This algorithm is an effective and efficient 

methodology for solving the multiple-objective global optimization problem (Mostafaie et al., 

2018), and is an extension of the successful SCE-UA single-objective global optimization 

algorithm Shuffled Complex Evolution (SCE) (Duan et al., 1992).  
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The choice of optimization algorithm depends solely on the hydrological model and its objective 

function. It is therefore important to emphasize that model structures and observations are not 

error-free. Therefore, the optimum parameter set is model specific and may not remain optimum 

if change occurs in the model structure or the calibration data. While one optimum parameter set 

may be found, there will usually be many other parameter sets in place that are very nearly as 

good. Hence, Beven and Freer (2001) suggest that equifinality of parameters may give many 

representations of a catchment that may be equally valid in terms of their ability to produce 

acceptable simulations of the available data, given the limitations of both the model structure and 

data. 

2.6.4. Concept of equifinality in modelling 

Optimization of model parameters may not be considered a good strategy, mainly because the 

obtained optimal model is highly dependent on input data and the structural errors, so acceptance 

of the possibility of multiple behavioural models (the equifinality concept) is highly recommended 

(Beven, 2006;2010). Equifinality in environmental modelling is the concept that there are many 

different model structures, and many different parameter sets within a chosen model structure that 

may be behavioural, or capable of reproducing the observed behaviour of that system to an 

acceptable standard (Beven 2010). For example, if there are enough interactions among the 

components of a system (e.g., a model), unless the detailed characteristics of these components are 

specified independently, many representations may be equally acceptable. This has been 

demonstrated in studies incorporating rainfall-runoff models  (Beven and Freer, 2001; Beven, 

2011; Duan et al., 1992) and in flood frequency and inundation models (Cameron, Beven and 

Naden, 2000). This should not be enough to reject the idea of an optimal model parameter, but a 

search for the feasible model structure and parameter space is usually a good way to reveal many 

behavioural models with similar levels of performance in reproducing observational data. Also, 

where an incorrect model of errors is used, or where uncertainty in the observations with which 

the model is being compared is neglected, it will generally lead to over-conditioning of the 

parameter values. 

In such cases other forms of model conditioning approaches which allow the possibility of learning 

from model rejection, such as Generalised Likelihood Uncertainty Estimation (GLUE) , (Beven 

and Binley, 1992), are used. These are more subjective but allow for easy handling and updating 

of the model likelihood distributions as new calibration data become available within the Bayesian 

framework (Beven and Freer, 2001). In the GLUE methodology, some prior information about 

feasible ranges of parameter values is used to control the generation of independent random 

parameter sets for use in each model. An input sequence is used to drive each model and the results 

are compared with the available calibration data. The model simulations may have either a 

deterministic or a stochastic dependence on the parameters and input data, but the methodology 

has to date been primarily used with deterministic models. A quantitative measure of performance 

or likelihood measure is used to assess the acceptability of each model based on the modelling 

residuals (Beven and Freer, 2001). Other performance criteria have also been suggested and 

proposed, such as fuzzy possibility measures (Franks et al., 1998) and likelihood functions based 

on specific error models (Romanowicz and Beven, 1998). In addition, the non-stationarity of a 
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system plays a key role in reproducing a range of plausible model parameters, since the 

characteristics are expected to change with time (Beven, 2010, pg 131). 

2.6.5. Concept of non-stationarity in hydrological models 

Non-stationarity is a system whose characteristics are expected to change over time. For example, 

in cases of model systems, the parameters are expected to change over time (Beven 2010). It is 

thus important to distinguish non-stationarity in models because it has an impact on what we 

should expect in testing a model as a hypothesis of how a catchment functions, and whether it 

would be fit for purpose (Beven, 2016). Non-stationarity in modelling arises in stochastic 

processes, catchment characteristics, boundary conditions, and model residual characteristics 

(Beven, 2016). Koutsoyiannis and Montanari (2015) discuss the concept of non-stationarity in the 

context of stochastic process theory by assuming that once any deterministic structure has been 

considered, all forms of epistemic error can be represented by a stationary stochastic model. 

Change over time can be described by a deterministic function, including structure in model 

residuals that might compensate for consistent model or boundary condition error. All other 

variability will be stochastic in nature. 

Non-stationarity in catchment characteristics arises where model parameters and possibly 

catchment characteristics are expected to change over time or space in a way that will induce model 

prediction error if parameters are considered stationary (Beven, 2016). Non-stationarity in 

boundary conditions occurs where the model boundary conditions are expected to change over 

time or space in a way that will induce model prediction error if boundary conditions are poorly 

estimated. Non-stationarity in model residual characteristics is the expectation that the statistical 

characteristics of the model residuals will vary significantly in time and space.  This may be due 

to the unpredictable model error which may result from arbitrary epistemic uncertainties in 

boundary conditions, long-term stochastic variability, or error from the calibration data (Beven, 

2016). 

2.6.6. Model validation 

Calibration is followed by validation to check the model’s predictive power and appropriateness 

for  real world applications. Klemeš (1986) discusses various  validation tests and proposes a 

hierarchical testing framework which seeks to assess the transferability of a model (i.e., its ability 

to make predictions outside the calibration period). This framework can be applied under 

stationary and non-stationary climate assumptions. The proposed validation tests are: (i) the split-

sample test, where the model is calibrated using a historical data period and then the same 

calibrated parameters are applied for simulating an independent period; (ii) the differential split-

sample test, where the same approach is followed but the data period is divided into two segments 

with varying climate characteristics (e.g., high/low average precipitation); (iii) the proxy-basin 

test, where the model is calibrated and validated in various sites, which may be in the same 

catchment or not but with similar edapho-climatic characteristics; and (iv) the proxy-basin 

differential split-sample test which is applied in cases where the model is supposed to be both 

geographically and climatically (or land-use-wise) transposable (Klemeš, 1986; Santos et al., 

2018). In modelling, if the errors for validation runs on two data record segments (i.e., calibration 
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and validation data sets) are within acceptable ranges, the model is acceptable (Beven, 2012; Gupta 

et al., 2006). Basically, the modelling approach adopted depends on the required spatio-temporal 

scale of the problem), the type of catchment, and the modelling task (e.g., establishing the suitable 

data input for a hydrological model). Many model applications pose major challenges. For 

example, in data-scarce regions, there is insufficient time series data for model calibration and this 

may require the use of freely available satellite and reanalysis products which have inherent errors 

and uncertainty due to coarse resolutions. In addition, not all models are applicable to diverse 

catchments with varied characteristics, which makes the model parameter estimation difficult due 

to water balance problems and/or influence of water reservoirs on the flow, affecting the model 

simulations of catchment stream flows. It is therefore useful to consider a basic classification of 

model types, according to  Wheater et al., (2007), and their strengths and weaknesses (see Table 2, 

Table 3), and select the model according to a specific application. 

2.7. Trends in flood series and shifts in flood seasonality 
The frequency of floods is rising and constitutes one of the main causes of detrimental 

consequences arising from natural disasters, not only in Kenya, but across the globe. In the 21st 

century, the first two decades have been characterised by many major flood events (see Hannaford 

2015), which have prompted a wider discussion about flood risk management and the possibilities 

that the increase in flooding is due to human induced climate change (Hannaford et al 2021). 

Accounting for possible changes in flooding is important for various hydrological applications 

such as risk assessment and management (Mangini et al., 2019), and the design of flood protection 

facilities (Parry et al.,2007). Also, flood frequency estimation may best be understood by 

considering temporal trends in flood series (Harrigan et al., 2018). 

2.7.1. Trends in river flow series 

Trend analysis can be used to investigate whether there is any evidence of an increase in river 

floods in the observational river discharge data. Such analysis requires long records (i.e.., more 

than 30 years) to distinguish climate variability decisively from climate change induced trends 

(Svensson et al., 2005) and human induced trends due to deforestation and water management 

practices (Degefu et al., 2019).   

To detect trends in river flow series, trend analysis studies have been performed in different parts 

of the world, at global scale (e.g., Berghuijs et al., 2017), regional scale (e.g., Paprotny et al., 2018; 

Mangini et al., 2019; Burn et al., 2016) and at country scale (e.g., Nka et al., 2015; Avial et al., 

2019). Most of the studies found large-scale patterns with a similar sign of changes in flood 

magnitude, but also concluded that the studies are not fully comparable, due to the different time 

periods analysed and differences in the methodology applied to derive flood series and to detect 

flood changes. This points to the need for site-specific trend analysis to reveal changes and shifts 

in flood events at local scale. This is the aim of the research presented in Chapter 6 of this thesis. 

Flood trend analysis looks at trends in the annual maximum river discharge (AMAX), i.e., a one 

value per year flood series (Kundzewicz et al. 2004; 2005) and the Peak Over Threshold (POT) 

technique (Burn et al 2017; Mangini et al 2019), which selects all floods over a specific threshold 

that occur throughout a flow record. POT allows for a trend in the frequency (counts) of floods 
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rather than merely their magnitude to be estimated (Svenson et al 2006). Detailed discussion on 

the AMAX and POT techniques used to derive times series of flood series are discussed in Section 

6.5.2 of Chapter 6 of this thesis. 

2.7.2. Flood timing and seasonality 

Flood timing, magnitude and frequency are useful sources of information about  trends in river 

flooding (Berghuijs et al., 2017, 2019). For instance, a recent study by al., (2015) Stephens et al., 

(2015) has shown that the timing of floods in East Africa has shifted in recent decades: the drier 

months have seen more rains than in the past, and the onset and cessation of the rain is much earlier 

or later as demonstrated in Gudoshava et al., 2021). These changes in the timing of the yearly 

flood have far-reaching consequences for flood-based farming systems, especially for the 

livelihoods of people who adjust their floodplain management and agricultural activities to the rise 

and fall of the flood wave (Ficchì and Stephens, 2019). Thus, it should be recognized as an 

important contribution research for future planning and adaptation purposes, especially for Kenya. 

Seasonality measures (Brun et al, 2010) are used to characterize the timing and variability of the 

extreme flood events. These are defined by directional statistics (Madia, 1972). The date of 

occurrence of a flood event is defined as a directional statistic through conversion of the Julian 

date of the occurrence of an event to an angular value (Ficchi and Stephens,2019). A detailed 

description of seasonality statistics and changes in flood timing is provided in Section 6.5.5  of 

Chapter 6 of this thesis. 
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Chapter 3 

3. Study Area, Data and Methods 

This Chapter describes the study catchments, data used in this research and their sources, the 

methods employed, and the hydrological modelling experiment. Each dataset described in the 

following sub-sections was applied in deploying the methods outlined to achieve the objectives of 

this research, as illustrated in Figure 3.2. 

3.1. Study area 
The study is undertaken across Kenyan catchments at 19 river gauging stations (Figure 6.1) with 

varying characteristics summarised in (Table 14) in Chapter 6 of the thesis. These were selected 

due to the frequency and magnitude of the impacts of floods (Table 1), as well as the availability 

of river flow observations as summarised in Table 14 of Chapter 6. 

 
Figure 3.1: Study catchments, with the location of the outlet river gauges (as shown by circled dots) used in this 

study and the main irrigation schemes and major dams (Source: WRA -K) across Kenya. 

3.2. Data  
The data used in the study included reanalysis precipitation data, gridded rainfall observations, 

river discharge data and potential evaporation. The detailed descriptions of the individual datasets 

are in subsequent sections. All the datasets used in the study spanned the period from 1981 to 2016. 
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3.2.1. Reanalysis precipitation datasets 

Reanalysis products merge available observations with a state-of-the-art atmospheric and/or 

coupled ocean–atmosphere–sea ice model to derive the best estimate of the state of the atmosphere 

and land surface (Decker et al., 2012). Some of the applications of reanalysis products are to study 

the climate system, drive land surface models, and provide boundary conditions for regional 

modelling. Reanalysis precipitation products can be used to determine variations in precipitation, 

both at global and regional scales (Kim et al., 2019).  

Several weather centres, such as the National Centers for Environment Prediction/National Center 

for Atmospheric Research (NCEP/NCAR; Kistler et al., 2001), the European Centre for Medium 

Range Weather Forecasts (ECMWF; Huang et al., 2016), and the Japanese Meteorological Agency 

(JMA; (Kobayeshi et al., 2015) have released reanalysis products over the past decades. The 

continuous development of three- and four-dimensional variational (4D-Var) techniques has 

enabled the updating of reanalysis products; consequently, the new fifth-generation atmospheric 

reanalysis of ECMWF (i.e., ERA5) was released in 2017. The overwhelming majority of 

observation data, and most of its increase over time originates from satellites. Such data include 

clear-sky radiance measurements from polar-orbiting and geostationary sounders and imagers, 

atmospheric motion vectors derived from geostationary satellites, scatterometer wind data, and 

ozone retrievals from various satellite-borne sensors. The total precipitable vapour estimates are 

also derived from satellite observations. Although manual and automatic ground observations of 

precipitation were also considered, the number of stations in the QDM involved in data 

assimilation is unclear. 

While they are the best approximation of the state of the atmosphere based on both data and 

dynamic models, the various reanalysis products from the different centres have been found to 

have many deficiencies at various time scales, and especially at smaller (i.e., regional) spatial 

scales, mainly due to the errors of models and observations in the data assimilation system (Jiang 

et al., 2020). The errors of the reanalysis products may lead to biased precipitation estimates for 

different regions and precipitation events (e.g.,  Beck et al., 2017), which may introduce challenges 

in initial parameter calibration for the model simulation (see Wanzala et al., 2022). 

In this thesis (see Table 11), ERA 5, ERA-Interim, CFSR and JRA-55 reanalyses, which have been 

used in several studies due to their availability to the public (Beck et al., 2017; Dinku et al., 2018; 

Le and Pricope, 2017), were used in Chapter 5. These four are used as inputs into the hydrological 

model and the results compared with observations to inform their future applications over Kenyan 

catchments. 

ERA5, the latest (fifth) generation global atmospheric reanalysis product by the ECMWF, spans 

the modern observing period from 1979 onward and has become available in 2018 with daily 

updates continuing forward in time (Hersbach, 2018). The preliminary ERA5 dataset from 1950 

to 1978, which was not available at the time of undertaking this research, is now available on the 

Climate Data Store.  Key features, not present in the previous version, ERA-Interim (Dee et al., 

2011), include 10 years’ worth of advances in NWP, higher spatial resolution of 31 km on 139 

levels, from the surface up to 0.01 hPa (around 80 km), improvements in the ingested observations, 

https://cds.climate.copernicus.eu/cdsapp#!/search?text=ERA5%20back%20extension&type=dataset
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and a near-real time updating service (2 to 5 days latency). ERA5 data products also include 

information about uncertainties, provided at 3-hourly intervals and at a horizontal resolution of 62 

km.  In addition, a dedicated ERA5 land component delivers a land-surface reanalysis product at 

an enhanced resolution combined with several new parameters, such as 100-metre wind speed and 

direction (Hersbach, 2018). In this study, 3-hourly ERA-5 was obtained from ECMWF on a fixed 

grid of 0.31° × 0.31° (https://www.ecmwf.int/en/research/climate-reanalysis/era-5). 

ERA-Interim is a global reanalysis product created by ECMWF (Dee et al., 2011) which was 

initiated in 1979 reanalysis and covers the period from 1989 to present. Unlike ERA5, ERA - 

Interim uses a forecasting model of [version cycle 31r1 (CY31r1)] with a horizontal resolution of 

T213 (~80 km) and incorporates full four-dimensional variational data assimilation (4DVar) as  in 

ERA5. In this study, monthly ERA-Interim was obtained from ECMWF on a fixed grid of 

0.75° × 0.75° (http://apps.ecmwf.int/) .  

JRA-55 is a global reanalysis dataset constructed by the Japan Meteorological Agency (JMA) 

(Kobayashi et al., 2015) and was adopted for this study. It is freely accessible online at 

(http://jra.kishou.go.jp/). JRA-55 employs a 4D-VAR with variational bias correction for satellite 

radiances. It aims to provide a comprehensive atmospheric dataset that is suitable for studies on 

climate change and related issues (Ebita et al., 2011). The observation data primarily included 

conventional data (such as tropical cyclone wind retrievals, pilot balloons, wind profilers, etc.), 

wind data retrieved from geostationary TOVS (TIROS Operational Vertical Sounder), ATOVS 

(advanced TOVS), AMV (Atmospheric Motion Vector), CSR (Clear-Sky Radiance) data, and 

other remote sensing data.

https://www.ecmwf.int/en/research/climate-reanalysis/era-5
http://apps.ecmwf.int/
http://jra.kishou.go.jp/
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 Figure 3.2:- Illustration of the data and methods implemented in the research to achieve the three research objectives. 
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CFSR is a global reanalysis dataset of atmosphere fields produced by the National Centers for 

Environmental Prediction and National Center for Atmospheric Research to meet the needs of 

research and climate monitoring communities (Saha et al., 2010). A 3D-VAR (three-dimensional 

variational analysis) is used in the assimilation system of CFSR. The horizontal resolution is a T62 

Gaussian grid with 192 × 94 grids of the overall dataset (Zhao, He and Jiang, 2018). This model 

includes parametrizations of all major physical processes, such as convection, clouds, and an 

interactive surface hydrological model on a global scale. The CFSR precipitation field is 

constructed from short-range model forecast accumulations, but observed precipitation is not used 

in the assimilation phase of the model. Monthly data from CFSR were used in this work, which 

can be downloaded online (https://www.esrl.noaa.gov/). Key characteristics (e.g., spatial grid, 

temporal accumulations, etc.) of each of the reanalysis datasets used in this thesis are summarised 

in Table 11.  

3.2.2. Gridded precipitation observations 

The Climate Hazards Group Infrared Precipitation with Station (CHIRPS) is a relatively new 

quasi-global, high resolution, daily, pentadal and monthly precipitation dataset (Funk et al., 2015). 

The dataset provides low latency, long recorded high-resolution gridded data and allows scientists 

to both analyze current trends and compare them to historic trends (Le and Pricope, 2017). The 

CHIRPS algorithm combines three main data sources (Dinku et al., 2018): (a) the Climate Hazards 

group Precipitation climatology (CHPclim), a global precipitation climatology at 0.05◦ 

latitude/longitude resolution estimated for each month based on station data, averaged satellite 

observations, elevation, latitude and longitude (Funk et al., 2015); (b) TIR-based satellite 

precipitation estimates (IRP); and (c) in situ rain-gauge measurements using a modified inverse 

distance weighted algorithm (Funk et al., 2015). The CHPclim is distinct from other precipitation 

climatologies in that it uses long-term average satellite rainfall fields as a guide to deriving 

climatological surfaces. The incorporation of station data also helps to correct for underestimation 

of the intensity of precipitation events.  

Based on infrared Cold Cloud Duration (CCD) data, CHIRPS has a long enough (useful for 

depicting climate variability) history of precipitation data. The algorithm is based on (i) a 5 km 

climatology that uses satellite data to represent sparsely gauged locations; ii) daily, pentadal, and 

monthly 5 km CCD-based precipitation estimates from 1981 to the present; iii) a combination of 

station data to generate a tentative information product with a latency of about 2 days and a final 

product with an average latency of about 3 weeks; and iv) interpolation weights assigned according 

to a novel blending method which uses the spatial correlation structure of CCD estimates. This 

makes it a better alternative than observations (see Funk et al., 2015). CHIRPS was developed to 

deliver reliable, up-to-date, and more complete datasets. Both monthly and daily time series of the 

datasets are available. A daily time series spanning the period from 1981- 2016 was used in this 

study. 

We acknowledge the availability of other satellite blended precipitation datasets  with a high 

spatial resolution (≤10 km) such as the Multi-Source Weighted-Ensemble Precipitation (MSWEP; 

https://www.esrl.noaa.gov/
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Beck et al., 2019), CPC morphing technique (CMORPH; 7 km Joyce et al., 2004), Global Satellite 

Mapping of Precipitation (GSMaP; 10 km; Mega at al., 2014), Integrated Multisatellite Retrievals 

for Global Precipitation Measurement (IMERG; 10 km ; Huffman et al., 2015), and Precipitation 

Estimation from Remotely Sensed Information Using Artificial Neural Networks–Cloud 

Classification System (PERSIANN-CCS; 4 km; Hong et al., 2004). However, all these datasets, 

except MSWEP, have a data record of ≤20 years and neither take advantage of river discharge 

observations for bias correction, nor incorporate reanalysis-based precipitation estimates.  

A time series was plotted, and the correlation coefficients calculated for all the satellite datasets 

and observations to demonstrate that CHIRPS provides a closer estimate to observations compared 

to other available datasets (Figure 3.3). Additionally, precipitation evaluation studies particular to 

Eastern Africa (including Kenya), further detailed in Section 2.5 have paid less attention to the 

potential of MSWEP as an alternative to observations and shown better performance for CHIRPS 

relative to other observations (see Dink et al., 2018). Even though the daily temporal resolution of 

CHIRPS renders it less suitable in highly dynamic precipitation analysis and includes spurious 

drizzle and underestimation of peak magnitudes of the most extreme rainfall (Beck et al., 2017), 

since the focus for this thesis was not necessarily on high temporal timescales such as hourly 

rainfall events, it should therefore be insensitive to these biases. Consequently, the CHIRPS dataset 

was used as a control dataset since it had been used in several studies (see Table 11, and was 

applied in Chapter 5 of this thesis, as illustrated in Figure 3.2.  

 
Figure 3.3:- Time series for the annual precipitation of different satellite observation datasets relative to 

observations over Kenya for the period 2010 – 2016. Black (gauge observations), blue (CHIRPS), red (GSMap), 

green (MSWEP) and purple (IMERG). 

3.2.3. Observed river discharge and potential evapotranspiration 

As illustrated in Figure 3.2, river discharge datasets at daily time steps for the period 1981- 2016 

were used in Chapters 5 and 6 in the evaluation of the GR4J hydrological model and for extracting 

high river flow series for trend analysis respectively. Data for the select catchments across the 

country were purchased from the Kenya Water Resource Authority (WRA). This is because, like 
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other observational data, river discharge was also not freely available for research and could be 

obtained only through negotiations leading to purchase from the relevant authority (WRA). 

The potential evapotranspiration (PET) for the datasets outlined in Section 3.2.1 and 3.2.2 was 

estimated from the average temperature. Different methods of estimating PET exist, based on 

factors ranging from energy balance and mass transfer to temperature. For this study, temperature-

based methods were considered, as temperature readings are often the most readily available 

meteorological data relating to PET (Hargreaves and Samani, 1985). Also, under limited climate 

data conditions, many researchers propose the use of temperature-based methods (Hargreaves and 

Samani, 1985; Gardelin and Lindström, 1997) and a study by Oudin et al., (2005), tested 27 PET 

for catchment models and concluded very simple models relying only on extra-terrestrial radiation 

and mean daily temperature are as efficient as more complex models such as the Penman model 

and its variants.  

The Hargreaves-Samani (H-S) and Hamon methods are well known. Although the H-S method 

uses only a daily measurement of maximum and minimum temperatures as inputs, it effectively 

incorporates radiant energy indirectly. Relative humidity and cloudiness are not explicitly included 

in the equation, but the difference between maximum and minimum air temperature is related to 

relative humidity and cloudiness (Samani and Pessarakli, 1986). Hamon’s method is a simple, 

empirical approach that uses temperature as the major driving force for evapotranspiration, but 

also includes other variables, such as daytime length and saturated vapour pressure (Allen et al., 

1998; Lu et al., 2005). In this method, the daytime length is used as an index of the maximum 

possible incoming radiant energy and the saturated vapour pressure is the moisture holding 

capacity of the air at the prevailing air temperature. Hamon’s method has proved to produce good 

results and has displayed great resilience in diverse climates around the world (Shahidian et al., 

2012), so was considered for this study. Hamon’s equation is given by Equation 3.1: 

Equation 3.1:- Hamon’s method of computing potential evapotranspiration. 

𝑬𝑻 = 𝒌 ∗ 𝟎. 𝟏𝟔𝟓 ∗ 𝟐𝟏𝟔. 𝟕 ∗ 𝑵 ∗ (
𝒆𝒔

𝑻+𝟐𝟕𝟑.𝟑
)                                                  

where 𝐸𝑇 is potential evapotranspiration (PET) (mm/day-1), 𝑘 is the proportionality coefficient = 

11 (unit less), 𝑁 is daytime length (X/12 hours), and 𝑒𝑠 is saturation vapor pressure (mb), which 

represents the moisture holding capacity of the air at the prevailing air temperature.3.3. Methods 

The various methods employed to achieve the three specific objectives are illustrated in Figure 

3.2. The methods applied included: model preselection with a filter sequence, a Venn diagram tool 

for model selection (3.3.1.1), statistical performance metrics to evaluate the reanalyses with 

respect to observations (correlation coefficient (CC), root mean square error (RMSE), mean 

absolute error (MAE) and percentage bias (BIAS) (3.3.2.1), the Michel method for model 

calibration (3.3.2.2.2), Split sample testing for model validation for hydrological evaluation of the 

reanalysis data using the GR4J model (3.3.2.2.3), Sobol’ Sensitivity Analysis (SA) of model 

parameters to different inputs (3.3.2.3.1) and combined performance and uncertainty statistics 

using the Model Suitability Index (MSI, 3.3.2.3.2)). For model validation and sensitivity analysis, 
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model performance evaluation was undertaken using the KGE. The trends in different derived 

flood series from the observed and simulated river discharge were evaluated using a statistical 

method (Mann-Kendall and Thielsen Slope Estimator, 3.3.3.1). The derived flood series were then 

subjected to sensitivity analysis to assess the sensitivity of trends to different flood magnitudes 

and frequencies (3.3.3.2). For threshold selection, Mean Residual Life plots were used.  Finally, 

the changes in seasonality and shift in flood timing across Kenya was assessed using seasonality 

statistics (3.3.3.3). The sub-sections below outline each of the methods used to achieve the three 

objectives of this research. 

3.3.1. Model pre-selection for a Kenya national flood forecasting centre 

This section outlines the methods used to achieve the first objective of the research: to design and 

propose an objective model pre-selection criterion with a filter sequence for a Kenyan national 

flood centre. The model pre-selection process following a filter sequence is outlined and a Venn 

diagram tool used to select the model candidates for flood applications in Kenya from several 

models reviewed in Section 2.4. 

3.3.1.1. Filter sequence and Venn diagram 

A filter sequence can be used to arrive at a special/desired subset of a partially ordered set. In most 

cases a weighting factor is assigned at each stage of a particular subset to assess multiple 

alternatives arising from a mixture of quantitative and mostly qualitative information from 

multiple sources. For example, in this thesis, a decision is presented by yes/no decision outcomes, 

which has potential implicit weighting factors of ‘0’ or ‘1’ according to whether the model meets 

a certain criterion or not.  The weighting factor is applied to a filter sequence and 12 hydrological 

models evaluated.  A Venn diagram is then used to select the model candidates suitable for flood 

applications. A Venn diagram is a diagrammatic illustration of a union of sets, where common 

elements of the sets are represented by intersections of circles or a common circle. Detailed 

examples and illustrations of the application of a filter sequence and Venn diagram are found in 

Section 4.6 of Chapter 4 of this thesis. 

The first step in any model selection process is to assess the potential criteria to be considered 

(e.g., aim, resolution and scope of the model system) (Bennett. et al., 2013; Jakeman et al., 2006; 

Kauffeldt et al., 2016). The aim of the model defines the sole purpose which the model is 

developed to serve. This may include different applications, such as forecasting, catchment 

modelling and water balance. The scope of the model development system is important in creating 

a balance between the users’ wishes and the scientific progress involved in the models’ technical 

advances (Kauffeldt et al., 2016).  However, the selection criteria are, in the end, subjective, since 

they are a consequence of the application in question, and the scope of model operations. For 

example, selection criteria may depend on identification of the user community, and demands on 

the model’s structure, complexity and flexibility (Bennett et al., 2013; Kauffeldt et al., 2016). We 

applied a filter sequence and a Venn diagram tool for objective model pre-selection for operational 

national flood forecasting. Detailed criteria for a filter sequence are outlined in Chapter 4. 
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3.3.2. Assessment of reanalysis precipitations for hydrological modelling 

Objective II explores the performance of different reanalysis precipitation datasets for hydrological 

modelling across Kenyan catchments. This section outlines the statistical methods used to assess 

the performance relative to observations and evaluation of the simulated discharge, by a 

hydrological model when forced with different reanalysis datasets. The sensitivity of model 

parameters to different inputs (i.e., precipitation from different reanalysis products) is also 

explored, and the model’s performance is assessed through a combination of performance statistics 

and sensitivity indices at catchment scale. 

3.3.2.1. Performance statistics 

The performance statistics of the reanalysis datasets were quantitatively evaluated in terms of 

temporal dynamics and biases with respect to observations (CHIRPS), considering the following 

metrics: the Pearson Linear Correlation Coefficient (CC), Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), Mean Error (ME), and long-term relative percentage bias (BIAS). 

The Pearson Correlation Coefficient (CC) is unitless and used to evaluate the goodness of fit of 

the relationship between the observation and the reanalysis. The value varies from -1 to 1, where 

positive and negative values indicate positive and negative correlation respectively and a value of 

1 is the perfect score. The equation is expressed by Equation 3.2. 

Equation 3.2:- Pearson Correlation Coefficient. 
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The root mean square error (RMSE) measures the absolute mean difference between two datasets 

(observation and reanalysis). A value of 0 is the perfect score. The equation is expressed by 

Equation 3.3. 

Equation 3.3:- Root Mean Square Error. 
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Mean Absolute Error (MAE) demonstrates the magnitude of mean error and is given by Equation 

3.4. 

Equation 3.4:- Mean Absolute Error. 
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Bias is a measure of how the average precipitation magnitude compares to the observed 

precipitation. It provides information on the magnitude of underestimation or overestimation 

between two datasets, in which the closer to 0 the BIAS, the better the performance of the 

precipitation dataset. Bias can be expressed as a percentage and takes the form of Equation 3.5. 

Equation 3.5:- Computation of precipitation BIAS. 

( )
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

                                                                                          

where n is the total number of monthly samples; 
iO and 

iP represent the observed and reanalysis 

precipitation for the ith month respectively; 
iO and 

iP are the average values over n months of
iO  

and 
iP respectively. 

3.3.2.2. Hydrological evaluation 

The hydrological modelling experiment, further detailed in Chapter 5 was set up in the study to 

address objective (II). The performance of the hydrological model for Kenyan catchments was 

evaluated against observed discharge for different reanalysis products to determine the sensitivity 

of results to these different reanalysis products. The experiment involves hydrological model 

calibration, and validation using different reanalyses and observations as inputs. From the models 

reviewed in Section 2.4, the GR4J model was chosen for the modelling experiment because it has 

fewer parameters and is easy to calibrate and apply to diversified environments. The following 

subsections outline the detailed description of the GR4J model, calibration and validation methods 

applied. 

3.3.2.2.1. GR4J a daily four-parameter hydrological model 

There are four free main parameters to be calibrated in the GR4J model (Figure 3.4), namely: 

maximum capacity of production store (X1, mm), groundwater exchange coefficient (X2, mm), 

maximum capacity of non-linear routing store (X3, mm), and time base of the unit hydrograph (X4, 

days). There are also a number of fixed parameters, whose values were set by Perrin, Michel and 

Andréassian (2003). All four free parameters are real numbers. X1 and X3 are positive, X4 is 

greater than 0.5 and X2 can be either positive, zero or negative. The description of the free and 

fixed parameters are summarized in  

Table 5. 

In GR4J model, all the water quantities including input, output and internal variables are expressed 

in mm and the operations described in the following equations are relative to a given time-step 

corresponding to a discrete model simulation. GR4J model physical meaning of the internal 

variables are summarized in Table 4 of Chapter 2 in the thesis.. 
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Table 5:- Free and fixed parameters of the GR4J hydrological model (from Perrin et al.,2003, except for Ut and 

nres). 

Parameter type Parameter name Description Typical value Unit 

Free X1 

X2 

X3 

X4 

Capacity of the production store 

Groundwater exchange coefficient 

Capacity of the nonlinear routing store 

Unit hydrograph time base 

[0, 1000] 

[-5, 5] 

[0, 300] 

[0.5, 5] 

[mm] 

[mm] 

[mm] 

[days] 

Fixed α 

β 

γ 

ω 

ϵ 

ϕ 

ѵ 

Ut 

nres 

Production precipitation exponent 

Percolation exponent 

Routing outflow exponent 

Exchange exponent 

Unit hydrograph coefficient 

Partition between routing store and 

direct flow 

Percolation coefficient 

One time step length 

Number of stores in Nash cascade 

2 

5 

5 

3.5 

1.5 

0.9 

4/9 

1 

11 

[-] 

[-] 

[-] 

[-] 

[-] 

[-] 

[-] 

[days] 

[-] 

 

Determination of the net rainfall and PE: The initial step is to determine the net rainfall 
nP   or net 

evapotranspiration capacity nE ,  by subtracting E  from P , which is computed by assuming an 

interception storage of zero, thus 
nP   and nE  are computed  following Equation 3.6 and  

Equation3.7. 

Equation 3.6:- Net precipitation when precipitation is greater or equal to evaporation 

( ) ( ) ( )0n nif P E then P P E and E = − =  

Equation3.7:-Net evapotranspiration capacity when net precipitation zero 

Otherwise: 

( ) ( )0n nP and E E P= = −                                                                   
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Figure 3.4: Schematic representation of the GR4J rainfall-runoff model (Source: Perrin et al., 2003). P is rainfall 

depth; E is potential evapotranspiration estimate; Q is total streamflow; Xi are the model parameters; all other 

letters are model variables or fluxes summarized in Table 4. 

Production store can be considered as the soil moisture accounting (SMA). If  
nP  is not equal to 

zero, then a part 
sP of  

nP  fills the production store. In this case, the production (SMA) store is 

determined as a function of the level S  in the store by Equation 3.8. 

Equation 3.8:- Soil Moisture Accounting store when net precipitation is not equal to zero.   
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 
+  

 

 

where the terms are defined in Table 4 and 5. When 0nE  an actual evaporation rate is determined 

as a function of the level in the production store to calculate the quantity of sE , i.e., water likely to 

evaporate from the store, which is obtained by Equation 3.9, 
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Equation 3.9:-Water likely to evaporate from the SMA store when net evaporation is net equal to 

zero. 
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Equations 3.8 and 3.9 are as a result of integration over the time-step of the differential equations 

which follow a parabolic form with terms in 
2

1

S
x

 
 
 

, as detailed in Edijaton and Michel, (1989).                                               

The water content in the production store is updated with Equation 3.10, 

Equation 3.10:- Update function of the water content in the production store. 

 
sS S E P= − +                                                                                                                                               

S  can never exceed 
1x  

GR4J has a percolation function computed from the production store, thus making it 

distinguishable from the previous GR3J version (Edijaton et al., 1999).  The percolation leakage, 

Perc , is always smaller than S and is calculated as a power function of the reservoir water content 

using  

Equation 3.11. 

Equation 3.11:- Computation of the percolation leakage function. 
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−    
 = − +  
     

;  

Perc , is always smaller than S , thus the reservoir content is given by Equation 3.12: 

Equation 3.12:- Resultant reservoir water content after percolation 

S S Perc= −   

However, percolation does not contribute much to the streamflow and is interesting mainly for low 

flow simulation. 

A linear routing component with unit hydrograph uses unit hydrographs to determine the total 

quantity  
rP  of water that reaches the routing function, which is given by Equation 3.13 
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Equation 3.13: Total quantity of water reaching the routing function. 

 

( )r n sP Perc P P= + −  

rP is divided into two components following a fixed split where 90% of 
rP  is routed by a unit 

hydrograph 1UH  and then a non-linear routing store, and the remaining 10% of  
rP   is routed by 

a single unit hydrograph 2UH  UH1 and UH2 are useful in simulating the time lag between the 

rainfall event and the resulting streamflow peak. 1UH  and 2UH  ordinates are used in the model 

to spread effective rainfall over several successive time-steps. Both unit hydrographs depend on 

the same time parameter 
4x  expressed in days. However, 1UH  has a time base of 

4x  days whereas 

2UH  has a time base of 
42 x  days.  

4x  can take real values and is greater than 0.5 days. 

Unit hydrographs 1UH  and 2UH , in their given discrete form have n and m   ordinates 

respectively, n  and m represent smallest integers exceeding 
4x  and 

42 x  respectively, which 

physically means that water is staggered into n unit hydrograph inputs for 1UH  and m inputs for 

2UH (see Equation 3.24). The corresponding S -curves (cumulative proportion of the input with 

time, denoted by 1SH  and 2SH ) are used to derive the ordinates of each of the unit hydrographs.  

1SH  is defined along time t and is derived by Equations 3.14; 3.15 and 3.16: 

Equation 3.14:- Cumulative proportion of the input in 1UH when 0t  . 

( )0, 1 0Fort SH t =  

Equation 3.15: Cumulative proportion of the input in 1UH  when 
40 t x  . 

( )

5

2

4

4

0 , 1
t

Fort t x SH t
x

 
  =  

 
 

Equation 3.16:- Cumulative proportion of the input in 1UH when 
4t x . 

( )4 , 1 1Fort x SH t =  

2SH  is similarly defined along time t and is derived by Equations 3.17; 3.18; 3.19 and 3.20: 

Equation 3.17: Cumulative proportion of the input in 2UH when 0t  . 

( )0, 2 0Fort SH t =  

Equation 3.18: Cumulative proportion of the input in 2UH  when 40 t x  . 

( )

5

2

4

4

0 , 2
t

For t x SH t
x

 
  =  

 
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Equation 3.19: Cumulative proportion of the input in 2UH  when 
4 42x t x    

( )

5

2

4 4

4

1
2 , 2 1 2

2

t
Forx t x SH t

x

 
   = − − 

 
 

Equation 3.20: Cumulative proportion of the input in 2UH when 
42t x  

( )42 , 2 1Fort x SH t =  

The ordinates of the unit hydrographs 1UH  and 2UH  are then calculated by Equations 3.21 and 

3.22 respectively. 

Equation 3.21:  Ordinate of the unit hydrograph  1UH . 

( ) ( ) ( )1 1 1 1UH j SH j SH j= − −  

Equation 3.22: Ordinate of the unit hydrograph  2UH . 

( ) ( ) ( )2 2 2 1UH j SH j SH j= − −  

Where j is an integer and for any given 
40.5 1x  , 1UH  has a single ordinate which is equal to 

one and 2UH the has two ordinates (see Figure 3.4). 

The outputs 9Q  and 1Q  of the two unit hydrographs correspond to the discrete convolution 

products at each time-step, and are computed by Equations 3.23 and 3.24 respectively. 

Equation 3.23: Output of the unit hydrograph 1UH . 

( ) ( ) ( )
1

9 0.9 1 1
m

r
j

Q k UH j P k j
=

= − +  

Equation 3.24: Output of the unit hydrograph 2UH . 

( ) ( ) ( )
1

1 0.1 2 1
m

r
j

Q k UH j P k j
=

= − +   

Where ( )4int 1n x= +  and ( )4int 2 1m x= +  

The groundwater exchange term F acts on both flow components and the higher the level in the 

routing store, the larger the exchange, which is given by Equation 3.25. 

Equation 3.25:- Groundwater exchange term which acts on both flow components. 
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2

3

R
F x

x

 
=  

 
                                                                                                                                           

where R is the level and not the water quantity in the routing store, 
3x  is  ‘reference’ capacity 

and  
2x  the water exchange coefficient.  

2x can be either positive in the case of water imports, 

negative for water exports or zero when there is no water exchange. The higher the level in the 

routing store, the larger the exchange. In absolute value, F cannot be greater than 
2x : 

2x  

represents the maximum quantity of water that can be added (or released) to (from) each model 

flow component when the routing store level equals 
3x . 

The non-linear routing store is made up of the cumulative proportion of the input with time (t ≤ 

0) of the 1UH  and the ground water exchange term F , therefore, first the level of the water 

content in the routing store R  is updated by adding the output 9Q  of 1UH and F by Equation 

3.26: 

Equation 3.26; An update function of the level of water content in the routing store. 

( )max 0; 9R R Q F= + +  

The outflow 
rQ of the reservoir is then calculated by Equation 3.27 

Equation 3.27: Reservoir outflow of the non-linear routing store. 

1
4

3

1 1 4r

R
Q R

x

    
=  − + −   

    

 

 rQ is always lower than R ,so the formulation of the output of the store is the same as the 

percolation from the SMA store and level in the reservoir becomes: 

Equation 3.28:  Direct computation of the reservoir level. 

rR R Q= −  

Total streamflow follows the same approach as the content of the routing store; the output 1Q of 

2UH  is subject to the same water exchange F to give the flow component dQ  as in Equation 3.29:  

Equation 3.29: Outflow component of the ground water exchange component. 

( )max 0; 1dQ Q F= +  

Thus, total stream flow is Q is obtained by Equation 3.30: 

Equation 3.30: Total stream flow as a function of the outflow from ground water exchange and 

routing store 
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r dQ Q Q= +  

 

3.3.2.2.2. Model calibration 

The four free parameters of the GR4J model were calibrated using the default optimisation 

algorithm provided in the airGR package (Coron et al., 2019; Delaigue et al., 2019). This simple 

optimization algorithm, mainly based on a local optimisation, proved to be equally efficient in 

locating a robust optimum compared to more complex global search algorithms (Coron et al., 

2019) and proved effective in terms of the number of model runs required for convergence 

(Mathevet et al., 2006). The Michel method (Michel, 1983) is based on two steps:  

(i) A systematic inspection of the global parameter space is performed to determine the most likely 

zone of convergence. In our study, this is done by direct grid-screening. 

(ii) A steepest descent local search procedure is carried out to find an estimate of the optimum 

parameter set starting from the best parameter set from step 1. 

GR4J model parameters were calibrated by applying the Kling Gupta Efficiency (KGE) as the 

objective function and the daily observed data of the selected catchments as reference. The KGE 

is a dimensionless statistic and represents a weighting of three components that correspond to bias, 

correlation, and flow variability (Gupta et al., 2009) ensuring that KGE is sensitive to errors in the 

overall distribution of streamflow (Kling et al., 2012). The KGE can be expressed by Equation 

3.31, 

Equation 3.31:- Kling Gupta Efficiency 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2     

Equation 3.32:- The bias ratio component of the KGE 

𝛽 =  
𝜇𝑠

𝜇𝑜
                                                                                                                                                   

Equation 3.33:- Correlation coefficient component of the KGE 

𝛾 =
𝐶𝑉𝑠

𝐶𝑉𝑂
                                                                                                                                                                

where 𝑟 is the correlation coefficient between simulated and observed runoff, 𝛽 is the bias ration, 

𝛾 is the variability ratio, 𝜇 is the mean runoff in m3/s, 𝐶𝑉 is the coefficient of variation, and the 

indices s and o represent simulated and observed runoff values respectively. 

The KGE, 𝑟, 𝛽 γ have their optimum value at unity (Kling et al., 2012) and the variability ratio
𝐶𝑉𝑠

𝐶𝑉𝑂
 

ensures the bias and the variability are not cross-correlated, which otherwise may occur when for 

instance there is a bias in the precipitation inputs. Further discussions of the strengths of KGE can 

be found in Knoben et al (2019). 
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3.2.2.2.3. Model validation  

Split-sample validation testing (Klemeš, 1986) was used to test model efficiency beyond the 

calibration period. For this study, 36 years (1981-2016) of streamflow data for each catchment 

were used, split into two equal 18-year Split-Sample Testing (SST) periods referred to as SST1 

and SST2.The model was validated using direct validation (i.e., calibrated and validated using 

each set of reanalysis forcing data) (Figure 3.5). The value of the objective function (KGE) for the 

calibration parameter was used as the model performance statistic in the calibration as well. 

 

 
Figure 3.5: Schematic representation of direct-validation method applied in model validation experiment. 

3.3.2.3. Sensitivity Analysis 

Sensitivity analysis (SA) was implemented in this research to diagnostically establish how the 

uncertainty in the output of the GR4J model can be apportioned to different sources of uncertainty 

in the model input, in this case reanalyses of precipitation and evapotranspiration. Sobol’ 

sensitivity analysis detailed in the sub-section below was applied in the sensitivity modelling 

experiment. 

3.3.2.3.1. Sobol’ Sensitivity Analysis 

Sobol’ Sensitivity Analysis (Sobol’, 1990) is a global sensitivity method based on variance 

decomposition and can handle non-monotonic and non-linear models and functions, as those are 

usually found in hydrological models. The method estimates the relative contribution of individual 

model parameters and their interactions through the decomposition of model output variance. The 

quantification of sensitivity of a given parameter is expressed as a ratio of the partial variance to 

the total variance, i.e., the Sobol’ sensitivity indices (SI, with a variation range of [0, 1]; Sobol', 

2001), expressed as in Equation 3.34, Equation 3.35 and Equation 3.36 respectively. 

Equation 3.34:- Sobol’ first order sensitivity index. 

First order SI   i
i

V
S

V
=                                                                                                 

Equation 3.35:- Sobol’ second order sensitivity index. 

Second order SI 
ij

ij

V
S

V
=  

Equation 3.36:- Sobol’ total sensitivity index. 

Total SI     ...Ti i ij

j i

S S S


= + +                                                                                 
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The first order index, 
iS  , is a measure for the variance contribution of the individual 

parameter 
iX  to the total model variance. The partial variance 

iV  is given by the variance of the 

conditional expectation expressed by Equation 3.37.  

Equation 3.37:- Partial variance of the conditional expectation of individual model parameter. 

( )
i

Y
XiV V E =                                                                                                    

and is also called the ‘main effect’ of 
iX  on Y . 

TiS measures the effect of each parameter and its 

interaction with the other parameters on the output (Saltelli, Tarantola and Campolongo, 2000). 

More details on the Sobol’ indices can be found in Nossent, Elsen and Bauwens (2011). 

In the research, 
TiS was adopted and applied as it provides reliable results in terms of the overall 

effect on the output for each model parameter. Following the definition in Saltelli et al., (2010), 

TiS  can be written as in Equation 3.38. 

Equation 3.38:-  Sobol’ total sensitivity index expresses as the ratio expected to total 

(unconditional) variance 

  
( )

x i xi
x i

Ti

YE V
X

S
V Y

−
−

  
  
  =                                                                                             

where  
x i xi

x i

YE V
X−

−

  
  
  

  is the expected variance that would be left if all factors but 
iX could 

be fixed and 
x iX −

 denotes the matrix of all factors but iX . The variance ( )V Y in the denominator 

is the total (unconditioned) variance. 

Monte Carlo integrals were applied to estimate the total unconditional variance using a large 

number (n) of samples (i.e., model evaluations) because of the complexity and non-linearity of the 

environmental model. Following the Saltelli et al., (2001) scheme, the R “sensitivity” package 

(Rosenbaum, 2015) was used to compute the TiS
 using a reduced sample size from ( )2 2n k + to   

( )2n k + ,where n  represents the sample size, and k  is the number of model parameters (in this 

study, k = 4 and n= 14,000). The choice of the sample size is based on the literature (e.g., Shin et 

al., 2015 & Nossent et al., 2011), to ensure the convergence of parameters. Therefore, in this study 

the total number of samples generated for the GR4J model (4 parameter model) was 84,000. A 

detailed description of Monte Carlo Sampling can be found in Nossent, Elsen and Bauwens, 

(2011). 

Bootstrapping (with a large resampling size of 14,000), was applied to assess the confidence 

intervals of the 
TiS  following (Efron and Tibshirani, 1994; Saltelli, 2002; Nossent, Elsen and 
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Bauwens, 2011). The percentile method was then applied to ensure reliable estimates of the 95% 

confidence intervals (Archer, Saltelli and Sobol', 1997).  

The KGE was used as the target function for the SA, to assess the parameters related to flow 

simulations across the Kenyan catchments. 

3.3.2.3.2. Model Suitability Index 

The Model Suitability Index (MSI) (Shin and Kim, 2017) was used to assess the suitability of 

reanalysis precipitation datasets for hydrological modelling at catchment scale. MSI couples the 

model performance statistics and the SA results, unveiling the strengths and weaknesses of each 

of the inputs into the GR4J model. A detailed description of the index is outlined in Section 5.5.2 

of Chapter 5. 

3.3.3. Trend detection in flood series and shifts in flood timing 

Objective (III) of this research explores the trend detection in flood series and changes in flood 

timing across Kenyan catchments.  Three flow indices were used: maximum daily mean river flow 

(AMAX) and the magnitude and frequency of peak over threshold (POT) and are described in 

Section 6.5.1 of Chapter 6. The statistical trend analysis method, sensitivity of the trends to 

different flood series and the flood seasonality methodologies are outlined in the following sub-

sections. 

3.3.3.1. Trend analysis 

The Mann-Kendall (MK) trend test (Mann 1945; Kendall, 1948) was used to test for trends in 

flood series described in section 6.5.3 of Chapter 6. We adopted the modified MK (m-MK), which 

incorporates the variance correction approach of Yue and Wang (2004). This was preferred 

because most of the hydrological time-series exhibit serial correlation, likely to affect the results 

of the MK test for significance trends (Von Storch and Navarra, 1999).The variance correction 

method, used to eliminate the influence of serial correlation, is preferred to the commonly used 

pre-whitening method (Von Storch and Navarra, 1999), because the latter is suitable only when no 

trend exists (Yue and Wang, 2004; 2002). 

In m-MK, ranks from the de-trended series of equivalent normal variants are obtained by Equation 

3.39: 

Equation 3.39:- Modified Mann Kendall ranks from the de-trended series of equivalent normal 

variants. 

1

1

i
i

R
Z

n

−  
=   

+      for i = 1: n,                                                                                     

where iR
 is the rank of the de-trended series 

l

ix
, n is the length of the time series, and 

1−  is the 

inverse standard normal distribution function (mean = 0, standard deviation = 1). 
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Maximizing the log likelihood function outlined in Hipel and McLeod (1978), gives the scaling 

coefficient, also known as the Hurst coefficient (H). The estimated H follows a normal distribution 

for the uncorrelated data, given that H = 0.5. For a given H value, the correlation matrix is obtained 

by the Equation 3.40 and Equation 3.41: 

Equation 3.40:- Hurst coefficient (normal distribution scaling coefficient). 

( )n j i
C H 

−
 =
  ,       for i = 1: n, j = 1:n,                                                                       

Equation 3.41:- Autocorrelation function of the Hurst coefficient.  

2 2 21
( 1 2 1

2

H H H

l l l l = + − + −
                                                                                     

where l  is the autocorrelation function at lag l  for a given H , and is independent of the 

timescale of aggregation for the time series (Sa’adi et al., 2019). The value of H  is obtained by 

maximizing the log likelihood function of H , shown by Equation 3.42: 

Equation 3.42:- Maximizing the log likelihood function of the Hurst coefficient. 

 
1

( )1
log ( ) log ( )

2 2

n

n

o

Z C H Z
L H C H





−

= − −

                                                                  

where 
( )nC H

 is the correlation determinant matrix 
( )nC H

, Z


 is the transpose vector of the 

equivalent normal variates Z ,  
1

( )nC H
−

is the inverse matrix, and o  is the variance of iz . For 

different values of H , Equation 3.29 can numerically be solved and the value for which log ( )L H

is maximum, is taken as the H  value  for a given timeseries ix . In this case, the value of H was 

solved following Sa’adi et al., (2019), where H  is taken to be between 0.5 and 0.97 with an 

incremental step of 0.01. 

When H = 0.5 (for normal distribution), the mean ( H ) and the standard deviation H
are used 

to determine a significance level of H  as illustrated in Equation 3.43 and Equation 3.44 following 

Hamed (2008);  

Equation 3.43:- The mean for the significance test for a normally distributed Hust coefficient. 

0.90670.5 2.87H n −= −
                                                                                                      

Equation 3.44:- The standard devaition for the significance test for a normally distributed Hust 

coefficient. 

0.50.7765 0.0062n n −= −
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In this research, 5% significance level was used for flood series to determine the significance of 

H using H and n  in Eq. (29) and (30). It is important to determine the persistence or long-term 

memory in a time series, which can be measured using the scaling coefficient ( H  ). Hamed (2008) 

outlines this method of testing for significance of the H  value. If H is significant, the variance of

S  ( ( )V S ) can be computed following Equation 3.45 for a given H . 

Equation 3.45:- The variance of the significance test of the Hurst coefficient when determining 

persistence in time series. 

! 12
( ) . sin

(2 2 )(2 2 )

H

i j k l

j i i l j k i k
V S

i j k l

   

  

−

 

 − − − − − + −
 =
 − − − − 


                                          

in which l is computed using Eq. (27) for given H and 

!

( )HV S is the estimated bias. 
( )HV S

which is the unbiased estimate is computed by multiplying by a bias correcting factor B as shown 

in Equation 3.46 

Equation 3.46:- Bias correction estimate of the variance of significance test of the Hurst 

coefficient. 

!

( ) ( )H HV S V S B=                                                                                                            

where B is a function of H  shown in Equation 3.47. 

Equation 3.47:- Correcting factor of the bias in Hurst coefficient 

2 3 4

0 1 2 3 4B a a H a H a H a H= + + + +
                                                                                 

The values of the coefficients 0a
, 1a

, 2a
, 3a

 and 4a
 can be found in Hamed (2008) and are taken 

as functions of the sample size n . The significance of the m-MK is calculated using 
( )HV S

in the 

place of ( )V S . More detailed explanation of the m-MK method applied in this research can be 

found in Hamed (2008) and Saadi et al., (2019).  

Sen’s slope estimator (Sen 1968) was used to estimate the slope or rate of change in flood series. 

This was used because it has been used in many hydrological time series and meteorological 

studies (Blöschl et al., 2017). First the data pairs are calculated to derive an estimate of the slope 

Q following Equation 3.48, 

Equation 3.48:- Sen’s slope estimator. 

-
, 1, 2,... ,

-

j k

i

x x
Q i N j k

j k
= = 
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If there are n values in the time series, many ( 1) / 2N n n= − slope estimates as iQ
 are obtained. 

The median of these N values of iQ
gives the Sen’s slope estimator. The ranking of the N values 

is from the smallest to the largest and the median of all slopes is obtained from the Sen’s estimator 

as shown in Equation 3.49: 

Equation 3.49:- Median of all Sen slope estimates. 

 

( 1) / 2

/ 2 ( 2) / 2

2
med

Q N

Q N Q N
Q

 +


+ +
= 


     

The chi-squared with Poisson regression method was used to detect trends in flood frequency of 

the POT series following Mangini et al., 2019. Unlike the MK test, in which the rank correlation 

procedure may fail in finding a hierarchy in count series containing several paired values (Vormoor 

et al., 2016), the Poisson regression is a generalized linear regression model able to fit count series. 

The model assumes the counts to be Poisson distributed with the logarithm of their expected value 

varying linearly with time. The Chi-squared significance test assesses whether the slope parameter 

of the regression is significantly different from zero, which, in this case, means that a significant 

trend in flood frequency is detected. 

3.3.3.2. Sensitivity analysis of trends to different thresholds 

Using an exceedance threshold was found to affect the number in each of the flood series used. As 

a result, different thresholds were applied to derive POT series and a sensitivity analysis used to 

test for effects of threshold selection on the trends. Threshold selection was aided by the creation 

of different plots, such as a mean residual life plot, to determine a suitable threshold level, 

following Burn et al. (2016). The detailed procedure is outlined in Section 6.5.4 of Chapter 6 of 

this thesis. 

3.3.3.3. Flood seasonality and shifts in flood timing 

To characterize the timing and variability of flood events, seasonality measures were used (Burn 

et al., 2010), which are defined by directional statistics (Mardia, 1972). Seasonality measures are 

subsequently suggested as an appropriate basis for characterizing the similarity of the flooding 

response of catchments. Directional statistics define the date of occurrence of a flood event by 

converting the Julian date to angular value (Ficchì and Stephens, 2019), where January 1 is Day 1 

and December 31 is Day 365 of the flood occurrence for the event i following Equation 3.50. 

Equation 3.50:- Conversion of Julian date to angular value. 

( )
2

365
i i

JulianDate



 

=  
                                                                                             

If N is odd  

If N is even 

 if 
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where i  is the angular value (in radians) for the flood date for flood event i, following the 

interpretation that a flood date is a vector with a unit magnitude and a direction given by i . For 

a given sample of n flood events, the mean flood date can be given by the x- and y- coordinates 

using Equation 3.51and Equation 3.52. 

Equation 3.51:- The x- coordinate of the sample mean date of a given number of flood events. 

( )
1

1
cos

i

ii
x

n


=
= 

                                                                                               
Equation 3.52:- The y- coordinate of the sample mean date of a given number of flood events. 

( )
1

1
sin

i

ii
y

n


=
= 

                                                                                                 

where x  and  
y

 represent the x- and y-coordinates of the mean flood date and lie within, or on, 

the unit circle. To obtain the mean direction ( ) of the flood dates, Equation 3.53 was used, 

Equation 3.53:- Mean direction of the flood dates. 

1tan
y

x
 −

 
=  

                                                                                                                

where   can be converted back to a day of the year using Equation 3.54: 

Equation 3.54:- Conversion of the mean direction to Julian day of the year. 

365

2
MD y


=

                                                                                                                
The measure of the average time of occurrence of flood events for a given catchment is represented 

by the variable MD, which is expected to be similar for catchments with similar hydrologic 

characteristics (such as size and location). 

To determine a measure of variability of the n flood occurrence about the mean date, a mean 

resultant is defined using Equation 3.55. 

Equation 3.55:- Variability measure of a given number of flood occurrences about the mean date. 

22

r yx= +
                                                                                                              

where the dimensionless measure of the data spread is defined by r  and may assume values from 

0 to 1. A value close to 1 is an indication that all floods in a given sample occurred on the same 

day of the year, while values close to zero point to a higher variability in the date of occurrence of 

flood events for a catchment. It follows that the higher values of  r  are associated with higher 

regularity in the timing of flood events, hence more predictable, whereas low values of  r  is an 
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indication of higher irregularity in flood occurrence, hence lower predictability. More details of 

directional statistics can be found in Burn (1997), and this method was adopted for this analysis 

because it has been used in several flood seasonality studies across different parts of the world 

(e.g., Ficchì and Stephens, 2019; Berghuijs et al., 2019). 

To characterize a shift/change in the annual flood, the time series was split into two equal parts of 

18 years each.  The difference in the days between the flood timing of the first part and the second 

part was then circulated. The significance of these differences was tested using a nonparametric 

bootstrapping resampling of 1,000 replicates following Ficchì and Stephens, 2019. This was 

important as it provided a distribution for the mean flood timing. The significance was tested at 

90% significance level for each of the year sections, by calculating the overlap (or Szymkiewicz-

Simpson) coefficient of the estimated confidence intervals (i.e., the intersection divided by the 

smaller of the two intervals). 
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Chapter 4 

4. Hydrological model pre-selection with a filter sequence for the 

national flood forecasting system in Kenya 

4.1. Objective addressed and publication details 
This Chapter provides a model selection with a filter sequence for flood forecasting applications 

in data-scarce regions, using Kenya as an example building on the existing literature, concentrating 

on six aspects: (i) process representation, (ii) model applicability to different climatic and 

physiographic settings, (iii) data requirements and model resolution, (iv) ability to be downscaled 

to smaller scales, (v) availability of model code, and (vi) possibility of adoption of the model into 

an operation flood forecasting system. Based on the review of hydrological models outlined in 

Section 2.4, the proposed criteria are applied following a decision tree as a filter sequence to 

evaluate the twelve models and provide insights on the models’ possible applicability to Kenyan 

catchments. This chapter is important because the work presented serves as an objective model 

pre-selection criterion to propose a modelling tool that can be adopted in development and 

operational flood forecasting for the end-users of an early warning system that can help mitigate 

the effects of floods in data-scarce regions such as Kenya. 

This work has been reviewed and published in the Journal of Flood Risk Management and can be 

accessed at https://doi.org/10.1111/jfr3.12846. The exact publication copy is in Appendix A2 

material of this thesis. 

 

4.2. Authors’ contributions 
Maureen A. Wanzala (65%): - Conceptualization, Data curation- Lead, Methodology- Lead, 

Investigation, Software, Formal analysis - Lead, Visualization, Writing – original draft, Writing - 
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4.3. Introduction 
Hydrological models predict hydrological variables, particularly river flow. In some cases, where 

input and output data are scarce, the model can be used to estimate the runoff and river flow in 

ungauged catchments (Hrachowitz, 2013; Sivapalan, 2003). Therefore, models are useful in 

applications such as short to extended-range flood forecasting  (Alfieri et al., 2013; Emerton et al., 

2018), climate assessment (Tamm, Luhamaa and Tamm, 2016; Hattermann et al., 2017; Lu et al., 

2018), hazard and risk-mapping (Artan et al., 2001; Ward et al., 2015),  drought prediction (Van 

Huijgevoort et al., 2014), and water resource assessment (Dessu et al., 2016; Mutie, 2019; 

Praskievicz & Sang, 2009; Sood & Smakhtan, 2015). However, the application’s ability to extract 
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viable information varies across different classes of models, according to their different spatial and 

temporal scales and intended purposes. 

The choice of model for operational flood forecasting is not simple because of different process 

representations, data scarcity issues and propagation of errors and uncertainty down the modelling 

chain (e.g., Paul et al., 2020; 2019a). For example, the practice of choosing a model for an 

application may be difficult due to several reasons highlighted in Melsen, (2019): (i) popular 

models are not tailored to specific climates or circumstances (unless the west European climate 

counts, implicitly), which makes exclusion on process presentation alone difficult; (ii) most 

popular models share the same main properties and the same weaknesses; (iii) the community has 

failed to create a generalized benchmarking system to rank models and model set-ups, so that 

suitability has to be ascertained on a case-by-case basis; finally,  model evaluation is primarily 

based on streamflow, which in itself is too little to distinguish between models, especially 

calibrated models. It is necessary for a modeller to know the perceptual model (Wagener et al., 

2021), including quantitative or qualitative descriptions of the existing knowledge and 

understanding of the catchments (Beven, 2011; Gupta et al., 2008; Westerberg et al., 2017). For 

instance, Wegener et al. (2021) illustrates a generic perceptual model included in catchment 

hydrology functions. The processes herein are dynamic and evolve with time in response to 

changes in water management or land-use, climate conditions and geomorphological changes, so 

they need to be integrated into the model development. This implies that if such changes are not 

taken into consideration during and/or after model development and upgrade, then the relevant 

processes will not be presented adequately, thus limiting the application of a single model over the 

entire country. 

Models are simplifications of reality and thus cannot completely represent every process and 

aspect of the catchment.  The importance and impact of many processes can evolve with time, for 

example in response to changes in water management.  In addition, the right approach now is not 

necessarily the right approach in the future. Significant buy-in is required to develop operational 

forecasting capacity with a specific model, and so in recognition of changes in the importance and 

impact of many processes because of land use change, water management, etc., it may mean it is 

more efficient to choose a modelling approach that can represent a larger range of processes. When 

there are distinct zones of hydro-climatology within a country it could be necessary to adopt 

different modelling approaches, but this needs to be balanced against the scaling up of the 

resources required to extend human and technical capacity across several different models. 

Moreover, data play an important role in hydrological modelling, irrespective of the processes 

represented in a model (Wahren et al., 2016). Many studies point to challenges in modelling due 

to data scarcity (e.g. Beck et al., 2017; Fuka et al., 2014; Lavers et al., 2012; Najafi et al., 2012; 

Quadro et al., 2013; Smith et al., 2013; Wu et al., 2013) which limits the applications of very 

detailed and complex models due to inherent unquantified uncertainties. Recognizing that data and 

models are not free from error, for the sake of brevity, within this paper our descriptions of the 

models and their characteristics will consider only those uncertainties related to model structure 

(Pechlivanidis et al., 2011; Smith et al., 2015).The choice of model depends on its intended 

purpose, and the modeller needs to select a model objectively, based on the end-user’s need for 
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more reliable decisions (Perker, 2020; Boelee et al., 2017; Todini, 2007). Various hydrological 

models exist at different spatial and temporal scales with diverse levels of complexity and data 

requirement. Additionally, there are differences between model codes and implemented modelling 

systems, which may cause difficulties in the choice and application of a particular model. A Multi 

Criteria Analysis (Sherlock and Duffy, 2019) is recommended to evaluate and grade models, from 

which a small number of models would be constructed, calibrated, and tested in a real-world 

context and, at the end, a choice would be made of one or more models to be used in the operational 

FFC experiment. However, the proposed MCA relies heavily on evaluation data, and is very time 

consuming because of the number of models available: hence, for data-scarce regions, and/or 

agencies with limited resources, and in general use, an additional decision tree is helpful to trim 

down the number of options. There is a need for further evaluation of the limited selection with, 

for example, an MCA and the FFC experiment. To aid this hypothetical modeller there is a clear 

need for well‐conceived and systematic strategies for selecting model structures and establishing 

data requirements, which is the innovative contribution of this research.  

There is a plethora of model reviews with applications at global and continental scale, including 

Devia et al (2015 Emerton et al (2016 Pechlivanidis et al (2011 Salvadore et al (2015 Sood et al 

(2015 Trambaur et al (2013 and Kauffeldt et al. (2016). Most of these reviews highlight and 

compare existing modelling concepts and gaps but none has focused on model selection 

frameworks for final application except for Trambaur et al. (2013) and Kauffeldt et al. (2016).  

Kauffeldt et al. (2016) provides a technical review of large-scale hydrological models for 

implementation in operational flood forecasting at continental level. Trambaur et al. (2013) 

reviews continental scale hydrological models highlighting their suitability for drought forecasting 

in sub-Saharan Africa. The two cited works look at model review and a selection framework for 

flood and drought applications at continental scales respectively, and to the best of my knowledge 

this is the first model overview and practical objective model selection framework for flood 

applications at national scale taking into consideration varied catchment characteristics and data 

scarcity issues.  

This paper proposes a practical approach building on Kauffeldt et al. (2016) and Trambaur et al.  

(2013) for selecting a model based on a step-by-step filter sequence following objective aspects 

(such as the ability to simulate relevant processes to flood applications), as well as considering 

more practical aspects such as model code availability and ease of use at catchment scale with 

varied climate characteristics. We follow the filter sequence and develop a Venn diagram to select 

suitable model candidates. This practical approach is applied to a case study of the development 

of an early warning system that can help mitigate the effects of floods in data-scarce regions within 

Kenya, where there is a lack of good observations of climate variables such as precipitation, 

temperature, etc., and this factor inhibits the proper identification of the limitations of model 

applications at catchment scale. 

Our paper is structured as follows. Kenyan hydrology and applications of hydrological models to 

simulations of flood processes are discussed in Section 4.4. The decision tree is built based on 

deliberations about Kenyan hydrology and current forecasting experience in Kenya, which are 

outlined in Section 4.4.1. The presented model selection framework is outlined in Section 4.5. 
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Then a detailed evaluation and selection of the models based on the decision tree are outlined in 

Section 4.6. In Section 4.7, the focus is on specific discussions regarding model selection and the 

novelty of the decision tree. The paper then concludes with the key contributions of the suggested 

pre-selection along with recommendations for the next steps to evaluate the models objectively to 

improve FF in Kenya. 

4.4. Kenyan hydrology and forecasting 

4.4.1. Applying hydrological forecasting models to the simulations of floods in Kenya 

It is important to consider the application of the hydrological model when determining which 

model to use, due to differences in process generation and representation (Cloke et al., 2011). For 

example, floods are generated by a range of processes related to extreme rainfall (interception, 

through-flow), runoff generation (infiltration, saturation excesses and subsurface storm flow) and 

runoff routing (Rosbjerg et al., 2013). In addition, floods in snow dominated catchments are 

regularly caused by snow melt, and consequently representation of this process in a hydrological 

model is crucial, because it requires an optimal simulation of the snow related hydrological 

processes such as snow accumulation and melt (Verzano, 2009).However, this case does not apply 

to Kenyan catchments.  

Moreover, flood formation is a complex combination of extreme precipitation or temperature rise 

or both, the retention of the water in different storages and finally the flow through the river 

networks. Hydrologic responses commonly exhibit threshold behaviours in terms of process 

sensitivity e.g. soil storage, evaporation, evapotranspiration and interception as a function of 

system (model) state, both in space and time, giving rise to hydrology uniqueness (Beven, 2000) 

A flood peak caused by extreme rainfall in the upstream part of a catchment naturally reaches the 

downstream part of the catchment after a temporal  delay (Verzano, 2009; Tallaksen and  Lanen, 

2004). Therefore, several effects influence the magnitude of the flood wave in the downstream 

area, such as tributary contributions and retention in lakes and wetlands. The lateral transport of 

water through the river network is a particularly important process for the routing of discharge. 

This applies to average flow conditions as well as low or high flows. Therefore, it is meaningful 

to route the water within a hydrological model with a variable flow velocity because the flow 

velocity varies with the actual river discharge (Verzano, 2009) among other relevant flood 

generating processes. In many hydrological forecasting systems, the treatment of the rainfall-

runoff component (traditionally the core of what is meant by hydrological models) and the routing 

can be separated. Whether the routing should be built in, or should be specifically modular, could 

be another criterion that qualifies the models under consideration. An operational Flood 

Forecasting System (FFS) aims at producing accurate timely and valuable flood forecast 

information far in advance to reduce flood-related losses by increasing preparation time. A typical 

FFS requires a hydrological model and data sources, as well as main processes and an interactive 

friendly user interface. For example, a simplified conceptual model for a large-scale flood 

forecasting system, the components required, and the output generated within each component. Is 

shown in Figure 4.1. 
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Figure 4.1:- Conceptual large-scale hydro-meteorological forecasting system (Emerton et al., 2016). 

4.4.2. Subsequent argument for the need for a decision framework with a filter 

sequence in Kenya 

Both the hydroclimate and human influences create challenges for hydrological modelling and 

forecasting (Bai et al., 2015) because of their massive influence on the catchment processes. For 

example, Kenya exhibits high variability in physiographic and hydroclimatic conditions (see 

Figure 4.2). The highest point is at about 5000m a.s.l. (mostly areas around central highlands), 

while the lowest point is about 20m a.s.l. (mainly around coastal areas). The vegetation cover is 

mainly a mixed tree cover, grass, and sparse vegetation in most of parts of the country and shrubs 

and bare land in the arid and semi-arid areas of northern Kenya. As a result, Kenya experiences 

different climate related extremes in terms of intensity, magnitude, and timing. 
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Figure 4.2:-  Physiographic and hydroclimatic characteristics of Kenya. 

Rainfall pattern follows a bimodal rainfall seasonality (Ongoma and Chen, 2017) with high 

spatiotemporal variability (Figure 4.3) (Hession & Moore, 2011). Three seasons are experienced: 

the ‘long rains’ of  March - April - May (MAM), the non-rainy months of June - July - August 

(JJA),  and the ‘short rains’ of October  - November - December (OND) (Ogallo, 1988; Ongoma 

et al., 2015). About 42% of the total annual rainfall is observed during the MAM rainfall season 

(Ongoma and Chen, 2017), with the highest intensity observed near the water bodies of the Indian 

Ocean, Lake Victoria, and the Kenyan highlands  
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Figure 4.3:- Spatial pattern of long-term mean monthly and seasonal rainfall over Kenya 

There are five major basins (Marwick et al., 2014) in Kenya (see Figure 4.4 left panel). These 

catchments are highly influenced by settlements as well as human activities such as dam 

constructions and irrigation activities (Figure 4.4, right panel), which have adverse effects on the 

catchment response to rainfall runoff processes. At the catchment scale, there is high variability in 

catchment hydroclimatic characteristics such as surface area and average annual rainfall (Figure 

4.5). 

 
Figure 4.4:-  Standard Kenya main basins (left panel) and the ongoing human activities (constructed major and 

small (other) dams and irrigation schemes) in the select catchments (left panel) (Data source: WRA-K). 
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Figure 4.5:- Spatial distribution of the morphological and hydro-climatic characteristics across the catchment. 

The catchments were delineated based on the 19 outlet discharge points. 

Therefore, it is important to consider the variability in catchment characteristics and the knowledge 

gaps in the perceptual model (e.g., landcover changes, human activity, data uncertainty and 

accounting for groundwater fluxes) when selecting a model for application as this may influence 

the performance of the model. The following section discusses the aspects to consider when 

objectively pre-selecting a model for application to Kenyan catchments. We focus on the important 

aspects, highlighting the problems and challenges associated with hydrological models which are 

specific to Kenya, and draw clear conclusions on model requirements from the basin 

characteristics in Section 4.4. We apply the proposed criteria to Kenyan select catchments, 

outlining characteristics associated with catchments in Section 4.6 as well as providing a detailed 
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review of the models and a subsequent evaluation. In Section 4.7, we discuss the strength and gaps 

in the selection framework and provide a way forward and the next steps for future research. 

Section 4.8 draws a clear conclusion and defines the contribution of this work to a national flood 

forecasting centre. 

4.5. Model Selection Framework 
Selection framework in this paper follows a selection criterion including the ability to represent 

relevant processes, the model’s structure, flexibility, and complexity, the availability of the model 

code and the needs of the user community (Bennett et al., 2013; Kauffeldt et al., 2016), and 

consequently it is qualitative rather than quantitative. For example, a good model should be able 

to represent all relevant processes, such as gross precipitation (snow, rain), interception storage, 

evaporation, transpiration, snowpack storage, snowmelt, overland flow, soil storage, recharge to 

shallow aquifer, capillary rise, intermediate flow, baseflow, and leakage to deep aquifer. However, 

these will require relevant input datasets and more complex models (e.g.,  fully distributed with 

numerous parameters) to effectively represent the processes, but it is worth note that increasing 

the model’s complexity by incorporating all the above processes does not necessarily improve its 

performance (Butts et al., 2004; Birkel et al., 2010). The application and performance of a model 

may also vary depending on the site’s size and other characteristics (Van Lanen et al., 2013; Bai 

et al., 2015). Therefore, the following sections summarise the aspects that aid the objective 

selection of a hydrological model for flood applications in the Kenyan context, considering 

Kenya’s hydrogeological, physiographic and climatic conditions discussed in section 1. In total 

six criteria were found to aid in the decision making. In the next subsections each of the six criteria 

is evaluated in relation to Kenya. 

4.5.1. Represented processes and fluxes 

A complete hydrological model would represent all the water balance components and fluxes (e.g., 

as illustrated in Mendoza et al. (2012)). Complexity in models often results in the need for many 

parameters to be determined, which requires more hydrogeological data (Dobler and  

Pappenberger, 2013; Muleta and Nicklow, 2005). There needs to be a compromise between 

complexity and efficiency for a model to work. 

More data is needed to make more complex models more accurate. The choice of an appropriate 

model structure is a crucial step towards the accurate prediction of  streamflow or other variables, 

and to comprehension of the dominant physical controls on catchments' responses to climate 

change (Clark et al., 2008). In Kenya, this requires more data, on matters such as groundwater 

level, which are not readily available.  

Some catchments, especially those in the arid and semi-arid regions of Kenya, have sandy and 

rocky riverbeds and tend to run dry most of the dry months.  To such as these, the fixed velocity 

and river channel fields represented in some hydrological models may not apply. This is because 

of failure to properly represent the roughness index, which varies not only with boundary 

characteristics but also with flow velocity, water depth, and other hydraulic factors (Addy and 

Wilkinson, 2019; Zang et al., 2016). 
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In addition, the more processes are represented in a model, the more the parameterization schemes. 

For example, a priori estimation requires establishing parameter values from measured physical 

system properties, presupposing that the model parameters have a sufficiently reliable 

representation (Beven and  Pappenberger, 2003). Therefore, parameter estimation in models of 

natural systems may require measurements and tests.  It then follows that effective calibration for 

such model parameters requires more computational power, which may be lacking in the Kenyan 

operational flood forecasting centre. 

4.5.2. Model applicability to Kenyan hydroclimatic conditions and physiographic 

settings 

Processes that are most relevant for simulating flood conditions in Kenya (see Barasa et al., 2018; 

Onyando et al., 2003) should be represented in a model. Some extra processes, such as channel 

losses, evaporation from rivers, and wetlands representations, are not considered important in 

average conditions in some regions due to complexity or lack of interest (Rosbjerg et al., 2013), 

so they can be discounted. This is because models incorporating such complex processes require 

more skilled personnel and higher budgets to install and run. This is a challenge in most operational 

systems in developing countries including Kenya.  Temperature plays an important role in river 

channel and catchment evaporation. In Kenya’s case, annual mean temperatures range from 15 to 

35 °C which closely correlates with topography, with the lowest temperature experienced  in the 

central highlands and the highest in the lowlands (Mutimba et al., 2010) and a model incorporating 

this would be best suited for such a place. 

Model selection in dry and wet catchments must be more careful, due to the large performance 

difference in dry catchments (Bai et al., 2015). Wet catchments runoff simulation is significantly 

better than that in dry catchments (Haddeland et al., 2011), because of the high non-linearity and 

heterogeneity of rainfall–runoff processes (Atkinson, Woods and Sivapalan, 2002). In addition, 

high uncertainty is introduced during model parameter estimation, resulting in significant 

differences in simulated runoff behaviour (Andersson et al., 2015). Large river basins are often 

strongly influenced by human activities (e.g., irrigation, reservoirs, and groundwater use) for 

which information is rarely available (Döll, Fiedler and Zhang, 2009). The Kenyan case, where 

most basins are ungauged, may increase such uncertainty (Sivapalan et al., 2003; Hrachowitz and 

Weiler, 2011). 

When there are distinct zones of hydroclimatology within a country, it could be necessary to adopt 

different modelling approaches, but this needs to be balanced against the scaling up of the 

resources requiring human and technical capacity across several different models, which is one of 

the main challenges in the Kenyan case. 

4.5.3. Data requirements and spatial and temporal resolution of the model  

Kenya suffers from a lack of good observations of climate and hydrological data. This is a limiting 

factor for the proper identification of the limitations of model applications at catchment scale. For 

example, a detailed representation of groundwater flows and tables and soil moisture content 

would be very relevant to flood forecasting. However, reliable data (on ground water and 
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reservoirs, for example) are unavailable for research applications, thus limiting the use of models 

incorporating this kind of data.  As a result, a compromise must be reached regarding model spatial 

variability, due to the ungauged status of most Kenyan catchments (Trambauer et al., 2013), to 

allow the use of alternative freely available remote sensing data. Applying a distributed model 

would require high spatial and temporal resolution data to represent each of the catchment HRUs 

whereas a lumped conceptual model would represent an entire river basin (Krysanova, Bronstert 

and Müller-Wohlfeil, 1999), but since gauging stations are sparse or absent in some of the 

catchments, this limits the use of most distributed models across Kenyan catchments. The issue of 

observation data scarcity in Kenya is huge and the reliability of the readily available satellite and 

reanalysis datasets has not been fully established due to low performance skills in the evaluation 

studies highlighted in Section 2.5. This limits application of some of the distributed models with 

observations due to requirement of more input data, even though this can be solved with satellite 

and reanalysis data. In addition, the existence of some regionalisation technique that can make 

models work well in data scarce areas could be an alternative, but the expertise and skill to 

implement this is lacking at the Kenya national level.However, limiting the models to the type that 

can run only when directly calibrated on an outlet would be a mistake. This is because there are 

plenty of ways to discretize in HRUs without individually calibrating each HRU independently. 

There are ways to calibrate transfer functions to enable modelling and ungauged HRUs 

(Samaniego, 2010). There are model set-ups that do not rely on calibration as a first principle (such 

as wflow-sbm, Imhoff, 2020) and are based on globally available data. The challenge here is the 

transferability of the model to suit Kenyan catchments and operations and represent the catchment 

processes adequately, because it needs to be as simple as possible. 

Moreover, modelling experiments on Kenyan catchments may yield more plausible results if data 

at high frequency time steps are used as they contain more information (Ficchì, Perrin and 

Andréassian, 2016). This is because the better modelling of the rainfall–runoff relationship is 

severely affected by the sub-hourly dynamics of precipitation(Paschalis et al., 2014) due to the 

nonlinear nature of the infiltration process (Blöschl & Sivapalan, 1995), such as the peak discharge 

value (Gabellani et al., 2007) and runoff volume (Viglione et al., 2010). In Kenya, the temporal 

resolution of the available reliable data may be limited to higher time steps (such as monthly and 

yearly) and this may limit the application of a model on sub-daily/hourly timesteps. Models 

incorporating higher timesteps data, such as daily and monthly, are more easily applicable to the 

n Kenyan case compared to those limited to hourly or sub-daily timesteps. 

4.5.4. Capability of the model to be downscaled to a river basin scale 

The issue of scale in hydrological models is highlighted in Beven (1995), where the aggregation 

approach towards macroscale hydrologic modelling is an inadequate approach to the scale 

problem. For semi-distributed and distributed models, grid size selection is intricately linked to 

the spatial scale at which the model will be applied. Also, when lumped approaches are applied to 

considerably larger basins the integration of the processes will naturally occur over a greater area, 

and thus any differences in small scale processes within the basin will not be well considered. Due 

to lack of locally developed models, the continental models are applied at catchment scale, and 

therefore need to be downscaled to suit the grid size under application. However, for larger grids, 
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processes that are important only at the local scale (such as overland flow) may not be considered 

in the model structure unless there is an extensive change in the model grid width, and this may at 

times introduce structural uncertainties. Some models may not be easily downscaled to Kenyan 

river basins with varying spatial scales (see Table 7) without making significant changes in the 

structure of the model. 

4.5.5. Operational model for flood early warning system at large scales with potential 

adoption to local scale 

With the increase in flood events in Africa in the recent past, Thiemig et al. (2015) proposed a FFS 

for Africa, hereafter referred to as AFFS. Following the illustration, LISFLOOD, a physically 

based hydrological model, was selected to be the AFFS; it relies on historical hydrological 

observations, historical as well as near real-time meteorological observations, real-time 

meteorological forecasts, and an African GIS dataset. The four main processes AFFS runs are: the 

calculation of hydrological thresholds, the computation of the initial hydrological conditions, the 

computation of the ensemble hydrological predictions, and the identification of flood events. This 

was developed as a protype for Africa but never taken forward to operations and since then no 

literature or research on the efficiency or applicability of this system has been documented. 

In addition, Princeton University has developed the African Flood and Monitor (AFDM) tool 

(Wood, 2015). The aim is to demonstrate the potential for tracking drought conditions across 

Africa using available satellite products and modeling in data-scarce regions. The system provides 

daily updates in near real-time (2-3 days lag) of surface hydrology, streamflow and vegetation 

stress, short-term hydrological forecasts for flooding, and seasonal forecasts for drought and 

agricultural impacts (https://platform.princetonclimate.com/platform-ng/pca/products). 

The system has been installed at regional centers in Africa, most notably in West Africa 

(ACMAD), where it is operational for the Niger basin using the Hype-Niger model and the World-

Hype applied to the whole West Africa region.  A schematic illustration of the FFS for the Niger 

Basin in West Africa is shown in Figure 4.6. 

Narrowing the focus down to Kenya, the Kenya Meteorological Department (KMD) runs an 

operational flood forecast system in Nzioa basin (Personal communication from Andrew Njogu) 

with plans underway to upscale to 9 additional flood prone areas spread across the other 7 basins 

(Athi, Galana, Sabaki, Nyando, Tana, Sondu, Ewaso Ngiro etc). A schematic representation of the 

FFS in River Nzioa Basin in Kenya and the steps involved appears in Figure 4.7. The model 

adopted for this system is the Soil Moisture Accounting and Routing Model (SMAR) incorporated 

in the Galway Flow Forecasting System (GFFS) (O’Connor, 2005). The GFFS is a suite of models 

developed at the Department of Engineering Hydrology at the National University of Ireland, 

Galway, Ireland. The five models embedded in the software comprise four system theoretic models 

(simple linear model (SLM), linear perturbation model (LPM), linearly varying gain factor model 

(LVGF) and artificial neural network (ANN)) and one conceptual model: the soil moisture 

accounting and routing (SMAR) model. The ordinary least square solution for SLM, LPM, and 

LVGF, conjugate gradient algorithm for ANN and Rosenbrock, and simple search and genetic 
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optimization methods for SMAR are used for calibration of the model parameters (O’Connor, 

2005).  

 
Figure 4.6:- Niger HYPE-model for Niger basin and Hype World for the rest of West 

Africahttps://fanfar.eu/production/ 

In an interview, Njongu – head of hydrological modelling section at the KMD, noted that the 

choice and use of the SMR model was an entirely subjective matter, mainly driven by the project 

funding following the push to implement a FF system in Nzioa after destructive flooding events. 

Additionally, he noted that there was limited documented research on efficiency assessment to 

inform the choice of the SMAR model adopted for this purpose; instead, it was chosen for its 

simplicity and comparatively low data requirements. Moreover, model choice is dependent on the 

project funds available, and the implementers and collaborators are likely to trial a model they 

chose to advance their own interests and advocate for the application’s abilities, irrespective of its 

underlying performance measures. It then follows that the choice and application of the SMAR 

model in the Kenyan FFS was due to this reason. 

 
Figure 4.7:- Overview of the flood monitoring, modelling, forecasting and dissemination for the operational 

flood forecasting in Nzioa basin, Kenya (Source KMD). 
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Because of current developments, there have been ongoing initiatives spearheaded by the Kenya 

Water Resources Authority – a parastatal body mandated to set and manage the water resources 

rules and hydrological data. Under the ongoing Kenya Water Security and Climate Resilience 

Project, WRA is in the process of trialing three hydrological models (SMAR, NAM, GR4J) in 

Nzoia to be incorporated into the FFEWS under development (WRA reports). For example, an 

initial assessment for model performance in Nzioa basin has been started. Soil moisture 

representation in SMAR, GR4J and MIKE NAM over the basin is illustrated in Figure 4.8. 

 
Figure 4.8:-  A representation of the soil moisture evaluation in SMAR (yellow), GR4J (blue) and MIKE NAM 

(green) over the Nzioa basin in Kenya (Source KMD). 

The above highlights point to fact that a model needs to be able to be incorporated into an 

operational (up and running) system, if the main aim of the model selection is to provide a tool for 

the end-users of an early warning system that can help to mitigate the effects of floods. In this 

respect, a model that can easily be implemented in a forecasting environment is preferred. Hence, 

the model should be stable, have reliable error and inconsistency checks, be able to flag up missing 

data (e.g., when input sources fail), be able to fit into an operational environment and preferably 

be user friendly.  

4.5.6. Availability of model code and model run-time.  

The code must be available for use (open source or through agreements) with the potential for 

adaptation to specific purposes (e.g., ability to change the represented processes, ingested time-

step and/or catchment discretization). These adaptions are possible but do not actually existing 

most of the freely available model codes. The code must be actively used and developed with core 

developers identified to ensure that proper support can be given in the initial phases. Executable 

code is not enough, since changes, for instance reading of input data, will be necessary (Paul et 

al., 2020). Forecast deliveries run the risk of being delayed if bug fixes or updates cannot quickly 

be incorporated in the model. A key aspect here is the service level agreement struck between the 

model and the forecasting system provider, outlining a clear overview of which parts are 

maintained locally, and which parts are outsourced. In addition, codes available only through 

purchase may limit the use of models, especially for research and operational purposes, so the 

model should be opensource; not all open-source licenses, however, are the same. 
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Some modelling communities have provided accessible packages for some select models with 

dedicated functions, such as input data preparations, data processing and transformation, 

calibration, etc. These packages may have all functionalities for the application under 

consideration, but limited functionalities would limit it use.  Some of the freely available packages, 

the proposed models and the package functionalities that can be executed are summarised in Table 

6. 

The model run-time (Central Processing Unit) - computational time to run a simulation from model 

spin up - varies with different models and areas of application. For example, Astagneau et al. 

(2021) show how different models and implementations can differ by an order of magnitude in 

required calculation time for the same set of catchments. There are shortages of computational 

power in many of the African National Meteorological and Hydrological Services (NMHS), 

especially if ensemble simulations, data assimilation methods and further computationally 

intensive uncertainty estimation methods are to be applied, and Kenya is not an exception. 

 
 Table 6:-  Freely available packages, proposed models, and inbuilt model functionalities of some of the 

commonly applied models (Source: Smith et al 2021). 

Package Repository Proposed 

Model 

Package functionalities 

Data 

processing 

Criteria Data 

transformation 

Automatic 

calibration 

Plot 

function 

Graphical 

user 

Interface 

Independent 

snow 

function 

airGR 
 

GR models √ √ √ √ √ √ √ 

dynatopmodel 
 

Dynamic 

TOPMODEL 

√ √ ˟ ˟ √ ˟ ˟ 

HBV.IANIGLA 
 

HBV √ ˟ ˟ ˟ ˟ ˟ √ 

hydromad  IHACRES 

AWBM 

GR4J 

Sacramento 

√ √ √ √ √  √ 

sacsmar  Sacramento ˟ ˟ ˟ ˟ ˟ ˟ √ 

topmodel 
 

TOPMODEL 

1995 

√ √ ˟ ˟ ˟ ˟ ˟ 

TUWmodel 
 

Modified 

HBV 

˟ √˟  √˟ ˟ ˟ ˟ 

WALRUS  WALRUS √ √ √ √˟ √ √˟ √ 

√- Present ˟ - Not present, √˟ -Partially present 

 

4.6. Application of the selection framework to Kenya’s chosen catchments  
The above section outlines the aspects to consider when selecting a suitable model for national 

flood forecasting and application in Kenya.  The application of the selection framework to Kenya, 

based on the above proposed criteria, is outlined in Table 7. There are marked differences from 

catchment to catchment, which point to the fact that a single model and single initialization with 

all the same parameters cannot be efficiently applicable at country level but rather at catchment 

scale, so it is necessary to ensure that a model is selected according to objective criteria, based on 

the users’ needs and the catchment processes.
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Table 7:- Summary of catchment-by-catchment evaluation based on the proposed framework. 
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Catchment by catchment evaluation based on the proposed framework  

Catchment Name EWASO 

NG’IRO 

TANA 

RIVER 

ATHI NZIOA YALA NYANDO TURKWE

L 

GUCHA MARA 

Catchment Area 

(KM2) 

30,000 96,000 46,600 12,800 2,777 5,110 9, 303 6,310 13, 750 

Dominant Hydrological Processes fluxes present 

Precipitation √(unimodal) √ (bimodal) √(bimodal) √ (bimodal) 

 

√(bimodal) 

 

√(bimodal) √ 

(unimodal) 

√(bimodal) √ (bimodal) 

 

Infiltration √ √˟(good 

upstream, 

poor in 

delta) 

√˟(good 

upstream, 

poor  in 

delta) 

√˟(good 

upstream, poor 

in floodplain) 

√ √ ˟ √ √ √ 

Interception √ ˟ √ √ √ √ √ √ ˟ √ √ ˟ 

Evapotranspiratio

n 

√ (low) √ (low 

upstream, 

high 

downstresm) 

Hargreaves 

 

√ (low) √(high) √(high) √(high) √(low) √(high) 

 

√(low) 

 

Snow ˟  ˟  ˟  ˟  ˟ ˟  ˟  ˟  ˟  

Soil storage √ ˟ 

 

√ ˟ 

 

√ ˟ 

 

√ 

 

√ 

 

√ 

 

√ ˟  √ 

 

√ ˟ 

 

Ground water 

storage 

˟ 

 

√ Shallow & 

deep  

 

√ Shallow & 

deep  

 

˟ 

 

˟ 

 

˟ 

 

˟ 

 

√ Shallow & 

deep  

˟ 

 

˟ 

 

Lake & reservoirs ˟ 

 

√ Linear res. 

 

√ Linear res. 

 

√ 

 

√ 

 

√  

 

√ Linear res. 

 

√ ˟ 

 

Runoff √ infiltration 

excess  

√  

 

√ 

 

√saturation 

excess/ 

 

√saturation 

excess 

 

√infiltration 

excess overland 

 

√infiltration 

excess 

 

√ √ 

Ground water 

recharge 

˟ 

 

√ 

 

√ 

 

√ 

 

√ 

 

√ 

 

˟  √ √ 

Hydroclimatic and physiographic setting 

Arid √ ˟ ˟ ˟ ˟ ˟ √ ˟ ˟ 

Semi-arid √  √ (upstream) √(upstream) ˟ ˟ ˟ √  √ 

Wetland ˟ √(wet delta) √(wet delta) √ √ √ ˟ √ ˟ 
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Data Availability and resolution 

Observed 

Meteorological 

data 

(Precipitation, 

Temperature, 

wind etc) 

√ ˟Daily 

√monthly  

 

√ ˟Daily 

√monthly  

 

√ ˟Daily 

√monthly  

 

√ ˟Daily 

√monthly  

 

√ ˟Daily 

√monthly  

 

√ ˟Daily 

√monthly  

 

√ ˟Daily 

√monthly  

 

√ ˟Daily 

√monthly  

 

√ ˟Daily 

√monthly  

 

Hydrological data 

(Discharge, 

Ground water 

Reservoir levels, 

√ ˟ discharge 

for some 

stations  

 

˟ Ground 

water & 

reservoir 

levels 

√˟ discharge 

for some 

stations  

˟ Ground 

water & 

reservoir 

levels 

√˟ discharge 

for some 

stations  

˟Lake reservoir 

levels 

√˟ discharge for 

Ruambwa and 

missing years 

for other 

stations 

√˟ discharge for 

some years  

 

√˟ discharge for 

some years  

 

˟ Ground 

water & 

reservoir 

levels 

√˟discharge 

for some 

stations 

√ ˟discharge for 

some years 

 

√ ˟  

 discharge 

for some 

stations & 

years 

 

Catchment characteristics 

Size (Sq.km) 30,000 

 

96,000 

 

46,600 

 

12,700 

 

3.200 

 

3,400 

 

28,000 

 

5,100 13,750  

Human influence √Irrigation, 

dams 

√Irrigation, 

dams 

√Irrigation, 

dams 

˟√ Irrigation 

 

˟√ Irrigation 

 

˟√ Irrigation 

 

√Irrigation, 

dams 

˟√ Irrigation 

 

˟√ Ground 

water 

abstraction 

Soil type Sandy/loam

y 

Sandy/loam

y 

Sandy/loam

y 

Loamy/clay Loamy/Clay Loamy clay Sand/loamy Loamy/clay Sand/loam

y 

Vegetation cover Bare 

land/Sparse 

vegetation 

Bare 

land/Sparse 

vegetation 

Bare 

land/Sparse 

vegetation 

Grassland/Tree

s 

/Croplands 

Grassland/Trees

/ 

Croplands 

Grassland/Tree

s 

/Croplands 

Bare 

land/Sparse 

vegetation 

Grassland/Tree

s 

/Croplands 

Bare 

land/Sparse 

vegetation 

Some Models Calibrated over these catchments 

Model applied to 

the catchment 

√˟ ˟  ˟ √  ˟  √  √ √ √ 

 

✓: Present ×: Not Present ×✓: Partially Present
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4.6.1. Application of decision tree to Kenyan catchments 

This section assesses the suitability of hydrological models with reference to flood applications in 

Kenya, considering the aspects described. A decision tree (flow diagram) representing the filter 

sequence in the selection criteria is presented in Figure 4.9. At the top of the decision tree are all 

the processes that are deemed important in a model for effective flood applications in Kenya. 

Firstly, Kenya has major differences in terms of climates: some areas are Arid and Semi—Arid 

(ASALs), for example in the Eastern and North-eastern parts, whereas others are wetlands (e.g., 

Western and Central Highlands) (see Figure 4.2). Therefore, distinctions are made in the second 

step to accommodate processes that are important to the different climatic zones. Secondly, Kenya 

is currently facing data scarcity due to the ungauged nature of many catchments. This, however, 

should not be a setback to hydrological studies and as a result we filter the model based on the 

input data availability and ability to use alternative data. In the third step, we explore the 

availability of the model code to a wider user community. Here the concepts of code executability 

and online updating, accessibility and computational run time are explored. At the fourth stage, 

the model’s ability to be downscaled to catchment local scale is considered. Fixed grid sizes and 

limitations of applicability to certain basin sizes are mainly considered here. Finally, we explore 

the preferences of the model based on their ease of implementation in the forecasting system 

environment. However, this piece of work does not involve the actual analysis of the models under 

consideration, and it is based on the elimination method, following previous studies on the 

performances of the models over the region. As a result, we present a yes/no decision tree which 

has potential implicit weighting factors of ‘0’ or ‘1’ based on whether the model meets a certain 

criterion or not from the MCA perspective.  

The above aspects of the selection framework form the basis of this model overview and the 

discussion of the selection process. In this study, a combination of conceptual and process-based 

lumped and distributed hydrological models is considered for further evaluation to establish if they 

are compatible with the above aspects. The hydrological model should be suitable for evaluation 

of the spatial and temporal occurrence of floods based on a defined indicator. Therefore, the 

models considered (and described in the supplementary material) range from the few applied to or 

under consideration for the Kenyan context as well as the other widely used models employed in 

FF studies across the African continent that in our opinion would be applicable to the Kenyan case. 

A total of 12 rainfall-runoff models were initially listed as potential candidates for small scale 

operational flood forecasting (see Table 8 for main references). LISFLOOD and HYPE are 

included in this review, despite being developed for large-scale applications, because they were 

adopted as the prototypes in the AFFS and West Africa, respectively. The models were chosen 

mainly because of the existing literature reviews and application studies, particularly with 

reference to Africa and Kenya. We evaluated the models according to the criteria (aspects) 

discussed in Section 3 and outlined on the decision tree. We have applied this to all the 12 reviewed 

models and outline the summary of the evaluation in Table 9. This provides the summary statistics 

for each of the models based on process representation, data input requirements, model code 

availability, ease of downscaling to Kenyan catchments, and its application to operational flood 

forecasting. 
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Figure 4.9:-  Flow sequence to serve as a decision tree for evaluating and selecting a suitable hydrological model 

for flood forecasting in Kenya, based on the proposed criteria. 

4.6.2. Actual model selection based on the evaluation 

The Venn diagram (Figure 4.10) presents model selection following a comprehensive evaluation 

carried out in Table 9. All the models under consideration are described and summarised in Section 
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2.4. Following the filter sequence presented in Figure 4.9, each model is evaluated step by step, 

then potential models are summarised in the actual selection presented in Figure 4.10.  Out of the 

twelve models, only VIC and TOPMODEL do not represent important processes for flood 

generation unique to Kenyan catchments. VIC and TOPmodel were eliminated because they could 

not represent groundwater processes and required the calibration of all the parameters, which in 

turn meant that the calibration data must be available, which is hardly the case in most of the 

Kenyan catchments. As a result, they were excluded from the final selection presented in the Venn 

diagram.  

From the 12 models reviewed, five are considered suitable candidates for flood applications in 

Kenya (Figure 10). The outermost circle (A) presents the 10 models under consideration excluding 

VIC and TOPMODEL. [VIC and TOPMODEL were not included at this point because of their 

lack of representation of   groundwater processes and other important factors (see Table 9). In 

addition, this category includes all the models which can be applied to the study catchments due 

to reasonable data input requirements, code availability, ease of downscaling to Kenyan 

catchments in drylands, semi-arid areas and wetlands, and application to operational flood 

forecasting.  

Table 8:- 12 rainfall-runoff models listed as potential candidates for small scale flood applications with their 

main technical references. 
 Model  Main references  

GR4J (modele du G ` enie Rural ´ a` 4 parametres au pas de temps 

Journalier  

Technical: (Perrin et al., 2003)  

NAM (Nedbør-Afstrømnings-Model)  Technical: (Nielsen & Hansen, 1973)  

SMAR (Soil Moisture Accounting and Routing)  Technical: O'Connor 2005;  

PDM (Probability Distribution Model)  Technical: (Goswami & O'Connor 2010; Moore, 2007)  

SWAT (Soil Water Assessment Tool)  Technical: (Arnold et al., 1998; Neitsch et al., 2005)  

MIKE SHE (MIKE Système Hydrologique Européen  Technical: (AbbottM B et al., 1986; Ma et al., 2016)  

HBV-96 (Hydrologiska Byråns Vattenbalansavdelning)  Technical: (Lindström et al., 1997)  

TOPMODEL (TOPography based hydrological)  Technical (Beven and Kirby 1979; Beven et al., 1984)  

GeoSFM (Geospatial Streamflow Simulation Model)  (Artan. et al., 2004; 2001; Asante et al., 2008)  

VIC (Variable Infiltration Capacity)  Technical: (Gao et al., 2010; Lohmann et al., 1996)  

LISFLOOD  Technical: (Burek, 2013; van der Knijff et al., 2010)  

HYPE (European Hydrological Predictions for the Environment  Technical: (Lindströmet al.,2010) 

http://hypecode.smhi.se  
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Table 9: Evaluation of the 12 models based on the selection criteria.
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Model evaluation 

Model 

Name/ 

criteria 

VIC SWAT GeoSFM HBV-96 MIKE-

SHE 

TOPM

ODEL 

PDM SMAR NAM HYPE GR4J LISFL

OOD 

Represented processes and fluxes 

Intercepti

on 

√ 

f(LAI) 

√ f(LAI) √f(forest/lan

d 

˟√ 

(Modifie

d) 

√ 

 

˟√(Modi

fied) 

√ f(canopy) 

 

√ 

f(LAI) 

√ f(LAI) √ f(LAI) √ 

f(LAI) 

√ f(LAI) 

Evaporati

on 

√ 

Penman

-

Monteit

h 

√ P-

M/P-T/ 

Hargrea

ves 

 

√ Penman- 

Monteith 

√ √ √ √ √ 

 

√ 

 

√ 

 

√ √input 

Snow √ 

Energy 

balance 

 

√Degree 

day 

 

√ Degree 

day 

 

√ Degree 

day 

 

√ √Degree 

day 

 

√Degree 

day 

 

√ 

Degree 

day 

 

√ Degree 

day 

 

√ Degree 

day 

 

√Degre

e day 

 

√Degre

e day 

 
Soil √ 2 or 3 

layers 

 

√ ≤ 10 

layers 

 

√ 2 layers 

 

√ 2 layers 

 

√ 3 

layers 

 

√ 2layers 

 

√ 2layers 

 

√ 

2layers 

 

√ 2layers 

 

√ 2 layers 

 

√ 

2layers 

 

√ 

2layers 

 
Ground 

water 

˟ 

 

√ 

Shallow 

& deep  

 

√ Shallow & 

deep  

 

 

˟ 

 

√ 

Shallow 

& deep  

 

√ 

subsurfa

ce & 

base 

 

√ 

subsurface 

& base 

 

√ √Shallow 

& deep 

√ 

subsurface 

and base 

 

√  

 

√ 2 

parallel  

surface 

 

Lake, 

reservoir

s 

˟ 

 

√ Linear 

res. 

 

√ Linear res. 

 

√ 

 

√ 

 

√  

 

√ Linear 

res. 

 

√ √ √ Linear res √  

 

√linear 

reservoi

r 

 

Runoff √ 

saturati

on 

excess/ 

function 

 

√ (SCS-

CN) 

 

√ (SCS-CN) 

 

√ 

saturation 

excess/ 

 

√ 

 

√ 

infiltrati

on 

excess & 

overland 

 

√ 

 

√ √ √ 

 

√  

 

√ 

infiltrati

on 

excess 

 

Routing √ Linear 

transfer 

function 

 

√Muskin

gum- 

Cunge 

 

√Muskingu

m- Cunge/ 

Diffussion 

Analogue 

 

√Muskin

gum- 

Cunge 

 

√ 

 

√ 

 

√ cubic 

non-linear 

 

√ √ √ 

 

√  

 

√Kinem

atic 

Wave 

Appr 

Calibrati

on 

paramete

rs 

˟√ 

Several 

 

√ 

Several 

 

˟ 

 

√ Several 

 

√ 

 

√ 

Several 

 

√ Several 

 

√9 

paramet

ers 

˟√9 

parameters 

√ Several 

 

√4 

paramet

ers 

˟ 

 Energy 

balance 

√ 

 

˟ 

 

√ 

 

√ 

 

√ 

 

√ 

 

˟ 

 

  ˟ 

 

˟ 

 

˟ 

 Water 

use 

˟ 

 

√ 

 

√ 

 

√ 

 

˟ 

 

√ 

 

√ 

 

 ˟ 

 

√ 

 

˟ 

 

˟ 

 Data requirement and resolution of the model 

Input 

Meteorol

ogical 

data 

Daily or 

sub-

daily 

precipit

ation, 

air 

tempera

Daily 

precipita

tion, 

minimu

m and 

maximu

m 

Daily 

precipitation

, potential 

evaporation 

 

Daily 

precipitat

ion, 

temperatu

re & 

estimates 

of 

precipit

ation, 

air 

tempera

ture and 

solar 

Precipita

tion 

 

 

Daily 

rainfall and 

potential 

evapotrans

piration 

Daily 

rainfall 

and 

Temper

ature 

Daily 

rainfall, 

potential 

evapotrans

piration and 

Daily 

precipitatio

n, estimates 

of 

potentialvap

oration 

Daily 

precipit

ation, 

estimate

s of 

potentia

l 

Daily 

rainfall, 

potentia

l 

vaporati

ion & 

daily 
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ture 

&wind 

speed 

temperat

ure 

potential 

evaporati

on 

radiatio

n 

temperatur

e 

vaporati

on 

mean air 

tempera

ture 

Model 

spatial 

resolutio

n 

0.5° Subbasi

ns 

Semidistribu

ted 

Semidistr

ibuted 

Subgrid

s 

Distribut

ed 

0.5° Lumpe

d 

Lumped Sub-basins Lumped 100m 

and 

larger 

Model 

temporal 

resolutio

n 

Daily Daily Daily Daily 

 

Daily Hourly/d

aily 

Hourly/Dai

ly 

 

Daily Daily Daily Daily 

 

Hourly/

Daily 

Model Code availability 

Open 

source 

˟ √ ˟ √ 

Executabl

e 

 

˟  √ (as an 

R code 

called 

topmode

l 

√ 

 

√ 

 

 

√ √open 

source 

√ R-

package 

called 

airGR 

 

˟  

 

Only 

Executab

le 

  √  √       √ 

Model applicability to Kenyan catchments 

Geograp

hically 

√ 

 

√ 

 

√ 

 

√ 

 

√ 

 

˟√ 

sensitive 

to grid 

size (≤50 

recomme

nded 

√ 

 

√ 

 

√ 

 

√ 

 

√ 

 

√ 
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✓: Considered ×: Not considered ×✓: Partially considere

Climatic 

condition

s 

 

 

 

 

˟ in 

semi-

arid 

catchme

nts 

√ in 

humid 

catchme

nts 

√ 

 

˟ in semi-

arid 

catchments 

√ in humid 

catchments 

 

 

˟ in semi-

arid 

catchmen

ts 

√ in 

humid 

catchmen

ts 

˟ in 

semi-

arid 

catchme

nts 

√ in 

humid 

catchme

nts 

√in 

semi-

arid 

catchme

nts 

√ in 

humid 

catchme

nts 

˟ in semi-

arid 

catchments 

√ in humid 

catchments 

 

√in 

semi-

arid 

catchm

ents 

√ in 

humid 

catchm

ents 

√in semi-

arid 

catchments 

√ in humid 

catchments 

 

 

√in semi-

arid 

catchments 

√ in humid 

catchments 

 

√in 

semi-

arid 

catchme

nts 

√ in 

humid 

catchme

nts 

√in 

semi-

arid 

catchme

nts 

√ in 

humid 

catchme

nts 

The ease of downscaling model to river basin scale 

Ease of 

downscal

ing 

without 

model 

structure 

modificat

ion 

√ 

 

√ 

 

√ 

 

√ 

 

√ 

 

˟√ 

 

√ 

 

√ 

 

 

√ 

 

 

√ can be run 

on subgrid 

 

√ 

 

˟ √ 

 

Models have been calibrated over some Kenyan catchments and applied to operational FF 

Model 

applied to 

Kenyan 

catchmen

t 

˟  ˟ √  

 

˟ √ 

 

˟  ˟ √ 

 

˟  ˟  √ 

 

˟ √ 

 

˟ √ 

 

˟ √ 

 

˟  
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Figure 4.10:-  Venn diagram following the model selection procedure, starting with all the models under 

consideration in circle A resulting with the selected models in innermost circle D. 

Circle B represents model selection based on data input requirements and the number of calibrated 

parameters. At this stage, we eliminate LISFLOOD, HBV-96, PDM, GeoSFM and MIKE SHE. 

LISFLOOD, MIKE SHE, and HBV 96 and GeoSFM are fully and semi-distributed models 

respectively, with very many parameters to be calibrated (van der Knijff et al., 2010; Ma et al., 

2016; Berglöv et al., 2009). In addition, they are run on hourly timesteps with very many data 

input requirements. The calibration of many parameters will also require intensive computer run 

time which may be a challenge in many NMHS (Vema and Sudheer, 2020). The ungauged nature 

of most of the operational centres in Kenya means they may not have reliable data at high 

frequency (e.g., at hourly or even daily timesteps). However, circle B is a white area because there 

is the option of alternative remotely sensed data. For these models with high data requirements in 

data-scarce areas, there are alternative sources of satellite and reanalysis datasets that are 

effectively utilized to reinforce the model, but they must be regarded with caution. This is because 

the datasets come with their own uncertainties, including random and systematic errors (Fortin et 

al., 2015; Sun et al., 2018). Inherent input uncertainties will affect the performance of models for 

a given catchment as a result, we eliminated LISFLOOD, HBV-96 and MIKE SHE at this stage. 

PDM is also eliminated at this point because the model’s configuration comprises probability-

distributed soil moisture storage, surface storage, and groundwater storage components (Moore, 

2007). The latter is hardly available input as Kenya’s NHMS has no data on reservoirs and ground 

water storage.  

Circle C represents models whose code is easily available as a free open source. This category is 

meant to rule out models whose codes are available, but only in executable format, as changes, for 

instance reading of input data, may be necessary and are not provided for in executable model 
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codes. The candidate models filtered through to this step, HYPE, SWAT and SMAR, have freely 

available open-source codes (Paul et al., 2020). GR4J and NAM source codes are available through 

open collaborations (Humphrey et al., 2016). The innermost green circle represents models that 

can be applied easily to Kenyan catchments through simple downscaling and are suitable for flood 

forecasting in different Kenyan catchments. Regarding the last criterion, as to whether the model 

is suited for operational purposes, all models reviewed are continuous simulation models and no 

model is rejected at this step because we assume that, if necessary, they can be modified to be 

suitable for use in an operational environment. 

4.7.  Discussion 
We provide an insight into the need for comprehension of the quantitative or qualitative description 

of existing knowledge and understanding of the catchments and how this would influence the 

choice of the modelling tools at catchment scale, acknowledging the gaps and challenges.  Models 

used for different applications in different parts of the world are reviewed according to six six 

crucial aspects, which builds on the previous works of Kauffeldt et al. (2016) and Trambaur et al. 

(2013), with the aim of assessing their suitability for flood applications in Kenya. These two 

foundational works provide a technical review of large-scale hydrological models for 

implementation in operational flood forecasting, highlighting their suitability for drought 

forecasting at continental level, specifically in sub-Saharan Africa. They are important and provide 

a comprehensive model review and a selection framework for flood and drought application at 

continental scales respectively. However, these studies are applied at a larger scale (continental), 

yet models simulate process differently in different hydro-climatic conditions, revealing the need 

to link the process at catchment scale to model specifications and applications.  

It can be noted that not all models are good at capturing and/or representing the important processes 

relevant to flood generation (e.g., as transmission losses along the river channel, re-infiltration, 

and subsequent evaporation of surface) both in wetland and ASALs of Kenya as summarised in 

Table 7. It should be noted that, with the current data scarcity, most modelling frameworks 

incorporate satellite and reanalysis data. These products have a coarse resolution (with the 

exceptions of some newly high-resolution satellite products e.g., CHIRPS, MSWEP) and high 

uncertainty in their estimations at catchment scale, which in turn impacts the model’s performance. 

Thus, the way forward for objective choice of modelling tools should ensure that the models are 

stable, have reliable error and inconsistency checks, are able to flag missing data errors (e.g., when 

input sources fail), fit into an operational environment and should preferably be user friendly. 

Considering the data scarcity issues, most models can be implemented as the redundancy related 

to missing data can be incorporated in the pre-processing. Therefore, if a model can run with 

missing data, it is a requirement that the run is clearly flagged as having missing data. Model 

stability can be tested by looking at the distributions of parameters where they became remarkably 

well-behaved and near elliptic when numerical error control is implemented in the model (Kavetsk 

et al., 2005). However, since the properties of parameter distributions are dependent on (i) the 

data, (ii) the model and (iii) the objective function, testing model stability before application may 

not be achieved. Model errors can be established by running a sensitivity and uncertainty analysis 
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of model parameters, which should be reliable (Song et al., 2015), but this requires more 

computational power, which is unavailable in Kenya. 

The practical proposed and presented model pre-selection with a filter sequence for flood 

applications was used to filter out models to a subset considered suitable for Kenyan catchment 

types. Through the sequence presented, possible adaptation assumptions are considered in some 

cases. The filter sequence criteria to assess model suitability included the representation of 

important processes, availability of the model code, existing user community, input data 

requirements, the possibility of calibration, model resolution and data assimilation with operational 

implementation into a flood forecasting system. Out of the 12 models, only 5, SWAT, SMAR, 

GR4J, NAM, HYPE, were considered suitable candidates for catchment scale flood forecasting by 

local authorities in Kenya. The above pre-selection process suffices as a milestone to addressing 

some at least, if not all the challenges associated with choice of a modelling tool to the end-users 

of to be used effectively both at catchment scale modelling and potentially adopted in an 

operational early warning system to help mitigate the effects of floods in data-scarce regions such 

as Kenya. 

This work does not look at direct analysis of each of the proposed models to evaluate its 

performance based on some past events. As a starting point, this work provides a background of 

hydrological models and the Kenyan context to provide criterion.] for model pre-section for flood 

applications at national level. The modellers and users of the models can then use the information 

and arrive at models to apply to some selected events. A Multi Criteria Analysis (Sherlock and 

Duffy, 2019) forms the basis of this initial step. The whole process of an MCA is designed to 

assess multiple alternatives based on a mix of quantitative and mostly qualitative information from 

multiple sources.  However, the proposed MCA relies heavily on evaluation data, and is very time 

consuming for the number of models available; consequently, for data-scarce regions, and/or 

agencies with limited resources, and in general, an additional decision tree is helpful to trim down 

the number of options. It is necessary to evaluate further the limited selection with, for example, 

an MCA and the FFC experiment. This is mainly because, within the same catchment, 

inhomogeneities of the physical and hydroclimatic properties give rise to a complex issue that it is 

essential to consider when deciding which model to use: this demonstrates the importance of the 

selection criteria. 

4.8.  Concluding remarks 
There are some challenges that are inherent, when applying the above decision framework, not 

only to data-scarce regions but also to a wider global scale. For example, with the advancement in 

research, there is an increasing number of models and none of them is error free, mainly due to a 

compromise reached when considering model complexity and computational run time, which is a 

major challenge (Melsen, et al., 2019). Also, it is difficult to balance complexity of model structure 

with   parameterization and input data requirements because complex models do not guarantee 

reliable results (Trambauer et al., 2013; Paul et al., 2020). The use of certain models depends on 

the computational capabilities (skills) of the individuals as well as the NMHS in general. As a 

result, model selection may be biased towards ease of applications, depending on the skills of the 

modeller. In addition, there is no documented research, outlining the pros and cons of each of 
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models in a single platform, which a potential model user might easily use to identify which model 

is suitable (Mannschatz and Hülsmann, 2016). 

To address the highlighted challenges confronting modelling communities in developing 

countries, Paul et al. (2020) and Souffront Alcantara et al. (2019) suggest some of the possible 

ways forward. For example, developing countries should consider working on developing their 

own models. The current models are tailored to catchment scale or specific geographical locations, 

developed with rivers flowing nicely all year round in relatively wet catchments, and the inclusion 

of a variety of hydrologists and model developers with different needs and perspectives is most 

welcome and necessary to produce hydrological models for a wider range of environments.  This 

may take a long time, due to inadequate technological capacities, but will suffice as a milestone 

on the way to addressing some of the challenges associated with model selection. A well-prepared 

and comprehensive database platform with useful information pooled together, such as different 

input information, and the advantages and disadvantages of different models, is important in 

providing initial information, enabling the formation of a judgement by eye as to which model 

would work best. This is also likely to facilitate easy model selection alongside frequent webinars 

by model developers to enhance the skill of modellers in developing countries. 

This research provides initial steps to inform the choice of modelling tools in data scarce regions. 

There is a need for further analysis of the proposed models’ applicability to Kenyan catchments, 

to assess their abilities to simulate past events. This will provide additional and useful information 

on the choice and application of these models at catchment scale to areas with varied hydro-

climatic characteristics. We acknowledge that it has not been proven that the criteria ‘suffice’ as 

the selection procedure because they lead to multiple models; furthermore, no follow-up strategy 

is presented here: these matters form the basis of future work. Additionally, the steps of the filtering 

process are not operationalized to the level where it can be said to be objective. For example, a 

model may be excluded on consideration of ‘many parameters’ because the pre-selection criteria 

presented here follow a flow chart. First, we make a pre-selection based on expert judgement and 

links to models that have been applied to various diverse environments, that are deemed suitable 

candidates for the Kenyan context. 

4.9. Acknowledgements 
This work was supported and funded by the Commonwealth Scholarships Commission (CSC). 

The first author is grateful to all the co-authors and other associated projects and partners for 

providing advice, support, and other useful discussions throughout the writing of the paper. 

Hannah Cloke is supported by the LANDWISE project funded by the Natural Environment 

Research Council (NERC), (Grant No. NE/R004668/1) and the EVOFLOOD: The Evolution of 

Global Flood Risk, UK NERC, NE/SO15590/1. Elisabeth Stephens and Hannah Cloke are 

supported by the FATHUM project: Forecasts for AnTicipatory HUManitarian Action funded by 

UK NERC as part of their Science for Humanitarian Emergencies & Resilience (SHEAR) 

programme (NE/P000525/1). The views expressed here are those of the authors and do not 

necessarily reflect the views of any of the above agencies.  The authors declare that they have no 

conflict of interest. 



108 

 

Chapter 5 

5. Assessment of global reanalysis precipitation for hydrological 

modelling in data scarce regions: a case study of Kenya 

5.1. Objective addressed and publication details 
This chapter assesses the performance of four reanalysis datasets (ERA5, ERA-Interim, CFSR and 

JRA55) over Kenya for the period 1981–2016 on daily, monthly, seasonal, and annual timescales. 

Firstly, evaluation of the reanalysis datasets by comparing them with observations from the 

Climate Hazards group Infrared Precipitation with Station is explored. Secondly, evaluation of the 

ability of these reanalysis datasets to simulate streamflow using GR4J model, considering both 

model performance and parameters’ sensitivity and identifiability, is presented. This work is 

important because it informs future applications of reanalysis products for setting up hydrological 

models that can be used for flood forecasting, early warning, and early action in data-scarce 

regions, such as Kenya. 

This work has been reviewed and published in the Journal of Hydrology- Regional Studies, Volume 

41, June 2022, 101105 and can be accessed at https://doi.org/10.1016/j.ejrh.2022.101105. The 

exact publication copy is in Appendix A3 material of this thesis. 

5.2. Authors’ contributions 
Maureen A. Wanzala (60%): - Conceptualization, Data curation- Lead, Methodology- Lead, 

Investigation, Software, Formal analysis - Lead, Visualization, Writing – original draft, Writing - 

Review & Editing- Lead. Andrea Ficchì (10%): Conceptualization, Supervision, Data curation- 

Support, Methodology- Support, Investigation, Software, Analysis - Support, Visualization, 

Writing - Review & Editing- Support. Hannah L. Cloke (10%): Supervision, Conceptualization, 

Writing - Review & Editing, Project administration. Elisabeth M. Stephens (10%): 

Conceptualization, Writing - Review & Editing- Support, Project administration, Supervision, 

Funding acquisition.  Heou M. Badjana (5%): Methodology and data curation- Support Writing – 

Review & Editing-Support.  David A. Lavers (5%): Data curation, Investigation 

5.3. Introduction 
Precipitation is arguably the most important driver of catchment hydrological response (e.g., 

MacLeod et al., 2021), but it is challenging to get accurate information on the amount, duration, 

and intensity of rainfall events (Beck et al., 2017; Tapiador et al., 2012), due to the high spatio-

temporal variability (Vischel et al., 2011; Nicholson et al., 2019). This is compounded by a low 

spatial coverage and a net decline in the number of ground gauge stations in the historical 

climatological observation network, especially in developing countries such as Kenya (Zaitchik et 

al., 2011; Menne et al., 2018; Tarek, Brissette and Arsenault, 2020, 2021). Unreliable or 

incomplete datasets are unable to correctly identify seasonal or short-range temporal patterns ( 

Gosset et al., 2013; Le et al., 2017).  

https://doi.org/10.1016/j.ejrh.2022.101105
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Other sources of precipitation data such as those from satellite remote sensing are now available, 

but they come with their own errors, including random and systematic (see Beck et al., 2021; Beck 

et al., 2017a; Beck et al., 2017b; Fortin et al., 2015; Sun et al., 2018). Another freely available 

source of precipitation data consists of meteorological reanalysis products, which are becoming 

increasingly promising due to upgrades in their spatial resolution and improved representation of 

atmospheric processes in global models (Hersbach, 2018). Reanalysis data combine a wide range 

of remotely sensed observations with a dynamical–physical coupled numerical model to produce 

the best estimate of the state of the atmosphere. Reanalysis is not reliant on the density of surface 

observational networks and can give surface variables in locations with little to no surface 

coverage. As a result, they can generate several variables both at the land surface and on vertical 

atmospheric levels, and hence have been applied in several studies both for climatological and 

hydrological purposes across the world (e.g., Beck, et al., 2017a; Chen et al., 2018; Emerton et 

al., 2017; Essou et al., 2017).  Several different reanalysis products exist but they are known to 

vary in quality with recurrent upgrades. It is important to evaluate them carefully both to inform 

the users and the developers of the datasets. The developers of these products can work on 

improving their updates only when there is a complete feedback loop between applications and 

developments Therefore, ground validation of reanalysis precipitation is very important but very 

challenging, particularly where the rain gauge networks are sparse.  

Several studies attempt to quantify and account for the sampling errors, comparing reanalysis data 

with observations in different parts of the world (e.g., Guo, 2018; Tang et al., 2020; Xu et al., 

2020; Zaitchik et al., 2011),  at a global scale (Beck, et al., 2017a; 2017b), at regional or basin 

scale (e.g., Acharya et al., 2019; Nkiaka et al., 2017; Tarek et al., 2020) and at a national scale 

(e.g. Arshad et al., 2021; Gleixner et al., 2020; Koukoula et al., 2020; Lakew et al., 2020; Shayeghi 

et al., 2020; Tafaseye et al., 2017). However, the findings of these studies were mixed. Differences 

in approaches, regions, and time scales resulted in inconsistency in product performance, implying 

that site-specific performance evaluation may be required. Existing studies also aimed at analysing 

a single product or a few products for short periods of time, so their estimated errors may not 

reflect long-term behaviour.  

Additionally, the temporal dynamics of rainfall are very important as they play a crucial role in 

the total accumulated rainfall on daily and monthly timescales, thus influencing the bimodal 

seasonality observed over Kenya. The highly-variable temporal dynamics are also key in 

explaining the nonlinear nature of infiltration processes (Blöschl & Sivapalan, 1995), such as the 

peak discharge value (Gabellani et al., 2007) and runoff volume (Viglione et al., 2010) in 

hydrological modelling. Thus, the above observations highlight the need to consider different 

temporal scales, when evaluating the reanalysis precipitation relative to observation. 

In Kenya, there were 20 major floods from 1964 – 2020 which were driven by precipitation falling 

in the seasonal rains. More than 160,000 people were displaced countrywide by floods in October 

2019 (ReliefWeb, 2019; UNICEF, 2019; Opere, 2013). Annual average economic loss from 

flooding is estimated to be 5.5% of gross domestic product (Njogu, 2021). Therefore, 

understanding the best representation of precipitation in flood models which can be used for 

forecasting or risk analysis is of great societal importance. Kenya has a widely varying physical   
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geography resulting in great variability of river catchment characteristics across the country. Thus, 

it is essential not only to understand the representation of precipitation at a country scale, but also 

on a catchment-by-catchment basis (Golian and Murphy, 2021; Meresa et al., 2021). Previous 

evaluations of reanalysis products in capturing Kenyan rainfall show varied levels of agreement in 

spatio-temporal variability relative to observations (e.g., Alemayehu et al., 2018; Dile and 

Srinivasan, 2014; Gleixner et al., 2020; Khan et al., 2011). Moreover, studies employing 

hydrological modelling generally used discharge observations from a small number of catchments 

(e.g., Alemayehu et al., 2018; Bitew et al., 2012; Langat et al., 2017; Le et al., 2017; Worqlul et 

al., 2017) and did not quantify uncertainties associated with each reanalysis (e.g., Alemayehu et 

al., 2018), leading to combined rainfall and model uncertainty that is not easily interpreted. Hence, 

there is a notable gap in the literature associated with evaluating the accuracy of multiple reanalysis 

products across different catchments, accounting for both model and input errors, especially in 

data scarce regions like Kenya, and this gap was an important motivation for the present study. 

This paper evaluates four reanalysis precipitation products with respect to observations and 

assesses their suitability for use in hydrological modelling in 19 Kenyan catchments. We assess 

their performance in reproducing the most important features of rainfall events and regimes, and 

in simulating catchment streamflow, through answering the following research questions: 

1. How well do the precipitation datasets compare in terms of temporal dynamics at the basin 

scale? Which product is the most accurate compared to observations? 

2. How well do precipitation datasets compare in terms of spatial patterns? Which product 

shows consistency in spatial heterogeneity compared to observations? 

3. How does the general hydrological model performance vary with different datasets? 

4. How does the sensitivity of a rainfall runoff model (GR4J) vary with alternative rainfall 

forcing? 

We consider both model performance and parameter uncertainty and compute a Model Suitability 

Index (MSI) by coupling the results of model performance statistics with Global Sensitivity 

Analysis. We compare four reanalysis datasets using the GR4J model across 19 Kenyan 

catchments with varied climate and morphological characteristics, to investigate which input data 

are suitable or require caution, when used in the place of observation datasets in different regions. 

This work is a stepping stone and an essential guide for hydrological applications of global 

reanalysis datasets because it compares several reanalysis products to observations on daily, 

monthly, and seasonal scales, and unveils the propagation of uncertainty from different reanalysis 

when used as model inputs. All the above reviewed studies looked at the performance of at most 

one reanalysis dataset in simulating streamflow and only over one catchment; none, however, 

looked at such a country-scale performance. To our knowledge, this is the very first evaluation of 

the different reanalysis products over Kenya for simulating streamflow coupled with sensitivity 

analysis.  
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5.4. Study area and catchment characteristics 
The study is undertaken in 19 Kenyan catchments (Figure 5.1) with varying characteristics (Table 

10). These were selected due to the frequency and magnitude of the impacts of floods, as well as 

the availability of river flow observations (Table 1). Kenya mainly experiences a bimodal rainfall 

pattern, occurring in the seasons of March - April - May (MAM) and October -November - 

December (OND) (Ayugi et al., 2016; Yang et al., 2015), which are commonly known as the ‘long’ 

and ‘short’ rains respectively.  The rainfall seasonality and the migration of the precipitation zone 

is mainly influenced by the north-south movement of the inter-tropical convergence zone (ITCZ) 

(Black et al., 2003; Ongoma et al., 2015). The rainfall season migrates northward at a slower rate 

than it migrates southward, hence the two different names – ‘long rains’ and ‘short rains’ 

respectively (Nyenzi, 1988). The rainfall exhibits high spatiotemporal and interannual variability 

(Ongoma and Chen, 2017) and is strongly influenced by perturbations in global Sea Surface 

Temperatures (SSTs) especially in the Pacific and Indian Oceans with the El-Niño Southern 

Oscillation (ENSO) (Ogallo, 1993; Black, Slingo and Sperber, 2003) and the Indian Ocean Dipole 

(IOD) (Blau et al., 2020; Owiti et al., 2008) being the most important modes. Other systems that 

influence rainfall variability include the high pressure systems (e.g., the Mascarene and the 

Arabian) (Ogwang et al., 2015), the Quasi-Biennial Oscillation (QBO) (Collier et al., 2016; 

Indenje and Semazzi, 2000), the Madden-Julian Oscillation (MJO)  (Kilavi et al., 2018), Tropical 

cyclones (Finney et al., 2020; Wainwright et al., 2021) and jet streams, e.g., the Turkana jet 

(Kinuthia, 1992; Hartman, 2018). The country has complex topography with the lowest altitudes 

along the coastline and Lake Victoria basin which are particularly prone to floods, while in the 

highlands, frequent thunderstorms and lightning threaten life. 

5.5. Data and methodology  

5.5.1. Datasets 

5.5.1.1. Reanalysis and observational data 

Four reanalysis products, namely ERA5, ERA-Interim (hereafter ERAI), Climate Forecast System 

Reanalysis (CFSR), and the Japanese 55-year Reanalysis (JRA55), and a gridded observational 

dataset, the Climate Hazards group Infrared Precipitation with Station (CHIRPS), were used in 

this study (see Table 11). We used the daily precipitation and maximum and minimum temperature 

variables from the reanalysis products for the study.  
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Figure 5.1:- Study catchments, with the location of the outlet river gauges (as shown by circled dots) used in this 

study and the main irrigation schemes and major dams (Source: WRA -K) across Kenya. 
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Table 10:- Summary of the catchments considered, their characteristics, and the main human influences, including number of dams and water abstraction 

activities (Source: WRA). 
River 

Name 

Catchment 

Outlet point 

Station 

ID 

Lon Lat Drainage 

Area 

(km2) 

Mean 

Elevation 

(m.a.s.l) 

Mean 

Annual 

Rainfall 

(mm) 

Annual 

Discharge 

(m3s-1) 

Catchment 

Characteristics 

Human Influence First 

& 

Last 

year 

of 

record 

Record 

length 

(years) 

Amount 

missing 

(%) Dams Irrigation  

 schemes 

Tana Tana Garsen 4G02 40.11 -2.28 80 760 720 672 135.8 Semi-arid plains 9 11 1981-

2016 

36 58.2 

Tana Tana Garissa 4G01 39.7 -0.45 32 695 870 868 169.3 Highlands on the 
upstream & 

semi-arid plains 

in the lowlands 

8 7 1981-

2018 

38 14.2 

Nzioa RuambwaBridge 1EF01 34.09 0.12 12 643 1740 1488 151.2 Dense forest 

cover 
(highlands) & 

low trees & 

bushes (lower 

reaches) 

2 4 1981-

2018 

38 13.6 

Galana Galana Tsavo 3G02 38.47 -2.99 6560 930 628 3.3 Semi-arid 

savannah plains 

3 1 1981-

2015 

35 59.6 

Gucha Gucha Migori 1KB05 34.21 -0.95 6 310 1650 1435 45.0 Eastern 

lowlands with 

dense vegetation 

cover 

0 2 1981-

2015 
35 47.8 

Athi Athi Munyu 3DA02 37.19 -1.09 5689 1730 822 18.8 Highlands and 

forest cover 
3 1 1981-

2017 
37 21.6 

Nzioa Large Nzioa 1BD02 35.06 0.76 3878 1720 1267 15.3 Dense forest 

cover 
1 1 1981-

2011 
31 28.8 

Sondu Sondu Miriu 1JG04 34.80 -0.33 3444 2017 1614 53.9 Low lying plains 

(Western) & 
highlands 

(Eastern) 

2 2 1981-

2018 

38 64.4 

Mara Mara  1LA04 35.04 -1.23 2977 2100 1262 11.8 Low lying 

shrubs, semi-

arid 

0 1 1981-

2015 

35 77.7 
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Yala Yala 1FG02 34.27 0.04 2700  1696 40.8 Swampy 0 0 1981-

2019 

39 59.6 

Ewaso Ewaso Narok 5AC10 36.73 0.43 2597 1600 880 5.3 Low lying 
shrubs & mainly 

semi-arid 

0 2 1981-

2018 

38 26.5 

Tana Mutonga 4EA07 37.89 -0.38 1867 1830 1427 35.5 Highlands and 

forest cover 

0 1 1981-

2016 

36 44.2 

Ewaso Ewaso Ngiro 5BC04 36.91 0.09 1837 1700 972 20.6 Low lying 

shrubs & mainly 

semi-arid 

0 0 1981-

2019 

39 35.0 

Sio Sio 2EE07A 34.14 0.39 1011 1650 1822 15.5 Low trees & 

bushes & 

swampy in 

lower reaches 

0 1 1981-

2018 
38 18.1 

Turkwel Ndo 2C07 35.65 0.45 897 1133 1371 9.1 Extensive 
palaeo-

floodplain & 

arid conditions 

0 1 1981-

1993 

13 47.2 

Mara Amala 1LB02 35.44 -0.89 695 2100 1377 6.8 Low lying 
shrubs, semi-

arid 

0 0 1981-

2017 

37 25.6 

Mara Nyangores 1LA03 35.35 -0.79 692 2008 1262 11.8  Semi-arid 

savannah plains, 

low lying 
shrubs, semi-

arid 

0 0 1981-

2017 
37 15.5 

Turkwel Perkerra 2EE07A 35.97 0.46 371 1023 832 5.7 Extensive 

palaeo-
floodplain and 

arid conditions 

1 1 1985-

2005 

21 50.1 
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ERA5 is the latest global atmospheric reanalysis product from the European Centre for Medium-

Range Weather Forecasts (ECMWF), which spans the modern observing period from 1950 onward 

(Hersbach, 2018). In this study, 3-hourly ERA5 was obtained from ECMWF on a fixed grid of 

0.31° × 0.31°. ERAI is the previous global reanalysis product created by ECMWF (Dee et al., 

2011). Daily ERAI was obtained from ECMWF on a fixed grid of 0.75° × 0.75°. JRA55 is a global 

reanalysis dataset constructed by the Japan Meteorological Agency (JMA) (Kobayashi et al., 

2015). Daily JRA55 was obtained from the National Center for Atmospheric Research (NCAR) 

climate data guide at a fixed gird of 0.56° × 0.56°.  CFSR is a global reanalysis dataset of 

atmosphere fields produced by the National Centers for Environmental Prediction and for 

Atmospheric Research (NCEP/NCAR) (Saha et al., 2010). The CHIRPS dataset was used as a 

benchmark observation dataset since it has been used in several studies showing good results 

compared to observations over eastern Africa (Dinku et al., 2018). CHIRPS is a quasi-global, high 

resolution, daily, pentad, and monthly precipitation dataset (Funk et al., 2015). Based on infrared 

Cold Cloud Duration (CCD) data, CHIRPS has a long enough history of precipitation data. The 

algorithm (i) is based on a 5 km climatology that uses satellite data to represent sparsely gauged 

locations, ii) includes daily, pentadal, and monthly 5 km CCD-based precipitation estimates from 

1981 to the present, iii) combines station data to generate  tentative information product with a 

latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) 

interpolation weights are assigned based on a novel blending method which uses the spatial 

correlation structure of CCD estimates. This makes it comparatively an alternative in data-scarce 

regions. We opted for the gridded observations as the daily observed gauge datasets were not 

available for the catchments of study and are known to be very sparse and present large data gaps 

(Dinku et. al., 2019; 2018; Le et. al., 2017). 

5.5.1.2. Observed River Discharge and Potential Evapotranspiration 

River discharge datasets at daily time steps for the period 1981- 2016 were provided by the Kenya 

Water Resource Authority (WRA) for the selected catchments across the country, summarized in 

(Table 10). The potential evapotranspiration (PET) required for the catchment modelling was 

estimated from the average daily temperature of the four reanalysis products and CHIRTS-daily 

data from the Climate Hazard Centre (CHC). As temperature readings were the readily available 

meteorological data relating to PET, for this study, temperature-based methods were used to 

estimate the PET (Hargreaves & Samani, 1985). For this study, the Hamon method (Hamon, 1960) 

was used to estimate PET daily averages for different datasets.  

5.5.2. Modelling experiment methodology 

To obtain the monthly and annual totals for observations and reanalysis datasets, the daily values 

were accumulated. The seasonal total precipitation was calculated by summing monthly 

precipitation for three seasons: (i) March-April-May, hereafter referred to as MAM, (ii) June-July-

August, hereafter JJA, and (iii) October-November-December, hereafter OND. All datasets were 

converted to the same units for consistency (e.g., JRA55 and CFSR were converted from kg/m2/s 

to mm/d). ERA5, ERAI, JRA-55 and CFSR were regridded by first-order conservative 

interpolations to a horizontal grid of 0.5o x 0.5o  (Schulzweida, 2019).  
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We first qualitatively evaluate the performance statistics of the reanalysis datasets in terms of 

temporal dynamics and biases with respect to precipitation observations (CHIRPS), considering 

the following metrics: Pearson Linear Correlation Coefficient (CC), Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), Mean Error (ME), long-term relative bias (BIAS) and the 

annual number of dry days calculated on monthly, annual, and seasonal scales. We produce spatial 

maps for the standardized precipitation anomalies, bias and annual number of dry days, to assess 

their consistency compared to observations, and tabulate the other statistics to show the aggregate 

performance across the different datasets. 

Secondly, we calibrate the GR4J (Perrin et al., 2003) rainfall runoff model. In the study, we used 

five different sources of inputs (for both precipitation and PET) into the GR4J model:  CHIRPS, 

ERA5, ERAI, CFSR and JRA55. We calibrate the model with each of the input sources at a time, 

compute the KGE score, and compare how this varies across the four different datasets relative to 

observations. The GR4J model is a simple daily lumped rainfall-runoff model belonging to the 

family of soil moisture accounting models. There are four main parameters (Figure 5.2) to be 

calibrated in the GR4J model, namely: (1) the maximum capacity of the production store (X1, 

mm), (2) the groundwater exchange coefficient (X2, mm), (3) the maximum capacity of the non-

linear routing store (X3, mm), and (4) the time base of the unit hydrograph (X4, days). There are 

also a few fixed parameters, whose values were set by Perrin et al., (2003)( 

Table 5). All four free parameters are real numbers: X1 and X3 are positive, X4 is greater than 0.5, 

and X2 can be either positive, zero or negative. The typical inputs of GR4J are the areal 

precipitation depth (P, mm) and the potential evapotranspiration (PE, mm) estimate over the 

catchment. Most optimization algorithms used to calibrate the model parameters require 

knowledge of an initial parameter set. Given the small number of model parameters, simple 

optimization algorithms are generally capable of identifying parameter values yielding satisfactory 

results. The choice of an objective function depends on the objectives of the model user. The choice 

and use of the GR4J model is mainly due to its simple and relatively quick to calibrate structure, 

ensuring high levels of performance and robustness (Ficchì et al., 2019; Mostafaie et al., 2018; 

Oudin et al., 2004; Van Esse et al., 2013; Pushpalatha et al., 2011). 

The four free parameters of the GR4J model were calibrated using the default optimisation 

algorithm provided in the airGR package (Coron et al., 2019; Delaigue et al., 2019). This simple 

optimization algorithm, mainly based on a local optimisation, proved to be equally efficient in 

locating a robust optimum compared to more complex global search algorithms (Coron et al.,  

2019) and proved effective in terms of the number of model runs required for convergence 

(Mathevet et al., 2006). The Michel method (Michel, 1983) is based on two steps: 

I. A systematic inspection of the global parameter space is performed to determine 

the most likely zone of convergence. In our study, this is done by direct grid-

screening. 

II. A steepest descent local search procedure is carried out to find an estimate of the 

optimum parameter set starting from the best parameter set from step 1.



117 

 

Table 11: Overview of the global reanalysis and the blended (Satellite and observation) Chirps precipitation dataset(s) used in the study. 

(*) NRT= Near Real Time with a delay of several days, G = Gauge, S = Satellite, R = Reanalysis

Short Name           Full Name and details Data 

sources 

(*) 

Spatial 

resolution 

Spatial        

coverage 

Temporal 

coverage 

Temporal 

resolution 

Reference 

CHIRPS 

V2.0 

Climate Hazards group Infrared Precipitation (CHIRP) 

V2.0 (http://chg.ucsb.edu/data/chirps/) 

G, S, R *  0.05o Land, <50 Daily 1981–NRT* (Funk et al., 

2015) 

ERA5 European Centre for Medium-Range Weather Forecasts 

Reanalysis 

(https://www.ecmwf.int/en/research/climate-

reanalysis/era-5) 

R * ~ 0.31o Global Hourly 1979 – 

NRT* 

(Hersbach, 

2018) 

ERA-Interim European Centre for Medium-Range Weather Forecasts 

ReAnalysis Interim 

(https://www.ecmwf.int/en/research/climate-

reanalysis/era-interim) 

R * ~ 0.75o Global 3-Hourly 1979-2019 (Dee et al., 

2011) 

JRA-55  Japanese 55-year Reanalysis (JRA-55)  

 (https://jra. kishou.go.jp/JRA-55 ;  

https://data.diasjp.net/dl/storages/filelist/dataset:204) 

R * ~ 0.56o Global 3-Hourly 1951-NRT* (Kobayashi 

et al., 2015) 

NCEP-CFSR National Centers for Environmental Prediction (NCEP) 

Climate Forecast System Reanalysis (CFSR; 

http://cfs.ncep.noaa.gov/cfsr/) 

R * ~ 0.38o Global Hourly 1979– 2010 (Saha et al., 

2010) 

http://chg.ucsb.edu/data/chirps/
https://www.ecmwf.int/en/research/climate-reanalysis/era-5
https://www.ecmwf.int/en/research/climate-reanalysis/era-5
https://www.ecmwf.int/en/research/climate-reanalysis/era-interim
https://www.ecmwf.int/en/research/climate-reanalysis/era-interim
https://data.diasjp.net/dl/storages/filelist/dataset:204
http://cfs.ncep.noaa.gov/cfsr/
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Figure 5.2: Schematic representation of the GR4J rainfall-runoff model (Source: Perrin et al., 2003). P is rainfall 

depth; E is potential evapotranspiration estimate; Q is total streamflow; Xi are the model parameters; all other 

letters are model variables or fluxes summarized in Table 4. 

The four free model parameters were calibrated by applying the Kling-Gupta Efficiency (KGE) 

(Gupta et al., 2009)  as the objective function and the daily observed river discharge data of the 

selected catchments as reference. We use different inputs (precipitation datasets) from CHIRPS, 

ERA5, ERAI, CFSR and JRA55 to calibrate the GR4J model. The KGE was used also for 

evaluating the performance of the GR4J model when forced with different reanalysis data. The 

KGE objective function represents a weighting of three components that correspond to bias, 

correlation, and variability, ensuring that KGE is sensitive to errors in the overall distribution of 

streamflow (Kling, Fuchs and Paulin, 2012; Adeyeri et al., 2020). We therefore calculated the 

hydrological model performance statistics for the calibration and validation periods and compared 

them across the different reanalysis datasets to investigate the overall suitability of the different 

reanalyses as input data to simulate river flows. We adopted a threshold of model performance in 

the range −0.41<KGE≤1 as reasonable, following Knoben (2019) being −0.41, the KGE value 

corresponding to a mean flow benchmark. 

A split-sample validation technique (Klemeš, 1986) was used to test model performance beyond 

the calibration period. For this study, 36 years (1981-2016) of streamflow data for each catchment 

were available, so we split them into two equal 18-year Split-Sample Testing (SST) periods 

hereafter referred to as SST1 and SST2 (Figure 3.5). 
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Thirdly, we perform Sensitivity Analysis by applying the global Sobol’ sensitivity method for the 

GR4J model parameters using the KGE as our target function and the daily observed data of the 

19 catchments as reference. We adopt the Sobol’ method because it estimates the relative 

contribution of individual model parameters and their interactions through the decomposition of 

model output variance (Nossent, Elsen and Bauwens, 2011). A sensitivity analysis allows a 

reduction of the number of parameters incorporated in the optimization by determining the most 

influential parameters of a model and their identifiability (Saltelli, Tarantola and Campolongo, 

2000). As no prior information is available on the parameters, the input parameter values for the 

Sensitivity Analysis are sampled from a uniform distribution (Nossent, Elsen and Bauwens, 2011). 

The different parameter ranges are scaled between 0 and 1 with a linear transformation. Then, we 

obtain one value of the Sensitivity Indices (SI) per parameter, and we investigate the relative role 

of each parameter in explaining the output variance and assess possible over-parameterization 

issues by counting the number of sensitive parameters. Because the value of the objective function 

for the calibration of parameters can be used as the model performance statistics for sensitivity 

analysis, we adopted the KGE. 

Finally, we assess the overall suitability of the rainfall–runoff model when forced with different 

meteorological inputs by calculating the Model Suitability Index (MSI). We compare the 

performance of the four reanalysis datasets across the 19 catchments and investigate which of the 

input datasets are suitable and which require caution, because of low model performance and 

possible parameter identifiability or over-parameterization problems. The well-known problem of 

over-parameterisation due to insensitive parameters in models with large number of parameters 

(van Griensven et al., 2006) makes sensitivity and performance statistics important. This may 

result in uncertain model simulations arising from equifinality in model calibration but yielding 

unequifinal model simulations in validation (Beven, 2012b). This mostly arises from the 

application of calibrated multiple optimal parameters sets with significantly variable parameter 

values (Shin et al., 2015;Shin and Kim, 2017). Therefore, in most cases the problem arising from 

prediction uncertainty may pose problems to modellers when it comes to decision making. By 

applying the quantitative method of Sobol’s SA, we were enabled to couple the results with the 

performance statistics. The MSI aggregates both sensitivity indices & performance statistics (Shin 

and Kim, 2017), providing a clear index to judge the relative global performance of the reanalysis 

products with respect to observations. The computed MSI can be used in comparison studies with 

any catchment data. If all the model parameters were sensitive, this would yield a MSI of 1 and a 

hydrograph with perfect matching between the simulations and observations. 

We adapt Shin’ and Kim (2017) Model Suitability Index (MSI), which is a combined measure of 

performance statistics and Sensitivity Analysis results. The MSI can be expressed Equation 5.1: 

Equation 5.1:- Model Suitability Index.  

1 1

1 1
0.5 0.5

n m

i j

i j

MSI SR PS
n m= =

  
=  +   

   
 

                                                                  
where the SR is the sensitivity ratio (i.e., the ratio of the number of sensitive parameters to the total 

number of model parameters) ranging from [0, 1] and PS is the performance statistics, n is the 



120 

 

number of years over which the sensitivity analysis is run, and m is the number of split sample 

periods in model calibration. It is necessary to set a sensitivity threshold to ascertain the sensitive 

parameters, hence we adopted a minimum value of 0.2 for the TSI of a sensitive parameter. This 

value has been suggested and used in some past studies (e.g Van Werkhoven et al 2009 & Shin et 

al 2013). It is worth noting that this is an arbitrary value, so we acknowledge the need to practise 

caution when the parameters’ TSI values are nearing the threshold. PS is computed by obtaining 

the average value of all the periods considered (i.e., two split sample periods). To calculate the 

average PS, we considered the calibration and validation performance statistics (KGE). As both 

measures are equally important, we gave the same averaged weight to PS and SR in calculating 

the MSI.  

5.6. Results and discussion 

5.6.1. Results 

5.6.1.1. Overall performance evaluation using observations 

The performance of ERA5, ERAI, JRA55 and CFSR on monthly, seasonal, and annual scales is 

presented in this section. We used the monthly scale as a base time scale and calculated CC, RMSE, 

MAE and ME for all the four reanalysis products. 

5.6.1.1.1. Performance on monthly scale 

ERA5, ERAI, JRA55 and CFSR were first evaluated on a monthly timescale with respect to 

observations at the country level. All the datasets passed the significance test of the correlation 

coefficient at the 99% confidence level and to eliminate the influence of the seasonal cycle on the 

values, each Correlation Coefficient was calculated per month as shown in Figure 5.3. ERA5 

shows the highest average correlation coefficient value of 0.71 on a monthly timescale compared 

to observations and is consistently higher across all months (Figure 5.4, and Table 12) than the 

other reanalysis products. ERAI and CFSR have good average correlation but show larger drops 

in some months (especially in the drier month of August). JRA55 obtained a poor correlation 

coefficient of 0.46 on average. In general, ERA5, ERAI and CFSR show higher correlations to 

observations in rainy months (March-April-May and October- November-December) and lower 

in the dry months (June-July- August), whereas JRA55 shows the worst correlations during both 

rainy seasons. 

The average twelve months evaluation indices for each of the reanalysis product is shown in Table 

12. Overall, ERA5, ERAI and CFSR show a similarly good ability to simulate the precipitation 

for all the indices under consideration. ERA5 has a better CC, BIAS and RMSE whereas JRA55 

has the lowest CC and the largest BIAS and RMSE, suggesting that JRA55 is the worst performing 

reanalysis dataset over the Kenyan catchments. 
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Figure 5.3:-  Line graph of correlation coefficients (CC) between monthly observations and ERA5, ERAI, JRA55 

and CFSR precipitation for the period 1981 – 2016 on average across the 19 study catchments. 

Table 12:-  Average CC, BIAS, RMSE, MAE and ME between the four reanalysis precipitation datasets and 

observations on monthly timescale for the period 1981 – 2016 over all the study catchments. 

 

5.6.1.1.2. Performance on seasonal and annual timescales 

The overall performance of the four reanalyses (ERA5, ERAI, CFSR and JRA55) were evaluated 

on seasonal and annual timescales to explain the propagation of errors at these timescales. The 

results of the different performance indices are shown in Table 13. 

 

 

 

 

Index ERA5 ERA-Interim JRA55 CFSR 

CC 0.71 0.63 0.46 0.68 

BIAS (%) 49.72 -26.97 146.66 -76.68 

RMSE (mm) 31.59 43.73 115.12 67.36 

MAE (mm) 25.11 37.02 79.92 59.95 

ME (mm) 1.64 -30.00 71.52 -59.91 
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Table 13: CC, BIAS, RMSE, MAE and ME between the reanalyses and observation precipitation data at a 

seasonal and annual timescale averaged over the 19 study catchments in Kenya. 

Season Dataset CC BIAS (%) RMSE (mm) MAE (mm) ME (mm) 

MAM JRA55 

ERAI 

ERA5 

CFSR 

0.34 

0.59 

0.88 

0.78 

155 

-28.1 

47.6 

-84.6 

965.10 

193.87 

322.44 

481.03 

898.12 

168.09 

282.42 

475.14 

898.12 

-160.36 

275.60 

-475.14 

JJA JRA55 

ERAI 

ERA5 

CFSR 

0.52 

0.24 

0.25 

0.22 

67.4 

-39.5 

-1.4 

-84.6 

361.72 

182.05 

85.66 

332.89 

290.77 

157.12 

70.90 

327.95 

267.76 

-154.93 

-5.446 

-327.95 

OND JRA55 

ERAI 

ERA5 

CFSR 

0.44 

0.81 

0.52 

0.84 

271.7 

-27.9 

96.6 

-84.3 

1036.4 

123.34 

397.00 

307.76 

983.25 

111.09 

349.70 

296.47 

983.25 

-100.56 

349.70 

-296.47 

ANNUAL JRA55 

ERAI 

ERA5 

CFSR 

0.25 

0.46 

0.52 

0.60 

171 

-26.3 

44.7 

-85.2 

2902.21 

462.513 

801.75 

1354.36 

2760.63 

421.14 

728.57 

1349.21 

2760.63 

-421.14 

720.70 

-1349.21 

 

The overall correlation coefficients on seasonal and annual timescale are shown in Figure 5.4. 

Higher CC across all the datasets were obtained in the wet seasons of MAM and OND, whereas 

lower CC were obtained in the dry season of JJA, with the performance index higher in OND than 

in MAM. ERA5 obtained the highest CC (0.88) in MAM, whereas CFSR the highest (0.84) in 

OND. JRA55 showed lower CC of 0.34 and 0.44 in the two seasons respectively and a CC of 0.52 

in the dry season, depicting a tendency of a wet bias over the dry months. On average, the 

variability in the CC index across the four datasets was relatively lower in the OND season and 

higher in the MAM season. The BIAS across the four datasets was lower in the dry season (JJA) 

and higher in the wet seasons (MAM &OND) with JRA55 showing a higher positive BIAS across 

all the seasons. There are large values in the RMSE and the MAE across the four datasets in the 

two wet seasons and this may be linked to the high precipitation concentrations during those 

seasons across most of the catchments. Generally, it can be noted that JRA55 shows the worst 

performance in comparison to observation, especially in the wet seasons of MAM and OND, but 

obtained relatively better scores in the dry season of JJA. ERA5 shows better agreement with 

observations across the three seasons, so may be an appropriate option for simulating precipitation 

over the Kenyan catchments. 
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Figure 5.4: Boxplots of the seasonal (MAM, JJA and OND) and annual Correlation Coefficients (CC) for four 

reanalysis CFSR (pink), ERA5(green), ERAI (blue) and JRA55 (purple) across the 19 catchments. The bold line 

represents the 50th percentile; boxes and whiskers show the 25th and 75th percentiles, and the 10th and 90th 

percentiles. 

On an annual timescale, the average annual precipitation of CFSR, ERA5, ERAI and JRA55 was 

computed and compared with the observation (CHIRPS) (Figure 5.5). ERA5, ERAI and CFSR 

show a similar trend compared to observations across all the years, with CFSR and ERAI 

underestimating the precipitation. JRA55 shows a higher tendency to overestimate the annual 

precipitation over the study catchments. In terms of performance indices, CFSR, ERAI and ERA5 

showed better CC indices of 0.60, 0.46, 0.52 respectively whereas JRA obtained lower CC of 0.25 

(Figure 5.4). The variability in the CC was higher in JRA55 (Figure 5.4). ERA5 and JRA55 show 

a positive bias of 45% and 171% respectively, whereas ERAI and CFSR show negative bias of -

26 and -85%. ERA5 has a lower RMSE and ME whereas JRA55 has the highest. These results 

show that ERA5 is the best performing reanalysis dataset compared to observations on annual 

timescales whereas JRA55 is the worst performing. 

 
Figure 5.5: Areal average annual precipitation from the observations and the reanalysis datasets, averaged across 

the 19 study catchments. 
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The mean monthly and seasonal standardized precipitation anomalies in the four-reanalysis 

precipitation for a base climatological period 1981–2016 is shown in Figure 5.6. On a monthly 

timescale, the observations show a positive anomaly over the central highlands and the western 

parts of Kenya (Figure 5.6, pan1). The arid and semi-arid parts in the eastern and coastal lowlands 

show a negative anomaly (dry bias). This pattern is also captured in ERA5, ERAI and JRA55, 

although JRA55 has excessively high and widespread negative anomalies compared to the former 

two. On seasonal timescales, ERA5, ERAI and CFSR show positive anomalies in the western and 

central highlands in all three seasons, except for JRA55 which has a stronger negative and positive 

anomaly in the MAM and OND seasons respectively. 

 
Figure 5.6: Mean monthly and seasonal standardized precipitation anomalies in the four reanalysis products for 

the 1981–2016 period: (a) Monthly anomalies, (b) MAM season, (c) JJA and (d) OND anomaly index in seasonal 

precipitation, for ERA5 (2nd column), ERA‐I (3rd column), CFSR (4th column) and JRA‐55 (5th column). Column 

1 shows the observations (CHIRPS). 

An evaluation of the extreme precipitation in the four reanalyses was also performed (Figure 5.7). 

For this case, we focused on the 95th percentile of rainy days for the MAM, JJA and OND seasons 

during the period 1981-2016. A rainy day represents a day for which the recorded precipitation 

amount is greater than or equal to 1mm (Gudoshava et al., 2020). The observed extreme 

precipitation varied between 60mm and more than 240mm across western, central highlands and 

coastal catchments for the rainy seasons (MAM and OND). The observed extreme precipitation 
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during the dry season JJA varied between 100mm and 160mm across the western catchments only, 

whereas in the other regions the observed precipitation was less than 60mm. Our results show that 

CFSR and ERAI show a positive bias for extreme precipitation across most parts of the country in 

all the three seasons, like the results in Garibay et al. (2019). JRA55 has an enhanced negative bias 

for extreme precipitation in most parts of the country, except for an isolated positive bias in the 

central highlands region in the JJA and OND seasons. ERA5 has a positive bias in MAM and OND 

in most parts of the country with some patches of negative bias in the western and central highlands 

catchments. It has an enhanced negative bias in the JJA season with a positive bias in the western 

and coastal strip. We conclude that ERA5 outperforms other reanalysis products as it captures the 

wet extremes over the regions in which observations show enhanced precipitation in the respective 

seasons. The results are consistent with the findings in Gleixner et al. (2020) which showed both 

ERA5 and ERAI to have the capability to capture wet extremes in the dry seasons, with ERA5 

matching observations more closely than the excessively wet ERA-interim. A promising 

performance by ERA5 in simulating wet extremes can be attributed to an improved bias correction 

method which incorporates aircraft measurements, satellite radiances, radiosonde measurements 

and surface pressure (Probst and Mauser, 2022). In addition, better performance in the central 

highlands can be attributed to the improved horizontal resolution in ERA5, which results in better 

estimates in orographic precipitation. 

 
Figure 5.7: Seasonal observed precipitation (mm) and mean bias (%) of the extreme rainy days at 95th percentile 

in the four reanalysis products for 1981–2016 period: (a) Long‐term observed (OBS) seasonal average 

precipitation (mm) from CHIRPS, (b– e) mean relative bias (%), in seasonal precipitation in ERA5 (b), ERA‐
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Interim (c), CFSR  (d), JRA‐55 (e), with respect to CHIRPS. MAM season (top), JJA (middle) and OND (bottom 

panel). 

5.6.1.2. Evaluation of the reanalyses as inputs for hydrological modelling  

5.6.1.2.1. Assessment of the overall model performance using different reanalysis 

The performance of the four reanalysis datasets was evaluated using the GR4J model in the 19 

catchments for the period spanning 1981 -2016.  The KGE in calibration (top panel) and validation 

(bottom panel) scores obtained using different datasets for each of the catchments are represented 

in Figure 5.8. Overall, wetland catchments in the western and highlands of Kenya obtained 

relatively better calibration scores than those in the semi-arid regions, with Yala, Sio, Nzioa and 

Gucha (wetland catchments) performing best and Perkerra, Ndo, Tsavo, Thiba and Tana (semi-

arid catchments) performing worst. For each of the catchments, ERA5 showed better calibrated 

KGE scores compared to observations, while CFSR and JRA55 obtained poorer KGE scores. 

However, we are cautious in the interpretation of our results in terms of performance criteria, 

because these catchments are strongly influenced by human activities such as irrigation schemes 

and dams. Consequently, the low performance in some catchments may not be solely due to 

uncertainty in the input data.  

 
Figure 5.8: GR4J model performance (KGE) in calibration (top panel) and validation (bottom panel) across 

the 19 catchments for different input datasets, Pan.1 (CFSR), Pan.2 (ERA5), Pan.3 (ERAI), Pan. 4 (JRA55), 

Pan.6 (CHIRPS). 

The overall variability in GR4J model KGE scores across the four reanalyses are shown in Figure 

5.9. There are overall high-performance scores (KGE>0.5) in calibration mode in about half of the 

catchments for all datasets except CFSR, which suggests that using CFSR as hydrological model 

inputs in the region causes problems that cannot be solved or compensated by calibration. ERA5, 

ERAI and JRA55 show similar overall performance compared to observation in Figure 5.9a. The 
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range for the performance statistic is narrower in the ERA5, ERAI and JRA55, indicating a more 

stable model performance in the region, while it is wider in the CFSR data (Figure 5.9a). In 

validation mode, the performance markedly decreases, as expected, for all datasets (Figure 5.9b):  

ERAI, ERA5 and JRA55 have the highest median KGE value (just above or about 0) whereas 

CFSR has the lowest median values (KGE<-0.5). The range of KGE values is relatively larger 

compared to observations; thus, a relatively unstable prediction ability is expected for streamflow 

in reanalysis in the region. The range of performances is more variable in ERA5 and JRA55 and 

less variable in ERAI. Overall, the variability in KGE values is higher in validation than in 

calibration across all the reanalyses compared to observations, as expected. The percentage bias 

of the KGE component in each catchment in calibration (top panel) and in validation (bottom 

panel) is shown in (Figure 5.10). The bias in all the four reanalysis is higher in calibration, whereas 

in validation most catchments exhibit lower biases, except for Perkerra. 

 
Figure 5.9: Boxplots of the overall GR4J model performance (KGE [-]) in (a) calibration and (b) validation mode 

over the 19 catchments. 
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Figure 5.10: GR4J model performance (Percentage KGE- Bias) in calibration (top panel) and validation (bottom 

panel) across the 19 catchments. 

5.6.1.3. Sensitivity analysis results 

5.6.1.3.1. Variability in sensitivity of model parameters 

The GR4J’s model maximum and minimum TSIs for the four reanalysis datasets is illustrated in 

Figure 5.11. The maximum and minimum TSIs represent the variability of parameter sensitivity 

within the catchment with respect to KGE over the sampling periods and the variation across the 

four-reanalysis relative to observations. If the maximum and minimum TSIs for a parameter are 

equal (on the one-to-one line), that parameter has the same TSI for the sampling period, implying 

that the parameter is more stable across time, and would be expected to vary depending on the 

catchment characteristics and input data as well. In all the four datasets, the routing parameter (X4) 

related to the unit hydrograph is evidently the least sensitive as it is far below the threshold, 

followed by the capacity of the routing store (X3), whereas the two parameters governing the water 

balance, i.e. the soil moisture accounting store (X1) and the groundwater exchange coefficient 

(X2), are the most sensitive across the datasets in most of the catchments, except for CFSR, where 

X1 is less sensitive. 
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Figure 5.11: Scatter plot of Sobol’ Total Sensitivity indices (TSI) for the different reanalysis datasets and the 

GR4J model parameters for the nineteen catchments. Minimum and maximum TSI were calculated for the whole 

data period. (a) Chirps, (b) ERA5, (c) ERAI, (d) JRA55 and (e) CFSR . The diagonal line is the  line of best fit. 

Observations show more stability for the parameters for all catchments except six (Munyu, Thiba, 

Ndo, Ewaso Ngiro, Perkerra and Tsavo) with respect to reanalysis datasets (Figure 5.11a). In 

ERA5, most of the catchments showed stability in parameters except in Thiba, Tsavo, Large Nzioa 

and Ewaso Ngiro catchments (Figure 5.11b). In ERAI, there is high variability in model parameter 

stability with less stability for some catchments such as Thiba, Munyu, Mutonga and Tsavo 

catchments (Figure 5.11c). In JRA55 and CFSR (Figure 5.11d and Figure 5.11e respectively), the 

departure in sensitivity of model parameters from the diagonal is pronounced across most of the 

catchments. Overall, the variability in sensitivity of model parameters is high in Thiba, Munyu, 

Pekerra and Ewaso Ngiro across all the datasets, so we can conclude that the reanalysis datasets 

are not suitable for model calibration in these catchments of Kenya, that are characterized by arid 

and semi- arid conditions. However, the catchment’s water balance may be strongly affected by 

the dams constructed in the upstream areas and the massive irrigation schemes, which result in 

water attenuation.   

5.6.1.3.2. Overall sensitivity of GR4J model parameters 

The parameters related to water balance, i.e., the soil moisture accounting store (X1) and ground 

water exchange (X2), show higher sensitivity across all the four datasets except for CFSR, in which 

the production accounting store is less sensitive and falls below the threshold value of 0.2 from 

the model TSIs (Figure 5.12). The first parameter responsible for water routing (X3) is less sensitive 

for most datasets (except CFSR), whereas the unit hydrograph parameter (X4) is the least sensitive 

across all the catchments in all datasets. In comparison to observations, ERA5, ERAI and JRA55 

show similar parameter sensitivities to model parameters, while CFSR show distinctly higher 
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variability and a difference in the parameters’ sensitivity, which points to high uncertainty in the 

CFSR dataset. This result shows that the sensitivity of the model parameters can change with the 

input datasets, having very different hydrological characteristics. 

 
Figure 5.12: Boxplots of the Sobol’ Total Sensitivity Indices (TSI) for the GR4J parameters for Obs. (pink), 

CFSR (orange), JRA55(blue), ERAI (green) and ERA5(forest-green) over the nineteen catchments. Dashed grey 

line represents the sensitivity threshold. The bold line represents the 50th percentile; boxes and whiskers show 

the 25th and 75th percentiles, and the 10th and 90th percentiles. 

5.6.1.3.3. Comparison of reanalysis datasets using model suitability index 

When the sensitivity indices and performance statistics are considered, it is difficult to determine 

which dataset is most appropriate. ERA5 and ERAI datasets, for example, had good and clear 

parameter sensitivities that captured their purposes, and the model performance score median 

values were higher than in CFSR and JRA55. However, the range of the performance statistics 

across the catchments was sometimes wider than in the other datasets, resulting in higher 

simulation uncertainty. When compared to the other two methods, the MSI, which considers both 

sensitivity indices and performance statistics, has the advantage of making it easier and clearer to 

judge the superiority and inferiority of the datasets in terms of both model performance and 

parameter identifiability. We determined that a value of 0.5 for the MSI is a good MSI threshold 

(Moriasi et al., 2007). We give the same weight to model performance and sensitivity, as described 

in the subsection ‘MSI'; thus, the threshold value for good MSI is 0.5. 
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Figure 5.13: Bar chart showing a comparison of model suitability in terms of performance and parameter 

sensitivity across different reanalysis using the Model Suitability Index (MSI). 

Combining the model performance and sensitivity indices discussed in Section 5.6.1.1 and 5.6.1.3, 

MSIs for all the reanalysis datasets are shown by the bar graph (Figure 5.13) . The ERA5 has the 

highest MSI compared to observations across the nineteen catchments, followed by the ERAI 

reanalysis. As a result, the ERA5 and ERAI reanalyses are appropriate, at least for the selected 

sample of Kenyan catchments, whereas CFSR and JRA55 are least appropriate as they show lower 

MSI values across most of the catchments. CFSR shows negative MSI values for Amala, Migori, 

Mutonga, Narok, Ewaso Ngiro and Sio catchments, meaning it is not appropriate for application 

in these Kenyan catchments. Overall, the four reanalysis datasets obtained relatively lower MSI 

values in Mara, Ndo, Ewasi Ngiro and Tana Garsen catchments. These catchments are mainly in 

arid and semi-arid areas of Kenya (Table 14). 

5.7. Discussion 

5.7.1. Overall performance of reanalysis precipitation products  

In this study, we assessed four reanalysis precipitation products relative to observations for the 

period 1981 to 2016 on monthly, seasonal, and annual timescales. We also assessed how best they 

simulate streamflow, using the GR4J model and sensitivity analysis for 19 catchments located in 

distinct geographical and climatic environments. Results show that the ERA5 reanalysis 

outperforms the other reanalysis products on monthly and seasonal scales, whereas CFSR 

outperforms ERA5 on annual and seasonal timescales. In general, ERA5 data were often closer to 

observations than other reanalysis data, which corresponds with earlier research on the datasets in 

different regions (e.g., Betts et al., 2019; Gleixner et al., 2020; Tarek et al., 2020), even though 

these studies considered different evaluation periods, spatiotemporal resolutions, hydrologic 

models, and climates. However, the performance scores for the reanalysis products over the 
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Kenyan catchments were lower, in contrast to some of the studies carried out in other parts of the 

world with varying climates (e.g., Dhanya et al., 2017; Harada et al., 2016; Mahto et al., 2019; 

Wang et al., 2019), which obtained higher scores for their study areas. The low performance scores 

may be due to variations in the initial resolution of the datasets (Chen, Brissette and Chen, 2018; 

Lemma, Upadhyaya and Ramsankaran, 2019) and the interpolation approach is likely to have some 

influence on the evaluation of various reanalysis data (Rapaić et al., 2015; Zhang and Academy, 

2016). It is also worth noting that while the observed precipitation data are the best estimates 

available, they are likely to be subject to errors too (Beck at al., 2017, Dinku et al., 2019). In 

addition, the seasonality of rainfall over Kenya is greatly influenced by weather phenomena such 

as El Niño -Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) (Ayugi et al., 2020; 

Ojara et al., 2021; Onyutha, 2016) and play a major role in extreme rainfall events and inter-annual 

variability (Ongoma et al., 2015). For example, the warm phase of ENSO/El Niño results in 

unusually heavy rainfall, causing rare floods like the 1997/1998 occurrence (Takaoka, 2005). 

ERA5, ERAI and JRA55 picked the enhanced annual precipitation totals of the strong El Niño 

years such as 1997/98 and 2015. However, relative to observations, ERA5 and ERAI 

underestimated the rainfall, and this may be attributed to incorrect configuration in the reanalysis 

products. For example, ERA5 precipitation is not customized to pick up the perturbations caused 

by the changes in the ocean-atmosphere interactions and the mountainous regions and so may miss 

picking up the extremes caused by events such as ENSO, thus leading to the low performance 

scores. 

Standardized precipitation anomalies in ERA5, ERAI and CFSR show a positive anomaly over the 

central highlands and the western parts of Kenya (Figure 5.6a, pan1) and a negative anomaly in 

arid and semi-arid regions in the eastern and coastal lowlands in the three seasons (MAM, OND, 

JJA) except for JRA55, which has a stronger negative and positive anomaly in the MAM and OND 

seasons respectively. This is consistent with a study by Ongoma et al. (2018), which indicates a 

rise in the severity of severe precipitation events shown by a positive standardized rainfall anomaly 

over East Africa, including the aforementioned regions in Kenya. With the changing climate, 

temperatures in the region are projected to rise by the end of the twenty-first century, leading to 

an increase in extreme rainfall occurrences (Ongoma and Chen, 2017), thus exacerbating flood 

risk. 

Our analysis of the accuracy of precipitation reanalysis with respect to observations, over different 

timescales from monthly to annual, showed a positive but relatively small bias in CFSR, ERA5 

and ERAI and a larger negative bias in JRA55 in the MAM and OND seasons. Moreover, the first 

three reanalysis datasets showed a good average correlation at the monthly and seasonal scales. 

Therefore, the three reanalysis products have the potential to capture the rainfall seasonality and 

events in the study area. Recent worldwide research show that the frequency, severity, 

geographical range, length, and timing of severe climatic events are changing (Wainwright et al., 

2021). A rise in severe rainfall events such as very wet days (R95p) and extremely wet days (R99p) 

anticipated for the future (2021–2100) (Gudoshava et al., 2020), is likely to cause the loss of life 

and devastation to property owing to an increase in flood intensity (Finnley, 2020). Therefore, 
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further work should assess the capacity of the reanalysis datasets in capturing extreme rainfall 

event characteristics, such as timing and daily peaks. 

5.7.2.  Performance of reanalysis as inputs into a hydrological model 

Using a hydrological model as integrator to compare simulated and observed streamflow, which 

can operate as an independent validation variable, is one approach to assessing the quality of 

observation and reanalysis precipitation data. Each set of reanalysis data on precipitation and 

estimated potential evapotranspiration was supplied to the GR4J model, which was subsequently 

calibrated for each combination (consistently using precipitation and potential evapotranspiration 

from the same dataset), to analyze independently the quality of input data for each dataset relative 

to the observed streamflow gauge data. Streamflow gauges, of course, are subject to a variety of 

inaccuracies (Baldassarre and Montananari, 2009), but they represent the best available estimates 

for this study. Results of KGE scores show that ERA5 is better than ERAI, JRA55 and CFSR but, 

on overage, all the reanalyses are less skillful relative to observations across the catchments in this 

study and this is entirely due to the precipitation data quality. However, there is a marked 

improvement in the KGE scores for the catchments in the central highlands and western wet 

catchments which agrees with some studies on the datasets in other regions (e.g., Terek et al., 

2020; Essou et al., 2017; Lakew et al., 2016), pointing to the fact that reanalysis data can be used 

as a replacement for observations. 

There are overall high-performance scores (KGE>0.5) in calibration mode in about half of the 

catchments for all datasets except CFSR, which suggests problems in using CFSR to reproduce 

the hydrological water balance in the region that cannot be solved or compensated for by 

calibration (Diro et al., 2009). 

5.7.3. Sensitivity analysis of model parameters   

Sensitivity analysis is useful in identification of the parameters that have a strong impact on the 

model outputs, which in turn influence the effectiveness of the model. The greater the sensitivity 

of the model response to a parameter, the more effectively and promptly will that parameter be 

optimized, so high sensitivity is good. Such an in-depth analysis of a hydrological model may (i) 

help to identify any potential deficiencies in model structure and formulation; (ii) provide guidance 

for model parameterization; and (iii) provide the information content of available input data.  

Based on provision of information content of the input data, different reanalyses show different 

sensitivities of model parameters, and one that provides a higher sensitivity of model response has 

less uncertainty and it may be a lot easier to parameterize the values, but then this does not reach 

the real value in actuality; on the other hand, the dataset with low sensitivity has got high 

uncertainty and model parameterization may be very  difficult (Zeng et al., 2019). In comparison 

to observations, ERA5, ERAI and JRA55 show similar sensitivities in model parameters while 

CFSR shows distinctly higher variability and a difference in the sensitive parameters, which points 

to high uncertainty in the CFSR dataset. This result shows that the sensitivity of the model 

parameters can change with the input datasets, having very different hydrological characteristics. 

Overall, the variability in sensitivity of model parameters is high in Thiba, Munyu, Pekerra and 
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Ewaso Ngiro across all the datasets, so we can conclude that the reanalysis datasets are not suitable 

for model calibration is those catchments of Kenya that are characterized by arid and semi- arid 

conditions. MSI considers both model performance and uncertainty quantitatively, therefore it can 

be used to compare any catchment. The ERA5 has the highest MSI compared to observations 

across the nineteen catchments, followed by the ERAI and JRA55, whereas CFSR has least MSI 

values. MSI's dependability may be increased by including more sensitivity indices and 

performance scores as well as assigning weights to the scores. 

5.8. Summary and conclusions 
This study addresses a notable gap that was found in the literature on evaluating the accuracy of 

multiple precipitation reanalysis datasets across data-scarce regions like Kenya, and on assessing 

their potential to supplement scarce rain gauge observations for hydrological modelling. Four 

different state-of-the-art reanalysis datasets were assessed. Precipitation data from ERA5 shows 

the highest average correlation coefficient value (0.71) on a monthly timescale compared to 

observations and is consistently higher across all months than the other reanalyses. ERAI and 

CFSR have good average correlation but show larger drops in some months (especially in the drier 

month of August). JRA55 obtained a poor correlation coefficient of 0.46 on average. ERA5, ERAI 

and CFSR show higher correlations with observations in rainy months (March-April-May and 

October- November-December) and lower in the dry months (June-July- August), whereas JRA55 

shows the worst correlations during both rainy seasons. On annual timescales, CFSR, ERAI and 

ERA5 showed better CC indices of 0.60, 0.46, 0.52 respectively whereas JRA obtained lower CC 

of 0.25. ERA5 and JRA55 show a positive bias of 45% and 171% respectively, whereas ERAI and 

CFSR show a negative bias of -26 and -85%.  

Spatial rainfall patterns directly affect temporal distribution, key in driving runoff and soil erosion 

processes, which is useful in management of hydrological risks and generation of sediments from 

rainwater (Peña-Angulo et al 2020). Monthly standardised anomaly maps in ERA5, ERAI and 

JRA55 showed a positive anomaly over the central highland and western parts. In the arid and 

semi-arid parts in the eastern and coastal lowlands parts of Kenya the three datasets showed an 

enhanced negative anomaly. On seasonal timescales, ERA5, ERAI and CFSR show positive 

anomalies in western and central highland regions in the three seasons, except for JRA55, which 

has a stronger negative and positive anomaly in MAM and OND seasons respectively. Extreme 

precipitation showed a positive bias in CFSR, ERA5 and ERAI in MAM and OND seasons, 

whereas JRA55 has enhanced negative bias in most parts of the country except for isolated positive 

bias in the central highland region in JJA and OND seasons. 

The performance of the GR4J model, when forced by different reanalysis in the 19 catchments, 

reveals a bigger role forf localized catchment characteristics and processes in model calibration. 

Wetland catchments in the western and highland regions of Kenya obtained relatively better 

calibration scores compared to those in the semi-arid regions, with Yala, Sio, Nzioa and Gucha 

(wetland catchments) performing best and Perkerra, Ndo, Tsavo, Thiba and Tana (semi-arid 

catchments) performing worst. For each of the catchments, ERA5 showed better calibrated KGE 

scores compared to observations, while CFSR and JRA55 obtained poorer KGE scores. The range 

of KGE values was relatively larger compared to observations; thus, a relatively unstable 
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prediction ability is expected for streamflow in reanalysis for Kenyan catchments. The range of 

performances is more variable in ERA5 and JRA55 and less variable in ERAI. Overall, the 

variability in KGE values is higher in validation than in calibration across all the reanalyses 

compared to observations, as expected. 

Sensitivity analysis facilitates the reduction of the number of parameters incorporated in 

optimization by determining the convergence of the most influential model parameters. Sensitivity 

analysis revealed that in all the four datasets, the routing parameter (X4) related to the unit 

hydrograph was evidently the least sensitive, followed by the capacity of the routing store (X3), 

whereas the two parameters governing the water balance, i.e. the soil moisture accounting store 

(X1) and the groundwater exchange coefficient (X2), were the most sensitive across the datasets 

in most of the catchments, except for CFSR, where X1 was less sensitive, with ERA5 showing the 

highest sensitivity in the model parameters. However, the variability in sensitivity of model 

parameters was high in Thiba, Munyu, Pekerra and Ewaso Ngiro across all the datasets, so we 

conclude that model calibration using reanalysis date in arid and semi- arid catchments of Kenya 

does not yield satisfactory results. The MSI aggregates both sensitivity indices & performance 

statistics, providing a clear index to judge the superiority (or inferiority) of a reanalysis with respect 

to observations. On average ERA5, ERAI (& JRA55) have better MSI scores across most of the 

Kenyan catchments: ERAI & ERA5 perform better than JRA55 & CFSR, and lead to more robust 

model parameters. Using a catchment model and combined sensitivity-model performance 

analysis allows an evaluation of the impact of the variability in the rainfall products throughout 

the catchment modelling process 

In conclusion, in this study we have demonstrated the usefulness of reanalysis rainfall products as 

potential alternatives for hydrological applications in Kenya. We assessed the suitability of 

reanalysis precipitation datasets for hydrological modelling across Kenyan catchments, but first 

assessed the propagation of errors when reanalysis is compared to observations. We performed the 

assessment on monthly, seasonal, and annual timescales. Then, using a lumped bucket-style 

hydrological model, we assessed the model performance via the KGE criterion and parameter 

uncertainty via Sobol’s Sensitivity Analysis for four different reanalyses: - ERA5, ERAI, JRA55 

and CFSR across 19 catchments. The parametric and model input uncertainty is investigated using 

the sensitivity indices and the comprehensive model performance analysis is used to examine the 

model's input strength, i.e., the extent to which the model captures the dynamics of rainfall–runoff 

processes with respect to different forcing. We also coupled the results of the performance scores 

and sensitivity indices to compute MSI for the 19 catchments.  

We acknowledge the value and necessity of additional work, if reliable data at higher temporal 

frequency becomes available and can be used, as it contains more information. However, this is a 

big limitation for the current study due to extensive data gaps in the daily data (river discharge 

data used in the current study) and the lack of higher temporal resolution hydrological data. Future 

work should concentrate on assessing the sub-daily performance of hydrological modelling with 

reanalysis, testing its quality on other additional catchments in countries in the region with quality 

observed gauge data, but prior investments in data collection in Kenya seem to be needed. Our 

approach may be extended to various conceptual rainfall -runoff models as well as physically based 
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distributed rainfall–runoff models. The MSI analysis is a practical method for weeding out the 

appropriate model input on a catchment scale basis, but a more robust analysis where weights are 

assigned would yield some improvements in the results. To fully ascertain the potential of 

alternative model forcing, catchments’ individual characteristics and human influence, such as 

dams and reservoirs, should be modelled 

Finally, it is essential to note that this work does not promote the use of products such as reanalysis 

to replace observed data from weather stations, nor can it be understood as giving reasons to 

continue the present trend of retiring additional stations. Quality controlled ground observations 

still act as the best data for research. The ERA5 results demonstrate that atmospheric reanalysis 

has probably reached the stage where it can consistently supplement data from weather stations 

and offer trustworthy proxies in places with less dense station networks, at least across Kenya. 

Overall, reanalysis can be a viable alternative to observations in ungauged catchments, but the 

associated uncertainties need to be carefully communicated to ensure an informed choice of 

hydrological modelling tools. 
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Chapter 6 

6. Detecting trends in flood series and shifts in flood timing 

across Kenya 

6.1. Objective addressed and publication details 
Observations show a shift in timing and variability in flood occurrences in most parts of the 

country. Trend analysis of peak over threshold (POT) and annual maximum (AMAX) flood 

series are useful in detecting and supporting the evidence of change in flow series, as well as 

variability in flood timing. Flood peaks are identified using a threshold technique from Kenyan 

daily discharge data, and notable patterns in the AMAX series are compared to those in the 

POT series, which is created for three distinct exceedance criteria. A comparison is made 

between trends in the observed  and simulated AMAX. The timing and variability of the annual 

floods is determined from the AMAX flow. Findings show that the AMAX series detects more 

trends in flood magnitude than the POT series, while the POT series detects more significant 

trends in flood frequency than flood magnitude. Sensitivity of trends to different exceedance 

thresholds selection reveals differing trend patterns across the stations. Flood timing is in the 

peak rainfall months of April, May and November and is highly predictable in most of the 

coastal and western stations, and less predictable in stations whose annual floods occur in the 

dry months of June, July, and August. This information on flood characteristics can help to 

inform policy for disaster risk management, infrastructure design and agriculture, and 

ultimately support the improvement of livelihoods in Kenya.   

At the time of submission of this thesis, this paper had been submitted to the Hydrological 

Sciences Journal, Manuscript reference HSJ-2022-0371, for publication and the exact copy of 

the submitted version is in Appendix A4 of this thesis. 

6.2. Authors’ contributions 
Maureen A. Wanzala (65%): - Conceptualization, Data curation- Lead, Methodology- Lead, 

Investigation, Formal analysis - Lead, Visualization, Writing – original draft, Writing - Review 

& Editing.  Hannah L. Cloke (15%): Supervision, Writing - Review & Editing, Project 

administration, Elisabeth M. Stephens (10%): Supervision, Methodology, Writing - Review & 

Editing- Support, Project administration, Andrea Ficchì (10%): Conceptualization, 

Supervision, Methodology- Support, Analysis - Support, Visualization, Shaun Harrigan (5%): 

Methodology - Support, Writing – Review & Editing-Support. 

6.3. Introduction 
Flooding is among the most detrimental natural hazards worldwide (Berghuijs et al., 2019),  

and with a changing climate there is an expected increase in flood risk globally (Arnell and 

Gosling, 2016; Liu et al., 2018). For Kenya, floods are the most common climatic extreme and 

the leading hydro-meteorological disaster (Huho and Kosonei, 2014). There is a growing 

concern that major flooding events in many parts of Kenya in the past decade are indicative of 

the effects of a changing climate (Wainwright at al 2021; Wanzala and Ogallo, 2020, Kilavi et 

al., 2018; McLeod et al., 2021). 

Understanding flood characteristics such as frequency, magnitude and timing is important for 

informing policy for disaster risk management, infrastructure design and agriculture, amongst 
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other hydrological applications (Rosner, Vogel and Kirshen, 2014; Bezak, Brilly and Šraj, 

2016). Such assessments require information on the probable year to year variations in flood 

characteristics (Parry et al., 2007; Kundzewicz et al., 2014). In addition, consideration of the 

trends in flood data series may result in more accurate flood timing, magnitude and frequency 

estimations (Berghuijs et al., 2017, 2019; Mangini et al., 2018; Sa’adi et al., 2019). Trend 

analysis can be used to investigate whether there is any evidence of an increase in river floods 

in the observational river discharge data. Such analysis requires long records (i.e., more than 

30 years) not only to distinguish climate variability explicitly from climate change induced 

trends (Svensson, Kundzewicz and Maurer, 2005; Vogel, Yaindl and Walter, 2011), but also 

to incorporate the impacts of human induced activities such as deforestation and water 

management practices (e.g., reservoirs and irrigation).  

Trend analysis of river flow series have been undertaken at global and regional scales in many 

parts of the world (see, e.g., Svensson, Kundzewicz and Maurer, 2005; Cunderlik and Ouarda, 

2009; Burn, Whitfield and Sharif, 2016; Vormoor et al., 2016; Berghuijs et al., 2017; Mangini 

et al., 2018; Paprotny et al., 2018; Ávila et al., 2019; Ishak and Rahman, 2019; Zadeh, Burn 

and O’Brien, 2020). However, there is overgeneralization of trend patterns when considering 

a larger spatial extent, therefore a need for trend analysis at smaller scales, e.g., country scale 

(see Wilcox et al., 2018; Giuntoli, Renard and Lang, 2019; Tramblay et al., 2019). Relatively 

few studies have undertaken river flow trend analysis in Africa ( Nka et al., 2015; Diop et al., 

2018; Degefu et al., 2019), mainly due to data quality issues which may affect trend detection 

(Slater and Villarini, 2017). 

For Kenya, a few studies have attempted to quantify trends in streamflow (e.g., Mwangi et al., 

2016; Langat, Kumar and Koech, 2017; Cheruiyot, Gathuru and Koske, 2018). The studies 

mentioned here examined at the trends and variability in rainfall in Kenya and did not look at 

the changes in its frequency and how this varies across different catchments in Kenya.  Despite 

its practical significance, little is known about the temporal characteristics of streamflow and 

these studies considered only trends in the annual maximum flow’ and only for one catchment: 

little has been done to quantify trends in both annual floods and peak over threshold (frequency 

and magnitude). Those studies which have incorporated the frequency and magnitude of floods 

were focused on single river basins, incorporating only a single station, e.g., Tana River  

(Langat, Kumar and Koech, 2017), Malewa river (Nyokabi, Wambua and Okwany, 2021), and 

Naivasha (Kyambia and Mutua, 2015). These studies showed that flow series for these stations 

had a statistically significant upward monotonic trend and seasonal variability, indicating that 

the streamflow regime had changed significantly. 

Flood trend analysis looks at trends in the annual maximum river discharge (AMAX), i.e., a 

one value per year flood series (Kundzewicz et al. 2004; 2005). The advantage of this strategy 

is that the events chosen in two consecutive years are independent. However, the AMAX 

technique ignores flood occurrences that are less than the annual maximum in each year but 

are nevertheless significant for society, particularly in terms of losses, and perhaps 

inappropriate for climates with two distinct rainy seasons. The Peak Over Threshold (POT) 

technique (Burn, Whitfield and Sharif, 2016; Mangini et al., 2018) selects all floods over a 

specific threshold that occur throughout a flow record. This makes it possible for a trend in the 

frequency (counts) of floods rather than merely their magnitude to be estimated (Svensson, 

Kundzewicz and Maurer, 2005). No study looking into trends in POT series has focused on 
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Kenya, even though there has been an increase in the frequency of reported flood events across 

the country. 

Understanding variability in flood timing and seasonality is important for water resources 

planning and management  (Stephens et al., 2015). Changes in the timing of the yearly flood 

have far-reaching consequences for flood-based farming systems, especially for the livelihoods 

of people who adjust their floodplain management and agricultural activities to the rise and fall 

of the flood wave (Ficchì and Stephens, 2019). Significant changes in flood timing have been 

found around the world, as shown in studies by Cunderlik and Ouarda (2009), Burn, Whitfield 

and Sharif (2016) and Ficchì and Stephens (2019). There has been an overall shift in flood 

timing in East Africa in recent decades (Ficchì and Stephens, 2019), but there has been no 

detailed study for catchments across Kenya.  

Hence, there is a notable gap in the literature associated with temporal characteristics of 

streamflow data in terms of frequency and magnitude in both AMAX and POT as well as the 

country scale flood seasonality and timing in Kenya, and this gap was an important motivation 

for the present study. The objective of this paper is to detect the evidence of statistically 

significant flood trends in observations and the GR4J model simulated discharge across Kenya, 

where flood-based farming systems and livelihoods are extensive. High flow indices are 

derived from river flow discharge series, with AMAX and POT indices using different 

magnitude and frequency thresholds. First high flow indices were derived and subjected to a 

trend test. Then a sensitivity analysis of the detected trends was performed for different flood 

peak selection criteria. Next, the country-scale seasonality in flooding was characterised. 

Finally, the changes in the timing of the annual floods were established. The following three 

research questions are addressed: 

1. What are the trends in the observed flood magnitude and frequency across Kenya for 

the period 1981–2016?  

2. What are the trends in the GR4J model simulated discharge across Kenya for the period 

of 1981 – 2016. How do they compare with the trends in the observations? 

3. What is the sensitivity of the detected trends to the selection criterion used to define 

different flood peak series? 

4. What are the characteristics of country scale seasonality in flooding? 

5. What are the changes in seasonality and timing of the annual floods across Kenya? 

6.4. Study area  
The study is undertaken across Kenyan catchments at 19 river gauging stations (Figure 6.1) 

with varying characteristics (Table 14). These were selected due to the frequency and 

magnitude of the impacts of floods, as well as the availability of river flow observations (Table 

1). Kenya exhibits high variability in physiographic and hydroclimatic conditions. The highest 

point is at about 5,000m a.s.l. (mostly areas around the central highlands) while the lowest 

point is about 20m a.s.l. (mainly around coastal areas, Figure 4.4). The vegetation cover is 

mainly a mixture of tree cover, grass, and sparse vegetation in most parts of the country, with 

shrubs and bare land in the arid and semi-arid areas of northern Kenya (Figure 4.5). As a result, 
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Kenya experiences different climate related extremes in terms of intensity, magnitude, and 

timing. 

Rainfall pattern follows a bimodal rainfall seasonality (Ongoma and Chen, 2017) with high 

spatiotemporal variability (Hession & Moore, 2011). Three seasons are experienced: the ‘long 

rains’ of March -  - April - May (MAM), the non-rainy months of June - July - August (JJA), 

and the ‘short rains’ of October - November - December (OND) (Ogallo, 1988; Ongoma et al., 

2015) (Figure 4.3). About 42% of the total annual rainfall is observed during the MAM rainfall 

season (Ongoma and Chen, 2017), with the highest intensity observed near the water bodies of 

the Indian Ocean, Lake Victoria, and the Kenyan highlands. 

 
Figure 6.1: Location of the 19 river gauging stations located in the Kenyan catchments studied. 

6.5. Data and methods 

6.5.1. Observed and simulated discharge data 

For the study, observed daily river flow data and the GRJ4 model simulated discharge 

obtained from the modelling experiment in Chapter 5 from 19 sites distributed across the 

country were employed (Table 14, Figure 6.1). A common data period of 1981 – 2016 was 

adopted for the analysis. Two of the stations (Ndo and Perkerra) did not have the most recent 
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data records and only 13 and 21 years of data were available respectively, which may possibly 

affect the shifts in the trend patterns in the two stations. 

Six distinct high flow indices were derived from the daily mean river discharge data for the 19 

stations, and then subjected to the Mann-Kendall test to check for trends. The magnitude of the 

trend slope was also determined for each index for each station. The observed discharge data 

used in this study do not incorporate in-depth metadata such as the water abstraction data 

including dam construction and irrigation activities, so the trends may include the effects of 

changes in flow attenuation (e.g., reservoirs) and land use as well as any impacts of climate 

change. Consequently, the GR4J model simulated discharge from Chapter 5 modelling 

experiment was used to extract the simulated AMAX and the trends tests carried out to compare 

with the trends in the observations. 

6.5.2. Flow indices 

The features of high flow regimes were described using six distinct indices. First, the yearly 

maximum daily mean river flow (AMAX) was derived. The second index is peak over 

threshold (POT). Three peak magnitudes were tested as thresholds with the size of the criterion 

established so that, on average, one, three and five POT occurrences were chosen every year 

(Mangini et al., 2019): POT1mag; POT3mag and POT5mag.  If the peaks in a POT series were 

separated by a specific time, they were deemed independent of each other. After an inspection 

of the flow series, a declustering method was employed that involved the introduction of a runs 

parameter which used a 7day separation time interval between the peaks as most of the 

catchments are less than 40,000km2 (Collet, Beevers and Prudhomme, 2017) and thus had a 

concentration time of less than 7 days. Counting the number of POTs that occur each year can 

be used to quantify flood frequency (annual counts), and thus three flood frequency indices 

were derived corresponding to the POT magnitudes: POT1freq, POT3freq and POT5freq.The 

three POT1, POT3 and POT5 series represent the magnitude and frequency of the most severe, 

moderate, and minor floods respectively. In this work, the sensitivity of trend results to this 

threshold selection is evaluated and trends in the POT1 flood magnitude data are compared to 

those of AMAX. 

A multiple index (MI) was adopted from Mangini et al., (2019). Multiple Index (MI) shows 

the ratio of the mean discharge magnitude to the maximum/peak discharge magnitude of a 

flood sequence, as well as the average yearly outflow for specific stations, which can be used 

to show differences in hydrological flood characteristics. Thus, this is useful in describing the 

varied flood regimes across Kenya’s different hydroclimatic regions (e.g., wet, arid and semi-

arid), as well as the effects of human influence such as dam construction and irrigation activities 

on the catchments’ water balance. The MI is the ratio of the mean discharge of a flood series 

to the peak annual flow at each individual station and can be expressed as in Equation 6.1: 

Equation 6.1:-  Multiple Index. 

MI = QF/QA                                                                                                                                         

QF represents the mean discharge value of the flow series and QA is the peak discharge recorded 

for an individual station. A significant divergence from the mean flow is indicated by higher 

MI values; for smaller exceedance thresholds, low MI values would be obtained.  

.  
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Table 14: Characteristics of the Kenyan catchments studied, human influence, daily mean river flow gauge, and data availability information.  

Missing data are expressed as a percentage of the available period. 

River 

Name 

Catchment 

Outlet point 

Station 

ID 

Lon Lat Drainage 

Area 

(km2) 

Mean 

Elevation 

(m.a.s.l) 

Mean 

Annual 

Rainfall 

(mm) 

Annual 

Discharge 

(m3s-1) 

Catchment 

Characteristics 

Human Influence First 

& Last 

year of 

record 

Record 

length 

(years) 

Amount 

missing 

(%) Dams Irrigation 

schemes 

Tana Tana Garsen 4G02 40.11 -2.28 80 760 720 672 135.8 Semi-arid plains 9 11 1981-

2016 

36 58.2 

Tana Tana Garissa 4G01 39.7 -0.45 32 695 870 868 169.3 Highlands on the 

upstream & 

semi-arid plains 

in the lowlands 

8 7 1981-

2018 

38 14.2 

Nzioa RuambwaBri

dge 

1EF01 34.09 0.12 12 643 1740 1488 151.2 Dense forest 

cover 

(highlands) & 

low trees & 

bushes (lower 

reaches) 

2 4 1981-

2018 

38 13.6 

Galana Galana Tsavo 3G02 38.47 -2.99 6560 930 628 3.3 Semi-arid 

savannah plains 

3 1 1981-

2015 

35 59.6 

Gucha Gucha 

Migori 

1KB05 34.21 -0.95 6 310 1650 1435 45.0 Eastern lowlands 

with dense 

vegetation cover 

0 2 1981-

2015 

35 47.8 

Athi Athi Munyu 3DA02 37.19 -1.09 5689 1730 822 18.8 Highlands & 

forest cover 

3 1 1981-

2017 

37 21.6 

Nzioa Large Nzioa 1BD02 35.06 0.76 3878 1720 1267 15.3 Dense forest 

cover 

1 1 1981-

2011 

31 28.8 

Sondu Sondu Miriu 1JG04 34.80 -0.33 3444 2017 1614 53.9 Low lying plains 

(western) & 
2 2 1981-

2018 

38 64.4 
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highland 

(eastern) 

Mara Mara  1LA04 35.04 -1.23 2977 2100 1262 11.8 Low lying 

shrubs, semi-arid 

0 1 1981-

2015 

35 77.7 

Yala Yala 1FG02 34.27 0.04 2700  1696 40.8 Swampy 0 0 1981-

2019 

39 59.6 

Ewaso Ewaso Narok 5AC10 36.73 0.43 2597 1600 880 5.3 Low lying shrubs 

& mainly semi-

arid 

0 2 1981-

2018 

38 26.5 

Tana Mutonga 4EA07 37.89 -0.38 1867 1830 1427 35.5 Highlands and 

forest cover 

0 1 1981-

2016 

36 44.2 

Ewaso Ewaso Ngiro 5BC04 36.91 0.09 1837 1700 972 20.6 Low lying shrubs 

& mainly semi-

arid 

0 0 1981-

2019 

39 35.0 

Sio Sio 2EE07A 34.14 0.39 1011 1650 1822 15.5 Low trees & 

bushes & 

swampy in lower 

reaches 

0 1 1981-

2018 

38 18.1 

Turkwel Ndo 2C07 35.65 0.45 897 1133 1371 9.1 Extensive 

palaeo-

floodplain & arid 

conditions 

0 1 1981-

1993 

13 47.2 

Mara Amala 1LB02 35.44 -0.89 695 2100 1377 6.8 Low lying 

shrubs, semi-arid 

0 0 1981-

2017 

37 25.6 

Mara Nyangores 1LA03 35.35 -0.79 692 2008 1262 11.8  Semi-arid 

savannah plains, 

low lying shrubs, 

semi-arid 

0 0 1981-

2017 

37 15.5 

Turkwel Perkerra 2EE07A 35.97 0.46 371 1023 832 5.7 Extensive 

palaeo-

floodplain & arid 

conditions 

1 1 1985-

2005 

21 50.1 
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6.5.3. Trend detection in AMAX and POT series 

The non-parametric Mann Kendall’s (MK) test (Mann, 1945; Kendall, 1975) was used to detect 

trends in AMAX and POTmag flood series. The modified MK test was applied to test for trend: 

this  incorporates Yue and Wang's (2004) variance correction approach. The effective sample 

size was calculated using serial correlation coefficients for all lags and the slope magnitude 

was estimated using the Thiel-Sen slope algorithm (Sen, 1968). 

Trends in POTfreq were estimated using the Chi-Squared test with parametric Poisson 

regression because, unlike the non-parametric Mann Kendall test, it accounts for the 

hierarchical count series that may contain several paired values  (Vormoor et al., 2016; Mangini 

et al., 2018). A two-tailed trend test was applied at 10% significance level to test for the 

statistically significant trends. This was required because the direction of the trends to be tested 

was unknown. 

6.5.4. Sensitivity analysis of trends to threshold selection 

The number of peaks considered in each flood series are affected by the exceedance threshold 

(λ), where POT1 (λ =1), yields the highest floods recorded at each of the stations and POTn (λ 

=n) yields n flood events in the series. This means that selecting a higher λ would result in a 

lower threshold, thus yielding higher number of flood peaks in the series. Different thresholds 

(λ =1, 3 and 5) corresponding to POT1, POT3 POT5 flood series were derived and the 

sensitivity of trends to different POT series leading to the selection of different thresholds (λ) 

analysed.  

Threshold selection was aided by the creation of different plots, such as a  mean residual life 

plot, that can aid in the determination of a suitable threshold level (Burn, Whitfield and Sharif, 

2016). The mean residual life (MRL) plot is a plot of the mean flood excess over a given 

threshold versus a range of threshold values. 

6.5.5. Flood seasonality 

Seasonality measures (Parajka et al., 2010) are used to characterize the timing and variability 

of extreme flood events. These are defined by directional statistics (Mardia, 1975). The date of 

occurrence of a flood event is defined as a directional statistic through conversion of the Julian 

date of the occurrence of an event to an angular value (Berghuijs et al., 2019; Ficchì and 

Stephens, 2019), where January 1 is Day 1 and December 31 is Day 365 of the flood occurrence 

for the event i following Equation 3.54. The subsequent equations of seasonality measures are 

outlined in Section 3.3.3.3 of Chapter 3 of this thesis. 

6.6. Results 

6.6.1. Frequency of peak events in the flood series 

The mean number of discharge peaks per year varies spatially across Kenyan catchments from 

about 4 to 13 events (Figure 6.2). The highest numbers of flood events per year are recorded at 

Perkerra, Mara and Garsen stations. The notably high number of events at Perkerra may be due 

to the shorter data series (a large percentage of data is missing, as outlined in Table 14). 

However, the Garsen and Mara stations have relatively good data records and are mainly arid 

and semi-arid, therefore we can be more confident that the high numbers of events are likely 
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to be due to the sporadic torrential rains that occur during the rainy months. The mean number 

of flood events per year for the other stations ranges between 6 and 8. 

 
Figure 6.2: Mean number of independent flood peaks per year at the 19 gauging stations in Kenya. 

6.6.2. Trends in the observed AMAX and POT1 flood series 

There is considerable heterogeneity in the trend results calculated for the 36-year research 

period (Error! Reference source not found.Error! Reference source not found.). However, a 

positive trend across twelve stations dominates Kenyan stations in the AMAX flood series, 

only theree stations (Nyangores, Ewaso-Ngiro and Gucha-Migori) show negative trends and 

four (Mara, Miriu, Thiba and Mutonga) do not show distinct trend direction.  

Statistically significant positive and negative trends at 10% confidence interval in the AMAX 

series are detected in 12 out of 19 stations (Figure 6.3). The significant positive trends are 

dominant at Garissa, Garsen, Mutonga, Athi-Munyu, Athi-Tsavo, Sondu, Perkerra, Sio and 

Ruambwa stations. The significant negative trends are dominant at Gucha-Migori, Nyangores 

and Ewaso-Ngiro stations. Only three stations (Perkerra, Ewaso-Narok and Ndo) do not show 

trends in the AMAX series. Interestingly, Pekerra has the highest mean number of independent 

discharge peaks but no visible trends in the peaks.  However, in general trends in the same 

direction can be seen for stations in proximity to each other, which is evidence of a spatially 

coherent pattern.  
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Figure 6.3:- Mann–Kendall (MK) test Zs statistics (a) and trends (b) in the observed annual maximum flood 

series (AMAX) for the period 1981 -2016. In (b), filled circular symbols indicate the direction of the trend 

slope with positive (red), negative (blue) and grey (no trend) trends at 10% significance level.  The size of 

the circles indicates the statistical significance of the trends. 

Positive trends in POT1 flood magnitude are found for 11 stations and negative trends for 8 

stations respectively (Figure 6.4 right).  For flood frequency only three stations (LargeNzioa, 

Munyu and Migori) show negative trends for POT1 (Figure 6.4 left), whereas the rest of the 

stations show positive trends. Garsen, Yala, Narok, Perkerra, Miriu, Sio, Nyangores and 

Garissa stations show increasing positive trends, and Thiba, Munyu, and LargeNzioa show 

decreasing trends both in flood frequency and magnitude. 

The total number of stations exhibiting statistically significant trends is higher in the POT1mag 

than in AMAX (Figure 6.5). There is a consistent pattern in the flood change in some 

catchments depicting significantly increasing trends in both the MAX and POT1mag series: 

Garissa, Athi- Munyu, Athi- Tsavo, Ruambwa, Sio, Mutonga etc. Only one station (Ewaso – 

Ngiro) has a significantly decreasing trend both in the AMAX and POT1mag flood series, 

whereas Gucha-Migori has a significantly increasing and decreasing trend in the AMAX and 

POT1mag respectively. 

POT1freq flood series show statistically significant trends in 8 out of the 19 stations, 

predominantly in stations in the western part of the country Figure 6.5 left. This suggests a 

clear pattern in that the trends in flood frequency are more significant in the western parts of 

Kenya than in the rest of the country, except for the Garissa and Garsen stations. 
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Figure 6.4: Mann–Kendall (MK) test Zs statistics in the POT1freq (left) and POT1mag (right) flood series 

across the 19 stations studied for the for the period 1981- 2016. 

 
Figure 6.5: Trends in the POT1freq (left) and POT1mag (right) for the period 1981 -2016. Filled circular 

symbols indicate direction of the trend slope, significant positive (red), negative (blue) and grey (no trend) 

trends at 10% significance level. The size of the symbol indicates statistically significant trends. 
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6.6.3. Sensitivity of flood trends to the selection of different flood exceedances 

thresholds  

There are notable differences in trends in some catchments for the AMAX and POT1mag flood 

series, which points to the effects of selecting exceedance thresholds in deriving POT series. 

The higher exceedance threshold (λ = 1) gives the most extreme flood events, with an average 

of one event per year, whereas the lower exceedance threshold (λ = 5) gives a lower threshold, 

thus an increase in the number of (smaller) peak events (Figure 6.7). 

MIs from the AMAX are the most significant, followed by the MI of the POT1mag series as 

well as the remaining POT series, whereas smallest MIs are derived for the POT6mag flood 

series (Figure 6.6a).MI values are relatively higher in the small sized arid and the semi-arid 

catchments such as Ewaso-Ngiro, Ewaso-Narok, Perkerra and Mara (Figure 6.6b). The arid 

and semi-arid climate of these catchments causes generally low mean discharge across the year 

which is offset by intense precipitation events leading to high discharge values. Additionally, 

small catchments are likely to show an intrinsic high variance in the daily hydrograph, thus 

producing the high MI values. Mutonga and Thiba show the highest MI values. This could be 

attributed to the large dam releases into the rivers resulting in higher mean discharge, especially 

during rainy months. In general, catchments in the western part of the country have medium 

MI values due to rain falling all year round. This is because rainfall falling outside the pattern 

of typical seasonal rainfall contributes substantially to the mean annual rainfall.  

There is a high sensitivity in the results of the trend analysis to different exceedance thresholds 

in terms of both magnitude and frequency (Figure 6.8). Half of the stations show significant 

positive and negative trends for high λ. More than half of the stations show significant positive 

trends for λ = 3 and λ = 4. However, there is no defined pattern in sensitivities (increasing with 

increase in λ or decreasing with a decrease in λ ) across most of the stations for flood magnitude 

(Figure 6.8a). Trend results show high sensitivity to thresholds for flood frequency series as 

seen in Figure 6.8b. There are notably significant trends detected in the POTfreq series across 

most of the stations for increasing values of λ. Half of the stations depict significant increasing 

positive and negative trends with clear negative trends in Ewaso-Narok, Perkerra and Gucha-

Migori. for threshold values of λ = 3 and λ = 5. There is a clear pattern of significantly 

increasing trends in flood frequency across all the stations. 

6.6.4. Flood timing and variability 

The occurrence of the annual flood in most of the stations is around the months of March, 

April, May, November and December (Figure 6.9 panel a). These coincide with the occurrence 

of the ‘long rains’ (March – May) and the ‘short rains’ (October – December). Some stations, 

such as Ndo, Perkerra, Mara, Ewaso- Ngiro and Ewaso-Narok, have a mean date of occurrence 

around the months of June, July and August. 

Predictability is high (r > 0.4) in most of the stations whose annual floods occur during the 

short and long rains, whereas values of r < 0.4 can be seen in the stations in which the flood 

timing is around the dry months of June, July and August (Figure 6.9 panel b). There is a 

consistent spatial pattern of predictability: stations in the western (Nzio, Sio, Yala, 

LargeNzioa), central (Thiba, Mutonga, Munyu), and coastal regions (Tsavo, Garsen, Garissa) 

show a high tendency to predictability, whereas stations in the Rift valley region (Mara, Amala, 

Nyongores, Ndo and Perkerra), have a low tendency to predictability. 
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Figure 6.6:- (a) Box plots for the Multiple Index (MI) for the different peak over thresholds (POT) flood 

series and the annual maximum (AMAX) for all the 19 stations. The bold line represents the 50th percentile; 

boxes and whiskers show the 25th and 75th percentiles, and the 10th and 90th  percentiles.The mean number 

of events per year for POT thresholds (λ) considered are one (POT1), three (POT3) and five (POT5). (b) MI 

for POT1mag flood magnitude at the each of the 19 gauging stations across Kenya. 
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Figure 6.7: Visual plots for exceedance threshold selection using (a) mean residual life plots (left panel) and 

(b) flow duration curves for selected study stations (right panel). The vertical lines show different thresholds 

(λ =1 for red, λ =3 for blue and λ =5 for green and u represents a range of discharge threshold values). 
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Figure 6.8: The sensitivity of trends in the POT series to the selection of different exceedances thresholds 

(λ) for different mean number of floods per year for POT1, POT3 and POT5 (a) magnitude and (b) frequency. 

Significant trends (expressed as percentages) in flood magnitude at 10% significance level with a threshold 

level λ range of 1, 3 and 5 mean events per year Different colours and symbols represent the different 19 

stations considered in the study. 



152 

 

 
Figure 6.9:- Annual flood seasonality measure for Kenya stream-gauge data. (a) Average flood timing (θ) 

and (b) Interannual variability of flood timing (r [−]) shown by different colour saturation (the higher the 

variability is, the lighter the saturation is). The filled rectangular dots are reported at each of the 19 river 

gauging stations. 

6.6.5. Trends in the GR4J model simulated AMAX series 

There is considerably distinct trend directions in the simulated AMAX trend across the 19 catchments 

(Figure 6.10 a).  Like in the observed AMAX, simulated MK-Z statistics show dominance in the positive 

trends compared to the negative trends across the stations for period 1981-2016.  A positive trend is 

however observed across thirteen stations in GR4J simulated flood series and only 5 stations (Perkerra, 

Thiba, Garsen Tsavi and Amala) show negative trends. The stations depicting downward trends 

(negative) in the simulated flood series are different from those in the observed flood series (see Figure    

Statistically significant positive and negative trends at 10% confidence interval in the simulated AMAX 

series are detected in 12 out of 19 stations (Figure 6.10 b). Significant positive trends dominate stations 

in the western catchments, particularly Nzioa Ruambwa, Large Nzioa, Miriu, Migori, Sio,  Amala, Ndo 

and one in central and northern parts (Thiba and Ngiro) respectively. The significant negative trends 

are dominant are depicted in only three stations i.e., Thiba, Amala and Sio. Unlike in observations, 

Garissa and Garsen stations show non-significant decreasing and increasing trends respectively. 

Nyangores, Mutonga, Munyu and Narok do not show visible trends in the peaks, as seen in the observed 

AMAX series. However, a similar spatial pattern of trends in the same direction can be seen for stations 

in proximity to each other, which is evidence of a spatially coherent pattern and the linearity in the 

model simulations for catchments within the same physiographic settings.  
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Figure 6.10: Mann–Kendall (MK) test Zs statistics (a) and trends (b) in the simulated annual maximum 

flood series (AMAX) for the period 1981 -2016. In (b), filled circular symbols indicate the direction of the 

trend slope with positive (red), negative (blue) and grey (no trend) trends at 10% significance level.  The 

size of the circles indicates the statistical significance of the trends. 

6.7. Discussion   

6.7.1. Trends in observed AMAX and POT1 series 

In this study, statistically significant trends are detected in the AMAX and POT flow series in 

most of the 19 stations across the country. with only three showing significantly decreasing 

trends in the AMAX. The decreasing trends at Nyangores, Ewaso Ngiro and Migori stations 

are mainly due to the high sensitivity of trend detection in the flow series used in this study. 

The available data do not include the most recent years as compared to other stations and this 

may fail to capture the most recent floods in those stations. The trends are consistent spatially 

for stations on Tana River (Thiba, Garissa and Garsen), Athi (Tsavo, Munyu) and Nzioa 

(Ruambwa). This may be attributed to the increasing frequency of rainfall events in these parts 

of the country (Huho and Kosonei, 2014; Wainwright et al., 2021). 

The significant trend in both AMAX and POT1mag varies from one station to another. For 

instance, there is a general tendency of increasing trend in flood frequency and magnitude at 

Garissa, Athi- Munyu, Athi- Tsavo, Ruambwa, Sio and Mutonga, while Gucha-Migori, 

Nyangores and Ewaso-Ngiro show decreasing trends. Trend patterns at Garissa, Ruambwa and 

Sio agree with the findings of Nasambu et al. (2018) and Langat et al. (2020), who found 

significantly increasing trends due to increased frequency of rainfall events at these stations. 

However, the above results also point to a mixed pattern in trends in stations that may be from 

the same region. These trend patterns are important in indicating the existence of different flood 

drivers in those regions. For example, Ruambwa and Gucha are both located in the western 

part of Kenya, which receives rainfall all year round, but they have contrasting trend patterns. 

Thus, there is a lot of variability within the trends and their significance, and there is often a 

difference between magnitude and frequency. This finding is like those of studies from around 

the world, underlining the complexity of making regional generalisations about trends (see, 

e.g., Mangini et al., 2019; Arheimer and Lindström, 2015). Garsen station at the downstream 

point on Tana River has a significantly increasing trend in flood frequency but not in 

magnitude, whereas Mara and Amala have decreasing trends in two indices. This may be 
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mainly because rivers in semi-arid environments, such as the Tana and Mara, are particularly 

vulnerable to fluctuations in water availability caused by decreases in rainfall, increases in 

water withdrawals and changes in seasonal flows (Langat et al., 2020). Tana, for example, is 

heavily  affected by human activities such as irrigation schemes, domestic consumption, and 

hydropower generation (Langat, Kumar and Koech, 2017; Langat et al., 2019). 

In addition, both the Tana and Mara are classified as water limited catchments with a dryness 

index of 1.1 annually. This means that there is an imbalance in water demand and any increase 

in the rainfall is accompanied by higher temperatures resulting in high evapotranspiration, thus 

increasing the dryness index further. Therefore, most of the rainfall in these catchments is used 

up in evapotranspiration (Mwangi et al., 2016). 

6.7.2. Comparison of trends in observed and simulated AMAX series 

There is heterogeneity in the number of stations showing increasing and decreasing trends 

across the Kenyan catchments. Simulated AMAX shows 13, whereas observed flood series 

shows 12, with increasing trends and 5 and 3 with decreasing trends respectively. A distinct 

slope direction in the MK-Z statistics is seen in the simulated as compared to those in 

observations, which shows less distinct slope directions in 5 stations (Mara, Miriu, Thiba and 

Munyu). However, there are distinct reverse trends (in terms of direction) in some of the 

catchments, although in catchments located in different hydoclimatic and physiographic 

settings. For example, in observations, Nyangores, Ngiro and Migori show decreasing trends 

whereas in simulated, they show increasing trends. In simulated discharge, Garsen, Tsavo and 

Perkerra show decreasing, whereas in observations they show the increasing trends. The later 

catchments are in the ASALs of Kenya and Perkerra is relatively small in terms of catchment 

area, likely to be affected by small and sporadic rains. These results indicate that small 

differences in amounts or shifts in time or space of modelled rainfall, in comparison with 

observed precipitation, can strongly modify the hydrologic response of small watersheds to 

extreme events (Camera et al., 2020). 

In terms of the significance of the trends, there is notable similarity in the trend pattern for most 

catchments in the western parts of Kenya, with, Nzioa Ruambwa, Large Nzioa, Migori, Sio 

Miriu, depicting significantly increasing trends whereas some stations in the central highlands 

show no trends and mixed trends in the southern and coastal catchments in the simulated 

AMAX flood series. However reverse trends are observed for Garsen Tsavo and Garissa 

station, in which observations shows significant increasing trends and the model simulations 

show decreasing trends. This may be due to difficulties in the GR4J model simulating the water  

balance component as a result of the human influence and water abstraction activities  such as 

irrigation and dam construction (Langat et al., 2019) in the upstream areas (see Figure 4.4), data 

which was not incorporated in them modelling experiment due to data scarcity challenged 

outlined in Chapter 1 and 5. 

6.7.3. Sensitivity of trends to different POT threshold selection 

Flood frequency trends can be seen across all thresholds whereas for POT-M series, with more 

than one event per year on average, the percentage of stations exhibiting significant trends in 

flood magnitude is high, and only a few significant positive trends are detected for λ = 1. 

Sensitivity of trends to different POT series when different thresholds are selected shows 

different trend patterns and varies from one station to another. Generally, there is no clear 
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pattern in trends in POTmag series in response to different thresholds. This is because the flood 

series is highly sensitive to the threshold selection and varies considerably from one station to 

another. This may also be alluded to non-homogeneity in flood characteristics at different 

stations across Kenya. 

When we considered smaller floods (POT5), we observed a general increasing trend in flood 

magnitude for stations in western parts, with a clear pattern of decreasing flood magnitude in 

the southern and coastal stations. This is because western stations are characterised by less 

intense rainfall all year round, unlike the coastal and southern regions, which receive rain 

mainly in the rainy months (March, April, May, October, November) and are mostly dry for 

the other months. These decreasing trends are pronounced at Tsavo and Mara station. The 

overall spatial pattern of decreasing flood trends in the POT3 series is similar  to studies in 

other regions such as to Mediero et al.,  (2015). 

6.7.4. Flood timing and variability 

The timing of the annual flood is assessed using the AMAX flow for the 19 stations across the 

country. Results show flooding occurs in the peak rainfall months of April and May for the 

‘long rains’ (March – April – May) and in October and November for the ‘short rains’, mostly 

in western, central highlands and coastal stations. Our findings are like those in Stephens et al. 

(2015), which showed some extent of correlation of precipitation and floodiness in East Africa 

by comparing the anomalies in precipitation and floodiness on a monthly basis. However, some 

stations lying on the same river show varied timings of floods in different months, but the 

reasons for this are not clear.  Tana River and Athi river in the coastal area and Nzioa river in 

the western areas are examples. The upstream gauging stations on Tana River (Mutonga and 

Garissa) show the occurrence of annual floods in November and December. The downstream 

gauging stations (Garsen and Hola) show this occurrence in April and May. The reverse is 

observed for stations located along the Athi river. One possible reason for this observation may 

be the high predictability of the short rains (October-November-December) (Kilavi et al., 

2018), which is captured in the daily hydrograph of these downstream stations. However, more 

research is needed to determine the extent of this nonlinearity at different temporal or spatial 

scales, considering the role of different precipitation periods in flood generation in different 

regions (Froidevaux et al., 2015). Also, there are stations (e.g., Mara, Amala, Ewaso-Ngiro, 

Perkerra) showing the occurrence of floods in the dry months of July and August. These 

stations are in arid and semi-arid areas of the country and are mainly characterised by low flows 

and any sporadic rainfall falling in those offseason months may lead to a rise in flow, as 

depicted in the AMAX index. This implies the increased likelihood of flooding events both in 

rainy and non-rainy seasons, which may result in upward trends in flood frequency in these 

stations. 

There is a high tendency of flood predictability in rivers that flood during peak rainfall months 

in Kenya, and the reverse is true. For example, flood predictability is high for the stations 

(Ruambwa, Garissa, Garsen, Munyu) whose flood timing occurs in peak rainfall months and 

low for those whose floods occur in dry months (Perkerra, Ndo, Ewaso-Ngiro, Mara, Amala). 

The results also show a defined regional spatial pattern in flood predictability across the 

country. For example, there is a correspondence in predictability for stations located in the 

western and costal stations, which are characterised by the annual floods occurring in the peak 
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rainfall months. The stations located in the Rift Valley region, however, display a clustered 

pattern with annual floods occurring in dry months. 

6.8. Conclusion 
Our efforts to identify regional and basin scale trend signals yielded no spatial flood trend 

pattern, especially for the POTmag flood series. In every catchment in Kenya, mixed trends 

emerged for most of the flood indices used. Mixed and inverse trend signals were also observed 

between adjacent gauging stations in the same and neighbouring river catchments. The 

observed complexity of trend signals between adjacent streamflow stations may be attributed 

to the presence of very complex climate, topography, land cover and land use systems in 

different parts of the country, which showed great variation at short horizontal distances. 

With a few exceptions, such as the trends in flood frequency, this study shows that the number 

of catchments exhibiting significant trends differs across the country and is not consistent 

across all flood series. Also, the trend significance in both AMAX and POT1mag varies from 

one station to another. For this reason, it would be more informative to consider trend analysis 

within larger scale hydro-climatic regions, because trend signals within a region can be 

considered less sensitive. Additionally, it is therefore necessary to understand such trends, but 

this requires careful identification of triggers and hydrological processes (Slater and Wilby, 

2017; Berghuijs et al., 2019). This is useful in unveiling the degree of this nonlinearity over 

different temporal and spatial scales, whilst considering the influence of the role of different 

precipitation periods for flood generation in different regions across Kenya. However, such 

studies require more reliable data, which are currently lacking in Kenya. For example, the 

causes of historical flood trends in Kenya are  still unclear, due to a limited understanding of 

regional variations in flood‐generating mechanisms, e.g., in  Tramblay et al. (2019), Tramblay 

et al., 2019), land-use changes, reservoir construction and other local effects (Svensson, 

Kundzewicz and Maurer, 2005) and the uncertainty of  projections of future flooding under 

climate change  (Kundzewicz et al., 2014; Berghuijs et al., 2019). 

In conclusion, the presence of statistically significant trends in observed and simulated flood 

series across Kenyan catchments is investigated in this study. In comparison to previous trend 

studies, three novel aspects are explored. First, significant trends are detected across the 

country in two flood series: annual maximum (AMAX) and the peak over threshold (POT) are 

compared. A comparison is made between the observed and simulated AMAX series. Then a 

sensitivity analysis of trends in floods to the selection of different exceedance thresholds in the 

POT flood series is performed. Finally, the timing and variability of the annual floods across 

the stations using the annual maximum flow is explored. This research acknowledges massive 

data gaps (see Table 14) in some of the station discharge data used in this study do not 

incorporate in-depth metadata such as the water abstraction data including dam construction 

and irrigation activities, so the trends may include the effects of changes in flow attenuation 

(e.g., reservoirs) and land use as well as any impacts of climate change.  This study supports 

the importance of analysis of trends at country level as it highlights key characteristics that may 

not be captured in regional or global analysis. The findings are crucial in providing information 

on flood characteristics that can help to inform policy for disaster risk management, 

infrastructure design and agriculture, ultimately supporting the improvement of livelihoods in 

Kenya 
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 Chapter 7 

7. Discussion and concluding remarks 

7.1. Discussion overview 
This discussion and conclusion chapter summarises key research findings, scientific advances, 

challenges, and limitations of my research. The chapter also provides the main conclusion and 

future recommendations. 

The next subsections look at the key messages from each of the chapters, challenges faced 

during each of the analyses and the limitations associated with the research findings. 

7.2. Key messages from the research papers 
This section summarizes the key findings from each of the three research papers presented in 

this thesis. Each paper addresses in turn the three objectives set in section 1.2.2 of the thesis. 

7.2.1. Objective 1: - Design and propose an objective model pre-selection criterion 

with a filter sequence for a Kenyan national flood forecasting centre. 

Wanzala et al., 2022b. (Chapter 4, Appendix 1: - Hydrological model pre-

selection with a filter sequence for the national 2 flood forecasting system in 

Kenya) 

Choosing a model for operational flood forecasting is not simple because of differences in 

process representations, data scarcity issues and propagation of errors and uncertainty down 

the modelling chain. It is necessary to consider objective selection of the modelling tools at 

national scale.  

• In this chapter, research findings show that not all models are good at capturing and/or 

representing the important processes relevant to flood generation (e.g., transmission 

losses along the river channel, re-infiltration, and subsequent evaporation of surface 

water) both in wetlands and ASALs of Kenya). Therefore, a single model would not be 

applicable to the entire country, because of stark differences in the hydroclimatic 

characteristics of catchments (such as wetlands and drylands). As such characteristics 

are dynamic (changing in space and time) due to natural and human influence, model 

developments and upgrades should allow the incorporation of such differing 

characteristics. 

• A significant buy-in is required to develop operational forecasting capacity in a specific 

model, and so in recognition of changes in the importance and impact of many 

processes as a result of land use change, water management etc., it may mean that it is 

more efficient to choose a modelling approach that can represent a larger range of 

processes. 

• The objective choice of modelling tools involves, for example, ensuring that the models 

are numerically stable, have reliable error and inconsistency checks, are able to flag 

missing data errors (e.g., when input sources fail), fit into an operational environment 

and are, preferably, user friendly. 
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This piece of work demonstrates the importance of understanding the qualitative and 

quantitative knowledge base of different catchments and how this influences the choice of 

modelling tools at catchment scale, whilst acknowledging the practical challenges (e.g., 

computing power and data scarcity challenges) that may prevent the use of complicated or 

resource hungry tools. 

 

7.2.2. Objective 2: - Evaluation of different reanalysis precipitation datasets for 

hydrological modelling through performance statistics and parameter 

identifiability using sensitivity analysis to establish their influence on 

catchment streamflow simulations. Wanzala et al., 2022a (Chapter 5, 

Appendix 2: - Assessment of global reanalysis precipitation for hydrological 

modelling in data-scarce regions: a case study of Kenya) 

Hydrological modelling is essential to produce forecasts but is a challenging task, especially in 

poorly gauged catchments, because of the inadequate temporal and spatial coverage of hydro-

meteorological observations. Open access global meteorological reanalysis datasets can fill in 

this gap, but they have significant errors, and careful evaluation is important to inform both the 

users and the developers of the datasets. However, more generalised evaluations may fail to 

capture the evolution and magnitude of events (e.g., floods). Research findings reveal that: - 

• Assessment of these reanalysis precipitation products at catchment scale is important due 

to stark differences between river catchments. There is thus a need for combined 

performance statistics and uncertainty quantifications.  

• Aggregating both sensitivity indices and performance statistics via the Model Suitability 

Index score provides clear evidence of the superiority (or inferiority) of a reanalysis with 

respect to observations. 

• While ERA5 is the best performing dataset overall, performance varies by season and 

catchment, and therefore there are marked differences in the suitability of reanalysis 

products for forcing hydrological models.  

• Overall, wetland catchments in the western regions and highlands of Kenya obtained better 

scores than those in the semi-arid regions. 

These findings are important because they can inform future applications of reanalysis products 

to setting up hydrological models that can be used for flood forecasting, early warning, and 

early action in data-scarce regions, such as Kenya, whilst carefully communicating the 

associated errors and uncertainties. 

7.2.3. Objective 3: - Assessing the historical trends in flood series and possible 

shifts in flood timing and seasonality across Kenyan catchments. (Chapter 
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6, Appendix 3: - Detecting trends in flood series and shifts in flood timing 

across Kenya) 

The frequency and magnitude of flood events in Kenya have increased over the past decade. 

Trend analysis is useful in detecting and supporting the evidence of change in flow series, as 

well as variability in flood timing. 

• In this chapter, research findings show that the mean number of discharge peaks per 

year varies spatially across Kenyan catchments from about 4 to 13 events (Figure 6.2). 

• Observations show a shift in timing and variability in flood occurrences in most parts 

of the country. For example, floods occur in the peak rainfall months of April, May and 

November and are highly predictable in most of the coastal and western stations, and 

less predictable in stations whose annual floods occur in the dry months of June, July, 

and August (Figure 6.9).  

• In what ways has the frequency and magnitude of flood events in Kenya changed over 

the past decade? AMAX series detects more trends in floods than the POT series, while 

the POT series detects more significant trends in flood frequency than flood magnitude 

when comparing the frequency and magnitude of floods observed in POT and AMAX 

flood series from 1981 to 2016 in 19 Kenyan catchments. 

• In general, trends in AMAX series are in the same direction and can be seen for stations 

in proximity to each other, which is evidence of a spatially coherent pattern. 

• POTfreq flood series show statistically significant trends, predominantly in stations in 

the western part of the country, suggesting the possible existence of a pattern in flood 

frequency over western parts of Kenya, but the pattern is unclear.  

• Multiple Index values are relatively higher in the small arid and the semi-arid 

catchments. The arid and semi-arid climate of these catchments causes generally low 

mean discharge across the year which is offset by intense precipitation events leading 

to high discharge values which are compounded by an intrinsic high variance in the 

daily hydrograph, thus yielding the high MI values. 

This information on flood characteristics can help to inform policy makers about the most 

effective ways to plan and put in place flood defences and emergency response funds for 

disaster risk management, infrastructure design and agriculture, and ultimately to support the 

improvement of livelihoods in Kenya.   

7.3. Scientific advances, challenges and limitations of the research paper 

results 
This section summarizes the scientific advances and challenges encountered in the 

implementation stages of the research as well as the modelling experiments across Kenyan 

catchments. It also explores some of the key issues raised by the anonymous reviewers during 

the review process of the papers at the time of submission for publication, as presented in 

Chapters 4 and 5 of this thesis, and the responses provided during the review process; finally, 

it the limitations of the research. 
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7.3.1. Proposed model selection framework: Wanzala et al., 2022b (Chapter 4, 

Appendix 1: - Hydrological model pre-selection with a filter sequence for 

the national 2 flood forecasting system in Kenya) 

In Chapter 4, hydrological model selection has emerged as an ever-present challenge that can 

determine the direction of a flood forecasting system for decades. Model selection based on 

some criteria (outlined in Section 4.5) for suitability for a certain application (or the lack thereof 

in many cases: see Addor and Melsen, 2019) is also a wider problem. This research paper has 

determined what important aspects (hydroclimatic conditions, computing power and human 

factors) should be considered in the selection of a hydrological model from the many available 

choices for a national hydrological forecasting centre. The filter sequence presented in Section 

4.6.1 offers a good starting point for a step-by-step selection, in cases where there is no 

customised model, which may reduce the bias in the choice and application of modelling tools. 

However, there were challenges associated with the proposed selection criteria because some 

may be very important yet hard to implement. For example, there are several challenges in 

trying to model physical and hydroclimatic inhomogeneities, both within individual 

catchments and when there are such distinct zones of hydro-climatology within a country, as 

is the case for Kenya. This becomes even more challenging when the choice of modelling 

approach is constrained by low data availability and modest human resources and technical 

capacity. It may be ideal to use several different modelling approaches, particularly where there 

are such distinct hydroclimatic regions, or use a multi model approach to deal better with the 

modelling uncertainties, but pragmatically this is not an option for institutions who are able to 

take only one approach. 

Additionally, in Chapter 4, I used MCA, as outlined in Sherlock and Duffy (2019), to assess 

multiple alternatives based on a mix of quantitative and mostly qualitative information from 

multiple sources to arrive at a model selection subset.  However, the proposed MCA relies 

heavily on evaluation data and is very time consuming for the number of models available. 

Hence, for data-scarce regions, and/or agencies with limited resources, or in general, an 

additional decision tree is helpful to trim down the number of options. It is necessary to further 

evaluate the limited selection with, for example, an MCA and the FFC experiment, which may 

be difficult to implement, especially in Kenya. 

Whilst this paper informed the choice of model for hydrological applications in Kenya, there 

are some limitations for the proposed aspects as well as the presented filter sequence which 

informed the evaluation of models to suggest the possible candidates. Some of the specific 

limitations are as follows: 

• There is no documented research outlining the pros and cons of each of models in a 

single platform which a potential model user may easily use to identify which model is 

a suitable match for the presented criteria. 

• The filter steps are not operationalized to the level where the process can be said to be 

objective. For example, a model may be excluded on ‘many parameters’ and the pre-

selection criteria presented here follows a flow chart which may be subjective. 
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• Many of the criteria for selection have been based on expert judgement and linked to 

models that have been applied to diverse environments deemed suitable candidates for 

transfer to a Kenyan context. 

• The suggestions of certain models depend on the computational capabilities (skills) of 

individual users as well as the NMHS in general. As a result, the model selection 

process is necessarily biased towards ease of application, assuming a relatively basic 

modelling capacity. 

• This work does not look at direct analysis of each of the proposed models to evaluate 

its performance and accuracy with relation toa some past flood events, because it is 

massive job requiring high-level computational facilities and a long series of data. 

7.3.2. Assessment of reanalysis precipitation products: Wanzala et al., 2022a 

(Chapter 5, Appendix 2: - Assessment of global reanalysis precipitation for 

hydrological modelling in data-scarce regions: a case study of Kenya) 

In Chapter 5, assessment of reanalysis precipitation datasets for hydrological modelling over 

Kenya provides a basis for the use of freely available alternatives in sparsely gauged and 

ungauged catchments. It also provides the developers of global reanalysis datasets with useful 

information for future developments of the products. Also, this paper contributes valuable 

information to the rapidly growing research area which has a very strong interest in 

hydrological modelling with earth system approaches supported by global forecasting centres 

such as ECMWF  (see Harrigan, Cloke and Pappenberger, 2020). 

There were a few challenges encountered in the analysis of this paper, including the following: 

• Unavailability of observational data – Like many places in the world, Kenya suffers 

from several severe problems with observational data. The available precipitation 

gauging stations are sparse and/or not available at all. Most of the catchments in the 

study have either one or two stations which leads to very sparse coverage. Not only 

that, but the data series is short and includes massive gaps. For example, the Tana River 

catchment, one of our study catchments, is a 96,000 km2 catchment but has only four 

precipitation gauging stations. These stations are unreliable and have large data gaps. 

Therefore, we had to use the satellite observation data (CHIRPS). This point was raised 

by the anonymous reviewers of the manuscript upon submission to the Journal of 

Hydrology – Regional Studies; they required further supporting information as to why 

this was the best option for Kenya. Below are the comments from an anonymous 

reviewer and the response provided during the review process. 

“Why is the CHRPS considered as the benchmark? There are other observational precipitation 

datasets available such as IMERG, MSWEP and GSMaP. The authors should provide more 

information to claim that CHIRPS is more accurate than reanalysis products.” 

“We acknowledge the availability of other precipitation datasets  with a high spatial resolution 

(≤10 km) such as the Multi-Source Weighted-Ensemble Precipitation (MSWEP; (Beck et al., 

2019), CPC morphing technique (CMORPH; 7 km Joyce et al., 2004), Global Satellite 

Mapping of Precipitation (GSMaP; 10 km; Mega et al., 2014), Integrated Multisatellite 

Retrievals for Global Precipitation Measurement (IMERG; 10 km ; Huffman et al., 2001, 2015, 
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and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural 

Networks–Cloud Classification System (PERSIANN-CCS; 4 km; Hong et al., 2004). 

However, all these datasets except for MSWEP have a data record of ≤20 years and do not take 

advantage of river discharge observations for bias correction, and do not incorporate 

reanalysis-based precipitation estimates. Additionally, precipitation evaluation studies 

particular to Eastern Africa (including Kenya) have less explored the potential of MSWEP as 

an alternative to observations and shown better performance for CHIRPS relative to other 

observations (see Dinku et al., 2018) even though the daily temporal resolution of CHIRPS 

renders it less suitable in highly dynamic precipitation analysis and CHIRPS include spurious 

drizzle and underestimation of peak magnitudes of the most extreme rainfall ((Beck et al., 

2017), but our focus was not necessarily extreme rainfall should be insensitive to these biases.”  

• GR4J model calibration problems across Kenyan catchments: GR4J model 

parameters were very unstable across most of the study catchments and as a result there 

were some cases where there was a huge difference between the observed and simulated 

discharge (Appendix A4). The instability of the model parameters may have been 

caused by the instability in the input data. Precipitation products often use all available 

information at a given time, which may not be stable in the long term. Strong changes 

may yield unstable model parameters or behaviour.  Secondly, the model may have 

failed to manage to simulate a good water balance at the annual or monthly time steps 

or instability may be due to a redundancy in model function due to the specific 

characteristics of the catchment.  For example, there are many reservoirs and dams as 

well as large irrigation schemes in across Kenya (see Figure 4.4). Most of the dams are 

regulated by the WRA and the abstraction activities are not monitored in the upstream 

areas. Consequently, dam releases and water abstraction result in fluctuations of the 

amount of water in the catchments and this may fail to be captured in the model. 

Whilst this paper informed the choice of reanalysis precipitation datasets for hydrological 

modelling and applications in Kenya, there are some limitations of the study. The specific 

limitations include the following: 

• The study used proxy satellite observation datasets instead of in situ observations and 

this may not provide ideal conditions for accurate performance of the reanalysis 

precipitation datasets. This is due to inherent uncertainties associated with the blended 

observations and satellite data used. 

• Model calibration and modelling experiments did not take into the account the influence 

of human activities such as reservoir and dam constructions, irrigation, deforestation, 

etc., which modulate the hydrological cycle and form a key part of the 

hydrometeorological modelling chain. 

• Modelling results are based on the performance of a single hydrological model which 

may have had problems in simulating a good water balance in the study catchments. 

Model simulation results in some catchments, such as Tana and Athi, having spurious 

peaks, i.e., peaks appearing earlier than they should, or underestimating the high flow 

peaks. An alternative was to trial several models and compare the results, but due to the 

time constraints of this research, calibrations of several models could not be achieved.  
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7.3.3. Trends in river flow series and shifts in flood timings: Wanzala et al. 

(Chapter 6, Appendix 3: - Detecting trends in flood series and shifts in flood 

timing across Kenya) 

In Chapter 6, trend detection in flow series provides an understanding of flood characteristics 

(frequency and magnitude) at country scale. This is important for informing policy for disaster 

risk management, infrastructure design and agriculture, amongst other hydrological 

applications. Additionally, insights into the variability of flood timing and seasonality is 

important for water resources planning and management because changes in the timing of the 

yearly flood have far-reaching consequences for flood-based farming systems, especially for 

the livelihoods of people who adjust their floodplain management and agricultural activities to 

the rise and fall of the flood wave. 

Some of the challenges encountered in this study included:  

• Difficulty in detecting statistically significant trends in river flow time-series due to the 

high degree of natural variability (low signal to noise). 

• Shorter River flow time series with massive gaps as well as some stations lacking the 

most recent data records, which probably affects the trend patterns and thus makes it 

very difficult to establish clear trends. 

• Difficulty in exceedance threshold selection in the POT series. The number of peaks 

considered in each flood series are sensitive to the exceedance threshold. This means 

that selecting a higher exceedance threshold would result in a lower threshold, thus 

yielding a higher number of flood peaks in the series, and the reverse is true. This may 

not be a true reflection of the expected flood peaks. The reflection of the resultant Mean 

Residual Life plots was used to pick the desirable threshold. 

Whilst this paper provided new insights into the changing trends in river flow series, using 

AMAX and POT high flow indices and the seasonality and timing of floods across Kenya, the 

study has some specific limitations. They include the following: 

• Trend analysis studies recommend long and continuous data series, which was a big 

limitation for this research. Most of the stations did not have long series and recent data 

records to correctly identify shifts in trends: this led to the decision to settle for a 

common analysis period (1981-2016)  

• Trend analysis does not incorporate the impacts of climate change on the flow series 

over the study period, which is assumed to be constant in time, as well as the impacts 

of human activities such as reservoir/dam construction, deforestation, and irrigation 

schemes. These heavily influence the rise and fall of river levels and make the flow 

more dynamic over time. 

7.4. Concluding remarks 
Overall, the work in this thesis has explored and provided an enhanced understanding of the 

avenues to improving flood modelling and forecasting in Kenya in terms of models, data, and 

historical trends of floods as well as seasonality and shifts in flood timing. The results have 

provided objective criteria for model selection following a filter sequence for a national flood 



165 

 

forecasting centre, the application of alternative sources of data to counter observed data 

scarcity challenges and the understanding of historical flood trends and timing.  

Understanding variability in flood timing and seasonality is important for water resources 

planning and management. Changes in the timing of the yearly flood have far-reaching 

consequences for flood-based farming systems, especially for the livelihoods of people who 

adjust their floodplain management and agricultural activities to the rise and fall of the flood 

wave. Therefore, the next steps should look into establishing the attribution of floodiness across 

Kenyan catchments and the changes instigated by climate change impacts. To conclude, 

research presented in this thesis was conducted in the context of and was cognizant of 

hydrological modelling and operational flood risk management and preparedness action 

conducted at that time in Nzioa River basin: therefore, the research findings can have beneficial 

effects to upscaling research in other flood prone areas and improving the flood forecasting 

useful to emergency response units and policy makers responsible for proper planning and 

decision making. 

Some of the specific future work informed by the research findings in this thesis is summarised 

in the following sub-section 8.1.   

7.5. Recommendations for further study 
The work in this thesis has raised several questions and topics for future research, some of 

which have been touched upon in each chapter. This section provides specific examples of 

ways in which this research could be extended. 

Future work that builds on the findings presented in this thesis should look at establishing the 

accuracy of the suggested models in simulating past flood events, in order to discover which is 

most efficient, according to quantitative analysis. One of the biggest obstacles is the 

unavailability of long and consistent datasets on streamflow and precipitation that accurately 

reflect flood peaks in the observed data. This is due to the limited number of stations with long 

records of reliable data (due to massive data gaps) across most Kenyan catchments. Thus, the 

next steps rely heavily on the improvement of satellite and reanalysis data to extend the period 

of analysis and provide stronger conclusions. With the precipitation input found to be the most 

dominant component of the hydrometeorological modelling chain, it is logical to focus efforts 

on improving the precipitation products not only for Kenya, but in the applications of the larger 

hydrological modelling research community. 

• A comparison study of hydrological models’ analysis. One of the recommendations 

raised in Chapter 4 was to carry out a further analysis of the proposed hydrological 

model candidates for Kenyan catchments to assess their performance skills in 

simulating past events. For example, due to time constraints and unavailability of 

observational data, the research did not investigate the individual model skill 

assessment. However, ideally, a further analysis would be undertaken whereby the 

number of suggested models would be evaluated with a combination meteorological 

input, hydrological and river routing component, to allow a better evaluation, leading 

to the best model selection for the criteria in general and Kenya’s National Hydrological 

Forecasting Centre in particular. 
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• Separating the operationalised forecasting system using a modular approach. The 

gold standard for operational systems is to separate different parts of the modelling 

chain in a modular approach, e.g., Delft-FEWS (Werner, Reggiani and Weerts, 2014; 

Werner et al., 2013). For example, the model selection process considered in Chapter 

4 was based on the selection criteria and linked to Kenyan hydroclimatic characteristics. 

Ideally, an approach considering a modular system component with independent 

criteria would be beneficial as it provides a better assessment of the aspects to consider 

when making a model selection for operational flood forecasting.  

• A comparison study of the satellite and reanalysis datasets analysis. One of the 

concerns raised in Chapter 5 was the use of CHIRPS as a benchmark dataset amid a 

variety of multi-satellite reanalysis products. For example, Chapter 5 exclusively 

evaluates the performance of reanalysis datasets and, due to time constraints, this thesis 

did not compare the performance statistics with other available observation datasets. 

However, ideally, a further analysis would be undertaken whereby the freely available 

satellite observations would be evaluated with a combined model calibration and 

validation experiment to allow a better evaluation of the best dataset selection for 

hydrological modelling in data-scarce Kenyan catchments. 

• Incorporation of Kenyan dams in the GR4J. Overall, dam construction in the 

upstream areas is increasing across Kenyan catchments (Mwangi et al., 2016). When a 

comparison was made between simulated and observed discharge, it was noticed that 

the flood peaks tended to occur too early along some rivers, such as the Tana River and 

the Athi River in the coastal region (see Appendix A4). The current study did not 

represent most of the Kenyan dams in the GR4J model. However, reservoirs were found 

to affect model performance substantially in some catchments when they were 

incorporated into the model. This gives hope that the inclusion of existing dams in the 

Kenya GR4J model could help to increase the accuracy of flood forecasts in the basin. 

• Testing simplified versions and the internal variables of the GR4J model: The 

instability of GR4J model parameters may also come from a redundancy in model 

function due to the specific characteristics of the study catchments. Model 

simplifications may be a way to get more robust simulations:  for example, running the 

model without groundwater exchanges (X2 fixed at zero) or with a fixed capacity for 

the production store.  Additionally, the model's internal variables could be checked: 

analyses of water contents in model stores and water fluxes simulated by the model 

(AE, exchanges, etc.) are often very interesting, providing better understand of possible 

compensations between model components (e.g., Ficchi et al, 2016). This can be done 

at the long term annual or monthly scales, to establish whether a large routing store and 

water exchange does something very similar to the production store and AE losses. This 

would be useful in establishing the behaviour of the PE and discovering whether it is 

too close to constant over the year because of the seasonality of the production store, 

which would therefore be a likely cause of model underperformance for Kenyan 

catchments. 



167 

 

• Testing another hydrological model or a multi-model ensemble: it may be a good 

option to consider a better evaluation of the possible role of structural and input 

uncertainty. 

• Flood generating mechanisms across Kenyan catchments: Chapter 6 investigates 

the trends and shifts in flood timing. There is a marked difference in the trend direction, 

frequency, and magnitude of flooding in catchments within close proximities, pointing 

to variations in flood generating mechanisms/drivers in Kenya. Causes of flooding have 

been studied in Kenya to establish the link between flooding and meteorological drivers 

(e.g., Macleod et al., 2021, Kilavi et al., 2018). However, no documented research has 

investigated the mesoscale and local drivers of flooding in Kenya, even though similar 

work has been done in different parts of the world (e.g., Berghuijs et al., 2016; 2017; 

2019; Blöschl et al., 2013). Acknowledging that there has been a shift in the frequency 

and magnitude of floods in recent decades across Kenya and assessing different flood 

generating drivers would be a useful step towards understanding their contribution to 

floodiness, with particular interest in quantitatively establishing their relative 

importance and change over time in different catchments. For example, see Appendix 

A6, which was the next plan, but due to time constraints on the thesis, the research was 

not actualised. 
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Appendix 

 

This appendix contains a storyline of how my research evolved, the typeset versions of 

published chapter 4 and 5 in the international peer reviewed journals and submitted version of 

chapter 6 presented in this thesis (A1, A2, A3 and A4 respectively).  

A5, A6a and A6b present some of the sample results from GR4J model simulation hydrographs 

for model calibration and validation, Sobol’ sensitivity analysis including sensitivity indices 

and model parameter interactions. A7 presents the paper plan in preparation for the future work 

covered in Chapter 6, which due to time constraints was not actualised. A8 presents some of 

the select collaborating author peer and non-peer reviewed publications, media engagements 

and science communications. 

Author contributions statements are provided for A1, A2, and A3 in Chapters 4, 5, and 6 

respectively, and are also provided at the end of the typeset versions. All author contributions 

have been approved by Professor Hannah Cloke, supervisor. 
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A1: Storyline on how my research emerged 

This Appendix presents the storyline of my research journey highlighting how my research 

emerged into a concrete research schedule to address the objectives presented in this thesis. 

A2: Hydrological model selection framework for flood applications in Kenya 

This paper presents the published version of chapter 4 of this thesis, with the following 

reference: 

Wanzala, M.A., Stephens, E.M., Cloke, H.L. and Ficchì, A., 2022. Hydrological model pre-

selection with a filter sequence for the national flood forecasting system in Kenya. Journal of 

Flood Risk Management, https://doi.org/10.1111/jfr3.12846. 

A3: Assessment of reanalysis datasets for flood modelling and applications in Kenya 

This paper presents the published version chapter 5 of this thesis, with the following reference: 

Wanzala, M.A., Ficchì, A., Cloke, H.L., Stephens, E.M., Badjana, H.M. and Lavers, D.A., 

2022. Assessment of global reanalysis precipitation for hydrological modelling in data-scarce 

regions: a case study of Kenya. Journal of Hydrology: Regional Studies, 41, p.101105 

https://doi.org/10.1016/j.ejrh.2022.101105. 

 

A4: Detecting trends in flood series and shifts in flood timing across Kenya 

This paper presents the submitted version of Chapter 6 of this thesis, currently under first 

review process, with the following reference: 

Wanzala, M.A., Cloke, H.L., Stephens, E.M., Ficchì, A. and Harrigan S. Detecting trends in 

flood series and shifts in flood timing across Kenya. Hydrological Sciences. HSJ-2022-0371, 

Under Review. 

A5: GR4J model simulations and observations across some of the Kenyan catchment 

These figures provide some of the sample results from the modelling experiment using the 

GR4J hydrological model in calibration and simulation periods. The sample results form part 

of the results from the select catchments (Nzioa- Ruambwa, Sio, Yala, Sondu-Miriu and Mara) 

out of the 19 catchments modelled in the analysis chapter 5. 

A6a: Sensitivity analysis sample results: - Sensitivity indices of GR4J model parameters 

These figures provide some of the sample results from the Sobol’ global sensitivity analysis 

experiment using the GR4J hydrological model. The figures show First order and Total effect 

indices of the Sobol’ analysis outlined in Chapter 3, Section 3.2.4.3.1, from the 19 catchments 

modelled in the analysis Chapter 5. 

https://doi.org/10.1111/jfr3.12846
https://doi.org/10.1016/j.ejrh.2022.101105
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A6b: Sensitivity analysis sample results: - GR4J model parameter interactions 

These figures provide some of the sample results from the Sobol’ global sensitivity analysis 

experiment using the GR4J hydrological model. The figures show G44J model parameter 

interactions from the Sobol’ sensitivity analysis outlined in Chapter 3, Section 3.2.4.3.1. The 

sample results form part of the results from the select catchments (Nzioa-Ruambwa, and Tana-

Garissa) out of the 19 catchments modelled in the analysis Chapter 5. 

A7: Unveiling flood generating mechanisms in Kenya 

This paper presents a version of the paper under preparation which forms the extended part 

informed by the results of Chapter 6 of this thesis with the following potential reference: 

Wanzala, M.A., Cloke, H.L., Stephens, E.M., Ficch-ì, A. and Harrigan S. Unveiling flood 

generating mechanisms across Kenya. Journal of Hydrology and Earth Sciences. Under 

Preparation. 

A8: Collaborative publications, articles, and media interviews 

A7 presents some of the collaborative publication papers and articles I have co-authored as 

well as media interviews and science art communications I was involved in during my PhD. 



 

How my research plan emerged 
This appendix material reflectively considers my PhD journey and how the research schedule 

envisioned at the start of my PhD was transformed into the chapters of this thesis. 

The initial plans for my research were geared towards analysis of the skill of extended range 

flood forecasting for Kenya (e.g., Alfieri et al., 2013; Towner et al 2021; Webster et al., 2010). 

I first considered the potential gaps in flood modelling and forecasting, and in order to 

understand the in-country perspectives, conducted a preliminary visit to the Kenya 

Meteorological Department’s hydrological forecasting section and met the head of the section. 

 

 

Figure 0.1:- Preliminary visits in 2019, to Kenya’s meteorological department hydrological forecasting 

sector (top right), the Water Resources Authority (WRA) data management team (lower left) and the 

WRA Water Security and Resilience project PIs (lower right). 

After lengthy discussions it emerged that little research had been undertaken in exploring and 

characterising hydrometeorological modelling tools in Kenya, particularly hydrological 

models and data to support and inform operational activities and future modelling 

developments. When I spoke to Njongu in an interview, he noted that the choice and use of the 

current model (SMR), was entirely subjective and mainly driven by the project funding 

following the push to implement a FF system in Nzioa after subsequent destructive flooding 

events. Additionally, he noted that there was limited documented research on skill assessment 

to inform the choice of the SMAR model adopted for this purpose: instead, it was chosen for 

its simplicity and comparatively low data requirement. Moreover, model choice is dependent 

on the project funds available, and the implementers and collaborators are likely to trial their 

model of choice according to their own interests and increase the scope of its application, 

irrespective of the underlying model performance measures.  In view of the increasing number 



of models within the hydrological community, this makes it difficult to determine which model 

would be the most suitable to use for these operational purposes. Each model also has a varying 

performance in terms of its ability to predict correctly the timing and magnitude of river flows: 

this is dependent on many influences, including hydroclimatic and human induced factors. 

With so many models available it becomes a very challenging task to apply the right model to 

different regions.  

Models cannot be run in space and time without sufficient input data, which take different 

forms in terms of spatiotemporal variability and some of which may be statistical in nature 

(Wahren et al., 2016). The availability of input data is crucial to the modelling community, 

leading to the need for reliable and accurate data. During the initial stages of data acquisition 

for my research, however, I realised most of the river catchments in Kenya that I had intended 

to research in fact had no data because they were ungauged. The small amount of data that was 

available could only be accessed, even for research purposes, for a prohibitively substantial 

monetary fee as it is not compiled and stored on   a dedicated website, but rather it is maintained 

by the NHMS.  During my conversation with Mr Mwai, the deputy director at the Kenya 

Meteorological Department (KMD), he noted that “presently, FF in Kenya is limited due to 

inadequate tools (models), model source codes, data, personnel, forecast lead-time, and 

inadequate documented research to back up operations”, which hinders informed flood 

preparedness actions. These considerations form the key challenges. The acquisition of data 

for research necessitates the negotiation of complex administrative processes and requires 

purchases, which raise three further challenges: (i) they may take a long time, due to 

organizational bureaucracies and purchasing protocols; (ii) the price of the data quotations is 

very high,  because one is required to pay per station requested, which requires a substantial 

financial investment; and (iii) the pricing/selling agencies may not be willing to share large 

quantities of data from their database. In my case, I had to model 19 catchments across the 

country at 19 discharge stations, which are potential hotspots for floods, and required daily in 

situ rainfall, minimum and maximum temperature, and river discharge data. It was nearly 

impossible to obtain daily rainfall data across the country for research, due to the reasons stated 

above, and this slowed down research at the initial stages.  

After a period of initial frustration, I was introduced to members of the environmental 

forecasting team from ECMWF, with whom I shared my research aims and objectives and the 

aforementioned challenges. After a period of deliberations and useful discussions, I was 

introduced to David Lavers, who oversees the environmental data retrieval and sharing in the 

forecasting team. The first attempt was to retrieve available daily rainfall data for Kenya from 

the synoptic weather stations available at the ECMWF climate data store. There were still 

massive gaps because of the limited synoptic coverage across Kenya but this did begin to help 

in solving the data scarcity problem.  

This is when the idea of evaluating the freely available precipitation products for hydrological 

modelling was birthed: this sparked an interest in what their performance might be, especially 

over Kenyan catchments. There are known variations in the data quality of the different 

products (such as resolution), and so there was a clear need to assess their performance and 

carefully quantify the uncertainties associated with each of the products. Since my research 

was focussed on the needs of Kenya, I opted to evaluate reanalysis precipitation products, 

because evaluation of reanalysis products for hydrological applications is a research topic of 



increasing interest. There is a large and rapidly growing body of academic literature that uses 

precipitation reanalysis data for hydrological modelling at regional and global scales (e.g., 

Essou et al., 2016; Beck et al., 2017; Essou, Brissette and Lucas-Picher, 2017; Wang, Zhang 

and Zhang, 2019; Setti et al., 2020; Tarek, Brissette and Arsenault, 2020; Jiang et al., 2021). 

This formed the background of my study. Additionally, it is also an exploding research area, 

not least because of the very strong interest in hydrological modelling with earth system 

approaches supported by global forecasting centres such as ECMWF (see Harrigan, Cloke and 

Pappenberger, 2020) which made this evaluation timely, especially for Kenya. 

Research findings from evaluation of reanalysis precipitation datasets for hydrological 

modelling revealed variation in performance of different datasets, especially when model 

simulations from reanalysis were compared to those from observations, not only because of 

their inherent properties (e.g., model configurations), but also because of the local and 

mesoscale features (such as catchment characteristics and seasonal changes). For example, the 

seasonality of rainfall over Kenya is heavily influenced by weather phenomena such as ENSO 

and IOD (see Section Error! Reference source not found. for detailed discussion) and play a 

major role in extreme rainfall events and inter-annual variability, which reanalysis may fail to 

capture. These extreme events have contributed to increased flood events over the recent past 

across Kenya, but first I thought it would be a good idea to establish how these events have 

changed in the historical flood series, to help to provide information on future trends. 

The next step was to explore the trends in river flow series, given the increasing recent flooding 

events observed in the country (see Section 1.1). Trends in rainfall and temperature over Kenya 

and East Africa have been explored in research including Langat et al. (2017) and Ayugi et al. 

(2016). However, trends in floods have not been researched or documented, yet this is 

important in revealing flood characteristics which can inform future planning and adaptation 

measures and the impacts of flooding. As a result, I chose to explore and establish whether 

there have been statistically increasing or decreasing trends in high flow indices across Kenya 

flood prone areas. With the changing climate, the intensity and magnitude of extreme events 

such as floods are likely to increase, and increase the vulnerability of people (Wainwright et 

al., 2021). As a result, drier months are becoming wet and wet months seeing more rains than 

usual. This points to a shift in the climatological seasonality in flooding that has been observed 

in the recent past over the region. However, conclusions cannot be drawn without in-depth 

analysis, and in the second part of this research, I looked at the possible shifts in flood 

seasonality and timing across Kenya. 

Therefore, my research considers the following aspects:-(i) Model selection framework for a 

national flood forecasting centre (Appendix A2), (ii) Assessment of reanalysis precipitation 

products for hydrological modelling in data-scarce regions (Appendix A3), and (iii) Trend 

detection in river flow series,  flood timing and seasonality ((Appendix A4); these are also 

outlined in Chapters 4, 5 and 6. 
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Abstract

The choice of model for operational flood forecasting is not simple because of

different process representations, data scarcity issues, and propagation of

errors and uncertainty down the modeling chain. An objective decision needs

to be made for the choice of the modeling tools. However, this decision is com-

plex because all parts of the process have inherent uncertainty. This paper pro-

vides a model selection with a filter sequence for flood forecasting applications

in data scarce regions, using Kenya as an example building on the existing lit-

erature, concentrating on six aspects: (i) process representation, (ii) model

applicability to different climatic and physiographic settings, (iii) data require-

ments and model resolution, (iv) ability to be downscaled to smaller scales,

(v) availability of model code, and (vi) possibility of adoption of the model into

an operation flood forecasting system. In addition, we review potential models

based on the proposed criteria and apply a decision tree as a filter sequence to

provide insights on the possibility of model applicability. We summarize and

tabulate an evaluation of the reviewed models based on the proposed criteria

and propose the potential model candidates for flood applications in Kenya.

This evaluation serves as an objective model preselection criterion to propose a

modeling tool that can be adopted in development and operational flood fore-

casting to the end-users of an early warning system that can help mitigate the

effects of floods in data scarce regions such as Kenya.

KEYWORD S

early warning systems, filter sequence, flood forecasting, hydrological model, Kenyan
catchments, model preselection, objective model choice, perceptual model

1 | INTRODUCTION

Hydrological models predict the hydrological variables,
particularly river flow. In some cases, where little input

and output data exist the model can be used to estimate
the runoff and river flow in ungauged catchments
(Hrachowitz et al., 2013; Sivapalan, Takeuchi,
et al., 2003). Therefore, models are useful in applications
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such as short to extended-range flood forecasting (Alfieri
et al., 2013; Emerton et al., 2018), climate assessment
(Hattermann et al., 2017; Lu et al., 2018; Tamm
et al., 2016), hazard and risk-mapping (Artan et al., 2001;
Ward et al., 2015), drought prediction (Van Huijgevoort
et al., 2014), and water resource assessment (Dessu
et al., 2016; Mutie, 2019; Praskievicz & Chang, 2009;
Sood & Smakhtin, 2015). However, the scope of applica-
tion to extract viable information varies across different
classes of models at different spatial and temporal scales
and the intended purpose.

The choice of model for operational flood forecasting
is not simple because of different process representations,
data scarcity issues, and propagation of errors and uncer-
tainty down the modeling chain (e.g., Paul et al., 2019;
Paul, Gaur, et al., 2020). For example, the practice of
choosing a model for an application may be difficult due
to several reasons highlighted in Melsen et al. (2019):—
(i) Popular models are not tailored to specific climate or
circumstances (unless the west European climate counts,
implicitly), which makes exclusion on process presenta-
tion alone difficult; (ii) Most popular models share the
same main properties and the same weaknesses; (iii) The
community has failed to create a generalized benchmark-
ing system to rank models and model set-ups, so that
suitability has to be ascertained on a case-by-case basis;
and (iv) Model evaluation takes primarily place based on
streamflow, which in itself is too little to distinguish
between models, especially calibrated models. There is
need for a modeler to know the perceptual model
(Wagener et al., 2021)—quantitative or qualitative
description of the existing knowledge and understanding
of the catchments (Beven, 2011; Gupta et al., 2008;
Westerberg et al., 2017). For instance, Wagener et al.
(2021) illustrate a generic perceptual model included in
catchment hydrology functions. The processes herein are
dynamic and evolve with time in response to changes in
water management or land-use, climate conditions and
geomorphological changes, thus need to be integrated
into the model development. This implies that if such
changes are not taken into consideration during and/or
model development and upgrade, then the relevant pro-
cesses will not be presented adequately, thus limiting of
the application of a single model over the entire country.

Models are simplifications of reality and thus cannot
completely represent every process and aspect of the
catchment. The importance and impact of many pro-
cesses can evolve with time for example in response to
changes in water management. In addition, what is the
right approach *now* is not necessarily the right
approach in the future. Significant buy-in is required to
develop operational forecasting capacity with a specific
model, and so in recognition of changes in the impor-
tance and impact of many processes as a result of land

use change, water management etc., it may mean it is
more efficient to choose a modeling approach that can
represent a larger range of processes. When there are dis-
tinct zones of hydro-climatology within a country it could
be necessary to adopt different modeling approaches, but
this needs to be balanced against the scaling up of the
resources required to have human and technical capacity
across several different models.

Moreover, data play an important role in hydrological
modeling irrespective of the processes represented in a
model (Wahren et al., 2016). Many studies point to chal-
lenges in modeling due to data scarcity (e.g. Beck
et al., 2017; Fuka et al., 2014; Lavers et al., 2012; Najafi
et al., 2012; Quadro et al., 2013; Smith &
Kummerow, 2013; Wu et al., 2013) which limits the appli-
cations of very detailed and complex models due to inher-
ent unquantified uncertainties. Recognizing that data and
model are not independent of the errors, for brevity within
this paper we describe the aspects and the models herein
considering only those uncertainties related to model
structure (Pechlivanidis et al., 2011; Smith et al., 2015).

The choice of model depends on the intended pur-
pose, and the modeler needs to objectively select a model
based on the end-user needs for more reliable decisions
(Parker, 2020; Boelee et al., 2017; Todini, 2007). Various
hydrological models exist at different spatial and temporal
scales with diverse levels of complexity and data require-
ments. Additionally, there exists differences between
model codes and implemented modeling systems, which
may cause difficulties in the choice and application of a
particular model. A Multi Criteria Analysis (MCA
Sherlock & Duffy, 2019) is recommended to evaluate and
grade models from which, a small number of models
would be constructed, calibrated, and tested in a real-
world context and at the end, a model(s) is chosen to be
used in the operational Flood Forecasting Centre (FFC)
experiment. However, the proposed MCA relies heavily
on evaluation data, is very time consuming for the num-
ber of models available hence for data scarce regions,
and/or agencies with limited resources, (or in general) an
additional decision tree is helpful to trim down the num-
ber of options. There is the need to further evaluate the
limited selection with for example an MCA and the FFC
experiment. To aid this hypothetical modeler there is a
clear need for well-conceived and systematic strategies for
selecting model structures and establishing data require-
ments, which forms the novelty of this research.

A plethora of model reviews exist at global and conti-
nental scale applications. For example, (Devia
et al., 2015; Emerton et al., 2016; Kauffeldt et al., 2016;
Pechlivanidis et al., 2011; Salvadore et al., 2015; Sood &
Smakhtin, 2015; Trambauer et al., 2013). Most of these
reviews highlight and compare existing modeling con-
cepts and gaps but none have focused on model selection
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frameworks for final application except for Trambauer
et al. (2013) and Kauffeldt et al. (2016). Kauffeldt et al.
provide a technical review of large-scale hydrological
models for implementation in operational flood forecast-
ing at continental level. Trambauer et al. (2013) review
continental scale hydrological models highlighting their
suitability for drought forecasting in sub-Saharan Africa.
The two cited works look at model review and a selection
framework for flood and drought application at continen-
tal scales respectively and to the best of my knowledge
this is the first model overview and practical objective
model selection framework for flood applications at
national scale taking into consideration varied catchment
characteristics and data scarcity issues.

This paper is to propose a practical approach building
on Kauffeldt et al. (2016) and Trambauer et al. (2013) for
selecting a model based on a step-by-step filter sequence
following objective aspects (such as on the ability to sim-
ulate relevant processes to flood applications), as well as
considering more practical aspects such as model code
availability and ease of use at catchment scale with varied
climate characteristics. We follow the filter sequence and
develop a Venn diagram to select suitable model candi-
dates. This practical approach is applied to a case study
of developing an early warning system that can help miti-
gate the effects of floods in data scarce regions within
Kenya, where there is lack of good observations of cli-
mate variables such as precipitation, temperature etc.,
and this is a limiting factor to properly identify the limita-
tions of model applications at catchment scale.

Our paper is structured as follows. Kenyan hydrology
and applications of hydrological models to simulations of
flood process is discussed in Section 2. The decision tree is
built based on deliberations about Kenyan hydrology and
current forecasting experience in Kenya, which outlined
in Section 3. The selection of the models based on the
decision tree is outlined in Section 4. In Section 5, we
focus on specific discussions regarding model selection
and how the novelty of the decision tree. The paper then
concludes with the key contributions of the suggested pre-
selection along with recommendations for next steps to
evaluate the models objectively to improve FF in Kenya.

2 | KENYAN HYDROLOGY AND
FORECASTING

2.1 | Applying hydrological forecasting
models to the simulations of floods in
Kenya

It is important to consider the application of the hydro-
logical model when determining which model to use, due
to differences in process generations and representations

(Cloke et al., 2011). For example, floods are generated by
a range of processes related to extreme rainfall (intercep-
tion, through-flow), runoff generation process (infiltra-
tion, saturation excesses and subsurface storm flow) and
runoff routing (Rosbjerg et al., 2013). In addition, floods
in snow dominated catchments are regularly caused by
snow melt, thus, representation of this process in a
hydrological model is crucial, because requires an opti-
mal simulation of the snow related hydrological pro-
cesses such as snow accumulation and melt
(Verzano, 2009).However, this case does not apply to
Kenyan catchments.

Moreover, flood formation is a complex combination
of extreme precipitation or temperature rise or a combi-
nation of both, the retention of the water in different
storages and finally the flowing through the river net-
works. A flood peak caused by extreme rainfall in the
upstream part of a catchment, naturally reaches the
downstream part of the catchment temporally delayed
(Tallaksen & Van Lanen, 2004; Verzano, 2009). There-
fore, several effects influence the magnitude of the flood
wave in the downstream area, such as tributary contribu-
tions and retention in lakes and wetlands. The lateral
transport of water through the river network is a particu-
larly important process for the routing of discharge. This
applies for average flow conditions as well as for low or
high flows. Therefore, it is meaningful to route the water
within a hydrological model with a variable flow velocity
because the flow velocity varies with the actual river dis-
charge (Verzano, 2009) among other relevant flood gen-
erating processes. In many hydrological forecasting
systems, the treatment of the rainfall-runoff component
(traditionally the core of what is meant by hydrological
models) and the routing can be separated. If the routing
should be built in, or should be specifically modular,
could be another criteria that qualifies the models under
consideration. An operational Flood Forecasting System
(FFS) aims at producing accurate timely and valuable
flood forecast information way in advance to reduce
flood-related losses by increasing preparation time. A typ-
ical FFS requires a hydrological model, data sources, as
well as main processes and fan interactive friendly user
interface. For example, Figure 1 shows a simplified con-
ceptual model for a large-scale flood forecasting system,
the components required, and the output generated
within each component.

2.2 | Subsequent logic for the need of a
decision framework with a filter sequence
in Kenya

Both the hydroclimate and the human influences create
challenges for hydrological modeling and forecasting (Bai

WANZALA ET AL. 3
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et al., 2015) because of their massive influence on the
catchment processes. For example, Kenya exhibits high
variability in physiographic and hydroclimatic conditions
(see Figure 2). The highest point is at about 5000 m a.s.l,
(mostly areas around central highlands) while the lowest
point is about 20 m a.s.l. (mainly around coastal areas).
The vegetation cover is mainly a mixed tree cover, grass,
and sparse vegetation in most of parts of the country and
shrubs and bare land in the arid and semi-arid areas of
northern Kenya. As a result, Kenya experiences different
climate-related extremes in terms of intensity, magni-
tude, and timing.

Rainfall pattern follows a bimodal rainfall seasonality
(Ongoma & Chen, 2017) with high spatiotemporal vari-
ability (Figure 3) (Hession & Moore, 2011). Three seasons
are experienced: the “long rains” of March-April-May
(MAM), nonrainy months of June-July-August (JJA) and,
the “short rains” of October-November-December (OND)
(Ogallo, 1988; Ongoma et al., 2015). About 42% of the
total annual rainfall is observed during MAM rainfall sea-
son (Ongoma & Chen, 2017), with the highest intensity
observed near the water bodies of the Indian Ocean, Lake
Victoria, and the Kenyan highlands. Freely available
packages, proposed models, and inbuilt model function-
alities of some of the commonly applied models.

There are five major basins (Marwick et al., 2014) in
Kenya (see Figure 4, left panel). These catchments are
highly influenced by settlements as well as human activi-
ties such as dam constructions and irrigation activities
(Figure 4, right panel), which have adverse effects on the
catchment response to rainfall runoff processes. At the
catchment scale, there is high variability in catchment
hydroclimatic characteristics such as surface area and
average annual rainfall (Figure 5).

Therefore, it is important to consider the variability
in catchment characteristics and the knowledge gaps in
the perceptual model (e.g., land cover changes, human
activity, data uncertainty and accounting for groundwa-
ter fluxes) when selecting a model for application as this
may influence the performance of the model. The follow-
ing section discusses the aspects to consider to objec-
tively preselect a model for application to Kenyan
catchments.

3 | MODEL SELECTION
FRAMEWORK

Selection framework in this paper follows a selection cri-
terion such as the ability to represent relevant processes,
the model structure, flexibility, complexity, availability of
the model code and the needs of the user community
(Bennett et al., 2013; Kauffeldt et al., 2016), and as such it
is more qualitative rather than quantitative. For example,
a good model should be able to represent all relevant pro-
cess such as: gross precipitation (snow, rain), interception
storage, evaporation, transpiration, snowpack storage,
snowmelt, overland flow, soil storage, recharge to shal-
low aquifer, capillary rise, intermediate flow, baseflow,
leakage to deep aquifer. However, these will require rele-
vant input datasets and more complex models(e.g. fully
distributed with numerous parameters) to effectively rep-
resent the processes, but worthy to note that increasing
the model complexity by incorporating all the above pro-
cesses does not necessarily increase the model perfor-
mance (Birkel et al., 2010; Butts et al., 2004). The
application and performance of a model may also vary
depending on the site (size and characteristics) (Bai

FIGURE 1 Conceptual large-scale hydro-meteorological forecasting system (Emerton et al., 2016)
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et al., 2015; Lanen et al., 2013). Therefore, the following
sections summarizes the aspects to aid in objective selec-
tion of a hydrological model for flood applications in

Kenyan context, considering Kenya's hydrogeology, phys-
iographic and climatic conditions discussed in Section 1.
In total six criteria were found to aid in the decision

FIGURE 2 Physiographic and hydroclimatic characteristics of Kenya

FIGURE 3 Spatial pattern of long-term mean monthly and seasonal rainfall over Kenya (1981–2016) (a) monthly (b) March-April-May

(c) June-July-August (d) October-November-December seasons, respectively

WANZALA ET AL. 5
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making. In the next subsections each of the six criteria is
evaluated in relation to Kenya represented processes and
fluxes.

A complete hydrological model would represent all
the water balance components and fluxes (e.g., as illus-
trated in Mendoza et al., 2012). The complexity of models
often results in many parameters to be determined,
which requires more data on hydrogeology (Dobler &
Pappenberger, 2013; Muleta & Nicklow, 2005). There
needs to be a compromise between model complexity
and efficiency for it to work.

More data is needed to make more complex models
more accurate. The choice of an appropriate model struc-
ture is a crucial step to accurately predict streamflow or
other variables, and to understand the dominant physical
controls on catchments' responses to climate change
(Clark et al., 2008). In Kenya, this requires more data
such as groundwater level, which is not readily available.

Some catchments especially those in the arid and
semi-arid regions of Kenya have sandy and rocky river-
beds and tend to run dry most of the dry months, for
such, the fixed velocity and river channel fields repre-
sented in some hydrological models may not apply. This
is because of failure to properly represent the roughness
index which varies not only with boundary characteris-
tics but also with flow velocity, water depth, and other
hydraulic factors (Addy & Wilkinson, 2019; Zhang
et al., 2016).

In addition, the more represented process in a model
the more the parameterization schemes. For example, a
priori estimation requires establishing parameter values
from measured physical system properties, presupposing
that the model parameters have a sufficiently reliable
representation (Beven & Pappenberger, 2003). Therefore,
parameter estimation in models of natural systems may
require measurements and tests. It then follows that, for
effective calibration for such model parameters, it
requires more computational power, which may be lack-
ing in the Kenyan operational flood forecasting center.

3.1 | Model applicability to Kenyan
hydroclimatic conditions and
physiographic settings

Processes that are most relevant for simulating flood con-
ditions in Kenya (see Barasa et al., 2018; Onyando
et al., 2003) should be represented in a model. Some extra
processes, such as channel losses, evaporation from riv-
ers, wetlands representations, are not considered impor-
tant in average conditions in some regions due to
complexity or lack of interest (Rosbjerg et al., 2013), thus
such can be discounted. This is because models incorpo-
rating such complex process require more skilled person-
nel and higher budgets to install and run. This is a
challenge in most operational systems in developing

FIGURE 4 Kenya main basins (left panel) and the ongoing human activities (constructed major and small (other) dams and irrigation

schemes) in the select catchments (left panel)
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countries including Kenya. Temperature plays an impor-
tant role in river channel and catchment evaporation. In
Kenyan case, annual means temperatures range from
15 to 35�C which highly correlates with topography, with
the lowest temperature experienced in the central high-
lands and high temperature in lowlands (Mutimba
et al., 2010) and a model incorporating such would be
best suited for such place.

Model selection, in dry and wet catchments must be
more careful due to the large performance difference in
dry catchments (Bai et al., 2015). Wet catchments runoff
simulation is significantly better than that in dry catch-
ments, (Haddeland et al., 2011), because of high nonli-
nearity and heterogeneity of rainfall–runoff processes
(Atkinson et al., 2002). In addition, high uncertainty is
introduced during model parameter estimation resulting

FIGURE 5 -Spatial distribution of the morphological and hydroclimatic characteristics per catchment

WANZALA ET AL. 7
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in significant differences in simulated runoffs behavior
(Andersson et al., 2015). Large river basins are often
strongly influenced by human activities (e.g. irrigation,
reservoirs, and groundwater use) for which information
is rarely available (Döll et al., 2009). The Kenyan case
where most basins are ungauged may increase such
uncertainty (Hrachowitz & Weiler, 2011; Sivapalan,
Takeuchi, et al., 2003).

When there are distinct zones of hydroclimatology
within a country it could be necessary to adopt different
modeling approaches, but this needs to be balanced
against the scaling up of the resources required to have
human and technical capacity across a number of differ-
ent models, which is one of the main challenges in the
Kenyan case.

3.2 | Data requirements and spatial and
temporal resolution of the model

Kenya suffers from lack of good observations of climate
and hydrological data. This is a limiting factor to properly
identify the limitations of model applications at catch-
ment scale. For example, a detailed representation of
groundwater flows and tables and soil moisture content
would be very relevant for flood forecasting. However,
there is no reliable data (such as ground water and reser-
voirs) available for research applications, thus limiting
the use of model incorporating such kind of data. As a
result, a compromise must be reached regarding model
spatial variability due to the ungauged status of most
Kenyan catchments (Trambauer et al., 2013), and allow
the use alternative freely available remote sensing data.
Applying a distributed model would require high spatial
and temporal resolution data to represent each of the
catchment HRUs whereas a lumped conceptual model
would represent an entire river basin (Krysanova
et al., 1999), but since there are sparsely or no gauging
stations in some of the catchments, then this limits the
use of most distributed models across Kenyan catch-
ments. However, limiting the models to the type that can
only run when directly calibrated on an outlet would be
a mistake. This is because there are plenty of ways to dis-
cretize in HRUs without individually calibrating each
HRU independently. There are ways to calibrate transfer
functions to enable modeling and ungauged HRUs
(Samaniego et al., 2010). There are model setups that do
not rely on calibration as a first principle (such as wflow-
sbm, Imhoff et al., 2020) and based on globally available
data. The challenge here is the transferability of the
model to suite Kenyan catchment and operations and
represents the catchment processes adequately because it
needs to be as simple as possible.

Moreover, modeling experiments on Kenyan catch-
ments may yield more plausible results if data at high fre-
quency time steps are used as it contains more
information (Ficchì et al., 2016). This is because the bet-
ter modeling of the rainfall–runoff relationship is highly
affected by subhourly dynamics of precipitation
(Paschalis et al., 2014) due to nonlinear nature of infiltra-
tion process (Blöschl & Sivapalan, 1995), such as the peak
discharge value (Gabellani et al., 2007) and runoff vol-
ume (Viglione et al., 2010). In Kenya, the temporal reso-
lution of the available reliable data may be limited to a
higher time steps (such as monthly and yearly) and this
may limit the application of a model on a subdaily/
hourly timesteps. Models incorporating higher timesteps
data such as daily and monthly are easily applicable in
Kenyan case as compared to those limited to hourly or
subdaily timesteps.

3.3 | Capability of the model to be
downscaled to a river basin scale

The issue of scale problem in hydrological models is
highlighted in Beven (1995), where the aggregation
approach toward macroscale hydrologic modeling is an
inadequate approach to the scale problem. For semi-
distributed and distributed models, grid size selection is
intricately linked to the spatial scale at which the model
will be applied. Also, when lumped approaches are
applied to considerably larger basins the integration of
the processes will naturally occur over a greater area, and
thus any differences in small-scale processes within the
basin will not be well considered. Due to lack of locally
developed models, the continental models are applied at
catchment scale, thus the need to be downscaled to suit
the grid size under application. However, for larger grids,
processes that are only important at the local scale (such
as overland flow) may not be considered in the model
structure but only if there is an extensive change in the
model grid width and this may at times introduce struc-
tural uncertainties. Some models may not be easily
downscaled to Kenyan river basins with varying spatial
scales (see Table 1) without making significant changes
in the structure of the model.

3.4 | Operational model for flood early
warning system at large scales with
potential adoption to local scale

With the increase in flood events in Africa in the recent
past, Thiemig et al. (2015) proposed a FFS for Africa
hereafter referred to AFFS. Following the illustration in

8 WANZALA ET AL.
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Figure 8, LISFLOOD, physical-based hydrological model
is selected for AFFS, which relies on historical hydrologi-
cal observations, historical as well as near real-time mete-
orological observations, real-time meteorological
forecasts, and an African GIS dataset. The four main pro-
cesses AFFS runs are: the calculation of hydrological
thresholds, the computation of the initial hydrological
conditions, of the computation of the ensemble hydrolog-
ical predictions, and the identification of flood events.
Figure 8 shows a schematic overview of AFFS with all
the components and processes. This was developed as a
prototype for Africa but never taken forward to opera-
tions and since then no literature or research on the skill
or applicability of this system has been documented.

Also, Princeton University has developed African
Flood and Monitor (AFDM) tool (Sheffield et al., 2014).
The aim is to demonstrate the potential for tracking
drought conditions across Africa using available satellite
products and modeling in data scarce region. The system
provides daily updates in near real-time (2–3 days lag) of
surface hydrology, streamflow and vegetation stress,
short-term hydrological forecasts for flooding, and sea-
sonal forecasts for drought and agricultural impacts as
demonstrated in Figure 9 (https://platform.
princetonclimate.com/platform-ng/pca/products).

The system has been installed at regional centers in
Africa more notable in West Africa (ACMAD), where it is
operational for the Niger basin using the Hype-Niger
model and the World-Hype applied to the whole West
Africa region. A schematic illustration of the FFS for the
Niger Basin in West Africa is shown in Figure 6.

Narrowing down to Kenya, the Kenya Meteorological
Department runs an operational flood forecast system in
Nzioa basin (Personal communication from Andrew
Njogu) with plans underway to upscale to other nine
additional flood prone areas spread across the other
seven basins (Athi, Galana, Sabaki, Nyando, Tana, Sondu
and Ewaso Ngiro etc.). A schematic representation of the

FFS in River Nzioa Basin in Kenya and the steps involved
is illustrated in Figure 7. The models adopted for this sys-
tem is the Soil Moisture Accounting and Routing Model
(SMAR) incorporated in the Galway Flow Forecasting
System (GFFS) (O'Connor, 2005). The GFFS is a suite of
models developed at the department of engineering
hydrology national university of Ireland, Galway,
Ireland. The five models embedded in the software are
system theoretic models; simple linear model (SLM), lin-
ear perturbation model (LPM), linearly varying gain fac-
tor model (LVGF), and artificial neural network (ANN)
and one conceptual model which is SMAR model. Ordi-
nary least square solution for (SLM, LPM, and LVGF),
conjugate gradient algorithm for ANN and Rosenbrock,
simple search and genetic optimization methods for
(SMAR) are used for calibration of the model parameters
(O'Connor, 2005).

Speaking to Njongu in an interview, he noted that the
choice and use of the SMR model was entirely subjective
mainly driven by the project funding following the push
to implement a FF system in Nzioa after subsequent
destructive flooding events. Additionally, he noted that
there is limited documented research on skill assessment
inform the choice of the SMAR model adopted for this
cause, but rather due to its simplicity and less data
requirement. Moreover, model choice is dependent on
the project funds available, and the implementers and
collaborators are likely to trial out their model of choice
based on their interests and advance the application
scope, irrespective of the underlying model performance
measures. It then follows that the choice and application
of the SMAR model in the Kenyan FFS was due to the
above reason.

With the current developments, there has been ongo-
ing initiatives spearheaded by the Kenya Water
Resources Authority—a parastatal mandated to set and
manage the water resources rules and hydrological data.
Under the ongoing project—Kenya Water Security and

FIGURE 6 Niger HYPE-model for

Niger basin and Hype world for the rest

of West Africa (https://fanfar.eu/

production/)
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Climate Resilient Project, WRA is in the process of trial-
ing out three hydrological models (SMAR, NAM, GR4J)
in Nzoia to be incorporated into the FFEWS under devel-
opment (WRA reports). For example, an initial assess-
ment for model performance in Nzioa basin has been
started. Figure 8 shows soil moisture representation in
SMAR, GR4J and MIKE NAM over the basin.

The above highlights point to fact that a model needs
to be able to be incorporated into an operational (up and
running) system, if the main aim of the model selection
is to provide a tool for the end-users of an early warning
system that can help mitigate the effects of floods. In this
respect, a model that can easily be implemented in a fore-
casting environment is preferred. Hence, the model
should be stable, have reliable error and inconsistency
checks, be able to flag off missing data (e.g., when input
sources fail), be able to fit into an operational environ-
ment and should preferably be user friendly.

3.5 | Availability of model code and
model run-time

Code must be available for use (open source or through
agreements) with possibilities of adaptation to specific
purposes (e.g., possibility to change the represented pro-
cesses, ingested time-step and/or catchment discretiza-
tion). These adaptions are possible but not existent in
most of the freely available model codes. Code must be
actively used and developed with core developers identi-
fied to ensure that proper support can be given in initial
phases. Executable code is not enough, since changes, for
instance, reading of input data will be necessary (Paul,
Gaur, et al., 2020). Forecast deliveries run the risk of
being delayed if bug fixes or updates cannot quickly be
incorporated in the model. Key aspects are the service
level agreement struck between the model and the fore-
casting system provider, outlining a clear overview of

FIGURE 7 Overview of the flood monitoring, modeling, forecasting and dissemination for the operational flood forecasting in Nzioa

basin, Kenya (Source: Kenya Meteorological Department)

FIGURE 8 A representation of the

soil moisture evaluation in soil moisture

accounting and routing model (yellow),

GR4J (blue) and MIKE NAM (green)

over the Nzioa basin in Kenya (Source:

Kenya Meteorological Department)
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which parts are maintained locally, and which parts are
outsourced. In addition, codes available only through
purchases may limit the use of models especially for
research and operational purposes, thus model should be
open source but then not all open-source licenses are
the same.

Some modeling communities have availed accessible
packages for some select models with dedicated functions
such as input data preparations, data processing and
transformation, calibration etc. These packages may have
all or limited functionalities for the application under
consideration, thus limiting its use. For example, Table 1
shows some of the freely available packages, the pro-
posed models to run and the package functionalities that
can be executed.

The model run-time (Central Processing Unit)—
computational time to run a simulation from model spin
up varies with different models and area of application.
For example, Astagneau et al. (2021) show how different
models and implementations can differ an order of mag-
nitude in required calculation time for the same set of
catchments (Figure 5). The computational power lacks in
many of the African National Meteorological and Hydro-
logical Services (NMHS), especially if ensemble simula-
tions, data assimilation methods, and further
computational intensive uncertainty estimation methods
are to be applied, and Kenya is not an exception.

4 | APPLICATION OF THE
SELECTION FRAMEWORK TO
KENYA'S CHOSEN CATCHMENTS

The above section outlines the aspects to consider when
selecting a suitable model for national flood forecasting
and application in Kenya. The application of selection
framework to Kenya based on the above proposed selec-
tion criteria is outlined in Table 2. There are marked dif-
ferences from catchment to catchment, which point to
the fact that a single model single initialization with all
the same parameters cannot be suitably applied at coun-
try level but rather at catchment scale, thus the need to
objectively select a model based on the user needs and
catchment processes.

4.1 | Application of decision tree to
Kenyan catchments

To assess the suitability of hydrological models with focus
to flood applications in Kenya, considering the aspects
described, Figure 9 shows a flow diagram of the filter
sequence in the selection criteria in defining model suit-
ability to this application which may suffice as a decision

tree. At the top of the decision tree are all the processes
that are deemed important in a model for effective flood
applications in Kenya. Firstly, Kenya has a large distinc-
tion in terms climates, some areas are Arid and Semi-
Arid (ASALs) for example Eastern and North-eastern
parts, whereas others are wetlands (e.g., Western and
Central highlands) (see Figure 2). Therefore, a distinction
is made in the second step for processes that are impor-
tant to the different climatic zones. Secondly, Kenya is
currently facing data scarcity due to ungauged nature of
many catchments. This, however, should not be a setback
to hydrological studies and as a result we filter the model
based on the input data availability and possibility to use
alternative data. In the third step, we explore the avail-
ability of the model code to a wider user community.
Here the concept of code executability and online updat-
ing, accessibility and the computational run time are
explored. At the fourth stage the ability of the model to
be downscaled to catchment local scale is considered.
Fixed grid sizes and limitations of applicability to certain
basin sizes are mainly considered here. Finally, we
explore the preferences of the model based on their ease
to be implemented in the forecasting system environ-
ment. However, this piece of work does not involve the
actual analysis of the models under consideration, and it
is based on the elimination method following previous
studies on the performances of the models over the
region. As a result, we present a yes/no decision tree
which has a potential implicit weighting factors of “0” or
“1” based if the model meets a certain criteria or not from
the MCA perspective. The above aspects in the selection
framework form the basis of this model overview and
selection sections. In this study, a combination of concep-
tual and process-based lumped and distributed hydrologi-
cal models are considered for further evaluation to
establish if they fit in the above aspects. The hydrological
model should be suitable to evaluate the spatial and tem-
poral occurrence of floods based on a defined indicator.
Therefore, the models considered (and described in
Appendix S1) range from the few applied or under con-
sideration for the Kenyan setup as well as the other
widely used models in studies across the African conti-
nent for FF that in our opinion would be applicable to
Kenyan case. A total of 12 rainfall-runoff models were
initially listed as potential candidates for small-scale
operational flood forecasting (see Table 3 for main refer-
ences). LISFLOOD and HYPE are included in this review
despite being developed for large-scale applications
because they were adopted for the prototype in the AFFS
and West Africa, respectively. The models were chosen
mainly based on the existing literature reviews and appli-
cation studies particularly to Africa and Kenya. Table 4
provides a summary of the evaluation of all the 12 models
based on the explained criteria herein.
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4.2 | Actual model selection based on
decision tree

The Venn diagram (Figure 10) presents model selection
following a comprehensive evaluation carried out in
Table 4. All the models under consideration are described
and summarized in Appendix S1. Following the filter

sequence presented in Figure 4, each model is evaluated
on step by step then potential models summarized in
actual selection presented in Figure 10 shows a Venn dia-
gram following the framework presented in Figure 9 for
the models described and summarized (Appendix S1)
and the evaluation information presented in Table 4.
Table 4 evaluates all the 12 models based on the

FIGURE 9 Flow sequence to serve as a decision tree for evaluating and selecting a suitable hydrological model for flood forecasting in

Kenya, based on the proposed criteria
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framework presented in Section 2. This provides the sum-
mary statistics of each of the models based on the process
representation, data input requirements, model code
availability, ease of downscaling to Kenyan catchments,
and application of models to operational flood forecast-
ing. Out of the 12 models, only VIC and TOPMODEL do
not represent important processes for flood generation
unique to Kenyan catchments. VIC and TOPmodel were
eliminated because it could not represent groundwater
processes and requires the calibration of all the parame-
ters which in turn means that the calibration data must
be available, which is hardly the case in most of the
Kenyan catchments. As a result, they were excluded in
the final selection presented in the Venn diagram in
Figure 10. The figure shows the flow diagram of the filter
sequence which is used to filter out the 12 models to
those deemed appropriate candidates for flood applica-
tions in Kenya (Figure 10).

From the 12 models reviewed, five are considered
suitable candidates for flood applications in Kenyan
(Figure 8). The outermost circle (A) presents the
10 models under consideration excluding VIC and TOP-
MODEL. VIC and TOPMODEL were not at this point
because lack of representing important process such as
ground water (see Table 4). In addition, this category
includes all the models which can be applied to the study
catchments due to reasonable data input requirements,
model code availability, ease of downscaling to Kenyan
catchments, both in drylands—semi arid—and wetlands,
and application of models to operational flood
forecasting.

Circle B represents model selection based on data
input requirements and the number of calibrated param-
eters. At this stage, we eliminate LISFLOOD, HBV-96,
PDM, GeoSFM and MIKE SHE. LISFLOOD, MIKE SHE,
and HBV 96 and GeoSFM are fully and semi-distributed
models, respectively, with very many parameters to be
calibrated (Berglöv et al., 2009; Ma et al., 2016; van der
Knijff et al., 2010). In addition, they are run on hourly
timestep with very many data input requirements. The
calibration of many parameters will also require intensive
computer run time which may be a challenge in many
NMHS (Vema & Sudheer, 2020). The ungauged nature of
the most of operational centers in Kenya may not have
reliable data at high frequency (e.g., at hourly or even
daily timesteps). However, circle B is white area because
there is the option of alternative remotely sensed data.
These models with high data requirements in data scarce
areas, there are alternative sources of satellite and reana-
lyses datasets that are effectively utilized to force the
model with caution. This is because the datasets come
with their own uncertainties, including random and sys-
tematic errors (Fortin et al., 2015; Sun et al., 2018). Inher-
ent input uncertainties will affect the performance of
models for a given catchment, and as a result, we elimi-
nated LISFLOOD, HBV-96 and MIKE SHE at this stage.
PDM is also eliminated at this point because model con-
figuration comprises of a probability-distributed soil
moisture storage, a surface storage, and a groundwater
storage components (Moore, 2007). The latter is hardly
available input as there is no data on reservoirs and
ground water storage in Kenya's NMHS.

Circle (C) represents models which their code is easily
available as free open source. This category is meant to
rule out models whose codes are available but only in
executable format as changes for instance reading of
input data may be necessary and is not provided for in
executable model codes. The candidate models filtered
through to this step HYPE, SWAT, and SMAR have freely
available open-source codes (Paul, Gaur, et al., 2020).
GR4J and NAM source codes are available through open

TABLE 3 Twelve rainfall-runoff models listed as potential

candidates for small-scale flood applications with their main

technical references

Model Main references

GR4J (modele du Genie
Rurala 4 parametres au pas
de temps Journalier

Technical (Perrin et al., 2003)

NAM (Nedbør-Afstrømnings-
Model)

Technical (Nielsen &
Hansen, 1973)

SMAR (Soil Moisture
Accounting and Routing)

Technical O'Connor, 2005;

PDM (Probability Distribution
Model)

Technical (Goswami &
O'Connor 2010;
Moore, 2007)

SWAT (Soil Water Assessment
Tool)

Technical (Arnold et al.,
1998; Neitsch et al., 2005)

MIKE SHE (MIKE Système
Hydrologique Européen

Technical (Abbott et al.,
1986; Ma et al., 2016)

HBV-96 (Hydrologiska Byråns
Vattenbalansavdelning)

Technical (Lindström et al.,
1997)

TOPMODEL (TOPography
based hydrological)

Technical (Beven and Kirby
1979; Beven et al., 1984)

GeoSFM (Geospatial
Streamflow Simulation
Model)

(Artan et al., 2001, 2004;
Asante et al., 2008)

VIC (Variable Infiltration
Capacity)

Technical: (Gao et al., 2010;
Lohmann et al., 1996)

LISFLOOD Technical: (Burek, 2013; van
der Knijff et al., 2010)

HYPE (European Hydrological
Predictions for the
Environment

Technical: (Lindström et al.,
2010) http://hypecode.
smhi.se
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collaborations (Humphrey et al., 2016). The innermost
green circle represents models that can be applied easily
to Kenyan catchments through simplistic downscaling
and suitable for flood forecasting in different Kenyan
catchments. Regarding the last criterion as to whether
the model is suited for operational purposes, all models
reviewed are continuous simulation models and no
model is rejected at this step because we assume that, if
necessary, they can be modified to be suitable for use in
an operational environment.

5 | DISCUSSION

We provide an insight into the need to understanding of
the quantitative or qualitative description of the existing
knowledge and understanding of the catchments and
how this would influence the choice of the modeling
tools at catchment scale, acknowledging the gaps and
challenges. Models used for different applications in dif-
ferent parts of the world are reviewed based on the six
aspects, which builds on the previous works of Kauffeldt
et al. (2016) and Trambauer et al. (2013), with the aim of
assessing their suitability for flood applications in Kenya.
The two foundational works provide a technical review
of large-scale hydrological models for implementation in
operational flood forecasting highlighting their suitability
for drought forecasting at continental level, specifically in
sub-Saharan Africa. They are important and provide a
comprehensive model review and a selection framework
for flood and drought application at continental scales,
respectively. However, these studies are applied at a
larger scale (continental), yet models simulate process

differently in different hydroclimatic conditions thus, the
need to link the process at catchment scale to model
specifications and applications.

It can be noted that not all models are good at captur-
ing and or representing the important processes relevant
to flood generations (e.g., as transmission losses along the
river channel, re-infiltration, and subsequent evaporation
of surface) both in wetland and ASALs of Kenya as sum-
marized in Table 2. It should be noted that, with the cur-
rent data scarcity, most modeling frameworks
incorporate satellite and reanalyses data. These products
have a coarse resolution and high uncertainty in their
estimations at catchment scale, which in turn impacts
the model performance. Thus, the way forward for objec-
tive choice of modeling tools should ensure that the
models are stable, have reliable error and inconsistency
checks, be able to flag missing data errors (e.g., when
input sources fail), be able to fit into an operational envi-
ronment and should preferably be user friendly. Consid-
ering the data scarcity issues, most models can be
implemented as the redundancy related to missing data
can be incorporated in the preprocessing. Therefore, if a
model can run with missing data, it is a requirement that
the run is clearly flagged as having missing data. Model
stability can be tested by looking at the distributions of
parameters where they became remarkably well-behaved
and near-elliptic when numerical error control is imple-
mented in the model (Kavetski et al., 2006). However,
since the properties of parameter distributions are depen-
dent on (i) the data, (ii) the model, and (iii) the objective
function, testing model stability before application may
not be achieved. A sensitivity and uncertainty analysis of
model parameters is run to establish model errors, which

FIGURE 10 Venn diagram

following the model selection procedure,

starting with all the all models under

consideration in circle A resulting with

the selected models in innermost

circle D.
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should be reliable (Song et al., 2015), but this requires
more computational power, which is missing in Kenya.

The practical proposed and presented model preselec-
tion with a filter sequence for flood applications was used
to filter out models to a subset considered suitable for
Kenyan catchment types. Through the filter sequence
presented, possible adaptation assumptions are consid-
ered in some cases. The filter sequence criteria to assess
model suitability including the representation of impor-
tant processes, availability of the model code, existing
user community, input data requirements, possibility of
calibration, model resolution and data assimilation and
operational implementation into a flood forecasting sys-
tem. Out of the 12 models, only 5: SWAT, SMAR, GR4J,
NAM, HYPE were considered suitable candidates for
catchment scale flood forecasting by local authorities in
Kenya. The above preselection process forms initial steps
and criterion in the choice of a modeling tool to the end-
users of to effectively be used both at catchment scale
modeling and potentially adopted in an operational early
warning system to help mitigate the effects of floods in
data scarce regions such as Kenya.

This work does not look at direct analysis of each of
the proposed model to evaluate its performance based on
some past events. As a starting point, this work provides
background of hydrological models and the Kenyan set
up to inform a criteria of model preselection for flood
applications at national level. The modelers and users of
the models can then use the information and arrive at
models to apply for some select events. A MCA
(Sherlock & Duffy, 2019) forms the basis of these initial
steps. The whole process of an MCA is to assess multiple
alternatives based on a mix of quantitative and mostly
qualitative information from multiple sources. However,
the proposed MCA relies heavily on evaluation data, is
very time consuming for the number of models available
hence for data scarce regions, and/or agencies with lim-
ited resources, (or in general) an additional decision tree
is helpful to trim down the number of options. There is
the need to further evaluate the limited selection with for
example an MCA and the FFC experiment. This is
mainly because within the same catchment, inhomoge-
neities of the physical and hydroclimatic properties is a
complex issue that is essential in deciding which model
to use, thus the importance of the selection criteria.

6 | CONCLUDING REMARKS

There are some challenges that are inherent when apply-
ing the above decision framework not only to data scarce
regions but also to a wider global scale. For example,
with the advancement in research, there is an increasing
number of models and none of them is error free, mainly

due to a compromise reached when considering model
complexity and computational run time, which is a major
challenge (McMillan et al., 2011). Also, it is difficult to
balance complexity of model structure, the parameteriza-
tion and input data requirements, because complex
models do not guarantee reliable results (Paul, Gaur,
et al., 2020; Trambauer et al., 2013). The use of certain
models depends on the computational capabilities (skills)
of the individuals as well as the NMHS in general. As a
result, model selection may be biased based on the easy
of applications depending on the skills of the modeler. In
addition, there is no documented research outlining the
pros and cons of each of models in a single platform in
which a potential model user may easily use to identify
which model is suitable (Mannschatz et al., 2016).

To address the highlighted challenges modeling com-
munities in developing countries, Paul, Zhang, et al.
(2020) and Souffront Alcantara et al. (2019) suggest some
of the way forward. For example, developing countries
should consider working on developing their own
models. The current models tailored to catchment scale
or geographical locations, developed with nicely all year
round flowing rivers in relatively wet catchments and the
inclusion of a variety of hydrologists and model devel-
opers with different needs and perspectives is most wel-
come and needed to produce hydrological models for a
wider range of environments. This may take a long time
due to inadequate technological capacities but will suffice
as a milestone to addressing some of the challenges asso-
ciated with model selection. A well-prepared and com-
prehensive database platform with useful information
pooled together, such as:—different input information,
advantages and disadvantages of different models is
important in providing initial information to judge by eye
on which model would work best. This is also likely to
facilitate easy model selection alongside frequent webi-
nars by model developers to enhance the skill of mod-
elers in developing countries.

This research provides initial steps to inform the
choice of modeling tools in data-scarce region. There is
need for further analysis of the proposed model to
Kenyan catchments, to assess their skills in simulating
the past events. This will provide additional and useful
information in the choice and application of these models
at catchment scale with varied hydroclimatic characteris-
tics. We acknowledge that it has not proven that the cri-
teria “suffice” as the selection procedure leads because it
leads to multiple models and no follow-up strategy is pre-
sented here as these forms the basis of future work. Addi-
tionally, the filter steps are not operationalized to the
level where it can be said to be objective. For example, a
model may be excluded on “many parameters” and that
the preselection criteria presented here follows a flow
chart which may be subjective. First, we make a
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preselection based on expert judgment and link to models
that have been applied to diversified environments that
deem suitable candidates to Kenyan setup.
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A B S T R A C T   

Study region: 19 flood prone catchments in Kenya, Eastern Africa 
Study focus: Flooding is a major natural hazard especially in developing countries, and the need 
for timely, reliable, and actionable hydrological forecasts is paramount. Hydrological modelling is 
essential to produce forecasts but is a challenging task, especially in poorly gauged catchments, 
because of the inadequate temporal and spatial coverage of hydro-meteorological observations. 
Open access global meteorological reanalysis datasets can fill in this gap, however they have 
significant errors. This study assesses the performance of four reanalysis datasets (ERA5, ERA- 
Interim, CFSR and JRA55) over Kenya for the period 1981–2016 on daily, monthly, seasonal, 
and annual timescales. We firstly evaluate the reanalysis datasets by comparing them against 
observations from the Climate Hazards group Infrared Precipitation with Station. Secondly, we 
evaluate the ability of these reanalysis datasets to simulate streamflow using GR4J model 
considering both model performance and parameters sensitivity and identifiability. 
New hydrological insights for the region: While ERA5 is the best performing dataset overall, per
formance varies by season, and catchment and therefore there are marked differences in the 
suitability of reanalysis products for forcing hydrological models. Overall, wetland catchments in 
the western regions and highlands of Kenya obtained relatively better scores compared to those in 
the semi-arid regions, this can inform future applications of reanalysis products for setting up 
hydrological models that can be used for flood forecasting, early warning, and early action in data 
scarce regions, such as Kenya.   

1. Introduction 

Precipitation is arguably the most important driver of catchment hydrological response (e.g. MacLeod et al., 2021), but it is 
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challenging to get accurate information on the amount, duration, and intensity of rainfall events (Beck et al., 2017a; Tapiador et al., 
2012), due to the high spatio-temporal variability (Nicholson et al., 2019; Vischel et al., 2011). This is compounded by a low spatial 
coverage and a net decline in the number of ground gauge stations in the historical climatological observation network, especially in 
developing countries such as Kenya (Menne et al., 2018; Tarek et al., 2020, 2021; Zaitchik et al., 2011). Unreliable or incomplete 
datasets are unable to correctly identify seasonal or short-range temporal patterns (e.g., Gosset et al., 2013; Le et al., 2017). 

Other sources of precipitation data such as those from satellite remote sensing are now available, but they come with their own 
errors, including random and systematic (see Beck et al., 2021; Beck et al., 2017a; Beck et al., 2017b; Fortin et al., 2015; Sun et al., 
2018). Another freely available source of precipitation data are meteorological reanalysis products which are becoming increasingly 
promising due to upgrades in their spatial resolution and improved representation of atmospheric processes in global models 
(Hersbach, 2018). Reanalysis data combine a wide range of remotely sensed observations with a dynamical–physical coupled nu
merical model to produce the best estimate of the state of the atmosphere. Reanalysis is not reliant on the density of surface obser
vational networks and can give surface variables in locations with little to no surface coverage. As a result, they can generate several 
variables both at the land surface and on vertical atmospheric levels, and hence have been applied in several studies both for 
climatological and hydrological purposes across the world (e.g., Beck et al., 2017a; Chen et al., 2018; Emerton et al., 2017; Essou et al., 
2017). Several different reanalysis products exist but they are known to vary in quality with recurrent upgrades. It is important to 
evaluate them carefully both to inform the users and the developers of the datasets. The developers of these products can only work on 
improving their updates when there is a complete feedback loop between applications and developments Therefore, ground validation 
of reanalysis precipitation is very important but very challenging, particularly where the rain gauge networks are sparse. 

Several studies attempt to quantify and account for the sampling errors comparing reanalysis data with observations in different 
parts of the world (e.g., Guo et al., 2018; Tang et al., 2020; Xu et al., 2020; Zaitchik et al., 2011), at a global scale (Beck et al., 2017a; 
2017b), at regional or basin scale (e.g., Acharya et al., 2019; Nkiaka et al., 2017; Tarek et al., 2020) and at a national scale (e.g. Arshad 
et al., 2021; Gleixner et al., 2020; Koukoula et al., 2020; Lakew et al., 2020; Shayeghi et al., 2020; Tesfaye et al., 2017). However, the 
findings of these studies were mixed. Differences in approaches, regions, and time scales resulted in inconsistency in product per
formance, implying that site-specific performance evaluation may be required. Existing studies also aimed at analysing a single 
product or a few products for short periods of time, thus their estimated errors may not reflect long-term behaviour. 

Additionally, the temporal dynamics of rainfall are very important as they play an important role in the total accumulated rainfall 
on daily and monthly timescales (Ficchì et al., 2016), thus influencing the bimodal seasonality observed over Kenya. Also the 
highly-variable temporal dynamics are key in explaining the nonlinear nature of infiltration process (Blöschl and Sivapalan, 1995), 
such as the peak discharge value (Gabellani et al., 2007) and runoff volume (Viglione et al., 2010) in hydrological modelling. Thus, the 
above highlights the need to consider different temporal scales, when evaluating the reanalysis precipitation relative to observation. 

In Kenya, there were 20 major floods from 1964 to 2020 which were driven by precipitation falling in the seasonal rains. More than 
160,000 people were displaced countrywide by floods in October 2019 (ReliefWeb, 2019a; 2019b; Opere, 2013). Annual average 
economic loss from flooding is estimated to be 5.5% of gross domestic product (Njogu, 2021). Thus, understanding the best repre
sentation of precipitation in flood models which can be used for forecasting or risk analysis is of great societal importance. Kenya has a 
widely varying physical geography resulting in great variability of river catchment characteristics across the country. Thus, it is 
essential not only to understand the representation of precipitation at a country scale, but also on a catchment-by-catchment basis 
(Golian et al., 2021; Meresa et al., 2021). Previous evaluation of reanalysis products in capturing Kenyan rainfall show varied levels of 
agreement in spatio-temporal variability relative to observations (e.g., Alemayehu et al., 2018; Dile and Srinivasan, 2014; Gleixner 
et al., 2020; Khan et al., 2011). Moreover, studies employing hydrological modelling generally used discharge observations from a 
small number of catchments (e.g., Alemayehu et al., 2018; Bitew et al., 2012; Langat et al., 2017; Le et al., 2017; Worqlul et al., 2017) 
and did not quantify uncertainties associated with each reanalysis (e.g., Alemayehu et al., 2018), leading to combined rainfall and 
model uncertainty that is not easily interpreted. Hence, there is a notable gap in the literature associated with evaluating the accuracy 
of multiple reanalysis products across different catchments, accounting for both model and input errors, especially in data-scarce 
regions like in Kenya, and this gap was an important motivation for the present study. This paper evaluates four reanalysis precipi
tation products with respect to observations and assesses their suitability for use in hydrological modelling in 19 Kenyan catchments. 
We assess their performance in reproducing the most important features of rainfall events and regimes, and in simulating catchment 
streamflow through answering the following research questions:  

• How well do the precipitation datasets compare in terms of temporal dynamics at the basin scale? Which product is the most 
accurate compared to observations?  

• How well do precipitation datasets compare in terms of spatial patterns? Which product shows consistency in spatial heterogeneity 
compared to observations?  

• How does the general hydrological model performance vary with different datasets?  
• How does the sensitivity of a rainfall runoff model (GR4J) vary with alternative rainfall forcing? 

We consider both model performance and parameter uncertainty and compute a Model Suitability Index (MSI) by coupling the 
results of model performance statistics and Global Sensitivity Analysis. We compare four reanalysis datasets using the GR4J model 
across 19 Kenyan catchments with varied climate and morphological characteristics, to investigate which input data is suitable or 
require caution, when used in the place of observation dataset in different regions. This work is a steppingstone and an essential guide 
for hydrological applications of global reanalysis datasets because it compares several reanalysis products to observations on daily, 
monthly, and seasonal scales, and unveils the propagation of uncertainty from different reanalysis when used as model inputs. All the 
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above reviewed studies looked at the performance of at most one reanalysis dataset in simulating streamflow and only over one 
catchment; but none looked at such a country-scale performance. To our knowledge, this is the very first evaluation of the different 
reanalysis products over Kenya for simulating streamflow coupled with sensitivity analysis. 

2. Study area and catchment characteristics 

The study is undertaken in 19 Kenyan catchments (Fig. 1) with varying characteristics (Table 1). These were selected due to the 
frequency and magnitude of the impacts of floods, as well as the availability of river flow observations (Table 1). Kenya mainly ex
periences a bimodal rainfall pattern, occurring in the seasons of March - April - May (MAM) and October -November - December (OND) 
(Ayugi et al., 2016; Yang et al., 2015), which are commonly known as the ‘long’ and ‘short’ rains respectively. The rainfall seasonality 
and the migration of the precipitation zone is mainly influenced by the north-south movement of the inter-tropical convergence zone 
(ITCZ) (Black et al., 2003; Ongoma et al., 2015). The rainfall season migrates northward at a slower rate than it migrates southward, 
hence the two different names – ‘long rains’ and ‘short rains’ respectively (Nyenzi, 1988). The rainfall exhibits high spatiotemporal and 
interannual variability (Ongoma and Chen, 2017) and is strongly influenced by perturbations in global Sea Surface Temperature (SSTs) 
especially in the Pacific and Indian Oceans with the El-Niño Southern Oscillation (ENSO) (Black et al., 2003; Ogallo, 1993) and the 

Fig. 1. Study catchments across Kenya, with locations of the outlet river gauges (show by cirloured circled dots) used in this study and the main 
irrigation schemes (black trianges) and major dams (blue circles) provided by Kenya Water Authrority (WRA). 
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Table 1 
Summary of the catchments considered, their characteristics, and the main human influences, including number of dams and water abstraction activities (Source: WRA-K).  

River 
Name 

Catchment Outlet 
point 

Station 
ID 

Lon Lat Drainage 
Area (km2) 

Mean 
Elevation 
(m.a.s.l) 

Mean 
Annual 
Rainfall 
(mm) 

Annual 
Discharge 
(m3s-1) 

Catchment 
Characteristics 

Human Influence First & Last 
year of 
record 

Record 
length 
(years) 

Amount 
missing 
(%) Dams Irrigation  

schemes 

Tana Tana Garsen 4G02  40.11  -2.28 80 760  720  672  135.8 Semi-arid plains  9  11 1981–2016  36  58.2 
Tana Tana Garissa 4G01  39.7  -0.45 32,695  870  868  169.3 Highlands on the 

upstream & semi-arid 
plains in the lowland  

8  7 1981–2018  38  14.2 

Nzioa RuambwaBridge 1EF01  34.09  0.12 12,643  1740  1488  151.2 Dense forest cover 
(highlands) & low 
trees & bushes (lower 
reaches)  

2  4 1981–2018  38  13.6 

Galana Galana Tsavo 3G02  38.47  -2.99 6560  930  628  3.3 Semi-arid savannah 
plains  

3  1 1981–2015  35  59.6 

Gucha Gucha Migori 1KB05  34.21  -0.95 6 310  1650  1435  45.0 Eastern lowlands with 
dense vegetation 
cover  

0  2 1981–2015  35  47.8 

Athi Athi Munyu 3DA02  37.19  -1.09 5689  1730  822  18.8 Highlands and forest 
cover  

3  1 1981–2017  37  21.6 

Nzioa Large Nzioa 1BD02  35.06  0.76 3878  1720  1267  15.3 Dense forest cover  1  1 1981–2011  31  28.8 
Sondu Sondu Miriu 1JG04  34.80  -0.33 3444  2017  1614  53.9 Low lying plains 

(western) & highland 
(Eastern)  

2  2 1981–2018  38  64.4 

Mara Mara 1LA04  35.04  -1.23 2977  2100  1262  11.8 Low lying shrubs, 
semi-arid  

0  1 1981–2015  35  77.7 

Yala Yala 1FG02  34.27  0.04 2700    1696  40.8 Swampy  0  0 1981–2019  39  59.6 
Ewaso Ewaso Narok 5AC10  36.73  0.43 2597  1600  880  5.3 Low lying shrubs & 

mainly semi-arid  
0  2 1981–2018  38  26.5 

Tana Mutonga 4EA07  37.89  -0.38 1867  1830  1427  35.5 Highlands and forest 
cover  

0  1 1981–2016  36  44.2 

Ewaso Ewaso Ngiro 5BC04  36.91  0.09 1837  1700  972  20.6 Low lying shrubs & 
mainly semi-arid  

0  0 1981–2019  39  35.0 

Sio Sio 2EE07A  34.14  0.39 1011  1650  1822  15.5 Low trees & bushes & 
swampy in lower 
reaches  

0  1 1981–2018  38  18.1 

Turkwel Ndo 2C07  35.65  0.45 897  1133  1371  9.1 Extensive palaeo- 
floodplain & arid 
conditions  

0  1 1981–1993  13  47.2 

Mara Amala 1LB02  35.44  -0.89 695  2100  1377  6.8 Low lying shrubs, 
semi-arid  

0  0 1981–2017  37  25.6 

Mara Nyangores 1LA03  35.35  -0.79 692  2008  1262  11.8 Semi-arid savannah 
plains, low lying 
shrubs, semi-arid  

0  0 1981–2017  37  15.5 

Turkwel Perkerra 2EE07A  35.97  0.46 371  1023  832  5.7 Extensive palaeo- 
floodplain and arid 
conditions  

1  1 1985–2005  21  50.1  
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Indian Ocean Dipole (IOD) (Blau et al., 2020; Owiti et al., 2008) being the most important modes. Other systems that influence rainfall 
variability include the high pressure systems (e.g. the Mascarene and the Arabian) (Ogwang et al., 2015), the Quasi-Biennial Oscil
lation (QBO) (Collier et al., 2016; Indeje and Semazzi, 2000), the Madden-Julian Oscillation (MJO) (Kilavi et al., 2018), Tropical 
cyclones (Finney et al., 2020; Wainwright et al., 2021) and jet streams, eg., the Turkana jet (Hartman, 2018; Kinuthia, 1992). The 
country has complex topography with the lowest altitudes along the coastline and Lake Victoria basin which are particularly prone to 
floods, while in the highlands, frequent thunderstorms and lightning threaten life. 

3. Data and methodology 

3.1. Datasets 

3.1.1. Reanalysis and observational data 
Four reanalysis products, namely ERA5, ERA-Interim (hereafter ERAI), Climate Forecast System Reanalysis (CFSR), and the Jap

anese 55-year Reanalysis (JRA55), and a gridded observational dataset, the Climate Hazards group Infrared Precipitation with Station 
(CHIRPS), were used in this study (see Table 2). We used the daily precipitation, maximum and minimum temperature variables from 
the reanalysis products for the study. 

ERA5 is the latest global atmospheric reanalysis product from European Centre for Medium-Range Weather Forecasts (ECMWF) 
which spans the modern observing period from 1950 onward (Hersbach, 2018). In this study, 3-hourly ERA5 was obtained from 
ECMWF on a fixed grid of 0.31◦ × 0.31◦. ERAI is the previous global reanalysis product created by ECMWF (Dee et al., 2011). Daily 
ERAI was obtained from ECMWF on a fixed grid of 0.75◦ × 0.75◦. JRA55 is a global reanalysis dataset constructed by the Japan 
Meteorological Agency (JMA) (Kobayashi et al., 2015). Daily JRA55 was obtained from National Center for Atmospheric Research 
(NCAR) climate data guide at a fixed gird of 0.56◦ × 0.56◦. CFSR is a global reanalysis dataset of atmosphere fields produced by the 
National Centers for Environmental Prediction and for Atmospheric Research (NCEP/NCAR) (Saha et al., 2010). The CHIRPS dataset 
was used as a benchmark observation dataset since it has been used in several studies showing good results compared to observations 
over eastern Africa (Dinku et al., 2018). CHIRPS is a quasi-global, high resolution, daily, pentad, and monthly precipitation dataset 
(Funk et al., 2015). Based on infrared Cold Cloud Duration (CCD) data, CHIRPS has a long enough history of precipitation data. The 
algorithm is based on (i) a 5 km climatology that uses satellite data to represent sparsely gauged locations, ii) includes daily, pentadal, 
and monthly 5 km CCD-based precipitation estimates from 1981 to the present, iii) combines station data to generate tentative in
formation product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) interpolation 
weights are assigned based on a novel blending method which uses the spatial correlation structure of CCD estimates. This makes it 
comparatively an alternative in data scarce regions. We opted for the gridded observations as the daily observed gauge datasets were 
not available for the catchments of study and are known to be very sparse and present large data gaps (Dinku et. al, 2019; 2018; Le et. 
al, 2017). 

3.1.2. Observed river discharge and potential evapotranspiration 
River discharge datasets at daily time step for the period 1981–2016 were provided by the Kenya Water Resource Authority (WRA) 

for the selected catchments across the country, summarized in (Table 2). The potential evapotranspiration (PET) required for the 
catchment modelling was estimated from the average daily temperature of the four reanalysis products and CHIRTS_daily data from 
the Climate Hazard Centre (CHC). As temperature readings were the readily available meteorological data that relates to PET, for this 
study, temperature-based methods were used to estimate the PET (Hargreaves and Samani, 1985). For this study, the Hamon method 

Table 2 
Overview of the global reanalysis and the blended (Satellite and observation) Chirps precipitation dataset(s) used in the study.  

Short Name Full Name and details Data 
sources 
(*) 

Spatial 
resolution 

Spatial 
coverage 

Temporal 
coverage 

Temporal 
resolution 

Reference 

CHIRPS V2.0 Climate Hazards group Infrared Precipitation 
(CHIRP) V2.0 (http://chg.ucsb.edu/data/chirps/) 

G, S, R * 0.05o Land, 
< 50 

Daily 1981–NRT* (Funk et al., 
2015) 

ERA5 European Centre for Medium-Range Weather 
Forecasts Reanalysis (https://www.ecmwf.int/ 
en/research/climate-reanalysis/era-5) 

R * ~ 0.31o Global Hourly 1979 – NRT* (Hersbach, 
2018) 

ERA-Interim European Centre for Medium-Range Weather 
Forecasts ReAnalysis Interim (https://www. 
ecmwf.int/en/research/climate-reanalysis/era- 
interim) 

R * ~ 0.75o Global 3-Hourly 1979–2019 (Dee et al., 
2011) 

JRA-55 Japanese 55-year Reanalysis (JRA-55) (https:// 
jra.kishou.go.jp/JRA-55; https://data.diasjp.net/ 
dl/storages/filelist/dataset:204) 

R * ~ 0.56o Global 3-Hourly 1951-NRT* (Kobayashi 
et al., 2015) 

NCEP-CFSR National Centers for Environmental Prediction 
(NCEP) Climate Forecast System Reanalysis 
(CFSR; http://cfs.ncep.noaa.gov/cfsr/) 

R * ~ 0.38o Global Hourly 1979– 2010 (Saha et al., 
2010) 

(*) NRT= Near Real Time with a delay of several days, G = Gauge, S = Satellite, R = Reanalysis 
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(Hamon, 1960) was used to estimate PET daily averages for different datasets. 

3.2. Modelling experiment methodology 

To obtain the monthly and annual totals for observations and reanalysis datasets, the daily values were accumulated. The seasonal 
total precipitation was calculated by summing monthly precipitation for three seasons: (i) the March-April-May, hereafter referred to 
as MAM, (ii) the June-July-August, hereafter JJA, and (iii) the October-November-December, hereafter OND. All datasets were 
converted to the same units for consistency (e.g., JRA55 and CFSR were converted from kg/m2/s to mm/d). ERA5, ERAI, JRA-55 and 
CFSR were regridded by first-order conservative interpolations to a horizontal grid of 0.5o x 0.5o (Schulzweida, 2019). 

We first qualitatively evaluate the performance statistics of the reanalysis datasets in terms of temporal dynamics and biases with 
respect to precipitation observations (CHIRPS), considering the following metrics: Pearson Linear Correlation Coefficient (CC), Mean 
Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Error (ME), long-term relative bias (BIAS) and annual number of dry 
days calculated on monthly, annual, and seasonal scales. We produce spatial maps for the standardized precipitation anomalies, bias 
and annual number of dry days, to assess their consistency compared to observations, and tabulate the other statistics to show the 
aggregate performance across the different datasets. 

Second, we calibrate the GR4J (Perrin et al., 2003) rainfall runoff model. In the study, we used five different inputs sources (for both 
precipitation and PET) into GR4J model from CHIRPS, ERA5, ERAI, CFSR and JRA55. We calibrate the model with each of the input 
source at a time and compute the KGE score and compare how this varies across the four different datasets relative to observations. The 
GR4J model is a simple daily lumped rainfall-runoff model belonging to the family of soil moisture accounting models. There are four 
main parameters (Fig. 2) to be calibrated in GR4J model, namely: (1) the maximum capacity of the production store (X1, mm), (2) the 
groundwater exchange coefficient (X2, mm), (3) the maximum capacity of the non-linear routing store (X3, mm), and (4) the time base 
of the unit hydrograph (X4, days). There are also a few fixed parameters, whose values were set by Perrin et al. (2003). All four free 
parameters are real numbers, X1 and X3 are positive, X4 is greater than 0.5 and X2 can be either positive, zero or negative. The typical 
inputs of GR4J are the areal precipitation depth (P, mm) and the potential evapotranspiration (PE, mm) estimate over the catchment. 
Most optimization algorithms used to calibrate the model parameters require knowledge of an initial parameter set. Given the small 
number of model parameters, simple optimization algorithms are generally capable of identifying parameter values yielding satis
factory results. The choice of an objective function depends on the objectives of model user. The choice and use of the GR4J model is 
mainly due to its simple and relatively quick to calibrate structure, ensuring high-levels of performance and robustness (Ficchì et al., 

Fig. 2. The GR4J rainfall-runoff model (Source (Perrin et al., 2003)). P is the rainfall depth and E is the potential evapotranspiration (PE) averaged 
over the basin at a daily time step. X1, X2, X3 and X4 are the model parameters. 
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2019; Mostafaie et al., 2018; Oudin et al., 2004; Van Esse et al., 2013; Pushpalatha et al., 2011). 
The four free parameters of the GR4J model were calibrated using the default optimisation algorithm provided in the airGR 

package (Coron et al., 2019; Delaigue et al., 2019). This simple optimization algorithm, mainly based on a local optimisation, proved to 
be equally efficient to locate a robust optimum compared to more complex global search algorithms (Coron et al., 2019) and proved 
effective in terms of the number of model runs required for convergence (Mathevet et al., 2006). The Michel method (Michel, 1983) is 
based on two steps:  

I. A systematic inspection of the global parameter space is performed to determine the most likely zone of convergence. In our study, 
this is done by direct grid-screening.  

II. A steepest descent local search procedure is carried out to find an estimate of the optimum parameter set starting from the best 
parameter set from step 1. 

The four free model parameters were calibrated by applying the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) as the objective 
function and the daily observed river discharge data of the selected catchments as reference. We use different inputs (precipitation 
datasets) from CHIRPS, ERA5, ERAI, CFSR and JRA55 to calibrate the GR4J model. The KGE was used also for evaluating the per
formance of the GR4J model when forced with different reanalysis data. The KGE objective function represents a weighting of three 
components that correspond to bias, correlation, and variability, ensuring that KGE is sensitive to errors in the overall distribution of 
streamflow (Adeyeri et al., 2020; Kling et al., 2012). We therefore calculated the hydrological model performance statistics for the 
calibration and validation periods and compared across the different reanalysis datasets to investigate the overall suitability of the 
different reanalysis as input data to simulate river flows. We adopted a threshold of model performance in the range − 0.41 <KGE≤ 1 
as reasonable, following Knoben et al., (2019) being − 0.41 the KGE value corresponding to a mean flow benchmark. 

A split-sample validation technique (Klemeš, 1986) was used to test model performance beyond the calibration period. For this 
study, 36 years (1981–2016) of streamflow data for each catchment were available, so we split into two equal 18-year Split-Sample 
Testing (SST) periods hereafter referred to as SST1 and SST2. 

Third, we perform Sensitivity Analysis by applying the global Sobol sensitivity method for the GR4J model parameters using the 
KGE as our target function and the daily observed data of the 19 catchments as reference. We adopt the Sobol method because it 
estimates the relative contribution of individual model parameters and their interactions through the decomposition of model output 
variance (Nossent et al., 2011). A sensitivity analysis allows a reduction of the number of parameters incorporated in the optimization 
by determining the most influential parameters of a model and their identifiability (Saltelli et al., 2000). As no prior information is 
available on the parameters, the input parameter values for the Sensitivity Analysis are sampled from a uniform distribution (Nossent 
et al., 2011). The different parameter ranges are scaled between 0 and 1 with a linear transformation. Then, we obtain one value of the 
Sensitivity Indices (SI) per parameter, and we investigate the relative role of each parameter in explaining the output variance and 
assess possible over-parameterization issues by counting the number of sensitive parameters. The value of the objective function for the 
calibration of parameters can be used as the model performance statistics for sensitivity analysis, as such we adopted the KGE. 

Last, we assess the overall suitability of the rainfall–runoff model when forced with different meteorological inputs by calculating 
the Model Suitability Index (MSI). We compare the performance of the four reanalysis datasets across the 19 catchments and inves
tigate which of the input dataset is suitable and which require caution, because of low model performance and possible parameter 
identifiability or over-parameterization problems. The well-known problem of over-parameterisation due to insensitive parameters in 
models with large number of parameters (van Griensven et al., 2006) makes sensitivity and performance statistics important. This may 
result in uncertain model simulations arising from equifinality in model calibration but yielding unequifinal model simulations in 

Fig. 3. Line graph of correlation coefficients (CC) between monthly observations and ERA5, ERAI, JRA55 and CFSR precipitation for the period 
1981 – 2016 on average across the 19 study catchments. 
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validation (Beven, 2012). This mostly arises due to application of calibrated multiple optimal parameters sets with significantly 
variable parameter values (Shin et al., 2015; Shin and Kim, 2017). Therefore, in most cases the problem arising from prediction 
uncertainty may pose problems to modellers when it comes to decision making. By applying the quantitative method of Sobol’s SA, this 
enabled us to couple the results with the performance statistics. The MSI aggregates both sensitivity indices & performance statistics 
(Shin and Kim, 2017), providing a clear index to judge the relative global performance of the reanalysis products with respect to 
observations. The computed MSI can be used in comparison studies with any catchment data. If all the model parameters are sensitive, 
this would yield a MSI of 1 and a perfectly matched hydrograph between the simulations and observations. 

We adapt Shin’ and Kim (2017) Model Suitability Index (MSI), which is a combined measure of performance statistics and 
Sensitivity Analysis results. The MSI can be expressed as: 

MSI = 0.5 ×

(
1
n
∑n

i=1
SRi

)

+ 0.5 ×

(
1
m
∑m

j=1
PSj

)

(1)  

Where the SR is the sensitivity ratio (i.e., the ratio of the number of sensitive parameters out of the total number of model parameters) 
ranging from [0, 1] and PS is the performance statistics, n is the number of years over which the sensitivity analysis is run, and m is the 
number of split sample periods in model calibration. It is necessary to set a sensitivity threshold to ascertain the sensitive parameters, 
hence we adopted a minimum value of 0.2 for the TSI of a sensitive parameter. This value has been suggested and used in some past 
studies (e.g (van Werkhoven, 2009; Van Werkhoven et al., 2009 & Shin et al., 2013). It is worth noting that this is an arbitrary value, 
thus we acknowledge the need to practice caution when the parameters’ TSI values are nearing the threshold. PS is computed by 
obtaining the average value of all the periods considered (i.e., two split sample periods). To calculate the average PS, we considered the 
calibration and validation performance statistics (KGE). As both measures are equally important, we gave the same averaged weight to 
PS and SR in calculating the MSI. 

4. Results and discussion 

4.1. Results 

4.1.1. Overall performance evaluation using observations 
The performance of ERA5, ERAI, JRA55 and CFSR on monthly, seasonal, and annual scales is presented in this section. We used the 

monthly scale as a base time scale and calculated CC, RMSE, MAE and ME for all the four reanalysis products. 

4.1.1.1. Performance on monthly scale. ERA5, ERAI, JRA55 and CFSR were first evaluated on a monthly timescale with respect to 
observations at the country level. All the datasets passed the significance test of the correlation coefficient at the 99% confidence level 
and to eliminate the influence of the seasonal cycle on the values, each Correlation Coefficient was calculated per month as shown in  
Fig. 3. ERA5 shows the highest average correlation coefficient value of 0.71 on monthly timescale compared to observations and is 
consistently higher across all months (Fig. 3, and Table 3) than the other reanalysis products. ERAI and CFSR have good average 
correlation but show larger drops in some months (especially in the drier month of August). JRA55 obtained a poor correlation co
efficient of 0.46 on average. In general, ERA5, ERAI and CFSR show higher correlations to observations in rainy months (March-April- 
May and October- November-December) and lower in the dry months (June-July- August), whereas JRA55 shows worst correlations 
during both rainy seasons. 

The average twelve months evaluation indices for each of the reanalysis product is shown in Table 3. Overall, ERA5, ERAI and CFSR 
show a similar good ability to simulate the precipitation for all the indices under consideration. ERA5 has a better CC, BIAS and RMSE 
whereas JRA55 has the lowest CC and the largest BIAS and RMSE suggesting that JRA55 is worst performing reanalysis dataset over the 
Kenyan catchments. 

4.1.1.2. Performance on seasonal and annual timescales. The overall performance of the four reanalyses (ERA5, ERAI, CFSR and JRA55) 
were evaluated on seasonal and annual timescales to explain the propagation of errors at these timescales. The results of the different 
performance indices are shown in Table 4. 

The overall correlation coefficients on seasonal and annual timescale are shown in Fig. 4. Higher CC across all the datasets were 
obtained in the wet seasons of MAM and OND, whereas lower CC were obtained in the dry season of JJA, with the performance index 

Table 3 
Average CC, BIAS, RMSE, MAE and ME between the four reanalysis precipitation datasets and observations on monthly timescale for the period 1981 
– 2016 over all the study catchments.  

Index ERA5 ERA-Interim JRA55 CFSR 

CC  0.71  0.63  0.46  0.68 
BIAS (%)  49.72  -26.97  146.66  -76.68 
RMSE (mm)  31.59  43.73  115.12  67.36 
MAE (mm)  25.11  37.02  79.92  59.95 
ME (mm)  1.64  -30.00  71.52  -59.91  
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Table 4 
CC, BIAS, RMSE, MAE and ME between the reanalyses and observation precipitation data at a seasonal and annual timescale averaged over the 19 
study catchments in Kenya.  

Season Dataset CC BIAS (%) RMSE (mm) MAE (mm) ME (mm) 

MAM JRA55 
ERAI 
ERA5 
CFSR  

0.34 
0.59 
0.88 
0.78 

155 
-28.1 
47.6 
-84.6  

965.10 
193.87 
322.44 
481.03  

898.12 
168.09 
282.42 
475.14 

898.12 
-160.36 
275.60 
-475.14 

JJA JRA55 
ERAI 
ERA5 
CFSR  

0.52 
0.24 
0.25 
0.22 

67.4 
-39.5 
-1.4 
-84.6  

361.72 
182.05 
85.66 
332.89  

290.77 
157.12 
70.90 
327.95 

267.76 
-154.93 
-5.446 
-327.95 

OND JRA55 
ERAI 
ERA5 
CFSR  

0.44 
0.81 
0.52 
0.84 

271.7 
-27.9 
96.6 
-84.3  

1036.4 
123.34 
397.00 
307.76  

983.25 
111.09 
349.70 
296.47 

983.25 
-100.56 
349.70 
-296.47 

ANNUAL JRA55 
ERAI 
ERA5 
CFSR  

0.25 
0.46 
0.52 
0.60 

171 
-26.3 
44.7 
-85.2  

2902.21 
462.513 
801.75 
1354.36  

2760.63 
421.14 
728.57 
1349.21 

2760.63 
-421.14 
720.70 
-1349.21  

Fig. 4. Boxplots of the seasonal (MAM, JJA and OND) and annual Correlation Coefficients (CC) for four reanalysis CFSR (pink), ERA5(green), ERAI 
(blue) and JRA55 (purple) across the 19 catchments. The bold line represents the 50th percentile; boxes and whiskers show the 25th and 75th 
percentiles, and the 10th and 90th percentiles. 

Fig. 5. Areal average annual precipitation from the observations and the reanalysis datasets, averaged across the 19 study catchments.  
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Fig. 6. Mean monthly and seasonal standardized precipitation anomalies in the four reanalysis products for 1981–2016 period: (a) Monthly anomalies, (b) MAM season, (c) JJA and (d) OND anomaly 
index in seasonal precipitation, for ERA5 (2nd column), ERA-I (3rd column), CFSR (4th column) and JRA-55 (5th column). Column 1 shows the observations (CHIRPS). 
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Fig. 7. Seasonal observed precipitation (mm) and mean bias (%) of the extreme rainy days at 95th percentile in the four reanalysis products for 1981–2016 period: (a) Long-term observed (OBS) 
seasonal average precipitation (mm) from CHIRPS, (b– e) mean relative bias (%), in seasonal precipitation in ERA5 (b), ERA-Interim (c), CFSR (d), JRA-55 (e), with respect to CHIRPS. MAM season 
(top), JJA (middle) and OND (bottom panel). 
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Fig. 8. GR4J model performance (KGE) in calibration (top panel) and validation (bottom panel) across the 19 catchments for different input datasets, Pan.1 (CFSR), Pan.2 (ERA5), Pan.3 (ERAI), Pan. 4 
(JRA55), Pan.6 (CHIRPS). 
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higher in OND than in MAM. ERA5 obtained the highest CC (0.88) in MAM, whereas CFSR the highest (0.84) in OND. JRA55 showed 
lower CC of 0.34 and 0.44 in the two seasons respectively and a CC of 0.52 in the dry season, depicting a tendency of a wet bias over the 
dry months. On average, the variability in the CC index across the four datasets was relatively lower in the OND season and higher in 
the MAM season. The BIAS across the four datasets was lower in the dry season (JJA) and higher in the wet seasons (MAM &OND) with 
JRA55 showing a higher positive BIAS across all the seasons. There are large values in the RMSE and the MAE across the four datasets 
in the two wet seasons and this may be linked to the high precipitation concentrations during those seasons across most of the 
catchments. Generally, it can be noted that JRA55 shows the worst performance in comparison to observation especially in the wet 
seasons of MAM and OND but obtained relatively better scores in the dry season of JJA. ERA5 shows better agreement with obser
vations across the three seasons thus may be an appropriate option for simulating precipitation over the Kenyan catchments. 

On annual timescale, the average annual precipitation of CFSR, ERA5, ERAI and JRA55 was computed and compared with the 
observation (CHIRPS) (Fig. 5). ERA5, ERAI and CFSR show similar trend compared to observations across all the years, with CFSR and 
ERAI underestimating the precipitation. JRA55 shows a higher tendency of overestimating the annual precipitation over the study 
catchments. In terms of the performance indices, CFSR, ERAI and ERA5 showed better CC indices of 0.60, 0.46, 0.52 respectively 
whereas JRA obtained lower CC of 0.25 (Fig. 4). The variability in the CC was higher in JRA55 (Fig. 4). ERA5 and JRA55 show a 
positive bias of 45% and 171% respectively, whereas ERAI and CFSR show negative bias of − 26 and − 85%. ERA5 has a lower RMSE 
and ME whereas JRA55 has the highest. These results show that ERA5 is the best performing reanalysis dataset compared to obser
vations on annual timescales whereas JRA55 is the worst performing. 

The mean monthly and seasonal standardized precipitation anomalies in the four-reanalysis precipitation for a base climatological 
period 1981–2016 is shown in Fig. 6. On monthly timescale, the observations show a positive anomaly over the central highland and 
the western parts of Kenya (Fig. 6, pan1). The arid and semi-arid parts in the eastern and coastal lowlands show a negative anomaly 
(dry bias). This pattern is also captured in ERA5, ERAI and JRA55 although JRA55 has too high and widespread negative anomalies 
compared to the former two. On seasonal timescales, ERA5, ERAI and CFSR show positive anomalies in Western and central highland 
in the three seasons except for JRA55 which has a stronger negative and positive anomaly in MAM and OND seasons respectively. 

An evaluation of the extreme precipitation in the four reanalysis was also performed (Fig. 7). For this case, we focused on the 95th 
percentile of rainy days for MAM, JJA and OND season during the period 1981–2016. A rainy day represents a day for which the 
recorded precipitation amount is greater than or equal to 1 mm (Gudoshava et al., 2020). The observed extreme precipitation varied 
between 60 mm to more than 240 mm across western, central highlands and coastal catchments for the rainy seasons (MAM and OND). 
The observed extreme precipitation during the dry season JJA varied between 100 mm and 160 mm across the western catchments 

Fig. 9. Boxplots of the overall GR4J model performance (KGE [-]) in (a) calibration and (b) validation mode over the 19 catchments.  
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Fig. 10. GR4J model performance (Percentage KGE- Bias) in calibration (top panel) and validation (bottom panel) across the 19 catchments.  
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Fig. 11. Scatter plot of Sobol Total Sensitivity indices (TSI) for the different reanalysis datasets and the GR4J model parameters for the nineteen catchments. Minimum and maximum TSI were 
calculated for the whole data period. (a) Chirps, (b) ERA5, (c) ERAI, (d) JRA55 and (e) CFSR. Diagonal line is one-to-one line. 
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only whereas in the rest of the other regions the observed precipitation was less than 60 mm. Our results show that CFSR and ERAI 
show a positive bias for the extreme precipitation across most parts of the country in all the three seasons, like results in (Garibay et al., 
2021). JRA55 has an enhanced negative bias of the extreme precipitation in most parts of the country except for isolated positive bias 
in the central highlands’ region in JJA and OND season. ERA5 has a positive bias in MAM and OND in most parts of the country with 
some patches of negative bias in the western and central highlands catchments. It has an enhanced negative bias in JJA season with a 
positive bias in the western and coastal strip. We conclude that ERA5 outperforms other reanalysis products as it captures the wet 
extremes over the regions in which observations show enhanced precipitation in the respective seasons. The results are consistent with 
the findings in Gleixner et al. (2020) which showed both ERA5 and ERAI to have the capability to capture wet extremes in the dry 
seasons with ERA5 matching more closely to observations than the too wet ERA-interim. A promising performance in the ERA5 to 
simulate wet extremes can be attributed to improved bias correction method which incorporates aircraft measurements, satellite 
radiances, radiosonde measurements and surface pressure (Probst and Mauser, 2022). In addition, better performance in the central 
highlands can be attributed to the improved horizontal resolution in ERA5, which results in better estimates in orographic 
precipitation. 

4.1.2. Evaluation of the reanalyses as inputs for hydrological modelling 

4.1.2.1. Assessment of the overall model performance using different reanalysis. The performance of the four reanalysis datasets were 
evaluated using the GR4J model in the 19 catchments for the period spanning 1981 − 2016. The KGE in calibration (top panel) and 
validation (bottom panel) scores obtained using different datasets for each of the catchments are represented in Fig. 8. Overall, wetland 
catchments in the western and highlands of Kenya obtained relatively better calibration scores compared to those in the semi-arid 
regions, with Yala, Sio, Nzioa and Gucha (wetland catchments) performing best and Perkerra, Ndo, Tsavo, Thiba and Tana (semi- 
arid catchments) performing worst. For each of the catchments, ERA5 showed better calibrated KGE scores compared to observations 
while CFSR and JRA55 obtained poorer KGE scores. However, we take caution in the interpretation of our results in terms of per
formance criteria because these catchments have a high influence of human activities such as irrigation schemes and dams. As such the 
low performance in some catchments may not be solely due to uncertainty in the input data. 

The overall variability in GR4J model KGE scores across the four reanalyses are shown in Figure10. There are overall high- 
performance scores (KGE>0.5) in calibration mode in about half of the catchments for all datasets except CFSR, which suggests 
problems in using CFSR as hydrological model inputs in the region that cannot be solved or compensated by calibration. In Fig. 9a, 
ERA5, ERAI and JRA55 show similar overall performance compared to observation. The range for the performance statistic is narrower 
in the ERA5, ERAI and JRA55, indicating a more stable model performance in the region, while is wider in the CFSR data (Fig. 9a). In 
validation mode, the performance markedly decreases, as expected, for all datasets (Fig. 9b): ERAI, ERA5 and JRA55 have the highest 
median KGE value (just above or about 0) whereas CFSR has the lowest median values (KGE<− 0.5). The range of KGE values is 
relatively larger compared to observations; thus, a relatively unstable prediction ability is expected for streamflow in reanalysis in the 
region. The range of performances is more variable in ERA5 and JRA55 and less variable in ERAI. Overall, the variability in KGE values 
is highest in validation than in calibration across all the reanalysis compared to observations, as expected. Fig. 10 shows the percentage 

Fig. 12. Boxplots of the Sobol Total Sensitivity Indices (TSI) for the GR4J parameters for Obs. (pink), CFSR (orange), JRA55(blue), ERAI (green) and 
ERA5(forest-green) over the nineteen catchments. Dashed grey line represents the sensitivity threshold. The bold line represents the 50th percentile; 
boxes and whiskers show the 25th and 75th percentiles, and the 10th and 90th percentiles. 
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bias of the KGE component in each catchment in calibration (top panel) and in validation (bottom panel). The bias in all the four 
reanalysis is higher in calibration, whereas in validation most catchments exhibit lower biases except for Perkerra. 

4.1.3. Sensitivity analysis results 

4.1.3.1. Variability in sensitivity of model parameters. The GR4J’s model maximum and minimum TSIs for the four reanalysis datasets is 
illustrated in Fig. 11. The maximum and minimum TSIs represent the variability of parameter sensitivity within the catchment with 
respect to KGE over the sampling periods and the variation across the four-reanalysis relative to observations. If the maximum and 
minimum TSIs for a parameter are equal (on the one-to-one line), that parameter has the same TSI for the sampling period, implying 
that the parameter is more stable across time, and would be expected to vary depending on the catchment characteristics and input 
data as well. In all the four datasets, the routing parameter (X4) related to the unit hydrograph is evidently the least sensitive as it is 
way below the threshold, followed by the capacity of the routing store (X3), whereas the two parameters governing the water-balance, 
i.e. the soil moisture accounting store (X1) and the groundwater exchange coefficient (X2), are the most sensitive across the datasets in 
most of the catchments, except for CFSR, where X1 is less sensitive. 

Observations show more stability for the parameters for all catchments except six (Munyu, Thiba, Ndo, Ewaso Ngiro, Perkerra and 
Tsavo) with respect to reanalysis datasets (Fig. 11). In ERA5, most of the catchments showed stability in parameters except in Thiba, 
Tsavo, Large Nzioa and Ewaso Ngiro catchments (Fig. 11b). In ERAI, there is high variability in model parameter stability with less 
stability for some catchments such as Thiba, Munyu, Mutonga and Tsavo catchments (Fig. 11c). In JRA55 and CFSR (Figs. 11d and 11e 
respectively), the departure in sensitivity of model parameters from the diagonal is pronounced across most of the catchments. Overall, 
the variability in sensitivity of model parameters is high in Thiba, Munyu, Pekerra and Ewaso Ngiro across all the datasets, thus we can 
conclude that the reanalysis datasets are not suitable for model calibration is these catchments of Kenya characterized by arid and 
semi- arid conditions. However, the catchment’s water balance may highly be affected by the dams constructed in the upstream areas 
and the massive irrigation schemes, which results in water attenuation. 

4.1.3.2. Overall sensitivity of GR4J model parameters. The parameters related to water balance, i.e., the soil moisture accounting store 
(X1) and ground water exchange (X2), show higher sensitivity across all the four datasets except for CFSR, in which the production 
accounting store is less sensitive and falls below the threshold value of 0.2 from the model TSIs (Fig. 12). The first parameter 
responsible for water routing (X3) is less sensitive for most datasets (except CFSR), whereas the unit hydrograph parameter (X4) is the 
least sensitive across all the catchments in all datasets. In comparison to observations, ERA5, ERAI and JRA55 show similar parameter 
sensitivities of model parameters while CFSR show distinct higher variability and a difference in the parameters’ sensitivity, which 
points to high uncertainty in the CFSR dataset. This result shows that the sensitivity of the model parameters can change with the input 
datasets, having very different hydrological characteristics. 

4.1.4. Comparison of reanalysis datasets using Model Suitability Index 
When the sensitivity indices and performance statistics are considered, it is difficult to determine which dataset is more 

Fig. 13. Bar chart showing a comparison of model suitability in terms of performance and parameter sensitivity across different reanalysis using the 
Model Suitability Index (MSI). 
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appropriate. ERA5 and ERAI datasets, for example, had good and clear parameter sensitivities that captured their purposes, and the 
model performance score median values were higher than in CFSR and JRA55. However, the range of the performance statistics across 
the catchments was sometimes wider than in the other datasets, resulting in higher simulation uncertainty. When compared to the 
other two methods, the MSI, which considers both sensitivity indices and performance statistics, has the advantage of being easier and 
clearer to judge the superiority and inferiority of the datasets in terms of both model performance and parameter identifiability. We 
determined that a value of 0.5 for the MSI is a good MSI threshold, (Moriasi et al., 2007) We give the same weight to model per
formance and sensitivity, as described in the subsection ‘MSI’; thus, the threshold value for good MSI is 0.5. 

Combining the model performance and sensitivity indices discussed in the preceding subsections, Fig. 13 shows the MSIs for all the 
reanalysis datasets. The ERA5 has the highest MSI compared to observations across the nineteen catchments, followed by the ERAI 
reanalysis. As a result, the ERA5 and ERAI reanalysis are appropriate, at least for the selected sample of Kenyan catchments, whereas 
CFSR and JRA55 are least appropriate as they show lower MSI values across most of the catchments. CFSR shows negative MSI values 
for Amala, Migori, Mutonga, Narok, Ewaso Ngiro and Sio catchments meaning it is not appropriate for application in these Kenyan 
catchments. Overall, the four reanalysis datasets obtained relatively lower MSI values in Mara, Ndo, Ewasi Ngiro and Tana Garsen 
catchments. These catchments are mainly in arid and semi-arid areas of Kenya, like results in Section 5.2. 

4.2. Discussion 

4.2.1. Overall Performance of reanalysis precipitation products 
In this study, we assessed four reanalysis precipitation products relative to observations for the period 1981–2016 on monthly, 

seasonal, and annual timescales. We also assessed how best they simulate streamflow using the GR4J model and sensitivity analysis for 
19 catchments located in distinct geographical and climatic environments. Results show that the ERA5 reanalysis outperforms the 
other reanalysis products on monthly and seasonal scales, whereas CFSR outperforms ERA5 on annual and seasonal timescales. In 
general, ERA5 data were often closer to observations than other reanalysis data, which corresponds with earlier research on the 
datasets in different regions (e.g., Betts et al., 2019; Gleixner et al., 2020; Tarek et al., 2020), even though these studies considered 
different evaluation period, spatiotemporal resolution, hydrologic models, climates. However, the performance scores for the rean
alysis products over the Kenyan catchments were lower which contrasts some of the studies carried out in other parts of the world with 
varying climates (e.g., Dhanya et al., 2017; Harada et al., 2016; Mahto et al., 2019; Wang et al., 2019), which obtained higher scores for 
their study areas. The low performance scores may be due to variations in the initial resolution of the datasets (Chen et al., 2018; 
Lemma et al., 2019) and the interpolation approach is likely to have some influence on the evaluation of various reanalysis data 
(Rapaić et al., 2015; Zhang et al., 2016). It is also worth noting that while the observed precipitation data are the best estimates 
available, they are likely to be subject to errors too (Beck at al., 2017a, Dinku et al., 2019). In addition, the seasonality of rainfall over 
Kenya is greatly influenced by weather phenomena such as El Niño -Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) 
(Ayugi et al., 2020; Ojara et al., 2021; Onyutha, 2016) and play a major role in extreme rainfall events and inter-annual variability 
(Ongoma et al., 2015). For example, the warm phase of ENSO/El Niño results in unusually heavy rainfall, causing rare floods like as the 
1997/1998 occurrence (Takaoka, 2005). ERA5, ERAI and JRA55 picked the enhanced annual precipitation totals of the strong El Niño 
years such as 1997/98 and 2015. However, relative to observations, ERA5 and ERAI underestimated the rainfall, and this may be 
attributed to incorrect configuration in the reanalysis products. For example, ERA5 precipitation is not customized to pick up the 
perturbations caused by the changes in the ocean – atmosphere interactions and the mountainous regions and so may miss picking up 
the extremes caused by events such as ENSO, thus the low performance scores. 

Standardized precipitation anomalies in ERA5, ERAI and CFSR show a positive anomaly over the central highland and the western 
parts of Kenya (Fig. 6a, pan1) and a negative anomaly in arid and semi-arid parts in eastern and coastal lowlands in the three seasons 
(MAM, OND, JJA) except for JRA55 which has a stronger negative and positive anomaly in MAM and OND seasons respectively. This is 
consistent with study by Ongoma et al. (2018), which indicates a rise in the severity of severe precipitation events shown by a positive 
standardized rainfall anomaly over East Africa including the mentioned regions in Kenya. With the changing climate, temperatures in 
the region are projected to rise by the end of the twenty-first century, leading to an increase in rainfall extreme occurrences (Ongoma 
and Chen, 2017), thus, exacerbating flood risk. 

Our analysis of the accuracy of precipitation reanalysis with respect to observations, over different timescales from monthly to 
annual, showed a positive but relatively small bias in CFSR, ERA5 and ERAI and a larger negative bias in JRA55 in MAM and OND 
seasons. Moreover, the first three reanalysis datasets showed a good average correlation at the monthly and seasonal scales. Therefore, 
the three reanalysis products have the potential to capture the rainfall seasonality and events in the study area. Recent worldwide 
research show that the frequency, severity, geographical range, length, and timing of climatic severe events are changing (Wainwright 
at al, 2021). A rise in rainfall severe events such as very wet days (R95p) and very wet days (R99p) anticipated for the future 
(2021–2100) (Gudoshava et al., 2020), is likely to cause the loss of life and property devastation owing to an increase in flood intensity 
(Finney, 2020). Therefore, further work should assess the capacity of the reanalysis datasets in capturing extreme rainfall event 
characteristics, such as timing and daily peaks. Performance of reanalysis as inputs into a hydrological model. 

Using a hydrological model as integrator to compare simulated and observed streamflow, which can operate as an independent 
validation variable, is one approach to assess the quality of observation and reanalysis precipitation data. Each of the reanalysis 
precipitation and estimated potential evapotranspiration was supplied to the GR4J model, which were subsequently calibrated for 
each combination (using consistently precipitation and potential evapotranspiration from the same dataset), to independently analyze 
the quality of input data for each dataset relative to the observed streamflow gauge data. Streamflow gauges, of course, are subject to a 
variety of inaccuracies (Baldassarre and Montanari, 2009), but they represent the best available estimates for this study. Results of KGE 
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scores show that ERA5 is better than ERAI, JRA55 and CFSR but on overage, all the reanalyses are less skillful relative to observations 
across the catchments in this study and this is entirely due to the precipitation data quality. However, there is a marked improvement 
in the KGE scores for the catchments in the central highlands and western wet catchments which agrees with some studies on the 
datasets in other regions (e.g., Tarek et al., 2020; Essou et al., 2017; Lakew et al., 2020), pointing to the fact that reanalysis data can be 
used as a replacement for observations. 

There are overall high-performance scores (KGE>0.5) in calibration mode in about half of the catchments for all datasets except 
CFSR, which suggests problems in using CFSR to reproduce the hydrological water balance in the region that cannot be solved or 
compensated by calibration (Diro et al., 2009). 

4.2.2. Sensitivity analysis of model parameters 
Sensitivity analysis is useful in identification of the parameters that have a strong impact on the model outputs, which in turn 

influences the effectiveness of the model. The greater the sensitivity of the model response to a parameter, the closer and sooner will 
that parameter be optimized so a high sensitivity is good. Such an in-depth analysis of a hydrological model may (i) help to identify any 
potential deficiencies in model structure and formulation; (ii) provide guidance for model parameterization; and (iii) provide the 
information content of available input data. 

Based on provision of information content of the input data, different reanalyses show different sensitivities of model parameters 
and one that provides a higher sensitivity of model response means that it has less uncertainty and may be a lot easier to parameterize 
the values, but then this in practical sense does not reach the real value and the dataset with low sensitivity has got high uncertainty 
and model parameterization may be a lot difficult (Zeng et al., 2019). In comparison to observations, ERA5, ERAI and JRA55 show 
similar parameter sensitivities of model parameters while CFSR show distinct higher variability and a difference in the sensitive 
parameters, which points to high uncertainty in the CFSR dataset. This result shows that the sensitivity of the model parameters can 
change with the input datasets, having very different hydrological characteristics. Overall, the variability in sensitivity of model 
parameters is high in Thiba, Munyu, Pekerra and Ewaso Ngiro across all the datasets, thus we can conclude that the reanalysis datasets 
are not suitable for model calibration is these catchments of Kenya characterized by arid and semi- arid conditions. MSI considers both 
model performance and uncertainty quantitatively, therefore it can be used to compare any catchment. The ERA5 has the highest MSI 
compared to observations across the nineteen catchments, followed by the ERAI and JRA55, whereas CFSR has least MSI values. MSI’s 
dependability may be increased by including more sensitivity indices and performance scores as well as assigning weights to the scores. 

5. Summary and conclusion 

This study addresses a notable gap that was found in the literature for evaluating the accuracy of multiple precipitation reanalysis 
datasets across data-scarce regions like Kenya, and for assessing their potential to supplement scarce rain gauge observations for 
hydrological modelling. Four different state-of-the-art reanalysis datasets were assessed. Precipitation data from ERA5 shows the 
highest average correlation coefficient value (0.71) on monthly timescale compared to observations and is consistently higher across 
all months than the other reanalysis. ERAI and CFSR have good average correlation but show larger drops in some months (especially 
in the drier month of August). JRA55 obtained a poor correlation coefficient of 0.46 on average. ERA5, ERAI and CFSR show higher 
correlations to observations in rainy months (March-April-May and October- November-December) and lower in the dry months (June- 
July- August), whereas JRA55 shows worst correlations during both rainy seasons. On annual timescales, CFSR, ERAI and ERA5 
showed better CC indices of 0.60, 0.46, 0.52 respectively whereas JRA obtained lower CC of 0.25. ERA5 and JRA55 show a positive 
bias of 45% and 171% respectively, whereas ERAI and CFSR show negative bias of − 26 and − 85%. 

Spatial rainfall patterns directly affect temporal distribution key in driving runoff and soil erosion processes, which is useful in 
management of hydrological risks and generation of sediments from rainwater. Monthly standardised anomaly maps in ERA5, ERAI 
and JRA55 showed a positive anomaly over the central highland and western parts. In the arid and semi-arid parts in the eastern and 
coastal lowlands parts of Kenya the three datasets showed enhanced negative anomaly. On seasonal timescales, ERA5, ERAI and CFSR 
show positive anomalies in Western and central highland in the three seasons except for JRA55 which has a stronger negative and 
positive anomaly in MAM and OND seasons respectively. Extreme precipitation showed a positive bias in CFSR, ERA5 and ERAI in 
MAM and OND seasons whereas JRA55 has enhanced negative bias in most parts of the country except for isolated positive bias in the 
central highlands’ region in JJA and OND seasons. 

The performance of GR4J model when forced with different reanalysis in the 19 catchments reveals a bigger role of localized 
catchment characteristics and process in model calibration. Wetland catchments in the western and highlands of Kenya obtained 
relatively better calibration scores compared to those in the semi-arid regions, with Yala, Sio, Nzioa and Gucha (wetland catchments) 
performing best and Perkerra, Ndo, Tsavo, Thiba and Tana (semi-arid catchments) performing worst. For each of the catchments, ERA5 
showed better calibrated KGE scores compared to observations while CFSR and JRA55 obtained poorer KGE scores. The range of KGE 
values was relatively larger compared to observations; thus, a relatively unstable prediction ability is expected for streamflow in 
reanalysis for Kenyan catchments. The range of performances is more variable in ERA5 and JRA55 and less variable in ERAI. Overall, 
the variability in KGE values is highest in validation than in calibration across all the reanalysis compared to observations, as expected. 

Sensitivity analysis allows the reduction of parameters incorporated in optimization by determining the convergence most influ
ential model parameters. Sensitivity analysis revealed that in all the four datasets, the routing parameter (X4) related to the unit 
hydrograph was evidently the least sensitive, followed by the capacity of the routing store (X3), whereas the two parameters governing 
the water-balance, i.e. the soil moisture accounting store (X1) and the groundwater exchange coefficient (X2), are the most sensitive 
across the datasets in most of the catchments, except for CFSR, where X1 was less sensitive, with ERA5 showing a highest sensitivity in 
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the model parameters. However, the variability in sensitivity of model parameters was high in Thiba, Munyu, Pekerra and Ewaso Ngiro 
across all the datasets, thus we conclude that model calibration in arid and semi- arid catchments of Kenya does not yield skillful results 
using the reanalysis data. The MSI aggregates both sensitivity indices & performance statistics, providing a clear index to judge the 
superiority (or inferiority) of a reanalysis with respect to observations. On average ERA5, ERAI (& JRA55) have better MSI scores 
across most of the Kenyan catchments: ERAI & ERA5 perform better than JRA55 & CFSR, and lead to more robust model parameters. 
Using a catchment model and combined sensitivity - model performance analysis, allows an evaluation of the impact of the variability 
in the rainfall products throughout the catchment modelling process. 

In conclusion, in this study we have demonstrated the usefulness of reanalysis rainfall products as potential alternatives for hy
drological applications in Kenya. We assessed the suitability of reanalysis precipitation datasets for hydrological modelling across 
Kenyan catchments, but first assessed the propagation of errors when reanalysis is compared to observations. We performed the 
assessment on monthly, seasonal, and annual timescales. Then, using a lumped bucket-style hydrological model, we assessed the model 
performance via the KGE criterion and parameter uncertainty via Sobol’s Sensitivity Analysis for four different reanalyses: - ERA5, 
ERAI, JRA55 and CFSR across 19 catchments. The parametric and model input uncertainty is investigated using the sensitivity indices 
and the comprehensive model performance analysis is used to examine the model’s input strength, i.e., the amount to which the model 
captures the dynamics of rainfall–runoff processes with respect to different forcing. We also coupled the results of the performance 
scores and sensitivity indices to compute MSI for the 19 catchments. 

We acknowledge the value and need of additional work, if reliable data at higher temporal frequency becomes available and can be 
used, as it contains more information. However, this is a big limitation for the current study due to high data gaps in the daily data 
(river discharge data used in the current study) and the lack of higher temporal resolution hydrological data. Future work should 
concentrate on assessing the sub-daily performance of hydrological modelling with reanalysis, testing its quality on other additional 
catchments in countries in the region with quality observed gauge data, but prior investments in data collection in Kenya seem to be 
needed. Our approach may be extended to various conceptual rainfall -runoff models as well as physically based distributed rain
fall–runoff models. The MSI analysis is a practical method for weeding out the appropriate model input on a catchment scale basis, 
however a more robust analysis where weights are assigned would yield some improvements in the results. To fully ascertain the 
potential of alternative model forcing, catchments characteristics and human influence such as dams and reservoirs should be 
modeled. 

Finally, it is essential to note that this work does not promote the use of products such as reanalysis to replace observed data from 
weather stations, nor can it be understood as giving reason to continue the present trend of retiring additional stations. Quality 
controlled ground observations still act as the best data for research. The ERA5 results demonstrate that atmospheric reanalysis has 
likely reached the stage where they can consistently supplement data from weather stations and offer trustworthy proxies in places 
with less dense station networks, at least across Kenya. Overall, reanalysis can be a viable alternative to observations in ungauged 
catchments, but the associated uncertainties need to be carefully communicated for informed choice of hydrological modelling tools. 
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Ficchì, Andrea, Perrin, Charles, Andréassian, Vazken, 2019. Hydrological modelling at multiple sub-daily time steps: model improvement via flux-matching. 

J. Hydrol. https://doi.org/10.1016/j.jhydrol.2019.05.084. 
Finney, Declan L., Marsham, John H., Walker, Dean P., Birch, Cathryn E., Woodhams, Beth J., Jackson, Lawrence S., Hardy, Sam, 2020. The effect of westerlies on East 

African rainfall and the associated role of tropical cyclones and the Madden–Julian Oscillation. Q. J. R. Meteorol. Soc. 146 (727), 647–664. 
Fortin, Vincent, Roy, Guy, Donaldson, Norman, Mahidjiba, Ahmed, 2015. Assimilation of radar quantitative precipitation estimations in the Canadian Precipitation 

Analysis (CaPA). J. Hydrol. 531, 296–307. 
Funk, Chris, Peterson, Pete, Landsfeld, Martin, Pedreros, Diego, Verdin, James, Shukla, Shraddhanand, Michaelsen, Joel, 2015. The climate hazards infrared 

precipitation with stations - a new environmental record for monitoring extremes. Sci. Data 2, 1–21. https://doi.org/10.1038/sdata.2015.66. 
Garibay, Victoria M., Joseph, H.A.Guillaume, Crokeab, Barry F.W., Jakemanbc, Anthony J., 2021. Evaluation of Reanalysis Precipitation Data and Potential Bias 

Correction Methods for Use in Data-Scarce Areas. Water Resources Management 35, 1587–1602. https://doi.org/10.1007/s11269-021-02804-8. 
Gabellani, S., Boni, G., Ferraris, L., Von Hardenberg, J., Provenzale, A., 2007. Propagation of uncertainty from rainfall to runoff: a case study with a stochastic rainfall 

generator. Adv. Water Resour. 30 (10), 2061–2071. 
Gleixner, Stephanie, Demissie, Teferi, Diro, Gulilat Tefera, 2020. Did ERA5 improve temperature and precipitation reanalysis over East Africa? Atmosphere 11 (9), 

996. 
Golian, Saeed, Murphy, Conor, 2021. Evaluation of sub-selection methods for assessing climate change impacts on low-flow and hydrological drought conditions. 

Water Resour. Manag. 35 (1), 113–133. 
Gosset, Marielle, Viarre, Julien, Quantin, Guillaume, Alcoba, Matias, 2013. Evaluation of several rainfall products used for hydrological applications over West Africa 

using two high-resolution gauge networks. Q. J. R. Meteorol. Soc. 139 (673), 923–940. https://doi.org/10.1002/qj.2130. 
Gudoshava, Masilin, Misiani, Herbert O., Segele, Zewdu T., Jain, Suman, Ouma, Jully O., Otieno, George, Osima, Sarah, 2020. Projected effects of 1.5C and 2C global 

warming levels on the intra-seasonal rainfall characteristics over the Greater Horn of Africa. Environ. Res. Lett. 15 (3), 34037. 

M.A. Wanzala et al.                                                                                                                                                                                                   

http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref1
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref1
https://doi.org/10.1016/j.ejrh.2019.100655
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref3
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref3
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref4
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref4
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref5
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref5
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref6
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref7
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref8
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref8
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref9
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref9
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref10
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref10
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref11
https://doi.org/10.1002/9781119951001
https://doi.org/10.1002/9781119951001
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref13
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref13
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref14
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref14
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref15
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref15
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref16
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref17
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref17
https://doi.org/10.1002/qj.828
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref19
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref19
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref20
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref20
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref21
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref22
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref22
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref23
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref23
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref24
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref24
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref25
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref25
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref26
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref26
https://doi.org/10.1016/j.jhydrol.2019.05.084
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref28
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref28
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref29
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref29
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1007/s11269-021-02804-8
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref32
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref32
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref33
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref33
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref34
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref34
https://doi.org/10.1002/qj.2130
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref36
http://refhub.elsevier.com/S2214-5818(22)00118-5/sbref36


Journal of Hydrology: Regional Studies 41 (2022) 101105

22

Guo, Binbin, Zhang, Jing, Xu, Tingbao, Croke, Barry, Jakeman, Anthony, Song, Yongyu, Liao, Weihong, 2018. Applicability assessment and uncertainty analysis of 
multi-precipitation datasets for the simulation of hydrologic models. Water 10 (11), 1611. 

Gupta, Hoshin V., Kling, Harald, Yilmaz, Koray, K., Martinez, Guillermo F., 2009. Decomposition of the mean squared error and NSE performance criteria: 
Implications for improving hydrological modelling. J. Hydrol. 377 (1), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003. 

Hamon, W.Russell, 1960. Estimating Potential Evapotranspiration. Massachusetts Institute of Technology. 
Harada, Yayoi, Kamahori, Hirotaka, Kobayashi, Chiaki, Endo, Hirokazu, Kobayashi, Shinya, Ota, Yukinari, Takahashi, Kiyotoshi, 2016. The JRA-55 Reanalysis: 

Representation of atmospheric circulation and climate variability. J. Meteorol. Soc. Jpn. Ser. II 94 (3), 269–302. 
Hargreaves, George H., Samani, Zohrab A., 1985. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1 (2), 96–99. 
Hartman, Adam T., 2018. An analysis of the effects of temperatures and circulations on the strength of the low-level jet in the Turkana Channel in East Africa. Theor. 

Appl. Climatol. 132 (3), 1003–1017. 
Hersbach, H. (2018). Operational global reanalysis: progress, future directions and synergies with NWP. European Centre for Medium Range Weather Forecasts. 
Indeje, M., Semazzi, F.H.M., 2000. Relationships between QBO in the lower equatorial stratospheric zonal winds and East African seasonal rainfall. Meteor. Atmos. 

Phys. vol. 73, 227–244. https://doi.org/10.1007/s007030050075. 
Khan, Sadiq I., Adhikari, Pradeep, Hong, Yang, Vergara, H., F Adler, R., Policelli, F., Okello, L., 2011. Hydroclimatology of Lake Victoria region using hydrologic 

model and satellite remote sensing data. Hydrol. Earth Syst. Sci. 15 (1), 107–117. 
Kilavi, Mary, MacLeod, Dave, Ambani, Maurine, Robbins, Joanne, Dankers, Rutger, Graham, Richard, Todd, Martin C., 2018. Extreme rainfall and flooding over 

central Kenya including Nairobi city during the long-rains season 2018: causes, predictability, and potential for early warning and actions. Atmosphere 9 (12), 
472. 

Kinuthia, Joseph Hiri, 1992. Horizontal and vertical structure of the Lake Turkana jet. J. Appl. Meteorol. Climatol. 31 (11), 1248–1274. 
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Detecting trends in flood series and shifts in flood 

timing across Kenya 

 

Abstract 

Floods constitutes one of the main causes of detrimental consequences arising from natural 

disasters, not only in Kenya, but across the globe. The frequency and magnitude of flood events 

in Kenya have increased over the past decade. Observations show a shift in timing and 

variability in flood occurrences in most parts of the country. Trend analysis is useful in 

detecting and supporting the evidence of change in flow series, as well as variability in flood 

timing. In this study, the frequency and magnitude of floods observed in peak over threshold 

(POT) and annual maximum (AMAX) flood series from 1981 to 2016 are compared in 19 

Kenyan catchments. Flood peaks are identified using a threshold technique from Kenyan daily 

discharge data, and notable patterns in the AMAX series are compared to those in the POT 

series, which is created for three distinct exceedance criteria. The timing and variability of the 

annual floods is determined from the AMAX flow. Our findings show that, the AMAX series 

detects more trends in flood magnitude than the POT series, while the POT series detects more 

significant trends in flood frequency than flood magnitude. The sensitivity of the trend to the 

choice of exceedance threshold reveals differing trend patterns across the stations. Flood timing 

is in peak rainfall months of April, May and November and are less variable in most of the 

coastal and western stations, and highly variable in stations whose annual floods occur in dry 

months of June, July, and August. This information on flood characteristics can help to inform 

policy for disaster risk management, infrastructure design and agriculture and ultimately 

support improved livelihoods in Kenya.   

Key words: peak over threshold, annual maximum flood, Kenya, flood magnitude, trend, flood 

frequency, flood timing. 

1. Introduction 

Flooding is among the most detrimental natural hazards worldwide (Berghuijs et al., 2019) and 

with a changing climate there is an expected increase in flood risk globally (Arnell and Gosling, 

2016; Liu et al., 2018). For Kenya, floods are the most common climatic extreme and the 

leading hydro-meteorological disaster (Huho and Kosonei, 2014). There is a growing concern 

that major flooding events in many parts of Kenya in the past decade (Wainwright at al 2021; 
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Wanzala and Ogallo, 2020, Kilavi et al., 2018; McLeod et al., 2021) are indicative of the effects 

of a changing climate. 

Understanding flood characteristics such as frequency, magnitude and timing is important for 

informing policy for disaster risk management, infrastructure design and agriculture, amongst 

other hydrological applications (Rosner, Vogel and Kirshen, 2014; Bezak, Brilly and Šraj, 

2016). Such assessments require information on the probable year to year variations in flood 

characteristics (Parry et al., 2007; Kundzewicz et al., 2014). In addition, consideration of the 

trends in flood data series may result in more accurate flood timing, magnitude and frequency 

estimations (Berghuijs et al., 2017, 2019; Mangini et al., 2018; Sa’adi et al., 2019). Trend 

analysis can be used to investigate whether there is any evidence of an increase in river floods 

in the observational river discharge data. Such analysis requires long records (e.g., more than 

30 years) not only to explicitly distinguish climate variability from climate change induced 

trends (Svensson, Kundzewicz and Maurer, 2005; Vogel, Yaindl and Walter, 2011), but also 

incorporate the impacts of human induced activities such as deforestation and water 

management practices (e.g., reservoirs and irrigation).  

Trend analysis on river flow series have been undertaken at global and regional scales in many 

parts of the world. For example, Svensson, Kundzewicz and Maurer, 2005; Cunderlik and 

Ouarda, 2009; Burn, Whitfield and Sharif, 2016; Vormoor et al., 2016; Berghuijs et al., 2017; 

Mangini et al., 2018; Paprotny et al., 2018; Ávila et al., 2019; Ishak and Rahman, 2019; Zadeh, 

Burn and O’Brien, 2020. However, there is overgeneralization of trend patterns when 

considering a larger spatial extent, thus the need for trend analysis at smaller scales e.g., country 

scale (see Wilcox et al., 2018; Giuntoli, Renard and Lang, 2019; Tramblay et al., 2019). 

Relatively few studies have undertaken river flow trend analysis in Africa (e.g., Nka et al., 

2015; Diop et al., 2018; Degefu et al., 2019), mainly due to data quality issues which may 

affect trend detection (Slater and Villarini, 2017). 

For Kenya, a few studies have attempted to quantify trends in streamflow (e.g., Mwangi et al., 

2016; Langat, Kumar and Koech, 2017; Cheruiyot, Gathuru and Koske, 2018). The highlighted 

studies looked at the trends and variability in rainfall in Kenya and did not look at the changes 

in the frequency and how this varies across different catchments in Kenya.  Despite its practical 

significance, little is known about the temporal characteristics of streamflow and the 

highlighted studies considered only trends in the annual maximum flow and only for one 

catchment and little has been done to quantify trends in both annual floods and peak over 
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threshold (frequency and magnitude). Those studies which have incorporated the frequency 

and magnitude of floods were focused on single river basins, incorporating only a single station 

e.g., Tana River  (Langat, Kumar and Koech, 2017), Malewa river (Nyokabi, Wambua and 

Okwany, 2021), Naivasha (Kyambia and Mutua, 2015). These studies showed that flow series 

for these stations had a statistically significant upward monotonic trend and seasonal variability, 

indicating that the streamflow regime had changed significantly. 

Flood trend analysis looks at trends in the annual maximum river discharge (AMAX), i.e., a 

one value per year flood series (Kundzewicz et al. 2004; 2005). The advantage of this strategy 

is that the events chosen in two consecutive years are independent. However, the AMAX 

technique ignores flood occurrences that are less than the annual maximum in each year but 

are nevertheless significant for society, particularly in terms of losses, and perhaps 

inappropriate for climates with two distinct rainy seasons. The Peak Over Threshold (POT) 

technique (Burn, Whitfield and Sharif, 2016; Mangini et al., 2018) selects all floods over a 

specific threshold that occur throughout a flow record. This allows for a trend in the frequency 

(counts) of floods rather than merely their magnitude to be estimated (Svensson, Kundzewicz 

and Maurer, 2005). Studies looking into trends in POT series do not exist in Kenya even though 

there has been an increase in the frequency of reported flood events across the country. 

Understanding variability in flood timing and seasonality is important for water resources 

planning and management  (Stephens et al., 2015). Changes in the timing of the yearly flood 

have far-reaching consequences for flood-based farming systems especially to the livelihoods 

of people who adjust their floodplain management and agricultural activities to the rise and fall 

of the flood wave (Ficchì and Stephens, 2019). Significant changes in flood timing have been 

found around the world as shown in studies by (Cunderlik and Ouarda, 2009; Burn, Whitfield 

and Sharif, 2016; Blöschl et al., 2017; Ficchì and Stephens, 2019). There has been an overall 

shift in flood timing in East Africa in recent decades (Ficchì and Stephens, 2019) but there has 

been no detailed study for catchments across Kenya.  

Hence, there is a notable gap in the literature associated with temporal characteristics of 

streamflow data in terms of frequency and magnitude in both AMAX and POT as well as the 

country scale flood seasonality and timing in Kenya, and this gap was an important motivation 

for the present study. The objective of this paper is to detect the evidence of statistically 

significant flood trends across Kenya, where flood-based farming systems and livelihoods are 

extensive. High flow indices are derived from river flow discharge series: AMAX, and POT 
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indices using different magnitude and frequency thresholds. First high flow indices were 

derived and subjected to a trend test. Then a sensitivity analysis of the detected trends was 

performed for different flood peak selection criteria. Next the country-scale seasonality in 

flooding was characterised. Last, the changes in the timing of the annual floods. The following 

three research questions are addressed: 

(1) What are the trends in flood magnitude and frequency across Kenya for the period 

1981–2016? 

(2) What is the sensitivity of the detected trends to the selection criterion used to define 

different flood peak series? 

(3) What are the characteristics of country scale seasonality in flooding? 

(4) What are the changes in seasonality and flood timing of the annual floods across 

Kenya? 

2. Study area  

The study is undertaken across Kenyan catchments at 19 river gauging stations (Error! 

Reference source not found.) with varying characteristics (Table 1). These were selected due 

to the frequency and magnitude of the impacts of floods, as well as the availability of river flow 

observations (Table 1). 

Kenya exhibits high variability in physiographic and hydroclimatic conditions. The highest 

point is at about 5000m a.s.l, (mostly areas around central highlands) while the lowest point is 

about 20m a.s.l. (mainly around coastal areas). The vegetation cover is mainly a mixed tree 

cover, grass, and sparse vegetation in most of parts of the country and shrubs and bare land in 

the arid and semi-arid areas of northern Kenya. As a result, Kenya experiences different climate 

related extremes in terms of intensity, magnitude, and timing. 

The rainfall pattern follows a bimodal rainfall seasonality (Ongoma and Chen, 2017) with high 

spatiotemporal variability (Hession & Moore, 2011). Three seasons are experienced: the ‘long 

rains’ of  March–April - May (MAM), non-rainy months of June – July - August (JJA) and, 

the ‘short rains’ of October  - November - December (OND) (Ogallo, 1988; Ongoma et al., 

2015). About 42% of the total annual rainfall is observed during MAM rainfall season 

(Ongoma and Chen, 2017), with the highest intensity observed near the water bodies of the 

Indian Ocean, Lake Victoria, and the Kenyan highlands. 
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3. Data and methods 

3.1. Observed discharge data 

For the study, daily river flow data from 19 sites distributed across the 

country were employed (Table 1, Figure 1). A common data period of 1981 – 2016 was 

adopted for the analysis. Two of the stations (Ndo and Perkerra) did not have the most recent 

data records and only 13 and 21 years of data were available respectively, which may affect 

the shifts in the trend patterns in the two stations. 

Six distinct high flow indices were derived from the daily mean river discharge data for the 19 

stations, and then subjected to the Mann-Kendall test to check for trends. The magnitude of the 

trend slope was also determined for each index for each station. The discharge data used in this 

study does not incorporate in-depth metadata, thus the trends may include the effects of changes 

in flow attenuation (e.g, reservoirs) and land use as well as any impacts of climate change.  

3.2. Flow indices 

The features of high flow regimes were described using six distinct indices. First, the yearly 

maximum daily mean river flow (AMAX) was derived. The second index is the Peak-over 

threshold (POT). Three peak magnitudes were tested as thresholds with the size of the criterion 

established so that, on average, one, three and five POT occurrences were chosen every year 

(Mangini et al., 2019): POT1mag; POT3mag and POT5mag.  If the peaks in a POT series were 

separated by a specific time, they were deemed independent of each other. After an inspection 

of the flow series, a declustering method, which uses a 7 day separation time interval between 

the peak was applied as most of the catchments are less than 40,000km2 (Collet, Beevers and 

Prudhomme, 2017) and thus a concentration time of less than 7 days. This separation time 

generally allow for the flow to recede appreciably between peaks thus selecting a lower 

separation window period for smaller catchments is highly recommended.  Counting the 

number of POTs that occur each year can be used to quantify flood frequency (annual counts), 

and thus three flood frequency indices were derived corresponding to the POT magnitudes: 

POT1freq, POT3freq and POT5freq.The three POT1, POT3 and POT5 series represent the 

magnitude and frequency of the most severe, moderate, and minor floods respectively. In this 

work, the sensitivity of trend results to this threshold selection is evaluated and trends in the 

POT1 flood magnitude data are compared to those of AMAX. 
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A multiple index (MI) was adopted from Mangini et al., (2019). Multiple Index (MI) shows 

the ratio of the magnitude of the mean discharge to the magnitude of maximum discharge of a 

flood series as well as the average yearly outflow for specific stations, which can be used to 

show differences in hydrological flood characteristics. Thus, useful in describing the varied 

flood regimes across Kenya’s different hydroclimatic regions (e.g., wet, arid and semi-arid), as 

well as the effects of human influence such as dam construction and irrigation activities on the 

catchments’ water balance. The MI is the ratio of the mean discharge of a flood series to the 

mean annual flow at each individual station. 

MI = QF/QA                                                                                                                                                                                (1) 

QF represents the mean discharge value of the flow series and QA is the mean discharge 

recorded for an individual station. A significant divergence from the mean flow is indicated by 

higher MI values and for smaller exceedance thresholds, low MI values would be obtained.  

3.3. Trend detection in AMAX and POT series 

The non-parametric Mann Kendall’s (MK) test (Mann, 1945; Kendall, 1975) was used to detect 

trends in AMAX and POTmag flood series. The modified MK test was applied to test for trend 

which incorporates Yue and Wang's (2004) variance correction approach. The effective sample 

size was calculated using serial correlation coefficients for all lags and the slope magnitude 

was estimated using the Thiel-Sen slope algorithm (Sen, 1968). 

Trends in POTfreq were estimated using the Chi-Squared test with parametric Poisson 

regression because unlike the non-parametric Mann Kendall test, it accounts for the 

hierarchical count series that may contain several paired values  (Vormoor et al., 2016; Mangini 

et al., 2018). A two- tailed trend test was applied at 10% significance level to test for the 

statistically significant trends. This was required because the direction of the trends to be tested 

was unknown. 

3.4 Sensitivity analysis of trends to threshold selection 

The number of peaks considered in each flood series are affected by the exceedance threshold 

(λ), where POT1 (λ =1), yields the highest floods recorded at each of the stations and POTn (λ 

=n) yields n flood events in the series. This means that selecting a higher λ would result in a 

lower threshold thus yielding higher number of flood peaks in the series. Different thresholds 

(λ =1, 3 and 5) corresponding to POT1, POT3 POT5 flood series were derived and sensitivity 

analysis of trends to different POT series to the selection of different thresholds (λ) analysed.  
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Threshold selection was aided by the creation of different plots such as mean residual life plot 

that can aid in the determination of a suitable threshold level (Burn, Whitfield and Sharif, 2016). 

Mean residual life plot is a plot of the mean flood excess over a given threshold versus a range 

of threshold values. 

3.5. Flood seasonality 

Seasonality measures (Parajka et al., 2010) are used to characterize the timing and variability 

of the extreme flood events. These are defined by directional statistics (Mardia, 1975). The 

date of occurrence of a flood event is defined as directional statistic through conversion of the 

Julian date of the occurrence of an event to an angular value (Berghuijs et al., 2019; Ficchì and 

Stephens, 2019), where January 1 is Day 1 and December 31 is Day 365 of the flood occurrence 

for the event i following Eq. (2). 

( )
2

365
i i

JulianDate



 

=  
                                                                                        (2) 

Where i  is the angular value (in radians) for the flood date for flood event i , following an 

interpretation that a flood date is a vector with a unit magnitude and a direction given by i . 

For a given sample of n flood events, the mean flood date can be given by the x- and y -

coordinates using Equations (2) and (4). 

( )
1

1
cos

i

ii
x

n


=
= 

                                                                                                     (3) 

( )
1

1
sin

i

ii
y

n


=
= 

                                                                                                     (4)                       

Where x  and  y  represent the x- and y-coordinates of the mean flood date and lie within, or 

on, the unit circle. To obtain the mean direction ( ) of the flood dates, Eq.  (5) was used, 

1tan
y

x
 −

 
=  

                                                                                      (5) 

Where   can be converted back to a day of the year using Eq. (6): 

365

2
MD y


=

                                                                                      (6) 
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The measure of the average time of occurrence of flood events for a given catchment is 

represented by the variable MD, which is expected to be similar for catchments with similar 

hydrologic characteristics (such as size and location). 

To determine a measure of variability of the n flood occurrence about the mean date, a mean 

resultant is defined using Equation (7). 

22

r yx= +
                                                                                     (7) 

Where the dimensionless measure of the data spread is defined by r  and may assume values 

from 0 to 1. A value close to 1 is an indication that all floods in a given sample occurred on the 

same day of the year, while values close to zero point to a higher variability in the date of 

occurrence of flood events for a catchment. Which follows that the higher values of  r  are 

associated with higher regularity in the timing of flood events (higher predictability). More 

details of directional statistics can be found in Burn (1997), and this method was adopted for 

this analysis because it has been used in several flood seasonality studies across different parts 

of the world e.g., (Berghuijs et al., 2019; Ficchì and Stephens, 2019). 

4. Results 

4.1 Frequency of peak events in the flood series 

The mean number of discharge peaks per year varies spatially across Kenyan catchments from 

about 4 to 13 events (Figure 2). The highest number of flood events per year are recorded at 

Perkerra, Mara and Garsen stations. The notably high number of events at Perkerra may be due 

to the shorter data series (large percentage of missing data as outlined in Table 1). However, 

the Garsen and Mara stations have relatively good data records and are mainly arid and semi-

arid, therefore we can be more confident that the high numbers of events are likely to be due 

to the sporadic torrential rains that occur during the rainy months. The mean number of flood 

events per year for the other stations ranges between 6-8. 

4.2 Trends in AMAX and POT1 flood series 

There is considerable heterogeneity in the trend results calculated for the 36-year research 

period (Figure 3). However, positive trends are dominant across 12 stations in the AMAX flood 

series across Kenyan and only 3 stations (Nyangores, Ewaso-Ngiro and Gucha-Migori) show 

negative trends.  
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Statistically significant positive and negative trends at 10% confidence interval in the AMAX 

series are detected in 12 out of 19 stations (Figure 4). The significant positive trends are 

dominant at Garissa, Garsen, Mutonga, Athi-Munyu, Athi-Tsavo, Sondu, Perkerra, Sio and 

Ruambwa stations. The significant negative trends are dominant at Gucha-Migori, Nyangores 

and Ewaso-Ngiro stations. Only three stations (Perkerra, Ewaso-Narok and Ndo) do not show 

trends in the AMAX series. Interestingly, Pekerra has the highest mean number of independent 

discharge peaks but no visible trends in the peaks.  However, in general trends in the same 

direction can be seen for stations in proximity to each other which is evidence of a spatially 

coherent pattern.  

Positive trends in POT1 flood magnitude are found for 11 stations and negative trends for 8 

stations respectively (Figure 5 right).  For flood frequency only three stations (LargeNzioa, 

Munyu and Migori) show negative trends for POT1 (Figure 5 left), whereas the rest of the 

stations show positive trends.Garsen, Yala, Narok, Perkerra, Miriu, Sio, Nyangores and Garissa 

stations show increasing positive trends, and Thiba, Munyu, and LargeNzioa show decreasing 

trends both in flood frequency and magnitude. 

The total number of stations exhibiting statistically significant trends is higher in the POT1mag 

than in AMAX (Figure 6). There is a consistency pattern in the flood change in some 

catchments depicting significantly increasing trends in both the MAX and POT1mag series: 

Garissa, Athi- Munyu, Athi- Tsavo, Ruambwa, Sio, Mutonga etc. Only one station (Ewaso – 

Ngiro) has a significantly decreasing trend both in the AMAX and POT1mag flood series, 

whereas Gucha-Migori has significantly increasing and decreasing trend in the AMAX and 

POT1mag respectively. 

POT1freq flood series show statistically significant trends in 8 out of the 19 stations, 

predominantly in stations in the western part of the country. This suggests a clear pattern in the 

trends in flood frequency being more significant in the western parts of Kenya than in the rest 

of the country, with the exception of the Garissa and Garsen stations. 

4.3 Sensitivity of flood trends to the selection of different flood exceedances thresholds  

There are notable differences in trends in some catchments for the AMAX and POT1mag flood 

series as seen in Figures 4 and 6, which points to the effects of selecting exceedance thresholds 

in deriving POT series. Higher exceedance threshold (λ = 1) gives the most extreme flood 

events, with an average of one event pet year, whereas lower exceedance threshold (λ = 5) 

gives a lower threshold, thus an increase in the number of (smaller) peak events (Figure 7). 
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MIs from the AMAX are the most significant, followed by the MI of the POT1mag series as 

well as the remaining POT series, whereas smallest MIs are derived for the POT6mag flood 

series (Figure 8a).MI values are relatively higher in the small sized arid and the semi-arid 

catchments such as Ewaso-Ngiro, Ewaso-Narok, Perkerra and Mara (Figure 8b). The arid and 

semi-arid climate of these catchments causes generally low mean discharge across the year 

which is offset by intense precipitation events leading to high discharge values. Additionally, 

small catchments, are likely to show an intrinsic high variance in the daily hydrograph, thus 

the high MI values. Mutonga and Thiba show highest MI values. This could be attributed to 

the large dam releases into the rivers resulting in higher mean discharge, especially during rainy 

months. In general, catchments in the western part of the country have medium MI values due 

to rain falling all year round. This is because rainfall falling out of typical seasonal rainfall 

contributes substantially to the mean annual rainfall. 

There is a high sensitivity of the results of the trend analysis to different exceedance thresholds 

in terms of both magnitude and frequency (Figure 9). Half of the stations show significant 

positive and negative trends for high λ. More than half of the stations show significant positive 

trends for λ = 3 and λ = 4. However, there no defined pattern in sensitivities (increasing with 

increase in λ or decreasing with a decrease in across most of the stations for flood magnitude 

(Figure 9a) 

Trend results show high sensitivity to thresholds for flood frequency series as seen in Figure 

9b. There are notable significant trends detected in the POTfreq series across most of the 

stations for increasing value of λ. Half of the stations depict significant increasing positive and 

negative trends with clear negative trends in Ewaso-Narok, Perkerra and Gucha-Migori. for 

threshold values of λ = 3 and λ = 5. There is clear pattern of significantly increasing trends in 

flood frequency across all the stations. 

4.4 Flood timing and variability 

The occurrence of the annual flood in most of the stations is around the months of March, 

April, May, November, and December (Figure 11 panel a). These coincides with the occurrence 

of the ‘long rains’ (March – May) and the ‘short rains’ (October – December). Some stations 

such as Ndo, Perkerra, Mara, Ewaso- Ngiro and Ewaso-Narok, have a mean date of occurrence 

around the months of June, July, and August. 

Predictability is high (indicated by values of r > 0.4) in most of the stations whose annual floods 

occur during the short and long rains, whereas values of r < 0.4 can be seen in the stations in 
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which the flood timing is around the dry months of June, July, and August (Figure 11 panel b). 

There is a consistent spatial pattern in the predictability; stations in the western (Nzio, Sio, 

Yala, LargeNzioa), central (Thiba, Mutonga, Munyu), and coastal regions (Tsavo, Garsen, 

Garissa) show a high tendency in the predictability, whereas stations in the Rift valley region 

(Mara, Amala, Nyongores, Ndo and Perkerra), have low tendency in predictability. 

5. Discussion   

5.1. Trends in AMAX and POT1 series 

In this study, statistically significant trends are detected in the AMAX and POT flow series in 

most of the 19 stations across the country, with only three showing significantly decreasing 

trends in the AMAX. The decreasing trends at Nyangores, Ewaso Ngiro and Migori stations 

are mainly due shorter data records of the flow series used in this study. The available data 

does not include the most recent years as compared to other stations and this may fail to capture 

the most recent floods in those stations. The trends are consistent spatially for stations on Tana 

River (Thiba, Garissa and Garsen), Athi (Tsavo, Munyu) and Nzioa (Ruambwa). This may be 

attributed to the increasing frequency of rainfall events in these parts of the country (Huho and 

Kosonei, 2014; Wainwright et al., 2021). 

The significant trend in both AMAX and POT1mag varies from one station to another. For 

instance, there is a general tendency of increasing trend in flood frequency and magnitude at 

Garissa, Athi- Munyu, Athi- Tsavo, Ruambwa, Sio, Mutonga, while Gucha-Migori, Nyangores 

and Ewaso-Ngiro show decreasing trends. Trend patterns at Garissa, Ruambwa and Sio agree 

to the findings of Nasambu (no date; Langat et al., 2020) et al., (2018); Langat et al (2020), 

who found significant increasing trends due to increased frequency of rainfall events at these 

stations. However, the above results also point to a mixed pattern in trends in stations that may 

be from the same region. These trends patterns are important in indicating the existence of 

different flood drivers in those regions. For example, Ruambwa and Gucha are both located in 

western part of Kenya, which receive rainfall all year round, but the two have contrasting trend 

patterns. Thus, there is a lot of variability within the trends and their significance, and there is 

often a difference between the magnitude and the frequency. This finding is like studies from 

around the world underlining the complexity of making regional generalisations about trends 

such as Mangini et al., (2019) and Arheimer and Lindström (2015). Garsen station at the 

downstream point on Tana River has a significantly increasing trend in flood frequency but not 

in magnitude, whereas Mara and Amala have decreasing trends in two indices. This may be 
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mainly because rivers in semi-arid environments, such as the Tana and Mara, are particularly 

vulnerable to fluctuations in water availability caused by decreases in rainfall, increases in 

water withdrawals, and changes in seasonal flows (Langat et al 2020). Tana for example, is 

highly affected by human activities such as irrigation schemes, domestic consumption, and 

hydropower generation (Langat, Kumar and Koech, 2017; Langat et al., 2019). 

In addition, both Tana and Mara rivers are classified as water limited catchments with a dryness 

index of 1.1 annually. This means that there is imbalance in water demand and any increase in 

the rainfall is accompanied by higher temperatures resulting in high evapotranspiration, thus 

increasing the dryness index further. Therefore, most of the rainfall in these catchments is 

mostly lost to evapotranspiration (Mwangi et al., 2016). 

5.2. Sensitivity of trends to different POT threshold selection 

Flood frequency trends can be seen across all thresholds whereas for POT-M series, with more 

than one event per year on average, the percentage of stations exhibiting significant trends in 

flood magnitude is high, and only a few significant positive trends are detected for λ = 1. 

Sensitivity of trends to different POT series when different thresholds are selected show 

different trend patterns and varies from one station to another. Generally, there is no clear 

pattern in trends in POTmag series in response to different thresholds. This is because the flood 

series is highly sensitive to the threshold selection and varies considerably from one station to 

another. This may also be alluded to non-homogeneity in flood characteristics at different 

stations across Kenya. 

When we considered smaller floods (POT5), we observed a general increasing trend in flood 

magnitude for stations in western parts, while a clear pattern toward decreasing flood 

magnitude in the southern and coastal stations. This is because western stations are 

characterised by less intense rainfall spread across all year round, unlike ethe coastal and 

southern regions which receive rains mainly in rainy months (March, April, May, October, 

November) and mostly dry for the rest of the months. These decreasing trends are pronounced 

at Tsavo and Mara station. The overall spatial pattern of decreasing flood trends in the POT3 

series is same to studies in other regions such as to Mediero et al.,  (2015). 

5.3. Flood timing and variability 

The timing of the annual flood is assessed using the AMAX flow for the 19 stations across the 

country. Results show flood timing occurs in the peak rainfall months of April and May for the 

‘long rains’ (March – April – May) and October and November for the ‘short rains mostly for 
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western, central highlands and the coastal stations. Our findings are like those in Stephens et 

al., (2015), which showed some extent of correlation of precipitation and floodiness in East 

Africa by comparing the anomalies in precipitation and floodiness on monthly basis. However, 

some stations lying on the same river, show varied timings of floods in different months, but 

the reasons for this are not clear.  For example, Tana River and Athi river in the coastal area 

and Nzioa river in the western areas. The upstream gauging stations on Tana River (Mutonga 

and Garissa) show the occurrence of annual floods in the months in November and December. 

The downstream gauging stations (Garsen and Hola) show this occurrence in April and May. 

The reverse is observed for stations located along the Athi river. One possible reason for this 

observation may be alluded to the high predictability of the short rains (October-November-

December) (Kilavi et al., 2018), which is captured in the daily hydrograph of these downstream 

stations. However, more research is needed to determine the extent of this nonlinearity at 

different temporal or spatial scales, considering the role of different precipitation periods in 

flood generation in different regions (Froidevaux et al., 2015). Also, there are stations (e.g., 

Mara, Amala, Ewaso-Ngiro, Perkerra) showing the occurrence of floods in the dry months of 

July and August. These stations are in arid and semi-arid areas of the country and are mainly 

characterised by low flows and any sporadic rainfall falling in those offseason months may 

lead to a rise in flow, thus depicted in the AMAX index. This implies increased likelihood of 

flooding events both in rainy and non-rainy seasons, which may result in upward trends in 

flood frequency in these stations. 

There is a high tendency of flood predictability in rivers that flood during peak rainfall months 

in Kenya and the reverse is true. For example, flood predictability is high for the stations 

(Ruambwa, Garissa, Garsen, Munyu) whose flood timing occurs in peak rainfall months and 

low for those whose floods occur in dry months (Perkerra, Ndo, Ewaso-Ngiro, Mara, Amala). 

The results also show defined regional spatial pattern in flood predictability across the country. 

For example, there is correspondence in predictability for stations located in the western and 

costal stations, which are characterised by the annual floods occurring in the for peak rainfall 

months. Whereas for the stations located in the Rift valley region, there is a clustered pattern 

for annual floods occurring in dry months. 

6. Conclusion 

Our efforts to identify regional and basin scale trend signals yielded no spatial flood trend 

pattern especially for the POTmag flood series. In every catchment in Kenya, there emerged 

mixed trends for most of the flood indices used. Mixed and inverse trend signals were also 
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observed between adjacent gauging stations in the same and neighbouring river catchments. 

The observed complex trend signals between adjust streamflow stations may be attributed to 

the presence of very complex climate, topography, land cover, and land use systems in different 

parts of the country, which showed greater variation with short horizontal distances. 

With a few exceptions, such as the trends in flood frequency, this study shows that the number 

of catchments exhibiting significant trends differ across the country and are not consistent 

across all flood series. Also, the trend significance in both AMAX and POT1mag vary from 

one station to another. For this reason, it would be more informative to consider trend analysis 

within larger scale hydro-climatic regions, because trend signal within a region can be 

considered less sensitive. Additionally, There is need therefore to understand such trends, but 

this requires careful identification of triggers and hydrological processes (Slater and Wilby, 

2017; Berghuijs et al., 2019). This is useful in unveiling the degree of this nonlinearity over 

different temporal and spatial scales, whilst considering the influence of the role of different 

precipitation periods for flood generation in different regions across Kenya. However, such 

studies require more reliable data which is currently lacking in Kenya. For example, the cause 

of flood trends in Kenya is still unclear due to a limited understanding of regional variations in 

flood‐generating mechanisms e.g. in  (Tramblay et al., 2019),  land- use changes, reservoir 

construction and other local effects (Svensson, Kundzewicz and Maurer, 2005) and the 

uncertainty in projections of future flooding under climate change  (Kundzewicz et al., 2014; 

Berghuijs et al., 2019). 

In conclusion, the presence of statistically significant trends in flood series across Kenyan 

catchments investigated in this study. In comparison to previous trend studies, three novel 

aspects are explored. First, significant trends detected across the country in two flood series: 

annual maximum (AMAX) and the peak over threshold (POT) are compared. Then a sensitivity 

analysis of trends in floods to the selection of different exceedance thresholds in the POT flood 

series is analysed. Finally, the timing and variability in the annual floods across the stations 

using the annual maximum flow is explored. This study supports the importance of analysis of 

trends at country level as it highlights key characteristics that may not be captured in regional 

or global analysis. The findings are key in providing information on flood characteristics to 

help inform policy for disaster risk management, infrastructure design and agriculture and 

ultimately support improved livelihoods in Kenya.   
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Figure 10:Annual flood seasonality measure for Kenya stream-gauge data. (a) Average flood 

timing (θ) and (b) Interannual variability of flood timing (r [−]) shown by different color 

saturation (the higher the variability is, the lighter the saturation is). The filled rectangular dots 

are reported at each of the 19 river gauging stations. 

 

List of tables 

Table 1: Characteristics of the Kenyan catchments studied, human influence and daily mean 

river flow gauge data availability information .Missing data is expressed as a percentage of the 

available period.  
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Figure 1: Location of the 19 river gauging stations located in the Kenyan catchments studied. 
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Figure 2: Mean number of independent flood peaks per year at each of the 19 gauging stations in Kenya. 
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Figure 3: Mann–Kendall (MK) test Zs statistics in the AMAX discharge series across 19 Kenyan stations 
studied for the period 1981- 2016. 

307x232mm (38 x 38 DPI) 

Page 25 of 34

URL: http://mc.manuscriptcentral.com/hsj

Hydrological Sciences Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

Figure 4: Trends in the annual maximum flood series (AMAX) for the period 1981 -2016. Filled circular 
symbols indicate the direction of the trend slope positive (red), negative (blue) and grey (no trend) trends 

at 10% significance level.  The size of the circles indicates the statistically significant trends. 
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Figure 5: Mann–Kendall (MK) test Zs statistics in the POT1freq (left) and POT1mag (right) flood series 
across the 19 stations studies for the for the period 1981- 2016. 
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Figure 6:Trends in the POT1freq (left) and POT1mag (right) for the period 1981 -2016. Filled circular 
symbols indicate direction of the trend slope, significant positive (red), negative (blue) and grey (no trend) 

trends at 10% significance level. The size of the symbol indicates the statistically significant trends. 
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Figure 7: Visual plots for exceedance threshold selection using (a) mean residual life plots (left panel) and 
(b) flow duration curves for selected study stations. The vertical lines show different thresholds (λ =1 for 

red, λ =3 for blue and λ =5 for green). 
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Figure 8:(a) Box plots for the Multiple Index (MI) for the different peak over thresholds (POT) flood series 
and the annual maximum (AMAX) for all the 19 stations. The bold line represents the 50th percentile; boxes 
and whiskers show the 25th and 75th percentiles, and the 10th and 90th  percentiles.The mean number of 
events per year for POT thresholds (λ) considered are one (POT1), three (POT3) and five (POT5). (b) MI for 

POT1mag flood magnitude at the each of the 19 gauging stations across Kenya. 
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Figure 9: The sensitivity of trends in the POT series to the selection of different exceedances thresholds (λ) 
for different mean number of floods per year for POT1, POT3 and POT5 (a)magnitude and (b)frequency. 

Significant trends (expressed as percentages) in flood magnitude at 10% significance level with a threshold 
level λ range of 1, 3 and 5 mean events per year Different colors and symbols represent the different 19 

stations considered in the study. 
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Figure 10:Annual flood seasonality measure for Kenya stream-gauge data. (a) Average flood timing (θ) and 
(b) Interannual variability of flood timing (r [−]) shown by different color saturation (the higher the 

variability is, the lighter the saturation is). The filled rectangular dots are reported at each of the 19 river 
gauging stations. 
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River 

Name 

Catchment 

Outlet point 

Station 

ID 

Lon Lat Drainage 

Area 

(km2) 

Mean 

Elevation 

(m.a.s.l) 

Mean 

Annual 

Rainfall 

(mm) 

Annual 

Discharge 

(m3s-1) 

Catchment 

Characteristics 

Human Influence First 

& Last 

year of 

record 

Record 

length 

(years) 

Amount 

missing 

(%) 

Dams Irrigation  

 schemes 

Tana Tana Garsen 4G02 40.11 -2.28 80 760 720 672 135.8 Semi-arid plains 9 11 1981-

2016 

36 58.2 

Tana Tana Garissa 4G01 39.7 -0.45 32 695 870 868 169.3 Highlands on the 

upstream & 

semi-arid plains 

in the lowland 

8 7 1981-

2018 

38 14.2 

Nzioa RuambwaBridge 1EF01 34.09 0.12 12 643 1740 1488 151.2 Dense forest 

cover (highlands) 

& low trees & 

bushes (lower 

reaches) 

2 4 1981-

2018 

38 13.6 

Galana Galana Tsavo 3G02 38.47 -2.99 6560 930 628 3.3 Semi-arid 

savannah plains 

3 1 1981-

2015 

35 59.6 

Gucha Gucha Migori 1KB05 34.21 -0.95 6 310 1650 1435 45.0 Eastern lowlands 

with dense 

vegetation cover 

0 2 1981-

2015 

35 47.8 

Athi Athi Munyu 3DA02 37.19 -1.09 5689 1730 822 18.8 Highlands and 

forest cover 

3 1 1981-

2017 

37 21.6 

Nzioa Large Nzioa 1BD02 35.06 0.76 3878 1720 1267 15.3 Dense forest 

cover 

1 1 1981-

2011 

31 28.8 

Sondu Sondu Miriu 1JG04 34.80 -0.33 3444 2017 1614 53.9 Low lying plains 

(western) & 

highland 

(Eastern) 

2 2 1981-

2018 

38 64.4 
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Mara Mara  1LA04 35.04 -1.23 2977 2100 1262 11.8 Low lying 

shrubs, semi-arid 

0 1 1981-

2015 

35 77.7 

Yala Yala 1FG02 34.27 0.04 2700  1696 40.8 Swampy 0 0 1981-

2019 

39 59.6 

Ewaso Ewaso Narok 5AC10 36.73 0.43 2597 1600 880 5.3 Low lying shrubs 

& mainly semi-

arid 

0 2 1981-

2018 

38 26.5 

Tana Mutonga 4EA07 37.89 -0.38 1867 1830 1427 35.5 Highlands and 

forest cover 

0 1 1981-

2016 

36 44.2 

Ewaso Ewaso Ngiro 5BC04 36.91 0.09 1837 1700 972 20.6 Low lying shrubs 

& mainly semi-

arid 

0 0 1981-

2019 

39 35.0 

Sio Sio 2EE07A 34.14 0.39 1011 1650 1822 15.5 Low trees & 

bushes & 

swampy in lower 

reaches 

0 1 1981-

2018 

38 18.1 

Turkwel Ndo 2C07 35.65 0.45 897 1133 1371 9.1 Extensive 

palaeo-

floodplain & arid 

conditions 

0 1 1981-

1993 

13 47.2 

Mara Amala 1LB02 35.44 -0.89 695 2100 1377 6.8 Low lying 

shrubs, semi-arid 

0 0 1981-

2017 

37 25.6 

Mara Nyangores 1LA03 35.35 -0.79 692 2008 1262 11.8  Semi-arid 

savannah plains, 

low lying shrubs, 

semi-arid 

0 0 1981-

2017 

37 15.5 

Turkwel Perkerra 2EE07A 35.97 0.46 371 1023 832 5.7 Extensive 

palaeo-

floodplain and 

arid conditions 

1 1 1985-

2005 

21 50.1 
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A4: GR4J model simulations and observations across some of the Kenyan catchment 

 

 

 

 

Figure A4.1: - Observed vs. simulated hydrograph over calibration (red) and simulation (blue; top panel) and interannual daily mean 

streamflow and Precipitation (over simulation period) at Nzioa -Ruambwa 



 

 

Figure A4.2: - Observed vs. simulated hydrograph over calibration (red) and simulation (blue; top panel) and interannual daily mean 

streamflow and Precipitation (over simulation period) at Sio 



 

 

 Figure A4.3: - Observed vs. simulated hydrograph over calibration (red) and simulation (blue; top panel) and interannual daily mean 

streamflow and Precipitation (over simulation period) at Yala 



 

 

 

Figure A4.4: - Observed vs. simulated hydrograph over calibration (red) and simulation (blue; top panel) and interannual daily mean 

streamflow and Precipitation (over simulation period) at Sondu-Miriu 



 

 Figure A4.5: - Observed vs. simulated hydrograph over calibration (red) and simulation (blue; top panel) and interannual daily mean 

streamflow and Precipitation (over simulation period) at Mara. 



A5a: Sensitivity analysis sample results: - Sensitivity indices of GR4J model parameters 

 

 

 

Figure A5.1: - First order and total effect Sobol’ sensitivity indices for GRJ4 model parameters 

across Kenyan catchments 



 

 

Figure A5.2: - First order and total effect Sobol’ sensitivity indices for GRJ4 model parameters 

across Kenyan catchments 

 



 

 

Figure A5.3: - First order and total effect Sobol’ sensitivity indices for GRJ4 model parameters 

across Kenyan catchments 

 



A5b: Sensitivity analysis sample results: - GR4J model parameters interactions 

 

Figure A5.4: - KGE vs, GR4J model parameter interaction from Sobol’ sensitivity analysis for 

Tana Garissa 



 

 
Figure A5.5: - KGE vs, GR4J model parameter interaction from Sobol’ sensitivity analysis for 

Nzioa Ruambwa 



 

1. Paper Title: Unveiling flood generating mechanisms across Kenya 

 

2. Message of the paper:  Acknowledging that there has been a shift in the frequency and magnitude 

of floods in recent decades across Kenya, we assess different causes/flood generating drivers to 

understand their contribution to floodiness, with particular interest to quantitatively establish 

their relative importance and change over time in different catchments. 

3. Introduction 

Flooding is classified among the most detrimental natural hazards worldwide (Berghuijs et al., 

2019; Kundzewicz et al., 2014; Paprotny et al., 2018) , and with the changing climate there is 

expected increase in flood risk globally (Arnell et al., 2016; Liu et al., 2018). For Kenya, floods is 

the most common climatic extreme and the leading hydro-meteorological disaster (Huho & 

Kosonei, 2014).   

Flood timing, magnitude and frequency are useful in informing the trends in river flooding 

(Berghuijs et al., 2019;2017). For instance, the timing of floods in East Africa has shifted in recent 

decades (StephensElisabeth et al., 2015), but trends in flood magnitudes are less clear (Coughlan 

de Perez et al., 2017). There is need therefore to understand such trends, but this requires 

carefully identification of triggers and hydrological processes (Berghuijs et al., 2019; Slater et al., 

2017). The causes of historical flood trends is still unclear due to a limited understanding of 

regional variations in flood‐generating mechanisms (Tramblay et al., 2019)and the uncertainty in 

projections of future flooding under climate change  (Berghuijs et al., 2019; Kundzewicz et al., 

2014). 

Factors other than rainfall play an important role in controlling floods (Slater et al., 2015). These 

factors include storage components such as the land surface and subsurface memory 

(groundwater, soil moisture) and transfer components such as the interaction between the spatial 

and temporal rainfall patterns and the river network configuration and the catchment 

concentration time (the time it takes precipitation to reach the river mouth), as well as man‐made 

interventions such as reservoirs (Coughlan de Perez et al., 2017). Accordingly, it follows that the 

most extreme amount of monthly precipitation ever recorded (for example) may not correlate 

with the most extreme flood (Stephens et al., 2016). Therefore, a number of studies have 

documented causes of flooding but only for small river basins or number of flood events (Blöschl 

et al., 2013), identified only a single dominant mechanism driving river flooding at each site 

(Berghuijs et al., 2016), thus overlooking the fact that even at a single site, individual floods can 

arise through different mechanisms (Blöschl et al., 2013). 

Classification of flood generating mechanism across numerous catchments are available for many 

parts of the world (Berghuijs et al., 2017), such as continental United States (Berghuijs et al., 

2016), Europe (Berghuijs et al., 2019) and Sub-Saharan Africa (Coughlan de Perez et al., 2017). 

However, for Kenya, there is no reproducible quantitative mapping of the importance of different 

flood‐ generating mechanisms. Also, under the changing climate, the significance of different 

flood‐generating mechanisms may shift over time, hence, the relative importance of flood drivers 



may shift over time, but to date there has been no systematic effort to detect whether such 

changes are taking place in Kenya. 

4. Research Paper Objectives 

The main objective of this paper is to assess the associated flood generating mechanism, identify 
which is most significant in simulating flood peaks and how they have changed overtime in Kenyan 
catchments. 

Specific research questions are: 

i. What are the dominant flood generating mechanisms in Kenyan catchments? 

ii. What is the average timing of river flooding in terms of mean date of occurrence and 
floodiness over Kenya? 

iii. What is the relative importance of the identified flood generating mechanisms? 

iv. Has the relative importance of flood generating mechanisms changed over time? 

5. Data and Methods used 

5.1.1. Maximum annual flood dates/Water level 

The Kenya Water Resource Authority will provide the daily river discharge and water level data 
for the selected catchments. The maximum flood dates will be computed from the river discharge 
data available for the 19 stations with consistent long data records. Analyzing the dates of the 
floods will provide deeper insights into the processes driving change than analyzing flood 
magnitudes alone. In addition, the date can be identified equally well from discharge and water 
level data which increases the temporal and spatial. 

5.1.2. Daily Precipitation data 

This study will incorporate datasets based exclusively on reanalysis data i.e ERA-5 and CHIRPS V2.0, which 
is combined gauge, satellite and reanalysis. If we cannot get daily observed gauge station data from KMD, 
CHIRPS will be used as a base observation data. 

5.1.3. Soil moisture data 

 

5.2. Methods 

5.2.1. Definition of flood generating mechanism 

We will focus on processes that drive flooding (e.g., rainfall), rather than catchment properties (e.g., 

land cover) and the meteorological drivers (e.g. ENSO and IOD). We follow the three major mechanisms 

that may lead to flooding have been classified by Berghuijs et al. (2016) (.  

5.2.2. Seasonality characteristics 

The seasonality of flooding and flood‐generating mechanisms will be characterized by circular statistic 

(Berghuis 2016;2019, Boschl….2017), then quantify the mean date of occurrence (day of year) of all the 

processes. 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019WR024841?casa_token=8vOqze4_bWEAAAAA%3A2kHFsRgLDlVnD1B43wap6_idd43YRysQfAFPVR1OuusIQCFOIFnU72lwJpjc0P2mDszA-5PnYjywsA#wrcr23990-bib-0008


5.2.3. Relative importance of the flood generating mechanisms 

We will quantify the relative importance of the established flood‐generating mechanisms for each 

catchment following the linear algometric applied in (Berghuis et al 2019) 

5.2.4. Changes in relative importance over time 

To assess whether the relative importance of the established flood drivers changes over the period of 

our study analysis, we use the linear algometric applied in (Berghuis et al 2019), estimate the relative 

importance of the mechanisms separately for the periods  for two split periods (e.g. 1960‐1984 and 

1985‐2010 and compare their differences in each catchment. 

6. Results / Graphs expected 

1) spatial maps showing spatial pattern of the timing of maximum annual flows and the flood‐driving 
mechanisms; 3) Spatial map showing seasonality characteristics of floods and flood generating 
mechanisms. 

7.  Discussion 

Compressive discussion covering trends, seasonality, and attribution of flooding across Kenya. 

8.  Conclusion 

Draw a conclusion from the results and how best the research question will be answered by the 
research and possible recommendations. Does my research agree with the earlier studies over 
the region applying different hydrological models, etc? 

 

Potential journal: HESS, Hydrology and Earth System Sciences, https://www.hydrology-and-earth-
system-sciences.net/ 

Potential partners / co-authors (TBC): Maureen Anyango Wanzala, Hannah Cloke, Liz Stephens Andrea 
Ficchi, (University of Reading), Shaun Harrigan (European Centre for Medium Range Forecasts)) 
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