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Abstract
In variational assimilation, the most probable state of a dynamical system under
Gaussian assumptions for the prior and likelihood can be found by solving a
least-squares minimization problem. In recent years, we have seen the popu-
larity of hybrid variational data assimilation methods for Numerical Weather
Prediction. In these methods, the prior error covariance matrix is a weighted
sum of a climatological part and a flow-dependent ensemble part, the latter being
rank deficient. The nonlinear least squares problem of variational data assim-
ilation is solved using iterative numerical methods, and the condition number
of the Hessian is a good proxy for the convergence behavior of such meth-
ods. In this article, we study the conditioning of the least squares problem in a
hybrid four-dimensional variational data assimilation (Hybrid 4D-Var) scheme
by establishing bounds on the condition number of the Hessian. In particular,
we consider the effect of the ensemble component of the prior covariance on
the conditioning of the system. Numerical experiments show that the bounds
obtained can be useful in predicting the behavior of the true condition number
and the convergence speed of an iterative algorithm
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1 INTRODUCTION

In weather forecasting, we use mathematical and numerical models to describe the system dynamics of the ocean
and atmosphere. These models are highly nonlinear and often sensitive to noise in initial conditions. Because
of the nonlinearity and instability, random perturbations in the initial data and errors in the model amplify
rapidly through time, producing unreliable predictions.1,2 In variational data assimilation, the goal is to find the
maximum Bayesian a posteriori estimate of the system state from which to initialize the model. Major opera-
tional centers worldwide have adopted the four-dimensional variational assimilation scheme (4D-Var) for envi-
ronmental forecasting in recent years. Similar applications arise in other fields such as physics, biology, and
economics.1,3,4

In 4D-Var, we aim to obtain an optimal initial state variable (conventionally called the “analysis”) by solving a non-
linear least squares problem, in which we try to find the best fit between a set of observations over a time window and
an a priori estimate of the state at the start of the window, known as the background. In the case where observations
are only given at one time, the method becomes three-dimensional variational assimilation, or 3D-Var. We assume that
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the background state and observations have Gaussian, unbiased errors, with covariance matrices B and R respectively.
Traditional variational data assimilation methods have used a climatological estimate4 for the background error covari-
ance matrix B, where flow-dependent ensemble information is not incorporated into the system.5,6 Recent developments
utilize a hybrid approach, in which an ensemble background error covariance matrix is estimated with ensemble mem-
bers and then combined with the climatological part. This has a clear advantage of bringing in the variability of the
system and updates the statistics in each prediction window, giving flow-dependent information that can improve the
accuracy of predictions.4 However, due to computational restrictions, the affordable number of ensemble members is nor-
mally small, which leads to a rank deficient ensemble background error covariance matrix. The method of combining the
ensemble parts with the conventional 4D-Var is called Hybrid 4D-Var. In this method, B is given by B = (1 − 𝛽)B0 + 𝛽Pf .
Here, B0, Pf are the climatological background error covariance and the ensemble error covariance matrix, and (1 − 𝛽),
𝛽 are their weights, where 𝛽 is a scalar. For the details of the hybrid method, we refer readers to the review paper of
Bannister.4

In this article, we are especially interested in establishing the relationship between the conditioning of Hybrid 4D-Var
and the weight 𝛽 on Pf . The 4D-Var problem is usually solved using iterative gradient methods, such as conjugate
gradient or Quasi-Newton methods.1,4 The condition number of the Hessian can be used to estimate the number of
iterations required for convergence.7,8 In addition, the condition number also reveals the sensitivity of the minimiza-
tion problem with respect to random noise.7 Here we establish that, in Hybrid 4D-Var, a transition point exists where
the condition number of B sharply increases with the weight on Pf . Since Pf is rank deficient,1,4-6 adding the ensem-
ble background error covariance matrix may cause difficulties for solving the nonlinear least-squares minimization
problem1,4-6 and an adequate preconditioning scheme becomes desirable. This is typically achieved through a Con-
trol Variable Transformation (CVT).1,4 CVT uses a decomposition of B0 and Pf to transform the state variable such
that the conditioning of the Hessian matrix is improved.1,4 Implementation details of CVT are frequently described
in previous works on 4D-Var3,5,6,9 and Hybrid 4D-Var.4 In terms of practical applications of Hybrid 4D-Var, we note
that the nonlinear least-squares problem is often linearized and solved as a sequence of linear least-squares mini-
mizations. This is known as the incremental 4D-Var method1,3,4 and is equivalent to an approximate Gauss–Newton
method.10

In practice, it is useful to understand the contribution of each component of DA, in such a way that the impact
on the conditioning can be predicted when these components change. This then motivates a comprehensive theory
that can predict the conditioning while separating the contribution of each error component (B0,Pf ,R), and relat-
ing it to the parameters that characterize these components. We note that both preconditioned and unpreconditioned
4D-Var are implemented by major operational centers (such as the UK Met Office). Such theories have previously
been constructed for conventional 4D-Var. Haben et al.3 established a theory to estimate the conditioning of a pre-
conditioned 4D-Var system. This work is later developed by Tabeart et al.8,9 for both unpreconditioned 3D-Var and
preconditioned 4D-Var with Control Variable Transformation (CVT). In Tabeart et al.’s studies, a bound estimation is
proved for the conditioning of the system, in which the contributions of the background error covariance matrix and
observation error covariance matrix are separated. The impact of each component is then associated with its char-
acterizing parameters. The research of Haben et al.3 and Tabeart et al.8,9 are tested and analyzed using small scale
examples. However, they are extrapolated to justify observations in large scale real-life applications. To give a few exam-
ples, Mercier et al.11 used the analysis of Haben et al.3 to explain the convergence behavior of a block Krylov method
for a 3D-Var application;11 Desroziers et al.12 cited the same result of Haben et al.3 to guide their design of a precondi-
tioned Lanczos/Conjugate Gradient algorithm. Hatfield et al.13 cited Haben et al.’s analysis3 to explain the effect of an
increasing model error on the convergence of an incremental 4D-Var; Aabaribaoune et al.14 used the result of Tabeart
et al.8 to analyze the convergence speed of a BFGS algorithm for solving a 3D-Var system, in the application of ozone
profiling.

In this article, we aim to extend previous studies of Haben et al.3 and Tabeart et al.8,9 to a hybrid system. In partic-
ular, we study the impact of Pf on the condition number of the Hessian matrix, for both unpreconditioned cases and
preconditioned cases with CVT.

We outline this article as follows. In Section 2, we briefly formulate the problem of Hybrid 4D-Var and introduce the
Hessian matrix; in Section 3, we establish the theory of conditioning for unpreconditioned Hybrid 4D-Var and precondi-
tioned Hybrid 4D-Var with CVT; in Sections 4 to 6, we provide multiple numerical experiments to illustrate the theories
and analyze the conditioning; in Section 7, we show how the behavior of the condition number of the Hessian predicted
by our theory is reflected in the convergence speed of a conjugate gradient algorithm. Section 8 gives a general summary
of the results.
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2 PROBLEM FORMULATION

In this section, we introduce the Hybrid 4D-Var method, the incremental method, the preconditioning technique of
Control Variable Transformation, and the Hessian matrix associated with the unpreconditioned and preconditioned
least-squares problems.

2.1 A general formulation of the Hybrid 4D-Var

A general formulation of the 4D-Var is given by Problem 1.

Problem 1. Solve for the optimal initial state xa by solving a minimization problem given by,

⎧
⎪
⎪
⎨
⎪
⎪
⎩

xa = arg min
x0∈Rn

 (x0),

 (x0) ∶= 1
2
||x0 − xb||2B−1 +

1
2

∑N
i=0||yi −i(xi)||2R−1

i
,

xi ∈ Rn, yi ∈ Rp, B ∈ Rn,n, Ri ∈ Rp,p, i ∶ Rn → Rp,

(1)

where i is the nonlinear observational operator; yi is the vector of observational measurements, taken at
time ti; xi is the state variable at time ti, given by,

xi =i,i−1(xi−1) =i,0(x0), (2)

i,i−1 ∶ Rn → Rn is the nonlinear model, andi,0 =i,i−1 ⋅i−1,i−2 · · ·1,0 is a direct product (composi-
tion) of them. The vector xb ∈ Rn is the prior information given by the model at t0, known as the background
state. A simplified problem, given by 3D-Var, is a special case of the general 4D-Var problem where N = 0,
meaning there are only observations at time t0.

In Hybrid 4D-Var and 3D-Var, we follow the formulation given by (1), but replace the background error covariance
matrix B with B = (1 − 𝛽)B0 + 𝛽Pf . We note that the problem involves solving a nonlinear least squares problem, and it is
difficult to implement directly when the problem is large scale. Instead, this is often replaced with a linearized incremental
formulation, which we describe next.

2.2 Incremental Hybrid 4D-Var, control variable transformation and the Hessian
matrix

In practice, especially in NWP, Problem 1 is often solved using the incremental method. In incremental 4D-Var, the
nonlinear least squares problem is replaced with a sequence of linear least squares problems with a cost function of

 (𝛿xk
0) =

1
2
||𝛿xk

0 − 𝛿xk
b||

2
B−1 +

1
2

N∑

i=0
||dk

i −Hi𝛿xk
i ||R−1

i
, (3)

where the vector dk
i is known as the innovation, defined by dk

i = yi −i
(

xk
i

)
; the linear operator Hi is the Jacobian ofi,

and the vector 𝛿xk
b is the increment, given by 𝛿xk

b = xk
0 − xk

b; the vector 𝛿xk
i is computed from 𝛿xk

i = Mi,0𝛿xk
0. The model

operator Mi,0 is given by Mi,0 =
∏i

j=1Mj, where Mj is the Jacobian ofj,j−1. At each outer iteration k (the outer loop), we
minimize (3) to solve for the increment, and then xk

0 is updated for the next iteration.
We now introduce the Hessian matrix of the cost function  in Problem 1, which is given by,3,9

S4D =
(
(1 − 𝛽)B0 + 𝛽Pf

)−1 +
N∑

i=0
(HiMi,0)TR−1

i HiMi,0.

The sum of the matrix product above can be written in a simple compact form.
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Notation 1. The matrix Ĥ is the general observation operator, given by Ĥ ∶=[
HT

0 , (H1M1,0)T , … , (HN MN,0)T
]T ∈ Rp(N+1),n, where R̂ is a block diagonal matrix with its ith diagonal block

given by Ri.

Following Notation 1, we can rewrite the Hessian matrix as follows,3,9

S4D = ((1 − 𝛽)B0 + 𝛽Pf )−1 + ĤTR̂−1Ĥ. (4)

In the case of Hybrid 3D-Var, we recall that it is a special case of 4D-Var with N = 0 and its Hessian is given by

S3D = ((1 − 𝛽)B0 + 𝛽Pf )−1 +HT
0 R−1

0 H0. (5)

In applications, preconditioning techniques are often applied to improve the conditioning of the system. Control Vari-
able Transformation (CVT) is one of the popular preconditioning techniques. The detail of CVT is described by Nichols,1
Bannister,4 and Buehner.15 In this approach, we utilize factorizations of B0 and Pf , given by

B0 = UTU, Pf = XT
f Xf , where U = B1∕2

0 and Xf =
1

√
m − 1

[
x1 − x, x2 − x, … , xm − x

]
, (6)

and x1, x2, … , xm are ensemble members, m is the number of samples and x is the ensemble mean. These matrices are
then used to transform the state variable as follows,4

Uh𝛿v = 𝛿x, where Uh =
[√
(1 − 𝛽)U

√
𝛽Xf

]
∈ R

n,n+m. (7)

Here 𝛿x ∈ Rn is the increment of the state variable and 𝛿v is the increment of the control variable. Applying this transform
to (3) leads to a new cost function that reads

J
(
𝛿vk

0
)
= 1

2
|
|
|
|
|
|
𝛿vk

0 − 𝛿vk
b
|
|
|
|
|
|In+m

+ 1
2

N∑

i=0

|
|
|
|
|
|
yi −i

(
xk) −HiMi,0Uh𝛿vk

i
|
|
|
|
|
|R−1

i

. (8)

A direct calculation then yields the Hessian of J
(
𝛿vk

0
)

with respect to 𝛿vk
0 as

SP4D = In+m + UT
h ĤTR̂−1ĤUh. (9)

In the following sections, we will demonstrate that CVT prevents the condition number from going to infinity when 𝛽 (the
weight of the ensemble part) approaches 1. In addition, we also note that the adjoint of Uh does not need to be computed
explicitly. This is discussed in detail by Smith et al.5 and Bannister.4

3 THEORY OF THE CONDITIONING OF HYBRID 4D-VAR

To better analyze the convergence of the nonlinear least squares problem of Hybrid 4D-Var, we aim to establish a set of
theories that can predict changes in the conditioning of the system prompted by varying parameters (such as correlation
length scale, error variance, etc). Typically, we are also keen to understand the impact of the rank deficient ensemble part
on the conditioning. These motivate us to develop an estimation of the condition number that is informative of the actual
conditioning of the system. In order to achieve such a goal, we use spectral theories to establish bounds for the condition
number of the Hessian matrix.

We outline the structure of this section as follows. We start by introducing some pre-established results, then extend
them to the Hybrid method. We will discuss the unpreconditioned cases and the preconditioned cases separately.

3.1 Eigenvalues and conditioning

We begin with a brief review of previous work by Tabeart et al.8 and some fundamental eigenvalue inequalities.16 We will
extend these results to Hybrid 4D-Var. In the scope of this article, we always assume that B and R are symmetric.
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Notation 2. Let 𝜆k(A) be the kth largest eigenvalue of a matrix A ∈ Rn,n, 𝜆1(A), 𝜆n(A) be the largest and
smallest eigenvalues of A, and 𝜅(A) be the condition number of A.

Definition 1. For a symmetric positive definite matrix A ∈ Rn,n, its condition number is defined by
𝜅(A) = 𝜆1(A)∕𝜆n(A).

For the eigenvalues of the sum of two Hermitian matrices, Weyl17 proved the following theorem:

Theorem 1. Let A1,A2 be two symmetric matrices. Then the eigenvalues of A = A1 + A2 satisfy the following:

𝜆k(A1) + 𝜆n(A2) ≤ 𝜆k(A) ≤ 𝜆k(A1) + 𝜆1(A2). (10)

The inequality for products is given by Wang and Zhang as follows,18

Theorem 2. Let A1,A2 ∈ Rn,n be positive semidefinite Hermitian matrices. Then

max [𝜆1(A1)𝜆n(A2), 𝜆1(An)𝜆1(A2)] ≤ 𝜆1(A1A2) ≤ 𝜆1(A1)𝜆1(A2). (11)

Applying these results to the Hessian matrix of 3D-Var, Tabeart et al.8 established that,

Theorem 3. Let S3D = B−1 +HT
0 R−1

0 H0 and given that B,R are symmetric positive definite, the condition
number of S3D is bounded as follows,

max

[
𝜅(B)

1 + 𝜆1(B)𝜆1(HT
0 R−1

0 H0)
,

1 + 𝜆1(B)𝜆1(HT
0 R−1

0 H0)
𝜅(B)

]

≤ 𝜅(S3D) ≤ (1 + 𝜆n(B)𝜆1(HT
0 R−1

0 H0))𝜅(B). (12)

3.2 Conditioning of unpreconditioned Hybrid 4D-Var

In Hybrid 4D-Var, the background error covariance matrix B is replaced by a weighted sum of the static and ensemble
background error covariance matrix, such that B = (1 − 𝛽)B0 + 𝛽Pf . Although, we can still use (12) to estimate the condi-
tion number of the Hessian, we note that it does not have the capacity to separate the contribution of Pf and predict the
condition number as the weight of Pf grows. This motivates us to establish theories that are specific to the hybrid case of
4D-Var.

Lemma 1. Assume that Pf is rank deficient and let B = (1 − 𝛽)B0 + 𝛽Pf . Then the extreme eigenvalues of
B satisfy the following:

{
max

[
(1 − 𝛽)𝜆1(B0), 𝛽𝜆1

(
Pf
)
+ (1 − 𝛽)𝜆n(B0)

]
≤ 𝜆1(B) ≤ (1 − 𝛽)𝜆1(B0) + 𝛽𝜆1

(
Pf
)
,

(1 − 𝛽)𝜆n(B0) ≤ 𝜆n(B) ≤ min
[
(1 − 𝛽)𝜆1(B0), 𝛽𝜆1

(
Pf
)
+ (1 − 𝛽)𝜆n(B0)

]
.

(13)

Proof. The conclusion follows from Theorem 1 and that 𝜆n
(

Pf
)
= 0 (since Pf is rank deficient). ▪

Lemma 2. Given B0,Pf are two symmetric matrices, let B = (1 − 𝛽)B0 + 𝛽Pf , and assuming that Pf is rank
deficient, the condition number of B is then bounded as follows,

max
⎡
⎢
⎢
⎣

1
𝜅(B0)

+
𝛽𝜆1

(
Pf
)

(1 − 𝛽)𝜆1(B0)
,

(
1

𝜅(B0)
+

𝛽𝜆1
(

Pf
)

(1 − 𝛽)𝜆1(B0)

)−1⎤
⎥
⎥
⎦

≤ 𝜅(B) ≤ 𝜅(B0)

(

1 +
𝛽𝜆1

(
Pf
)

(1 − 𝛽)𝜆1(B0)

)

. (14)

Proof. By the definition of 𝜅(B) and Lemma 1, we find that,

𝜅(B) = 𝜆1(B)
𝜆n(B)

≤
(1 − 𝛽)𝜆1(B0) + 𝛽𝜆1

(
Pf
)

(1 − 𝛽)𝜆n(B0)
= 𝜅(B0) +

𝛽𝜆1
(

Pf
)

(1 − 𝛽)𝜆n(B0)
,
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and similarly,

𝜅(B) ≥ max

[
(1 − 𝛽)𝜆n(B0) + 𝛽𝜆1

(
Pf
)

(1 − 𝛽)𝜆1(B0)
,

(1 − 𝛽)𝜆1(B0)
(1 − 𝛽)𝜆n(B0) + 𝛽𝜆1

(
Pf
)

]

= max
⎡
⎢
⎢
⎣

1
𝜅(B0)

+
𝛽𝜆1

(
Pf
)

(1 − 𝛽)𝜆1(B0)
,

(
1

𝜅(B0)
+

𝛽𝜆1
(

Pf
)

(1 − 𝛽)𝜆1(B0)

)−1⎤
⎥
⎥
⎦

.

▪

We highlight that the condition number of B diverges to infinity as 𝛽 → 1. This is reflected by the lemma above as the
lower bound of 𝜅(B) goes to infinity.

We now use these results to obtain a bound on the condition number in Theorem 4. We emphasize that the conclusion
of these results cannot be directly derived from Theorem 3 by simply replacing B with (1 − 𝛽)B0 + 𝛽Pf in the upper and
lower bounds. In fact, such an effort leads to a less sharp bound that does not provide analytical or theoretical insight on
how the bound changes with 𝛽. Moreover, this approach does not reveal how the bound responds to changes in physical
parameters related to B0 and Pf . Using different strategies leads to a bound that clearly separates the contribution of
each component (B0,Pf ) and their weights, making it possible to analyze their impact on the condition number and their
interaction as well.

Notation 3. For simplicity of presentation, we introduce 𝛾z, Γz to represent the lower and upper bound of any
z ∈ R.

Theorem 4. Recall that S4D = B−1 + ĤTR̂−1Ĥ, B = (1 − 𝛽)B0 + 𝛽Pf , and let,

Γ𝜆n(B) = min((1 − 𝛽)𝜆n(B0) + 𝛽𝜆1
(

Pf
)
, (1 − 𝛽)𝜆1(B0)), 𝛾𝜅(B)

= max
⎡
⎢
⎢
⎣

1
𝜅(B0)

+
𝛽𝜆1

(
Pf
)

(1 − 𝛽)𝜆1(B0)
,

(
1

𝜅(B0)
+

𝛽𝜆1
(

Pf
)

(1 − 𝛽)𝜆1(B0)

)−1⎤
⎥
⎥
⎦

,

Γ𝜅(B) = 𝜅(B0)

(

1 +
𝛽𝜆1

(
Pf
)

(1 − 𝛽)𝜆1(B0)

)

.

Given that B,R are symmetric, the condition number of S4D is then bounded as follows,

⎧
⎪
⎨
⎪
⎩

𝜅(S4D) ≥ max
[

1
Γ𝜅(B)

+ (1 − 𝛽)𝜆n(B0)𝜆1

(
ĤTR̂−1Ĥ

)
,

(
1

𝛾𝜅(B)
+ Γ𝜆n(B)𝜆1

(
ĤTR̂−1Ĥ

))−1
, 1

]

𝜅(S4D) ≤ Γ𝜅(B) +
(
(1 − 𝛽)𝜆1(B0) + 𝛽𝜆1

(
Pf
))
𝜆1

(
ĤTR̂−1Ĥ

)
.

(15)

Proof. In Theorem 3, replacing HT
0 R−1H0 with ĤR̂−1Ĥ, then the left hand side of Inequality (12) can be written

max

[
1

𝜅(B)
+ 𝜆n(B)𝜆1

(
ĤTR̂−1Ĥ

)
,

(
1

𝜅(B)
+ 𝜆n(B)𝜆1

(
ĤTR̂−1Ĥ

))−1
]

≤ 𝜅(S4D).

For the upper bound, we note that the upper bound can be written as follows,

𝜅(S4D) ≤ 𝜅(B) + 𝜆1(B)𝜆1(ĤTR̂−1Ĥ).

Substituting 𝜅(B) and 𝜆1(B) with their upper bounds, this then produces the upper bound on 𝜅(S4D). ▪

We note that the same bound can be derived by using eigenvalue inequalities. Crucially, the upper bound in Theorem 4
does not require any explicit computation of S4D. We only need to compute the largest eigenvalues of 𝜆1(B0), 𝜆1

(
Pf
)

and
the condition number of B0.

In the case of a special observation operator we can simplify the Hessian in the 3D-Var case as follows.

Corollary 1. Assuming that each row of H0 has one unit entry, with all other entries being zero, and that R0 is
diagonal such that R0 = 𝜎2

R0
Ip, where Ip ∈ Rp,p is the identity matrix, then the bounds in Theorem 4 in the case
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SHATAER et al. 7 of 18

of 3D-Var simplify to:

max
⎡
⎢
⎢
⎣

1
Γ𝜅(B)

+ (1 − 𝛽)𝜆n(B0)
𝜎2

R0

,

(
1
𝛾𝜅(B)

+
Γ𝜆n(B)

𝜎2
R0

)−1⎤
⎥
⎥
⎦

≤ 𝜅(S3D) ≤ Γ𝜅(B) +
(1 − 𝛽)𝜆1(B0) + 𝛽𝜆1

(
Pf
)

𝜎2
R0

. (16)

Proof. Given that R0 = 𝜎2
R0

Ip, and with the assumption on H, the largest eigenvalue of HT
0 R−1

0 H0 is always
𝜆1(HT

0 R−1
0 H0) = 𝜎−2

R0
. Replacing relevant terms in Bounds (15), we then reach the conclusion. ▪

We emphasize that the upper bound on 𝜅(S4D) diverges to infinity as 𝛽 → 1. In such a case, the background error
covariance matrix is dominated by Pf . However, the theory does not predict the same behavior for the lower bound. In
terms of of the observation part, we observe that the number p of observation points does not alter the bounds; thus the
theory cannot predict the behavior of 𝜅(S4D) when p varies.

Although unpreconditioned 4D-Var is still in use for real-life applications,8 it is now a common practice to implement
CVT for Hybrid 4D-Var. In the next section, we focus on developing similar theories for such cases.

3.3 Conditioning of preconditioned Hybrid 4D-Var method with CVT

The preconditioning of Hybrid 4D-Var is broadly adopted in major operational centers, and the impact of different error
components on the conditioning is important to determine the convergence of numerical schemes for incremental Hybrid
4D-Var, or more generally, for solving the nonlinear least squares problem in Hybrid 4D-Var. In this section, we prove two
versions of the bounds for 𝜅(S4D) with different strategies. First, we remind readers some useful notation as follows: let
K ∶= ĤTR̂Ĥ, U ∶= B1∕2

0 and Xf ∶= 1
√

m−1

[
x1 − x, x2 − x, … , xm − x

]
, where x1, x2, … , xm is the set of ensemble members

and x is the ensemble mean.
We recall that the motivation behind our approach to deriving the bound is to separate the contribution of each com-

ponent in the Hessian, particularly the components of B0 and Pf and their weights. We are especially keen to find out how
the ratio of (1 − 𝛽)||B0||2∕(𝛽||Pf ||2) influences the bound, as this ratio is linked to the balancing of the climatological part
and the ensemble part. Driven by this motivation, we discovered a decomposition of the matrix product UT

h ĤTR̂−1ĤUh
that yields a useful max function which is directly related to this ratio. The detail is given by the proof of Theorem 5.

Theorem 5. The condition number of the Hessian matrix of the Hybrid 4D-Var method satisfies

⎧
⎪
⎨
⎪
⎩

𝜅(SP4D) ≤ 1 +
√
(𝛽 − 𝛽2)𝜆1(B0)𝜆1

(
Pf
)
𝜆1(K2) +max

[
(1 − 𝛽)𝜆1(B0)𝜆1(K), 𝛽𝜆1

(
Pf
)
𝜆1(K)

]
,

𝜅(SP4D) ≥ 1 +max
[

(1 − 𝛽)𝜆1(K)𝜆n(B0),
√
(𝛽 − 𝛽2)𝜆n(B0)𝜆1

(
Pf
)
𝜆1(K2)

]

.
(17)

Proof. We know that the Hessian matrix of the Hybrid 4D-Var can be expressed as follows,

⎧
⎪
⎨
⎪
⎩

SP4D = In+m + UT
h ĤTR̂−1ĤUh,

Uh =
[√

1 − 𝛽U
√
𝛽Xf

]
.

(18)

Given that UT
h ĤTR̂−1ĤUh is rank deficient, it is immediate that

𝜅(SP4D) = 1 + 𝜆1

(
UT

h ĤTR̂−1ĤUh

)
. (19)

Substituting Uh in SP4D, we derive

SP4D = In+m +

(√
1 − 𝛽UT
√
𝛽XT

f

)

K
(√

1 − 𝛽U
√
𝛽Xf

)
= In+m +

(
(1 − 𝛽)UTKU

√
𝛽 − 𝛽2UTKXf

√
𝛽 − 𝛽2XT

f KU 𝛽XT
f KXf

)

(20)

= In+m +

(
(1 − 𝛽)UTKU 0

0 𝛽XT
f KXf

)

+

(
0

√
𝛽 − 𝛽2UTKXf

√
𝛽 − 𝛽2XT

f KU 0

)

∶= In+m + A1 + A2. (21)
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8 of 18 SHATAER et al.

Since UT
h ĤTR̂−1ĤUh = A1 + A2, using Theorem 1, we get

max [𝜆1(A1) + 𝜆n+m(A2), 𝜆n+m(A1) + 𝜆1(A2)] ≤ 𝜆1(UT
h ĤTR̂−1ĤUh) ≤ 𝜆1(A1) + 𝜆1(A2). (22)

We note that

𝜆1(UTKU) = 𝜆1(UTUK) = 𝜆1(B0K), 𝜆1(XT
f KXf ) = 𝜆1(XT

f Xf K) = 𝜆1(Pf K), 𝜆1(UTKXf XT
f KU) = 𝜆1(B0Pf K2). (23)

Then, applying Theorem 2 to the matrix products, we derive that

𝜆1(A1) = max
[
(1 − 𝛽)𝜆1(UTKU), 𝛽𝜆1(XT

f KXf )
]
≤ max

[
(1 − 𝛽)𝜆1(B0)𝜆1(K), 𝛽𝜆1

(
Pf
)
𝜆1(K)

]
, (24)

𝜆1(A2) =
√

𝜆1

[
(𝛽 − 𝛽2)UTKXf XT

f KU
]
≤

√
(𝛽 − 𝛽2)𝜆1(B0)𝜆1

(
Pf
)
𝜆1(K2). (25)

So

𝜅(SP4D) ≤ 1 +max
[
(1 − 𝛽)𝜆1(B0)𝜆1(K), 𝛽𝜆1

(
Pf
)
𝜆1(K)

]
+
√
(𝛽 − 𝛽2)𝜆1(B0)𝜆1

(
Pf
)
𝜆1(K2). (26)

In the lower bound, we use that

max [𝜆1(A1), 𝜆1(A2)] ≤ max [𝜆1(A1) + 𝜆n+m(A2), 𝜆n+m(A1) + 𝜆1(A2)] ≤ 𝜆1(UT
h ĤTR̂−1ĤUh). (27)

Applying Theorem 2 then yields (we note that K is rank deficient, such that 𝜆n(K) = 0)

𝜆1(UTKU) ≥ max [𝜆n(B0)𝜆1(K), 𝜆1(B0)𝜆n(K)] = 𝜆n(B0)𝜆1(K), (28)

𝜆1(XT
f KXf ) ≥ max

[
𝜆1

(
Pf
)
𝜆n(K), 𝜆n

(
Pf
)
𝜆1(K)

]
= 0, (29)

𝜆1(UTKXf XT
f KU) ≥ max

[
𝜆1(B0)𝜆1

(
Pf
)
𝜆n(K2), 𝜆1(B0)𝜆n

(
Pf
)
𝜆1(K2), 𝜆n(B0)𝜆1

(
Pf
)
𝜆1(K2)

]
= 𝜆n(B0)𝜆1

(
Pf
)
𝜆1(K2)
(30)

and giving us

𝜆1(A1) ≥ (1 − 𝛽)𝜆1(K)𝜆n(B0), 𝜆1(A2) ≥
√
(𝛽 − 𝛽2)𝜆n(B0)𝜆1

(
Pf
)
𝜆1(K2). (31)

By substituting max [𝜆1(A1), 𝜆1(A2)] into (27) we conclude that

𝜅(SP4D) ≥ 1 +max
[

(1 − 𝛽)𝜆1(K)𝜆n(B0),
√
(𝛽 − 𝛽2)𝜆n(B0)𝜆1

(
Pf
)
𝜆1(K2)

]

. (32)
▪

Another version of the bounds can be derived by directly applying Theorem 2 to the product of UhKUh instead of using
the decomposition such as that in Theorem 5.

Theorem 6. Let SP4D be the Hessian matrix of Hybrid 4D-Var with CVT, then the condition number of SP4D
satisfies

1 ≤ 𝜅(SP4D) ≤ 1 +
[
(1 − 𝛽)𝜆1(B0) + 𝛽𝜆1

(
Pf
)]
𝜆1(K). (33)
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SHATAER et al. 9 of 18

Proof. We note that

𝜆
(

UhKUT
h
)
= 𝜆

(
UT

h UhK
)
= 𝜆

(
BTK

)
. (34)

Applying the eigenvalue inequality of the product, and using the symmetry of B, we find that

𝜆1
(

BTK
)
≤ 𝜆1(B)𝜆1(K). (35)

Furthermore, the eigenvalue inequality of the sum yields

𝜆1(B) ≤ (1 − 𝛽)𝜆1(B0) + 𝛽𝜆1
(

Pf
)
. (36)

Applying (35) and (36) directly to (19), we obtain that

𝜅(SP4D) ≤ 1 +
[
(1 − 𝛽)𝜆1(B0) + 𝛽𝜆1

(
Pf
)]
𝜆1(K). (37)

For the lower bound, we note that applying Theorem 2 to 𝜆1
(

BTK
)

only yields

𝜆1
(

BTK
)
≥ max

[
𝜆1

(
BT) 𝜆n(K), 𝜆n

(
BT) 𝜆1(K)

]
≥ 0.

▪
In terms of the effectiveness of the preconditioning, we note that the upper bounds given by Theorems 5 and 6 are

not controlled by the condition number of B, but by the largest eigenvalues of B0,Pf ,K2 only. This is different from the
upper bound of the unpreconditioned case. In addition, for the unpreconditioned case, B = Pf at 𝛽 = 1, indicating that B
becomes closer to a singular matrix as 𝛽 approaches 1. In such a case, the theory predicts that the condition number of
S4D diverges to infinity as 𝛽 → 1. However, by implementing CVT, this divergence is eliminated.

On the other hand, we note that the upper bound given by Theorem 5 is distinctively different from all the other ver-
sions, including the ones derived for the unpreconditioned cases. Namely, the upper bound of Theorem 5 contains a max
function that selects the larger term of (1 − 𝛽)𝜆1(B0) and 𝛽𝜆1

(
Pf
)
. We can thus anticipate a switching point of the upper

bound as a function of 𝛽, which does not exist in other versions of the upper bound. In fact, this switching point pro-
vides useful information about the behavior of 𝜅(SP4D) with respect to varying 𝛽. We will illustrate this with numerical
examples in Section 4. Similar to the unpreconditioned scenario, we find that these bounds do not reflect any contribu-
tion of the number p of observation points, which means that they cannot predict the trend of 𝜅(S4D) with respect to
a changing p.

4 EXPERIMENTAL DESIGN

Recalling the motivation of the theoretical studies in Section 3, we note that the purpose of the bounds is to provide useful
information on the actual condition number of the Hessian without having to compute the Hessian explicitly. However,
for the bounds to be informative, we require two properties of them: the estimation given by these bounds should reflect
the condition number; the bounds change with 𝛽 similarly to the condition number. The first property ensures that we
can use the bound directly to estimate the condition number in practice; the second property guarantees that the bound
is useful in analyzing the impact of the ensemble part on the condition number. To demonstrate the theories we use the
special case of 3DVar.

4.1 Computing error covariance matrices and the observational matrix

In this section, we give details of computing the error covariance matrices of B0,Pf ,R and the observational matrix H on
a one-dimensional grid.

Notation 4. Let L0,Lens denote the correlation length scale associated with B0,Pf , and 𝜎2
R0
, 𝜎2

B0
, 𝜎2

Pf
be the

variances of R,B0,Pf . Let r denote the radius of a two dimensional disk 2(0, r), 𝜃 be the angular location of
a point on the boundary of 2(0, r) and 𝜃i,j be the angular difference between two grid point on the boundary
of 2(0, r).
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10 of 18 SHATAER et al.

To simulate real-life applications, we use the Second-order Auto-regressive Correlation (SOAR) function to gener-
ate B0, with a correlation length scale of L0. The SOAR function is used by the UK Met Office for Numerical Weather
Prediction (NWP).8,19 It is also frequently used in other DA applications.20,21 Following the formulation discussed in
Tabeart et al.,8 we can compute the SOAR matrix from the following formula,8,22

DL(i, j) =
[

1 + 2rL−1 sin
(
𝜃i,j

2

)]

exp
[

1 + 2rL−1 sin
(
𝜃i,j

2

)]

, (38)

where L is a correlation length scale.
Applying (38), we can obtain B0 directly by replacing L with L0, and 𝜃i,j with 2𝜋∕n. Here we assume that the grid

discretizing the boundary of 2(0, r) is uniform and we set r = 1. The resulting background error covariance matrix is
then given by,

B0 = 𝜎2
B0

DL0 . (39)

To produce the ensemble part Pf , we sample from a different SOAR matrix B1 associated with a length scale of Lens,
such that,

B1 = 𝜎2
Pf

DLens . (40)

To obtain the covariance matrix Pf sampling from B1, we generate a set of random vectors wk ∼ (0, 1), then compute the
sample covariance matrix of the set

{
B1∕2

1 w1,B1∕2
1 w2, … ,B1∕2

1 wm

}
. As the size of the set—denoted by m—is restricted

by m < n, Pf is then guaranteed to be rank deficient.
For the observational error covariance matrix R, we simply choose that,

R = 𝜎2
R0

Ip, (41)

where Ip ∈ Rp,p is the identity matrix.
In terms of the observational operator, we consider four different types in our experiments. They are given as follows,

H(1)(i, j) =

{
1, i = j, for i = 1 → p,
0, i ≠ j.

; H(3)(i, j) =

{
1∕5, j = n

p
i − 2 → n

p
i + 2, (mod(n)), for i = 1 → p,

0.

H(2)(i, j) =

{
1, j = n

p
i, for i = 1 → p,

0, else.
; H(4)(i, j) =

{
1, i, j, are chosen randomly and non-repeating,
0.

(42)

The choice of H(1) corresponds to observing the first p points of the domain, H(2) observes every n∕p points, H(3) is an
observation which is a weighted sum over 5 grid points and H(4) chooses p observations at random locations on the grid.
We note that H(1),H(2) and H(4) satisfy the condition of Corollary 1, while H(3) does not. In all of the experiments, we
fix the value of n to be 500 such that the computation is small scale and similar to previous studies,3,8 and therefore the
results can be compared.

4.2 A comparison of different bounds

We note that four different versions of the bound have been presented in this article, that is, Theorems 3 and 4 for the
unpreconditioned cases, Theorems 5 and 6 for the preconditioned cases with CVT. Before further investigating the details
of these results, we want to determine which versions of these are the most effective (in terms of revealing the trend of the
condition number itself and estimating it with a small error). Considering the unpreconditioned cases, Theorem 4 has an
apparent advantage of separating the impact of Pf . However, through repeated experiments we observe that in most cases
the lower bound in Theorem 4 remains close to 1; hence it not effective. On the other hand, the lower bound provided by
Theorem 3 produces a better result. Still, it is not close enough to the actual condition number to be a good estimate.

In Figure 1, we show typical examples of the variation of these bounds with 𝛽. Figure 1a shows that, for the unprecon-
ditioned case, as 𝛽 increases toward 1, the upper bound captures the shape of 𝜅(S3D). The divergence of 𝜅(S3D) to infinity
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SHATAER et al. 11 of 18

F I G U R E 1 A comparison of the variation of the bounds with 𝛽 for (a) 𝜅(S3D) and (b) 𝜅(SP3D). The parameters are as follows,
Lens = 0.05,L0 = 0.2, 𝜎B0

= 𝜎Pf
= 𝜎R0

= 1, m = 50, p = 100. The linear observation operator is chosen to be H0 = H(4).

is captured by both versions of the upper bounds. The upper bounds computed from Theorems 1 and 3 do not differ sig-
nificantly. This is a general result for all choices of parameters we have used to conduct numerical case studies. Based on
these observations, we decide to focus only on the upper bound from here onward.

In the preconditioned case, Figure 1b, we note that the condition number is drastically reduced by the CVT compared
to the unpreconditioned case. We observe an inflection point in the upper bound of Theorem 5. This coincides with the
transition point of the condition number (from decreasing to increasing with 𝛽) and so predicts the minimum of 𝜅(S3D).
The bound produced by Theorem 6 does not capture such behavior, while not being significantly closer to the actual
condition number either.

These results are valid for all different choices of matrices and parameters. Therefore we focus our study on the bound
produced by Theorems 4 and 5 only, because of their superiority in separating the impact of different matrices and cap-
turing the shape of the actual condition number (see Figure 1b). We note that the condition numbers are plotted in log10
scale in this paper.

5 CASE STUDIES FOR UNPRECONDITIONED 3D-VAR

In this section, we illustrate the upper bound given by Theorem 4 with multiple case studies. In these case studies we
change parameters associated with B0,Pf , Ĥ, R̂ and observe the responses in the condition number of S and its upper
bound. In particular, we are especially interested in the relationship between the conditioning of the system and the
weight of the ensemble part (i.e., 𝛽). We note again that the case studies in the following sections use 3D-Var as a special
case of 4D-Var to demonstrate the theories. Therefore, Ĥ and R̂ are replaced with H0 and R0, respectively. Additionally,
we will denote the Hessian as S3D and consider it as a special case of S4D.

As the ensemble error covariance matrix is rank deficient, we can then expect that the balance of B0 and Pf is par-
ticularly important in the conditioning of the system. For example, when Pf is the dominant component of the Hessian
matrix S3D, the condition number of S3D is likely to be large and the system ill-conditioned. In addition, as 𝛽 → 1, the
Hessian matrix S3D → P−1

f +HT
0 R−1

0 H0, the limit is clearly ill-defined as P−1
f does not exist. Meanwhile, the balance of B0

and Pf is also controlled by the relative sizes of physical length scales L0,Lens and the variances 𝜎B0 , 𝜎Pf .
Recalling the upper bound in Theorem 4, it is predominantly controlled by the largest eigenvalues of B0 and Pf .

Meanwhile, the largest eigenvalues of B0 and Pf vary with their correlation length scales.3 As Figure 2 shows, the largest
eigenvalue of B0 increases with the correlation length scale; the general trend is similar for Pf except for random fluctu-
ations caused by the sampling noise. Consequently, we expect 𝜅(S3D) and its bound to change when the physical length
scales (L0,Lens) alter.

As an important justification of the effectiveness of the upper bound, we observe that the shape of the upper bound is
similar to the condition number in all four case studies presented in Figure 3. We also note that in this set of experiments,
we observe that the impact of Lens on the conditioning and the bounds is less significant than L0 (compare Figure 3a,b).
In Figure 3c, we observe that the trend of the condition number with respect to 𝜎Pf is well captured by the upper bounds.
Also, in Figure 3d, we observe that upper bound does reveal a general trend of the condition number with respect to
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12 of 18 SHATAER et al.

F I G U R E 2 The largest eigenvalues of B0 and Pf as functions of correlation length scale.

F I G U R E 3 The variation of the condition number and the upper bound with 𝛽 for different values of (a) L0, (b) Lens, (c) 𝜎B0
, and (d)

𝜎Pf
, for the unpreconditioned case with m = 100, p = 100, 𝜎2

Pf
= 𝜎2

B0
= 𝜎2

R0
= 1 and H0 = H(4). (a) Showcases the effect of L0 (fixing Lens = 0.1).

(b) Demonstrates the effect of Lens (fixing L0 = 0.1). (c) Demonstrates the effect of 𝜎2
Pf

(fixing 𝜎2
B0
= 1). (d) Illustrates the effect of 𝜎2

B0

(fixing 𝜎2
Pf
= 1).

𝜎B0 , but the upper bound does not reflect a significant reduction of the condition number at 𝛽 ∼ 0. The reason for this
discrepancy is unknown.

It is an important finding that the upper bound starts to sharply increase and diverge to infinity, and this transition
occurs at about the same 𝛽 as the condition number of the Hessian. This then indicates that the bound is informative from
a numerical point of view, for example, it informs a constraint on 𝛽 if one seeks to avoid a sudden deterioration of the
conditioning of the system in Hybrid 4D-Var. On the other hand, we also note that in the three cases of changing L0, 𝜎B0

and 𝜎Pf , the upper bounds reflect the direction of change in the condition number of the Hessian. Thus it shows promising
results that the upper bound can be used to qualitatively analyze the conditioning of the system when these parameters
alter with time. Furthermore, the upper bound is two orders of magnitude above the condition number. We find similar
conclusions for the cases of changing 𝜎R0 , the observation operator H0 and the number of observations p (see Figure 4).

We note that the upper bound for a fixed B0 and Pf does not change insofar as the largest eigenvalue of HT
0 R0H0 stays

the same (see Theorem 4). Comparing 𝜆1(HT
0 R0H0) for different versions of H0, we find that H(1),H(2), and H(4) have the

same largest eigenvalue. It is slightly smaller for H(3) but not significantly. We also point out that previous investigations in
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F I G U R E 4 The variation of the condition number and the upper bound with 𝛽 for different (a) values of 𝜎2
R0

(fixing
𝜎2

B0
= 𝜎2

Pf
= 1, p = 100, H0 = H(4)), (b) observation operators and (c) number of observations (fixing 𝜎2

R0
= 𝜎2

B0
= 𝜎2

Pf
= 1,H0 = H(4)).

This group of figures showcase the unpreconditioned case with parameters of m = 100, Lens = L0 = 0.1.

4D-Var3,8 also indicate that a small change in 𝜎2
R0

does not change the bound noticeably. Thus we anticipate that the upper
bound remains similar for different versions of H0. This is confirmed by cases in Figure 4b. Meanwhile, the condition
number of the Hessian is the largest for the choice of H0 = H(1), while choosing H0 = H(2) or H0 = H(3) produces a similar
result and they yield the best conditioning of the Hessian; the condition number associated with the randomized version
H0 = H(4) lies between those of H(1) and H(2),H(3). Thus the observation indicates that evenly distributed observation
points produce better conditioning of the system, while partial observations concentrated in a small region lead to the
opposite.

The upper bound in (16) also implies that changing the number of observations does not change the upper bound
(as the case study in Figure 4c confirms). Last, we also verified that the upper bound also remains effective when the
number of ensemble members changes. We tested cases where the number of ensemble members increases from 50 to
400. In all these cases, we find that the upper bounds have similar shapes to the condition number, and they provide a
good estimation of the value of the condition number.

6 NUMERICAL EXPERIMENTS FOR THE PRECONDITIONED HYBRID
3D-VAR WITH CVT

Following the case studies for the unpreconditioned cases, we now conduct similar experiments to illustrate Theorem 5
and examine the predictions using Theorem 5 for preconditioned cases with CVT. In the experiments, we focus on three
major issues: first, we validate the correctness of the bound; second, we illustrate the bound reflects the behavior of the
conditioning in general (with a few exceptions); last, we make a comparison to the unpreconditioned cases. We note that
each error covariance matrix and observation operator is given by Section 3.

An immediate observation from Theorem 5 is that the switching point in the upper bound shifts with the relative sizes
of 𝜆1(B0) and 𝜆1

(
Pf
)
. More specifically, the max function in the upper bound in (17) switches at a larger value of 𝛽 when

𝜆1(B0) increases, and the opposite occurs when 𝜆1
(

Pf
)

increases. Furthermore, we know that 𝜆1(B0) and 𝜆1
(

Pf
)

become
larger as L0 and Lens increase (see Figure 2), and the same is true for increasing 𝜎B0 , 𝜎Pf . As Figure 5 shows, the results
of these four case studies justifies the observations implied by Theorem 5, and the switching point of the upper bound
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14 of 18 SHATAER et al.

F I G U R E 5 Same settings as Figure 3, but for the CVT preconditioned cases.

also predicts the minimum of the condition number. On the other hand, as 𝜆1(B0), 𝜆1
(

Pf
)

increase with L0,Lens, 𝜎B0 , 𝜎Pf ,
we anticipate that the upper bound would increase with these parameters. This is confirmed by the case studies (see
Figure 5). Crucially, we find that the upper bound predicts the trend of the condition number of Hessian with respect to 𝛽
in all four cases. For example, in Figure 5a, we observe that the inflection points of the upper bounds predict the minima
of the condition numbers, and they both move rightward when L0 increases. In Figure 5b, we find that the inflection
points of the upper bounds and the minima of the condition numbers move leftwards when Lens increases. In Figure 5c,
the inflection points of the upper bounds and the minima of the condition numbers move rightwards when 𝜎B0 increases,
and in Figure 5d we find that the trend of the condition number reacting to 𝜎Pf is well captured by the upper bounds,
the inflection points of the upper bounds and the minima of the condition numbers move leftwards when 𝜎Pf increases.
However, we want to point out that the changes in the conditioning is very limited in these preconditioned cases and are
normally less than one order of magnitude.

Furthermore, compared to the unpreconditioned case, these results show a clear improvement of the condi-
tioning in Hybrid 4D-Var with CVT (we note that this is something that is also found in standard 4D-Var in pre-
vious work9). We observe that CVT leads to a maximum reduction of six magnitudes in the condition number
of Hessian. We also note that in all cases presented in the preconditioned Hybrid 4D-Var, the condition num-
ber of Hessian does not diverge to infinity at 𝛽 = 1, and this is a crucial difference from the unpreconditioned
Hybrid 4D-Var.

Theorem 5 also shows that the upper bound takes a larger value when the largest eigenvalue of K = HT
0 R0H0 is bigger.

Furthermore, since 𝜎−2
R0

is a scaling factor of K, we can then anticipate that the upper bound grows with a decreasing 𝜎2
R0

.
The case presented in Figure 6a not only justifies this observation but also shows that the condition number itself follows
the same trend.

On the impact of choosing different versions of H0, the trend is similar to the unpreconditioned case; we find that
evenly spreading out the observation across the whole domain leads to better conditioning and skewing observations into
a local region result in worse conditioning. We note that the upper bound remains the same for H0 = H(1),H(2) and H(4)

(see Figure 6b,c). This is because K = HT
0 R0H0 shares the same largest eigenvalue for these three versions, whereas H(1)

produces a smaller maximum eigenvalue for K, therefore the upper bound is smaller. On the other hand, the impact of
the number p of observations on the condition number is opposite to that of the unpreconditioned case (this is similar
to previous reports of 4D-Var8,9), but the bound estimation does not reflect this trend, as the largest eigenvalue of K does
not change with p. We note that in both unpreconditioned and preconditioned cases, the upper bounds cannot predict
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SHATAER et al. 15 of 18

F I G U R E 6 As settings as Figure 4, but for the CVT preconditioned cases.

the impact of p on the conditioning of the system. The effect of sampling noise in Pf is similar to the unpreconditioned
case, which is that the impact on the conditioning or the upper bound is insignificant. We find that this is true even with
a small sample size.

As an important justification of the effectiveness of the upper bound given by Theorem 5, we observe the changes
of the upper bound with respect to 𝛽 provide valuable information about the transition of the condition number (from
decreasing to increasing); the inflection point of the upper bound predicts the minimum of the condition number. This
is particularly important because it informs an optimal choice of 𝛽 from a numerical perspective of obtaining the best
conditioning of the system. We therefore can conclude that the upper bound is useful for providing qualitative information
about the actual conditioning of the system.

7 CONVERGENCE TEST OF A CONJUGATE GRADIENT ROUTINE

We note that there are well-known situations where the condition number provides a pessimistic indication of conver-
gence speed (e.g., in the case of repeated or clustered eigenvalues).9 Here we use hybrid 3D-Var as a special case of Hybrid
4D-Var to illustrate that for hybrid variational assimilation the convergence speed follows a similar trend to the condition
number as the weight of the ensemble part increases.

Following a similar method to section 5.3.2. of Tabeart et al.,8 we study how the speed of convergence of a conjugate
gradient method applied to the linear system S3Dx = b changes with the weight 𝛽 of the ensemble part. In the first test,
the matrix S3D is given by the Hessian of the unpreconditioned 3D-Var (Section 5), and the vector b is given by Haben3 in
Section 3.2 (b = B−1(xb − x0) −HT

0 d), where the vectors xb − x0,d are chosen to be random at the beginning of the trial).
For the computation of S3D, we choose the parameters as follows, L0 = 0.1,Lens = 0.05, 𝜎B0 = 𝜎Pf = 𝜎R0 = 1, p = 100 and
H0 = H(4), which are in line with our previous case studies.

As Figure 7 shows, the condition number of the Hessian shows the same trend as the number of iterations
performed to reach the tolerance threshold. We can observe that the conditioning is a good proxy to study the con-
vergence speed in this case. For the preconditioned case with CVT, shown in Figure 8, we find that the difference
in the condition number as 𝛽 varies is marginal relative to the unpreconditioned case. One of the reason for this is
that the Hessian has more eigenvalues clustered around 1, which is a result of CVT. However, the number of itera-
tions taken to converge still follows the general pattern of the condition number, with higher values when 𝛽 is close
to 0 or 1.
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16 of 18 SHATAER et al.

F I G U R E 7 Convergence test for an unpreconditioned case. (a) displays the condition number of S3D and its upper bound. The
parameters used to compute S3D are L0 = 0.1,Lens = 0.05, 𝜎B0

= 𝜎Pf
= 𝜎R0

= 1, p = 100 and we choose H0 = H(4). (b) displays the number of
iterations.

F I G U R E 8 Convergence test for a case preconditioned with CVT. (a) Displays the condition number of SP3D (as a special case of SP4D)
and its upper bound. The parameters used to compute SP3D are L0 = 0.1,Lens = 0.05, 𝜎B0

= 𝜎Pf
= 𝜎R0

= 1, p = 100 and we choose H0 = H(4).
(b) Displays the number of iterations.

Finally, we conducted experiments with stopping criteria of different orders of magnitude to investigate the impact
on the convergence speed trend. For 𝜖 > 10−6 there is very little variation in the number of iterations as 𝛽 changes. For
values of 𝜖 smaller than 10−6, the number of iterations increases slightly, but the trend in Figure 8b remains consistent.

8 SUMMARY

In this article, we established a set of theories for the conditioning of Hybrid 4D-Var. These theories provide effective
upper bounds for the condition number of the Hessian. These theoretical results are illustrated by numerical case studies
using the special case of Hybrid 3D-Var. In numerical experiments we tested that the upper bounds have similar shapes to
the condition number with respect to the weight of the ensemble part (i.e., 𝛽). Thus they can provide a useful estimation
of the behavior of the condition number of the Hessian. In addition, the upper bound enabled us to study the condition
number through parameters associated with different components and observe their interactions. We conclude that the
upper bound is effective in explaining the conditioning of the Hessian matrix in general. However, the lower bound does
not provide useful information about the condition number in all cases studied. We summarize our findings as follows,
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SHATAER et al. 17 of 18

• For the unpreconditioned cases, the condition number of the Hessian increases gradually at first with 𝛽 then quickly
diverges to infinity as 𝛽 → 1. This transition is predicted by the upper bounds.

• For the preconditioned cases with CVT, a general trend is that the condition number reduces at first and then increases
as 𝛽 increases. There is an optimal 𝛽 at which the condition number is at its minimum. The upper bound predicts the
optimal 𝛽 effectively.

• The preconditioning with CVT improves the conditioning drastically and eliminates the divergence of the condition
number of Hessian at 𝛽 = 1.

• For preconditioned cases, the upper bound changes in the same direction as the condition number of the Hessian with
respect to changes in L0,Lens, 𝜎B0 , 𝜎Pf , and 𝜎R0 . In unpreconditioned cases, we have similar conclusion for L0, 𝜎B0 , and
𝜎Pf .

In preconditioned cases, we find that the upper bound reveals the trend of the condition number with respect to
changing parameters such as the correlation length scale and the variance. However, the theories in Section 3 cannot
explain the impact of the four different choices of H0 that we presented in this paper. Furthermore, the bounds do not
change with the number of observations p and the sample size m, although p does directly influence the actual condition
number.

Meanwhile, the tests show that these theories do provide useful predictions on the impact of the balancing of variances
and correlation length scales for the preconditioned cases. In unpreconditioned cases, the upper bound can predict well
the influence of L0 and 𝜎Pf . The bounds can inform the impact of these components on the convergence of iterative
numerical algorithms.

It is well-known that the condition number of the Hessian matrix is a useful proxy to study the convergence speed
of the least-squares minimization of Hybrid 4D-Var. The results presented in this paper could then inform applica-
tions in terms of the restriction of the weight of the ensemble part (for the unpreconditioned cases), such that extreme
ill-conditioning can be avoided. For the preconditioned Hybrid 4D-Var with CVT, we established a theory that effectively
predicts an optimal weight of the ensemble part such that the conditioning is optimal.
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