Li, P.
ORCID: https://orcid.org/0000-0002-4812-2184, Song, F.
ORCID: https://orcid.org/0000-0002-3004-1749, Chen, H., Li, J.
ORCID: https://orcid.org/0000-0001-7223-0022, Prein, A. F.
ORCID: https://orcid.org/0000-0001-6250-179X, Zhang, W.
ORCID: https://orcid.org/0000-0001-8614-8070, Zhou, T., Zhuang, M., Furtado, K.
ORCID: https://orcid.org/0000-0002-5166-112X, Muetzelfeldt, M.
ORCID: https://orcid.org/0000-0002-6851-7351, Schiemann, R.
ORCID: https://orcid.org/0000-0003-3095-9856 and Li, C.
ORCID: https://orcid.org/0000-0003-2556-0891
(2023)
Intensification of mesoscale convective systems in the East Asian rainband over the past two decades.
Geophysical Research Letters, 50 (16).
e2023GL103595.
ISSN 1944-8007
doi: 10.1029/2023GL103595
Abstract/Summary
As one of the major producers of extreme precipitation, mesoscale convective systems (MCSs) have received much attention. Recently, MCSs over several hotpots, including the Sahel and US Great Plains, have been found to intensify under global warming. However, relevant studies on the East Asian rainband, another MCS hotpot, are scarce. Here, by using a novel rain-cell tracking algorithm on a high spatiotemporal resolution satellite precipitation product, we show that both the frequency and intensity of MCSs over the East Asian rainband have increased by 21.8% and 9.8% respectively over the past two decades (2000–2021). The more frequent and intense MCSs contribute nearly three quarters to the total precipitation increase. The changes in MCSs are caused by more frequent favorable large-scale water vapor-rich environments that are likely to increase under global warming. The increased frequency and intensity of MCSs have profound impacts on the hydroclimate of East Asia, including producing extreme events such as severe flooding.
Altmetric Badge
| Item Type | Article |
| URI | https://reading-clone.eprints-hosting.org/id/eprint/113067 |
| Identification Number/DOI | 10.1029/2023GL103595 |
| Refereed | Yes |
| Divisions | Science > School of Mathematical, Physical and Computational Sciences > NCAS Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology |
| Publisher | American Geophysical Union |
| Download/View statistics | View download statistics for this item |
Downloads
Downloads per month over past year
University Staff: Request a correction | Centaur Editors: Update this record
Download
Download