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ABSTRACT
Radiologists have an important task of diagnosing thyroid nodules
present in ultra sound images. Although reporting systems exist
to aid in the diagnosis process, these systems do not provide ex-
planations about the diagnosis results. We present ThyExp – a
web based toolkit for it use by medical professionals, allowing for
accurate diagnosis with explanations of thyroid nodules present
in ultrasound images utilising artificial intelligence models. The
proposed web-based toolkit can be easily incorporated into current
medical workflows, and allows medical professionals to have the
confidence of a highly accurate machine learning model with ex-
planations to provide supplementary diagnosis data. The solution
provides classification results with their probability accuracy, as
well as the explanations in the form of presenting the key features
or characteristics that contribute to the classification results. The
experiments conducted on a real-world UK NHS hospital patient
dataset demonstrate the effectiveness of the proposed approach.
This toolkit can improve the trust of medical professional to under-
stand the confidence of the model in its predictions. This toolkit
can improve the trust of medical professionals in understanding
the models reasoning behind its predictions.

CCS CONCEPTS
• Information systems → Expert systems; • Applied com-
puting → Health care information systems; • Computing
methodologies → Feature selection; Image representations.
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1 INTRODUCTION
Thyroid cancer is the most common malignant endocrine tumour,
with an annual incidence in the UK of 5.8 per 100,000 per year.
Thyroid nodules may have benign or malignant pathology. Current
diagnostic work involves ultrasound and needle biopsy. However,
despite repeated needle biopsies, up to 30% of lumps only yield
indeterminate test results. The risk of malignancy within these
indeterminate lumps is 20%–30%. Patients are often recommended
for diagnostic surgery to rule out cancer. Better preoperative di-
agnosis would reduce unnecessary operations and improve the
management of patients with thyroid lumps. British Thyroid As-
sociation (BTA) recommends research to develop more accurate
techniques in diagnosing thyroid nodules. Ultrasound classifica-
tion of thyroid nodules is routinely performed in clinical practice.
However, inter-observer reliability to classify thyroid nodules on
ultrasound exists. The development of a robust AI software system
would assist clinicians with their decision-making in classifying
thyroid nodules.

To prevent excessive treatment and over-diagnosis, risk stratifi-
cation is important. The the American College of Radiology (ACR)
Thyroid Imaging Reporting and Data System (ACR TI-RADS) [10]
shown in Fig. 1 provides radiologists with a standardised TI-RADS
risk stratification system. Radiologists utilise their learnt knowl-
edge of features and characteristics to classify a thyroid nodule as
either malignant or benign. The key characteristics and features
of an ultrasound image consist of the Composition, Echogenicity,
Shape,Margin and Echogenic foci. Each feature has a corresponding
TR score. The combination of these features and the added total
TR scores of these features help to determine which TR-level an
image is and whether it is benign or malignant as well as whether
a biopsy is recommended for the nodule or not. For example, a
radiologist could determine a thyroid nodule to have the Shape of
“wider than tall” or “taller than wide”. If the shape of the thyroid
nodule is “wider than tall”, then 0 points are added to the total score.
Alternatively, if the nodule is "taller than wide", 3 points are added
to the total score, resulting in the TR-level label classification being
at least a TR3, mildly suspicious.
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Figure 1: ACR TI-RADS flow chart [10]

Artificial Intelligence (AI) models and tools have been devel-
oped to aid radiologists in their diagnosis of thyroid nodules [1, 3].
Many existing well-performed deep learning models [12] only con-
duct TR-level classification or binary classification (malignant or
benign). Deep learning models are usually black box models and
lacking explanations, which brings hurdles for the practical and
trustworthiness of these systems. This paper demonstrates Thy-
Exp, a web-based explainable AI-assisted decision making toolkit
for thyroid nodule diagnosis. The toolkit can achieve high accuracy
results on a real-world patient dataset collected from a UK NHS hos-
pital. Together with the results, it can provide explanations about
the diagnosis results to users.

2 RELATEDWORK
Existing systems available to the public are limited in this area
of work, they mostly consists of theoretical implementations of
Artificial Intelligence models in the diagnosis of thyroid nodules.
ThyNet [9] allowed for the classification of thyroid nodules as
either malignant or benign. ThyNet uses a combination of 3 already
existing AI architectures, ResNet, ResNeXt and DenseNet. Another
study [11] attempted to develop an end-to-end network based on
ResNet and YOLOv2. These models did not provide explanations to
users about their results.

Currently, there are only three other FDA-approved AI software
(Koios [6], Samsung S-Detect 2 [4], AmCAD [2]). All the current
commercially available software has its own limitations. In sum-
mary, the existing works do not provide explanatory diagnostic
results, and instead focus on achieving a high binary diagnosis accu-
racy. The authors are among the few in the UK who have developed
working AI software in this field. Our software bridges the gap of
providing highly accurate diagnosis predictions with explanations
to users.

3 THE PROPOSED TOOLKIT
The proposed toolkit ThyExp is a web-based application that con-
sists of both frontend web pages and a backend server API. The

toolkit mainly includes the annotation tool and the diagnosis tool.
The annotation tool provides the ability to annotate, update, and
delete the annotations of ultrasound images. The diagnosis tool al-
lows for the model training and classification of ultrasound images.
It is implemented as an API server. The API receives the necessary
parameters and completes the model training and returns their
results. We discuss the two tools in the following sub sections.

Figure 2: The screenshot of Diagnosis tool

3.1 Annotation Tool
Registered medical professional users can access this tool. They
can see the uploaded images, the decision label options, and the
diagnostic TR-level label options. The decision label options consist
of the Composition (4 classes), Echogenicity (4 classes), Shape (2
classes), Margin (4 classes), and Echogenic FOCI (4 classes). This
tool provide selection options of each class label name and its
corresponding TR score. Following the ACR TI-RADS diagnostic
rules, it will calculate the scores and suggests the ACR TI-RADS
TR-level label based on the selected class label options of each
decision label. These labels or annotations are then stored in the
database. After quality checking by domain experts, the annotated
images can be used as ground truth dataset and becomes a part of
the training data for machine learning (ML) models.

From the implementation point of view, initially the tool’s back-
end server converts the annotation ultrasound image to its Base64
image equivalent, these data are then sent in a POST request to
the REST API server. The server API processes the annotation data
uploaded. The ultrasound image base64 image data is converted to
a JPEG, a universally unique identifier (UUID) is generated. The
decision labels of the thyroid nodule, alongside the generated UUID
are stored in the database. The converted JPEG is stored on the
servers disk space, using its UUID as the filename for identification.
Upon accessing the annotation tool, the stored annotations are
loaded from the server by requesting the UUIDS from the database,
and obtaining the decision labels and JPEG images by reversing the
storage process. Thus converting the JPEGs to Base64 equivalents
and returning these values to the front-end website.

3.2 Diagnosis Tool
The diagnosis tool allows for a medical professional to upload an
ultrasound image and be presented with diagnosis TR-level label
classification of a thyroid nodule. Fig. 2 shows the screenshot of the
diagnostic tool. Different with other models or tools, this tool can
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present the decision labels as the explanation of why this image
has been classified as the predicted diagnosis TR-level label.

This tool can incorporate different types of ML based predic-
tion models. The users can select a ML model, and begin training
of the selected model for a user selected epoch count. Early stop-
ping is implemented to prevent over-fitting of the model during
this training process. The users can select a ML model and set up
training percentage and number of training epochs. To achieve
high accuracy performances, in this paper, we adopt the state-of-
the-art model LTQ (Local texture quantization) [5] model, as the
ultrasound image dataset are noisy and limited in quantity. The
LTQ model transforms images into index grids, using its quantized
local texture and allows for the classification of an image based on
its index grids [5]. The LTQ model directly predicts the TI-RADS
TR-level without utilising the decision labels, which provides no
explanation of their results to users.

In this study, we propose a method of TR-level prediction with
explanation called LTQ-E to improve both explanability and pre-
diction accuracy of ultrasound image diagnosis. LTQ-E model, in-
corporates methodologies extended from the main LTQ [5] model,
involving two steps:

• Step 1: Apply LTQmodels to predict each of the four decision
labels;

• Step 2: Predict the final diagnosis TR-level label based on the
predicted decision labels of Step 1.

In Step 1, predictions are made on each decision label of a given
image using the trained LTQ model. Since the TR-level scores can
be calculated from decision labels, the presenting of decision labels
helps to explain the TR-level prediction. The same model structure
is used for the TR-level prediction, but only modified the output
layer to fit the classification class of each decision label.

Step 2 is to get the TR-level label based on the predicted deci-
sion labels of Step 1. The proposed LTQ-E model extracts features
(embedding) from each trained decision label classification mod-
els. The useful information contained within the decision label
model following the training process was pre-trained by taking the
weights (i.e., embedding) of the last second layer of each decision
label model and aggregating them into a single feature in a unified
format. This feature was subsequently used as an input for clas-
sifiers such as linear classification models and a neural network
model to generate TR-level label predictions.

4 EXPERIMENTS AND IMPLEMENTATION
This section discusses experiments and implementation details.

4.1 Experimental Setup
RBH Dataset. A data set comprised a total of 831 ultrasound

images is obtained from 307 patients from Royal Berkshire Hospital.
All identifiable information was removed from the images to ensure
anonymity. Each patient had between 1 and 6 images that were used
to assess their TR-level diagnosis. Most patients had 3 or 2 images.
The ACR TI-RADS rules were applied to convert the TR score range
into TR-level labels, where 𝑇𝑅1 corresponds to a score range of
0-2, 𝑇𝑅2 corresponds to a score range of 2-3, 𝑇𝑅3 corresponds to a
score range of 3-4,𝑇𝑅4 corresponds to a score range of 4-7, and𝑇𝑅5
corresponds to a score range of 7-14. Fig. 4 displays the distribution

Figure 3: The framework of the proposed LTQ-E model

of TI-RADS (TR) labels at the image level. It can be seen that the
majority of the ultrasound images had TI-RADS (TR) levels of TR1,
TR2, TR3 and TR4, while only a small number of images were TR5.

Figure 4: The distribution of Image Level TR-level labels

Pre-processing. In preparation formodel training, all ultrasound
images were resized to 315 × 500 pixels. The dataset was then split
into a training set, comprised of 80% of the data and a test set
comprised of the remaining 20%. To address class imbalance in the
dataset, an upsampling data augmentation technique, by applying
random horizontal flip to generate new images for each minor TR-
level classes, was employed. This approach matched the maximum
number of images for TR-level label. It ensured equal number of
training samples among the classes. We only chose horizontal flip-
ping for data augmentation, as vertical flipping could impact the
‘shape’ features. After upsampling, the maximum number of images
per TR-level label was set to 220.

4.2 Experimental Results
We discuss the results of decision label prediction and TR-level
diagnosis label prediction in this sub section.

Results of Decision Label prediction. Since the TR-level scores
can be calculated from decision labels, the prediction of decision

5373



CIKM’23, October 21–25, 2023, Birmingham, United Kingdom Jamie Morris, Zehao Liu, Huizhi Liang, Sidhartha Nagala, and Xia Hong

Table 1: Results of decision labels prediction

Decision label Type Number of Classess Accuracy
Composition 4 0.8583
Echogenicity 4 0.823
Echogenicfoci 4 0.8398

Margin 4 0.8263
Shape 2 0.7844

labels helps to explain the TR-level prediction. To explain the diag-
nosis decisions, predictions are made using LTQ model on each de-
cision label . Table 1 shows the prediction accuracy of each decision
label. It can be seen that the LTQ model achieved high classification
accuracy above 80% for each decision label.

Results of Diagnosis class label (TR-level) prediction. To
evaluate the performances of the proposed model for the task of
TR-level label prediction, The following approaches are compared
on the RBH Dataset:

• LTQ model: This state-of-the-art approach predicts the TR-
level label directly. This model can not provide explanations.

• LTQ-E model: The proposed model with explanations in the
form of presenting decision labels. It uses the embedding of
each decision label model and adopts classifiers to predict
TR-level labels. We developed 4 variations using different
classifiers. 𝐿𝑇𝑄-𝐸1 adopts Logistic Regression as the clas-
sifier. 𝐿𝑇𝑄-𝐸2 adopts SVM as the classifier, 𝐿𝑇𝑄-𝐸3 adopts
Random Forest as the classifier. 𝐿𝑇𝑄-𝐸4 adopts a fully con-
nected neural network as the classifier.

• LTQ-R model: The proposed model that uses TI-RADS rules
to calculate the total TR score of predicted decision labels to
get the TR-level label. The same with LTQ-E model, this ap-
proach explains the TR-level label in the form of presenting
decision labels of each image.

The prediction accuracy results are shown in Table 2. It can be
seen that LTQ model achieved an accuracy of 78.25% for the task
of predicting the TR-level labels. The proposed LTQ-R and LTQ-E
model had higher accuracy than the LTQ model. Among all the 4
variations, 𝐿𝑇𝑄-𝐸1 achieved the best results. LTQ-E model also has
better explanation than LTQ model via providing decision labels to
explain the key features or characteristics that lead to the prediction
of TR-level labels. LTQ-E model complies with the human decision
making diagnosis process.

Table 2: Results of TR-level Prediction

Method Model Description Accuracy

LTQ Predict TR-level label directly 0.7825
LTQ-R Decision Label + TR Rules 0.82
𝐿𝑇𝑄-𝐸1 Decision label Embedding + LR 0.87
𝐿𝑇𝑄-𝐸2 Decision label Embedding + SVM 0.86
𝐿𝑇𝑄-𝐸3 Decision label Embedding + RF 0.85
𝐿𝑇𝑄-𝐸4 Decision label Embedding + NN 0.78

In the demo system, the best performing model is selected, that
is 𝐿𝑇𝑄-𝐸1 with accuracy of 87% to make TR-level diagnosis predic-
tions.

4.3 Implementation
The ML models are implemented in Python and Pytorch. The web-
site framework primarily utilises NodeJS and NextJS, a React frame-
work allowing for the development of single page full-stack applica-
tions. It utilises TailwindCSS for the website styling. Prisma ORM is
used for its database client and easily accessible query functionality
required for the storage, and retrieval of user, account, annotation
and diagnostic data. The REST API handles the classification, train-
ing of ML models, storage and retrieval of annotation data. The
API was developed in Python due to its compatibility with PyTorch.
PyTorch was the main library utilised for the ML models. Alongside
the REST API, a Redis-server is utilised for the temporary storage
of model training progress. The website uses Auth0 to handle the
authorization and authentication of users for the platform. Vercel
is used for hosting of the website framework. An AWS EC2 t2.large
instance with 2 vCPUs and 8G of RAM were used for the hosting of
the REST API. The PostgreSQL database holding all data required
for the user authentication, diagnosis and annotation storage was
hosted using AWS RDS db.t3.micro. The prototype system can be
accessed with this link [7]. The demo video can be visited with this
link [8].

5 CONCLUSIONS
This paper presents a web-based toolkit ThyExp. The key compo-
nents and functions of the proposed toolkit consist of the ability
to submit ultrasound images, annotate the images, and receive the
predicted TR-level label classifications with explanations in the
form of presenting decision labels. The proposed solution attempts
to provide more explanations through the classification of key fea-
tures that contribute to the final TR-level diagnosis decisions such
as Composition, Echogenicity, Shape, Margin and Echogenic foci, as
well as the final diagnosis decisions such as binary classification
(benign and malignant) and 5-class classification (TI-RADS labels).
The experimental results conducted on a real-world UK NHS hospi-
tal patient dataset show that the proposed toolkit can achieve high
accuracy diagnosis of thyroid nodules.

Although the proposed prediction models are able to produce a
high accuracy diagnosis, the results should be tested with bigger
datasets. As well as developing our own software, we will look to
further improve the usability, accuracy, and explainability of the
software for the UK population.

ACKNOWLEDGEMENTS
This project is funded by the Collaborative Innovation Fund of
Royal Berkshire NHS Foundation Trust and University of Reading.

REFERENCES
[1] Ziyu Bai, Luchen Chang, Ruiguo Yu, Xuewei Li, Xi Wei, Mei Yu, Zhiqiang Liu,

Jie Gao, Jialin Zhu, Yulin Zhang, Shuaijie Wang, and Zhuo Zhang. 2020. Thyroid
nodules risk stratification through deep learning based on ultrasound images.
Medical Physics 47, 12. https://doi.org/10.1002/mp.14543

[2] AmCad BioMed. 2019. AmCAD-UT. Retrieved June 16, 2023 from https://www.
amcadbiomed.com/product/ut

5374

https://doi.org/10.1002/mp.14543
https://www.amcadbiomed.com/product/ut
https://www.amcadbiomed.com/product/ut


ThyExp: An explainable AI-assisted Decision Making Toolkit for Thyroid Nodule Diagnosis
based on Ultra-sound Images CIKM’23, October 21–25, 2023, Birmingham, United Kingdom

[3] M. Han, E.J. Ha, and J.H. Park. 2021. Computer-Aided Diagnostic System for
Thyroid Nodules on Ultrasonography: Diagnostic Performance Based on the
Thyroid Imaging Reporting and Data System Classification and Dichotomous
Outcomes. American Journal of Neuroradiology 42, 3 (2021), 559–565. https://
doi.org/10.3174/ajnr.A6922 arXiv:https://www.ajnr.org/content/42/3/559.full.pdf

[4] Samsung Healthcare. 2021. S-Detector. Retrieved June 16, 2023 from https:
//www.samsunghealthcare.com/en/products/digital_radiography/S-Detector

[5] Xiao Li, Huizhi Liang, Sidhartha Nagala, and Jane Chen. 2022. Improving Ul-
trasound Image Classification with Local Texture Quantisation. In ICASSP 2022
- 2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1211–1215. https://doi.org/10.1109/ICASSP43922.2022.9747883

[6] Koios Medical. 2023. Koios DS thyroid. Retrieved June 16, 2023 from https:
//koiosmedical.com/products/koios-ds-thyroid/

[7] Jamie Morris, Zehao Liu, Huizhi Liang, Sidhartha Nagala, and Xia Hong. 2023.
AI-Assisted disease diagnosis based on images. Retrieved June 16, 2023 from
https://rbh-web-xlbt.vercel.app/

[8] Jamie Morris, Zehao Liu, Huizhi Liang, Sidhartha Nagala, and Xia Hong. 2023.
Project demonstration. Retrieved June 16, 2023 from https://drive.google.com/
drive/folders/12Sj78gU-Ns14E1vCW0YD2dIY_AZ-N9QS?usp=sharing

[9] Sui Peng, Yihao Liu, Weiming Lv, Longzhong Liu, Qian Zhou, Hong Yang, Jie Ren,
Guang-Jian Liu, Xiaodong Wang, Xuehua Zhang, Qiang Du, Nie Fangxing, Gao

Huang, Yuchen Guo, Jie Li, Jin-Yu Liang, Hang-Tong Hu, Han Xiao, Ze-Long Liu,
Fenghua Lai, Qiuyi Zheng, HaiboWang, Yanbing Li, Erik K. Alexander, WeiWang,
and Haipeng Xiao. 2021. Deep learning-based artificial intelligence model to
assist thyroid nodule diagnosis and management: a multicentre diagnostic study.
The Lancet Digital Health 3. https://doi.org/10.1016/S2589-7500(21)00041-8

[10] Franklin N. Tessler, William D. Middleton, Edward R. Grant, Jenny K. Hoang,
Lincoln L. Berland, Sharlene A. Teefey, John E. Cronan, Michael D. Beland,
Terry S. Desser, Mary C. Frates, Lynwood Hammers, Ulrike M. Hamper, Jill E.
Langer, Carl C. Reading, Leslie M. Scoutt, and A. Thomas Stavros. 2017. ACR
Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the
ACR TI-RADS Committee. Journal of the American College of Radiology 14, 5.
https://doi.org/10.1016/j.jacr.2017.01.046

[11] Lei Wang, Shujian Yang, Shan Yang, Cheng Zhao, Guangye Tian, Yuxiu Gao,
Yongjian Chen, and Yun Lu. 2019. Automatic thyroid nodule recognition and
diagnosis in ultrasound imaging with the YOLOv2 neural network. World Journal
of Surgical Oncology 17, Article 12. https://doi.org/10.1186/s12957-019-1558-z

[12] Heng Ye, Jing Hang, Xiaowei Chen, Di Xu, Jie Chen, Xinhua Ye, and Dong H.
Zhang. 2020. An intelligent platform for ultrasound diagnosis of thyroid nodules.
Scientific Reports 10, 1, Article 13223. https://doi.org/10.1038/s41598-020-70159-y

5375

https://doi.org/10.3174/ajnr.A6922
https://doi.org/10.3174/ajnr.A6922
https://arxiv.org/abs/https://www.ajnr.org/content/42/3/559.full.pdf
https://www.samsunghealthcare.com/en/products/digital_radiography/S-Detector
https://www.samsunghealthcare.com/en/products/digital_radiography/S-Detector
https://doi.org/10.1109/ICASSP43922.2022.9747883
https://koiosmedical.com/products/koios-ds-thyroid/
https://koiosmedical.com/products/koios-ds-thyroid/
https://rbh-web-xlbt.vercel.app/
https://drive.google.com/drive/folders/12Sj78gU-Ns14E1vCW0YD2dIY_AZ-N9QS?usp=sharing
https://drive.google.com/drive/folders/12Sj78gU-Ns14E1vCW0YD2dIY_AZ-N9QS?usp=sharing
https://doi.org/10.1016/S2589-7500(21)00041-8
https://doi.org/10.1016/j.jacr.2017.01.046
https://doi.org/10.1186/s12957-019-1558-z
https://doi.org/10.1038/s41598-020-70159-y

	Abstract
	1 Introduction
	2 Related Work
	3 The Proposed Toolkit
	3.1 Annotation Tool
	3.2 Diagnosis Tool

	4 Experiments and Implementation
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Implementation

	5 Conclusions
	References



