Finn, T. S., Durand, C., Farchi, A., Bocquet, M., Chen, Y. ORCID: https://orcid.org/0000-0002-2319-6937, Carrassi, A.
ORCID: https://orcid.org/0000-0003-0722-5600 and Dansereau, V.
(2023)
Deep learning subgrid-scale parametrisations for short-term forecasting of sea-ice dynamics with a Maxwell elasto-brittle rheology.
The Cryosphere, 17 (7).
pp. 2965-2991.
ISSN 1994-0424
doi: 10.5194/tc-17-2965-2023
Abstract/Summary
We introduce a proof of concept to parametrise the unresolved subgrid scale of sea-ice dynamics with deep learning techniques. Instead of parametrising single processes, a single neural network is trained to correct all model variables at the same time. This data-driven approach is applied to a regional sea-ice model that accounts exclusively for dynamical processes with a Maxwell elasto-brittle rheology. Driven by an external wind forcing in a 40 km×200 km domain, the model generates examples of sharp transitions between unfractured and fully fractured sea ice. To correct such examples, we propose a convolutional U-Net architecture which extracts features at multiple scales. We test this approach in twin experiments: the neural network learns to correct forecasts from low-resolution simulations towards high-resolution simulations for a lead time of about 10 min. At this lead time, our approach reduces the forecast errors by more than 75 %, averaged over all model variables. As the most important predictors, we identify the dynamics of the model variables. Furthermore, the neural network extracts localised and directional-dependent features, which point towards the shortcomings of the low-resolution simulations. Applied to correct the forecasts every 10 min, the neural network is run together with the sea-ice model. This improves the short-term forecasts up to an hour. These results consequently show that neural networks can correct model errors from the subgrid scale for sea-ice dynamics. We therefore see this study as an important first step towards hybrid modelling to forecast sea-ice dynamics on an hourly to daily timescale.
Altmetric Badge
Item Type | Article |
URI | https://reading-clone.eprints-hosting.org/id/eprint/112714 |
Item Type | Article |
Refereed | Yes |
Divisions | Science > School of Mathematical, Physical and Computational Sciences > National Centre for Earth Observation (NCEO) Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology |
Publisher | European Geosciences Union |
Download/View statistics | View download statistics for this item |
Downloads
Downloads per month over past year
University Staff: Request a correction | Centaur Editors: Update this record