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Abstract 

 

Computers have fundamentally advanced all fields of biology over the past 50 years. Within 

evolutionary biology, for example, researchers can now leverage computational approaches 

to detect macroevolutionary patterns with unprecedented rigour and objectivity using large 

phylogenies of species. But evolution is a historical process, and macroevolutionary 

hypotheses demand direct evidence from the deep past. The work presented in this thesis 

applies the latest phylogenetic comparative methods to fossil and simulated datasets and 

highlights how fossils from deep time inform our understanding of evolution. Sampling is 

central to all science, including comparative analyses, and can shape how we detect patterns 

and processes. Chapter 1 shows that a large effective (evolutionary) sample size of 

independent changes is crucial for accurately inferring rates of evolution and differentiating 

support among evolutionary hypotheses. Chapter 2 shows how disproportionate geo-

palaeontological sampling affects inferences of dispersal rates and ancestral geographic 

locations. I offer an innovative approach for assessing geographic sampling biases in the fossil 

record. The fossil record is also a window into diverse ecosystems and a wide range of global 

conditions. It thus offers unique and independent data sources for testing evolutionary 

hypotheses. Chapter 3 describes the utility of fossils for assessing general ecological 

principles based on extant taxa and modern climates. The study shows that Bergmann's rule 

does not extend to Mesozoic dinosaurs and mammals and that their poleward dispersal did 

not drive increases in body size. Chapter 4 describes an approach for directly quantifying 

change in functional equations along phylogenetic branches and applies it to the locomotor 

evolution of dinosaurs. The study reveals a close connection between the rate of locomotor 

evolution and speciation. Together, these works highlight the utility of the fossil record for 

informing evolutionary models and our understanding of evolution. 
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1 Darwin, C. (1859). On the origin of species by means of natural selection. London, UK: 
John Murray 

1 

Introduction 

 

“But just in proportion as this process of extermination has acted on an enormous 

scale, so must the number of intermediate varieties, which have formerly existed, be 

truly enormous.” 

-  Charles Darwin, 18591 

 

Sampling the past 

How do new species form? How do they change over time? And how do we explain 

the vast diversity of life around us? These questions are fundamental to our 

understanding of life on Earth and our place in it. Fossils play an integral role in 

answering these questions. The origin and extinction of species are most directly 

observed in the fossil record (Benton, 1995; Foote, 2003; Jablonski, 2004), along with 

evidence for novel adaptations (Shubin et al., 2009) and climatic conditions unseen in 

the modern world (Mannion et al., 2014). In his seminal work On the Origin of Species, 

Charles Darwin dedicated two chapters to the geological record and succession of 

extinct organisms (Darwin, 1859). Yet, Darwin was troubled by the incomplete nature 

of the fossil record and thought it to be the “most obvious and serious objection” to his 

theory of evolution (Darwin, 1859). If life evolved gradually from ancestor to 

descendant, then why does not every geological unit contain fossil intermediates? His 

answer was that the geological record was imperfect, and scientists using fossil data 

have since been forced to grapple with this reality. In the past few decades, 

sophisticated computational and statistical methods have transformed our ability to 
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analyse fossil data with greater efficiency and at unprecedented scales. However, 

Darwin’s concern about the imperfect nature of the fossil record remains. How do we 

know whether our inferences are signals of an evolutionary process or merely biases 

in our data or methodologies? 

In the last century, palaeontology has blossomed into a more quantitative field 

(Polly et al., 2016). Fossils are now treated as data points, providing new insights into 

the origin, evolution, and extinction of species. Throughout the 20th century, 

palaeontologists began to treat patterns observed in the fossil record as an accurate 

reflection of the pace and manner by which species evolved. In Tempo and Mode in 

Evolution, George G. Simpson used fossils to describe how rates (or tempo) of 

evolution can vary (Simpson, 1944). He proposed his theory of quantum evolution in 

which gaps in the fossil record are, in part, explained by rapid shifts to new adaptive 

zones—a set variation in which certain morphologies are adaptive in a species. Niles 

Eldredge and Stephen J. Gould noticed that species were often static and found that 

most morphological change occurred between species (Eldredge and Gould, 1972). 

Their theory of punctuated equilibria supposes that evolution is predominately driven 

by speciation. 

Central to studying evolution is the comparative method (Pagel, 2000). 

Comparison forms the basis for how we distinguish organisms and their 

characteristics. For instance, does body size differ between herbivorous and 

carnivorous species? Such comparisons, however, require we account for shared 

ancestry. The more time two species share an evolutionary past, the more similar we 

expect them to be. In other words, comparative biological data are not independent, 

as assumed in common statistical tests. Joseph Felsenstein’s (1985) paper on the 

non-independence of biological data was ground-breaking for comparative biology 
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and kickstarted the use of evolutionary trees (or phylogenies) as a statistical 

comparative framework. Phylogenetic comparative methods have since accelerated, 

with a wide selection of models for estimating rates of evolution (Eastman et al., 2011; 

Venditti et al., 2011), rates of speciation and extinction (Kubo and Iwasa, 1995; 

Beaulieu and O’Meara, 2015; Louca and Pennell, 2020), mode of evolution (Pagel, 

1999; Pagel et al., 2006), correlated or dependent evolution (Pagel, 1994; Pagel and 

Meade, 2006), the states of long-extinct ancestors (Pagel et al., 2004), and even 

predicting unobserved traits in extinct organisms (Organ et al., 2009, 2007). The ideas 

on the tempo and mode of evolution brought forward by researchers like Eldredge, 

Gould, and Simpson can now be statistically tested across large phylogenies. For 

example, Pagel et al. (2006) proposed a phylogenetic test for punctuated evolution, 

where the sum of the branch lengths from the root to each tip is correlated with the 

number of nodes (or lineage-splitting events). Evidence for a correlation suggests that 

speciation explains the total amount of evolution among those taxa, akin to Eldredge 

and Gould’s punctuated equilibria (Eldredge and Gould, 1972). However, the test by 

Pagel et al. allows for a gradation in the effect of speciation on evolution.  

Each chapter of this thesis capitalises on recent advancements in phylogenetic 

comparative methods. In Chapter 1, we use Bayesian models for discrete-coded 

characters (Pagel, 1999; Pagel et al., 2006) to assess the role of sampling on 

estimated rates of evolution and inferences on correlated evolution (Gardner and 

Organ, 2021). In Chapter 2, we apply a variable-rates implementation of a 

biogeographic dispersal model (O’Donovan et al., 2018) and test the effects of 

disproportionate geographic sampling on estimated ancestral locations and dispersal 

rates (Gardner et al., 2019). In Chapters 3 & 4, we apply a recently developed variable-

rates regression model (Baker et al., 2016; Baker and Venditti, 2019) to study the 
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geographic distribution of body size and evolution of locomotor lever arms in Mesozoic 

dinosaurs.    

 

Biases in the fossil record 

Questions over the quality of the fossil record have plagued scientists since Darwin’s 

time. Stratigraphic and phylogenetic congruence suggests that the fossil record is 

quite good for a given geological stage and taxonomic family (Benton et al., 2000). 

However, several types of biases are widely known. Fossils are more likely to be 

preserved and recovered in younger geological strata, known as the “Pull of the 

Recent” bias (Jablonski et al., 2003). Uncertainty in stratigraphic ranges can also 

influence estimates of diversification and extinction rates (Raup and Boyajian, 1988; 

Signor and Lipps, 1982). These limitations and biases must be addressed when using 

fossil data to test hypotheses. Palaeontologists have several approaches to account 

for possible sampling biases, including subsampling methods (Alroy et al., 2001; Close 

et al., 2020; Dunne et al., 2018; Jablonski et al., 2003; Lloyd et al., 2012) and 

incorporating sampling bias proxies as covariates in regression analyses (Benson et 

al., 2010; Benson and Butler, 2011; Benton et al., 2013; Sakamoto et al., 2016). 

Formation count often tracks palaeobiodiversity closely through time (Benton et al., 

2013). However, when the fossil record is sparse, formation count may be a poor 

predictor of diversity (Dunhill et al., 2014b, 2014a, 2013, 2012). Moreover, a causal 

relationship between formation count and palaeobiodiversity is uncertain. 

Confounding variables, such as sea level, may best explain their association (Benton 

et al., 2013; Dunhill et al., 2014b). Counter to expectation, palaeobiodiversity could 

drive the number of formations since fossil taxa are often used to define geologic strata 
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(Benton, 2015). Formation count is a particularly popular sampling bias proxy in 

phylogenetic comparative analyses (O’Donovan et al., 2018; Sakamoto et al., 2016; 

Tennant et al., 2016a, 2016b). However, geographic fossil sampling bias is often not 

considered in such analyses despite being well-documented (Benson and Upchurch, 

2013; Vilhena and Smith, 2013). Disproportionate palaeontological sampling through 

space and time can influence inferences on ancestral geographic locations, dispersal 

rates, and the geographic distribution of traits. In Chapters 2 & 3, we apply new 

geographically informed sampling bias metrics to assess their effect on dispersal and 

the latitudinal distribution of body size. 

 

Contributions of this thesis 

This thesis details the ways in which sampling the past shapes our understanding of 

evolution. Chapters 1 & 2 explore how sampling biases influence the support for 

hypotheses on correlated evolution and dispersal rates. And Chapters 3 & 4 

demonstrate how fossils can provide unique insights into biogeography, ecology, and 

the evolution of movement. 

 Chapter 1 shows how large effective (evolutionary) sample sizes of 

independent character state changes are crucial for accurately estimating rates of 

evolution and distinguishing hypotheses of correlated evolution (Gardner and Organ, 

2021). There are many morphological traits, especially in fossil taxa, that originate 

along the same branch of a phylogenetic tree (Maddison and FitzJohn, 2015). Many 

are surely relics of cladistics, in which shared derived characters are prioritised; 

however, the lack of independent (convergent/parallel) evolution makes it challenging 

to statistically test for correlated evolution. We propose new metrics for assessing the 
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suitability of phylogenetic comparative methods in such cases and offer 

recommendations for mitigating biased assessments of correlated evolution. 

 The effects of spatial sampling biases have long been recognized (Benson and 

Upchurch, 2013; Vilhena and Smith, 2013); yet, studies estimating patterns of 

biogeographic dispersal fail to account for its effects. Chapter 2 demonstrates how 

disproportionate fossil sampling across space and time affects estimates on dispersal 

rates and ancestral geographic locations (Gardner et al., 2019). We propose a new 

approach for assessing geographic sampling biases and apply it to a case study on 

fossil tetrapodomorphs. 

The latitudinal diversity of species is known to change with climate over deep 

time (Mannion et al., 2014). Yet, many ecological ‘rules’ are based almost entirely on 

present-day diversity (Allen, 1877; Bergmann, 1847). Bergmann’s rule states that 

body size increases with latitude and temperature as an adaptation for retaining heat 

in endothermic species (Bergmann, 1847; Blackburn et al., 1999; Meiri, 2011). 

However, tests for Bergmann’s rule have been almost strictly conducted on extant 

animals and are often selective in terms of which taxa support the rule. Using models 

that allow variable rates of body size evolution, Chapter 3 reveals that Bergmann's 

rule does not extend to Mesozoic dinosaurs and mammals and that their poleward 

dispersal did not drive increases in body size. Moreover, applying our models to a 

large dataset of extant mammals, the study finds little evidence for Bergmann’s rule 

as a driver of body size evolution in mammals.  

Chapter 4 describes a new approach for directly quantifying change in 

functional equations along phylogenetic branches and applies it to the locomotor 

evolution of dinosaurs. Dinosaurs exhibited an enormous range of sizes and forms of 
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locomotion (Brusatte et al., 2008; Carrano, 2000), including innovations in flight, 

quadrupedality, and gigantism, making them an ideal test case for understanding how 

locomotion evolves. The study applies variable-rates regression models to the 

parameters of locomotor equations and uncovers the complex ways in which 

underlying parts of a system can interact to produce enormous changes in function. 

The study also demonstrates how bouts of functional evolution can coincide with 

innovations in locomotion and may be driven by speciation. 
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Chapter 1 

Evolutionary Sample Size and Consilience in Phylogenetic 

Comparative Analysis 

(Published as: Gardner, Jacob D., and Chris L. Organ. 2021. Evolutionary Sample Size and 

Consilience in Phylogenetic Comparative Analysis. Systematic Biology	70(5): 1061—1075.) 

 

Abstract 

 Phylogenetic comparative methods (PCMs) are commonly used to study evolution 

and adaptation. However, frequently used PCMs for discrete traits mishandle single 

evolutionary transitions. They erroneously detect correlated evolution in these 

situations. For example, hair and mammary glands cannot be said to have evolved in 

a correlated fashion because each evolved only once in mammals, but a commonly 

used model (Pagel’s Discrete) statistically supports correlated (dependent) evolution. 

Using simulations, we find that rate parameter estimation, which is central for model 

selection, is poor in these scenarios due to small effective (evolutionary) sample sizes 

of independent character state change. Pagel’s Discrete model also tends to favor 

dependent evolution in these scenarios, in part, because it forces evolution through 

state combinations unobserved in the tip data. This model prohibits simultaneous dual 

transitions along branches. Models with underlying continuous data distributions (e.g., 

Threshold and GLMM) are less prone to favor correlated evolution but are still 

susceptible when evolutionary sample sizes are small. We provide three general 

recommendations for researchers who encounter these common situations: i) create 

study designs that evaluate a priori hypotheses and maximize evolutionary sample 

sizes; ii) assess the suitability of evolutionary models—for discrete traits, we introduce 
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the phylogenetic imbalance ratio; and iii) evaluate evolutionary hypotheses with a 

consilience of evidence from disparate fields, like biogeography and developmental 

biology. Consilience plays a central role in hypothesis testing within the historical 

sciences where experiments are difficult or impossible to conduct, such as many 

hypotheses about correlated evolution. These recommendations are useful for 

investigations that employ any type of PCM. 

 

Introduction 

Over the past 40 years, biologists have capitalized on computational advances to 

study evolution with greater efficiency, rigor, and objectivity. Statistical phylogenetics 

is central to many of these endeavors, from macroecology to cancer genomics 

(Felsenstein 2003; Keith et al. 2012; Schwartz and Schäffer 2017). In addition to 

inferring taxonomic relationships, biologists routinely use phylogenies to design 

studies and analyze comparative datasets, a practice called phylogenetic comparative 

methods (PCMs) (Harvey and Pagel 1991; Garamszegi 2014; Harmon 2018). Joseph 

Felsenstein’s 1985 paper on the nonindependence of biological data was a watershed 

moment for PCMs and a clarion call for many fields across biology. Felsenstein (1985) 

argued that, because of shared ancestry, comparative data and their associated errors 

are often phylogenetically structured—species with more recent common ancestors 

tend to have trait values more similar than those in distant relatives (Felsenstein 1985). 

Comparative data, therefore, violates assumptions of independence common in 

statistics.  

Phylogenetic comparative methods have blossomed since, especially in the 

past 10 years, coincident with the rise of R as a ubiquitous statistical platform (R Core 

Team 2019). Researchers now use PCMs to analyze diverse datasets—from 
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genomes to languages to the fossil record—and model how traits evolved over time, 

often in association with other traits and abiotic factors (Harvey and Pagel 1991; 

Garamszegi 2014; Harmon 2018). These methods can help researchers model 

speciation and extinction rates through time (Nee et al. 1994; Kubo and Iwasa 1995; 

Morlon 2014; but see Rabosky 2010, and Louca and Pennell 2020 for critiques); 

reconstruct the ancestral traits of long-extinct common ancestors (Pagel 1999); and 

predict traits in extinct organisms (i.e., retrodiction [Organ et al. 2007, 2009, 2011]). 

Exceptional evolutionary change along single lineages, such as brain size 

along the human lineage, is inherently interesting to biologists and can be rigorously 

studied with continuous data using a variety of approaches (McPeek 1995; Revell 

2008; Eastman et al. 2011; Organ et al. 2011; Venditti et al. 2011; Uyeda et al. 2018). 

In general, these approaches compare trait values of target taxa against wider trait 

distributions. Problems arise, however, when common models for discrete (binary) 

trait data are applied in these scenarios. For instance, Maddison and FitzJohn (2015) 

found that Pagel’s model for discrete characters (Pagel 1994) supports hypotheses of 

dependent (correlated) evolution when two binary (absent/present) characters evolve 

on the same phylogenetic branch and are never replicated (Maddison and FitzJohn 

2015). An example would be the coincident evolution of hair and mammary glands in 

mammals. Maddison and FitzJohn (2015) argue that this cannot be taken as sufficient 

evidence for correlated evolution because coincident change happened only once; the 

effective or evolutionary sample size, representing the number of independent 

character state changes, is only one. Note that the evolutionary sample size may differ 

markedly from an apparently large sample of taxa. The number of taxa is often an 

overestimate of the evolutionary sample size, which could lead to overestimated 

degrees of freedom and inflated Type I error rates (Smith 1994). 
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Here we extend the work of Maddison and FitzJohn (2015) by showing that all 

common PCM models of correlated evolution for discrete characters are prone to 

support correlated evolution in these situations, especially those with underlying 

continuous model structures. We make three general recommendations for 

researchers using PCMs who regularly face these issues. First, we suggest that 

researchers design studies to evaluate a priori hypotheses that maximize evolutionary 

sample sizes (independent originations of trait states). Second, researchers should 

assess the suitability of their evolutionary model. We develop a metric that gauges the 

suitability of discrete character models by combining the consistency index and class 

imbalance ratio (Wang and Yao 2012). Third, we recommend that researchers employ 

a ‘consilience of inductions’ approach (Whewell 1840), a crucially important concept 

in the historical sciences, exemplified in Charles Darwin’s Origin of Species and other 

work (Darwin 1860; Ruse 1975; Thagard 1977). 

 

Background: Discrete Character Models & Correlated Evolution 

Before we discuss our simulations and recommendations, we provide a brief overview 

of PCMs for discrete characters (categorical; nominal or ordinal data). The effects that 

traits can have on the evolution of other traits has long interested biologists. The term 

‘correlated evolution’ refers generally to the evolutionary change of one trait 

influencing that of another. After Felsenstein (1985), there was an explosion of PCMs 

aimed at testing for correlated evolution with both continuous and discrete traits 

(Maddison 1990; Pagel 1994, 1999; Huelsenbeck et al. 2003; Felsenstein 2005; 

Hadfield 2010). We recognize three classes of methods for testing correlated 

evolution, each with their own assumptions and lines of evidence that they consider. 

These include methods that test for: i) dependent evolution, in which the rate of change 
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in one character depends on the state of another (Maddison 1990; Pagel 1994); ii) 

shared character history, in which there is considerable overlap in the inferred 

evolutionary history of two character states (Huelsenbeck et al. 2003); and iii) 

correlated evolution sensu stricto, in which the variation of one trait covaries with that 

of another trait (Felsenstein 1985; Pagel 1999; Felsenstein 2005; Hadfield 2010). This 

last category also includes methods for continuous trait correlation and mixed models. 

We also use correlated evolution throughout the manuscript to refer to the association 

of two traits generally. 

We first review the methods for testing dependent evolution. Maddison (1990) 

first developed a method, called the concentrated-changes test, that assesses 

whether changes in a character are more likely to be found on phylogenetic branches 

in association with changes in a second character. The method first infers the 

ancestral states of both characters separately for each node of the phylogeny, which 

provides an estimate on the number of gains (state 0 to 1) and losses (state 1 to 0). It 

then calculates the probability that the inferred changes in one character would, by 

chance, be as concentrated along branches given the state of a second character. A 

few notable limitations of this method are that it is not model based, it does not take 

branch lengths (amount of evolution or time) into account, and the inference of 

dependent evolution depends on the prior ancestral state inference. 

Pagel (1994) developed a method that uses a continuous-time Markov model 

to characterize the evolution of binary characters (Pagel 1994). This model is a 

derivation of the Jukes-Cantor model, which assumes uniform transition rates among 

nucleotides (Jukes and Cantor 1969). However, rather than using transition rates to 

construct a phylogeny, the Markov model in Pagel’s (1994) method estimates the 

transition rates between the states of two binary characters. The estimated rates 
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depend on the tree topology, branch lengths, and distribution of states across the tips. 

Unlike previous methods, Pagel’s model treats ancestral states as random variables 

with some probability for each state of both characters at a given node. This solves 

the issue of relying on prior ancestral state inferences to test for dependent evolution. 

Importantly, this model assumes that dual character transitions cannot occur 

simultaneously; one character must evolve before the other. By comparing differences 

among rate parameters, we can assess whether the state of one character evolves 

dependently upon the state of another character. For example, Organ et al. (2009) 

found that live birth evolved only after genetic sex determination had previously 

evolved in amniotes. 

To test for dependent evolution, two models are fitted: one where the transition 

rates of each character are independent and another where the transition rates of one 

character depend on the state of the other character (Fig. 1b). A likelihood ratio test 

can then be used to discriminate the better fitting model. A Bayesian reversible jump 

Markov chain Monte Carlo (rjMCMC) implementation of Pagel’s (1994) method was 

also developed to simultaneously account for phylogenetic uncertainty and 

automatically reduce the number of transition rate parameters (Pagel and Meade 

2006). 
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Figure 1. Discrete character scenarios and methods used for testing correlated evolution in 

this study. a) Character distributions of the four scenarios simulated; character presence is 

illustrated as black, and inner and outer boxes represent characters one and two. Average 

consistency index (CI) and phylogenetic imbalance ratio (PIR) are listed under each scenario. 

b) Figures illustrating the methods used in this study. Pagel’s (1994) method showing the 

difference between the independent (top) and dependent (bottom) models with transition rates 

between possible character state combinations. The threshold figure illustrates the distribution 

of an unobserved liability underlying a binary character (absent/present). The MCMCglmm 

figure illustrating a logistic regression where the odds of character one being present is a 

function of the second character’s state. 

	
Huelsenbeck et al.’s (2003) test for shared character history adapts a method 

used to stochastically map mutations on a phylogeny (Nielsen 2002). The method, like 

Pagel’s (1994), uses a continuous-time Markov model to reconstruct the evolution of 
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multiple binary characters across a tree. The method differs, however, in its test for 

correlated evolution. Instead of assessing the dependence of character transition 

rates, Huelsenbeck et al.’s method tests whether the shared evolutionary history 

(measured in branch lengths or time) between two character states is significantly 

greater than expected assuming an independent model. Like Pagel’s method, this 

method samples node states according to their estimated probability. A considerable 

overlap in the inferred character history between two character states suggests that 

their evolution was correlated. Bianchini and Sánchez-Baracaldo (2020) developed a 

program, called sMap, that also models discrete character evolution using stochastic 

mapping, but, instead, it tests for dependent evolution like Pagel’s method. Unlike 

Pagel’s method, it allows for simultaneous dual character state transitions and the 

ability to define conditional probabilities for specific character state transitions. 

Discrete character evolution methods have also been developed to model 

transitions with underlying continuous variables and can allow for correlations between 

discrete and continuous traits. Felsenstein (2005, 2012) developed a phylogenetic 

threshold model based on work by Sewall Wright (Wright 1934; Felsenstein 1988, 

2005, 2012; Fig. 1b). This model assumes that an unobserved continuous variable, 

called a liability, determines the state of a binary character across some threshold 

value (Felsenstein 2012). The liability attempts to characterize underlying 

mechanisms of discrete character evolution that vary continuously, such as gene 

expression levels or unobserved environmental factors. Testing for covariation 

between two discrete characters with the threshold model requires fewer parameters 

than rate-based Markov models (Felsenstein 2005, 2012). Another advantage of this 

model is its ability to test for correlated evolution between continuous and discrete 
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variables by estimating the covariance between a continuous variable and the liability 

of a discrete character. 

Generalized linear mixed models (glmm) are extensions of general linear 

models, but they relax the assumption that residuals are normally distributed and allow 

for random effects. Hadfield (2010) developed an R package (MCMCglmm, Fig. 1b) 

that allows phylogenetic structures to be specified as random effects—essentially, 

removing the influence of phylogeny from the residual error. The phylogenetic 

structure is in the form of a variance-covariance matrix, representing the shared 

branch lengths of taxa. Any type of variance-covariance matrix can be incorporated, 

including those explaining pedigree relationships or geographic distances. A glmm 

relaxes the assumption of normality by transforming the response variable, allowing 

different data types to be modeled, such as binary, nominal, and ordinal data. For 

binary data, the response implements a logit transformation, amounting to a logistic 

regression. Like the threshold model, phylogenetic glmm assumes the presence of an 

unobserved continuously evolving parameter (the phylogenetically structured error), 

but it uses probabilities of change to dictate character state transitions instead of a 

threshold value. Other phylogenetic glmm implementations exist, like Ives and 

Garland’s (2010) PGLMM, which differs in how it structures the random effects (Ives 

and Garland 2010, 2014). PGLMM also uses a frequentist framework, whereas 

MCMCglmm is Bayesian. 

 

Framing the Problem 

Recent work has shown that some PCMs reviewed above support models of 

correlated evolution in scenarios of single unreplicated evolutionary transitions 

(Maddison and FitzJohn 2015; Rabosky and Huang 2016; Uyeda et al. 2018). For 
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example, Maddison and FitzJohn (2015) showed that Maddison’s (1990) and Pagel’s 

(1994) methods support dependent evolution in a scenario where two binary 

characters change states on the same phylogenetic branch (which they dub the 

“Darwin’s scenario”; Fig. 1a). The two characters originate only once in the same clade 

and are never lost or repeated; they are essentially synapomorphies that define the 

clade, and their co-occurrence may be coincidental. For example, Maddison and 

FitzJohn (2015) argue that trait distributions, like the coincident evolution of hair and 

mammary glands in mammals, lack biological evidence for correlated evolution 

precisely because each evolved only once. It is possible for two traits to evolve 

sequentially along a branch, and these may or may not be functionally or 

developmentally dependent, but we cannot falsify independent evolution because the 

change occurred on only one branch. The “unreplicated burst scenario”, described by 

Maddison and FitzJohn (2015), occurs when a binary character changes state on a 

branch where a second character increases its rate of evolution. This results in the 

presence of one character state across the entire clade with the second character 

changing states randomly throughout the same clade (Fig. 1a); high rates of character 

evolution yield random data distributions at the tips. Maddison and FitzJohn (2015) 

found that methods developed by Maddison (1990) and Pagel (1994) also statistically 

support dependent evolution in this scenario, despite the associations between the 

first and second characters being random within one clade. These results suggest that 

current methods are misled by rare and unreplicated events in evolution. We extend 

this discussion by assessing whether two additional models of correlated evolution 

(the phylogenetic threshold and glmm) yield similar results. 
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Materials and Methods 

To assess the performance of correlated evolution models, we simulated 1000 

ultrametric trees, each with 100 taxa, under a pure birth process (birth rate = 0.1) using 

the “geiger" package in R (Pennell et al. 2014; R Core Team 2019). We assigned the 

values of two characters to a random clade in the phylogeny, which varied in size 

randomly between 40 and 60 taxa, following the procedure of Maddison and FitzJohn 

(2015). For Darwin’s scenario, we set both characters to state 1 for all taxa inside this 

clade and to 0 for all taxa outside of it (Fig. 1a). In the unreplicated burst scenario, we 

assigned values as above for one character. For the second character, only half the 

taxa inside the selected clade were randomly assigned a value of 1 (Fig. 1a). The data 

were not simulated by modeling character evolution along the branches of a tree at a 

specified rate. We only assigned the character values to the tips, leaving the node 

states unassigned. Our construction of the unreplicated burst scenario is, therefore, 

different from Maddison and FitzJohn’s (2015); they allowed trait two to evolve rapidly 

throughout the entire tree and secondarily changed the trait values to all the taxa 

outside of the selected clade to state 0. However, note that inferred rates of evolution 

from random data at the tips (as in the second character of the unreplicated burst 

scenario) should be high relative to the rest of the tree. To further assess our 

construction of the two scenarios, we simulated three datasets intermediate between 

Darwin’s and the unreplicated burst scenarios using the same tree settings noted 

above. Starting with Darwin’s scenario, we randomly changed 1/8, 1/6, and 1/4 of the 

taxa in the selected clade from state 1 to 0. This represents a graded transition 

between our construction of the Darwin’s and unreplicated burst scenarios. 

In addition, we simulated positive and negative control scenarios, which were 

unreported in previous studies (Fig. 1a). In the positive control, we randomly assigned 
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state 1 to one character throughout the entire tree and mirrored it to create the second 

character. This scenario produces large evolutionary sample sizes (i.e., many 

independent character state changes) and we expect it to yield considerable evidence 

for correlated evolution. In the negative control, we randomly assigned state 1 to both 

characters independently throughout the tree. In this scenario, any character 

correspondence is coincidental; we, therefore, expect models of independent 

evolution to fit this character distribution better.  

We replicated Maddison and FitzJohn’s (2015) results with Pagel’s (1994) 

model by fitting it to 1000 trees under the four scenarios outlined above. As previously 

described, this model tests whether the rate of change in one character depends on 

the state of the second character (Pagel 1994). We fit the models using the ace 

function in the R package “ape” (Paradis et al. 2004) and used the likelihood ratio test 

to test whether the dependent or independent model better fit the data. Based on 

Maddison and FitzJohn’s (2015) study, we expected Pagel’s model to favor dependent 

evolution in both Darwin’s and unreplicated burst scenarios on average.  

We also tested for correlated evolution with the same 1000 trees using the 

rjMCMC implementation of Pagel’s (1994) model, the phylogenetic threshold model, 

and a phylogenetic glmm. We conducted the tests for the rjMCMC model in the 

program BayesTraits V3 with the 1000 simulated datasets (iterations = 1,010,000; 

sampling = 1000; burn-in = 10,000; state frequencies were equal). This model allowed 

us to test if parameter reduction resolved the issues discussed above. The rjMCMC 

procedure automatically reduces the number of rate parameters to those only 

supported by the data. Our results could, therefore, differ if model complexity were at 

fault in the scenarios explored here. The tree and data files for this analysis were 

created in R using the procedure outlined above. We calculated the proportion of 
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iterations where a dependent model was chosen over an independent one within each 

run and across all 1000 simulations. In addition, we calculated the average transition 

rate parameter estimates and ancestral root state probabilities for each simulation. We 

failed to find evidence that the MCMC chains had not converged using Tracer 1.7 

(Rambaut et al. 2018). 

We used a Bayesian implementation of the phylogenetic threshold model with 

the threshbayes function in the “phytools” R package (Revell 2012). Analyses were 

run for 10,000,000 iterations (burn-in = 2,500,000) with model parameters sampled 

every 1000 iterations. The mean of the posterior correlation coefficients (r-values) was 

estimated for each of the 1000 simulated trees (n = 1000 avg. r-values). To assess 

the significance for this distribution of mean r-values, we calculated a pMCMC, which 

represents two times the proportion of r-values that cross 0. Typically, pMCMCs less 

than 0.05 are considered good support (Fisher et al. 2013). Using trace plots, we failed 

to find evidence that the MCMC chains had not converged. 

We implemented our phylogenetic glmm model with the “MCMCglmm” package 

in R (Hadfield 2010). Here, the MCMC procedure samples the posterior distribution of 

slope parameters for 5,000,000 iterations (burn-in = 1,250,000). We used a logit link 

function with the residual effect fixed to 1 and a fixed effect prior of N(0, σ2 units, + 

π2/3), which is flat when using a logit link (Hadfield 2010; Fisher et al. 2013). At the end 

of each simulation, a pMCMC value was estimated, representing two times the 

proportion of the posterior slope parameters that cross 0. Model significance was 

assessed by estimating the 95% interval of the pMCMCs from the 1000 simulations (n 

= 1000 pMCMCs). A 95% interval that does not contain a pMCMC > 0.05 is taken as 

good evidence for correlated evolution. We assessed convergence in the MCMCglmm 
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models with trace plots. We also used the “coda” package’s autocorr function to 

ensure that there was no autocorrelation between iterations (Plummer et al. 2006). 

Then, we tested for a correlation between P values and clade size from the 

analyses using Pagel’s (1994) method (maximum likelihood implementation). We re-

ran the analyses fixing the selected clade size to 40 taxa but allowed the tree size to 

vary between 50 and 1000 taxa. This served as a test for the effect of tree size on the 

likelihood ratio test statistic, which has been proposed to be a factor for favoring the 

dependent model in Darwin’s scenario (Uyeda et al. 2018). These correlations were 

conducted using the lm function in the R base package (R Core Team 2019). 

 Moreover, we calculated the consistency index and class imbalance of all 

simulated datasets (n = 1000) under each of the four scenarios. The consistency index 

(CI) is a measure of character homoplasy and equals the minimum number of steps 

divided by the required number of steps taken to explain the data distribution on a 

given tree (Kluge and Farris 1969; Farris 1989). The metric ranges from 0 to 1. A data 

distribution with a CI of 1 has no homoplasy—no convergent evolution. We used the 

CI function in the R package “phangorn” (Schliep 2011) to calculate the average CI of 

the 1000 simulated datasets for each scenario (Fig. 1a).  

Class imbalance is when different classes of data (i.e., character state 

combinations) are not equally represented in the dataset, which is common in 

comparative studies. We used a normalized measure of multi-class imbalance, which 

equals the maximum frequency of a class minus its minimum frequency (the 

normalized imbalance ratio [NIR]): 

𝑁𝐼𝑅 =
𝑇!"# −	𝑇!$%

𝑛  

where n is the size of the dataset. The NIR will equal 0 when the data are fully balanced 

(all character state combinations occur with equal frequency in the dataset) and 1 
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when fully unbalanced (all the data have the same character states). Ideally, we want 

lower NIR scores so that transition rate parameters are more accurate and based on 

actual data. Using a combination of the CI and NIR, we developed a phylogenetic 

imbalance ratio (PIR):  

𝑃𝐼𝑅 = 𝑁𝐼𝑅 ∗ CI 

The PIR ranges from 0 to 1. An example of how these metrics are calculated 

are provided with a 12-tip phylogeny (Supplementary Fig. S1). A binary character has 

a minimum number steps of 1. In the example provided, two steps can explain the 

distribution of data (gray circles in Supplementary Fig. S1). A CI of 0.5 is estimated. 

Among the four classes of character state combinations ({0,0}, {0,1}, {1,0}, and {1,1}), 

the most represented classes have six out of 12 taxa. The least represented classes 

have zero out of 12 taxa. Therefore, the example dataset has an NIR of 0.5 and a PIR 

of 0.25. 

To understand how different model parameter and tree settings influence the 

values of these metrics, we ran simulations where we constructed phylogenetic trees 

under a range of different tree sizes and balance levels (i.e., how disproportionate 

clades are across the tree), relative clade sizes, and birth rates. We constructed 100 

trees using the simulate_yule function in the R package “apTreeshape” (Bortolussi et 

al. 2006). We randomly selected tree sizes to vary between 50 and 1000 taxa. We 

varied the birth rate between 0.1 and 100. The death rate was fixed to 0, as with the 

rest of our simulations. The balance level of the trees was simulated with the 

imbalance index, beta (ß), in which a negative ß represents an imbalanced tree and a 

positive ß represents a balanced tree. We randomly selected ß values to vary between 

-1.5 and 10, which were two extremes used in a previous simulation study on 

phylogenetic diversity (Maliet et al. 2018). We fixed the minimum size of unsampled 
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splits (ε) and the clade age-richness index (α) to 0.001 and -1, respectively, as done 

in the simulate_yule example provided in the package documentation. For each of the 

100 trees, we simulated datasets under the positive control, negative control, 

Darwin’s, and unreplicated burst scenarios (described previously). We varied the 

proportion of the selected clade size between 10 and 90% of the total number of taxa 

in the tree. For the positive and negative control scenarios, the selected clade size 

refers to the proportion of taxa across the tree that were randomly selected to have a 

character state of 1. We only tested for the effect of selected clade proportions 

between 10 and 50% because the slope at which NIR varies with selected clade 

proportion is expected to inflect. NIR is calculated by taking the relative difference 

between the most-represented and least-represented character state combinations. 

As the selected clade proportion increases, the character state combination that is 

most represented changes. The slope is expected to shift at a selected clade 

proportion of 50% for Darwin’s and the two control scenarios and at about 67% for the 

unreplicated burst scenario (see Supplementary Figs. S2 and 3 for examples). We ran 

multiple linear regression models to assess the effects that these parameters had on 

CI, NIR, and PIR using the lm function in the R base package (R Core Team 2019). 

There was a total of 12 multiple linear regression models (four scenarios and three 

metrics). Our alpha level for statistical significance was adjusted from 0.05 to 0.001 

using a Bonferroni correction (12 models with four P values estimated for each; 

0.05/48 = ~0.001). This correction only affected a small number of marginally 

significant P values. Through these simulations we inferred the range of these 

summary statistics, allowing us to recommend a cut-off.  

To demonstrate how these metrics are used, we calculated the CI, NIR, and 

PIR for an empirical dataset and tested for correlated evolution using the four methods 
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described previously. We used a published dataset of 60 primate species with two 

binary traits, the presence of estrus advertisement and multimale mating (Pagel and 

Meade 2006). From this dataset, we removed four species (Macaca cyclopis, Mucaca 

fascicularis, Macaca mulatta, and Trachypithecus phayrei) due to the absence of data 

for at least one of the traits, resulting in a final data set of 56 species. We fit dependent 

and independent models of character evolution using the R package “ape” (Paradis et 

al. 2004) and used the likelihood ratio test to compare the fit of both models. We used 

the rjMCMC implementation of Pagel’s (1994) model in BayesTraits V3 (iterations = 

1,000,000; sampling = 1000; burn-in = 250,000; state frequencies were equal). With 

the “phytools” R package (Revell 2012), we tested for a correlation using the 

phylogenetic threshold model. The threshold model ran for 1,000,000 iterations (burn-

in = 250,000) with model parameters sampled every 1000 iterations. We then tested 

for a correlation using the phylogenetic glmm model in the R package “MCMCglmm” 

(Hadfield 2010). The model ran for 1,000,000 iterations (burn-in = 250,000). We used 

a logit link function with the residual effect fixed to 1 and a fixed effect prior of N(0, σ2 

units, + π2/3) (Hadfield 2010; Fisher et al. 2013). For all four analyses, we used a 

majority-rule consensus tree from the 500 trees stored in Pagel and Meade’s (2006) 

tree file. We assessed the convergence of the MCMC chains by making trace plots 

using the R packages and programs specified previously for each method. The code 

produced for all analyses and results are available in our Supplementary materials on 

Dryad (https://doi.org/10.5061/dryad.8931zcrpw).  

 

Results 

The positive and negative controls yield results as expected for all four methods (Table 

1; Supplementary Fig. S4). We find support for dependent evolution using Pagel’s 



	

	 32 

(1994) method under Darwin’s and unreplicated burst scenarios, which replicates 

Maddison and FitzJohn’s (2015) results (Darwin’s scenario median P value = 0.00207, 

unreplicated burst scenario median P value = 4.811E-8; Table 1; Supplementary Fig. 

S4 available on Dryad). The three intermediate scenarios (where 1/8, 1/6, and 1/4 of 

the states are randomly set back to 0) that transition between Darwin’s and 

unreplicated burst scenarios yield progressively lower P values as the character 

distribution approaches that of the unreplicated burst scenario (1/8 setback P value = 

4.827E-5, 1/6 P value = 1.563E-5, and 1/4 P value = 9.729E-7; Supplementary Fig. 

S5 available on Dryad). The rjMCMC implementation of Pagel’s discrete model also 

supports dependent evolution under both scenarios. The median of 1000 simulations 

supported a dependent model for ~100% of its iterations under both scenarios (Table 

1; Supplementary Fig. S4). The rjMCMC also fails to fully replicate Maddison and 

FitzJohn’s (2015) results; out of 1000 simulations, the percentage of total iterations 

favoring the dependent model were slightly lower in Darwin’s scenario (99.6%) than 

in the unreplicated burst scenario (100%). Despite small differences in the 

unreplicated burst results, our simulations of Pagel’s model are consistent with 

Maddison and FitzJohn’s (2015) results. 
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Table 1. Summary of simulation results. 

 Positive Negative Darwin’s Unrep. Burst 

Pagel’s 

P value 
<0.001 0.78 0.002 <0.001 

rjMCMC 

% dep. 
100% 80% 100% 100% 

Threshold 

avg. r-value 
0.99 -0.002 0.67 0.47 

MCMCglmm 

pMCMC 
<0.001 0.49 <0.001 0.14 

 

Notes: Listed are the median values obtained from the distributions of results (n = 1,000 

simulations). The type of value reported is specified in gray underneath the model’s name. 

Gray values represent cases when a correlated model of evolution was not supported. For 

the reversible jump MCMC (rjMCMC) implementation of Pagel’s (1994) method, we 

evaluated statistical significance as whether the percent number of dependent models 

supported was greater than 95% of the distribution; for the threshold model, we calculated 

the pMCMC for the distribution of average r-values. We found little evidence for correlated 

evolution in the unreplicated burst scenario (Unrep. Burst) when using the threshold and 

MCMCglmm models. 

 

The phylogenetic threshold and glmm methods are less prone to support 

hypotheses of correlated evolution in the scenarios under study. The threshold model 

detects correlated evolution in Darwin’s scenario but not the unreplicated burst 

scenario on average (Table 1; Supplementary Fig. S4 available on Dryad). In Darwin’s 

scenario, we estimated a pMCMC of 0.018 from the distribution of average r-values (n 
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= 1000). The minimum average r-value was -0.282 with a maximum and median of 

0.999 and 0.666, respectively. In the unreplicated burst scenario, we estimated a 

pMCMC of 0.094. The minimum average r-value was -0.396 with a maximum and 

median of 0.926 and 0.470. The MCMCglmm also detects correlated evolution under 

Darwin’s scenario (95% interval pMCMC = 0.00088, 0.00112). The median pMCMC 

of slope values was 0.000667 with a minimum and maximum of 0.000667 and 0.036 

(Table 1; Supplementary Fig. S4 available on Dryad). However, there was little 

evidence for correlated evolution under the unreplicated burst scenario using this 

model (95% interval pMCMC = 0.140, 0.147). The median pMCMC was 0.135 with a 

minimum and maximum of 0.00533 and 0.395, respectively (Table 1; Supplementary 

Fig. S4 available on Dryad). 

We found no evidence for an association between clade size and P values in 

the analyses using Pagel’s (1994) method (Darwin’s: P value = 0.696; unreplicated 

burst: P value = 0.137; Supplementary Figs. S6 and S7 available on Dryad). We do 

find support for the effect of tree size on the likelihood ratio test statistic (Darwin’s: P 

value = 1.15E-10, R2 = 0.04; unreplicated burst: P value = 2.15E-12, R2 = 0.05; 

Supplementary Figs. S8—S12). The R2 values are low, however, suggesting that only 

4 and 5% of the variation in the test statistic is explained by the variation in tree size 

for Darwin’s and unreplicated burst scenarios, respectively. In addition, the simulation 

with the highest P value for Darwin’s scenario still favors the dependent model over 

the independent model (Supplementary Fig. S10 available on Dryad; maximum P 

value = 0.026). The simulation with the highest P value for the unreplicated burst 

scenario favors the independent model (highest P value = 0.052), but all other 

simulations of equal tree size or less produced P value less than 0.01 (Supplementary 

Fig. S12 available on Dryad). Therefore, even though tree size has a small effect on 
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the level of support for the dependent model, we find no evidence that it explains why 

Pagel’s method is prone to detecting correlated models of evolution in single transition 

scenarios. 

The Darwin’s scenario exhibits high class imbalance with a high CI (median: 

{1,1} = 47%, {0,0} = 53%, {0,1} = {1,0} = 0%; CI = 1), which results in a PIR of 0.5. The 

unreplicated burst scenario, to a lesser degree, also shows high class imbalance but 

a low CI (median: {1,1} = 24%, {0,0} = 52%, {0,1} = 24%, {1,0} = 0%; CI = 0.11) and 

has a PIR = 0.06. Our positive control also shows high class imbalance and a low CI 

(median: {1,1} = 47%, {0,0} = 53%, {0,1} = {1,0} = 0%; CI = 0.03), which results in a 

PIR of 0.02. The negative control is the least imbalanced because each trait state is 

randomly distributed across the tree with a correspondingly low CI (median: {1,1} = 

22%, {0,0} = 28%, {0,1} = {1,0} = 25%; CI = 0.03) and a PIR = 0.002. 

Through our simulations of CI, NIR, and PIR under different tree settings and 

parameters, we found that there is no evidence for an effect of either birth rate or tree 

balance on any of our metrics under any of the scenarios, controlling for tree size and 

the selected clade proportion (P values > 0.25). The influence of tree size was found 

to influence the CI and PIR values under the unreplicated burst (P values = 4.06E-12 

and 1.15E-10, respectively), positive control (P values = 7.38E-07 and 4.40E-06), and 

negative control (P values = 9.55E-07 and 7.77E-05) scenarios. Under the 

unreplicated burst scenario, CI and PIR values decrease exponentially with tree size, 

both leveling off at values between about 0.15 and 0.2 (Supplementary Fig. S13 

available on Dryad). The CI and PIR values also decrease exponentially with tree size 

under the positive and negative control scenarios, but they level off under values of 

0.05 and 0.04, respectively (Supplementary Figs. S14 and 15 available on Dryad). 

Tree size may also help explain the variation observed in NIR under the negative 
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control scenario (P value = 0.048); however, this effect is non-significant after the 

Bonferroni correction. The proportion of the selected clade is another major factor in 

affecting the values of these metrics, explaining all the variation observed in NIR and 

PIR in Darwin’s scenario (P values < 2e-16). Here, NIR and PIR both decreased with 

an increase in clade proportion and ranged between 0.5 and 0.9; NIR and PIR 

increased with the selected clade proportion after 50%, as expected (Supplementary 

Fig. S16 available on Dryad). Similarly, under the unreplicated burst scenario, the 

selected clade proportion explains nearly all the variation observed in NIR (P value < 

2E-16), which decreased with an increase in clade proportion until after about 67% 

(Supplementary Fig. S17 available on Dryad). There was also evidence for an effect 

of clade proportion on CI (P value = 0.0007) and PIR (P value = 2.54E-05) under the 

unreplicated burst scenario, where both CI and PIR decreased with an increase in 

clade proportion with most values plotting below a value of 0.2 (Supplementary Fig. 

S17). Under the positive and negative control scenarios, the selected clade proportion 

explained nearly all the variation observed in NIR, which decreased with an increase 

in clade proportion (P values < 2E-16). As in Darwin’s scenario, NIR increases with 

the selected clade proportion after 50% of the taxa are selected (Supplementary Fig. 

S18 available on Dryad). There may be an effect of selected clade proportion on PIR 

under both positive and negative control scenarios (P values = 0.0259 and 0.004, 

respectively); however, these effects were nonsignificant after a Bonferroni correction. 

The variation observed in these metrics being explained by tree size and selected 

clade proportion further highlights the necessity of sufficient sample sizes when using 

PCMs. 

We recommend lower PIR values for comparative studies because we seek to 

both maximize evolutionary sample size (homoplasy, a goal opposite from 
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phylogenetic inference) and sample enough character state combinations across the 

tree to facilitate parameter estimation. Following our simulations of CI, NIR, and PIR, 

we recommend a PIR threshold of 0.1. Our assessment was made based on the 

positive control scenario because it was simulated to maximize evolutionary sample 

sizes. Under the positive control, most PIR values fall under 0.1 (Supplementary Fig. 

S14 available on Dryad) under a variety of parameter and tree settings. Although class 

imbalance was moderately high in this scenario (average NIR = 0.67), the evolutionary 

sample size (average CI = 0.03) is suitable for analysis with PCMs.  

The empirical dataset of estrus advertisement and multi-male mating in 

primates had a CI of 0.167, an NIR of 0.5, and a PIR of 0.083, demonstrating a 

phylogenetic character distribution and level of class imbalance that is conducive for 

PCMs. We find evidence for correlated evolution between the presence of estrus 

advertisement and multimale mating across the four methods, consistent with the 

results of Pagel and Meade (2006). The maximum likelihood implementation of 

Pagel’s (1994) method yields a likelihood ratio test statistic of about 21.98 and a P 

value of about 0.0002. The Bayesian rjMCMC implementation of Pagel’s method 

supported a model of dependent evolution ~100% of the time, closely replicating the 

results of Pagel and Meade (2006). We find further evidence for correlated evolution 

using the phylogenetic threshold model (mean r-value = 0.61) and the phylogenetic 

glmm (pMCMC < 0.001). 

 

Discussion 

Questions about evolutionary singularities (single unreplicated evolutionary scenarios) 

emphasize basic problems with modeling data distributions using low evolutionary 

sample sizes. For instance, in Darwin’s and unreplicated burst scenarios, Pagel’s 
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(1994) model favors dependent evolution, but parameter estimation is poor. The 

average rate parameters (inferred with rjMCMC) under Darwin’s and unreplicated 

burst scenarios have extremely high variances across simulations and are heavily 

right-skewed (Fig. 2). In Darwin’s scenario, rate parameters q2,4 and q3,4 have medians 

of 0.579 and 0.589, respectively, but maxima that are two-orders-of-magnitude higher 

(max avg. q2,4 = 34.36, max avg. q3,4 = 34.48). The rate estimates are, in fact, stable 

within each simulation (i.e., across iterations). Trace plots also confirm that 

convergence was reached for each simulation. Notably, these rate parameters 

describe the rate of gain when one character is already present (shifts from states 

{0,1} and {1,0}, respectively, to state {1,1}). See Table 2 for a summary of the transition 

rate parameters. We observe a similar trend for the rate parameters q2,1 and q3,1, which 

describe the rate of loss when one character is already present (shifts from states {0,1} 

and {1,0}, respectively, to {0,0}). The model cannot consistently estimate rate 

parameters under these scenarios where only one character state change has 

occurred; in other words, Darwin’s scenario only has an evolutionary sample size of 

1, which is insufficient for statistical analysis.  

 

Figure 2. Boxplots of average rate parameter estimates from the 1000 rjMCMC simulations 

under a) Darwin’s scenario and b) the unreplicated burst scenario. 
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Table 2. Transition rates of character change. 

From/To             

Trait 1,2 

1 

0,0 

2 

0,1 

3 

1,0 

4 

1,1 

1 

0,0 
- q1,2 q1,3 0 

2 

0,1 
q2,1 - 0 q2,4 

3 

1,0 
q3,1 0 - q3,4 

4 

1,1 
0 q4,2 q4,3 - 

 

Pagel’s (1994) model also prohibits dual character state transitions, which is assumed 

to have occurred in Darwin’s scenario. To explain the tip data, the model must evolve 

through unobserved character state combinations elsewhere in the tree (Fig. 3). Out 

of 1000 rjMCMC simulations in Darwin’s scenario, we find higher estimated 

probabilities for a root state of {0,1} or {1,0} even though they are not observed in the 

tip data; the average root state probabilities were P(0,0) = 4.3%, P(0,1) = 47.3%, 

P(1,0) = 47.2%, and P(1,1) = 0.029% (Supplementary Fig. S19 available on Dryad). 

This is consistent with the high average estimates for the rate parameters q2,1, q2,4, 

q3,1, and q3,4, which all represent transitions from a state where one character was 

already present. Rate parameter estimates and root state probabilities both show that 

Pagel’s (1994) model favors dependent evolution in Darwin’s scenario because it 

demands that evolution occurs through unobserved state combinations (states {0,1} 

or {1,0}). According to Pagel (1994), one can determine the temporal order of these 
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two traits by testing if their rates of gain or loss are equal between them. However, 

due to an insufficient evolutionary sample size in Darwin’s scenario, we find that the 

rates of gain and loss between the two characters are indistinguishable (e.g., rate 

parameter q2,1 = q3,1 and q2,4 = q3,4; Fig. 3). 

 

 

Figure 3. Diagram illustrating the issue with Pagel’s discrete model for Darwin’s scenario 

(without fixing node states): a) boxplots of average rates (q#,#) across 1000 rjMCMC 

simulations with table of rate parameters above; b) phylogeny with data simulated for Darwin’s 

scenario; character one on top row, character two on bottom row, dark gray arrows indicate 

which parameters are being estimated, and light gray numbers show unobserved state 

combinations reconstructed at the root. 

 

 Fixing the root and clade of interest to the states {0,0} and {1,1} does not 

resolve the problem because the model reconstructs the unobserved state 

combination of {0,1} or {1,0} elsewhere in the tree. Following the analyses of Uyeda et 

al. (2018), we repeated the simulations setting the character loss rates to 0 while fixing 

the root and selected clade states (Supplementary Fig. S20 available on Dryad). 

Pagel’s model still favored a dependent model in Darwin’s scenario (99.94% 
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dependence across all iterations; median percent dependence = 100%). Even without 

loss parameters, the gain of character two from 0 to 1 still depends on the prior gain 

of character one or vice versa (median avg. q1,2 = 8.8, median avg. q1,3 = 8.8, median 

avg. q2,4 = 9.2, median avg. q3,4 = 9.1; Supplementary Fig. S21 available on Dryad). 

When the method estimates all four gain parameters as nearly equal, the independent 

model is preferred about half of the time (e.g., run 180: median avg. q1,2 = q1,3 = q2,4 = 

q3,4 = 8.8; percent dependence = 49.3%; Supplementary Fig. S22 available on Dryad). 

This suggests that the data distribution of Darwin’s scenario is biased towards inflating 

the rate of gain parameters, leading to a higher rate of acceptance for a dependent 

model. No matter how one simulates the two characters, the model is biased towards 

supporting dependent evolution in Darwin’s scenario; Pagel’s model fails by design in 

these instances. These issues do not make Pagel’s model obsolete, rather 

researchers must be aware when model assumptions are violated. 

Previous authors have discussed how similar methods perform in these 

scenarios (Rabosky and Huang 2016; Uyeda et al. 2018), which can be recast as 

single or coincident evolutionary events. Rabosky and Huang (2016) noted that these 

models “fail” in these scenarios because they do not account for the number of 

independent origins. We cannot, in other words, adequately estimate model 

parameters with small evolutionary sample sizes. Uyeda et al. (2018) found that the 

support for Darwin’s scenario using Pagel’s (1994) model was correlated with tree 

size. They inferred a strong correlation between the expected likelihood difference 

(based on the branch length to the selected clade and the tree size) and the empirically 

estimated likelihood difference using Pagel’s model. We also find that the likelihood 

ratio test statistic correlates with tree size, but with low correlation coefficients and the 

dependent model is almost always preferred regardless. Uyeda et al. (2018) assumed 
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that transition rates are low because character state changes should be rare in these 

scenarios. As we demonstrate, the average rates are highly variable across 

simulations due to low evolutionary sample sizes. Transition rates are poorly 

estimated even when we use the same simulated tree and data across multiple 

simulated trials, as in our Darwin’s scenario fixed clade state analysis (Supplementary 

Fig. S21 available on Dryad).  

The “failure” of these methods under single evolutionary scenarios has led 

researchers to reexamine what constitutes as evidence for correlated evolution 

(Uyeda et al. 2018). Uyeda et al. (2018) call for a reconsideration of how researchers 

test for correlated evolution. For instance, they argue that the prolonged association 

of two traits without subsequent loss, as in Darwin’s scenario, may be taken as 

evidence for their correlated evolution. This view of correlated evolution can be 

modeled by Huelsenbeck et al.’s (2003) method. Indeed, Maddison and FitzJohn 

(2015) acknowledged that Huelsenbeck et al.’s method would likely support a model 

of correlated evolution in both Darwin’s and unreplicated burst scenarios given the 

high amount of shared branch lengths between the two characters. However, both 

Uyeda et al. and Maddison and FitzJohn note that taxonomists often seek out 

characters with such phylogenetic distributions, increasing the chance that 

researchers will analyze traits with independent origins. Huelsenbeck et al.’s and 

Uyeda et al.’s conception of correlated evolution differs from Pagel’s (1994) dependent 

evolution, which tests whether the evolution of one character depends on the existing 

state of another. Pagel’s model can take the lack of character state reversals as 

evidence for dependent evolution. For example, a model of dependent evolution is 

supported if the rates of loss from state {1,1} to {0,1} or {1,0} are 0, like in Darwin’s 

scenario (q4,2 = q4,3 = 0; Table 2). However, this is specifically due to the rate of loss 
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in one character being dependent on the state of the other character. In addition, an 

independent model of evolution may still be supported when all rates of character loss 

are set to 0, so long as the other transition rates are equal (Supplementary Fig. S22 

available on Dryad). Central to these different interpretations is whether we consider 

stasis as an important aspect in macroevolution. 

The Markov model that underlies Maddison’s (1990), Pagel’s (1994), and 

Huelsenbeck et al.’s (2003) models has limitations that may exacerbate the problem 

of modeling single evolutionary events with discrete characters. First, adjacent 

branches and neighboring sections of a lineage are treated as independent (Maddison 

and FitzJohn 2015). Homologous structures evolving within a single clade are treated 

as independent but may undergo parallel evolution. Another issue with the Markov 

model is that it assumes the transition rate from one state to another is the same over 

time (Goldberg and Foo 2019). Goldberg and Foo (2020) developed multiple models, 

referred to as “memory models”, in which the rate of transition depends on the time 

that two character states are associated. These models are particularly intriguing in 

the case of Darwin’s scenario, where the lack of reverting back to states {0,1} or {1,0} 

after evolving the state {1,1} may be best represented by a memory model. This is 

also consistent with the arguments made by Uyeda et al. (2018) in which the prolonged 

association of the two character states could be taken as evidence for their correlated 

evolution. However, the current implementations of these memory models are not 

conducive for testing Darwin’s and similar scenarios because they assume that rates 

of character state gain and loss are equal. The lack of character state losses under 

Darwin’s scenario, for example, would invalidate this assumption. A generalized 

memory model that allows for rates of gain and loss to vary may make these models 

more widely applicable. Moreover, these memory models are also susceptible to low 
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sample sizes, like other models (and statistics in general) discussed here. In Goldberg 

and Foo’s simulations, they found that the shape of the function describing the wait 

time between character state transitions is inaccurately estimated when the true 

transition rate is low (i.e., fewer character state changes; see Fig. 6 in Goldberg and 

Foo 2020). 

We also tested two non-Markovian models of discrete character evolution. Like 

Pagel’s model, the threshold and glmm models “fail” in Darwin’s scenario despite 

fundamentally different model structure; an evolutionary sample size of one will plague 

any statistical model. Our analyses, however, demonstrate that the threshold and 

glmm models can correctly infer independent evolutionary change in more complex 

scenarios (e.g., the unreplicated burst scenario). 

The tests discussed above are employed to reach conclusions about 

evolutionary interactions. A “weak conclusion” (Maddison and FitzJohn 2015, pg. 128) 

is that the traits under study belong to the “same adaptive/functional network”. 

“Stronger” conclusions may be reached, however, with a study design that establishes 

clear a priori hypotheses backed by theoretical expectations and taxon sampling that 

maximizes independent originations of trait values (see Recommendations below). 

We agree with Maddison and FitzJohn (2015) that modeling alone for scenarios like 

Darwin’s are insufficient for testing hypotheses about correlated evolution. But how 

then should evolutionary biologists proceed in testing hypotheses about correlated 

evolution in these all too common situations? 

 

Recommendations 

Our first recommendation (hardly original) is to craft pre-hoc hypotheses so that 

predictions can be assessed with study designs that maximize evolutionary sample 
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sizes (the number of independent originations of trait states). This also helps from 

falling prey to data dredging and p-hacking, a problem accentuated by easy access to 

large data repositories. Biologists can further maximize evolutionary sample sizes by 

broadening the taxonomic scope of the research question. Maximizing evolutionary 

sample size is particularly helpful for complex character distributions, such as those 

described by Maddison and FitzJohn (2015). In these cases, statistical significance is 

consistent with pre-hoc hypotheses of correlated evolution. Our simulations also 

demonstrate that the phylogenetic threshold model and glmm may be useful in more 

complex scenarios. Moreover, as our simulations show, we should prioritize 

meaningful and robust parameter estimates over low P values. In the case of 

correlated evolution, statistical significance is biologically meaningless if associated 

with low evolutionary samples sizes and biased transition rate estimates. The effects 

of low sample sizes and improper parameter estimates applies to all PCMs, not just 

those that test for correlated evolution. 

Sample size can be difficult to define in comparative studies. For instance, it is 

necessary for comparing molecular and trait evolution models, such as with Bayesian 

Information Criteria (BIC; Schwarz 1978) or Akaike Information Criteria (Akaike 1974) 

corrected for sample size (AICc; Hurvich and Tsai 1989). However, what should be 

used for sample size is often uncertain (Posada and Buckley 2004; Beaulieu et al. 

2019). The number of taxa is commonly used for comparing trait evolution models, but 

BIC and AICc assume that these are independent observations (Bartoszek 2016). 

Multiple studies have used modified effective sample sizes that better reflect the 

amount of independent signal in the trait data (Ho and Ané 2014; Bartoszek 2016). 

Similarly, the number of sites in an alignment may be an overestimate given the 

nonindependence of sequence data (Posada and Buckley 2004). Through 
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simulations, Beaulieu et al. (2019) found that the number of sites multiplied by the 

number of taxa worked best for comparing codon selection models. More simulation 

work is needed to determine the proper use of sample size in phylogenetic models. 

Our second recommendation is to use the consistency index and class 

imbalance to examine the suitability of the data for modeling. The consistency index 

(CI) is the minimum number of character state changes divided by the number of state 

changes mapped onto the tree. It is a simple nonmodel based measure of character 

homoplasy. Researchers can explore data distributions in the context of phylogeny 

using reported CIs from programs such as Mesquite and the R packages “phangorn” 

and “phytools” (Schliep 2011; Revell 2012; Maddision and Maddison 2014). For 

PCMs, we aim to maximize evolutionary sample sizes (maximize homoplasy, the 

opposite goal for phylogenetic inference), which yield low consistency index scores. 

Darwin’s scenario, for example, suffers from a high consistency index—such 

characters would be good for inferring a phylogeny, but are problematic for studying 

with PCMs (Fig. 1a; Table 3). 

 

Table 3. Metric combinations for different character distribution scenarios. 

 Low CI High CI 

Low 

Imbalance 
Negative - 

High 

Imbalance 

Positive 

Unrep. Burst 
Darwin’s 

Notes: A combination of consistency index (CI), class imbalance, and correlation (black 

italics = correlated evolution) can distinguish the four scenarios. Evidence for correlated 

evolution in the unreplicated burst scenario (Unrep. Burst) depends on the method used. 
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Class imbalance (when classes of data are unrepresented) is common in 

comparative studies. It is most cited as a concern for learning algorithms and 

predictive modeling, in which estimated probabilities are biased against the 

unrepresented class (Japkowicz and Stephen 2002; Oommen et al. 2011; Wang and 

Yao 2012; Wallace and Dahabreh 2014; Kaur et al. 2019). Notably, for logistic 

regression, having a sample that is representative of the true population is more 

important than having a perfectly balanced dataset (Oommen et al. 2011). We contend 

that data representation also applies to PCMs for discrete characters; these methods 

rely on accurate probability and rate estimates. To assess the adequacy of PCM 

models for discrete characters, we developed a phylogenetic class imbalance metric 

(which ranges from 0 to 1). Darwin’s scenario exhibits a high PIR (= 0.5), whereas the 

unreplicated burst scenario and positive and negative controls have lower PIRs (= 

0.06, 0.02, and 0.002, respectively). We recommend low PIR values (PIR < 0.1) to 

maximize evolutionary sample sizes and minimize class imbalance. This metric 

distinguishes Darwin’s scenario as being problematic (PIR = 0.5) but not the negative 

control (PIR = 0.002) because the PIR is a quality control metric and not a test for 

correlated evolution. The unreplicated burst scenario’s suitability for PCMs depends 

on tree size and the proportion of the selected unreplicated burst clade. A PIR can be 

low enough if the number of independent originations in the unreplicated burst clade 

is large enough. The PIR is meant to aid researchers during the early phases of 

investigating whether their discrete data are suitable for phylogenetic modeling. It can 

be used in all types of PCM studies for discrete characters, not just those focusing on 

correlation. Note, however, that different combinations of CI and NIR can yield the 

same PIR value. It is important to also analyze individual CI and NIR values to 
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determine the exact cause of a low PIR, either due to little homoplasy or high data 

imbalance.  

Our third, and most general, recommendation is to apply the principle of 

consilience early in the study design. William Whewell developed the concept of 

consilience in his masterwork The Philosophy of the Inductive Sciences, in which he 

argued that a theory’s strength lies in its ability to coherently connect facts from 

multiple unrelated fields—even without direct observation of the underlying cause 

(Whewell 1840). Larry Laudan (1981) later summarized Whewell’s approach: 

 

…the real strength of such an hypothesis is usually that it shows that events 

previously thought to be of different kinds are, as a matter of fact, the ‘same’ 

kind of event (Laudan 1981, pp. 166; emphasis not our own).  

 

The “consilience of inductions” approach made an immediate and lasting 

impact on the historical sciences, such as biology and astronomy, where direct 

experimentation is difficult or impossible. Charles Darwin, for example, closely 

followed Whewell’s advice to structure his arguments for natural selection by drawing 

on evidence from many disparate fields (Ruse 1975; Thagard 1977). The argument 

for consilience was apparent in the second edition of Darwin’s seminal book, On the 

Origin of Species: 

 

I cannot believe that a false theory would explain, as it seems to me that the 

theory of natural selection does explain, the several large classes of facts 

above specified (Darwin 1860, pp. 480-481). 
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In this passage, Darwin argues that his theory of natural selection could adequately 

and coherently explain the evidence he described from the independent fields of 

biogeography, comparative anatomy, domestication, and embryology. The theory of 

natural selection has since grown to ubiquitous acceptance because of the 

convergence of evidence from unconnected fields that independently support it, 

including modern developmental biology, genetics, and genomics.  

Evolutionary biologists, especially those using PCMs, can and should apply 

Whewell’s consilience of inductions to evaluate primary and alternative hypotheses 

when possible (Fig. 4). Mexican tetra fish (Astyanax mexicanus), a model organism 

for studying convergent and parallel evolution, provides an excellent example of how 

consilience can be applied (Yamamoto and Jeffery 2000; Jeffery 2001; Wilkens and 

Strecker 2003; Protas et al. 2006, 2007; Gross et al. 2009; McGaugh et al. 2014). 

Over 20 populations of Mexican tetra are known to inhabit restricted karst regions, 

such as caves, where eye loss and reduced pigmentation evolve independently 

(Wilkens and Strecker 2003). Researchers studying Mexican tetra find empirical 

evidence for evolutionary associations using genetics and developmental biology. 

Crosses among separate cave fish populations result in offspring with more well-

developed eyes and pigments, strongly suggesting that these populations 

independently reduced their pigmentation and ceased eye development through 

different mutational mechanisms (Wilkens and Strecker 2003). Quantitative trait loci 

mapping paired with expression analyses show that different mutations in the same 

genes and changes in their expression levels are associated with similar adaptations 

among cave-dwelling tetra fish populations (Protas et al. 2006, 2007; Gross et al. 

2009; McGaugh et al. 2014). These results are further bolstered by developmental 

studies. Cave fish develop diminished eyes early in development, which later 
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regresses completely through elevated apoptosis of cells in the lens (Jeffery 2001). 

Transplanting a surface-dwelling fish’s lens into a cave-dwelling fish embryo 

counteracts this regression (Yamamoto and Jeffery 2000; Jeffery 2001). 

We realize that the level of consilience exhibited in Mexican tetra fish research 

may be impractical for many study systems. However, research programs may be 

designed in such a way that models can be applied to hundreds of taxa. For example, 

it is impractical to study the biomechanics of >100 bird species, but it is feasible to 

model a proxy for many species and pair that with a biomechanical analysis of 

representative species from each group of interest. A comparative analysis of >100 

bird species found that claw curvature is associated with grasping behavior (Cobb and 

Sellers 2020), which aligns with a structural analysis of claws from select bird species 

specializing in different prey sizes (Tsang et al. 2019). It can also be expensive to 

study macroevolution with many different types of analyses. Some studies achieve 

this by comparing representative species from each major clade. A study on 

hummingbirds used a combination of behavioral experiments, comparative genetics, 

and gene expression analysis to demonstrate the independent evolution of sweet taste 

reception within archosaurs (Baldwin et al. 2014). These examples show how 

consilience can be leveraged in studies that involve relatively large samples of taxa or 

broad taxonomic focuses. 

Consilience simply helps to more rigorously test hypotheses in evolutionary 

biology than assessment from a single isolated field. Consilience should be the central 

philosophy of all evolutionary biologists, including (and maybe especially) those who 

specialize in PCMs.  
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Figure 4. Roadmap for a consilience of inductions approach in comparative biology, 

combining phylogenetic comparative methods (left), developmental biology (top right), 

genetics (middle right), and biogeography (bottom right), among other fields. Infant, DNA, and 

globe illustrations are open source on pixabay.com. 

 

References 

Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. 

Autom. Control 19, 716–723.  

Baldwin, M.W., Toda, Y., Nakagita, T., O’Connell, M.J., Klasing, K.C., Misaka, T., 

Edwards, S.V., and Liberles, S.D. (2014). Evolution of sweet taste perception 

in hummingbirds by transformation of the ancestral umami receptor. Science 

345, 929–933.  

Bartoszek, K. (2016). Phylogenetic effective sample size. J. Theor. Biol. 407, 371–

386.  



	

	 52 

Beaulieu, J.M., O’Meara, B.C., Zaretzki, R., Landerer, C., Chai, J., and Gilchrist, M.A. 

(2019). Population genetics based phylogenetics under stabilizing selection for 

an optimal amino acid sequence: a nested modeling approach. Mol. Biol. Evol. 

36, 834–851.  

Bianchini, G., and Sánchez-Baracaldo, P. (2020). sMap: Evolution of independent, 

dependent and conditioned discrete characters in a Bayesian framework. 

Methods Ecol. Evol. 00, 1–8.  

Bortolussi, N., Durand, E., Blum, M., and François, O. (2006). apTreeshape: statistical 

analysis of phylogenetic tree shape. Bioinformatics 22, 363–364.  

Cobb, S.E., and Sellers, W.I. (2020). Inferring lifestyle for Aves and Theropoda: A 

model based on curvatures of extant avian ungual bones. PLOS ONE 15, 

e0211173.  

Darwin, C.R. (1860). On the origin of species by means of natural selection, or the 

preservation of favoured races in the struggle for life (London: Murray). 

Eastman, J.M., Alfaro, M.E., Joyce, P., Hipp, A.L., and Harmon, L.J. (2011). A novel 

comparative method for identifying shifts in the rate of character evolution on 

Trees. Evolution 65, 3578–3589.  

Farris, J.S. (1989). The retention index and the rescaled consistency index. Cladistics 

5, 417–419.  

Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat. 125, 1–15.  

Felsenstein, J. (1988). Phylogenies and quantitative characters. Annu. Rev. Ecol. 

Syst. 19, 445–471.  

Felsenstein, J. (2003). Inferring phylogenies (Sunderland, Mass: Sinauer Associates 

is an imprint of Oxford University Press).  



	

	 53 

Felsenstein, J. (2005). Using the quantitative genetic threshold model for inferences 

between and within species. Philos. Trans. R. Soc. B Biol. Sci. 360, 1427–1434.  

Felsenstein, J. (2012). A comparative method for both discrete and continuous 

characters using the threshold model. Am. Nat. 179, 145–156.  

Fisher, R.M., Cornwallis, C.K., and West, S.A. (2013). Group formation, relatedness, 

and the evolution of multicellularity. Curr. Biol. CB 23, 1120–1125.  

Garamszegi, L.Z. (2014). Modern Phylogenetic comparative methods and their 

application in evolutionary biology: concepts and practice (New York: Springer).  

Goldberg, E.E., and Foo, J. (2019). Memory in trait macroevolution. Am. Nat. 195, 

300–314. 

Gross, J.B., Borowsky, R., and Tabin, C.J. (2009). A novel role for Mc1r in the parallel 

evolution of depigmentation in independent populations of the cavefish 

Astyanax mexicanus. PLOS Genet. 5, e1000326.  

Hadfield, J.D. (2010). MCMC methods for multi-response generalized linear mixed 

models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22.  

Harmon, L.J. (2018). Phylogenetic comparative methods: learning from trees 

(CreateSpace Independent Publishing Platform).  

Harvey, P.H., and Pagel, M.D. (1991). The comparative method in evolutionary 

biology (Oxford ; New York: Oxford University Press).  

Ho, L.S.T., and Ané, C. (2014). Intrinsic inference difficulties for trait evolution with 

Ornstein-Uhlenbeck models. Methods Ecol. Evol. 5, 1133–1146.  

Huelsenbeck, J.P., Nielsen, R., and Bollback, J.P. (2003). Stochastic mapping of 

morphological characters. Syst. Biol. 52, 131–158.  

Hurvich, C.M., and Tsai, C.-L. (1989). Regression and time series model selection in 

small samples. Biometrika 76, 297–307.  



	

	 54 

Ives, A.R., and Garland, T. (2014). Phylogenetic regression for binary dependent 

variables. In Modern phylogenetic comparative methods and their application 

in evolutionary biology: concepts and practice, L.Z. Garamszegi, ed. (Berlin, 

Heidelberg: Springer Berlin Heidelberg), pp. 231–261.  

Ives, A.R., and Garland, T., Jr. (2010). Phylogenetic logistic regression for binary 

Dependent Variables. Syst. Biol. 59, 9–26. 

Japkowicz, N., and Stephen, S. (2002). The class imbalance problem: a systematic 

study. Intell. Data Anal. 6, 429–449.  

Jeffery, W.R. (2001). Cavefish as a model system in E=evolutionary developmental 

biology. Dev. Biol. 231, 1–12.  

Jukes, T.H., and Cantor, C.R. (1969). CHAPTER 24 - Evolution of protein molecules. 

In mammalian protein metabolism, H.N. Munro, ed. (Academic Press), pp. 21–

132.  

Kaur, H., Pannu, H.S., and Malhi, A.K. (2019). A systematic review on imbalanced 

data challenges in machine learning: applications and solutions. ACM Comput. 

Surv. 52, 79:1-36.  

Keith, S.A., Webb, T.J., Böhning-Gaese, K., Connolly, S.R., Dulvy, N.K., Eigenbrod, 

F., Jones, K.E., Price, T., Redding, D.W., Owens, I.P.F., et al. (2012). What is 

macroecology? Biol. Lett. 8, 904–906.  

Kluge, A.G., and Farris, J.S. (1969). Quantitative phyletics and the evolution of 

Anurans. Syst. Zool. 18, 1–32.  

Kubo, T., and Iwasa, Y. (1995). Inferring the rates of branching and extinction from 

molecular phylogenies. Evolution 49, 694–704.  



	

	 55 

Laudan, L. (1981). William Whewell on the consilience of inductions. In Science and 

hypothesis: historical essays on scientific methodology, L. Laudan, ed. 

(Dordrecht: Springer Netherlands), pp. 163–180.  

Louca, S., and Pennell, M.W. (2020). Extant timetrees are consistent with a myriad of 

diversification histories. Nature 580, 502–505. 

Maddision, W.P., and Maddison, D.R. (2014). Mesquite: a modular system for 

evolutionary analysis. Version 3.01 http://mesquiteproject.org.  

Maddison, W.P. (1990). A method for resting the correlated evolution of two binary 

characters: are gains or losses concentrated on certain branches of a 

phylogenetic tree? Evolution 44, 539–557.  

Maddison, W.P., and FitzJohn, R.G. (2015). The unsolved challenge to phylogenetic 

correlation tests for categorical characters. Syst. Biol. 64, 127–136.  

Maliet, O., Gascuel, F., and Lambert, A. (2018). Ranked tree shapes, nonrandom 

extinctions, and the loss of phylogenetic diversity. Syst. Biol. 67, 1025–1040.  

McGaugh, S.E., Gross, J.B., Aken, B., Blin, M., Borowsky, R., Chalopin, D., Hinaux, 

H., Jeffery, W.R., Keene, A., Ma, L., et al. (2014). The cavefish genome reveals 

candidate genes for eye loss. Nat. Commun. 5.  

McPeek, M.A. (1995). Testing hypotheses about evolutionary change on single 

branches of a phylogeny using evolutionary contrasts. Am. Nat. 145, 686–703.  

Morlon, H. (2014). Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 

508–525.  

Nee, S., Holmes, E.C., May, R.M., Harvey, P.H., Lawton, J.H., and May, R.M. (1994). 

Extinction rates can be estimated from molecular phylogenies. Philos. Trans. 

R. Soc. Lond. B. Biol. Sci. 344, 77–82.  

Nielsen, R. (2002). Mapping mutations on phylogenies. Syst. Biol. 51, 729–739. 



	

	 56 

Oommen, T., Baise, L.G., and Vogel, R.M. (2011). Sampling bias and class imbalance 

in maximum-likelihood logistic regression. Math. Geosci. 43, 99–120.  

Organ, C., Nunn, C.L., Machanda, Z., and Wrangham, R.W. (2011). Phylogenetic rate 

shifts in feeding time during the evolution of Homo. Proc. Natl. Acad. Sci. U. S. 

A. 108, 14555–14559.  

Organ, C.L., Shedlock, A.M., Meade, A., Pagel, M., and Edwards, S.V. (2007). Origin 

of avian genome size and structure in non-avian dinosaurs. Nature 446, 180–

184.  

Organ, C.L., Janes, D.E., Meade, A., and Pagel, M. (2009). Genotypic sex 

determination enabled adaptive radiations of extinct marine reptiles. Nature 

461, 389–392.  

Pagel, M. (1994). Detecting correlated evolution on phylogenies: a general method for 

the comparative analysis of discrete characters. Proc. R. Soc. B 255, 37–45.  

Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature 401, 

877–884.  

Pagel, M., and Meade, A. (2006). Bayesian analysis of correlated evolution of discrete 

characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–

825.  

Paradis, E., Claude, J., and Strimmer, K. (2004). APE: analyses of phylogenetics and 

evolution in {R} language. Bioinformatics 20, 289–290. 

Pennell, M.W., Eastman, J.M., Slater, G.J., Brown, J.W., Uyeda, J.C., FitzJohn, R.G., 

Alfaro, M.E., and Harmon, L.J. (2014). geiger v2.0: an expanded suite of methods 

for fitting macroevolutionary models to phylogenetic trees. Bioinforma. Oxf. Engl. 

30, 2216–2218. 



	

	 57 

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: convergence 

diagnosis and output analysis for MCMC. R News 6, 7–11.  

Posada, D., and Buckley, T.R. (2004). Model selection and model averaging in 

phylogenetics: advantages of Akaike Information Criterion and Bayesian 

approaches over likelihood ratio tests. Syst. Biol. 53, 793–808.  

Protas, M., Conrad, M., Gross, J.B., Tabin, C., and Borowsky, R. (2007). Regressive 

evolution in the Mexican cave tetra, Astyanax mexicanus. Curr. Biol. CB 17, 

452–454.  

Protas, M.E., Hersey, C., Kochanek, D., Zhou, Y., Wilkens, H., Jeffery, W.R., Zon, L.I., 

Borowsky, R., and Tabin, C.J. (2006). Genetic analysis of cavefish reveals 

molecular convergence in the evolution of albinism. Nat. Genet. 38, 107–111.  

R Core Team (2019). R: a language and environment for statistical computing (Vienna, 

Austria: R Foundation for Statistical Computing).  

Rabosky, D.L. (2010). Extinction rates should not be estimated from molecular 

phylogenies. Evolution 64, 1816–1824.  

Rabosky, D.L., and Huang, H. (2016). A robust semi-parametric test for detecting trait-

dependent diversification. Syst. Biol. 65, 181–193.  

Rambaut, A., Drummond, A.J., Xie, D., Baele, G., and Suchard, M.A. (2018). Posterior 

summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–

904. 

Revell, L.J. (2008). On the analysis of evolutionary change along single branches in a 

phylogeny. Am. Nat. 172, 140–147.  

Revell, L.J. (2012). phytools: an R package for phylogenetic comparative biology (and 

other things). Methods Ecol. Evol. 3, 217–223.  



	

	 58 

Ruse, M. (1975). Darwin’s debt to philosophy: an examination of the influence of the 

philosophical Ideas of John F.W. Herschel and William Whewell on the 

development of Charles Darwin’s theory of evolution. Stud. Hist. Philos. Sci. 

Part A 6, 159–181.  

Schliep, K.P. (2011). phangorn: phylogenetic analysis in R | Bioinformatics | Oxford 

Academic. Bioinformatics 27, 592–593.  

Schwartz, R., and Schäffer, A.A. (2017). The evolution of tumour phylogenetics: 

principles and practice. Nat. Rev. Genet. 18, 213–229.  

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat. 6, 461–464.  

Smith, R.J. (1994). Degrees of freedom in interspecific allometry: An adjustment for 

the effects of phylogenetic constraint. Am. J. Phys. Anthropol. 93, 95–107.  

Thagard, P.R. (1977). Darwin and Whewell. Stud. Hist. Philos. Sci. Part A 8, 353–356.  

Tsang, L.R., Wilson, L.A.B., Ledogar, J., Wroe, S., Attard, M., and Sansalone, G. 

(2019). Raptor talon shape and biomechanical performance are controlled by 

relative prey size but not by allometry. Sci. Rep. 9, 7076.  

Uyeda, J.C., Zenil-Ferguson, R., and Pennell, M.W. (2018). Rethinking phylogenetic 

comparative methods. Syst. Biol. 67, 1091–1109. 

Venditti, C., Meade, A., and Pagel, M. (2011). Multiple routes to mammalian diversity. 

Nature 479, 393–396.  

Wallace, B.C., and Dahabreh, I.J. (2014). Improving class probability estimates for 

imbalanced data. Knowl. Inf. Syst. 41, 33–52.  

Wang, S., and Yao, X. (2012). Multiclass imbalance problems: analysis and potential 

Solutions. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42, 1119–1130.  

Whewell, W. (1840). The Philosophy of the inductive sciences, founded upon their 

history (London: J. W. Parker).  



	

	 59 

Wilkens, H., and Strecker, U. (2003). Convergent evolution of the cavefish Astyanax 

(Characidae, Teleostei): genetic evidence from reduced eye-size and 

pigmentation. Biol. J. Linn. Soc. 80, 545–554.  

Wright, S. (1934). An analysis of variability in number of digits in an inbred strain of 

guinea pigs. Genetics 19, 506–536.  

Yamamoto, Y., and Jeffery, W.R. (2000). Central role for the lens in cave fish eye 

degeneration. Science 289, 631–633. 

	
	

	

 

 

 

 

 

 

 

 

 



	

	 60 

Appendix 1 

Supplementary figures 

 

 

Figure S1: Example of how the consistency index (CI), normalized imbalance ratio (NIR), 

and phylogenetic imbalance ratio (PIR) are calculated. A 12-tip phylogeny with two trait 

distributions listed above. Gray 0s represent absence of traits and black 1s represent 

presence of traits. Dark gray circles represent the inferred character state changes.  
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Figure S2: Example of how the effect of clade proportion on NIR inflects under Darwin’s 

scenario. With a 12-tip phylogeny, the most-represented character state combination {0,0} 

changes to being {1,1} after the selected clade proportion increases beyond 50%. This 

results in the slope inflection observed in Supplementary Fig. 16.  
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Figure S3: Example of how the effect of clade proportion on NIR inflects under the 

unreplicated burst scenario. With a 12-tip phylogeny, the most-represented character state 

combination {0,0} changes to being {1,1} after the selected clade proportion increases 

beyond about 67%. This results in the slope inflection observed in Supplementary Fig. 17. A 

clade proportion between 50-75% because another monophyletic clade cannot be selected 

with this 12-tip example.  
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Figure S4: Histograms illustrating the distribution of results from simulations (n = 1,000 

simulations) with rows representing the simulated scenario and columns representing the 

method used: a) P values from Pagel’s discrete method (vertical dashed line: P value = 

0.05); b) mean percent dependence from the RJMCMC implementation of Pagel’s discrete 

method (vertical dashed line: % dependence = 50); c) mean correlation coefficient values (r-

value) from the threshold model (vertical dashed line: r-value = 0); d) mean pMCMC from the 

MCMCglmm analyses (vertical dashed line: pMCMC = 0.05).  



	

	 64 

 

 

Figure S5: Side-by-side boxplots of P values estimated from the 1,000 Pagel’s method 

under Darwin’s, unreplicated burst, and intermediate (Unrep/4, Unrep/6, Unrep/8) scenarios. 

The intermediate scenarios progress between Darwin’s and the unreplicated burst scenario 

from left to right, starting with the scenario where 1/8 of the character states are changed 

back to 0 (Unrep/8). 
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Figure S6: Scatter-plot comparing the P values from the Pagel’s discrete model Darwin’s 

scenario analysis with the size of the selected clade.  
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Figure S7: Scatter-plot comparing the P values from the Pagel’s discrete model 

unreplicated burst scenario analysis with the size of the selected clade. 
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Figure S8: Histogram of tree size from the Pagel’s discrete model analysis where tree size 

was allowed to vary between 50 and 1,000 taxa.  
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Figure S9: Scatter-plot comparing the likelihood ratio test statistics from the Pagel’s discrete 

model Darwin’s scenario analysis with the size of the simulated tree. 
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Figure S10: Scatter-plot comparing the P values from the Pagel’s discrete model Darwin’s 

scenario analysis with the size of the simulated tree. 
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Figure S11: Scatter-plot comparing the likelihood ratio test statistics from the Pagel’s 

discrete model unreplicated burst scenario analysis with the size of the simulated tree. 
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Figure S12: Scatter-plot comparing the P values from the Pagel’s discrete model 

unreplicated burst scenario analysis with the size of the simulated tree. 
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Figure S13: Variation in consistency index (CI) and phylogenetic imbalance ratio (PIR) 

explained by the number of taxa (tree size) under the unreplicated burst scenario. CI and 

PIR values exponentially decrease with an increase in tree size and level off between 0.15 

and 0.2.  
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Figure S14: Variation in consistency index (CI) and phylogenetic imbalance ratio (PIR) 

explained by the number of taxa (tree size) under the positive control scenario. CI and PIR 

values exponentially decrease with an increase in tree size and level off under values of 

0.05 and 0.04, respectively.  
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Figure S15: Variation in consistency index (CI) and phylogenetic imbalance ratio (PIR) 

explained by the number of taxa (tree size) under the negative control scenario. CI and PIR 

values exponentially decrease with an increase in tree size and level off under values of 

0.05 and 0.04, respectively.  
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Figure S16: Variation in normalized imbalance ratio (NIR) and phylogenetic imbalance ratio 

(PIR) explained by the proportion of the selected clade size under Darwin’s scenario. NIR 

and PIR values decrease with an increase in clade proportion until 50% of the taxa are 

selected. 
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Figure S17: Variation in consistency index (CI), normalized imbalance ratio (NIR), and 

phylogenetic imbalance ratio (PIR) explained by the proportion of the selected clade size 

under the unreplicated burst scenario. CI and PIR decrease with an increase in clade 

proportion, with most values plotting below a value of 0.2. NIR decreases with an increase in 

clade proportion until about 67% of the taxa are selected. 
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Figure S18: Variation in normalized imbalance ratio (NIR) explained by the proportion of the 

selected clade size under the positive and negative control scenarios. NIR decreases with 

an increase in clade proportion until 50% of the taxa are selected. 
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Figure S19: Side-by-side boxplots of root state probability estimates from the 1,000 

RJMCMC experimental runs. Prefix indicates the scenario and the numbered suffix 

represents the root state probability estimate.  
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Figure S20: Diagram illustrating the issue with Pagel’s discrete model for single evolutionary 

events (when fixing node states): a) side-by-side box plots of average rates across the 1,000 

RJMCMC simulations with table of rate parameters below; b) phylogeny with data simulated 

for the “Darwin’s scenario”; trait one on top row, trait two on bottom row, dark gray circles 

and numbers show fixed node states, light gray numbers show unobserved state 

combinations reconstructed at the given node, and black arrows and parameters indicate 

which are estimated. 
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Figure S21: Side-by-side boxplots of average rate parameter estimates from the 1,000 

RJMCMC Darwin’s scenario runs when node states are fixed and rate of loss parameters 

are set to 0. 
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Figure S22: Side-by-side boxplots of rate parameter estimates from the RJMCMC Darwin’s 

scenario run #180 (node states fixed and rate of loss parameters are set to 0). 
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Chapter 2 

Early Tetrapodomorph Biogeography: Controlling for 

Fossil Record Bias in Macroevolutionary Analyses 

(Published as: Gardner, Jacob D., Kevin Surya, and Chris L. Organ. Early Tetrapodomorph 

Biogeography: Controlling for Fossil Record Bias in Macroevolutionary Analyses. Comptes 

Rendus Palevol, 18(7): 609—709.) 

 

Abstract 

The fossil record provides direct empirical data for understanding macroevolutionary 

patterns and processes. Inherent biases in the fossil record are well known to 

confound analyses of this data. Sampling bias proxies have been used as covariates 

in regression models to test for such biases. Proxies, such as formation count, are 

associated with paleobiodiversity, but are insufficient for explaining species dispersal 

owing to a lack of geographic context. Here, we develop a sampling bias proxy that 

incorporates geographic information and test it with a case study on early 

tetrapodomorph biogeography. We use recently-developed Bayesian 

phylogeographic models and a new supertree of early tetrapodomorphs to estimate 

dispersal rates and ancestral habitat locations. We find strong evidence that 

geographic sampling bias explains supposed radiations in dispersal rate (potential 

adaptive radiations). Our study highlights the necessity of accounting for geographic 

sampling bias in macroevolutionary and phylogenetic analyses and provides an 

approach to test for its effect. 
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1. Introduction 

Our understanding of macroevolutionary patterns and processes are fundamentally 

based on fossils. The most direct evidence for taxonomic origination and extinction 

rates come from the rock record, as do evidence for novelty and climate change 

unseen in data sets gleaned from extant sources. There are no perfect data sets in 

science; there are inherent limitations and biases in the rock record that must be 

addressed when we form and test paleobiological hypotheses. For instance, observed 

stratigraphic ranges of fossils can mislead inferences about diversification and 

extinction rates (Raup and Boyajian, 1988; Signor and Lipps, 1982). Observed species 

diversity is also known to increase with time due to the preferential preservation and 

recovery of fossils in younger geological strata—referred to as “the Pull of the Recent” 

(Jablonski et al., 2003). Large and long-surviving clades with high rates of early 

diversification tend to result in an illusionary rate slow-down as diversification rates 

revert back to a mean value—referred to as “the Push of the Past” (Budd and Mann, 

2018). Paleobiologists test and account for these biases when analyzing 

diversification and extinction at local and global scales (Alroy et al., 2001; Benson and 

Butler, 2011; Benson and Upchurch, 2013; Benson et al., 2010, 2013; Foote, 2003; 

Jablonski et al., 2003; Koch, 1978; Lloyd, 2012; Sakamoto et al., 2016a, 2016b). 

These bias-detection and correction techniques include fossil occurrence subsampling 

(Alroy et al., 2001; Dunne et al., 2018; Close et al., 2019 Jablonski et al., 2003; Lloyd, 

2012); correcting origination, extinction, and sampling rates using evolutionary 

predictive models (Foote, 2003); the use of residuals from diversity-sampling models 

(Benson et al., 2010; Benson and Upchurch, 2013; Sakamoto et al., 2016b); and the 

incorporation of sampling bias proxies as covariates in regression models (Benson et 

al., 2010; Benson and Butler, 2011; Benton et al., 2013; Sakamoto et al., 2016a). 
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Benton et al. (2013), studying sampling bias proxies, demonstrated that diversity 

through time closely tracks formation count (Benton et al., 2013).  

However, case studies in England and Wales suggest that proxies for terrestrial 

sedimentary rock volume (such as formation count) do not accurately explain 

paleobiodiversity, particularly if the fossil record is patchy (Dunhill et al., 2013, 2014a, 

2014b). Marine outcrop area and paleoecological-associated facies changes are, 

however, associated with shifts in paleobiodiversity (Dunhill et al., 2013, 2014b). 

Moreover, Benton et al. (2013) argue that the direction of causality between 

paleobiodiversity and formation count is unclear; there may be a common cause to 

explain their covariation, such as sea level (Benton et al., 2013). Nonetheless, 

formation count is a widely-used sampling bias proxy in phylogenetic analyses of 

macroevolution (O’Donovan et al., 2018; Sakamoto et al., 2016a, 2016b; Tennant et 

al., 2016a, 2016b). The advent of computational modeling approaches, particularly 

phylogenetic comparative methods, has made it easier to include proxies, like 

formation count, into models. Additional sampling bias proxies used in these studies 

include occurrence count, valid taxon count, and specimen completeness and 

preservation scores. Absent from these proxies is geographic context, which could 

confound many types of macroevolutionary analyses.  

Despite advancements made in understanding the origin and evolution of early 

tetrapodomorphs, biogeographical studies are hindered by the incompleteness of the 

early tetrapodomorph fossil record. For example, “Romer’s Gap” represents a lack of 

tetrapodomorph fossils from the end-Devonian to mid-Mississippian, a period crucial 

for understanding early tetrapodomorph diversification. Recent collection efforts 

recovered tetrapodomorph specimens from “Romer’s Gap”, suggesting that a 

collection and preservation bias explains this gap (Clack et al., 2017; Marshall et al., 
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2019). In addition, a trackway site in Poland demonstrates the existence of digit-

bearing tetrapodomorphs 10 million years before the earliest elpistostegalian body 

fossil, showcasing the limitation of body fossils to reveal evolutionary history 

(Niedzwiedzki et al., 2010). A recent study by Long et al. (2018) leveraged 

phylogenetic reconstruction of early tetrapodomorphs to frame hypotheses about the 

origin of major clades, as well as their dispersal patterns, including the hypothesis that 

stem tetrapodomorphs dispersed from eastern Gondwana to Euramerica. However, 

this study did not use phylogenetic comparative methods to estimate ancestral 

geographic locations or to model dispersal patterns.  

Here, we present a phylogeographic analysis of early tetrapodomorphs. Our 

goals are: (1) to construct a phylogenetic supertree of early tetrapodomorphs that 

synthesizes previous phylogenetic reconstructions; (2) to estimate the 

paleogeographic locations of major early tetrapodomorph clades using recently-

developed phylogeographic models that account for the curvature of the Earth; and 

(3) to test for the influence of geographic sampling bias on dispersal rates. Our results 

indicate that geographic sampling bias substantially confounds analyses of dispersal 

and paleogeography. We conclude with a discussion about the necessity of controlling 

for fossil record biases in macroevolutionary analyses. 

 

2. Materials and Methods 

2.1. Nomenclature 

Tetrapoda has been informally defined historically to include all terrestrial vertebrates 

with limbs and digits (Laurin, 1998). Gauthier et al. (1989) first articulated a 

phylogenetic definition of Tetrapoda as the clade including the last common ancestor 

of amniotes and lissamphibians. This definition excludes stem-tetrapodomorphs, like 
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Acanthostega and Ichthyostega. Stegocephalia was coined by E.D. Cope in 1868 

(Cope, 1868), but was more recently used to describe fossil taxa more closely related 

to tetrapods than other sarcopterygians. A recent cladistic redefinition of 

Stegocephalia includes all vertebrates more closely related to temnospondyls than 

Panderichthys (Laurin, 1998). Here, we use the definitions of Laurin (1998) for a 

monophyletic Stegocephalia and of Gauthier et al. (1989) for Tetrapoda, which refers 

specifically to the crown group. We use Tetrapodomorpha to refer to all taxa closer to 

the tetrapod crown-group than the lungfish crowngroup (Ahlberg, 1998). We 

additionally use Elpistostegalia (= Panderichthyida) to refer to the common ancestor 

of all stegocephalians and Panderichthys as well as Eotetrapodiformes to refer to the 

common ancestor of all tristichopterids, elpistostegalians, and tetrapods (Coates and 

Friedman, 2010). 

 

2.2. Supertree 

We inferred a supertree of 69 early tetrapodomorph taxa from five edited, published 

morphological data matrices, focusing on tetrapodomorphs whose previously inferred 

phylogenetic position bracket the water–land transition (Clack et al., 2017; Friedman 

et al., 2007; Pardo et al., 2017; Swartz, 2012; Zhu et al., 2017). Since downstream 

analyses might be sensitive to unequal sample sizes between taxa pre- and post-

water–land transition, we did not include several crownward stem-tetrapodomorphs 

from the original matrices (Supplementary Material). For each matrix, we generated a 

posterior distribution of phylogenetic trees using MrBayes 3.2.6 (Ronquist et al., 

2012b). In each case, we ran two Markov chain Monte Carlo (MCMC) replicates for 

20,000,000 generations with 25% burn-in, each with four chains and a sampling 

frequency of 1000. We used one partition, except for Clack et al.’s (2017) matrix, which 
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was explicitly divided into cranial and postcranial characters. To time-calibrate the 

trees, we constrained the root ages and employed a tip dating approach (Ronquist et 

al., 2012a). Tip dates (last occurrence) were acquired from the Paleobiology Database 

(PBDB; https://www.paleobiodb.org/) and the literature (Supplementary Table 2). Root 

calibrations (minimum and soft maximum age estimates) were collected from the 

PBDB and Benton et al. (2015). We also used the fossilized birth-death model as the 

branch length prior (Didier and Laurin, 2018; Didier et al., 2012, 2017; Gavryushkina 

et al., 2014; Heath et al., 2014; Stadler, 2010; Zhang et al., 2016). All pairs of MCMC 

replicates converged as demonstrated by low average standard deviation of split 

frequencies (< 0.005; Lakner et al., 2008; Supplementary Table 3).  

Next, we used the five maximum clade credibility trees (source trees; Appendix 

1 Figs. S1–10) to compute a distance supermatrix using SDM 2.1 (Criscuolo et al., 

2006). We then inferred an unweighted neighbor-joining tree (UNJ by Gascuel, 1997) 

from the distance supermatrix using PhyD* 1.1 (Criscuolo and Gascuel, 2008). The 

UNJ* algorithm is preferable for matrices based on morphological characters. Unlike 

most supertree methods, the SDM-PhyD* combination produces a supertree with 

branch lengths. We rooted the supertree using phytools 0.6.60 (Revell, 2012) by 

adding an arbitrary branch length of 0.00001 to break the trichotomy at the basal-most 

node in R 3.5.2 (R Core Team, 2018), designating the dipnomorph Glyptolepis as the 

outgroup. We qualitatively compared the supertree topology with the published source 

trees and Marjanovic´ and Laurin’s (2019). We also calculated normalized Robinson-

Foulds (nRF) distances (Robinson and Foulds, 1981) using phangorn 2.4.0 (Schliep, 

2011) in R to assess the congruency of topologies. In each comparison, polytomies in 

the supertree or the source tree were resolved in all possible ways using phytools. We 
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then calculated all nRF distances and took an average (Supplementary Table 4). The 

supplementary materials include a more detailed description of this approach.  

 

2.3. Phylogeography 

We obtained paleocoordinate data (paleolatitude and paleolongitude) for 63 early 

tetrapodomorphs from the PBDB using the GPlates software setting 

(https://www.gws.gplates.org/). By default, GPlates estimates paleocoordinates from 

the midpoint of each taxon’s age range. Among the 63 taxa sampled, 16 did not have 

direct paleocoordinate data in the PBDB. For these taxa, we searched for the 

geological formations and geographic regions within the time range from which they 

are known and averaged the paleolocations across each valid taxonomic occurrence 

in the PBDB. If the paleolocation of the formation was not listed in the PBDB, we used 

published geographic locations of the formations. This level of precision is adequate 

for world-wide phylogeographic analyses, such as conducted here. Present-day 

coordinates for these geographic locations were obtained from Google Earth and 

matched with PBDB entries that date within each taxon’s age range (Supplementary 

Table 5). Four additional taxa, Kenichthys, Koilops, Ossirarus, and Tungsenia, had 

occurrences in the PBDB but the GPlates software could not estimate their 

paleocoordinates. For Koilops and Ossirarus, we used all tetrapodomorph 

occurrences from the Ballagan Formation of Scotland, UK—a formation in which these 

two taxa are found (Clack et al., 2017). For Kenichthys and Tungsenia, we calculated 

paleocoordinate data from the GPlates website directly using the present-day 

coordinates from the PBDB (https://www.gws.gplates.org/#recon-p). This approach 

did not work for the 16 previously mentioned taxa (Supplementary Table 5). We, 

therefore, obtained paleocoordinate data from nearby entries in the PBDB that date 
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within each taxon’s age range. We excluded the following taxa from our analyses due 

to the lack of data and comparable entries in the PBDB: Jarvikina, Koharalepis, 

Spodichthys, and Tinirau. We excluded the outgroup taxon, Glyptolepis, in our 

analysis to focus on the dispersal trends within early Tetrapodomorpha. We also 

excluded Eusthenodon and Strepsodus because their high estimated dispersal 

rates—being reported from multiple continents—masked other rate variation 

throughout the phylogeny and inhibited our downstream analyses from converging on 

a stable likelihood. We do, however, discuss their geographic implications in Section 

4. 

A model that incorporates phylogeny is crucial for paleobiogeographic 

reconstruction because it accounts for both species relationships and the amount of 

evolutionary divergence (branch lengths). Using continuous paleocoordinate data, 

rather than discretely-coded regions, allows dispersal trends to be estimated at finer 

resolutions. Discretely-coded geographic regions also limit ancestral states to the 

same regions inhabited by descendant species. However, standard phylogenetic 

comparative methods for continuous data assume a flat Earth because they do not 

account for spherically structured coordinates (i.e., the proximity of −179° and 179° 

longitudes). Recently-developed phylogenetic comparative methods for modeling 

continuous paleocoordinate data, implemented as the ‘geo’ model in the program 

BayesTraits V3, overcome this hurdle by “evolving” continuous coordinate data on the 

surface of a globe (O’Donovan et al., 2018). The model is implemented with a 

Bayesian reversible jump MCMC algorithm to estimate rates of geographic dispersal 

and ancestral paleolocations simultaneously. To account for the spheroid shape of the 

globe, the ‘geo’ model converts latitude and longitude data into three-dimensional 

coordinates while prohibiting moves that penetrate the inside of the globe. Ancestral 
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states, which are converted back to standard latitude and longitude, are estimated for 

each node of the phylogeny. The method includes a variable rates model to estimate 

variation in dispersal rate (Venditti et al., 2011). The ‘geo’ model makes no 

assumptions about the location of geographic barriers or coastlines, but a study on 

dinosaur biogeography found 99.2% of mean ancestral state reconstructions to be 

located within the bounds of landmasses specific to the time at which they occurred 

(O’Donovan et al., 2018). We ran three replicate independent analyses using the 

Bayesian phylogenetic ‘geo’ model for 100 million iterations each with a 25% burnin 

and sampling every 1000 iterations. We estimated log marginal likelihoods using the 

Stepping Stone algorithm with 250 stones sampling every 1000 iterations (Xie et al., 

2011). We used Bayes factors (BF) to test whether a variable rates model explained 

the data better than a uniform rate model. Bayes factors greater than two are 

considered good evidence in support of the model with the greater log marginal 

likelihood. We compared estimated rate scalars and ancestral states among the three 

independent variable rates analyses to check for consistency in our results. Rates of 

dispersal were estimated for each branch by dividing the average rate scalars by the 

original branch lengths (scaled by time). We assessed the MCMC convergence of all 

analyses using Tracer 1.7 (Rambaut et al., 2018).  

To test for the effect of sampling bias on dispersal rates, we developed a 

sampling bias proxy that incorporates geographic context: a regional-level formation 

count. Formation counts are meant to capture multiple biases: uneven global rock 

exposure, uneven fossil collection and database efforts, and global variation in 

sediment deposition in environments conducive to preservation. Stage-level (stage-

specific) formation count represents the mean number of formations, or distinct rock 

units, globally known to produce relevant fossils along each terminal branch of a 
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phylogeny. Following the protocol of Sakamoto et al. (2016a) and O’Donovan et al. 

(2018), stage-level formation counts are calculated by taking the average number of 

formations known from each geological stage (age) across the globe that encompass 

the time period between the taxon’s tip date and its preceding node. These average 

stage-level formation counts are weighted by the proportion that each terminal branch 

length covers each geological stage. For example, if a terminal branch covers two 

geological stages (e.g., Frasnian and Famennian) at 30% and 70%, respectively, then 

the formation counts from each geological stage are weighted by those proportions 

and then divided by the number of geological stages covered: 

 

Stage-Level Formation Count = !"#$%&#% ()*%+ × -./ 0 !#12%%&#% ()*%+ × -.3
4

 

 

Stage-level formation count is not informed by geography; it is a global metric. 

It is therefore an inadequate proxy if bias has a strong geographic component (e.g., if 

the majority of formations recorded are from a specific region or if few formations are 

exposed within a region). The number of fossil-bearing geological formations, 

accounting for geographic distribution, is expected to be an important confounding 

bias in the fossil record. We developed a proxy that includes geographic sampling 

bias. Our approach breaks down stage-level formation count by geographic region. To 

account for the arrangement of the continents during the Devonian, Carboniferous, 

and Permian, we recognized five major regions: northern Euramerica (including 

northeastern Eurasia and central Asia), southern Euramerica (North America, 

Greenland, and western Europe), western Gondwana (South America and Africa), 

eastern Gondwana (Antarctica, Australia, and southern Asia), and East Asia (e.g., 

China). These regions generally resemble traditional bioregionalizations of the 
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Devonian period, but note that regions based on biotic similarities of fossil 

assemblages are known to change through time (Dowding and Ebach, 2019). Future 

studies could modify this approach to capture temporal changes in biotic connectivity. 

For each branch in the phylogeny, we used the average ancestral state and taxon 

paleolocation estimates to determine if the branch crossed multiple geographic 

regions. The number of formations within this time window are totaled for every region 

covered by the branch and then divided by the number of regions covered. For 

example, if ancestral state estimates at node 1 and 2 are located in eastern Gondwana 

and southern Euramerica, respectively, then the number of formations recorded in 

eastern Gondwana, southern Euramerica, and the regions in between (i.e., western 

Gondwana or northern Euramerica + East Asia) are counted for that geological stage; 

this total is then divided by the number of geographic regions covered by the entire 

branch (three for the western Gondwana route and four for the northern Euramerica + 

East Asia route). If the dispersal path between two consecutive ancestral states does 

not cross any of the five regions, then the number of formations in the inhabited region 

is counted alone. Fig. 1 illustrates an example of how this proxy is measured. This 

results in the average number of formations present along the dispersal path (at 

geographic region scale) for each branch in the phylogeny. As with stage-level 

formation counts, the regional-level formation counts are weighted by the proportion 

that the branch length covers each geological stage. We hypothesize that dispersal 

rate will inversely correlate with regional-level formation count because we expect that 

the lack of formations in intermediate regions will lead to inflated dispersal rates. The 

‘geo’ model will increase the dispersal rate along a branch to account for the 

geographic variation observed when there is a lack of intermediate geographic fossil 

occurrences. This hypothesis can be falsified if high dispersal rates are associated 
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with larger average numbers of formations along dispersal paths. Benton et al. (2013) 

provide a global sample of tetrapod-bearing rock formations known for each geological 

stage from the Middle Devonian through the Triassic. We supplemented these lists 

with stratigraphic units known to produce sarcopterygian fossils entered in the PBDB 

(collected on December 10th, 2018). 

 

 

Fig. 1. Example of how the regional-level formation count proxy is calculated. A. Five major 

geographic regions are highlighted by color in the Devonian map. Red arrows represent a 

branch-specific dispersal path to species A, beginning in southern Euramerica and ending in 

eastern Gondwana. The blue arrow represents the dispersal path to species B. The Devonian 

map is modified and reproduced with permission from © 2016 Colorado Plateau Geosystems 

Inc. B. The phylogeny of species A and B scaled by time, with equal branch lengths to both 

species, and colored to represent the rate of dispersal (red is fast, blue is slow). For every 
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branch of the tree, the number of formations is counted for every region and for each 

geological stage covered by the dispersal pathway. It is then weighted by the number of 

geological stages and geographic regions covered. Under the western Gondwana route 

scenario, the branch to species A covers three geographic regions, while the branch to species 

B only covers one. Assuming both branches cover only one geological stage, the high 

dispersal rate for species A can be explained by the lack of recorded geological formations in 

western Gondwana. C. A line plot of the formation counts through time, colored by geographic 

region according to the Devonian map above, shows temporal and geographic variability. 

Period Epoch Age 

Min. 

Time 

(Ma) 

Northern 

Euramerica 

Southern 

Euramerica 

Western 

Gondwana 

Eastern 

Gondwana Total 

         

Permian Cisuralian Kungurian 272.95 10 44 11 0 65 

Permian Cisuralian Artinskian 283.5 2 39 9 0 50 

Permian Cisuralian Sakmarian 290.1 2 44 4 0 50 

Permian Cisuralian Asselian 295 2 47 3 0 52 

Pennsylvanian Late Gzhelian 298.9 1 42 0 0 43 

Pennsylvanian Late Kasimovian 303.7 0 33 0 0 33 

Pennsylvanian Middle Moscovian 307 0 16 0 0 16 

Pennsylvanian Early Bashkirian 315.2 0 28 0 0 28 

Mississippian Late Serpukhovian 323.2 0 16 0 0 16 

Mississippian Middle Visean 330.9 0 14 0 1 15 

Mississippian Early Tournaisian 346.7 0 7 0 1 8 

Devonian Late Famennian 358.9 1 9 1 6 17 

Devonian Late Frasnian 372.2 1 11 0 5 17 

Devonian Middle Givetian 382.7 1 8 1 5 15 

Devonian Middle Eifelian 387.7 1 8 0 7 16 

Devonian Early Emsian 393.3 2 5 0 8 15 

Devonian Early Pragian 407.6 1 6 0 6 13 
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Devonian Early Lochkovian 410.8 1 3 0 4 8 

Silurian Pridoli Pridoli 419.2 0 0 0 1 1 

Silurian Ludlow Ludfordian 423 0 0 0 2 2 

Silurian Ludlow Gorstian 425.6 0 0 0 2 2 

 

 

To test for the effect of regional-level formation count bias on dispersal rate, we 

conducted a non-parametric two sample, upper-tailed Mann-Whitney U-test using the 

base package ‘stats’ in R (R Core Team, 2018). This approach ranks all branches of 

the phylogeny by their regional level formation count and tests if the branches with 

lower dispersal rates rank higher on average than branches with higher rates. We 

define “high” vs “low” dispersal rates based on whether or not they are two standard 

deviations greater than the average rate across the tree. Due to the vast difference in 

sample size between the two groups (“high rates”: n = 9, “low rates”: n = 111), we 

bootstrapped the regional-level formation counts from each group with 100,000 

replicates. From this bootstrap analysis, we obtained a 95% confidence interval for the 

summed ranks of the branches with low dispersal rates (n = 100,000 U-statistic 

values). The expected U-statistic is 499.5 given the null hypothesis that only 50% of 

the regional-level formation counts along branches with low rates rank higher than the 

formation counts with high rates (half of all possible combinations = !	×	$$$
%

). A 95% 

confidence interval of bootstrapped U-statistics that does not include the null expected 

U-statistic is considered good evidence for higher mean dispersal rates along 

branches with lower regional-level formation counts. The full dataset and code for the 

phylogeographic analyses can be requested by email to the corresponding author.  

Table 1: Regional- and stage-level (Total) formation counts. 
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Estimated ancestral states do not identify specific dispersal routes, so we 

conducted sensitivity analyses to test if the dispersal route chosen for counting 

formations influenced our results. We conceived of three scenarios for dispersal routes 

between eastern Gondwana and southern Euramerica or vice versa: (1) a dispersal 

route through western Gondwana; (2) a route through northern Euramerica and East 

Asia; and (3) a direct route between eastern Gondwana and southern Euramerica. For 

the first scenario, we averaged the number of formations found in eastern and western 

Gondwana and southern Euramerica for a given time period. The second scenario is 

similar to the first but included formation counts from northern Euramerica and East 

Asia in place of western Gondwana. The third scenario only averaged formation 

counts from eastern Gondwana and southern Euramerica. 

 

3. Results 

3.1. Supertree 

Topological differences resulted among our supertree, the published source trees, and 

Marjanovic´ and Laurin’s (2019) tree (Fig. 2). In our tree, a polyphyletic 

“Megalichthyiformes” is the basal-most tetrapodomorph group instead of Rhizodontida 

(Swartz, 2012; Zhu et al., 2017). Canowindrids and rhizodontids formed an 

unexpected sister clade to Eotetrapodiformes. Clack et al.’s (2017) five Tournaisian 

tetrapod taxa cluster together. Colosteidae is rootward of Crassigyrinus. Caerorhachis 

is next to Baphetidae. Baphetidae moved crownward compared to previous topologies 

(likely because of a small character sample size [Marjanovic´ and Laurin, 2019]). Two 

crownward nodes are unresolved (polytomous). We retained Tungsenia and 

Kenichthys as the oldest and second oldest tetrapodomorphs. Tristichopteridae, 

Elpistostegalia, Stegocephalia, Aïstopoda, Whatcheeriidae, Colosteidae, 
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Anthracosauria, Dendrerpetidae, and Baphetidae remain monophyletic. Aïstopoda 

(Lethiscus and Coloraderpeton) fell rootward to Tetrapoda as reported in Pardo et al. 

(2017). The average nRF distances quantify differences in topology (Supplementary 

Table 4). On average, there are 39.7% different or missing bipartitions in the source 

trees compared to the supertree. 

 

Fig. 2. The time-scaled tetrapodomorph supertree. Taxonomic groups in quotes are not 

monophyletic. Here, Glyptolepis, a dipnomorph, is the outgroup. We downloaded the 

silhouettes from phylopic.org: Eucritta and Greererpeton by Dmitry Bogdanov (vectorized by 

T. Michael Keesey), Eusthenopteron by Steve Coombs (vectorized by T. Michael Keesey), 

and Gogonasus and Tiktaalik by Nobu Tamura (CC BY-SA 3.0). 
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3.2. Phylogeography 

We found overwhelming support for a variable rates model of geographic dispersal in 

early tetrapodomorphs (BF = 632.3; Fig. 3). The estimated rates across the three 

replicate runs are consistent (out of 122 branches, only three had a median rate scalar 

with an absolute value difference among the three runs greater than 3). All rate shifts 

that were two standard deviations greater than the average dispersal rate were 

reconstructed dispersal events moving from East Asia to southern Euramerica, from 

eastern Gondwana to southern Euramerica, or southern Euramerica to eastern 

Gondwana. The fastest estimated dispersal rate occurs along the branch leading to 

Eotetrapodiformes, moving from eastern Gondwana to southern Euramerica (14.34° 

× the average rate). As Long et al. (2018) suggest, we find evidence for an East Asian 

origin for Tetrapodomorpha but with moderate uncertainty (average estimate ± 

standard deviation of posterior distribution; longitude avg = 81.5° ± 10.1°, latitude avg 

= −6.4° ± 8.5°). We also reconstruct an origin for “Megalichthyiformes” that borderlines 

East Asia and eastern Gondwana (longitude avg = 107.2° ± 14.1°, latitude avg = 

−22.6° ± 8.7°), along with an eastern Gondwana origin for the clade uniting 

“Canowindridae” and Rhizodontida (longitude avg = 137.1° ± 8.2°, latitude avg = 

−32.0° ± 4.7°). We recover a southern Euramerican origin for Eotetrapodiformes, 

consistent with previous studies (longitude avg = −12.5° ± 7.0°, latitude avg = −19.4° 

± 6.4°). A southern Euramerican origin was also found for Tristichopteridae (longitude 

avg = −12.7° ± 6.9°, latitude avg = −19.7° ± 6.3°) and Elpistostegalia (longitude avg = 

−12.3° ± 5.5°, latitude avg = −13.5° ± 5.3°). As expected in a phylogenetic comparative 

analysis, uncertainty in estimated node states increases toward the root. However, 

despite the level of uncertainty within a single run, only three nodes have mean 
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ancestral state values that are greater than an absolute value of 5◦ among the three 

replicate runs. 

 

Fig. 3. A. Trimmed tetrapodomorph phylogeny with mapped rates of dispersal. Cooler (bluish) 

colors represent slower rates and warmer (reddish) colors represent faster rates. B. Non-

eotetrapodiform (left in blue) and eotetrapodiform (right in green) trees and taxon 

paleolocations plotted on a map of the Middle Devonian. Transparent polygons illustrate broad 

geographic regions of sampled taxa in southern Euramerica, eastern Gondwana, and East 

Asia. Numbers show the total number of geological formations recorded from each major 

geographic region (eastern Gondwana and East Asia combined). Colored circles show 

average paleolocations of major clades estimated by the ‘geo’ model and indicated in the tree 

above. Red circle: Tetrapodomorpha, orange: “Megalichthyiformes”, yellow: “Canowindridae” 

+ Rhizodontidae, green: Tristichopteridae, and blue: Elpistostegalia. Phylogeny with mapped 

dispersal rates was produced in BayesTrees (http://www.evolution.rdg.ac.uk/ 
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BayesTrees.html). Middle Devonian tree and paleolocation plots were made using the ‘phylo-

to-map’ function in the R package, phytools (Revell, 2012). Middle Devonian map was sourced 

from the R package, paleoMap (Rothkugel and Varela, 2015). Tetrapodomorph silhouettes 

were sourced from phylopic.org: Eucritta by Dmitry Bogdanov (vectorized by T. Michael 

Keesey), Osteolepis by Nobu Tamura, and Acanthostega by Mateus Zica (CC BY-SA 3.0). 

 

We find good evidence that geographic sampling bias influences dispersal rate 

estimates, regardless of the route used (95% CI: western Gondwana route U = 

[800,928]; northern Euramerica + East Asia route U = [832,946]; direct route U = 

[729,889]; no scenario includes the null U = 499.5; Fig. 4 and Supplementary Figs. 12 

and 13). A U-statistic considerably higher than 499.5 suggests that branches with high 

dispersal rates have lower regional-level formation counts, on average, than branches 

with low rates. One can also interpret the null U-statistic of 499.5 as a 50% probability 

that a random branch with a low dispersal rate will rank higher in its regional-level 

formation count than a random branch with a high dispersal rate. With bootstrapping, 

we are 95% confident that the probability of a random branch with a low dispersal rate 

having a higher regional-level formation count than a random branch with a high rate 

is 72.97–88.99% for the more conservative ‘direct route’ scenario. Under the more 

liberal ‘northern Euramerica + East Asia route’ scenario, the probabilities are 83.28–

94.69%. In sum, branches with high dispersal rates (two standard deviations greater 

than average) have a smaller number of recorded formations, on average, along their 

reconstructed dispersal path. Our results cannot be explained by a fossil record that 

is more complete through time (Pull of the Recent). A regression model relating 

regional-level formation count to the minimum age of each branch shows only a weak 

relationship (slope = −0.044, r2 = 0.1, P < 0.001). However, the total global (stage-

level) formation count (which does not account for geographic variation) does show 
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potential bias from Pull of the Recent (slope = −0.3, r2 = 0.71, P < 0.0001). If dispersal 

rates are biased by the increase in number of formations globally, we would also 

expect to see elevated dispersal rates decrease toward the tips, but a regression 

model relating stretched branch lengths with time is not supported (slope = −0.025, r2 

= 0.006, P = 0.41). 

 

 

 

Fig. 4. A. Scatter-plot of the average dispersal rates over the regional-level formation counts 

for each branch of the phylogeny, using the northern Euramerica + East Asia route scenario. 

Points colored by the dispersal rate being above (red) or below (blue) two standard deviations 

greater than the average rate across the tree. B. Histogram of the bootstrapped U-statistics. 

Values outside of the 95% confidence interval are grayed out. The median and null expected 

U-statistics are indicated by the red and blue dotted lines, respectively. The null expected U-

statistic is based on the null hypothesis that 50% of the branches with low dispersal rates will 

have greater regional-level formation counts than branches with higher rates. Rejecting the 

null hypothesis suggests that estimated dispersal rates are biased and correlate with regional-

level formation count. 
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 Our results cannot be explained by a fossil record that is more complete through 

time (Pull of the Recent). A regression model relating regional-level formation count to 

the maximum age of each branch shows only a weak relationship (slope = -0.045, r2 

= 0.1, P < 0.001). However, total global (stage-level) formation count (which does not 

account for geographic variation) does show potential bias from Pull of the Recent 

(slope = -0.31, r2 = 0.72, P < 0.0001). We would also expect to see elevated dispersal 

rates decrease with time if this artifact is present in our data, but a regression model 

relating stretched branch lengths with time is not supported (slope = -0.025, r2 = 0.006, 

P = 0.41).  

 

4. Discussion 

We expected to infer high dispersal rates for closely related taxa that are distributed 

across the globe. Our results, unadjusted for geographic bias in the fossil record, 

confirm this notion. However, we also find a compelling statistical association between 

high dispersal rates and a low number of formations along dispersal paths—a patchy 

fossil record is driving inferences of high dispersal rates. Although we did not test for 

a correlation between dispersal rate and previously used proxies, such as valid taxon 

count and stage-level formation count, these proxies do not offer clear predictions for 

explaining dispersal rate variation. High dispersal rate variation is inferred when 

closely related taxa are geographically separate. For example, valid taxon count 

cannot explain geographic rate variation because spatial information is lacking in this 

bias proxy and because sister taxa are likely to have similar counts (these data are 

phylogenetically structured). Stage level formation counts will also not explain 

dispersal rate variation, particularly if high rate variation exists within the same 

geological stage. Assuming geological formations are evenly exposed and sampled 
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worldwide, low stage level formation counts should yield geographically variable fossil 

species and, therefore, drive high dispersal rate variation. However, formations are 

not evenly exposed or recorded in geological/paleontological databases, including the 

PBDB. Our formation count table demonstrates this bias (Table 1). Without geographic 

context, stage-level formation count cannot distinguish between global and local 

regions. For example, the geological stages that have the highest recorded number of 

formations are restricted to southern Euramerica where the majority of 

eotetrapodiform taxa have been discovered. The association between high formation 

counts in specific regions and high paleobiodiversity in those regions is likely not a 

coincidence and has a clear impact on how we interpret dispersal history. The earliest 

tetrapodomorphs are known from China and Australia at geological stages where 

relatively few formations are recorded outside of East Asia and eastern Gondwana. 

The basal-most ancestral state estimates reconstruct paleolocations in East Asia 

(unsurprisingly). This inference (hypothesis) is predicated on the lack of geological 

formations recorded outside of East Asia during this time period. In addition, the 

majority of more crownward taxa and their reconstructed ancestral states are located 

in North America and Europe at geological stages in which relatively fewer formations 

are known elsewhere. This bias may heavily influence any conclusions made on the 

location and habitat of the tetrapodomorph water–land transition. Recently discovered 

taxa could help mitigate this problem by increasing the power of taxon sampling (Heath 

et al., 2014), such as Tutusius and Umzantsia from South Africa (Gess and Ahlberg, 

2018). However, the current lack of cladistic coding for these taxa excludes them from 

phylogeny-based analyses. The taxonomic resolution of globally-occurring species, 

like Eusthenodon and Spodichthys, also impacts current models of species dispersal 

history because of their relatively uniform distribution (Long et al., 2018). Eusthenodon 
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and Spodichthys represent possible cases where taxonomic resolution is too coarse 

for phylogeographic analyses. Including these species inhibited our MCMC algorithms 

from reaching convergence. Widely distributed cosmopolitan species that lack 

intermediate geographic occurrences increase the uncertainty of parameter estimates 

within phylogeographic models, as is the case here for these two species. 

Phylogenetic studies on macroevolution also often fail to incorporate data from 

the fossil record itself, such as trace fossil occurrences. Non-anatomical data often 

contribute to our understanding of taxonomic originations, including chiridian (or digit-

possessing) tetrapodomorphs for which trace fossil evidence exists about 10 million 

years before the first elpistostegalian body fossils (Niedzwiedzkí et al., 2010). The 

inclusion of additional data from trace fossils could radically alter our current models 

of species dispersal history. Finally, it is important to note that the sampling bias 

proxies are also constrained by database curation biases. Phylogenetic studies on 

macroevolutionary trends now regularly leverage public databases, such as the 

PBDB, which allows larger and broader studies. It is unclear how patchy entries, on 

taxonomic occurrences and geological formations, for example, interact with other 

biases inherent in the fossil record. Caution is therefore warranted when these 

databases are mined, as is the case here. 

 

5. Conclusions 

Phylogenetic studies on macroevolution have not previously incorporated geographic 

context, which could influence a wide variety of analyses. We demonstrate here that 

phylogeographic methods are influenced by geographic sampling variability. We 

develop a simple sampling bias proxy that incorporates geographic information and 

show that it explains variation in estimated dispersal rates. The majority of elevated 
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dispersal rates are associated with large-scale movements between major 

landmasses that have very few, if any, relevant geological formations in between. Our 

analysis is also unlikely to be influenced by “Pull of the Recent”-like effects. Although 

not the first supertree for early tetrapodomorphs (Ruta et al., 2003), this study presents 

the first (to our knowledge) with branch lengths, making it useable for phylogenetic 

comparative analyses. The new supertree comprises many of the major clades 

previously inferred, but also recovers new ones that will be subject to scrutiny in future 

studies (discussed further in the Supplementary Material). This supertree should be 

useful to researchers who aim to use phylogenetic comparative methods to test 

hypotheses on the evolution of early tetrapodomorphs. In sum, our study estimates 

ancestral geographical reconstructions consistent with previously hypothesized 

dispersal patterns in early tetrapodomorphs. We also find that rates of dispersal are 

strongly influenced by geographic sampling bias. We suggest that researchers 

incorporate this proxy in phylogeny-based macroevolutionary studies that could be 

influenced by spatial distribution of the fossil record. 
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Appendix 1 

Supplementary Material 

1. Supertree 

1.1. Data 

1.1.1. Morphological data matrices 

 To maximize stem-tetrapodomorph taxon sample size, we collected five 

published data matrices containing unordered, multistate morphological characters 

(Friedman et al., 2007; Swartz, 2012; Clack et al., 2017; Pardo et al., 2017; Zhu et al., 

2017) (see Table 1). Since downstream analyses might be sensitive to unequal 

sample sizes between taxa pre- and post-water-land transition, we didn’t include 

several crownward stem-tetrapods from the original matrices. All taxa more 

crownward than Baphetes and Eucritta in Pardo et al. (2017), except Balanerpeton 

and Dendrerpeton, were disregarded. Asaphestera, Casineria, Discosauriscus, 

Edops, Eryops, Gephyrostegus, Hyloplesion, Microbrachis, Paleothyris, Seymouria, 

and Westlothiana were removed from Clack et al.’s (2017) data matrix. Future studies 

should include more taxa on either end of the water-land transition. Lastly, we chose 

the supertree approach because it’s infeasible to construct a morphological 

supermatrix. One needs to recode characters and assess redundancies. 
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Source 

# of  

taxa 

# of  

characters Outgroup 

    

Friedman et al. (2007) 13 216 Glyptolepis 

Swartz et al. (2012) 41 204 Glyptolepis 

Clack et al. (2017) 33 213 Eusthenopteron 

Pardo et al. (2017) 18 370 Eusthenopteron 

Zhu et al. (2017) 33 169 Glyptolepis 

 

Table 1. Data matrix summary. Number of taxa refers to the number of stem-

tetrapodomorphs included in our analyses. For three data matrices, we chose 

Glyptolepis as the outgroup in subsequent Bayesian phylogenetic inferences because 

it seemed to be the skeletally most complete dipnomorph. 

 

 We made several corrections to the data matrices. We changed Ymeria’s state 

in character 343 of Pardo et al.’s (2017) matrix from 3 to a question mark (?) because 

that character only has two states. In Clack et al.'s (2017) matrix, we changed the 

states of Silvanerpeton in character 18, Proterogyrinus in character 31, and 

Pholiderpeton in character 66 from 2, 3, and 2, respectively, to question marks (?). 

These character states exceed the maximum number of states. Additionally, we 

substituted parentheses in Swartz’s (2012) and Pardo et al.'s (2017) matrices with 

curly brackets for consistency. 

Here, we must explicitly acknowledge that we didn't guarantee that every 

specimen used to score character states is skeletally mature. We didn’t order 

characters (see Rineau et al., 2015, 2018). Further, we didn't check correlations 
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between characters (see Guillerme and Brazeau [2018] for discussions regarding this 

issue). These caveats could have biased phylogenetic inference. 

 

1.1.2. Tip dates 

We collected tip dates (genus-level minimum ages) from the Paleobiology 

Database (PBDB; https://paleobiodb.org/). If minimum age data were unavailable from 

the PBDB, we checked the localities where researchers found the genus, chose the 

youngest one and collected the upper boundary of the locality's age based on 

http://fossilworks.org (see Table 2). 

 

Taxon 
Tip date 

(Ma) 
Geochronologic unit Reference 

Acanthostega 358.90 Late Famennian PBDB 

Archeria 279.30 Middle Kungurian PBDB 

Aytonerpeton 346.70 Late Tournaisian PBDB 

Balanerpeton 326.40 Middle Serpukhovian PBDB 

Baphetes 307.00 Late Moscovian PBDB 

Barameda 346.70 Late Tournaisian PBDB 

Beelarongia 376.10 Frasnian Long, (1987) 

Cabonnichthys 360.70 Famennian Ahlberg and Johanson, (1997) 

Caerorhachis 318.10 Middle Bashkirian PBDB 

Canowindra 360.70 Late Devonian Thomson, (1973) 

Cladarosymblema 326.40 Viséan Fox et al., (1995) 

Coloraderpeton 307.00 Late Moscovian PBDB 

Colosteus 306.95 Early Kasimovian PBDB 
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Crassigyrinus 323.20 Late Serpukhovian PBDB 

Dendrerpeton 314.60 Early Moscovian PBDB 

Diploradus 346.70 Late Tournaisian PBDB 

Doragnathus 323.20 Late Serpukhovian PBDB 

Ectosteorhachis 272.30 Early Roadian PBDB 

Elginerpeton 376.10 Middle Frasnian PBDB 

Elpistostege 372.20 Late Frasnian PBDB 

Eoherpeton 318.10 Middle Bashkirian PBDB 

Eucritta 330.90 Late Viséan PBDB 

Eusthenodon 360.70 Late Famennian Clement, (2002) 

Eusthenopteron 372.20 Late Frasnian PBDB 

Glyptolepis 382.40 Early Frasnian PBDB 

Glyptopomus 360.70 Late Famennian Lebedev and Lukševičs, (2017) 

Gogonasus 382.40 Early Frasnian Long et al., (2006) 

Gooloogongia 360.70 Famennian Johanson and Ahlberg, (1998) 

Greererpeton 323.20 Late Serpukhovian PBDB 

Gyroptychius 383.70 Middle Devonian Newman et al., (2015) 

Hongyu 360.70 Famennian Zhu et al., (2017) 

Ichthyostega 358.90 Late Famennian PBDB 

Jarvikina 379.50 Middle Frasnian Lebedev et al., (2010) 

Kenichthys 382.70 Late Givetian PBDB 

Koharalepis 382.40 Early Frasnian Young et al., (1992) 

Koilops 346.70 Late Tournaisian PBDB 

Lethiscus 336.00 Middle Viséan PBDB 

Loxomma 306.95 Early Kasimovian PBDB 
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Mandageria 360.70 Famennian Johanson and Ahlberg (1997) 

Marsdenichthys 376.10 Frasnian Holland et al., (2010) 

Medoevia 360.70 Late Devonian Lebedev, (1995) 

Megalichthys 272.30 Early Roadian PBDB 

Megalocephalus 306.95 Early Kasimovian PBDB 

Metaxygnathus 358.90 Late Famennian PBDB 

Occidens 330.90 Late Viséan PBDB 

Ossinodus 330.90 Late Viséan PBDB 

Ossirarus 346.70 Late Tournaisian PBDB 

Osteolepis 358.90 Late Famennian PBDB 

Panderichthys 382.40 Early Frasnian PBDB 

Pederpes 345.30 Early Viséan PBDB 

Perittodus 346.70 Late Tournaisian PBDB 

Pholiderpeton 311.45 Middle Moscovian PBDB 

Platycephalichthys 360.70 Late Famennian Lebedev et al., (2010) 

Proterogyrinus 318.10 Middle Bashkirian PBDB 

Rhizodopsis 298.90 Late Gzhelian PBDB 

Rhizodus 298.90 Late Gzhelian PBDB 

Sauripterus 358.90 Late Famennian PBDB 

Screbinodus 326.40 Viséan Andrews, (1985) 

Sigournea 336.00 Middle Viséan PBDB 

Silvanerpeton 326.40 Middle Serpukhovian PBDB 

Spodichthys 376.10 Frasnian Snitting, (2008) 

Strepsodus 307.00 Late Moscovian PBDB 

Tiktaalik 372.20 Late Frasnian PBDB 
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Tinirau 383.70 Late Givetian Swartz, (2012) 

Tristichopterus 379.50 Early Frasnian Bishop, (2013) 

Tulerpeton 360.70 Late Famennian PBDB 

Tungsenia 407.60 Late Pragian PBDB 

Ventastega 358.90 Late Famennian PBDB 

Whatcheeria 336.00 Middle Viséan PBDB 

Ymeria 358.90 Late Famennian PBDB 

 

Table 2. Tip dates. 

 

1.1.3. Root calibrations 

 We collected clade minimum and soft maximum ages from the PBDB and 

Benton et al. (2015) to calibrate tree roots. For Friedman et al. (2007), Swartz (2012), 

and Zhu et al. (2017), the least inclusive clade with age estimates is Rhipidistia 

(minimum age = 408.0 Ma; soft maximum age = 427.9 Ma). For Clack et al. (2017) 

and Pardo et al. (2017), we used the maximum ages of Eusthenopteron, 

Panderichthys, and Spodichthys (one of the basalmost taxa in Eotetrapodiformes) as 

the minimum age of the least inclusive clade (383.7 Ma). And the mean age of the 

clade is represented by the minimum age of Tetrapodomorpha (407.6 Ma). 

 

1.2. Analyses 

1.2.1. Bayesian phylogenetic inference 

 For each matrix, we generated a posterior distribution of phylogenetic trees 

using MrBayes 3.2.6 (Ronquist et al., 2012b). We wanted to have trees with branch 

length information and to standardize the inference process as much as possible. 
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Here, we included details absent from the manuscript. Aside from using outgroups 

designated in Table 1, we also constrained the ingroup. For Clack et al.’s (2017) 

matrix, we allowed the gamma shape parameter, state frequency, and rate to vary 

across partitions. Next, we conditioned on coding only variable characters (Lewis Mkv 

model [Lewis, 2001] corrects for ascertainment bias). Therefore, 150, 8, 6, 103, and 6 

constant characters in Friedman et al.'s (2007), Swartz's (2012), Clack et al.'s (2017), 

Pardo et al.'s (2017), and Zhu et al.'s (2017) matrices, respectively, were ignored. 

Moreover, we used gamma-shaped rate variation across sites (four categories; Yang, 

1994). Harrison and Larsson (2015) found that the four rate category discrete 

approximation is sufficient to approximate a gamma rate distribution. We used an 

exponentially-distributed prior for the gamma shape parameter. An exponentially-

distributed prior for the gamma shape parameter results in higher marginal likelihoods 

than a uniformly-distributed prior (Harrison and Larsson, 2015). To allow variable 

evolutionary rates over time, we used the Independent Gamma Rate (IGR) model 

(Lepage et al., 2007). As a prior for the morphological clock rate, we used a truncated 

normal distribution. Further, we used offset exponential priors for root and tree ages 

and fixed tip dates (see Ronquist et al., 2012a). Although we employed the fossilized 

birth-death model (FBD; Stadler, 2010; Didier et al., 2012, 2015; Heath et al., 2014; 

Gavryushkina et al., 2014; Zhang et al., 2016; Didier and Laurin 2018) as a branch 

length prior, we didn't allow for sampled ancestors. 

In each inference, we ran two Markov chain Monte Carlo (MCMC) replicates for 

20,000,000 generations, each with four chains, a sampling frequency of 1,000, and a 

diagnostics frequency of 5,000. MrBayes employs Metropolis-coupled version of the 

MCMC (Metropolis et al., 1953; Hastings, 1970; Geyer, 1991). We discarded the first 

25% samples as burn-in. We also used BEAGLE 2.1 (Ayres et al., 2012) to decrease 
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computational time. Unless specified above, we used the default settings. Finally, we 

chose to output maximum clade credibility trees (Fig. 1-10). 

We diagnosed MCMC convergence between runs using the average standard 

deviation (SD) of split frequencies (Lakner et al., 2008). The values in all five 

inferences were less than 0.005 (see Table 3). We also assessed convergence using 

minimum effective sample size (ESS) and potential scale reduction factor (PSRF by 

Gelman and Rubin, 1992) values. All these metrics showed that within each inference, 

runs converged. 

 

Inference 

Average SD of 

split frequencies 

  

Friedman et al. (2007) 0.002578 

Swartz et al. (2012) 0.004706 

Clack et al. (2017) 0.003893 

Pardo et al. (2017) 0.003184 

Zhu et al. (2017) 0.004766 

 

Table 3. The average standard deviation of split frequencies values between runs in 

all inferences were less than 0.005. 

 

1.2.2. Distance supermatrix 

 First, we converted the maximum clade credibility trees (source trees) to 

Newick files using FigTree 1.4.3 (Rambaut, 2017). Then, we combined all the Newick 
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trees into a single PHYLIP file. We inputted this file to SDM 2.1 (Criscuolo et al., 2006) 

and computed a distance supermatrix. Trees were weighted using their sizes. 

 

1.2.3. Unweighted neighbor-joining 

 We inferred the supertree from the distance supermatrix using a modified 

unweighted neighbor-joining (Gascuel, 1997) algorithm (UNJ*) implemented in PhyD* 

1.1 (Criscuolo and Gascuel, 2008). We allowed polytomies and only positive branch 

lengths. Furthermore, we chose to output confidence values at branches (Guénoche 

and Garreta, 2000), which were suited for incomplete distance matrices. Most values 

are above 50. However, we didn't understand why our supertree contains branches 

with zero confidence values (Fig. 11), especially when nearby nodes had high 

posterior probabilities in the source trees. Unless specified above, we used the default 

settings. 

 

1.2.4. Rooting and plotting 

 We read the supertree into R 3.5.2 (R Core Team, 2018) using APE 5.2 

(Paradis and Schliep, 2019), rooted and saved it using phytools 0.6.60 (Revell, 2012), 

converted it to a Newick file using FigTree, and converted it again to a .trees file using 

BayesTreesConverter 1.3 (http://www.evolution.rdg.ac.uk/BayesTrees.html). 

BayesTraits 3.0.1 (Pagel 1999; 

http://www.evolution.rdg.ac.uk/BayesTraitsV3.0.1/BayesTraitsV3.0.1.html) can’t 

process a tree with a polytomous root node. So, we added an arbitrary branch length 

of 0.00001 to break the trichotomy. 

Lastly, we plotted the complete supertree using strap 1.4 (Bell and Lloyd, 2015), 

Cairo 1.5.9 (Urbanek and Horner, 2015), and APE in R. Since Archeria has the longest 
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path length, we scaled the tree using Archeria's tip date (279.3 Ma) despite 

Megalichthys and Ectosteorhachis' tip dates (272.3 Ma). 

 

1.2.5. Tree comparisons 

 We compared the supertree with the published source tree and Marjanović and 

Laurin's (2019) Paleozoic limbed vertebrate tree regarding topology. Due to small 

stem-tetrapod sample size, we ignored Friedman et al.'s (2007) topology. Additionally, 

we prioritized published Bayesian over maximum parsimony trees whenever possible. 

 Lastly, we compared the supertree topology with the published source tree 

topologies using normalized Robinson-Foulds (nRF) distances (Robinson and Foulds, 

1981) implemented in phangorn 2.4.0 (Schliep, 2011) in R. We first wrote Newick files 

for the source tree topologies. For Clack et al.'s (2017) Bayesian tree, we designated 

Eusthenopteron as the outgroup. Afterward, we pruned the supertree to match the tips 

in individual source trees using APE in R. To match Swartz's (2012) tree, we collapsed 

several clades (Rhizodontidae, Megalichthyidae, Whatcheeridae, Colosteidae, 

Baphetidae, total-group Lissamphibia, and Embolomeri). There appears to be no 

actual taxon in the clade "other stem-group amniotes" in Swartz's (2012) tree figure. 

In each comparison, polytomies in the supertree or the source tree were resolved in 

all possible ways using phytools. Then, we calculated all possible nRF distances and 

took an average (see Table 4). 
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Inference Average nRF distance (%) 

  

Friedman et al. (2007) 25.0 

Swartz et al. (2012) 27.1 

Clack et al. (2017) 67.7 

Pardo et al. (2017) 33.3 

Zhu et al. (2017) 45.6 

  

Average 39.7 

 

Table 4. The average of average normalized Robinson-Foulds (nRF) distances is 

39.7%. Thus, there are, on average, 39.7% different or missing bipartitions in the 

source trees compared to the supertree. 

 

2. Phylogeography 

2.1. Data 

2.1.1. Paleocoordinate locations 

We obtained paleocoordinate data (paleolatitude and paleolongitude) for 65 

early tetrapodomorphs from the PBDB using the GPlates software setting 

(https://gws.gplates.org/). For 16 taxa that did not have direct paleocoordinate data in 

the PBDB, we searched for the geologic formations and geographic regions, while 

encapsulating the time range, from which they were discovered and averaged all valid 

tetrapodomorph occurrences from those formations and regions. If not the 

paleolocation of the formation entry given by the PBDB, we used the closest 

geographic location from where a publication stated the formation is located. Although 

not the precise location, a more-general geographic location (e.g. township, county, 
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or country) should suffice for the global scale that we’re conducting analyses. Below 

is a table of the locations we used for each of the 16 taxa. 

 

Taxon Paleolocation source Reference Notes 

Acanthostega PBDB -  

Archeria PBDB -  

Aytonerpeton PBDB -  

Balanerpeton PBDB -  

Baphetes PBDB -  

Barameda PBDB -  

Beelarongia PBDB - Avon River Group -  

Cabonnichthys PBDB - New South Wales Long et al. (2018)  

Caerorhachis PBDB -  

Canowindra PBDB - New South Wales Long et al. (2018)  

Cladarosymblema PBDB - Queensland Long et al. (2018)  

Coloraderpeton PBDB -  

Colosteus PBDB -  

Crassigyrinus PBDB -  

Dendrerpeton PBDB -  

Diploradus PBDB -  

Doragnathus PBDB -  

Ectosteorhachis PBDB -  

Elginerpeton PBDB -  

Elpistostege PBDB -  

Eoherpeton PBDB -  



 126 

Eucritta PBDB -  

Eusthenodon 

PBDB - Celsius Bjerg Group, 

Tula Region, Evieux 

Formation, New South 

Wales, Witpoort Formation 

Clement et al. 

(2009), Long et al. 

(2018) 

Not included: outlier 

rates 

Eusthenopteron PBDB -  

Glyptolepis - - 
Not included: 

outgroup 

Glyptopomus PBDB - Latvia 
Lebedev and 

Lukševičs (2017) 
 

Gogonasus PBDB -  

Gooloogongia PBDB - New South Wales Long et al. (2018)  

Greererpeton PBDB -  

Gyroptychius PBDB - Estonia, Scotland 
Newman et al. 

(2015) 
 

Hongyu PBDB - Zhongning -  

Ichthyostega PBDB -  

Jarvikina Russia Young et al. (2013) 

Not included: specific 

region in Russia 

unknown 

Kenichthys portal.gplates - 

Used present-day 

coordinates from 

PBDB 

Koharalepis 
PBDB - Mount Crean, 

Antarctica 
Long et al. (2018) 

Not included: no 

Antarctica entries in 

PBDB 
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Koilops PBDB - Ballagan Formation -  

Lethiscus PBDB -  

Loxomma PBDB -  

Mandageria PBDB - New South Wales Long et al. (2018)  

Marsdenichthys 
PBDB - Mount Howitt, 

Victoria 
Long et al. (2018)  

Medoevia PBDB - Latvia Lebedev (1995) 
From Belarus, used 

Latvia occurrences 

Megalichthys PBDB -  

Megalocephalus PBDB -  

Metaxygnathus PBDB -  

Occidens PBDB -  

Ossinodus PBDB -  

Ossirarus PBDB - Ballagan Formation -  

Osteolepis PBDB -  

Panderichthys PBDB -  

Pederpes PBDB -  

Perittodus PBDB -  

Pholiderpeton PBDB -  

Platycephalichthys PBDB - Latvia Boisvert et al. (2008)  

Proterogyrinus PBDB -  

Rhizodopsis PBDB -  

Rhizodus PBDB -  

Sauripterus PBDB -  

Screbinodus PBDB - Scotland Andrews (1985)  
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Sigournea PBDB -  

Silvanerpeton PBDB -  

Spodichthys East Greenland Snitting (2008) 

Not included: PBDB 

entries for Greenland 

are outside of age 

range 

Strepsodus 

PBDB (North American 

Strepsodus entries), PBDB - 

Queensland 

Parker et al. (2005) 
Not included: outlier 

rates 

Tiktaalik PBDB -  

Tinirau Eureka County, Nevada Swartz (2012) 

Not included: PBDB 

entries for Eureka 

Country, NV, are 

outside of age range 

Tristichopterus PBDB - Scotland -  

Tulerpeton PBDB -  

Tungsenia portal.gplates - 

Used present-day 

coordinates from 

PBDB 

Ventastega PBDB -  

Whatcheeria PBDB -  

Ymeria PBDB -  

 

Table 5. Taxon Paleolocations. 
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Fig. S1. The phylogenetic tree inferred using Friedman et al.’s (2007) matrix. Node values 

represent percent node posterior probabilities. Note that the hypothesized relationship 

between Megalichthyiformes, Rhizodontida, and Eotetrapodiformes have low support (30 and 

23). We used FigTree to produce this figure. 
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Fig. S2. The phylogenetic tree inferred using Swartz’s (2012) matrix. Node values represent 

posterior probabilities (%). The sister taxon relationship between a group of canowindrids and 

rhizodontids and Eotetrapodiformes has low support (36). 
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Fig. S3. The phylogenetic tree inferred using Clack et al.’s (2017) matrix. Node values 

represent posterior probabilities (%). Note the low support for multiple backbone nodes. 
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Fig. S4. The phylogenetic tree inferred using Pardo et al.’s (2017) matrix. Node values 

represent posterior probabilities (%). Note the low support for some backbone nodes (34, 27, 

and 42). 

 

Ymeria

Baphetes

Ichthyostega

Eucritta

Proterogyrinus

Acanthostega

Whatcheeria

Coloraderpeton

Eusthenopteron

Balanerpeton

Panderichthys

Greererpeton

Lethiscus

Tiktaalik

Crassigyrinus

Ventastega

Pederpes

Archeria

Dendrerpeton

100

34

100

45

70

27

79

100

92

100

70

100

94

96

100

42

84

100



 133 

 

 

Fig. S5. The phylogenetic tree inferred using Zhu et al.’s (2017) matrix. Node values represent 

posterior probabilities (%). Note that the hypothesized relationship between Canowindridae, 

Rhizodontida, Megalichthyiformes, and Tristichopteridae have low support (5, 6, and 26). This 

unconventional topology shows an early divergence of Elpistostegalia from the rest of stem-

tetrapods. 
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Fig. S6. The time-scaled phylogenetic tree inferred using Friedman et al.’s (2007) matrix. 

Node bars represent 95% highest posterior density (HPD) of node age estimates. 
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Fig. S7. The time-scaled phylogenetic tree inferred using Swartz’s (2012) matrix. Node bars 

represent 95% highest posterior density (HPD) of node age estimates. 

 

-450 -425 -400 -375 -350 -325 -300 -275 -250 -225 -200 -175 -150 -125 -100 -75 -50 -25

Tiktaalik

Proterogyrinus

Baphetes

Ventastega

Balanerpeton

Osteolepis

Gyroptychius
Glyptolepis

Cladarosymblema

Barameda

Ectosteorhachis

Platycephalichthys

Tristichopterus

Dendrerpeton

Kenichthys

Elginerpeton

Silvanerpeton

Panderichthys

Beelarongia

Crassigyrinus
Greererpeton

Gogonasus

Eoherpeton

Tinirau
Eusthenodon

Jarvikina

Spodichthys

Pederpes

Eusthenopteron

Whatcheeria

Canowindra
Marsdenichthys

Medoevia

Gooloogongia

Cabonnichthys
Mandageria

Elpistostege

Megalichthys

Glyptopomus

Koharalepis

Ichthyostega
Acanthostega



 136 

 

 

Fig. S8. The time-scaled phylogenetic tree inferred using Clack et al.’s (2017) matrix. Node 

bars represent 95% highest posterior density (HPD) of node age estimates. 
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Fig. S9. The time-scaled phylogenetic tree inferred using Pardo et al.’s (2017) matrix. Node 

bars represent 95% highest posterior density (HPD) of node age estimates. 
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Fig. S10. The time-scaled phylogenetic tree inferred using Zhu et al.’s (2017) matrix. Node 

bars represent 95% highest posterior density (HPD) of node age estimates. 
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Fig. S11. Most of the supertree’s confidence values at internal branches are above 50. 

However, there are some zeroes in regions that are otherwise well-supported in the source 

trees. 
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Fig. S12. A) Scatter-plot of the average dispersal rates over the regional-level formation 

counts for each branch of the phylogeny, using the Western Gondwana route scenario. Points 

colored by the dispersal rate being above or below two standard deviations greater than the 

average rate across the tree. B) Histogram of the bootstrapped U-statistics with values outside 

of the 95% confidence interval grayed out. The median and null expected U-statistics are 

indicated by the red and blue dotted lines, respectively. The null expected U-statistic is based 

on the null hypothesis that 50% of the regional-level formation counts with low dispersal rates 

will rank higher than formation counts with higher rates. 
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Fig. S13. A) Scatter-plot of the average dispersal rates over the regional-level formation 

counts for each branch of the phylogeny, using the direct route scenario. Points colored by 

the dispersal rate being above or below two standard deviations greater than the average rate 

across the tree. B) Histogram of the bootstrapped U-statistics with values outside of the 95% 

confidence interval grayed out. The median and null expected U-statistics are indicated by the 

red and blue dotted lines, respectively. The null expected U-statistic is based on the null 

hypothesis that 50% of the regional-level formation counts with low dispersal rates will rank 

higher than formation counts with higher rates. 
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Chapter 3 

Latitude Does Not Shape Body Size Evolution in  

Mammals or Dinosaurs 

 

Abstract 

Global climate patterns help fundamentally shape the distribution of species and 

ecosystem structure. For example, warm-blooded animals like mammals inhabiting 

high latitudes are thought to be larger (and more extinction prone) than relatives at 

lower latitudes to better conserve body heat, a pattern known as Bergmann’s rule. The 

modern world, however, lacks the comparative data to evaluate such ecological rules 

rigorously. Here, we create the first null model of Bergmann’s rule using taxa that 

radiated under largely temperate Mesozoic climate conditions. We use newly 

described fossils from the Prince Creek Formation of northern Alaska along with data 

from Mesozoic mammaliaforms and dinosaurs to model the coevolution of body size 

and paleolatitude, accounting for fossil record biases and nuanced evolutionary rate 

variation. As predicted, we find no relationship between paleolatitude and body size in 

these two warm-blooded groups. When our model is applied to a large sample of 

extant mammals, we also find that body size evolution is independent of poleward 

dispersal (no evidence for Bergmann’s rule). Our results suggest that latitude will not 

influence ecological interactions with body size, including extinction risk in mammals, 

as global warming advances. Our study provides a general approach for studying 

ecological rules and highlights the fossil record’s power for studying longstanding and 

general principles in ecology. 

 



 143 

Biologists have long sought general rules that describe broad ecological patterns and 

the processes that generate them1. Global temperature variation, for example, plays 

a central role in shaping the genetic and biogeographical distribution of species2,3. 

Bergmann’s rule is the most well-known ecological rule associated with this variation. 

In its original framing, Bergmann’s rule states that endothermic animals from cooler 

climates (higher latitudes) tend to be larger than close relatives from warmer, more 

equatorial climates4–6. Initially proposed for mammals, the rule has also been applied 

to birds7,8 and (arguably inappropriately, given the hypothesised mechanism of 

endothermic heat retention) to ectotherms like amphibians9, reptiles10, fish11, and 

invertebrates12–14.  

A strength of ecological rules is that their hypotheses yield clear predictions6 

that can be tested with phylogenetically-informed statistical models15. Bergmann’s rule 

predicts that endothermic lineages will tend to increase in body mass as they disperse 

to higher latitudes (colder climates). Research testing this prediction has, however, 

been hampered by three problems. First, it is common to find examples of taxa that fit 

Bergmann’s rule by post hoc subsampling larger datasets (cherry-picking)5,7. This is a 

serious problem because any sufficiently large dataset can be subdivided into groups, 

each of which may show a trend. Bergmann’s rule is a “rule” precisely because it is 

hypothesised to apply across mammals, not to a few specific subgroups. If the “rule” 

only applies during post hoc analyses to particular groups, it is simply not an ecological 

rule (though associations in smaller groups may be interesting for other ecological or 

adaptive reasons). Second, ecological rules demand a model that allows the rate of 

evolution to vary across lineages rather than assuming a homogeneous process. This 

is especially important for rules like Bergmann’s because it is exactly this variation 

regarding biogeographical dispersal and body size that are of interest16. Only recently 
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have variable-rate phylogenetic models become available, and they have yet to be 

applied to Bergmann’s rule. Third, and perhaps most importantly, ecological rules 

often lack null models because they are hypothesised to operate broadly (e.g., across 

Mammalia) where controls are difficult and limited by current climate data. The fossil 

record provides repeated “natural experiments” in different climatic conditions across 

geological time that can be used to test general ecological rules. With rare 

exceptions17,18, however, research on Bergmann’s rule has focused on extant animal 

diversity and present-day climatic patterns. Mesozoic dinosaurs and mammals are 

ideal for establishing a null expectation of Bergmann’s rule because they were both 

endothermic19,20 and inhabited more broadly temperate climates than today21,22. 

Moreover, non-avian dinosaurs dispersed globally by the Late Triassic and persisted 

for over 180 million years23, during which they evolved body sizes across orders of 

magnitude from several kilograms to over 50 tonnes. Living alongside non-avian 

dinosaurs, Mesozoic mammals represent a second, phylogenetically distinct clade of 

endotherms that underwent an independent geographic radiation. These two groups 

provide null models that predict a lack of association between latitude and body size 

against which extant mammals can be assessed. 

Here, we develop null models for Bergmann’s rule using data for 444 Mesozoic 

mammaliaforms and dinosaurs. We model the coevolution of body size and 

paleolatitude, accounting for fossil record biases24 and nuanced evolutionary rate 

variation25. We supplement this analysis with high-palaeolatitude dinosaur fossils from 

the Prince Creek Formation of Northern Alaska. After establishing the null expectation 

in Mesozoic dinosaurs and mammals, we apply our approach to 2,566 extant 

mammals where Bergmann’s rule has important implications for how ecosystems are 

structured along latitudinal gradients26. Large-bodied mammals, for example, tend to 
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have smaller population sizes and are more vulnerable to extinction25,26. Factors 

driving both latitudinal dispersal and body size evolution are therefore potentially 

crucial for navigating the current climatically-induced biodiversity crisis27 and 

understanding why some groups evolve large disparities in body size. 

 

RESULTS 

Establishing a null model in the Mesozoic Era 

To establish a null model for Bergmann’s rule, we regressed the femur lengths (a body 

size proxy27, log10 millimeters) of 382 Mesozoic dinosaurs and four dinosauromorphs 

onto paleolatitude (absolute values – distance from the equator). We then compared 

the likelihood fit of several models that distinguished the effect of paleolatitude 

between the northern and southern hemispheres, across the three geologic periods of 

the Mesozoic, and among the major dinosaur clades (Extended Data Table 1; 

Extended Data Figure 1). Our model selection procedure favoured a simple model 

without differences in effect between hemispheres, geologic periods, and clades (BF 

= 27.4 to 116.7). A variable-rates version of this model was favoured over the simple 

uniform-rate model (BF = 119.94). Under this model, we found no support for a 

relationship between body size and paleolatitude among dinosaurs and closely related 

taxa (pMCMC = 0.41, Figure 1a, Extended Data Table 3). Even so, the estimated change 

in body size with paleolatitude was not biologically meaningful (𝛽 = 0.0002 (1.0 

mm/degree), R2 = -0.031). Bergmann’s rule predicts that ancestral increases in body 

size are explained by positive shifts in absolute latitude along phylogenetic lineages. 

To visualise this, we plotted the branch-specific changes in body size over the inferred 

absolute latitudinal change along the same branches (Figure 1b). 
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Figure 1. Mesozoic dinosaur and mammal body size does not covary with paleolatitude. 

a, Femur length (log10 mm) as a function of absolute paleolatitude in 382 extinct dinosaurs 

and dinosauromorphs. Silhouettes in blue, Spinophorosaurus nigerensis by Remes K. et al. 

(CC BY-SA 3.0 license), and green, Pachyrhinosaurus by Andrew A. Farke (CC BY 3.0 

license), were taken from phylopic.org. b, Estimated branch-specific changes in femur length 

(log10 mm) as a function of estimated branch-specific changes in absolute paleolatitude. 

Overlapping density plots indicate the distribution of estimated branch-specific changes for 

each geological period, distinguished by colour. Values listed on the right-hand side indicate 

the estimated amount and direction of absolute paleolatitude and unlogged femur length 

changes along the terminal branch lengths to each species highlighted as silhouettes. 

Silhouettes in panel b (from left to right): Nigersaurus by Jagged Fang Designs (Public 

Domain), Anchisaurus by Tasman Dixon (Public Domain Dedication 1.0 license), 

Cryolophosaurus ellioti by Scott Hartman (CC BY-SA 3.0), and Parksosaurus warreni by 

Caleb M. Brown (CC BY-SA 3.0 license). c, Body mass (log10 g) as a function of absolute 

paleolatitude in Mesozoic mammaliaforms. Silhouettes in blue, Morganucodon watsoni by 

Michael B. H. (CC BY-SA 3.0), and green, Steropodon galmani by Nobu Tamura (vectorised 

by T. Michael Keesey; CC BY 3.0), were obtained from phylopic.org. Outside of colour 

changes, no alterations were made to the silhouettes. Posterior (gray) and average (black) 

regression lines were derived from the simple phylogenetic generalised least squares 

regression models. Axes labels represent the minimum, 25% quantile, median, 75% quantile, 

and maximum values. 

 

Throughout our initial model selection, we used the centroid position of each 

taxon but found consistent results when incorporating a distribution of body sizes and 

paleolatitudes to account for our uncertainty in body size estimates and geographical 

range (𝛽 = 0.0001 (1.0 mm/degree), pMCMC = 0.44, R2 = 5.1E-5). We further replicated 
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our results using a smaller dataset of imputed body masses (n = 289, 𝛽 = 0.003 (1.01 

mm/degree), pMCMC = 0.27, R2 = 0.001) and after accounting for the minimum age of 

taxa (𝛽!= 0.0003 (1.0 mm/degree), pMCMC = 0.38, total R2 = 0.02).  

We repeated these analyses using body mass data (log10 grams) for 62 

Mesozoic mammaliaforms. Again, we found no support for an association between 

body mass and absolute paleolatitude (Figure 1c; Extended Data Tables 2 and 3). Our 

model selection procedure preferred the simplest model with no differences in effect 

between hemispheres (BF = 32.87–43.7). Under the variable-rates model, which was 

favoured over the simplest uniform-rate model (BF = 5.1), the change in body mass 

with paleolatitude was negligible (𝛽 = 0.009 (1.02 g/degree), pMCMC = 0.12, R2 = -

0.0087). We additionally show that branch-specific changes in body mass do not 

correlate with branch-specific changes in paleolatitude (Extended Data Figure 2). 

Together, these results satisfy the null expectation that Bergmann’s rule did not drive 

evolution and interspecific variation in body size during more temperate global 

temperatures. 

Sampling bias is a pervasive challenge for comparative analyses of fossil 

data24. To test whether these biases influenced our regression results, we developed 

a geographic- and time-specific sampling metric and included it as a covariate in our 

regression analyses (Figure 2, see Methods). For dinosaurs, our model selection 

procedure best supported a model that excluded a geographic sampling bias effect 

(BF = 24.4). When we assessed the results of that model, we also found no evidence 

of sampling bias (𝛽!= -0.0003 (1.0 mm/degree), pMCMC = 0.062, R2 = 0.0049). The 

number of vertebrate fossil-bearing formations in each geographic region and geologic 

period does not explain the variation observed in dinosaur body size. Our model 

selection procedure for Mesozoic mammaliaforms also supported a model excluding 
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a geographic sampling bias effect (BF = 25.0). We also found no evidence of sampling 

bias when our geographic sampling metric was included in the model (𝛽!= -0.0003 

(1.0 g/formation), pMCMC = 0.336, R2 = 0.027). Moreover, we would expect the 

preferential preservation of larger-bodied taxa in the fossil record28 to bias our results 

in favour of larger body sizes at the high-latitudes, rather than against it. We thus find 

insufficient evidence that sampling biases explain body size variation across latitude 

(Figure 2). 

 

Figure 2. Gaps in the fossil record do not influence the latitudinal distribution of body 

size. Top three rows show the geographic distribution of Mesozoic dinosaurs and 

dinosauromorphs in the Cretaceous, Jurassic, and Triassic. The bottom row shows the 

geographic distribution of Mesozoic mammaliaformes. Left two columns show the distribution 

of body size ranges (maximum - minimum) and formation counts for each of the nine latitudinal 

regions. Colours of formation count bars match colours in the map. Paleogeographic maps 

show the locations of fossil taxa and were obtained from the R package chronosphere57. 

Scatter plots relate logged body sizes of taxa as a function of formation count. Posterior (grey) 
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and average (black) regression lines were derived from phylogenetic generalised least 

squares regressions. The y-axes represent the minimum, 25% quantile, median, 75% 

quantile, and maximum values. 

 

Bergmann’s rule does not operate across extant mammals 

We next analysed 2,566 extant mammal species (Figure 3), the largest dataset 

analysed for Bergmann’s rule. Like the results with the extinct species, a variable-rates 

model is strongly favoured over a uniform-rate model (BF = 639). We find modest 

support for a relationship between body mass (log10 grams) and absolute mid-range 

latitude (pMCMC = 0.021) but with coefficients that aren’t biologically meangingful (𝛽 = 

0.00096 (1.002 g/degree), R2 = 0.0019; Figure 3a, Extended Data Table 3). To 

account for geographic range, we also created a model that randomly sampled the 

absolute minimum and maximum latitudes for each species with similar results. A 

model allowing the effect of absolute latitude on body mass to differ across the 14 

most-represented mammalian orders and super-orders was supported over a single 

effect of absolute latitude for all mammals (BF = 154.34) and a model that assumed a 

single effect but allowed average body mass to vary (BF = 242.75). Under the separate 

effects model, we found that absolute mid-range latitude cannot explain body mass 

variation among species in at least nine of the 14 tested mammalian orders and super-

orders (pMCMC > 0.05). Of the other five mammalian orders, four showed an 

inconsequential increase in body size with mid-range absolute latitude (𝛽"#$%&'()$*+(= 

0.005 (1.01 g/degree), 𝛽,-%#&.$/#(= 0.008 (1.02 g/degree), 𝛽0%'/+.-%1&#.-(= 0.02 (1.05 

g/degree), and 𝛽2&#%)&1&#.-(= 0.006 (1.01 g/degree), pMCMC < 0.01). Lagomorpha 

(pikas, rabbits, and hares) showed a slight decrease in body size with mid-range 

absolute latitude (𝛽3(4&1&#.-(= -0.009 (-0.97 g/degree), pMCMC < 0.001).  
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Ursidae (bears) provides a good example of what Bergmann’s rule would look 

like if it were found to operate across Mammalia (Figure 3c). We confirmed an 

interspecific relationship between body mass and absolute mid-range latitude among 

ursids (β = 0.0097 (1.02 g/degree), R2 = 0.754,  p-value = 0.0027). The greatest 

positive co-directional changes occur in the common ancestor of Ursus arctos 

(brown bear) and U. maritimus (polar bear) and along the terminal branch to U. 

maritimus. We also see the greatest negative co-directional change along the branch 

to the Southeast Asian Helarctos melayanus (sun bear). These results demonstrate 

the efficacy of our approach and the ability to provide explanations of Bergmann’s 

rule by post hoc selection of lineages. 

 

Figure 3. Bergmann’s rule does not explain body size evolution among extant 

mammals. a, Body mass (log10 g) as a function of absolute mid-range latitude among 2,566 

extant mammals. The black best-fit line is an average of the posterior distribution of regression 
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model estimates. Axes labels represent the minimum, 25% quantile, median, 75% quantile, 

and maximum values. b, Estimated changes in body mass (log10 g) as a function of changes 

in absolute mid-range latitude along branches of the mammal phylogeny. c, Estimated branch-

specific changes in body mass (log10 g) and absolute mid-range latitude among ursids. 

 

DISCUSSION 

The fossil record is a rich but underutilized data source for testing ecological 

principles29 because it provides a wealth of unique climatic and biodiversity data 

unavailable in the modern world. In the Mesozoic, for example, high seasonality and 

arid conditions in the Late Triassic gave way ultimately to more stable, humid 

conditions in the Late Cretaceous22. During the Early to Late Triassic in the Southern 

Hemisphere and Late Triassic to Early Jurassic in the Northern Hemisphere, mid to 

high-latitude seasonal temperature contrasts (STC) reached 40°C. This contrast 

dropped to 20–30°C in the Late Cretaceous at mid to high latitudes in both 

hemispheres22. It was under this Mesozoic climate regime that both mammals and 

dinosaurs diversified and dispersed globally, providing a context to assess general 

ecological rules. Our results show that extinct groups can provide an important null 

model for evaluating such rules. 

Although the Cretaceous was largely more temperate compared to the Present, 

the Late Cretaceous paleoArctic exhibited extended periods of winter darkness and 

freezing winter temperatures. While there are multiple well-known high-latitude 

dinosaur fossil assemblages, the Late Cretaceous Prince Creek Formation of Northern 

Alaska is exceptional because it is the highest-latitude dinosaur-bearing unit currently 

known (~82–85°N paleolatitude) and the only one exhibiting evidence for freezing 

temperatures and occasional snowfall. The Prince Creek Formation records strong 

seasonality with a cold month mean annual temperature of -2.0 ± 3.9°C30. Despite this 
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challenging climatic regime, there is compelling evidence that dinosaurs endured 

these colder periods and were year-round residents of the Arctic30–34. Overwintering 

in these conditions presumably would have required thermophysiological and life 

history adaptations specific to polar conditions. However, there is no evidence that the 

endemic, non-migratory adult dinosaurs found within the Prince Creek Formation 

ecosystem were larger, on average, than related species found in lower latitude 

formations30.  

An unnamed troodontid from the Prince Creek Formation, with teeth 

approximately twice the length and width of Troodon teeth from Montana and southern 

Alberta, is the sole example of a relatively large taxon35. In contrast, all other 

dromaeosaurid teeth are comparable in size to those from more southerly formations. 

Other dinosaurs from the Prince Creek Formation, representing nine families, 

including tyrannosaurid and ceratopsid dinosaurs, are comparable in size to their 

relatives from more southern Late Cretaceous North American localities30. For 

example, while originally described as a dwarf taxon, newly collected fossils of 

Nanuqsaurus hoglundi, the only known tyrannosaurid from the Prince Creek 

Formation, exhibit adult body sizes within the range of contemporaneous southern 

taxa like Albertosaurus sarcophagus30. Additionally, Pachyrhinosaurus perotorum is 

known from multiple partial adult skulls36,37, all smaller than adult skulls of 

Pachyrhinosaurus canadensis from southern Alberta. An unnamed leptoceratopsid 

has teeth comparable in size to Leptoceratops gracilis from the Scollard Formation of 

Alberta30 and an unnamed thescelosaurid has teeth comparable in size to 

Parksosaurus warreni from the Horseshoe Canyon Formation of Alberta30. Together, 

these fossils demonstrate that almost all dinosaurs inhabiting high-latitude climates 

had body sizes similar to relatives at lower latitudes. 
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For extant mammals, Bergmann’s rule is theorised to operate at many 

taxonomic levels, from intraspecific relationships38 to monophyletic groups5. It has 

been cited as an explanation for the evolution of large body size in mammals such as 

the short-faced bear Arctodus simus39, the giant bison Bison priscus40, and the giant 

ground sloth Megalonyx jeffersonii41. But most studies supporting Bergmann’s rule 

generally evaluate the trend among assemblages of species7,42 or the strength and 

direction of intraspecific support across a few species43,44. Among extant mammal 

species, as well as among species within 14 major mammalian orders and super-

orders, we do not find a widespread positive association between body mass and 

absolute latitude. Our species-level analyses are consistent with those from Gohli and 

Voje45, which found that neither latitude nor temperature were major drivers of body 

size evolution at the family level in a smaller dataset of extant mammals. 

Bergmann’s rule provides specific evolutionary predictions. As lineages of 

homeothermic species peripatrically diversify and disperse, the rule predicts selection 

of larger body size in lineages moving towards the poles by factors associated with 

latitude, such as mean annual temperature, seasonality, or precipitation6. We tested 

this evolutionary prediction of Bergmann’s rule using an approach that assessed 

whether body size and latitude evolved at varying speeds along the branches of an 

evolutionary tree. This approach is, arguably6, a direct test for the evolutionary 

signature of Bergmann’s rule, and we find that, across lineages of dinosaurs and 

mammals, ancestral increases in body size are unexplained by poleward shifts in 

latitude. These findings do not preclude climate in general from driving body size 

evolution. For example, Chiarenza et al.46 found that the global distribution of 

sauropods was restricted to lower latitudes (warmer climates), suggesting they may 

have been poikilothermic. However, we found that latitude did not have a different 
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effect on sauropodomorph body size evolution compared with other groups of 

dinosaurs (BF=20.49, Extended Data Table 1). Our results highlight the limitations of 

attributing biogeographical patterns observed in select taxa to a general evolutionary 

process and the value of fossil data for evaluating long-held general principles in 

ecology.  

 

METHODS 

Data 

Bergmann’s rule, in its original text, operates among closely related taxa4–6 and should 

have a phylogenetic structure. We used phylogenetic regression models to test for 

Bergmann’s rule in Mesozoic dinosaurs and mammaliaformes but focused primarily 

on the former given their larger sample size and range in body sizes. To test for a 

relationship between body size and latitude, we collected femur length (log10 

millimeters) and paleogeographic data for 378 dinosaur species and four other 

dinosauromorph archosaurs from Benson and colleagues27 and O’Donovan and 

colleagues23. Femur length was used as a proxy for body size via the conventions set 

in Benson and colleagues27. We supplemented the femur length data with a smaller 

dataset of imputed body masses (n = 289) from Benson and colleagues27 

Paleolatitude was used as a proxy for average environmental temperature under the 

standard assumption that climate becomes cooler as absolute latitude increases. 

O’Donovan and colleagues23 obtained the paleogeographic data from the 

Paleobiology Database (PBDB), which converts the present-day latitudes and 

longitudes of fossil sites into paleolatitude and paleolongitude values using GPlates 

software (https://www.gplates.org/). For any taxa with multiple paleolatitude data 

points, an average was taken. 
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The disproportionate sampling of fossils in different geographic regions has 

been shown to influence comparative analyses of diversification and geographic 

dispersal24,47–50. It is conceivable that the known variation in body size is correlated 

with the number of fossil-bearing rock formations in a particular region and point in 

time. To test for such an effect on our regression results, we followed the approach of 

Gardner and colleagues24 and collected the number of unique vertebrate fossil-

bearing rock formations across multiple geographic zones. Rather than the broad 

geographic regions used by Gardner and colleagues24, we collected formation counts 

across nine 20-degree latitudinal zones (Figure 2; Appendix 2, section 3). We further 

subdivided these geographic-specific formation counts into the three Mesozoic 

geologic periods, the Triassic, Jurassic, and Cretaceous. Based on their average age 

and paleolatitude, we assigned each taxon a geographic- and time-specific formation 

count as an additional independent variable in our regression analyses.  

 

Interspecific regression analyses 

We conducted Bayesian phylogenetic generalised least squares regressions using 

log10-transformed femur length as the dependent variable. Given our interest in testing 

for the effect of temperature gradients, using latitude as a proxy, on body size, both 

northerly and southerly, we used the absolute value of paleolatitude as our primary 

independent variable. We also ran additional models of increasing complexity that 

included dummy-coded indicator variables for hemisphere location (northern or 

southern hemisphere), geologic period (Triassic, Jurassic, or Cretaceous), and the 

clade (Theropoda, Sauropodomorpha, and Ornithischia/non-dinosaur 

Dinosauromorpha) as well as their interactions with absolute paleolatitude. These 

indicator variables let us test for a difference in the effect of paleolatitude on body size 
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across space, time, and taxonomic groups. We also tested if absolute paleolatitude 

explains body size after accounting for the tip ages of species in the phylogeny.  

We used BayesTraits V4 to conduct our interspecific regression analyses  

(http://www.evolution.reading.ac.uk/BayesTraitsV4.0.0/BayesTraitsV4.0.0.html). All 

analyses ran for 1,000,000 iterations with a 250,000-iteration burn-in and sampling 

frequency of 1,000. We estimated log marginal likelihoods using the Stepping Stone 

algorithm50 with 100 stones sampled every 1,000 iterations. In addition, we allowed 

the model to sample a distribution of values for taxa with multiple femur lengths and 

paleolatitude records using the ‘DistData’ command. We also estimated phylogenetic 

signal in the relationship between body size and paleolatitude using Pagel’s lambda. 

A lambda of 1 indicates high phylogenetic signal. Then, we compared the fit of eight 

models of varying complexity by calculating BayesFactors (BF) from their estimated 

log marginal likelihoods, where a BF > 5 is considered good evidence for the model 

with the higher marginal likelihood. We selected the model with the highest log 

marginal likelihood and assessed the statistical significance of each regression 

coefficient by calculating the proportion of slope (𝛽) parameter estimates that crossed 

a value of 0 (pMCMC). A low pMCMC means that a considerable proportion of the slope 

estimates deviates from a flat line. We ensured that our independent variables did not 

carry similar information (i.e., multicollinearity) by calculating variance inflation factors 

(VIFs) with the package car in R (Table S1, Supplementary Materials)51. After model 

selection, we also assessed the assumptions of equal variance and normality while 

accounting for phylogenetic non-independence (Figures S1–3, Supplementary 

Materials)52.  

We repeated the regression analyses with 62 Mesozoic mammaliaformes. We 

obtained body mass data (log10 grams) from Slater and colleagues53, paleolatitude 
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data from the PBDB, and a phylogeny of extinct mammals from Huttenlocker and 

colleagues54. Like our dinosaur analysis, we compared four regression models of 

varying complexity to test for differences in the effect of paleolatitude on body mass 

between hemispheres and geologic periods as well as the effect of geographic 

sampling bias on our regression results. Due to our small sample of Triassic taxa (n = 

2), we did not test for differences in the effect across geologic periods. We assessed 

statistical support using the proportion of parameter estimates that cross a value of 0 

(pMCMC). As with our dinosaur models, we ensured that our independent variables were 

not multicollinear and assessed the regression model assumption of equal variance 

and normality. 

We also tested for a relationship between body mass (log10 grams) and 

absolute mid-range latitude using 2,566 extant mammals from the PanTHERIA 

database55 with additional latitudinal data for Ursus maritimus (polar bear) from the 

southern Beaufort Sea (averaged across three decades56). We used a Bayesian 

independent contrasts regression model in BayesTraits V4. We further tested for a 

difference in the effect of absolute latitude across the 14 most-represented 

mammalian orders in the dataset (n ≥ 10 species) by applying 13 dummy-coded 

indicators, using Rodentia as our baseline group (all indicator variables = 0). We 

removed species from the least-represented orders, including the Dermoptera (n = 1), 

Erinaceomorpha (n = 8), Microbiotheria (n = 1), Monotremata (n = 3), 

Notoryctemorphia (n = 1), Paucituberculata (n = 3), Pholidota (n = 2), and Pilosa (n = 

9). We followed the protocol of Baker et al.15 and combined the following orders into 

the monophyletic super-order Afrotheria: Afrosoricida (n = 39), Hyracoidea (n = 4), 

Macroscelidea (n = 11), Proboscidea (n = 3), and Tubulidentata (n = 1). We compared 

the separate effects model to one where absolute latitude had the same effect on body 
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mass across all mammals and one where the average body mass differed among the 

orders but absolute latitude had the same effect. Our regression analyses ran for 125 

million iterations, sampling every 10,000 iterations, and discarding the first 25 million 

as burn-in. To account for variation in geographic range, we used the ‘DistData’ 

command to randomly sample the absolute minimum and maximum latitudes 

throughout the analyses. For model comparisons, we estimated the log marginal 

likelihoods of each model using a stepping stones algorithm, using 100 stones and 

sampling for 10,000 iterations. We assessed statistical significance using the 

proportion of parameter estimates that crossed a value of 0 (pMCMC). We made sure 

our independent variables were not multicollinear and assessed the regression model 

assumption of equal variance and normality. 
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Appendix 1 

Extended Data and Figures 

 

Extended Data Table 1. Model selection results for the Mesozoic dinosaur analyses. 

Each row includes the regression model description (uniform rate), the number of estimated 

parameters (No. Par.), the estimated log marginal likelihood (LH), and Bayes factor (BF) 

compared to Model 1. The number of parameters also include the y-intercept and Pagel’s 

lambda, the phylogenetic signal parameter. 

Model  No. Par. LH BF 

1. Femur ~ AbsLat 3 14.314 - 

2. Femur ~ AbsLat + Formations 4 2.096 24.437 

3. Femur ~ AbsLat + Formations + Hemisphere 5 0.602 27.426 

4. Femur ~ AbsLat + Formations + Hemisphere + 

AbsLat:Hemisphere 6 -9.249 47.127 

5. Femur ~ AbsLat + Formations + Hemisphere + 

AbsLat:Hemisphere + Jurassic + Cretaceous 8 -17.474 63.576 

6. Femur ~ AbsLat + Formations + Hemisphere + 

AbsLat:Hemisphere + Jurassic + Cretaceous + 

AbsLat:Jurassic + AbsLat:Cretaceous 10 -42.052 112.733 

7. Femur ~ AbsLat + Formations + Hemisphere + 

AbsLat:Hemisphere + Jurassic + Cretaceous + 

AbsLat:Jurassic + AbsLat:Cretaceous + Sauropodomorpha 

+ Theropoda 13 -44.991 118.611 
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8.  Femur ~ AbsLat + Formations + Hemisphere + 

AbsLat:Hemisphere + Jurassic + Cretaceous + 

AbsLat:Jurassic + AbsLat:Cretaceous + Sauropodomorpha 

+ Theropoda + AbsLat:Sauropodomorpha + 

AbsLat:Theropoda 14 -44.032 116.692 

9. Femur ~ AbsLat + Hemisphere 4 7.176 14.276 

10. Femur ~ AbsLat + Hemisphere + AbsLat:Hemisphere 5 -1.521 31.670 

11. Femur ~ AbsLat + Jurassic + Cretaceous 5 3.292 22.044 

12. Femur ~ AbsLat + Jurassic + Cretaceous + 

AbsLat:Jurassic + AbsLat:Cretaceous 7 -15.149 58.927 

13. Femur ~ AbsLat + Sauropodomorpha + Theropoda 5 4.070 20.489 

14. Femur ~ AbsLat + Sauropodomorpha + Theropoda + 

AbsLat:Sauropodomorpha + AbsLat:Theropoda 7 -16.666 61.960 

15. Femur ~ Tip age + AbsLat 4 9.815 8.998 
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Extended Data Table 2. Model selection results for the Mesozoic mammal analyses. 

Each row includes the regression model description (uniform rate), the number of estimated 

parameters (No. Par.), the estimated log marginal likelihood (LH), and Bayes factor (BF) 

compared to Model 1. The number of parameters also include the y-intercept and Pagel’s 

lambda, the phylogenetic signal parameter. 

 

Model  No. Par. LH BF 

1. Body Mass ~ AbsLat 3 -78.331 - 

2. Body Mass ~ AbsLat + Formations 4 -90.825 24.988 

3. Body Mass ~ AbsLat + Formations + Hemisphere 5 -94.767 32.873 

4. Body Mass ~ AbsLat + Formations + Hemisphere + 

AbsLat:Hemisphere 6 -100.200 43.738 
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Extended Data Table 3. Results of the final variable-rates regression models for 

Mesozoic dinosaurs and mammals, and extant mammals. Each row includes the sample 

size of each analysis (N), the average estimated slope for the effect of paleolatitude (β1) and 

associated Bayesian credible interval (95% CI), the proportion of slope estimates that 

crossed a value of 0 (pMCMC), and the average estimated correlation coefficient (R2) and 

associated 95% CI. 

Group  N 
Β1  

(95% CI) 
pMCMC  

R2  

(95% CI) 

Dinosaurs 382 
0.0002 

(-0.001, 0.0017) 0.41 

-0.031 

(-0.0467, -0.0185) 

Mammaliaforms 62 
0.009 

(-0.007, 0.0261) 
0.12 

-0.0087 

(-0.082, 0.04) 

Extant mammals 2566 
0.001 

(3.86E-5, 0.0019) 
0.021 

0.0019 

(-0.0004, 0.0052) 

Extant mammals 

(sample lat min & 

max) 

2566 
0.001 

(-1.3E-5, 0.0024) 
0.026 

0.007 

(-0.0003, 0.025) 
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Extended Data Figure 1. Body size does not covary with paleolatitude across major 

clades of Mesozoic dinosaurs and dinosauromorphs. Femur length (log10 mm) as a 

function of absolute paleolatitude in 382 Mesozoic dinosaurs and other dinosauromorphs 

with colours and symbols showing the distribution of different clades. 
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Extended Data Figure 2. Ancestral shifts in paleolatitude do not explain ancestral 

body size change in Mesozoic mammals. Estimated branch-specific changes in body 

mass (log10 g) as a function of estimated branch-specific changes in absolute paleolatitude.  
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Appendix 2 
 
Supplementary Information 
 
 
1. Regression model assumptions 
 
We ensured that our independent variables did not carry redundant information (i.e., 

multicollinearity) by calculating variance inflation factors (VIFs) with the package car 

in R1. Two or more variables are collinear if they share a VIF > 5.0. After removing the 

interaction variables, we found that multicollinearity was absent in our full models. We 

did not estimate VIFs for our final models because they only included one independent 

variable (absolute paleolatitude). 

 
 
Table S1. Variance inflation factors for all independent variables in the full regression 

models, excluding interactions, for the Mesozoic dinosaurs and mammaliaformes. 

Model AbsLat Format
ions 

Hemis
phere 

Jurassi
c 

Cretac
eous 

Saurop
od 

Therop
od 

Mesozoic dinosaur 
full model,  
no interactions 

1.34 2.08 1.55 3.77 4.62 1.65 1.30 

Mesozoic mammal 
full model,  
no interactions 

1.26 1.30 1.47 - - - - 

 
 
Table S2. Variance inflation factors for all independent variables in the full separate-effects 

regression model, excluding interactions, for the extant mammals. 

Model AbsLa
t 

Afroth
eria 

Artiod
actyla 

Carniv
ora 

Chirop
tera 

Cingul
ata 

Dasyu
romor
phia 

Didelp
himor
phia 

Extant mammal 
full model,  
no interactions 

1.34 1.04 1.11 1.11 1.32 1.01 1.04 1.03 
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- Diprot
odonti

a 

Lago
morph

a 

Peram
elemo
rphia 

Periss
odacty

la 

Primat
es 

Scand
entia 

Sorico
morph

a 

- 

- 1.06 1.05 1.01 1.01 1.19 1.02 1.09  

 
 

After model selection, we also checked the assumptions of equal variance and 

normality while accounting for phylogenetic non-independence2. We minimized the 

violations in regression model assumptions by log-transforming femur length 

(Mesozoic dinosaurs and other dinosauromorphs) and body mass (Mesozoic and 

extant mammals). However, there were still violations of equal variance (Figures S1–

2). The final model with Mesozoic mammaliaformes also deviates from normality 

(Figure S2). We further found convergence in the Markov-chain Monte Carlo chains 

of our final models.  

 
 

 
Figure S1. Assessment of regression model assumptions for the final model with Mesozoic 

dinosaurs and other dinosauromorphs. After log-transforming femur length, we still see 

minor violations in equal variance assumption. 
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Figure S2. Assessment of regression model assumptions for the final model with Mesozoic 

mammaliaformes. After log-transforming body mass, we still see small violations in the equal 

variance and normality assumptions. 

 
 

Figure S3. Assessment of regression model assumptions for the single slope model with 

extant mammals. After log-transforming body mass, we still see a violation in the normality 

assumption. 
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2. Full regression results 

Here, we provide more complete results from the models referenced in the main text, including the final regression models (Table 

S3) and the models including our geographic sampling bias metric (Table S4), and the dinosaur models using imputed body masses 

and distributions of femur length and paleolatitude data (Table S5).  

 
Table S3. Full results for the final models with Mesozoic dinosaurs and mammaliaformes. The extant mammal analysis was conducted using 
phylogenetic independent contrasts, in which the sum of squared error (SSE), total sum of squares (SST), and the standard errors for the alpha 
(y-intercept) parameter were not estimated, and Pagel’s lambda (phylogenetic signal) was assumed to be 1.0.  

Model 
Alpha 

(95%  CI) 
Beta 1 

(95%  CI) pMCMC 
Var 

(95%  CI) 
R^2 

(95%  CI) 
SSE 

(95%  CI) 
SST 

(95%  CI) 
s.e. Alpha 
(95%  CI) 

s.e. Beta-1 
(95%  CI) 

Lambda 
(95%  
CI) 

Mesozoic dinosaur,  
Log femur length ~ 

absolute 
paleolatitude 

2.01 
(1.81, 2.17) 

0.0002 
(-0.002, 
0.0025) 0.42 

0.0019 
(0.0017, 
0.0021) 

5.0E-5 
(3.3E-5, 
7.0E-5) 

0.71 
(0.63, 
0.79) 

0.71 
(0.63, 0.79) 

0.093 
(0.089, 
0.096) 

0.00116 
(0.00115, 
0.00118) 

0.96 
(0.94, 
0.98) 

Mesozoic mammal,  
Log body mass ~ 

absolute 
paleolatitude 

1.38 
(0.56, 2.18) 

0.012 
(-0.004, 
0.027) 

0.075 0.45 
(0.31, 
0.67) 

0.035 
(0.030, 
0.037) 

27.02 
(19.10, 
39.92) 

27.98 
(19.82, 
41.16) 

0.40 
(0.33, 0.48) 

0.0080 
(0.0072, 
0.0088) 

0.51 
(0.10, 
0.93) 

Extant mammal, 
Log body mass ~ 

absolute mid-range 
latitude  

2.844 
(2.842, 
2.845) 

-0.0091 
(-0.0092, -

0.0090) 
<0.001 0.0132 

(0.0132, 
0.0132) 

0.9213 
(0.9212, 
0.9213) - - - 

5.291E-5 
(5.29E-5, 
5.294E-5) 1.0 

Extant ursids, 
Log body mass ~ 

absolute mid-range 
latitude 

4.82 
(4.21, 5.27) 

0.0097 
(0.0043, 
0.015) 

0.0027 0.0017 
(0.0008, 
0.0032) 

0.754 
(0.687, 
0.832) 

0.0092 
(0.0065, 
0.013) 

0.04  
(0.021, 
0.078) 

0.116 
(0.08, 0.16) 

0.0023 
(0.0016, 
0.0033) 

0.57 
(0.06, 
0.99) 
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Table S4. Full results for the models, including the geographic-specific formation count as a covariate. 

Model 

Alpha 
(95%  
CI) 

Beta 1 
(95%  
CI) pMCMC 1 

Beta 2 
(95%  
CI) pMCMC 2 

Var 
(95%  
CI) 

R^2 
(95%  CI) 

SSE 
(95%  
CI) 

SST 
(95%  
CI) 

s.e. 
Alpha 
(95%  
CI) 

s.e. Beta-
1 

(95%  CI) 

s.e. 
Beta-2 

(95%  CI) 

Lambd
a 

(95%  
CI) 

Mesozoic 
dinosaur,  
Log femur 

length ~ 
absolute 
Paleolatitude + 
formation count 

2.03 
(1.83, 
2.21) 

-0.0003 
(-0.0029, 
0.0020) 0.39 

-0.0001 
(-0.0003, 
3.13E-5) 0.062 

0.0018 
(0.0016, 
0.0021) 

0.0049 
(1.08E-7, 
0.0073) 

0.701 
(0.617, 
0.781) 

0.704 
(0.623, 
0.787) 

0.094 
(0.090, 
0.098) 

0.00120 
(0.00119, 
0.00121) 

7.95E-05 
(7.8E-5, 
8.1E-5) 

0.96 
(0.94, 
0.98) 

Mesozoic 
mammal,  
Log body mass 

~ absolute 
paleolatitude + 
formation count 

1.35 
(0.43, 
2.13) 

0.012 
(-0.0037, 

0.028) 0.072 

0.0003 
(-0.001, 
0.002) 0.34 

0.47 
(0.32, 
0.68) 

0.027 
(0.0005, 

0.04) 

27.63 
(19.12, 
40.65) 

28.39 
(19.82, 
41.84) 

0.42 
(0.36, 
0.49) 

0.0081 
(0.0074, 
0.0089) 

6.16E-4 
(5.71E-4, 
6.67E-4) 

0.52 
(0.089, 
0.91) 
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Table S5. Full results for the dinosaur models, including body mass as the dependent variable, when incorporating a femur length estimate for 
the Prince Creek Formation’s Pachyrhinosaurus perotorum as well as a distribution of femur lengths and paleolatitudes for 195 species (PCF 
Pachy-DistData), and when accounting for time (species tip ages). 

Model 
Alpha 
(95%  
CI) 

Beta 1 
(95%  
CI) 

pMCMC 1 
Beta 2 
(95%  
CI) 

pMCMC 2 
Var 
(95%  
CI) 

R^2 
(95%  
CI) 

SSE 
(95%  
CI) 

SST 
(95%  
CI) 

s.e. 
Alpha 
(95%  
CI) 

s.e. 
Beta-1 
(95%  CI) 

s.e. 
Beta-2 
(95%  
CI) 

Lambda 
(95%  
CI) 

Mesozoic dinosaur, 
Log mass ~ abs 

paleolatitude 

2.03 
(1.83, 
2.21) 

-0.0003 
(-

0.0029, 
0.0020) 

0.39 - - 
0.0018 

(0.0016, 
0.0021) 

0.0049 
(1.08E-

7, 
0.0073) 

0.701 
(0.617, 
0.781) 

0.704 
(0.623, 
0.787) 

0.094 
(0.090, 
0.098) 

0.00120 
(0.00119, 
0.00121) 

- 
0.96 

(0.94, 
0.98) 

Dinosaur, PCF 
Pachy-DistData 
Log femur length ~ 

abs paleolatitude 

1.35 
(0.43, 
2.13) 

0.012 
(-

0.0037, 
0.028) 

0.072 - - 
0.47 

(0.32, 
0.68) 

0.027 
(0.0005, 

0.04) 

27.63 
(19.12, 
40.65) 

28.39 
(19.82, 
41.84) 

0.42 
(0.36, 
0.49) 

0.0081 
(0.0074, 
0.0089) 

- 
0.52 

(0.089, 
0.91) 

Mesozoic dinosaur, 
Log mass ~ time + 

abs paleolatitude 

1.35 
(0.43, 
2.13) 

0.012 
(-

0.0037, 
0.028) 

0.072 
0.0003 
(-0.001, 
0.002) 

0.34 
0.47 

(0.32, 
0.68) 

0.027 
(0.0005, 

0.04) 

27.63 
(19.12, 
40.65) 

28.39 
(19.82, 
41.84) 

0.42 
(0.36, 
0.49) 

0.0081 
(0.0074, 
0.0089) 

6.16E-4 
(5.71E-4, 
6.67E-4) 

0.52 
(0.089, 
0.91) 
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3. Latitudinal formation count data 
 
 Formation count 
Zone Cretaceous Jurassic Triassic All 
N_90-70 15 0 1 16 
N_70-50 77 18 18 113 
N_50-30 445 172 79 696 
N_30-10 108 83 134 325 
C_10-10 43 9 26 78 
S_10-30 41 25 6 72 
S_30-50 53 23 40 116 
S_50-70 26 10 11 47 
S_70-90 5 2 9 16 
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Chapter 4 

Dinosaur Diversity and Ecology was Driven by Limb 

Functional Evolution 

 

Abstract 

Animals are defined by their ability to move through environments. They move to find 

food1, new habitats2, and mates3. As such, locomotor adaptations are central to 

species’ success across ecosystems and through evolution. Comparative and 

biomechanical studies have clarified many shared and unique features of functional 

systems4,5. But how selection creates and shapes them from ancestor to descendant 

has remained a mystery. Here, we develop an approach that allows parameters of 

functional equations to evolve at varying rates along branches of an evolutionary tree 

and use it to investigate the evolution of limb retraction in dinosaurs. Many individual 

parameters of these lever systems evolve gradually; however, the levers themselves 

evolve at varying rates, revealing emergent evolutionary patterns. Evolutionary rates 

of limb retraction are correlated with lineage divergence, suggesting that locomotor 

evolution is associated with speciation through dispersal or niche partitioning. 

Accelerated evolutionary rates of hindlimb retraction were also associated with the 

modular uncoupling of the hindlimb and tail that preceded multiple origins of flight in 

maniraptoran dinosaurs6,7. Our results help explain how dinosaurs diversified 

ecologically and dispersed globally and provide a rigorous framework to study how 

components of a functional system interact to produce adaptive change.  
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Locomotion is crucial for species success and survival1. Novel adaptations in 

vertebrate evolution often involved transitions to new forms of movement, including 

terrestriality5 and flight6. Comparative and biomechanical studies have provided 

insights, from major biomechanical innovations4,8–11 to ecomorphometrics and niche 

partitioning in both extant12–14 and extinct15 species. In such studies, comparing 

ecomorphological traits is a common approach for assessing functional diversity and 

evolution. These simple but useful metrics reflect broad relationships with climate12, 

diet16, diversification17, and extinction13. However, how functional systems evolve from 

ancestor to descendant remains poorly understood18,19, and there has been no study 

on the rate at which these systems evolve along lineages. Such a gap hinders our 

ability to adequately test for drivers of functional diversity and evolution, including 

biogeographic dispersal, climate, and environmental change. Recently developed 

methods have enabled researchers to study how the rate of evolution varies through 

time and across the branches of a phylogenetic tree20–24. These models have 

enhanced our understanding of archosaur evolution through the study of body size25–

27, limb proportions28, and morphological characters29. Yet, such characters and traits 

are tangential to studying functional change. Here, we advance the study of functional 

evolution by applying newly developed variable-rate phylogenetic models to functional 

(lever arm) parameters describing limb retraction in dinosaurs, allowing us for the first 

time to quantify the evolution of a functional system along ancestor-descendant 

lineages.   

 

Results and Discussion 

We measured the lever gear ratios of the primary forelimb and hindlimb retractor 

muscles in 106 dinosaur species (see Methods for lever arm descriptions; Extended 
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Data Fig. 1). The gear ratio is a simple but widely used metric for characterizing 

general locomotor function30,31. It equals the ratio of two parameters: the leverout, the 

distance to the loading force (in this case, postural limb length), and leverin, the muscle 

moment arm or distance to the muscle’s line of action. Animals with high gear ratios 

(e.g., the cheetah, Acinonyx jubatus) have relatively longer limbs (longer leverout), 

yielding a greater range of motion. Lower gear ratios are seen in animals with larger 

muscle attachments (longer leverin; e.g., the African elephant, Loxodonta africana), 

which increase torque in limb movement. Most archosaurs, including dinosaurs, 

retracted their hindlimbs with a large muscle (the m. caudofemoralis longus) that 

connects the hindlimb with the tail. Birds and many non-avian maniraptoran dinosaurs 

have reduced their tail-driven hindlimb retractors, emphasizing more knee-driven 

movements6,32,33. To uncover the macroevolutionary effects of this transition in 

maniraptorans, we calculated the gear ratios of the m. iliotibialis lateralis, a muscle 

that retracts the hindlimb and extend the knee (see Methods for further description).  

We explored gear ratio variation among dinosaurs through Bayesian 

phylogenetic generalized least squares (PGLS) regression analyses34 on the gear 

ratio components (log10 leverout and leverin) and estimated Bayes factors (BF) to 

compare the likelihood fit of each model (BF > 2.0 is good evidence for the model with 

the higher marginal likelihood). The gear ratio components are strongly correlated in 

the forelimbs and hindlimbs (R2 = 0.87 and 0.81, pMCMC < 0. 0001; Fig. 1) and show 

moderate to high phylogenetic signal (mean 𝜆^ = 0.93 and 0.73; BF = 31.05 and 

24.44). Body size is associated with the leverout and leverin through limb length. To 

remove its confounding effects, we tested for gear ratio differences among dinosaur 

clades using phylogenetic analysis of covariance (ANCOVA). Our final forelimb model 

shows pennaraptoran dinosaurs (oviraptorosaurs and paravians) with lower-than-
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average gear ratios (BF = 48.31). Pennaraptorans retracted their shoulders with 

greater torque, on average, given their body size (Fig. 1A, Extended Data Fig. 2), 

governed by their more distally inserting shoulder muscles35. The hindlimb gear ratios 

do not scale differently among dinosaur clades (BF = 37.38), indicating that body size 

is the dominant factor in explaining variation in hindlimb retraction (Fig. 1B, Extended 

Data Fig. 3).  

 

 

Fig. 1. Gear ratio variation in dinosaurs. Scatter plots of log10 leverout vs. log10 leverin for the 

A) forelimb and B) hindlimb retractor muscles. Silhouette and data point colours correspond 

to clades of dinosaurs. Grey regression lines are a random sample of 100 estimates from the 

variable-rates regression analysis. The mean estimated regression line is shown in black. The 

following silhouettes were collected from phylopic.org: Apatosaurus louisae (Scott Hartman, 

CC BY-NC-SA 3.0), Archaeopteryx lithographica (Scott Hartman, CCO 1.0), Deinonychus 

antirrhopus and Tyrannosaurus rex (Emily Willoughby, CC BY-SA 3.0), Luoyanggia 

liudianensis (Brad McFeeters, CCO 1.0), Psittacosaurus mongoliensis (Skye McDavid, CC BY 

3.0), and Tenontosaurus tilletti and Triceratops prorsus (Matt Dempsey, CC BY 3.0). 

 

Next, we estimated rates of evolution in the forelimb and hindlimb gear ratio 

components using a variable-rates phylogenetic model21. The model allows the 
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leverout and leverin parameters to evolve at varying rates along phylogenetic 

branches18,36,37. It uses a Bayesian reversible jump Markov-chain Monte Carlo 

algorithm to propose sets of rate scaling parameters (varying 0 < r < ∞) that either 

compress (r < 1.0) or stretch (r > 1.0) phylogenetic branches to reflect the rate of 

evolution. There are two types of rate scalars: one that scales individual branches, 

reflecting a mean shift in trait evolution, and a second that scales the branches of an 

entire clade, reflecting a change in trait variance18. We first modelled the gear ratio 

parameters individually to assess the underlying evolutionary processes driving 

variation in limb morphology. We found no evidence of rate variation in two of the four 

components comprising the forelimb and hindlimb gear ratios, including the forelimb 

leverout (BF < 1.77) and hindlimb leverout (BF = 1.13), both representing postural limb 

length. The hindlimb leverin, representing the muscle moment arm of the hindlimb 

retractor, shows marginal support for evolutionary rate variation (BF = 2.77), stretching 

three branches towards higher average gear ratios in the ancestors of alvarezsaurids, 

paravians, and Microraptor (median r = 1.23x, 1.17x, and 1.06x background rate, 

respectively; posterior probability < 70%). However, most branches remained 

unscaled (median r = 1 in 129/132 branches), showing mostly clock-like change in the 

evolution of the hindlimb retractor muscle. 
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Fig. 2. Evolution of forelimb function. Rates of gear ratio evolution for the primary retractor 

muscles of the forelimbs mapped onto a dinosaur time-scaled phylogeny. Warmer colours 

indicate increased rates of evolution relative to the background rate of the tree. Cooler colours 

indicate reduced rates of evolution. Numbers indicate the median estimated rate shift among 

the coloured branches, along with the associated percent posterior probability. Silhouette 

colours correspond to data points in the scatter plot showing the correlation between the 

forelimb leverout and leverin. The coral-coloured silhouette represents ceratopsid species, blue 

represents non-maniraptoran theropods, and pink represents pennaraptoran theropods. The 

Microraptor zhaoianus (Emily Willoughby, CC BY-SA 3.0) silhouette obtained from 

phylopic.org, along with those in Fig. 1. 

 

Yet, these analyses on the gear ratio components do not describe the evolution 

of limb retraction as a functional system. To do so, we apply a newly developed 

Forelimb Gear Ratio
Evolutionary Rate

>5x background rate

<1x

Log10 Leverin
-0.31 0.24 0.62 1.04 1.46

0.50

1.07

1.59

1.95

2.42

Lo
g 1

0
Le
ve
r o

ut

18.2x (>99%)
Oviraptorosauria

0.64x (>77%)
Ceratopsidae

50.4x (>99%)
Paraves

1.47x (>50%)
Tetanurae

Pennaraptora

0.50

1.07

1.59

1.95

2.42

−0.31 0.24 0.62 1.04 1.46

Lin (log10 cm)

Lo
ut

 (l
og

10
 c

m
)

Shifts

Ceratopsidae

None

Pennaraptora

Theropoda

250 Ma 66 Ma



 185 

variable-rates regression model18,38, which proposes shifts in evolutionary rate by 

stretching and compressing branches based on trait variation within a regression 

framework. This approach allows us to both measure gear ratio evolution along 

phylogenetic branches and assess how its components interact to produce such 

change. While most gear ratio components evolved gradually, we find that the forelimb 

and hindlimb gear ratios themselves evolved at varying rates (FL: BF = 29.1; HL: BF 

= 3.0; Figs. 2–3). This reveals an emergent process by which the underlying 

morphological components interact to produce substantial changes in the gear ratios; 

the evolution of a complex functional system is more than the sum of its parts39. 

Moreover, when comparing the overall evolutionary rates (background 𝜎"), we find 

that the leverout and leverin (standardized with each other and the gear ratio) evolve 

faster on average than the gear ratios themselves (mean difference in background 𝜎" 

= 1.60 and 1.97 for forelimb leverout and leverin, and 1.58 and 2.33 for hindlimb leverout 

and leverin; ANOVA: p-value < 0.0001; Extended Data Fig. 4). Given the components’ 

relationship with body size, this suggests that body size and associated morphology 

evolves faster than the functional systems driving limb retraction.   

Shifts in the rate of evolution can follow bouts of adaptive change18. The 

ancestors of oviraptorosaurs and paravians exhibited large increases in the 

evolutionary rate towards lower average forelimb gear ratios (median r = 18.2x and 

50.4x background rate over periods of 57.9 and 7.33 million years, respectively, pp > 

99%; Fig. 2), consistent with our ANCOVA results. Increased mechanical leverage in 

shoulder retraction would have been beneficial in the evolution of flight among 

paravians, particularly during wing upstroke40, as well as for prey apprehension among 

theropods generally41. These rate shifts also precede several physiological and 

neurological changes seen in pennaraptorans, including symmetrical vaned wing and 
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tail feathers, an increase in basal metabolic rate, and expansion of the cerebrum42. 

We also see a modest ~50% increase in the evolutionary rate of the forelimb gear 

ratios among tetanuran theropods (median r = 1.47x background rate, pp >50%). This 

suggests that theropods, as bipedal animals, had fewer constraints in their forelimbs 

to explore a wider ecomorphospace as they diversified (e.g., predation and flight). 

Although, the support for rate variation vanishes when we include a dummy-coded 

indicator variable for pennaraptorans into the variable-rates regression model (BF = 

0.98), which suggests that they are the predominant source of rate variation.   

The high rates of forelimb gear ratio evolution among pennaraptorans coincide 

with the accelerated evolutionary rates in the hindlimb gear ratios among 

maniraptorans (Fig. 3). We see a stepwise increase in the rate of hindlimb retractor 

evolution along the ancestral line to birds – first, an estimated 85% increase in the 

evolutionary rates among ornithomimosaurs and their shared ancestral branches with 

maniraptorans (median r = 1.85x background rate, pp > 70%) and then a more than 

200% rate increase among maniraptorans (median r = 3.3x background rate, pp > 

90%). We also detect additional large rate increases among oviraptorids (median r = 

5.5x background rate, pp > 95%) and two paravians, Microraptor gui and 

Archaeopteryx lithographica (median r = 5.5x background rate, pp > 95%). The 

accelerated evolutionary rates of the hindlimb retractor occurred as maniraptorans 

explored an expanded ecomorphospace (e.g., gliding/flight). This began with the 

release of the hindlimb musculature from the tail, creating two new locomotor 

modules6,33. The modularity of the hindlimb and tail helped repurpose the tail 

musculature for flight6 and explains the independent evolution of gliding or flight 

potential in several paravian species7. 
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Fig. 3. Evolution of hindlimb function. Rates of gear ratio evolution for the primary retractor 

muscles of the hindlimbs mapped onto a dinosaur phylogeny. Warmer colours indicate 

increased rates of evolution relative to the background rate of the tree. We did not detect 

reductions in the rate of evolution. Numbers indicate the median estimated rate shift among 

the coloured branches, along with the associated percent posterior probability. Pink 

silhouettes represent maniraptoran species and correspond to data points in the scatter plot 

showing the correlation between the hindlimb leverout and leverin. 

 

The horned ceratopsid dinosaurs exhibited a 64% reduction in the rate of 

forelimb retractor evolution (median r = 0.64x background rate, pp > 77%). This is 

consistent with increased constraints on forelimb locomotor evolution due to a 

transition to quadrupedalism and enlarging the head with more elaborate frills and 

horns43. The forelimb leverin (muscle moment arm of the shoulder) is the only gear 
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ratio component that shows substantial rate variation across the tree (BF = 2.64; 

Extended Data Fig. 5). In particular, we see a strong reduction in the evolutionary rate 

among iguanodontian ornithopods (median 0.12x background rate, pp > 70%). The 

evolution of the shoulder retractor slowed dramatically in concert with increased body 

sizes and facultative quadrupedalism in derived ornithopods, consistent with an overall 

conservation of postcranial anatomy44. Interestingly, the sauropodomorph dinosaurs, 

boasting the largest body sizes of any terrestrial species, showed no evidence for 

changes in the evolutionary rate of their forelimb and hindlimb gear ratios. Our 

sauropodomorph dataset, although limited in sample size, spans their record from the 

Early Jurassic bipedal or facultatively quadrupedal ‘prosauropods’ (e.g., 

Massospondylus) to the Late Cretaceous gigantic titanosaurs (e.g., Alamosaurus). 

This suggests that the functional mechanics driving limb retraction evolved in step with 

gigantism and quadrupedalism in sauropodomorphs. This differs from the reduced 

rates of forelimb gear ratio and shoulder retractor evolution seen in ceratopsids and 

derived ornithopods and highlights multiple paths toward adapting to large-bodied 

herbivorous ecologies.  

We then used the results from our variable-rates regression analyses as data 

to test for predictors of the rate of limb retractor evolution. For each species, we 

summed the median-estimated rates along each branch from the root to each tip (path 

rate) as a measure of the total amount of functional gear ratio evolution. Through a 

phylogenetic t-test, we found that quadrupedal species overall did not evolve slower 

on average (pMCMC = 0.18 and 0.39 for forelimbs and hindlimbs). In both limbs, rates 

of evolution were highly correlated with the number of nodes (or lineage divergence 

events) along each phylogenetic path (pMCMC < 0.0001). After accounting for 

variation in the amount of time to each species from the root (time root-to-tip path 
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length), we found that over 70% and 92% of the rate variation in the forelimb and 

hindlimb gear ratios, respectively, are attributable to speciation (R2 = 0.70 and 0.92, 

pMCMC < 0.0001). This suggests that locomotion plays a role in generating species 

through biogeographic dispersal or niche partitioning. For example, decoupling of the 

hindlimb and tail locomotor modules likely influenced the foot-driven prey 

apprehension ecology characteristic of maniraptoran dinosaurs during their 

diversification.  

 

Fig. 4. Speciation drives rate of gear ratio evolution. Scatter plots relating the average rate 

of A) forelimb and B) hindlimb gear ratio evolution (root-to-tip sum of the median estimated 

rates) to net speciation (node counts along path lengths). Darker red and larger points 

represent species with higher average rates and higher net speciation, respectively. Scatter 

plots relating the root-to-tip sum of the median estimated evolutionary rates (r) of the C) 

forelimb and D) hindlimb gear ratio to net speciation. Data point colours correspond to 
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dinosaur clades. Grey regression lines are a random sample of 100 estimates from the 

Bayesian PGLS regression analysis with Pagel’s 𝜆 estimated. The mean estimated regression 

lines are shown in black. 

 

Last, we find evidence that evolutionary rates in the forelimb and hindlimb gear 

ratios were coupled. We reran the variable-rates regression model using a subset of 

taxa with gear ratio data for both limbs (N = 48 species; BF = 19.28 and 3.36, favouring 

variable-rates model for forelimbs and hindlimbs) and found that the median estimated 

branch-wise rates were correlated between the forelimbs and hindlimbs (ordinary least 

squares regression, adjusted R2 = 0.47, p-value < 0.0001); the rate of hindlimb gear 

ratio evolution explains about 47% of the rate of forelimb gear ratio evolution. This 

increases substantially to 88% after removing the ancestral branches to oviraptorids 

and paravians (adjusted R2 = 0.88, p-value < 0.0001; Extended Data Fig. 6), which 

saw large shifts in forelimb gear ratio evolution (Fig. 2). However, the reduced dataset 

only recovered evolutionary rate variation among maniraptorans (median r = 2.09x 

and 2.52x for forelimb and hindlimb). All other branches remained unscaled (median r 

= 1.0), limiting our scope of inference to Maniraptora. Evolutionary coupling in other 

clades is ambiguous. Regardless, these results demonstrate that functional changes 

in forelimb and hindlimb retraction were coupled throughout the evolution of a major 

dinosaur group. As obligate bipeds, this suggests there were developmental 

constraints on locomotor limb evolution.  

Our study highlights the complex ways functional systems evolve. Past 

comparative ecomorphological and biomechanical studies have revealed many 

insights into the diversification and evolution of extant1,2,12–14,45,46 and extinct4,5,8–

10,15,32,47–49 species. However, through our system-centred approach paired with 

variable-rates phylogenetic modelling, we shed new light on the evolution of functional 
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systems. For example, past studies argued for gradual locomotor evolution and 

accumulation of characteristics along the avian-stem lineage4,29,32. Evidence for 

gradual change in the individual gear ratio components (leverout and leverin) are 

consistent with these findings. Yet, the gear ratios themselves show variable rates of 

evolution, revealing a complex process in which bouts of functional evolution emerge 

from gradual change in underlying morphology. Our variable-rates analyses detected 

instances of both increased and decreased rates of limb retractor evolution, coinciding 

with transitions to novel modes of locomotion, such as flight in paravians and large-

bodied quadrupedalism in ceratopsids. Last, we find that the rates at which forelimb 

and hindlimb retraction evolve were coupled in maniraptoran dinosaurs and highly 

associated with lineage divergence, suggesting potential developmental constraints 

on limb retraction and highlighting the role of locomotion in speciation.  
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Methods 

No statistical methods were used to predetermine sample size. Additional details on 

data collection and statistical analyses can be found in Appendix 2 – Supplementary 

Materials. An abbreviated data table can be found in Appendix 3. 

 

Phylogenies. We acquired a set of 100 time-scaled meta-trees consisting of 961 taxa 

from Sakamoto et al.50, originally sourced from a recent study by Lloyd et al.51. These 

trees were trimmed down to the taxa in our dataset (forelimb, N = 85; hindlimb, N = 

67). The following taxa in our dataset were not originally included in the meta-trees 

but were added based on the age and phylogenetic position of close relatives: 

Ambopteryx longibrachium52 (replaced Epidendrosaurus ningchengensis), Anzu wyliei 

(replaced Elmisaurus rarus), Camarasaurus lentus (replaced Camarasaurus grandis), 

Galeamopus pabsti (replaced Barosaurus lentus), Meraxes gigas (replaced 

Carcharodontosaurus saharicus), Nemegtonykus citus (replaced Shuvuuia deserti), 

Oksoko avarsan (replaced Banji long), Serikornis sungei (replaced Eosinopteryx 

brevipenna), Stegouros elengassen (replaced Antarctopelta oliveroi), Xingxiulong 

chengi (replaced Jingshanosaurus xinwaensis), Zhenyuanlong suni53 (replaced 

Tianyuraptor ostromi), and Zhongjianosaurus yangi (replaced Graciliraptor 
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lujiatunensis). To account for our uncertainty in the node ages and branch lengths, we 

sampled across the entire set of 100 meta-trees in the analyses described below. 

 

Limb lever arm data. To measure locomotor limb function, we estimated the lever 

gear ratios of the primary humeral and femoral retractor muscles. The gear ratio is 

equal to the distance between the point of axial movement (fulcrum, e.g., shoulder 

joint) and the loading point (e.g., manus) divided by the perpendicular distance from 

the fulcrum to the line of muscle action. The distance in the numerator is called the 

leverout, or load arm, which in our case is the effective postural limb length. The 

denominator is called the leverin, or muscle moment arm. Gear ratios are a simple but 

useful metric for characterizing basic locomotor function30,31. Although we do not 

expect gear ratios for individual muscles to fully characterize locomotor performance, 

the simplicity of the metric enables us to quantify the evolution of a single functional 

system across numerous species. Future studies can extend our analytical approach 

to jointly sample several muscle groups, paired with biomechanical and physical 

models, to characterize locomotor function in more detail.  

The primary femoral retractor of archosaurs is the m. caudofemoralis longus 

(CFL). This muscle originates along the ventral aspect of the caudal transverse 

processes and the lateral surfaces of the caudal centra and extends ventrally to insert 

onto the 4th trochanter of the femur54–57. We took the following skeletal measurements 

to calculate the muscle moment arm for the CFL: 1) the length from the femoral head 

to the 4th trochanter on the femur and 2) the length from the acetabulum to the last 

preserved transverse process-bearing caudal vertebra. If specimens were fully 

articulated, we took the straight-line distance from the acetabulum to the last 

preserved transverse process. If specimens were disarticulated, we measured the 
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distance from the acetabulum to the posterior-most extent of the ilium, and then added 

the lengths of each individual vertebral centrum to the last caudal vertebra bearing a 

transverse process. For species where a 4th trochanter measurement was not 

available or inaccessible, we predicted the size of the CFL for species based on a its 

correlation with femur length, accounting for phylogenetic relationships (see details in 

‘Retrodicting muscle attachments’ section below). Non-avian dinosaurs were 

digitigrade, making the end of the metatarsus the loading point. Therefore, we took 

the following skeletal measurements to calculating the leverout: 1) the length of femur 

from the femoral head to its distal articular condyles; 2) the length of the tibia from 

proximal to distal articular ends; 3) the length of astragalus/calcaneum, when separate 

from the tibia, but incorporated into tibia length when fused to the tibia in theropods; 

and 4) the length of metatarsal III when preserved, or replaced by the next longest 

preserved metatarsal when metatarsal III was not preserved (Extended Data Fig. 1). 

Each of these elements were measured individually regardless of articulation. We 

assumed a mid-stance pose for our joint angles to calculate the moment arms from 

the limb bone measurements. For the mid-stance pose of all dinosaur species (except 

sauropodomorphs), we used the following joint angles based on the ‘extreme pose 1’ 

for Tyrannosaurus rex58, which was the most flexed pose modelled by Gatesy et al.—

hip angle: 50o from horizontal; knee angle: 108o; ankle angle: 132o. This flexed pose 

also falls within the range of mid-stance poses for the Ostrich (Struthio)58. For derived 

sauropodomorph species, we assumed a more graviportal pose—hip angle: 85o from 

horizontal; knee angle: 175o; ankle angle: 175o.  

Birds and their close non-avian maniraptoran relatives underwent an important 

biomechanical shift that functionally decoupled the hindlimb and tail54. This change in 

musculature also accompanied a shift toward knee-driven locomotion, in which limb 
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displacement is mostly accomplished by movement about the knee32,54. To model the 

macroevolutionary consequences of this functional transition, we measured the leverin 

of the m. iliotibialis lateralis pars postacetabularis (ITL), which serves as both a hip 

and knee extensor in birds59,60. The ITL originates on the dorsal and posterior margins 

of the ilium and inserts on the proximolateral surface of the femur and/or the tibial 

cnemial crest. In extinct birds and maniraptoriforms without obvious CFL scars on the 

femur, we assumed that locomotion was dominated by knee extension and used the 

ITL leverin. Please refer to the abbreviated data table in Appendix 3 or the full data 

table for notes on which species were assigned a CFL vs. ITL leverin.   

The m. deltoideus scapularis (DS) is one of the primary humeral retractor 

muscles in archosaurs35,61,41. In birds and crocodilians, the DS originates along the 

posterior lateral face of the scapula and inserts on the dorsolateral aspect of the 

deltopectoral crest of the humerus. We measured the following elements to calculate 

the leverin of the forelimb: 1) the entire length of the scapula (and then take three-

quarters this length as the midpoint of the origin); and 2) the length from the head of 

the humerus to the end of the deltopectoral crest (Extended Data Fig. 1). The insertion 

of the DS is known to extend distally along the line to birds from a more proximal 

position, in a depression closer to the humeral head, as seen in extant archosaurs, to 

the entire margin of the deltopectoral crest. We, therefore, approximated the DS 

insertion site using a percentage of the deltopectoral crest length, measured from the 

head of the humerus. ImageJ measurements of humeri found that the DS insertion 

site from the head of the humerus was about 40% of the deltopectoral crest length in 

ornithischians61, 40% in sauropodomorphs62, and 30% in non-paravian theropods41,63 

(except Majungasaurus, which showed about 50%64). Muscle reconstructions of 

dromaeosaurs, troodontids, and oviraptorids showed a broader DS insertion on the 
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dorsal surface of the deltopectoral crest, as in modern birds (see Figure 11C in 35). 

Therefore, for paravian dinosaurs, we approximated the DS insertion site by taking the 

entire length of the deltopectoral crest from the head of the humerus.  

For the DS leverout, we measured the following: 1) the length of humerus from 

the head to its distal articular condyles; 2) the length of the radius from proximal to 

distal articular ends; and 3) the length of metacarpal III when preserved or replaced 

by the next longest preserved metacarpal when metacarpal III was not preserved. As 

with the hindlimb analyses, we calculated the gear ratios assuming a mid-stance pose. 

We used the following recommended joint angles for the average theropod without a 

semilunate carpal—shoulder angle: 54o; elbow angle: 106o; wrist angle: 158o65. For 

ornithischians and basal sauropodomorphs, we used a shoulder angle of 88o and the 

same elbow and wrist angles as theropods. For graviportal species, we used 88o 

(shoulder), 175o (elbow), and 175o (wrist). A semilunate carpal, in which the manus is 

oriented posteriorly, is a distinctive feature of pennaraptoran theropods. We, therefore, 

used the following angles for pennaraptoran species—shoulder angle: 54o from 

horizontal; elbow angle: 46o; wrist angle: 99o65.  

We collected the data detailed above directly from museum specimens and 

cast mounts based on real fossil material and supplemented these data with 

measurements from the literature and photographs whenever scalebars were 

provided. Please refer to our full data table for extensive notes on specimen 

measurements. 

 

Retrodicting muscle attachments. To calculate the CFL and DS leverin, we 

respectively require the lengths from the femoral head to 4th trochanter and humeral 

head to the deltopectoral crest. However, we lack these data from many species in 
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our dataset either due to the absence of measurements in the literature or a genuine 

osteological absence. To estimate the missing measurements, we conducted a 

retrodiction (imputation) analysis66,67 using a phylogenetic generalized least-squares 

(PGLS) regression model in BayesTraits V4 

(http://www.evolution.reading.ac.uk/BayesTraitsV4.0.0/BayesTraitsV4.0.0.html). The 

retrodiction protocol involves an initial regression analysis that uses a Markov-chain 

Monte Carlo (MCMC) algorithm to estimate model parameters while ignoring the 

species with missing data. That model is saved and then used to estimate the missing 

values of those species based on the phylogeny and statistical relationship between 

two traits. We further tested if there was phylogenetic signal by comparing a model 

that estimates Pagel’s 𝜆 with one that assumes negligible phylogenetic signal (𝜆 = 

0.000001). All regression analyses ran for 12,500,000 iterations, sampling every 1,000 

iterations and discarding the first 25,000,000 as burn-in. We assessed the 

convergence of the MCMC chains using trace plots of the estimated model parameters 

in the program Tracer v1.7.268. For model comparisons, we estimated the log marginal 

likelihoods with a stepping-stones algorithm69, using 100 stones and sampling every 

10,000 iterations, and calculated Bayes factors (BF). A BF > 2 indicates positive 

support for the model with the higher log marginal likelihood.  

We further regressed the length of the deltopectoral crest on humerus length 

(log10 centimetres) using a dataset of 75 species. The initial regression analysis found 

compelling support for including Pagel’s 𝜆 (phylogenetic signal) in the model (mean 𝜆# 

= 0.92, BF = 25.35). Humerus length strongly explains deltopectoral crest length in 

dinosaurs (mean R2 = 0.92, pMCMC < 0.0001) (Extended Data Fig. 7A). We used this 

model to retrodict the deltopectoral lengths of 12 dinosaur species. To predict the 

distance to the 4th trochanter, we regressed 4th trochanter distance on femur length 
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(log10 centimetres) using an expanded dataset of 117 species from the literature70. 

The initial analysis strongly supports the inclusion of 𝜆 in the model (mean 𝜆# = 0.88, 

BF = 72.39) and a correlation between 4th trochanter distance and femur length (mean 

R2 = 0.96, pMCMC < 0.0001) (Extended Data Fig. 7B). We used this model to retrodict 

the 4th trochanter distances of 17 dinosaurs.  

To account for the variation in our retrodicted estimates, we sampled the 

distribution of gear ratio values using a random sample of 100 estimates of the 

retrodicted deltopectoral crest lengths and 4th trochanter distances throughout the 

analyses detailed below. We log10-transformmed the data prior to analysis and 

assessed regression model assumptions of normality and equal variance using the 

phylogenetically corrected residuals. 

 

Phylogenetic multiple regression. To characterize the evolution of the forelimb and 

hindlimb gear ratio, we first conducted PGLS regressions on its two components, 

leverout and leverin, in BayesTraits V4. We tested if the gear ratio varied among 

dinosaur clades by including ‘dummy-coded’ indicator variables (binary: 0 or 1) as 

additional explanatory variables. We first tested if gear ratios varied among the three 

major dinosaur clades (Ornithischia, Sauropodomorpha, Theropoda) using 

Ornithischia as a baseline (all indicator variables = 0). We also included interaction 

variables to test if the gear ratio components scaled more steeply or gently among 

those clades, amounting to a phylogenetic ANCOVA. We further tested if the gear ratio 

components scaled differently in each clade individually, in more specific theropod 

subclades, Maniraptora and Avialae, and between obligate bipeds and facultative and 

obligate quadrupeds. In addition, we tested if there was phylogenetic signal in the 

variation of the gear ratio components by comparing a model that estimates Pagel’s 𝜆 
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with one that assumes negligible phylogenetic signal (𝜆 = 0.000001). We used Bayes 

factors to compare the log marginal likelihoods of the competing models. Lastly, we 

reran the best-fitting model using a distribution of gear ratio estimates based on a 

random sample of 100 estimates of the retrodicted deltopectoral crest lengths and 4th 

trochanter distances. We log10-transformmed the data prior to analysis and assessed 

regression model assumptions. We used the same MCMC settings as the retrodiction 

analyses and assessed the convergence of the MCMC chains using trace plots in the 

program Tracer68. 

 

Modelling functional evolution. We modelled the evolution of the two gear ratio 

components using a recently developed phylogenetic independent contrasts 

regression model that allows for variable rates of evolution18,71. This approach uses a 

Bayesian reversible jump MCMC algorithm72 to propose shifts in the rate of evolution 

across a phylogeny under a regression model framework18. The rates of evolution are 

inferred based on phylogenetic shifts in the residual variance. The model can propose 

two types of rate scalars: 1) branch-specific scalars, through which the rate of 

evolution shifts along a single branch on the tree, representing a mean or intercept 

shift; 2) clade-wide scalars, through which the rate of evolution shifts across an entire 

clade, representing a shift in trait variance. The method produces a posterior sample 

of trees in which branch lengths are scaled to represent the amount of trait evolution. 

Rate shifts relative to the background rate can be identified in reference to the original 

time-calibrated tree without prior specification as to their location or magnitude within 

the phylogeny. The reversible jump MCMC, additionally, reduces the number of model 

parameters to those only supported by the data. Additionally, we estimated the rates 

of evolution in the two components of the gear ratio (leverout and leverin) individually to 
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identify how the underlying parameters of the gear ratio evolve at different rates 

throughout the tree. We ran an additional set of variable-rates analyses on the gear 

ratio components where they were standardized to each other and between the 

forelimbs and hindlimbs. This ensured that all parameters were on the same scale, 

allowing us to compare their overall background rates (background 𝜎"; Extended Data 

Fig. 4). As with the multiple regression analyses, we log10-transformed the data prior 

to analysis and conducted the analyses while sampling the entire set of 100 meta-

trees and distribution of gear ratio estimates resulting from the retrodiction analyses. 

To further assess the effect of speciation on gear ratio evolution, we also ran 

regression analyses on the root-to-tip sum of the median estimated rate scalars from 

the variable-rates regression analyes. We used dummy-coded indicator variables to 

test if the total rates of gear ratio evolution differed between gaits (0 = facultative and 

obligate quadruped, 1 = obligate biped), amounting to a phylogenetic t-test. We also 

tested if the net number of speciation events (node count) along the root-to-tip path 

length explains the variation in the total rates gear ratio evolution. This approach 

derives from the path length and node count test, originally developed by73. We 

extracted phylogenetic path lengths and node counts using the R package fallpaddy, 

a package for testing punctuated trait evolution 

(https://github.com/suryakevin/fallpaddy) and obtained median estimated rate scalars 

using the variable-rates analysis post-processor 

(http://www.evolution.reading.ac.uk/VarRatesWebPP/). A statistically significant effect 

of node count on the total rate of evolution suggests that speciation explains variation 

in the rate of evolution. We used the same regression settings in BayesTraits V4 as 

the Bayesian PGLS regression analyses described previously. Regression 

diagnostics indicate minimal modelling violations. The node-density artifact, an 
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underestimation of branch lengths in parts of the tree with fewer taxa, is absent (delta 

< 1). Lastly, we tested for an evolutionary coupling between the rates of the forelimb 

and hindlimb gear ratios by regressing the median estimated branch-wise rates of 

evolution from the variable-rates regression analyses. In this analysis, to ensure we 

were comparing the same branches on the tree, we reran the variable-rates regression 

analyses on a smaller dataset in which species had both forelimb and hindlimb gear 

ratio data (N = 47).  
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Appendix 1 
 
Extended Data and Figures 
 
 

Extended Data Fig. 1. Mechanical gear ratio measurements. Diagrams of gear ratio 

measurements for the m. deltoideus scapularis and m. caudofemoralis longus. Red lines show 

the leverout, green shows the leverin, and blue shows the lines of action for each muscle. The 

skeletal of Stegosaurus stenops is copy written (2013) and reproduced with permission by 

Scott Hartman. Descriptions of the gear ratio measurements are provided in the Methods and 

Appendix 2. 
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Extended Data Fig. 2. Ancestral states of the forelimb gear ratio. A) Phylogenetic trace 

map of ancestral states for the log10-scaled forelimb gear ratio, estimated using maximum 

likelihood through the fastanc function in the R package phytools74. Colours were mapped 

onto a time-scaled phylogeny using the contMap function in phytools. Warmer colours indicate 

higher gear ratios and cooler colours indicate lower gear ratios. The length of the scale 

represents 100 million years. 
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Extended Data Fig. 3. Ancestral states of the hindlimb gear ratio. A) Phylogenetic trace 

map of ancestral states for the log10-scaled hindlimb gear ratio, estimated using maximum 

likelihood through the fastanc function in the R package phytools74. Colours were mapped 

onto a time-scaled phylogeny using the contMap function in phytools. Warmer colours indicate 

higher gear ratios and cooler colours indicate lower gear ratios. The length of the scale 

represents 100 million years. 
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Extended Data Fig. 4. Evolutionary rates of functional parameters. Overlapping density 

plots comparing the posterior distributions of estimated log10-scaled background rates (𝜎!) 

between forelimb and hindlimb gear ratios (GR) and functional parameters, leverout (Lout) and 

leverin (Lin), accounting for shifts in rate when variable-rates model was supported (BF > 2.0). 

Hindlimb and forelimb Leverout, Leverin, and gear ratios were standardized with each other to 

ensure the data varied on the same scale. Two-sample t-tests (forelimb vs hindlimb), ANOVA 

(GR vs Lin vs Lout), and Tukey-Kramer post-hoc tests all yield p-values < 0.0001) after 

accounting for multiple hypothesis testing. 
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Extended Data Fig. 5. Evolution of forelimb leverin. Rates of leverin evolution for the primary 

forelimb retractor muscles mapped onto a time-scaled phylogeny. The rate of forelimb leverin 

change only reduces throughout dinosaur evolution. Cooler colours indicate more reduced 

rates of evolution. Gray branches are unscaled (r = 1). Silhouette colours correspond to 

lineages with reduced rates. The blue silhouette represents ornithopod species, and magenta 

represents pennaraptoran theropods. All silhouettes were obtained from phylopic.org and 

referenced in Figs. 1-2. 
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Extended Data Fig. 6. Branch-wise rate correlation. Scatter plot showing the correlation of 

the median branch-wise rates of evolution (log10 r) between the forelimb and hindlimb gear 

ratios after removing the highly scaled branches to oviraptorosaurs and paravians. Median 

branch-wise rates were obtained from the variable-rates analysis on the reduced dataset of 

species with both forelimb and hindlimb gear ratio data (n = 47). 
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Extended Data Fig. 7. Retrodiction of muscle insertion sites. Scatter plots showing the 

retrodicted A) log10 deltopectoral crest lengths and B) log10 4th trochanter distances. Original 

data represented by red circles and retrodicted values by blue triangles, with fading bars 

representing the 95% credible intervals of retrodictions. Grey regression lines are a random 

sample of 100 estimates from the Bayesian PGLS analysis with Pagel’s 𝜆. The mean 

estimated regression line is shown in black. 
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Appendix 2 
 
Supplementary Materials 
 
 
1. Description of lever arm calculations 
 
The gear ratio is a lever arm metric often used to characterize the leverage of a 
functional system and is calculated by taking the ratio of the leverout over the leverin. 
The following graphs depict the geometric formulae used to approximate the leverout 
and leverin for the forelimb and hindlimb retractor muscles based on fossil 
measurements. We performed two calculations: one where we calculated these 
parameters assuming a straight limb and then calculated them while allowing a 
postured limb based on posture angle estimates from the literature. We quantify the 
differences between our straight-limb estimates and the postured-limb estimates 
reported in the main text. 
 
Forelimb leverout 
 

 
 
The forelimb leverout is calculated from the humerus, ulna/radius, and metacarpus 
lengths. The first step is to calculate the distance between the shoulder and wrist by 
using the law of cosines with the humerus length, ulna length, and elbow joint angle. 
This distance equals the sum of the humerus and ulna lengths when the elbow joint is 
180 degrees. 
 
Shoulder to wrist  

= SQRT((Ulna^2) + (Humerus^2) - (2 * Ulna * Humerus * 
COS(RADIANS(Elbow Angle)))) 

 
Create a triangle by connecting the shoulder to the metacarpus and get the red 
italicized angle by calculating one of the small green angles (through law of sines) and 
adding it the wrist angle.  
 
New Angle  

= Wrist Angle + DEGREES(ASIN(Humerus * (SIN(RADIANS(Elbow Angle))) / 
Shoulder to wrist)) 

 
Then, you use the law of cosines with the new angle, shoulder to wrist distance, and 
metacarpal length (MC) to calculate the red line or postured forelimb length (leverout). 

LEVER-OUT

37
14

106 22.3617943
14 *Create triangle from elbow angle and calculate shoulder to wrist distance

195 37 *Create another triangle connecting shoulder to metacarpals (lever-out)
158 7 and calculate new angle by summing wrist angle and other angle in green triangle

29.1795738 *Calculate hypotenuse (lever-out) using new angle, shoulder to wrist distance, and metacarpal length
Humerus Ulna MC Elbow Angle Wrist Angle New Angle Shoulder to wrist Arm length Lever-out

Test - postured arm 14 14 7 106 158 195 22.36179428 35 29.1795738
Test- straight arm 14 14 7 180 180 180 28 35 35
T. rex - postured 38.5 21.4 10.4 106 158 207.140531 48.93266021 70.3 58.3806048

T. rex - straight 38.5 21.4 10.4 180 180 180 59.9 70.3 70.3

|    
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This equals the sum of the humerus, ulna, and metacarpus lengths when assuming 
a straight limb (all 180 degrees). 
 
Leverout  

= SQRT((Shoulder to wrist^2) + (MC^2) - (2 * Shoulder to wrist * MC * 
COS(RADIANS(New Angle)))) 

 
 
Forelimb leverin (m. deltoideus scapularis) 
 

 
 

 
 
 
The m. deltoideus scapularis originates about 1/2 to 2/3 along the scapular blade and 
inserts along the dorsal aspect of the deltopectoral crest (DPC). Use distance to origin 
(Half scap length), shoulder angle, and DPC length to calculate the m. deltoideus line 
of action (DS).  
 

DS = SQRT((DPC^2) + (Half scap length^2) - (2*DPC*Half scap length * 
COS(RADIANS(Shoulder Angle)))) 

 
 
Calculate the new Angle B using DS, DPC, and shoulder angle. 
 

Angle B = DEGREES(ASIN(DPC * (SIN(RADIANS(Shoulder Angle)))/DS)) 
 
 
Green line bisects DS, assumes a right triangle, and calculates length of green line (Leverin) 
using Angle B and Half scap length. 
 

Leverin = Half scap length * SIN(RADIANS(New Angle)) 
 
 
 

LEVER-IN (DS) 4.99995
Straight arm 54.4625932 90 90

7
8.602296205

35.537407
4.068640415

*Bisect DLP length and assume right angle
*Treat scapula length as hypotenuse and calculate length to bisected point (Lever-in)

DPC length Half scap length Shoulder Angle DS Angle B Lever-in Angle A Angle Check
Test 7 4.99995 90 8.60229621 54.462593 4.06864041 35.537407 180
T. rex 15 97.725 90 98.8694878 8.7263356 14.8263638 81.273664 180

LEVER-IN (DS) 4.99995

Postured arm 81.11350511 54

5.731923219 7
44.88649489

4.939932125 4.939932125 4.93993212
*Bisect DLP length and assume right angle
*Treat scapula length as hypotenuse and calculate length to bisected point (Lever-in)

DPC length Half scap length Shoulder Angle DS Angle B Lever-in Angle A Angle Check
Test 7 4.99995 54 5.73192322 81.113505 4.93993212 44.886495 180
T. rex 15 97.725 54 89.7325817 7.7723825 13.2161336 118.22762 180
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Hindlimb leverout 
 

 
 
 
The hindlimb leverout is calculated from the femur, tibia/fibula, and metatarsus lengths. 
The first step is to calculate the distance between the hip and ankle by using the law 
of cosines with the femur length, tibia length, and knee joint angle. This distance 
equals the sum of the femur and tibia lengths when the knee joint is 180 degrees. 
 

Hip to ankle = SQRT((Tibia^2) + (Femur^2) - (2 * Tibia * Femur * 
COS(RADIANS(Ankle Angle)))) 

 
 
Create a triangle by connecting the hip to the metatarsus and get the red italicized 
angle by calculating one of the small green angles (through law of sines) and adding 
it the wrist angle.  

 
New Angle =  

Ankle Angle + DEGREES(ASIN(Femur * (SIN(RADIANS(Knee Angle))) /  
Hip to ankle distance)) 

 
 
Then, you use the law of cosines with the new angle, hip to ankle distance, and 
metatarsus length (MT III) to calculate the red line or postured hindlimb length 
(leverout). This equals the sum of the femur, tibia, and metatarsus lengths when 
assuming a straight limb (all 180 degrees). 
 

Leverout =SQRT((Hip to ankle^2) + (MTIII^2) - (2 * Hip to ankle * MTIII * 
COS(RADIANS(New Angle)))) 

 
 
 
 
 
 
 
 
 
 

LEVER-OUT
50

36
14

*Create triangle from 22.65248 108
knee angle and calculate 14
hip to ankle distance 36 168

132 29.53539 *Create another triangle connecting hip to metatarsals (lever-out)
7 and calculate new angle by summing knee angle and other angle in green triangle

Femur Tibia MT III Hip Angle Knee Angle Ankle Angle Hip to ankle New Angle Leg length Lever-out
Test - postured leg 14 14 7 50 108 132 22.652476 168 35 29.53539
Test- straight leg 14 14 7 90 180 180 28 180 35 35
T. rex - postured 132.1 124.5 67.1 50 108 132 207.64182 169.23 323.7 273.8475
T. rex - straight 132.1 124.5 67.1 90 180 180 256.6 180 323.7 323.7

|  
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Hindlimb leverin (m. caudofemoralis longus) 
 

 
 
 

 
 
The m. caudofemoralis longus originates on the transverse processes of the tail 
caudal vertebrae (Tail) and inserts on the 4th trochanter of the femur (4th troch). Use 
distance to origin (Tail), hip angle, and 4th troch length to calculate the m. 
caudofemoralis line of action (CFL).  
 

CFL = SQRT((4thtroch^2) + (Tail^2) - (2 * 4thtroch * Tail * COS(RADIANS(  
Hip Angle)))) 

 
 
Calculate the new Angle B using CFL, 4th troch, and hip angle. 
 

Angle B = DEGREES(ASIN(4th troch*(SIN(RADIANS(Hip Angle)))/CFL)) 
 
 
Green line bisects DS, assumes a right triangle, and calculates length of green line 
(Leverin) using Angle B and Half scap length. 
 

Leverin = Tail*SIN(RADIANS(Angle B)) 
 
 
 
 
 
 
 
 

LEVER-IN (CFL) 7
Straight leg 35.5377 90 90

5
8.602325

54.4623
4.068667

*Bisect CFL length and assume right angle
*Treat tail length as hypotenuse and calculate length to bisected point (Lever-in)

4th troch Tail Hip Angle CFL Angle B Lever-in Angle A Angle Check
Test 5 7 90 8.602325 35.5377 4.0686674 54.462322 180
T. rex 46.5 392.737 90 395.4802 6.75238 46.177457 83.247624 180

LEVER-IN (CLF) 7

Postured leg 20.556 130 50

10.90849 5

29.444
2.457862

*Bisect CFL length and assume right angle
*Treat tail length as hypotenuse and calculate length to bisected point (Lever-in)

4th troch Tail Hip Angle CFL Angle B Lever-in Angle A Angle Check
Test 5 7 130 10.90849 20.556 2.4578615 29.443977 180
T. rex 46.5 392.737 130 424.1251 4.81779 32.984867 45.182215 180
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Hindlimb leverin (m. iliotibialis lateralis) 
 

 
 
 

 
 
 
Assume a rectangular-shaped ilium and estimate distance from acetabulum to 
anteroposterior ilium (hypotenuse) 
 

Acetabulum = SQRT(Ilia height^2 + Post-acetabular length^2) 
 
 
Take the inverse tangent of ilium height and post-acetabular ilium length to calculate 
alpha angle 
 

Alpha Angle = DEGREES(ATAN(Ilia height / Post-acetabular length)) 
 
 
Create new triangle using femur length and newly estimated hypotenuse 
 
 
Calculate big angle between femur and anteroposterior ilium (new hypotenuse)  

 
Big Angle = 180 - Hip Angle + Alpha Angle 

 
 
Calculate ITL length using Law of Cosines with big angle and sides (hypotenuse and 
femur) of new triangle 
 

ITL Length = SQRT((Femur^2) + (Acetabulum^2) -(2 * Femur * Acetabulum * 
COS(RADIANS(Big Angle)))) 

 

LEVER-IN (ITL) Steps:
Straight leg *Assume a rectangular-shaped ilium and estimate distance from acetabulum to anteroposterior ilium (hypotenuse)

44.4213 7 *Take the inverse tangent of ilium height and post-acetabular ilium length to calculate alpha angle
3 7.615773 3 *Create new triangle using femur length and newly estimated hypotenuse

23.1986 *Calculate big  angle  between femur and anteroposterior ilium (new hypotenuse) = 180 - hip angle  + alpha angle
7 113.199 90 *Calculate ITL length using Law of Cosines with big angle  and sides (hypotenuse and femur) of new triangle

*Calculate small  angle  between hypotenuse and ITL length
18.38478 14 *Bisect ITL length and uses small angle  and hypotenuse to calculate distance to bisected point (lever-in)

5.330497

Femur Ilia height Post-acetabulum lengthHip Angle Acetabulum to anteriorposterior iliumAlpha Angle Big Angle ITL Length Small Angle Lever-in
Test 14 3 7 90 7.6157731 23.1985905 113.199 18.38478 44.42127 5.330497

Archaeopteryx 5.14 0.923 1.063 90 1.407799 40.967693 130.968 6.15548 39.08795 0.887635

LEVER-IN (ITL) Steps:
Postured leg *Assume a rectangular-shaped ilium and estimate distance from acetabulum to anteroposterior ilium (hypotenuse)

17.4258 7 *Take the inverse tangent of ilium height and post-acetabular ilium length to calculate alpha angle
3 7.615773 3 *Create new triangle using femur length and newly estimated hypotenuse

23.19859 *Calculate big  angle  between femur and anteroposterior ilium (new hypotenuse) = 180 - hip angle  + alpha angle
7 153.1986 50 *Calculate ITL length using Law of Cosines with big angle  and sides (hypotenuse and femur) of new triangle
21.07923 14 *Calculate small  angle  between hypotenuse and ITL length

2.2806937 *Bisect ITL length and uses small angle  and hypotenuse to calculate distance to bisected point (lever-in)

Femur Ilia height Post-acetabulum lengthHip Angle Acetabulum to anteriorposterior iliumAlpha Angle Big Angle ITL Length Small Angle Lever-in
Test 14 3 7 50 7.6157731 23.198591 153.199 21.07923 17.42576 2.280694
Archaeopteryx 5.14 0.923 1.063 50 1.407799 40.967693 170.968 6.534081 7.093934 0.173858
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Calculate small angle between hypotenuse and ITL length 
 

Small Angle = DEGREES(ASIN(Femur * (SIN(RADIANS(Big Angle))) / ITL)) 
 
 
Bisect ITL length and uses small angle and hypotenuse to calculate distance to 
bisected point (lever-in) 
 

Leverin = Acetabulum * SIN(RADIANS(Small Angle)) 
 
 
 
2. Regression multicollinearity assumptions 
 
We ensured that our independent variables did not carry redundant information (i.e., 
multicollinearity) by calculating variance inflation factors (VIFs) using the package car 
in R1. Two or more variables are collinear if they share a VIF > 5.0. We found that 
multicollinearity was absent in our full PGLS models after removing the interaction 
variables, as well as between time and node count in our path rate regression 
analyses. 
 
 

Table 1. Variance inflation factors for all independent variables in the full regression models. 

 
Model Leverin Clade 

Forelimb, leverout 
(response) 1.867104 1.867104 

Hindlimb, leverout 
(response) 3.354968 3.354968 

 
 
 

Model Time Node count 

Forelimb, path rate 
(response) 1.025295 1.025295 

Hindlimb, path rate 
(response) 1.023972 1.023972 

 
 
 
 
3. Detailed model results 
 
Here, we provide more complete results from the models referenced in the main text. 
In each table, the green row represents the best supported model. 
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Forelimb results 
 
Table 2. Model selection for variable-rates analysis of the forelimb leverout.  

Univariate, Log10 Leverout  
Model LogMarginalLh Bayes factor 
Single rate -27.393205 - 
Variable rates -26.506676 1.773058 

 

Table 3. Model selection for variable-rates analysis of the forelimb leverin. 

Univariate, Log10 Leverin  
Model LogMarginalLh Bayes factor 
Variable rates -34.678577 - 
Single rate -35.999252 2.64135 

 

Table 4. Model selection for variable-rates analysis of the forelimb gear ratio. 

Univariate, Log10 Gear ratio  
Model LogMarginalLh Bayes factor 
Variable rates 25.821865 - 
Single rate 14.606918 22.429894 

 
Table 5. Model selection for the multiple linear regression of lever arm components. A 
variable-rates (VR) analysis with Pennaraptora included as a dummy-coded indicator 
variable did not improve over the uniform-rate model. The simple VR model fit the data 
better than the simple uniform-rate model (Bayes factor = 29.68). 

Independent Contrasts Regression, Log10 Leverout ~ Log10 Leverin 
Model LogMarginalLh Bayes factor  
Pennaraptor, VR 63.038319 -  
Pennaraptora 62.550068 0.976502  
Pennaraptor 
interact 62.244518 0.6111 

 
Simple, VR 53.238828 29.682764  
Simple 38.397446 48.305244  
Theropod 32.208333 60.68347  
Theropod interact 52.452036 20.196064  
Sauropod 32.00496 61.090216  
Sauropod interact 27.231758 70.63662  
Ornithischia 32.161134 60.777868  
Ornithischia 
interact 27.117119 70.865898 

 
Clades 51.155357 22.789422  
Clades int 46.455407 32.189322  
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Table 6. Model selection for presence of phylogenetic signal in the relationship between 
forelimb leverout and leverin, accounting for an intercept difference among pennaraptorans 
and incorporating a distribution of leverin values calculated from a random set of predicted 
deltopectoral crest measurements. 

PGLS Regression, Log10 Leverout ~ Log10 Leverin + Pennaraptora, dist data 
Model LogMarginalLh Bayes factor   
Lambda 51.519226 -   
Lambda 0 35.992149 31.054154   

 
Table 7. Average parameter estimates of the posterior distribution (post-burnin) from the 
final forelimb model. 

PGLS Regression, Log10 Leverout ~ Log10 Leverin + Pennaraptora,  
lambda est, dist data 
Parameter Avg estimate     
Alpha 1.173588705     
Beta 1 0.774860533     
Beta 2 -

0.613186882     
Alpha.Pennaraptor 0.560401823     
Var 0.000154197     
R2 0.866851778     
SSE 0.012788279     
SST 0.095852611     
s.e. Alpha 0.028845144     
s.e. Beta-1 0.03627741     
s.e. Beta-2 0.059838658     
Lambda 0.926750878     
pMCMC - Beta 1 0     
pMCMC - Beta 2 0     

 
 
Hindlimb results 
 

Table 8. Model selection for variable-rates analysis of the hindlimb leverout. 

Univariate, Log10 Leverout  
Model LogMarginalLh Bayes factor 
Single rate -27.163277 - 
Variable rates -27.727019 -1.127484 

 
Table 9. Model selection for variable-rates analysis of the hindlimb leverin. 

Univariate, Log10 Leverin  
Model LogMarginalLh Bayes factor 
Variable rates -50.213488 - 
Single rate -51.598473 2.76997 
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Table 10. Model selection for variable-rates analysis of the hindlimb gear ratio. 

Univariate, Log10 Gear ratio  
Model LogMarginalLh Bayes factor 
Variable rates -2.685686 - 
Single rate -10.577472 15.783572 

 
Table 11. Model selection for the multiple linear regression of lever arm components. A 
variable-rates (VR) analysis of the simple model fit the data better than the simple uniform-
rate model (Bayes factor = 8.43). 

Independent Contrasts Regression, Log10 Leverout ~ Log10 Leverin 
Model LogMarginalLh Bayes factor 
Simple, VR 36.742658 - 
Simple 32.526145 8.433026 
Avialae 26.017145 13.018 
Avialae interact 21.523485 22.00532 
Maniraptor 26.699189 11.653912 
Maniraptor interact 23.977563 17.097164 
Theropod 26.131019 12.790252 
Theropod interact 30.816318 3.419654 
Sauropod 25.858193 13.335904 
Sauropod interact 20.847784 23.356722 
Clades 13.836998 37.378294 
Clades interact 10.325665 44.40096 

 
Table 12. Model selection for presence of phylogenetic signal in the relationship between 
forelimb leverout and leverin, incorporating a distribution of leverin values calculated from a 
random set of predicted 4th trochanter measurements. 

PGLS Regression, Log10 Leverout ~ Log10 Leverin, dist data 
Model LogMarginalLh Bayes factor 
Lambda 25.354978 - 
Lambda 0 13.134964 24.440028 

 
Table 13. Average parameter estimates of the posterior distribution (post-burnin) from the 
final hindlimb model. 

PGLS Regression, Log10 Leverout ~ Log10 Leverin, lambda est, dist data 
Parameter Avg estimate  
Alpha 1.215123925  
Beta 1 0.616616102  
Var 0.000185475  
R^2 0.808794905  
SSE 0.012044912  
SST 0.062822307  
s.e. Alpha 0.045883709  
s.e. Beta-1 0.037166028  
Lambda 0.732617183  
pMCMC - Beta 1 0  
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Path rate results 

Table 14. Results of the forelimb path rate regression analyses using the root-to-tip sum of 
the median estimated rates obtained from the variable-rates regression analyses. 

Forelimb, Log10 median root-to-tip path rate (response) ~ time path length (Predictor 1) 
Predictor 2 Alpha Beta 1 pMCMC 1 Beta 2 pMCMC 2 R2 Lambda 
Node count 0.4515 0.05921 0.0906 0.05921 0 0.7082 0.9804 
Gait 0.6146 0.0014 0.0081 -0.0297 0.3557 0.0676 0.9891 

 

Table 15. Results of the hindlimb path rate regression analyses using the root-to-tip sum of 
the median estimated rates obtained from the variable-rates regression analyses. 

Hindlimb, Log10 median root-to-tip path rate (response) ~ time path length (Predictor 1) 
Predictor 2 Alpha Beta 1 pMCMC 1 Beta 2 pMCMC 2 R2 Lambda 
Node count 0.3678 0.00019 0.1682 0.0672 0 0.9214 0.9620 
Gait 0.4195 0.0024 0 0.0418 0.29 0.2119 0.9833 

 
 
Reduced dataset rates analyses 
 
Table 16. Model selection for variable-rates regression analysis of the forelimb leverout on 
leverin. 

Regression, forelimb, trimmed data, Log10 Lever-out ~ Log10 Lever-in 
Model LogMarginalLh BayesFactor    
Variable rates 20.759301 -    
Single rate 11.118107 19.282388    

 
 

Table 17. Model selection for variable-rates regression analysis of the hindlimb leverout on 
leverin. 

Regression, hindlimb, trimmed data, Log10 Lever-out ~ Log10 Lever-in 
Model LogMarginalLh BayesFactor    
Variable rates 24.718495 -    
Single rate 23.037632 3.361726    

 
Results for the ordinary least-squares regression of the median estimated forelimb 
branch-wise rates of gear ratio evolution on the median estimated hindlimb branch-
wise rates with long pennaraptoran branches. 
 

#    Estimate  Std. Error t value   Pr(>|t|)     
# (Intercept)                0.0125613   0.0333224    0.377     0.707     
# Original BL   0.0004320   0.0005904    0.732     0.466     
# LogHL_median   0.8959234   0.0988221    9.066    2.3e-14 *** 
#   --- 
#   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
# Residual standard error: 0.1871 on 91 degrees of freedom 
# Multiple R-squared:  0.4767, Adjusted R-squared:  0.4652  
# F-statistic: 41.44 on 2 and 91 DF,  p-value: 1.601e-13 
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Results for the ordinary least-squares regression of the median estimated forelimb 
branch-wise rates of gear ratio evolution on the median estimated hindlimb branch-
wise rates without long pennaraptoran branches. 
 

#    Estimate  Std. Error  t value   Pr(>|t|)     
# (Intercept)                0.0162547   0.0098893    1.644     0.104     
# Original BL   0.0001709   0.0001758    0.972     0.334     
# LogHL_median   0.7638230   0.0296088   25.797    <2e-16 *** 
#   --- 
#   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
# Residual standard error: 0.05546 on 89 degrees of freedom 
# Multiple R-squared:  0.8841, Adjusted R-squared:  0.8815  
# F-statistic: 339.3 on 2 and 89 DF,  p-value: < 2.2e-16 
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Appendix 3 
 
Data table 
 
Hindlimb (HL) and forelimb (FL) leverout (Lout), leverin (Lin), and gear ratios, along with the clade and specimen information, for each studied species. 
ITL indicates whether the hindlimb gear ratio was based on the m. caudofemoralis longus measurement (ITL = 0) or the m. iliotibialis lateralis (ITL = 1). 
 

 

 

Species Clade Subclade Specimen ID ITL HL_Lout HL_Lin
HL 
Gear_Ratio FL_Lout FL_Lin

FL 
Gear_Ratio

Brachylophosaurus_canadensis Ornithischia Ornithopoda MOR 794 0 236.510137 29.1595681 8.11089298 138.61734 11.8758656 11.6721884

Centrosaurus_apertus Ornithischia Marginocephalia TMP 1981.003.0001 0 109.718066 20.6983399 5.30081478 88.2986591 11.9885172 7.36526945

Chasmosaurine_indet Ornithischia Marginocephalia CMN 8547 0 121.79542 23.44204 5.19559815 86.6191665 11.2760025 7.68172643

Chasmosaurus_belli Ornithischia Marginocephalia TMP 1982.052.0002 0 113.775088 23.8758645 4.76527616 103.732529 13.9799478 7.42009417

Corythosaurus_casuarius Ornithischia Ornithopoda ROM 845 0 203.731818 38.7947223 5.25153439 - - -

Edmontosaurus_annectens Ornithischia Ornithopoda YPM 2182 - - - - 121.649286 11.645808 10.4457574

Edmontosaurus_regalis Ornithischia Ornithopoda NMC 2288 - - - - 125.956618 13.4614514 9.35683782

Euoplocephalus_tutus Ornithischia Thyreophoran TMP 1989.007.0009 0 99.4741349 15.0552865 6.6072562 71.8801157 10.1800545 7.0608773

Heterodontosaurus_tucki Ornithischia Heterodontosauridae TMP 1984.172.0001 0 28.0772371 3.00054968 9.35736454 - - -

Hypacrosaurus_altispinus Ornithischia Ornithopoda NMC 8501 - - - - 117.950019 11.517619 10.2408336

Iguanodon_bernissartensis Ornithischia Ornithopoda IRSNM 1534 - - - - 135.855951 11.4701686 11.8442855

Jeholosaurus_shangyuanensis Ornithischia Thescelosaurinae IVPP V12542 0 22.6218787 3.14125589 7.20153961 - - -

Gryposaurus_notabilis Ornithischia Ornithopoda TMP 1980.051.0002 0 189.245084 35.5646008 5.32116431 120.647923 14.405708 8.37500827

Lambeosaurus_lambei Ornithischia Ornithopoda TMP 1982.038.0001 (HL); ROM 1218 (FL)0 212.786099 32.4510429 6.55714207 121.440424 11.8063717 10.2860072

Lambeosaurus_magnicristatus Ornithischia Ornithopoda TMP 66.4.1 - - - - 122.239878 10.6808146 11.4448085

Leptoceratops_gracilis Ornithischia Marginocephalia CMN 8888 0 56.3444452 7.82667366 7.19902831 39.3288341 4.20881199 9.34440269

Lesothosaurus_diagnosticus Ornithischia Neornithischia BMNH RUB17 - - - - 9.06592539 0.62378273 14.5337872

Pachyrhinosaurus_lakustai Ornithischia Marginocephalia TMP 1993.003.0001 (HL); See Notes (FL)0 121.97088 22.4791827 5.42594814 96.6934927 12.3296376 7.84236292

Parasaurolophus_cyrtocristatus Ornithischia Ornithopoda FMNH P27393 - - - - 120.055201 12.0564322 9.95777186

Parasaurolophus_walkeri Ornithischia Ornithopoda ROM 768 - - - - 106.628882 12.2784219 8.68424968

Parksosaurus_warreni Ornithischia Thescelosaurinae ROM 804 0 61.8985917 8.96794605 6.90220384 - - -

Prosaurolophus_maximus Ornithischia Ornithopoda TMP 1984.000.0009 (HL); ROM 787 (FL)0 194.201867 27.9149641 6.95690907 109.382333 10.6312663 10.2887398

Protoceratops_andrewsi Ornithischia Marginocephalia ZPAL MgD-II/3 - - - - 18.4716015 1.97108179 9.37130136

Psittacosaurus_neimongoliensis Ornithischia Marginocephalia IVPP 12-0888-2 0 28.3894103 4.24730888 6.68409365 16.6047347 1.80825278 9.18275083

Saurolophus_osborni Ornithischia Ornithopoda AMNH 5220 - - - - 130.619385 11.4925932 11.3655275

Scelidosaurus_harrisonii Ornithischia Thyreophoran BRSMG Ce12785 0 66.1337302 12.2058163 5.41821445 49.7096288 7.43050752 6.68993721

Shantungosaurus_giganteus Ornithischia Ornithopoda IVPP no number (from Hu 1973) - - - - 203.454876 22.9726125 8.85641004

Stegouros_elengassen Ornithischia Thyreophoran CPAP-3165 0 30.8154448 4.46963937 6.89439176 - - -

Tenontosaurus_tilletti Ornithischia Ornithopoda OU 11 0 111.462894 17.1891923 6.48447537 71.4632637 9.58132055 7.45860274

Thescelosaurus_sp Ornithischia Thescelosaurinae MOR 979 0 90.2103541 18.1497308 4.97034116 43.8323176 6.43002493 6.81681924

Triceratops_horridus Ornithischia Marginocephalia TMP 1982.006.0001 0 158.345764 29.1127107 5.43905944 113.476246 17.0760234 6.6453555

Tsintaosaurus_spinorhinus Ornithischia Ornithopoda PMNH V728 - - - - 138.276486 11.1209514 12.433872

Vagaceratops_irvinensis Ornithischia Marginocephalia CMN 41357 - - - - 95.8254392 12.5685956 7.62419626
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Apatosaurus_louisae Sauropodomorpha Sauropoda CM 3018 0 261.477226 80.1969218 3.26043968 - - -
Alamosaurus_sanjuanensis Sauropodomorpha Sauropoda USNM 15560 - - - - 265.275392 28.6456274 9.26058937
Camarasaurus_lentus Sauropodomorpha Sauropoda CM 11338 0 85.2395486 19.946493 4.27341031 86.9240358 6.89077384 12.6145536
Galeamopus_pabsti Sauropodomorpha Sauropoda SMA 0011 - - - - 176.146085 12.946252 13.6059521
Lufengosaurus Sauropodomorpha Massospondylidae IVPP V15 0 97.9511539 17.524251 5.58946309 45.0493767 6.16371347 7.30880449
Massospondylus_carinatus Sauropodomorpha Massospondylidae BP/1/4934 - - - - 50.3578825 6.63724202 7.58716984
Opisthocoelicaudia_skarzynskii Sauropodomorpha Sauropoda ZPAL MgD-1/48* 0 201.668768 70.3618969 2.86616445 - - -
Rapetosaurus_krausei Sauropodomorpha Sauropoda FMNH PR 2209 - - - - 89.4383515 9.12602205 9.80036548
Xingxiulong_chengi Sauropodomorpha Sauropodiformes LFGT-D0003 - - - - 58.6835399 7.56737594 7.754807
Eoraptor_lunensis Theropoda Theropoda PVSJ 512 0 32.8726686 3.91055567 8.40613748 13.9467258 0.99253887 14.0515664
Guaibasaurus_candelariensis Theropoda Theropoda MCN-PV 2355, MCN-PV 2356 - - - - 16.8500668 1.46743967 11.48263
Herrerasaurus_ischigualastensis Theropoda Herrerasauridae PVSJ 373 - - - - 32.8564379 1.47783745 22.232782
Achillobator_giganticus Theropoda Maniraptoriformes MNUFR 15 1 103.615978 6.30594334 16.4314794 - - -
Allosaurus Theropoda Allosauroidea MOR 693 - - - - 60.6999246 3.79665621 15.9877327
Alxasaurus_elesitaiensis Theropoda Maniraptoriformes IVPP 88402 0 92.9548964 14.1693963 6.56025806 59.0181942 4.38963351 13.4449024
Ambopteryx_longibrachium Theropoda Maniraptoriformes IVPP V24192 1 10.3003763 0.52767875 19.520165 5.78313335 1.60730124 3.59803951
Anchiornis_huxleyi Theropoda Maniraptoriformes IVPP V14378 1 13.1617776 0.36488259 36.0712682 4.82006584 1.0739074 4.48834402
Anzu_wyliei Theropoda Maniraptoriformes CM 78000 - - - - 34.4646886 11.5123064 2.99372578
Beishanlong_grandis Theropoda Maniraptoriformes FRDC-GS GJ (06) 01–18 - - - - 83.9708706 9.5811619 8.76416363
Caudipteryx_sp Theropoda Maniraptoriformes IVPP V12430 1 37.5853103 0.92645331 40.5690281 7.24506028 2.58998127 2.7973408
Ceratosaurus_nasicornis Theropoda Ceratosauria USNM 4735 0 120.249385 15.5963354 7.71010507 - - -
Chirostenotes_pergracilis Theropoda Maniraptoriformes TMP 79.20.1 1 75.4363665 1.20221059 62.748047 - - -
Citipati_osmolskae Theropoda Maniraptoriformes IGM 100/1004 - - - - 25.2617244 10.6182457 2.37908645
Coelophysis_bauri Theropoda Coelophysoidea AMNH 7229 0 31.7015195 3.08679645 10.2700389 - - -
Conchoraptor_gracilis Theropoda Maniraptoriformes TMP 2013.010.0004 0 53.2947986 5.44117 9.79473139 - - -
Deinocheirus_mirificus Theropoda Maniraptoriformes MPC-D 100/18 (forelimb), MPC-D 100/127 (hindlimb)0 266.200451 31.665912 8.40653037 153.864849 11.0844118 13.881192
Deinonychus_antirrhopus Theropoda Maniraptoriformes MCZ 4371 1 73.0124253 3.00689816 24.2816422 - - -
Dilophosaurus_wetherilli Theropoda Neotheropoda UCMP 37302 0 119.212387 13.0148881 9.15969361 49.103139 3.18518827 15.4160869
Eodromaeus_murphi Theropoda Theropoda PVSJ 562 - - - - 15.5637006 0.92954452 16.7433622
Epidexipteryx_hui Theropoda Maniraptoriformes IVPP V15471 - - - - 4.59168142 1.43601977 3.19750571
Garudimimus_brevipes Theropoda Maniraptoriformes GIN 100/13 1 83.8883639 4.19213604 20.0108878 - - -
Gorgosaurus_libratus Theropoda Tyrannosauroidea TMP 1991.036.0500, TMP 1980.004.00020 167.773987 14.7858723 11.3469117 34.1587112 2.68806723 12.707536
Haplocheirus_sollers Theropoda Maniraptoriformes IVPP V15988 - - - - 17.7167718 1.2135949 14.5985879
Harpymimus_okladnikovi Theropoda Maniraptoriformes IGM 100/29 - - - - 52.7579363 2.15994388 24.4256051
Khaan_mckennai Theropoda Maniraptoriformes IGM 100/1127 1 41.7062545 2.02104496 20.6359854 11.5755021 5.48999747 2.1084713
Liliensternus_liliensterni Theropoda Coelophysoidea MB.R.2175 - - - - 34.9542401 2.325655 15.0298475



 229 

 

 

 

 

Mahakala_omnogovae Theropoda Maniraptoriformes IGM 100/1033 1 23.3115264 0.85287447 27.3328929 - - -
Majungasaurus_crenatissimus Theropoda Ceratosauria FMNH PR 2836 - - - - 24.5937985 5.2390982 4.69428087
Meraxes_gigas Theropoda Allosauroidea MMCh-PV 65 0 238.505173 32.312678 7.38116393 53.7649231 4.20084315 12.7986028
Microraptor_gui Theropoda Maniraptoriformes IVPP V13352 1 22.5877962 0.3323553 67.9627989 10.0729654 2.90165289 3.47145776
Microraptor_zhaoianus Theropoda Maniraptoriformes CAGS 20-8-001 1 18.4932641 0.53612404 34.4943757 6.58941621 2.08422307 3.16156956
Mononykus_olecranus Theropoda Maniraptoriformes GI N107/6 - - - - 6.82985573 0.51373997 13.2943827
Nemegtonykus_citus Theropoda Maniraptoriformes MPC D-100/203 0 32.8862655 2.68055081 12.2684731 - - -
Nothronychus_graffami Theropoda Maniraptoriformes UMNH VP 16420 0 146.159488 21.4283836 6.82083591 72.2527246 4.82985761 14.9595972
Oksoko_avarsan Theropoda Maniraptoriformes MPC-D 100/33 - - - - 11.8700987 6.39906734 1.85497324
Ornitholestes_hermanni Theropoda Coelurosauria TMP 2006.003.0002 0 38.2536767 4.39953768 8.69493102 19.1344256 1.33958357 14.283861
Ornithomimus_edmontonicus Theropoda Maniraptoriformes TMP 1995.110.0001 0 111.198545 8.63261575 12.881211 50.9763746 2.03402489 25.0618244
Rahonavis_ostromi Theropoda Maniraptoriformes UA 8656 1 21.3319911 0.71841552 29.6931099 - - -
Raptorex_kriegsteini Theropoda Tyrannosauroidea LH PV18 0 85.5063541 7.78265533 10.9867841 14.0711912 0.55223279 25.4805428
Sinocalliopteryx_gigas Theropoda Compsognathidae JMP-V-05-8-01 0 58.5491348 4.89754986 11.9547808 23.2877723 1.30240587 17.8805799
Sinornithosaurus_millenii Theropoda Maniraptoriformes IVPP V12811 1 30.6368582 1.30023235 23.5626027 13.7858759 4.3212882 3.19022367
Sinosauropteryx_prima Theropoda Compsognathidae TMP 2006.013.0001 0 28.900903 1.94589676 14.8522284 8.92116514 0.48511471 18.3898056
Sinovenator_changii Theropoda Maniraptoriformes IVPP V20378 1 24.948197 1.12279017 22.2198213 6.16647076 1.69750391 3.63266954
Sinusonasus_magnodens Theropoda Maniraptoriformes IVPP V11527 1 41.572226 1.36416999 30.4743737 - - -
Struthiomimus_altus Theropoda Maniraptoriformes TMP 1985.008.0003 0 116.537126 9.2143837 12.6473055 52.7962283 2.04870036 25.7705955
Tanycolagreus_topwilsoni Theropoda Coelurosauria TPII 2000-09-29 - - - - 35.7825511 1.74202296 20.5408034
Tyrannosaurus_rex Theropoda Tyrannosauroidea FMNH PR2081 0 273.847534 32.9848668 8.30221736 58.3806048 3.73911388 15.6134867
Velociraptor_mongoliensis Theropoda Maniraptoriformes IGM 100/986 0 49.5893359 4.64053934 10.6861148 - - -
Zhenyuanlong_suni Theropoda Maniraptoriformes JPM-0008 1 49.4168563 1.98383698 24.9097365 12.8911943 3.80928286 3.38415255
Zhongjianosaurus_yangi Theropoda Maniraptoriformes IVPP V22775 - - - - 5.67323986 1.28565446 4.41272522
Archaeopteryx_lithographica Theropoda Maniraptoriformes MOR Cast 1 13.5232552 0.17385813 77.7832786 5.50279254 2.19177163 2.51065962
Aurornis_xui Theropoda Maniraptoriformes YFGP-T5198 1 16.9730949 0.44208447 38.3933303 7.31956786 1.17972668 6.20446072
Cathayornis_yandica Theropoda Maniraptoriformes IVPP V9769 - - - - 3.41039535 0.94989503 3.59028655
Confuciusornis_sanctus Theropoda Maniraptoriformes IVPP V11374 1 11.3784127 0.51474695 22.1048666 6.36203511 1.95532617 3.25369507
Hongshanornis_longicresta Theropoda Maniraptoriformes IVPP V14533 1 - - - 3.14165406 1.19880967 2.62064458
Jeholornis_prima Theropoda Maniraptoriformes IVPP V13274 1 18.6742255 0.34005043 54.9160471 13.1266567 3.79675519 3.45733554
Longipteryx_chaoyangensis Theropoda Maniraptoriformes IVPP V12325 1 - - - 5.61110562 2.03578912 2.75623127
Pengornis_houi Theropoda Maniraptoriformes IVPP V15336 1 10.3815303 0.3646438 28.4703327 8.26914204 2.52073614 3.2804473
Sapeornis_chaoyangensis Theropoda Maniraptoriformes IVPP V13275 1 16.3309066 0.57498921 28.4021097 14.2254228 4.24344637 3.3523277
Serikornis_sungei Theropoda Maniraptoriformes PMOL-AB00200 1 18.3465167 0.68441602 26.8060891 6.75594325 1.59933049 4.22423213
Yixianornis_grabaui Theropoda Maniraptoriformes IVPP V12631 1 10.2467699 0.29897137 34.2734148 6.09848895 1.66665528 3.65911836



1 Stephen Jay Gould, "Evolution's erratic pace," Natural History, Vol. 86, No. 5, pp.12-16, 
May 1977 
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Summary 

 

"The evolutionary trees that adorn our textbooks have data only at the tips and 

nodes of their branches; the rest is inference, however reasonable, not the evidence 

of fossils.” 

-  Stephen Jay Gould, 19771 

 

Comparative analyses and modelling have made major contributions to the 

study of evolution in the past four decades. We can now estimate rates of evolution, 

speciation, and extinction with unprecedented efficiency and rigour. This thesis utilises 

the latest advancements in inferring varying rates of evolution across space and 

ancestor-descendant lineages. These new techniques uncovered the geographic 

dispersal history of early tetrapodomorphs; however, geographic sampling bias 

inflates dispersal rates across regions with a sparse terrestrial rock record (Chapter 2; 

Gardner et al., 2019). For the first time, an established ecogeographic rule 

(Bergmann’s rule) was assessed while accounting for variable rates of body size 

evolution in dinosaurs and mammals (Chapter 3). The results suggest that dispersals 

to high latitudes (and relatively colder climates) did not drive body size evolution in 

dinosaurs and mammals, likely making Bergmann’s rule an invalid generalisation for 

these groups. The variable-rates regression model (Baker et al., 2016; Baker and 

Venditti, 2019) was also applied to the functional lever arm equations that describe 

dinosaur limb retraction (Chapter 4). The study shows that, while individual lever parts 

evolve gradually, the lever arm systems themselves evolve at varying rates. This 



   
 

 231 

finding reveals an emergent evolutionary process by which gradual changes in 

individual functional parts can give way to bursts of adaptive change at the system 

level. However, inferences are not direct observations of the past, and it is crucial that 

we pair comparative methods with fossils to bolster our inferences. For example, 

Baker et al. use Mesozoic mammal fossils to demonstrate that ancestral body size 

estimates from variable-rates models are more congruent with the fossil record than 

those assuming a single uniform rate (Baker et al., 2015).  

Another example where the fossil record may provide more clarity is the 

Darwin’s scenario outlined in Chapter 1 (Gardner and Organ, 2021). This hypothetical 

(but common) scenario is when two characters originate on the same branch of a 

phylogeny (Maddison and FitzJohn, 2015). Due to cladistics and the focus on shared 

derived characters, we know many morphological characters that are unique to clades 

of interest. Naturally, researchers may be interested in what adaptive functions those 

characters might have (Maddison and FitzJohn, 2015). However, character and trait 

distributions alone are not indicative of adaptation, as they may have risen from 

developmental effects or historical contingencies (Gould and Lewontin, 1979). Fossils 

can shed light on character evolution. They provide invaluable information on 

ancestral states (Baker et al., 2015), character transition rates and correlated evolution 

(Organ et al., 2009), and divergence time estimates (Heath et al., 2014; Stadler et al., 

2018). A commonly used example of Darwin’s scenario is the co-origination of fur and 

middle ear bones in mammals (Maddison and FitzJohn, 2015). Interestingly, the 

mammalian fossil record suggests that middle ear bones evolved multiple times 

independently (Han et al., 2017; Meng et al., 2011). Exceptionally preserved fossils 

with soft-tissue remains will continue to shed light on the evolution of fur and 
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associated integumentary features (Pickrell, 2019). Such fossils reveal a more 

complex evolutionary history than extant character distributions might suggest. 

Chapter 1 also discussed how we ought to study evolution, particularly when 

using comparative methods (Gardner and Organ, 2021). Phylogenetic comparative 

analyses are not unique in that they require careful study designs that maximise 

effective sample sizes. Studies continue to investigate character distributions like 

Darwin’s scenario to establish a model-based solution for avoiding the extreme 

pseudoreplication of Darwin’s and like scenarios (Boyko and Beaulieu, 2022; Uyeda 

et al., 2018). These include the use of graphical models to clarify the direction of 

causality (Uyeda et al., 2018) and hidden Markov models to detect tree-wide variability 

in character transition rates (Boyko and Beaulieu, 2022). However, no matter how 

complex, new statistical models will never adequately correlate a character with an 

effective (evolutionary) sample size of one independent character state change—as 

is the case with Darwin’s scenario (Boyko and Beaulieu, 2022; Gardner and Organ, 

2021). Chapter 1 concluded with three recommendations for researchers: 1) 

Researchers should design studies that prioritise a priori hypotheses and maximising 

evolutionary sample sizes. Correlation is not necessarily causal, but it can be 

consistent with a priori hypotheses that have clear and testable predictions. 2) Future 

studies should also assess the suitability of statistical models. For discrete traits, 

Chapter 1 introduced the phylogenetic imbalance ratio, which already has been used 

by researchers (Cosme, 2022) and implemented into R packages (Minter, 2021). 3) 

Researchers should seek a consilience of evidence from disparate fields, like 

biogeography and developmental biology, to evaluate evolutionary hypotheses. 

Consilience has long been considered an indicator of a strong hypothesis or theory 
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(Whewell, 1840), and it was a major influence on Charles Darwin as he built evidence 

for his theory of evolution by natural selection (Ruse, 1979, 1975; Thagard, 1977).  

Fossils are integral to our understanding of evolution. Although the fossil record 

is patchy and contains well-known biases (Jablonski et al., 2003; Raup and Boyajian, 

1988; Signor and Lipps, 1982), it also records species, ecosystems, and climates that 

are vastly different from the modern world (Benton, 1995; Mannion et al., 2014). As 

such, it provides a rich and independent data source to test hypotheses on the 

biogeography, ecology, and evolution of species. There is no such thing as a perfect 

data set, but the inherent limitations and biases in the rock record can be addressed 

with a variety of approaches (Alroy et al., 2001; Benson and Upchurch, 2013; Benton 

et al., 2013). The more complex our models become, however, the more pressing it is 

to understand different types of biases. For example, formation count is commonly 

used as a proxy for sampling bias in comparative analyses (O’Donovan et al., 2018; 

Sakamoto et al., 2016; Tennant et al., 2016a, 2016b); however, particularly in studies 

on biogeography, it is crucial to account for the geographic variation in fossil sampling 

rate (Benson and Upchurch, 2013; Close et al., 2020; Gardner et al., 2019; Jones et 

al., 2021). Inferences on biogeographic dispersal and ancestral locations might be 

influenced by disproportionate fossil sampling of different regions around the globe, 

including countries and communities that historically have had fewer resources to 

collect or publish new fossils (Raja et al., 2022). In Chapter 2, we established a metric 

and approach to assess geographic sampling biases and apply it to the dispersal 

history of early tetrapodomorphs (Gardner et al., 2019). The study found that 

estimated dispersal rates are exceptionally high in regions with undersampled 

terrestrial rock records. Estimated ancestral locations also coincided with regions that 
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are well-sampled for that stage in geologic time, including the ancestral location of the 

first terrestrial stem-tetrapod.  

Sampling the past is also necessary for establishing general rules of ecology. 

Researchers have long sought to establish ecological rules to organise and explain 

the global distribution of species. For example, Bergmann’s rule posits that warm-

blooded animals from higher latitudes (and colder climates) tend to be larger than 

those from lower latitudes. The rule would have implications for the global distribution 

of biodiversity and structure of ecosystems, as well as our ability to manage 

biodiversity due to recent climate change. However, ecological rules in general suffer 

from three problems: they are often tested in a post hoc fashion through the 

subsampling of larger datasets, they lack models allowing the evolutionary rate to shift 

from ancestor to descendant, and they lack null models for proper hypothesis testing. 

In Chapter 3, these problems were addressed by using a new phylogenetic approach 

to assess Bergmann’s rule, in which the rate of poleward dispersals vary across the 

tree along with the rate of body size evolution. The study also builds the first null 

models for Bergmann’s rule by leveraging the Mesozoic dinosaur and mammal fossil 

record, when the climate was more temperate than the Present, including recent fossil 

discoveries from the Cretaceous Prince Creek Formation of Northern Alaska. This 

framework was then used to analyse the largest biogeographical dataset of extant 

mammals yet compiled, for which there is no support for Bergmann’s rule as an 

ecological generalisation. The study sets a new standard for studying ecological rules 

in extant taxa. It also showcases the fossil record’s value for testing broad ecological 

hypotheses.  

The evolution of function is crucial for understanding how changes in climate 

and environment influence ecosystem structures through time. Changes in the 
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environment can drive functional adaptation. The study of morphological adaptations 

have long been typological (Padian and Horner, 2002). Yet, quantifying how functional 

systems evolve from ancestors to descendants has remained difficult to study due to 

an absence of methods that model such evolution. Chapter 4 provides a new approach 

for modelling the evolution of functional systems. The study applies recently 

developed variable rates models to evolve the parameters of generalised functional 

equations across phylogenetic lineages of dinosaurs. The analyses reveal that 

innovations in locomotor function gave way to shifts in the rate of evolution. Multiple 

dinosaur lineages that evolved large-bodied quadrupedality independently showed 

major reductions in the rate of forelimb locomotor evolution. This demonstrates that 

locomotor form can strongly dictate functional adaptation. There was also accelerated 

evolution in the hindlimb retractor mechanics of birds and bird-like (maniraptoran) 

dinosaurs. This was driven by a shift to a style of locomotion where the primary 

hindlimb retractor musculature was reduced and detached from the tail, indicating that 

locomotor shifts can accelerate the evolution of functional systems. The study 

provides a framework for studying functional evolution along lineages and reveals how 

locomotor innovations dictate evolutionary rates. 

Altogether, these four studies highlight the utility of the fossil record for 

informing evolutionary models and our understanding of evolution. When paired with 

phylogenetic comparative models, fossils can provide invaluable insights into 

sampling biases (through time, space, and across phylogenies), general ecological 

trends, and the evolution of function systems and innovative locomotor adaptations.   
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