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energy using structure functions evaluated from the motion of finite-sized
neutrally-buoyant particles
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2)ICTP-East African Institute for Fundamental Science, University of Rwanda, Kigali,
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(Dated: 24 April 2023)

Statistical relations used for estimating the dissipation rate of turbulent kinetic energy (TKE) in isotropic tur-
bulence from the inertial subrange of Lagrangian temporal and spatial structure functions are extended here
to the case of more realistic turbulence spectra that include low frequency and low wavenumber ranges. It is
shown that using the traditional relations based only on the inertial subrange substantially underestimates the
dissipation. The improved relations are better constrained by experimental data from which the dissipation
is evaluated, enabling more accurate dissipation estimates. The concept is illustrated using laboratory data
from water tank experiments of turbulence generated by an oscillating cylinder, where the dissipation is eval-
uated in 3 independent ways: from Lagrangian spectra and from Lagrangian temporal and spatial structure
functions calculated from the motion of neutrally-buoyant finite-sized particles. An additional correction to
the relations for estimating the dissipation from the spatial structure functions is applied to take into account
the filtering effect of the particles due to their finite size. It is found that, for these particular experiments,
the TKE dissipation rate scales well with dimensionally consistent quantities built using the amplitude of the
oscillation of the cylinder and the period of its motion, and the constant of proportionality in this scaling
relation is determined using the method proposed here. Although the turbulence under consideration is quite
anisotropic, the adopted theoretical framework, which assumes isotropic turbulence, seems to be applicable
to the experimental data as long as the turbulence statistics are averaged over the 3 main flow directions.

I. INTRODUCTION

The dissipation rate of turbulent kinetic energy (TKE)
(hereafter simply called dissipation) in turbulent flows
is almost invariably estimated from measurements using
results from Kolmogorov’s theory, which postulates that
the inertial subrange of the turbulence spectra is pro-
portional to a power of the dissipation1–3. Conceptually,
this procedure poses no problems when the dissipation
is estimated directly from the spectra, but calculation
of spectra from raw turbulence data always involves a
certain amount of processing, with the underlying as-
sumptions inevitably leading to some loss of accuracy. A
more straightforward way to estimate the dissipation, at
least from a data processing point of view, is by using
the structure functions of the turbulence4,5, for which
Kolmogorov’s results may be expressed equivalently as a
proportionality of the structure functions to a power of
the dissipation6–8. de Jong et al.9 and Bertens et al.10

give detailed accounts of how to estimate the dissipation
from spectra and structure functions obtained in labora-
tory experiments using particle image velocimetry (PIV).

However, one aspect that is often overlooked is that
Kolmogorov’s theory only specifies the form of the tur-
bulence spectrum in the inertial subrange, whereas the
structure functions receive contributions from the whole
spectrum6. This necessarily makes the relations that

a)Corresponding author: m.a.teixeira@reading.ac.uk

are available to link the structure functions to the corre-
sponding spectra inaccurate to some degree. Being based
on the assumption that only the spectrum in the inertial
subrange matters in this calculation, existing relations
expressing the structure functions in terms of the dis-
sipation are best suited to very large Reynolds number
flows, where the inertial subrange extends over a wide
range of scales. But this approach is subject to inac-
curacies in real cases, where the inertial subrange may
be narrow, or sampled at a resolution that is not fine
enough. It is known that the inertial subrange displayed
by structure functions is narrower than that displayed by
the corresponding spectra (see figs. 1 and 2 of Ref. 11).
Unlike what happens for quantities where the viscous cut-
off of the spectra is of crucial importance, such as the
direct calculation of the dissipation or of the acceleration
variance from their definitions12, in the evaluation of the
dissipation from structure functions the low-wavenumber
part of the spectrum plays a more important role.

Hence, in the present study the functional dependence
of the Lagrangian temporal structure function and of the
spatial structure functions on the dissipation in homo-
geneous and isotropic turbulence will be re-derived for
energy spectra that include, not only an inertial sub-
range, but also a low wavenumber or low frequency range.
These relations will then be applied to observational data
coming from laboratory experiments by Mériaux et al.5,
(hereafter denoted as M2020) of turbulence generated
in a water tank by an oscillating cylinder, moving in a
Lissajous figure with an amplitude of 7.5 cm. In these
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experiments, turbulence statistics were diagnosed from
the motion of neutrally-buoyant finite-sized particles im-
mersed in the flow. Despite their relatively large size
(diameter D ≈ 2 cm or D/η = O(100 − 200), where η
is the Kolmogorov microscale – see Table 2 of M2020),
the particles were small enough to capture sufficient in-
formation on the inertial subrange of the turbulent mo-
tion. The reader is referred to M2020 for more details.
Finite-sized particles immersed in a fluid have been used
by numerous authors, either to study their clustering
behaviour13,14, the acceleration of the flow15, or the ro-
tation of the particles16. In this work, the particles are
assumed to be purely passive and homogeneously dis-
tributed throughout the fluid, sampling the flow in an
unbiased way.

The dissipation is evaluated here from the improved re-
lations using the Lagrangian frequency spectrum of the
turbulence, the Lagrangian temporal structure function
and the spatial structure functions resulting from these
experiments (the latter of which are evaluated using a
methodology developed by Monaghan and Mériaux17).
The results show that the dissipation estimates are all
consistent, and correct a perceived underestimation of
the dissipation, confirming the usefulness of the new re-
lations.

This article is organized as follows. In section II, an
overview is presented of the derivation of the statistical
relations between the structure functions and the dissipa-
tion, and new extended relations are derived. In section
III, spectra and structure functions are computed from
laboratory data and fitted by their theoretical forms pre-
dicted by these new relations, yielding values of the dis-
sipation. The dissipation is also shown to conform to a
simple scaling, based on the physical characteristics of
the experimental setup. Finally, section IV summarizes
the main conclusions of this study.

II. METHODOLOGY

A. Established relations

An overview of the currently used approximations to
relate turbulence spectra and structure functions (and
thence estimate the dissipation) is necessary before the
new, more refined appoximations, are introduced. It
will be assumed in the theoretical treatment that the
turbulence is statistically homogeneous, stationary and
isotropic. Kolmogorov’s hypothesis about the inertial
subrange can be expressed for the wavenumber energy
spectrum of the turbulence, E(k), as

E(k) = αε2/3k−5/3, (1)

where α is a constant (known as Kolmogorov’s constant),
ε is the dissipation and k is the wavenumber. For the
Lagrangian frequency spectrum, φ(ω), Kolmogorov’s hy-

pothesis can be expressed as

φ(ω) = βεω−2, (2)

where ω is the (angular) frequency and β is a coefficient
(sometimes also known as Kolmogorov constant). Note,
however, that β is actually a function of the Reynolds
number of the flow12,18. The spectra presented above
are defined such that

3

2
〈u2i 〉 =

3

2
q2 =

∫ +∞

0

E(k) dk, (3)

〈u2i 〉 = q2 =

∫ +∞

0

φ(ω) dω, (4)

where the brackets denote ensemble averaging, ui is a
turbulent velocity component, and i = 1, 2, 3, correspond
to the 3 spatial directions in a Cartesian coordinate sys-
tem. q denotes the root-mean-square (RMS) turbulent
velocity.

Relationships analogous to Eqs. (1) and (2) may be de-
rived for both the spatial and the Lagrangian temporal
structure functions. It seems fair to assume that the most
fundamental relations are naturally formulated in spec-
tral space, since arguments about the turbulence cascade
are spectral by nature. The second-order Lagrangian
temporal structure function is defined, in terms of the
corresponding Lagrangian frequency spectrum, φ(ω), as

DT (τ) = 〈[ui(t+ τ)− ui(t)]2〉

= 2

∫ +∞

0

φ(ω) [1− cos(ωτ)] dω, (5)

where t is an arbitrary time and τ is the time lag on
which DT depends. The second equality is equivalent
to Eq. (13.31) of Monin and Yaglom6. For stationary
turbulence, DT does not depend on t, but only on τ .
Using Eqs. (2) and (5), it can be shown that

DT (τ) = C0ετ, (6)

and the coefficient C0 satisfies C0 = πβ. Equation (6)
is equivalent to Eq. (21.30’) of Monin and Yaglom6. It
should be noted that Eq. (6) is only valid for timescales
within the inertial subrange of the Lagrangian frequency
spectrum, for which Eq. (2) holds.

The relations expressing the spatial structure functions
in terms of the wavenumber spectrum (to be presented
next) are somewhat more involved. If the turbulence is
assumed to be isotropic, any two perpendicular directions
can be chosen for the velocity components and spatial lag
l defining the longitudinal and transverse spatial struc-
ture functions. We choose these directions as x and y,
respectively.

The longitudinal and transverse second-order spatial
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structure functions, CL and CN , can then be defined as

CL(l) = 〈[u1(x+ l, y, z)− u1(x, y, z)]
2〉

= 2

+∞∫∫∫
−∞

Φ11(k) [1− cos(k1l)] dk1dk2dk3, (7)

CN (l) = 〈[u1(x, y + l, z)− u1(x, y, z)]
2〉

= 2

+∞∫∫∫
−∞

Φ11(k) [1− cos(k2l)] dk1dk2dk3, (8)

where l is the space lag, Φij (with i, j = 1, 2, 3) is the
three-dimensional wavenumber spectrum of the turbu-
lence and k = (k1, k2, k3) is the wavenumber vector,
which is related to k via k = (k21 +k22 +k23)1/2. Equations
(7)-(8) are particular cases of Eq. (13.44) of Monin and
Yaglom6. Since the turbulence is homogeneous, CL and
CN do not depend on x = (x, y, z), but only on l.

In order to make progress in this calculation, it is
necessary to introduce spherical polar coordinates for
the wavenumber in the integrals of Eqs. (7)-(8), namely
k1 = k sin θ cosϕ, k2 = k sin θ sinϕ and k3 = k cos θ,
where θ and φ are angles. Then, using also the fact that,
in isotropic turbulence we have19

Φij(k) =

(
δij −

kikj
k2

)
E(k)

4πk2
(9)

(where δij is the Kronecker delta), those equations be-
come

CL(l) =
1

2π

∫ 2π

0

∫ π

0

∫ +∞

0

E(k) sin θ
(
sin2 θ sin2 ϕ+ cos2 θ

)
× [1− cos(kl sin θ cosϕ)] dk dθ dϕ, (10)

CN (l) =
1

2π

∫ 2π

0

∫ π

0

∫ +∞

0

E(k) sin θ
(
sin2 θ sin2 ϕ+ cos2 θ

)
× [1− cos(kl sin θ sinϕ)] dk dθ dϕ. (11)

If Eq. (1) is inserted into Eqs. (10)-(11), the change of
variable ρ = kl enables the dependences of CL and CN
on l to be moved outside the integrals. Then the inte-
grals can be simplified by reverting to Cartesian coordi-
nates (but now with ρ taken as the radial coordinate),
and adopting cylindrical coordinates to perform the in-
tegration. This enables an immediate integration along
the azimuthal angle, and an analytical, although not so
immediate, integration in the radial direction. The final
result is

CL(l) = Ck (εl)
2/3

, CN (l) =
4

3
Ck (εl)

2/3
, (12)

where

Ck =
36

55
α

∫ +∞

0

1− cosx

x5/3
dx =

54

55
α

∫ +∞

0

sinx

x2/3
dx.

(13)

Either integral in Eq. (13) needs to be evaluated numeri-
cally. The integral in the second equality of Eq. (13) can
be evaluated to yield ≈ 1.34, which multiplied by 54/55
and by α = 2 (a value justified below) gives Ck ≈ 2.63.

Equations (6) and (12) provide the classical results
that we wish to improve.

B. Derivation of the extended relations

The extension of the wavenumber energy spectrum
(Eq. (1)) that includes a low-wavenumber range is known
as a Von Kármán spectrum20, and can be expressed as
the model spectrum

E(k) =
αε2/3L5/3(kL)4

[C + (kL)2]
17/6

, (14)

where C is an adjustable dimensionless constant and L is
the longitudinal integral length scale of the turbulence,
defined as

L =
π

2q2

∫ +∞

0

k−1E(k)dk. (15)

The constants α and C can be determined theoretically
by requiring that E(k), as given by Eq. (14), satisfy both
Eqs. (3) and (15). This yields

C =

(
27π

110

)2
(∫ π/2

0

sin4 θ sec1/3 θ dθ

)−2
≈ 0.5578

(16)
(where the integral needs to be evaluated numerically)
and

α =
55

9π
C5/6

(
εL

q3

)−2/3
. (17)

Since the Von Kármán spectrum (Eq. (14)) is valid at
infinite Reynolds number, εL/q3 in Eq. (17) should be
taken also in the infinite Reynolds number limit. It is
known from DNS and experiments that εL/q3 ≈ 0.5 in
that limit (see, e.g. fig. 2 of Teixeira and Mériaux12 or
Refs. 8 and 21). Choosing, for example, εL/q3 = 0.46,
Eq. (17) yields α = 2, as was seen previously to be ap-
propriate to assume for a Von Kármán spectrum12,19,20.
This value will be adopted here.

The extension of the Lagrangian frequency spectrum
(Eq. (2)) to low frequencies is sometimes called a Lorenz
spectrum11,12,22, and can be expressed as the model spec-
trum

φ(ω) =
βε

ω2
0 + ω2

, (18)

where ω0 is an adjustable cofficient, which is related to
the integral time scale TL,

TL =
1

q2

∫ +∞

0

〈ui(t)ui(t+ τ)〉 dτ

=
π

2q2
φ(ω = 0) =

π

2q2
βε

ω2
0

. (19)
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From Eqs. (4) and (18), it also follows that

〈u2i 〉 = q2 =
π

2

βε

ω0
. (20)

Eqs. (19) and (20) imply, more simply, that ω0 = 1/TL,
as noted by Mordant et al.22.

If the same procedure used to obtain the second-order
Lagrangian temporal structure function (Eq. (6)) is fol-
lowed, but using φ(ω) defined according to Eq. (18) in
Eq. (5), this yields

DT (τ) = C0ετ
1− e−ω0τ

ω0τ
=
C0ε

ω0

(
1− e−ω0τ

)
. (21)

Note that, unlike Eq. (6), in which DT grows linearly
with τ , DT as given by Eq. (21) approaches a constant
at large τ , namely

DT (τ → +∞) =
C0ε

ω0
. (22)

Note also that in the limit ω0τ → 0, i.e. for time lags
τ contained in the inertial subrange, which are relatively
short compared with 1/ω0, Eq. (21) reduces to Eq. (6).

As for DT , the procedure used in section II-A to de-
rive the second-order longitudinal and transverse spatial
structure functions (Eq. (12)) can be extended by consid-
ering the wavenumber spectrum E(k) of Eq. (14) instead
in Eqs. (10)-(11). After substantial calculations, where
the changes of variables of integration follow much the
same procedure as described previously, the following re-
sults are obtained:

CL(l) =
36

55
α (εl)

2/3

(
L

l

)5/3∫ +∞

0

1− cosx[
C +

(
L
l

)2
x2
]5/6 dx,

(23)

CN (l) =
6

55
α (εl)

2/3

(
L

l

)5/3

×
∫ +∞

0

3C + 8
(
L
l

)2
x2[

C +
(
L
l

)2
x2
]11/6 (1− cosx) dx. (24)

Unfortunately, CL and CN cannot be formulated now
as compactly as in Eq. (12), because their dependence
on l extends into the integrals, which cannot be eval-
uated analytically. However, it can be shown that in
the limit l/L → 0, Eqs. (23)-(24) reduce to Eq. (12), as
they should. This is the limit of relatively small scales,
which are those contained in the inertial subrange of the
wavenumber spectrum. Conversely, and although this is
not as clear, CL and CN both approach constants in the
opposite limit, i.e. as l/L→∞.

1. Correction for particle filtering

To make a comparison of the spatial structure func-
tions with data easier, it must be taken into account that

the finite-sized particles used to probe the turbulent flow
are unable to resolve spatial scales smaller than their own
size. Following Teixeira and Mériaux12, this is taken into
account here by multiplying the structure functions given
by Eqs. (23)-(24) by the following factor(

l

πD

)2

sin2

(
πD

l

)
(25)

(valid for D/l ≤ 1, and zero otherwise), where D is the
particle diameter. Equation (25) was obtained directly
from Eq. (24) of Ref. 12 (equivalent to Eqs. (5.6) and
(5.7) of Ref. 3, where this approach was introduced), by
replacing k = 2π/l, noting that a spatial displacement l
corresponds to a wavenumber 2π/l. This approach takes
into account the fact that when particles are at a distance
D from each other, they are in contact, therefore CL or
CN should both be zero: the multiplicative correction of
Eq. (25) approaches 1 when D/l → 0, but becomes 0 at
D/l = 1 (or higher), which makes sense physically.

Although this filtering certainly has an impact in the
frequency/temporal domain, that impact is more uncer-
tain, as a translation of spatial filtering into the temporal
domain presupposes a ‘dispersion relation’ for the turbu-
lence. While such a relationship between spatial and tem-
poral scales certainly exists in a fuzzy sense3,23, it cannot
be quantified precisely, as in turbulence all scales interact
with each other and, for example, high wavenumbers k in
E(k) may correspond to both low and high frequencies
ω in φ(ω).

III. RESULTS

A. Testing of the new relations

Equations (18), (21) and (23)-(24) will be used next
to independently estimate the dissipation from the data
of laboratory experiments described by M2020, in which
Lagrangian spectra, temporal structure functions and
spatial (originally, only longitudinal) structure functions
were evaluated from the motion of finite-sized neutrally-
buoyant particles. The turbulence produced by the
oscillating cylinder in these experiments was naturally
anisotropic (unlike, for example, in Ref. 24), nevertheless
the theoretical relations presented above will be applied
to the data by averaging the spectra and structure func-
tions over the 3 spatial directions. The hope is that the
isotropic theory will still hold in anisotropic conditions.

Figure 1 shows the compensated Lagrangian frequency
spectra, Lagrangian temporal structure functions, spatial
longitudinal structure functions and spatial transverse
structure functions calculated from both experiments 4,
6, 7, 8, 10 and 11 of M2020 (see their Tables 1 and 2), and
Eqs. (18), (21) and (23)-(24). We note that all these com-
pensated quantities are such that the inertial subrange
corresponds to a horizontal line, whose height indicates
the value of ε.
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FIG. 1. Compensated Lagrangian frequency spectra ω2φ(ω)/β as a function of ω for experiments 4, 6, 7, 8, 10 and 11 of
M2020 in respectively (a),(e),(i),(m),(q),(u). Compensated second-order Lagrangian temporal structure function DT (τ)/(C0τ)
as a function of τ for experiments 4, 6, 7, 8, 10 and 11 of M2020 in respectively (b),(f),(j),(n),(r),(v). Compensated second-

order longitudinal spatial structure function [CL(l)/Ck]3/2/l as a function of l for experiments 4, 6, 7, 8, 10 and 11 of M2020

in respectively (c),(g),(k),(o),(s),(w). Compensated second-order transverse spatial structure function {CN (l)/[(4/3)Ck]}3/2/l
as a function of l for experiments 4, 6, 7, 8, 10 and 11 of M2020 in respectively (d),(h),(l),(p),(t),(x). Black lines denote
experimental data averaged over the 3 spatial directions; solid red lines correspond to the fits provided by Eqs. (18), (21), (23)
and (24), respectively; dashed red lines correspond to Eqs. (23) and (24) multiplied by Eq. (25) (where the portion to the left
of l = D = 2 cm should be ignored).
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The Lagrangian frequency spectrum is presented as
ω2φ(ω)/β as a function of ω, assuming that C0 = 5,
or equivalently β = 1.6. Although β actually depends
on the Reynolds number of the flow, as pointed out by
Teixeira and Mériaux12, the range of Reynolds numbers
considered in the selected experiments of M2020 is lim-
ited enough (Reλ ≈ 306− 418) that this value is reason-
able (see, for example, fig. 3 of Ref. 12). There is another
adjustable parameter in the Lagrangian frequency spec-
trum: ω0. It would in principle be possible to estimate
this parameter independently from the experimental data
by calculating the integral time scale TL using Eq. (19),
or an equivalent expression based on the temporal struc-
ture function, namely

TL =
1

2q2

∫ +∞

0

[DT (τ → +∞)−DT (τ)] dτ, (26)

which results from Eqs. (5) and (19). However, TL cal-
culated in this way converges poorly, perhaps because
of insufficient sampling, or the limited extent of the tank
used in the experiments. Although tentative estimates of
TL using this method suggest that it takes values of the
same order as those that are going to be obtained next, it
is more reliable to estimate ω0 by trial and error from the
values that optimize the fit of the theoretical prediction
(Eq. (18)) to the experimental data. In order to avoid
the weak constraint that this procedure, by itself, would
place on ω0, it was decided to assume additionally that
ω0 scales inversely with the period T of the oscillation of
the cylinder. It was found that the relation

ω0 =
1

TL
=

5.462

T
(27)

best describes this dependence, so it will be adopted here-
after.

The temporal structure function is plotted in fig. 1
as DT (τ)/(C0τ) as a function of τ , which means that
according to Eq. (21) it also depends on ω0 (assuming
the same value of C0 as for the Lagrangian frequency
spectrum). For consistency, here ω0 is also calculated
according to Eq. (27).

Finally, the spatial longitudinal and transverse struc-
ture functions are plotted in fig. 1 as [CL(l)/Ck]3/2/l and
{CN (l)/[(4/3)Ck]}3/2/l, respectively, as a function of l.
For α = 2, as assumed previously, these quantities de-
pend, according to Eqs. (23)-(24), on the longitudinal
integral length scale of the turbulence L. As the integral
time scale, the longitudinal integral length scale could
also, in principle, be calculated independently from the
data using its definition, Eq. (15), or its equivalent in
terms of a spatial structure function. However, due to
poor convergence of the calculation, in this case result-
ing directly from the limited extent of the tank, it is
better to treat it as an adjustable parameter. The rele-
vant basic parameter of the experiments that has dimen-
sions of length is the amplitude of the cylinder motion
A = 7.5 cm. So L should be proportional to this quantity.

TABLE I. Parameters of the Experiments and theoretical fits
shown in fig. 1: the period of the cylinder motion T , the RMS
velocity q, the longitudinal integral length scale L, ω0, and the
dissipation ε. Values of T and q come from Tables 1 and 2 of
M2020, respectively. Note that q results from the average of
the velocity variances of the 3 velocity components.

Experiment T (s) q(cm s−1) L(cm) ω0(rad s−1) ε(cm2 s−3)

4 2.5 7.0 4 2.185 45

6 3 5.7 4 1.821 25

7 2 8.6 4 2.731 85

8 1.75 10.3 4 3.121 145

10 3 5.2 4 1.821 22

11 1.75 9.6 4 3.121 125

Since A does not change throughout the experiments,
here a constant value of the longitudinal integral length
scale will be assumed, which optimizes agreement with
the data: L = 4 cm, i.e. L = 0.533A. Note that this value
of the longitudinal integral length scale is smaller than
the values of M2020 in their Table 2, because the integral
length scale in M2020 was simply defined as L = q3/ε
(cf. Ref. 25), whereas it can be shown that L, as defined
by Eq. (15), obeys instead L = Cεq

3/ε, where Cε is a
constant lower than 1, as pointed out previously12. In-
terestingly, the value of L found in the present study is
consistent with the length scale found for the transition
between the ballistic and diffusive dispersion regimes in
figs. 11 and 13 of M2020.

Table I shows all the relevant parameters for the ex-
periments that were used to estimate the dissipation in
fig. 1, namely the number of the experiment, the period
of the cylinder motion T , the RMS velocity q (as given
in Table 2 of M2020), the assumed longitudinal integral
length scale L, ω0 derived from T according to Eq. (27),
and the dissipation ε estimated (by trial and error) from
the optimal fit of the red lines to the black lines in the
graphs of fig. 1. Using the values of L and ω0 given in Ta-
ble I, the values for ε obtained from the best fits (red lines
in fig. 1) are found to be identical across the turbulence
statistics for each experiment, showing the consistency of
the proposed method.

The fits of the Lagrangian frequency spectra in fig. 1
are fairly good. Although the regions that separate the
inertial subrange from the low-frequency range appear
to be well-captured, the measured spectra depart from
the fits both at low and at high frequencies. Note that
only the horizontal portion of the theoretical prediction
would exist if only the inertial subrange was taken into
account, as is traditionally done. At high frequencies, the
departure of the measured spectra from the theoretical
prediction is caused by the aliasing associated with the
finite dimensions of the particles used to probe the tur-
bulence. This is shown by the oscillations visible in the
black lines at the highest frequencies. These oscillations
might be viewed as a manifestation of the spatial ex-
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tent of the particles, related to a corresponding temporal
extent through the fuzzy ‘dispersion relation’ that repre-
sents the spatio-temporal structure of the turbulence11.
Curiously, the spectrum has more energy at high frequen-
cies in Experiment 8, and to a lesser extent in Experiment
11, for reasons which are not obvious. At low frequencies,
the spectra evaluated from measurements also have less
energy than their fits. This may be either an effect of the
spatial confinement of the turbulence (which temporally
translates into a deficit of energy at low frequencies), or
may be an effect of the way in which the spectra are ob-
tained from the raw data by Fourier transformation. It
is worth mentioning that the approach used to calculate
the spectra as proportional to the square of the Fourier
transform of the original temporal signal is strictly ac-
curate for time series of infinite extent, being subject to
errors for finite time series.

The measured temporal structure functions in fig. 1 are
quite smooth, perhaps as a result of being less processed
that the frequency spectra. The theoretical fits to these
functions are quite satisfactory to the right of their max-
ima, but the experimental data fall below the theoretical
fits to the left of these maxima, except for Experiment 8,
for reasons which are not obvious. It can be noticed that
the inertial subrange in the temporal structure functions
is almost non-existent in most cases. This is consistent
with figs. 1 and 2 of Lien and D’Asaro11, which show that
a well defined inertial subrange exists in the structure
function only at substantially higher Reynolds numbers
than it does for the spectrum. The overestimation of the
experimental data by the fits to the left of the maxima
is obviously due to the aliasing introduced by the finite
dimensions of the particles used to probe the turbulence,
being a counterpart of the phenomenon observed for the
spectra at high frequencies. However, no disagreement
is observed between experimental data and the fits for
high values of τ , which is surprising, given the disagree-
ment of the spectra at low frequencies. This suggests
that perhaps the temporal structure function at high τ
is weakly sensitive to the form of the spectrum at low
frequencies. In any case, the prediction that DT (τ) ap-
proaches a constant at high τ is clearly confirmed by the
data. Note that, using the traditional formula for DT (τ),
DT (τ)/(C0τ) is predicted to be constant, corresponding
to the low τ asymptote of the theoretical predictions (red
lines). If this classical theoretical prediction (horizontal
red line) was fitted to the brief plateau exhibited by the
experimental data and corresponding to the maximum
values of DT (τ)/(C0τ) (the inertial subrange), this fit
would be, on the one hand, rather uncertain, since this
plateau has a very limited extent. On the other hand, the
value of ε estimated from this fit would underestimate
the dissipation by up to a factor of 2, since it would be
substantially lower than the asymptote of the new theo-
retical prediction at low τ (red line). An underestimation
of ε relative to the values contained in Table I is, indeed,
seen in Table 2 of M2020, whose estimates were based
on the fit of a horizontal line to the short plateau shown

by DT (τ)/(C0τ) in fig. 1. It should also be stressed that
the fit of DT (τ) for high values of τ , which the present
method is able to provide, is considerably more reliable
than any fit at lower τ , since it refers to large timescales,
presumably corresponding to large length scales, which
are well resolved by the probing particles. For all these
reasons, the improved formula for DT (τ), Eq. (21), is cru-
cial to achieve consistency between ε obtained from the
frequency spectrum and the temporal structure function.

The measured spatial structure functions in fig. 1 are
somewhat noisier than the temporal structure functions,
which may be a consequence of the smaller sample used to
calculate them (see details in M2020). The experimen-
tal data (black lines) are now compared directly with
the theoretical predictions of Eqs. (23) and (24) (solid
red lines), and with the same theoretical predictions cor-
rected for the finite size of the probing particles (dashed
red lines). The traditional relations for the compensated
spatial structure functions would correspond to a con-
stant (horizontal lines) that, if fitted to the experimental
data (plateaus in the black lines), would again produce
considerably lower estimates of ε than the ones obtained
using the improved relations. At low values of l, the
theoretical predictions (solid red lines) depart from the
measured structure functions, due to the finite size of
the probing particles. This is partly captured by the
theoretical predictions corrected for particle size filter-
ing (dashed lines), however, there are some discrepan-
cies. For example, the extension of non-zero values of
the structure functions for l < 2 cm, i.e. for separations
smaller than the diameter of the particles D = 2 cm in
fig. 1, might be caused by measurement errors. At high-
values of l, the structure functions calculated from mea-
surements are limited by the dimensions of the domain
where the experiments are performed, which are 30 cm in
all directions. This causes not only the sudden cutoff of
the experimental data (see right end of the black lines),
but also their decay at high l at a rate faster than pre-
dicted theoretically (red lines). Whereas the exact limits
of the frequency spectrum and temporal structure func-
tion are rather fuzzy, because the turbulence does not
satisfy a ‘dispersion relation’, the limits of the domain of
the spatial structure function are rigidly defined by the
size of the probing particles and of the tank. The spike
near the upper limit of l in Experiment 7 is not easy to in-
terpret, but overall the corrected theoretical predictions
(dashed red lines) seem to be in reasonable agreement
with the experimental data (black lines), corroborating
the values of ε estimated from the frequency spectra and
temporal structure functions.

All these results illustrate the advantages of the im-
proved relations of the temporal and spatial structure
functions for estimating ε reliably. In the following sec-
tion, it will be analysed to what extent the basic param-
eters of the experiments can be used to scale the RMS
velocity and dissipation in this turbulent flow.
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B. Scaling of the turbulence characteristics

Apart from the size of the tank in which the experi-
ments of M2020 were performed, the obvious length and
time scales that the experimental setup contains are the
amplitude of the motion of the cylinder that generates
the turbulence A and the period of its oscillations T . We
would expect the characteristics of the turbulence to be
scaled by these quantities. This idea is tested next.

Figure 2 shows comparisons between various scalings
using A and T , for the RMS velocity q and for the dis-
sipation ε, compared with the measurements of q made
by M2020 and with the values of ε estimated using the
method developed in the present study. fig. 2(a) shows
that the RMS velocity scales fairly well with A/T , ap-
proximately following the relation

q = 1.15
2A

T
= 0.79

L

TL
. (28)

There is a slight departure from this scaling between Ex-
periments 6 and 10, and between Experiments 8 and 11,
for which the scaling would predict the same RMS veloc-
ity (given that both A and T are equal for these pairs
of experiments), but q is larger for Experiments 6 and 8.
This is because the RMS velocity depends (albeit weakly)
on the direction of initial motion of the cylinder, with q
being slightly lower when the initial motion is upward,
an aspect noted by M2020. In M2020, TL ranges, among
the experiments selected in the present study, from 0.6
s in Experiment 8 to 1.4 s in Experiment 10, roughly
following a proportionality to T , as hypothesized here
(Eq. (27)). Our values of TL range instead from 0.32 s in
Experiments 8 and 11 to 0.55 s in Experiments 6 and 10.
This means that the present values are smaller by a factor
of 0.4-0.5. Such a difference can be explained by the way
TL was simply estimated in M2020 from the point where
the velocity correlation function changes sign instead of
calculating the integral in the first equality of Eq. (19).
The velocity correlation function in fig. 10b of M2020
decreases approximately exponentially, but crossing zero
(cf. fig. 1 of Ref. 22). If this variation is approximated as
linear, it can be shown that the integral of such a corre-
lation function is less than the value of the time lag when
the function reaches zero, by a factor 0.5. The concave
upward curvature of the measured correlation function
means that this value is probably a slight overestimate.
Now, the second equality of Eq. (28) shows that q can
also be expressed in terms of L and TL (using L = 0.533A
and Eq. (27)), which is equivalent to TL = 0.79L/q. In
M2020, TL was found to be TL = 0.6L/q. The constants
of proportionality in Eq. (28) and M2020 are therefore
roughly similar, and consistent with the fact that both
our L and TL are half the values estimated by M2020.

Figure 2(b) presents a scaling for the dissipation based
on A and T compared with the values of ε estimated
before in Table I. This scaling is expressed by the relation

ε = 3.15
(2A)2

T 3
= 0.27

L2

T 3
L

, (29)
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FIG. 2. (a) RMS velocity scaled using A and T vs the RMS
velocity measured by M2020 (given in Table I); (b) dissipa-
tion scaled using A and T vs the dissipation estimated from
the procedure developed in the present study; (c) dissipation
scaled using the RMS velocity and A vs the dissipation es-
timated from the procedure developed in the present study.
Symbols correspond to different experiments, and the dashed
lines correspond to the predictions of Eqs. (28)-(30).

which can also be expressed in terms of L and TL by the
second equality. The dissipation obeys this scaling fairly
well, except for its two highest values, corresponding to
Experiments 8 and 11, where the scaling does not predict
any difference in ε, but the values estimated from the
spectra and structure functions are different. This is a
consequence of the same phenomenon mentioned above
for the RMS velocity, amplified, for the highest value of
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ε, by the fact that T appears in the scaling expression of
Eq. (29) raised to the power of 3, instead of 1.

Finally, fig. 2(c) shows a scaling relation where the
measured q is included, in combination with A, in the
form

ε = 2.05
q3

2A
= 0.546

q3

L
, (30)

(with the second equality using again the relation L =
0.533A), and this is compared with the ε estimated from
the spectra and structure functions. As may be seen, this
scaling is even more accurate than the one in fig. 2(b),
corroborating the idea that not accounting for the effects
of the direction of the initial motion of the cylinder is
what causes the slight disagreement with the scaling of
Eq. (29), manifested through its dependence on T . The
accuracy of Eq. (30), still keeping A as a (constant) scal-
ing parameter, is very good, as clearly shown by fig. 2(c).
It is worth noting that if the definitions of q provided by
Eq. (28) are inserted into Eq. (30), the scaling constants
that appear in equations similar Eq. (29) are 3.12 and
0.27, respectively, which (unsurprisingly) are quite close
to 3.15 and 0.27. This indicates that L and TL have
been correctly related to the physical properties of the
experimental setup. It is also interesting that the con-
stant included in the second equality of Eq. (30) (0.546) is
slightly larger, but relatively close, to the value of εL/q3

previously assumed in Eq. (17) at infinite Reynolds num-
ber (0.46). The discrepancy goes in the right direction
and the value is of the correct order of magnitude for a
flow at the Reynolds numbers used in the experiments
(see fig. 2 of Teixeira and Mériaux12).

These results show that the characteristics of the tur-
bulence generated in the experiments of M2020 can be
scaled with the key parameters of the experimental setup,
which is not surprising. However, it would have been
impossible to determine the exact form of these rela-
tionships, namely the corresponding proportionality con-
stants, without fitting a theoretical model to the mea-
surements. In the case of ε, this is much facilitated by the
new statistical relations proposed in the present study.

IV. CONCLUSIONS

Statistical relations that have been traditionally used
to estimate the dissipation rate of TKE from the spectra
and structure functions in a turbulent flow have a validity
that is limited to scales within the inertial subrange. In
this study, new relations were derived for the temporal
and spatial structure functions in isotropic turbulence,
which result from formal definitions of these quantities
where the energy spectra of the turbulence also include a
low-wavenumber or low-frequency range. This was done
by assuming a Von Kármán wavenumber spectrum and
a Lorenz Lagrangian frequency spectrum. The resulting
improved definitions of the structure functions are better
suited to obtaining consistent and reliable estimates of

the dissipation from these different flow statistics, par-
ticularly when they are evaluated from the motion of
finite-sized neutrally-buoyant particles.

Data from the laboratory experiments of M2020 were
used to test the new relations. It was seen that, de-
spite the need to adjust additional parameters, namely
ω0 and L, these relations allowed the values of ε to be
better constrained by the spectra and structure functions
calculated from the experimental data than the classic
relations. As the inertial subrange diagnosed from the
particle motion is somewhat narrow, partly because the
Reynolds number of the flow is not very high, but pri-
marily because of the aliasing of small scales inherent to
the finite size of the particles, spectra that have a low-
wavenumber or low-frequency range add precious infor-
mation to the structure functions. This is particularly
clear in the case of the Lagrangian temporal structure
function, where the existence of the high-τ asymptotic
behaviour (corresponding to the low-frequency range of
the Lagrangian spectra) is confirmed by the data, and
greatly facilitates fitting the theory to the data in fig. 1.

Good fits of the frequency spectra, temporal structure
functions and spatial structure functions predicted theo-
retically to the data were seen to correspond to consis-
tent values of the dissipation from all these statistics for
each experiment of M2020. The estimated values of ε are
somewhat larger (by factors between 1.3 and 1.9) than
those originally determined by M2020, suggesting an un-
derestimation of the latter, as expected for situations in
which the inertial subrange is narrow. Although the the-
oretical framework that was used and improved here is, in
principle, only valid for isotropic turbulence, it was seen
to be applicable to the considerably anisotropic turbu-
lence generated in the laboratory experiments of M2020,
if the turbulence statistics are averaged over the 3 spatial
directions.

It was also shown that the characteristics of the turbu-
lence (RMS velocity and dissipation) scale on the phys-
ical characteristics of the experimental setup associated
with the stirring, namely the amplitude of the oscillating
motion of the cylinder and the period of this oscillation.
Knowing these scalings is, however, insufficient to eval-
uate q and ε, as the proportionality constants included
in the scaling relations can only be obtained after es-
timating those quantities independently, by fitting the
measurements to a model, as is done here. As these scal-
ings are expressed in terms of quantities specific to the
experimental setup adopted by M2020, their generality
is probably limited. The equivalent scalings expressed in
terms of the integral length and time scales, however, are
likely to be more general.

All of the dissipation estimates in this paper have relied
on an evaluation (and modelling) of second-order flow
statistics. It would also be interesting to estimate the
dissipation from the third-order spatial structure func-
tion, for which an exact theoretical result exists in the
inertial subrange (Kolmogorov’s 4/5 law) (see Eq. (6) of
Ref. 8). Although this is beyond the scope of the present
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study, it is an interesting idea for future work.

DATA AVAILABILITY

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.
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