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Abstract

The Southern Ocean is an important regulator of global climate, and accurately

predicting its future evolution under climate change constitutes a critical scientific

challenge. Mesoscale eddies are key to the dynamics of the Southern Ocean, but

the mechanisms and time scales of their natural and forced variability are not com-

pletely understood. Motivated by the dynamical analogy between the Antarctic Cir-

cumpolar Current and the tropospheric jet stream, the natural variability of eddy-

mean flow interaction is studied by adapting a two-dimensional model of storm

track variability to the oceanic case. It is found that eddies and the mean flow

interact according to a predator-prey oscillatory relationship in both an idealised,

eddy-resolving, channel configuration and the SOSE state estimate product of the

Southern Ocean. The oscillatory nature of the dynamics reflects in the structure

of the phase space diagrams, where quasi-periodic cycles with typical timescales

of a few weeks can be observed. The simplified mathematical model qualitatively

captures the statistical properties of the interaction well. The time scales of forced

adjustment are investigated by means of an ensemble of wind step-change experi-

ments run with the idealised channel configuration. It is found that the temperature

response is driven largely, but not exclusively, by changes in the ocean’s circula-

tion, with enhanced mixing also playing an important role. Circulation changes

have a rich spatial structure, and vertical/meridional displacements of the residual

overturning circulation cells have a large impact on the temperature response even

though the channel is strongly eddy-compensated. The time scales of the response

vary across the domain, and are set by the spin-up of baroclinic eddies. The results

presented in this Thesis bring the fundamental mechanisms of eddy variability into

clearer focus, and inform the interpretation of more realistic numerical simulations

of the Southern Ocean.
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Chapter 1

Introduction

1.1 The Southern Ocean: observations and dynamics

This work is dedicated to the study of the Southern Ocean. The Southern Ocean is

a region of crucial importance for the global climate but, due to its remote location

and severe environmental conditions, is only sparsely observed compared to other

ocean basins. Nevertheless, a growing number of observations has become available

in recent decades (particularly since the advent of satellite measurements and e.g.

of the Argo and SOCCOM projects), which puts several aspects of its dynamics

into clearer focus. In this introductory section, I lay out the basic facts and briefly

review what is known about the Southern Ocean based on observations.

The remainder of this chapter is structured as follows: the importance of the

Southern Ocean for the global climate is discussed in section 1.2. Section 1.3 fo-

cuses on the patterns of climate change detected in the Southern Ocean by exam-

ining the trends observed in recent decades. Possible explanations for the observed

changes and open questions are summarised in section 1.4. Finally, in section 1.5

I explain what the purpose of this Thesis is, and how it fits into the wider research

context.
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The geography of the Southern Ocean

The Southern Ocean is the portion of the world ocean that encircles Antarctica: the

Antarctic continental shelf marks its southern boundary. There is no such geograph-

ical boundary to the north, where the Southern Ocean communicates directly with

the other ocean basins (Atlantic, Pacific, and Indian). The northern boundary is,

rather, of a dynamical nature, and is commonly located around 30◦S: equatorward

of this latitude, sub-tropical gyres are the dominant feature of the oceanic circula-

tion. Importantly, the longitudinal extent of the Southern Ocean is not restricted

by land: Drake passage, the relatively small gap between the southern tip of South

America and the Antarctic Peninsula, is where the Southern Ocean is narrowest. A

latitudinal band centred at Drake passage exists with no bottom topography above

approximately 2000 m (i.e., water is at least 2000 m deep at any point within the

band), which gives the Southern Ocean the unique geometry of a re-entrant channel

(figure 1.1).

The Antarctic Circumpolar Current

The Southern Ocean hosts the world’s largest oceanic current, named the Antarctic

Circumpolar Current (ACC). The ACC flows eastward and circumnavigates Antarc-

tica. Its volume transport at Drake passage is estimated around 134±13 Sv (Rintoul

et al., 2001), where 1 Sv = 106 m3s−1. By comparison, the volume transport of the

Gulf stream is approximately 30 Sv (Marshall and Plumb, 2008). The ACC has

a complex structure and consists of a varying number of interacting jets (Thomp-

son, 2008), which are associated with regions of strong horizontal gradients named

fronts (Orsi et al., 1995). The climatological positions of the intense SubAntarc-

tic Front (SAF) and Polar Front (PF) mark the northern and southern flanks of the

ACC respectively (see figure 1.1). The large-scale flow of the ACC is zonal (that

is, directed along a latitude circle), but the fronts display significant and persistent

meridional excursions due to topographical steering (Rintoul et al., 2001), which

are particularly pronounced in the lee of major topographical features (for example,

2



SAFPF

70∘ S

50∘ S

0∘ E

60∘ E

120∘ E

180∘ E

60∘W

120∘W

Drake	
Passage

Weddell
Sea

Ross Sea

Antarctic	
Peninsula

Figure 1.1: Stereographic view of the Southern Ocean region. Continuous green

lines mark an estimate of the climatological position of the SubAntarctic Front

(SAF) and Polar Front (PF) during the 2005-2010 period (data from SOSE: see

chapter 5 for details). Green arrows indicate the sense of circulation of the Antarc-

tic Circumpolar Current (ACC). Regions with bottom topography above 1000 m

(between 2000 m and 1000 m) are shaded in dark (light) blue.

downstream of Drake passage).

Drivers of the ACC

The ACC is driven by wind stress and by buoyancy fluxes at the surface. Wind stress

is the force imprinted by the wind on a surface of unit area (and is computed from

the wind speed by means of semi-empirical expressions named bulk formula), while

buoyancy is a quantity closely related to the density of seawater. The wind forcing

is supplied by the Southern Hemisphere jet stream, and is predominantly zonal (see

for example figure 4 in Marshall and Speer (2012)). The leading mode of variability

3



of the southern winds is called Southern Annular Mode (SAM) (Swart et al., 2015),

and a positive phase of the SAM index is associated with a poleward intensified

atmospheric jet. The SAM index oscillates between its positive and negative phase

with weekly to monthly time scale (Thompson et al., 2011). The buoyancy fluxes

stem from a number of different physical mechanisms, including radiative fluxes,

freshwater fluxes due to evaporation and precipitation, and sea-ice and ice-sheet

processes. The resulting pattern is of buoyancy loss near Antarctica, buoyancy gain

over the ACC region, and buoyancy loss north of the SAF (see for example figure 1

in Abernathey et al. (2011)).

The meridional circulation

The surface winds drive not only the strong, zonal flow of the ACC but also, due to

the effect of the Earth’s rotation, a weaker Ekman flow directed northward and con-

fined to a shallow surface layer. By mass conservation, the northward flow must be

accompanied by a return flow directed southward, initially thought to be located in

a thin bottom Ekman layer (geostrophic flow below 2000 m depth also contributes).

Closure of the circulation would be supplied by upwelling (upward movement of

water) near the Antarctic shelf and downwelling (downward movement) north of

the ACC: this pattern of circulation is known as the Deacon cell (Doos and Webb,

1994). However, the upper interior of the ocean is stratified, i.e. the vertical gra-

dient of density is not zero. A problem with a theory of the meridional circulation

based on the Deacon cell is then that it requires large levels of diapycnal mixing

to explain the vertical motions, where diapycnal mixing is a diffusion process that

acts across lines of constant density (a parcel of water that is displaced vertically in

a stratified environment moves from a surface of constant density to another, and

must change its potential temperature or salinity accordingly (Ledwell et al., 1998).

Buoyancy sources are largely confined to the surface boundary layer, which means

that changes of density in the interior must be accomplished by physical processes

akin to diffusion). However, the amount of diapycnal mixing necessary to sup-

port the Deacon cell is not observed (Marshall and Speer, 2012). Hydrographical
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sections of the Southern Ocean offer an avenue towards the solution to this prob-

lem. The contours of temperature, salinity, density, and oxygen concentration rise

poleward rather than being approximately horizontal, which represents a major dif-

ference between the Southern Ocean and the sub-tropical oceans (see figure 1.2 for

a schematic and figure 4.6.3 in Rintoul et al. (2001) for observations). A simple

set of equations, named the thermal wind equations, relate the negatively sloping

buoyancy surfaces to the zonal flow of the ACC. Importantly, the tilted isopycnals

(lines of constant density) provide a quasi-adiabatic pathway for deep water to reach

the surface and close the meridional circulation. Inversion methods (Marshall and

Speer, 2012) confirm that the Meridional Overturning Circulation (MOC) of the

Southern Ocean is directed mostly along isopycnals in the interior (see a schematic

in figure 1.2). The MOC is partitioned into two main cells, named upper and lower

cell, and the 27.6 kg m−3 density surface represents an approximate divide between

the two (Marshall and Speer, 2012). The cells are counter-rotating, in that the av-

erage transport operated by the upper cell is clockwise, while that operated by the

lower cell is counter-clockwise. In the meridional plane, in between the upper and

lower cell is located the upwelling branch of the MOC. In 3D, parcels follow a spi-

ralling path modulated by topographical features (Tamsitt et al., 2017). The inferred

pattern of circulation crosses isopycnal surfaces in the surface layer, where diapyc-

nal flow is supported by buoyancy fluxes: I will examine the associated processes of

water mass formation more in detail in chapter 3. A complete dynamical explana-

tion of the MOC of the Southern Oceans requires advanced theoretical instruments,

which I discuss in depth in chapter 2. In essence, though, the observed MOC is un-

derstood as a small, residual circulation from the partial compensation of two larger

contributions: one is the circulation described by the Deacon cell, which acts to tilt

isopycnals and is powered by wind stress at the surface. The competing circula-

tion acts to flatten isopycnal surfaces (see figure 1.2), and is induced by baroclinic

eddies.
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Figure 1.2: Schematic of the Meridional Overturning Circulation. Zonal-mean,

time-mean temperature, colours, and time-mean residual overturning circulation,

contours. Continuous (dashed) lines indicate positive (negative) values of the resid-

ual streamfunction. Data from an idealised configuration of the MITgcm, see chap-

ter 3 for details. Black arrows highlight the sense of the circulation of the upper

and lower cells. A third, counter-clockwise rotating cell is also shown near the

northern boundary. The action of the wind-induced and eddy-induced circulations

is schematically represented by blue and red oriented lines respectively.
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Baroclinic eddies

Eddies are turbulent structures that develop in geophysical flows, and represent de-

partures from a mean state. The precise meaning of the word ”eddy”, though, may

vary greatly depending on the context, and largely depends on the exact definition of

what the mean state is. A first, major distinction is between standing eddies (which

are persistent features of the flow: an example is the standing meanders of the ACC,

formally, time-mean deviations from a zonal average), and transient eddies (which

vanish in the time mean: atmospheric storms are examples). Transient eddies are

coherent, vortex-like structures, and oceanic transient eddies of typical size rang-

ing from order ten to a hundred km are called mesoscale eddies. Mesoscale eddies

are especially important because they contribute a large fraction of the ocean’s total

kinetic energy (Frenger et al., 2015). In the Southern Ocean, mesoscale eddies are

generated via baroclinic instability (and by barotropic instability to an extent, for

example in western boundary currents), which is a mechanism ubiquitous in stably

stratified, rotating fluids. Baroclinic eddies tend to cluster along the strongest fronts

of the ACC (Frenger et al., 2015), and their life-cycle (growing phase, propagation,

and decay) and interaction with the mean jets bear resemblance with those of at-

mospheric storms (Williams et al., 2007). In the Southern Ocean, baroclinic eddies

lived more than one month have a mean radius of approximately 40 km and a mean

life span of 10 weeks, during which time they propagate an average distance of ap-

proximately 120 km (Frenger et al., 2015, Moreton et al., 2020). On average, they

extend vertically down to approximately 2000 m. The distribution of eddy kinetic

energy is not uniform throughout the Southern Ocean region, with eddy generation

hot-spots found in the lee of topography (Rintoul, 2018). Baroclinic eddies are key

to the dynamics of the Southern Ocean for a number of reasons: firstly, they coun-

teract the wind-induced circulation and thereby set the observed MOC, as discussed

above. Secondly, baroclinic eddy fluxes are the primary mechanism of near-surface

poleward heat transport in the Southern Ocean (Hogg et al., 2008), which is needed

to close the heat budget because the part of the Southern Ocean closer to Antarc-

tica is exposed to buoyancy loss. The dominant mechanism by which this transport
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is accomplished is eddy stirring (Frenger et al., 2015): poleward anomalies of the

meridional velocity tend to be co-located with warm temperature fluctuations, and

vice versa, so that the net effect is to transport heat polewards. Finally, baroclinic

eddies communicate zonal momentum from the surface (where it is replenished by

wind stress) to the bottom (where it is dissipated by bottom drag and topographic

form drag), and thus mediate the zonal momentum balance. In fact, the meridional

transport of heat and the downward transfer of momentum are two different man-

ifestations of the same physical mechanism (named form stress), as explained in

chapter 2.

1.2 Importance of the Southern Ocean for the global

climate

The ocean is a key regulator of global climate because it has the potential to ex-

change large amounts of heat and carbon with the atmosphere via air-sea fluxes.

Due to its unique dynamics, the Southern Ocean is the place where most of these

exchanges take place, and thus plays a special role in operating the ocean’s climate

regulating functions. The upwelling branch of the MOC is a quasi-adiabatic path-

way that allows ancient, abyssal water (i.e., water that has not been in direct contact

with the atmosphere since pre-industrial times) to upwell and graze the surface,

where it is exposed to air-sea fluxes. The upwelling of deep water and ensuing ex-

changes with the atmosphere are important for a number of reasons: firstly, abyssal

water is rich in dissolved inorganic carbon, also called natural carbon (Gruber et al.,

2019): part of this water is advected equatorward by the upper cell of the MOC,

with release of natural carbon in the atmosphere south of 44◦S by outgassing. On

the other hand, the Southern Ocean is a sink of natural carbon north of 44◦S approx-

imately, and the two effects compensate nearly exactly (Gruber et al., 2019). The

amount of natural carbon released in the atmosphere depends critically on the rate

of upwelling, and thus on the intensity of the MOC. Modulations of the MOC in
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glacial-interglacial cycles may have altered the natural carbon sink of the Southern

Ocean, with important effects on past climates: for example, a strengthening of the

MOC in the transition between glacial and inter-glacial states may have enhanced

the outgassing of natural carbon, further warming the climate (Marshall and Speer,

2012). Secondly, the upwelled water is rich in nutrients (i.e., chemical elements

involved in the life cycle of phytoplankton), which are (partly) transported outside

of the Southern Ocean where they compensate for the downward flux due to sink-

ing of organic matter (Rintoul, 2018). Thirdly, since it was last in contact with the

surface centuries ago, the upwelled water is poor in anthropogenic heat and carbon

(i.e, heat and carbon produced by human activity), of which it can uptake a large

fraction. Frölicher et al. (2015) used the suite of CMIP5 climate models to estimate

that, over the period 1865-2005, the Southern Ocean has absorbed up to about 40%

of the carbon and up to 75% of the heat produced by human activity. Thus, the

Southern Ocean acts prominently to mitigate the effects of global climate change.

The uptake of anthropogenic heat and carbon, however, is regulated by the circula-

tion and structure of the Southern Ocean, which are themselves subject to a broad

range of changes induced by global warming with unclear consequences for the heat

and carbon sink. Before discussing possible future scenarios and open challenges,

I briefly review the trends observed in the climatology of the Southern Ocean over

recents decades.

1.3 The Southern Ocean in a changing climate

The limited purpose of the following review is to provide the reader with a general

sense for the recent changes observed in the Southern Ocean: I refer to the cited

literature for a comprehensive illustration. Possible drivers of the observed changes

and implications for the future climate are discussed in section 1.4.
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Surface winds and SAM index

Surface westerly winds blowing over the ACC have strengthened on average in the

recent decades. Swart and Fyfe (2012), for example, found a statistically significant

positive trend of surface (zonal-mean) zonal wind stress over the period 1979-2010

(see their figure 1). The annual mean jet position has not shifted significantly over

the same period, although a statistically significant poleward shift is observed in the

Austral summer (DJF) position. The strengthening is more pronounced during the

Austral summer months too. Stronger winds are associated with positive anomalies

of the SAM index, and observations indicate that the SAM index has increased in

the last few decades. For example, Doddridge and Marshall (2017) found a signifi-

cant DJF positive trend of the SAM index from 1970 onwards (see their figure 1).

Circulation

Böning et al. (2008) found no significant increase in the slope of the isopycnals

and by thermal wind conclude that the ACC zonal transport (and the meridional

circulation) have not changed significantly in recent decades. More recently, Hogg

et al. (2015) found a small decrease in the ACC circumpolar transport from 1993

onwards. On the other hand, they found a statistically significant positive decadal

trend in Eddy Kinetic Energy (EKE), more pronounced in the Indian and Pacific

sectors.

Sea Surface Temperature

The sea surface of the Southern Ocean, poleward of the ACC, has cooled over the

last few decades (or it has warmed very weakly compared to regions equatorward

of the ACC, see figure 1 in Marshall et al. (2014)). For example, Fan et al. (2014)

estimate that the Southern Ocean’s SST has decreased by 0.4 ◦C in the annual mean

over the period 1979-2011 (see their figure 4), with a more pronounced decrease
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during the Austral summer. There are, however, important regional differences in

the temperature trends: notably, the area around the Antarctic peninsula registered

a warming tendency over the same time period.

Sub-surface temperature

The interior of the Southern Ocean, north or within the ACC, has warmed over

recent decades. For example, Gille (2008) found that the upper 1000 m of the

Southern Hemisphere Ocean warmed at all depths in the period from the 1930s to

the early 2000s, particularly in the upper 200 m (see their figure 5). Estimates of

interior temperature trends south of the ACC are less reliable due to the paucity of

observations (Sallée, 2018).

Sea Ice Concentration

Antarctic Sea Ice Concentration (SIC) has increased on average in the last few

decades. Fan et al. (2014) estimate that SIC increased by 12 % in the annual mean

during the period 1979-2011. Similarly to the SST response, there are significant

regional differences: for example, SIC has decreased near the Antarctic peninsula

in the period of time considered by the study. A large and sudden decrease in sea ice

extent was observed in 2016-2017 (Meehl et al., 2019), but the overall trend over

the 40 year period 1979-2018 remains positive (Parkinson, 2019).

Salinity

The surface and the interior of the Southern Ocean have freshened over time. For

example, Durack and Wijffels (2010) found a statistically significant freshening

trend for the Southern Ocean region during the period 1950-2008, see their figure 6

for details. Böning et al. (2008) estimate a freshening trend of approximately 0.010

p.s.u. per decade since the 1960s.
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Carbon absorption

The Southern Ocean carbon sink has reversed trend, from weakening to strength-

ening, over the last three decades. Specifically, Gruber et al. (2019) found that the

carbon sink weakened in the period 1990-2000 and recovered in the subsequent

decade to the levels expected from the atmospheric increase in carbon dioxide. See

their figure 5 for details.

1.4 Challenges and open questions

Many of the most hotly debated problems regarding the dynamics of the South-

ern Ocean concern the physical explanation of the recent observational trends. In

this section, I present an overview of the state of the affairs for a selection of these

problems. In the interest of brevity, I tie the discussion up with the effect of wind

stress changes on the circulation and surface properties of the Southern Ocean. The

purpose is to provide the reader with a simplified summary of recent research ad-

vances, highlighting which problems have achieved a general consensus and which

are still under scrutiny. In the latter case, I briefly examine the main open lines of

investigation. Three themes, I believe, are recurrent in this presentation: (i) whether

or not decadal trends of surface winds project onto the interannual modes of vari-

ability, (ii) the key role of baroclinic eddies for virtually all of the phenomena under

consideration, and (iii) the competition between forced versus natural explanations

of the observed trends. I shall discuss in section 1.5 how this Thesis fits into the

discussion.

1.4.1 Drivers of observed wind changes

There is general consensus that the observed trends in the Southern Hemisphere tro-

pospheric circulation (strengthening of the Southern Hemisphere jet stream and its
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poleward shift in the Austral summer months; positive trend of the DJF SAM index)

have been driven mainly by ozone depletion over Antarctica, although increased

concentration of greenhouse gases (GHGs) also played a role (Polvani et al., 2011).

The precise mechanism by which ozone depletion induces the observed changes

likely involves stratosphere-troposphere coupling, and is not entirely understood

yet (Swart et al., 2015). Recovery of stratospheric ozone is expected to drive a neg-

ative trend of summertime SAM during the twenty-first century which, however,

will be probably offset or overruled by a positive trend induced by increased GHGs

concentration (Thompson et al., 2011). Anomalous wind stress is likely going to be

influential in the dynamics of the Southern Ocean region over the next decades.

1.4.2 Response to observed wind changes: the ACC circumpolar

transport

Wind stress is a primary driver of the ACC. This leads to the question of whether

the observed positive trend in the SAM index has the potential to induce long-term

changes in the circumpolar flow. There is now general consensus about the fact that

the equilibrium ACC transport is rather insensitive to wind stress changes, a phe-

nomenon known as eddy saturation. Note that eddy saturation is a statement about

the equilibrated response of the ocean (Munday et al., 2013): the response to wind

stress variability on short time scales behaves quite differently, as observations indi-

cate that circumpolar transport is highly correlated with the interannual variability

of the SAM index at lags smaller than one year (Hogg et al., 2015, Meredith et al.,

2004). Rather than on observations, which (i) cover a relatively short time-span,

(ii) are characterised by strong variability, and (iii) do not allow to separate eas-

ily between the effects of wind changes and other contributions, the consensus on

eddy saturation is rooted in numerical simulations. Early works employing eddy-

parametrising general circulation models suggested that the ACC transport would

increase significantly in response to wind stress changes (Fyfe and Saenko, 2006),

in agreement with simplified theoretical models based on eddy closures (e.g. Mar-
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shall and Radko (2003) find that the equilibrium transport scales linearly with wind

stress). The advent of eddy-resolving numerical simulations changed this picture

drastically: a plethora of studies (Farneti et al., 2010, Hallberg and Gnanadesikan,

2006, Hogg et al., 2015, Morrison and Hogg, 2013, Munday et al., 2013) employ-

ing eddy-permitting or eddy-resolving GCM configurations at varying degrees of

realism has since then demonstrated that the sensitivity of the circumpolar transport

to wind changes is much smaller than previously thought (albeit typically non-zero:

the transport increase ranges between 0 - 20 % across models). Note that, by ther-

mal wind, this implies that the slope of the isopycnals is only weakly sensitive to

wind stress too. The additional energy input in the system by the excess surface

wind stress is not transferred to the mean ACC flow but fuels eddy motions (hence

the name eddy saturation), see the next section.

Evidence that the Southern Ocean is close to a state of eddy saturation is sup-

plied by theoretical studies too. By imposing net zero meridional circulation above

topographically blocked geostrophic contours, Straub (1993) found that baroclinic

instability is a precondition to achieve a statistically equilibrated state: physically,

the Ekman transport must be balanced by baroclinic eddies. The Charney-Stern-

Pedlosky necessary condition for baroclinic instability (Vallis, 2017) can then be

used to estimate the baroclinic circumpolar transport. Notably, the prediction ob-

tained by Straub (1993) does not depend on surface wind stress.

The idea that the circumpolar transport of the ACC is governed by the baro-

clinic activity of the channel has recently been the object of further investigation.

By making assumptions on the physical mechanisms of eddy energy production and

dissipation, Marshall et al. (2017) obtained an estimate for the baroclinic circum-

polar transport based on the eddy energy balance. The key point is that there must

be enough eddy energy production to compensate for dissipation from bottom drag

and scattering into lee waves. Since the eddy energy source is assumed propor-

tional to the vertical shear of the zonal velocity (or, by thermal wind, to the slope of

the isopycnals), the eddy energy budget is effectively a constraint on the baroclinic

zonal velocity. A surprising consequence, corroborated by numerical simulations,
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is that the predicted baroclinic transport increases with increasing bottom drag: sim-

ilarly to Straub (1993), however, it is independent on wind stress. Marshall et al.

(2017) also shown that, in turn, the eddy energy of the channel is dictated by its

zonal momentum balance. The fact that the eddy activity determines the zonal

transport while the momentum balance sets the mean eddy energy is reminiscent

of the Ambaum and Novak model of atmospheric variability (Ambaum and Novak,

2014), where the diabatic production of baroclinicity sets the mean eddy heat flux,

and the dissipation of eddies sets the mean baroclinicity. The Ambaum and Novak

model is studied at length later on in this manuscript, see sections 1.5 or 4.1 for an

anticipation.

1.4.3 Response to observed wind changes: eddy activity

There is general consensus about the following facts: (i) Eddy activity, as measured

for example by EKE, peaks with a lag of 0-3 years after a positive deviation in the

wind stress (or SAM index), and (ii) at equilibrium, EKE scales approximately lin-

early with wind stress. The consensus on point (i) emerges from both observations

(Hogg et al., 2015, Meredith and Hogg, 2006, Screen et al., 2009) and numerical

simulations with GCMs (Patara et al., 2016, Wilson et al., 2015), with observations

also revealing that there are important regional differences in the response. The

time lag appears to be dependent on the amplitude of the peak (Meredith and Hogg,

2006), with larger wind anomalies being associated with faster response time scales.

Meredith and Hogg (2006) propose that the mechanism responsible for the delayed

response is a positive feedback induced by topographic steering on baroclinic gen-

eration (Hogg and Blundell, 2006). In this picture, the 0-3 years time scale cor-

responds to the time needed to communicate surface momentum anomalies to the

bottom topography. On the other hand, Patara et al. (2016) finds that EKE correlates

negatively with bottom roughness, which conflicts with the mechanism invoked by

Meredith and Hogg (2006). Point (ii) is supported primarily by studies based on

numerical simulations performed with eddy-resolving GCM configurations (Aber-
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nathey et al., 2011, Morrison and Hogg, 2013, Munday et al., 2013). It is possible

to model the dependence of equilibrium EKE on wind stress with a (quasi-linear)

power law relationship: these scaling theories, however, cannot be easily validated

at present as many models have not achieved convergence under grid redefinition

yet, and the equilibrium sensitivity of EKE depends on model resolution (Munday

et al., 2013).

1.4.4 Response to observed wind changes: meridional overturn-

ing circulation

The equilibrium response of the Meridional Overturning Circulation to wind stress

changes is less uniform across models than that of the circumpolar transport. The

salient concept is that of eddy compensation: the term was originally introduced by

Viebahn and Eden (2010) to denote a set of mathematical conditions describing the

sub-linear scaling of equilibrium meridional transport with wind stress. Since then,

though, its meaning has evolved, and the term is now more generally used to indi-

cate a weak dependence of the MOC on wind stress. Note that eddy compensation

and eddy saturation are distinct mechanisms, and an eddy saturated ocean does not

necessarily imply an eddy compensated one, and vice versa (Morrison and Hogg,

2013). The current view, substantiated by numerical simulations performed with

general circulation models, is that the real Southern Ocean is in a partially eddy

compensated state. There is, however, significant disagreement between models

about the structure and magnitude of the response. For example, Viebahn and Eden

(2010), Abernathey et al. (2011), and Munday et al. (2013) use idealised model

configurations and find qualitatively similar scaling of the upper cell with wind

stress (sub-linear, but with finite sensitivity). However, the lower cell strengthens

in Munday et al. (2013) and weakens in Abernathey et al. (2011), possibly due to

the different treatment of the northern boundary (Munday et al., 2013). The re-

sponse of the upper cell is weak in the realistic configuration employed by Farneti

et al. (2010), but sizeable in those of Bishop et al. (2016) and Patara et al. (2016).
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Compared to the equilibrium sensitivity, the transient response of the MOC to wind

stress changes is far less studied, with only a handful of studies having addressed

the problem to date (e.g. Doddridge et al. (2019) for an eddy-resolving configu-

ration). The MOC is thought to be one of the major drivers of variability in the

Southern Ocean carbon sink (Gruber et al., 2019), therefore a complete understand-

ing of its inner workings will be critical to anticipate future trends of the Southern

Ocean carbon uptake.

1.4.5 Drivers of observed SST and SSI changes

There is no clear consensus about what mechanisms drive the observed trends in

surface temperature and sea ice. Here, I offer a brief review of recent progress

made towards the solution of this problem. The presentation is not comprehensive

and focuses on the role of wind stress changes, which is one of the main emphasis

of this Thesis. I refer the reader to the cited literature for a more general discussion.

Wind changes and the two-time scale mechanism

A first, debated possibility is that surface wind stress changes (primarily induced

by Antarctic ozone depletion) drive the observed SST and sea-ice trends. It is well

established from both models and observations that positive anomalies in the SAM

index precede surface cooling over and south of the ACC region on interannual time

scales, due to anomalous northward Ekman fluxes and turbulent heat fluxes (Ciasto

and Thompson, 2008). Furthermore, Doddridge et al. (2019) found that a similar

relationship holds between the SAM index and the seasonal sea-ice extent. This

naturally leads to the question of whether decadal modulations of the surface winds

can explain the observed surface cooling and sea-ice expansion (note that this prob-

lem is similar to that discussed in section 1.4.2 for the circumpolar transport: do

long-term trends of the wind forcing project on the interannual modes of variabil-

ity?). Surprisingly, early modelling studies suggested that ozone depletion induces
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long-term warming and melting of sea ice (Bitz and Polvani, 2012).

A mechanism to reconcile this apparent paradox was put forward by Ferreira

et al. (2015), who used the climate response function (CRF) formalism of Mar-

shall et al. (2014) to show that the simulated SST response of two different general

circulation models (an idealised configuration of the MITgcm and CCSM3.5) to an

instantaneous reduction in ozone cover is endowed with two time scales, a fast and a

slow one. The fast, short-term response is characterised by surface cooling operated

by anomalous northward Ekman transport of cold water, while the slow, long-term

response consists of surface warming due to enhanced upwelling of warm water

from below the seasonal sea ice. In this picture, the cross-over time scale (i.e. the

time at which a reversal of the response is observed, from cooling to warming) cor-

responds to the time needed for the sub-surface warm anomaly to entrain the mixed

layer.

The two-time scale mechanism of Ferreira et al. (2015) offered an attractive

framework to attribute observed SST and sea-ice trends based on physical argu-

ments, but concomitantly opened a number of questions, including: (i) the magni-

tude and time scales of the SST response vary significantly between the two mod-

els considered in the study, which leaves the response of the real Southern Ocean

largely unconstrained, and (ii) it is unclear to what extent the proposed mechanism

can explain the variability of the observed SST time series under realistic modula-

tions of the ozone forcing.

In order to answer (i) and place a tighter constraint on the time scales of re-

sponse, Kostov et al. (2017) developed an alternative CRF framework which allows

to estimate the SST response function to unit SAM deviations from the internal

variability of a model’s unperturbed state. This methodology was applied to the

preindustrial control simulations of the GMCs included in the CMIP5 suite and re-

vealed that, although the response of many models is indeed characterised by a fast

cooling phase followed by a long-term warming, some cool monotonically follow-

ing a SAM increase. Furthermore, the cross-over time varies over a broad range of
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values (from a few years to a few decades) for those models that do show sustained

warming, with large uncertainties associated with the ensemble-mean response. The

intermodel spread, the authors found, can be partially explained by differences in

the models’ climatologies. Subsequently, Kostov et al. (2018) demonstrated that

the CRF technique allows to reconstruct the SST trends simulated in the historical

runs of 19 CMIP5 models with good approximation. This technique, however, was

less effective for observations: correcting for biases in the models’ representation

of historical SAM trends reduces the discrepancy between predicted and observed

trends only marginally.

Seviour et al. (2016) addressed point (ii) by performing ozone step-change ex-

periments with a comprehensive general circulation model, GFDL-ESM2Mc. They

showed that, although the signature of the SST forced response is consistent with

the two-time scale model of Ferreira et al. (2015) and statistically significant, its

magnitude is small compared to that of natural variability (although Seviour et al.

(2017) acknowledge that natural variability is boosted in their model by a possi-

bly unrealistically large mode of convective variability). This casts doubts over the

possibility of actually detecting the forced response to wind changes from observa-

tions. Complicating the issue, Seviour et al. (2017) found that upwelling of warm

water may not be the sole driver of the warming phase of the forced response, with

sea-ice induced freshwater fluxes and subsurface mixing also playing a role. Se-

viour et al. (2019) compared the predicted SST response to instantaneous ozone

depletion from published and new model simulations and concluded that: (i) nearly

all models considered in the analysis are unable to account for the observed SST

trends based on their forced response to ozone changes (most models predict warm-

ing from the 1980s to date, whereas the surface cooled), and (ii) nearly all models

are unable to account for the observed sea-ice trends based on their forced response

to ozone changes (most models predict melting, while sea ice expanded).

Thus, evidence against the two-time scale mechanism accrues. It should be

noted, however, that all the general circulation models employed in the works cited

above are not eddy-resolving: given the crucial importance of resolving eddies in

19



the similar problem of predicting the ACC’s circumpolar transport response to wind

stress changes, it seems that further investigation of this mechanism by means of

high-resolution models is a key priority going forward. For example, Doddridge

et al. (2019) found that the SST transient response to abrupt changes in the surface

winds is characterised by sustained cooling (although their simulation is ten years

long only and not equilibrated), which is consistent with the response required to

reproduce the observed SST trends (Seviour et al., 2019). Before discussing how

the problem is addressed in this Thesis, I summarise a few of the alternative mech-

anisms proposed in the literature to explain the recent observations.

Natural variability

A second possibility is that natural variability alone can account for the observed

trends. In the author’s opinion, this theory draws part of its strength from the Oc-

cam’s razor principle: namely, it explains the facts with minimal ingredients. It is

well known that idealised (Hogg and Blundell, 2006), fairly realistic (Le Bars et al.,

2016), and comprehensive (Gnanadesikan et al., 2020) general circulation models

can exhibit modes of internal variability on decadal time-scales. An early work by

Polvani and Smith (2013) demonstrated that internal variability spontaneously pro-

duces sea-ice extent trends of similar magnitude or larger than the observed ones

in the control simulations of four CMIP5-class models. These results were later

expanded by Singh et al. (2019), who used a comprehensive climate model to show

that sea-ice trends similar to the observed ones can arise concurrently to increasing

GHGs concentration. Additionally, Polvani et al. (2021) argue that the observed re-

cent sea-ice expansion was unlikely driven by decadal trends in the SAM index, as

the correlation between SIE and SAM is weak, albeit significant, even on interan-

nual scales. It is unclear to what extent natural variability can explain the observed

trends in SST (Seviour et al., 2019).
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Freshwater fluxes

An alternative mechanistic explanation of the observed SST and sea-ice trends

hinges on freshwater fluxes by sea-ice transport. The argument is as follows: en-

hanced northward transport of sea ice is a major driver of observed salinity trends

over the Southern Ocean region (Haumann et al., 2016). Haumann et al. (2020) ar-

gue that the anomalous freshwater transport acts to increase the stratification of the

open ocean (i.e. the portion of the Southern Ocean away from the coastal region of

freezing) and thus reduces upward mixing of warm water from the sub-surface, ef-

fectively cooling the surface. In their freshwater flux modulation experiments with

a regional ocean model at eddy-permitting resolution, the pattern and magnitude of

SST change were found to reproduce observations skilfully. A companion experi-

ment featuring realistic modulations of the surface wind stress, on the other hand,

did not result into significant SST variations. A related potential mechanism is that

SST and sea-ice trends could be at least partially driven by Antarctic glacial melt,

see for example Rye et al. (2020).

1.5 This Thesis

The purpose of this Thesis is to investigate the role of geostrophic eddies in setting

the natural variability of the Southern Ocean and its forced response to wind stress

changes.

The Southern Ocean exhibits natural variability on a wide range of time scales,

from interannual to multi-decadal and longer. Natural variability on long time scales

hinders the physical attribution of recent observational trends (or perhaps drives

some of them), and thus hampers our ability to make confident predictions about

the future state of the Southern Ocean. Variability on shorter time scales is impor-

tant because the response of the Southern Ocean to modulations of the mechanical

forcing at the surface may project onto interannual modes of internal variability.
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The sea surface temperature response to wind stress changes is a prominent exam-

ple: positive SAM fluctuations lead cool surface anomalies on interannual scales,

but will decadal trends in the SAM index induce sustained cooling of the South-

ern Ocean’s surface? Baroclinic eddies are a crucial and, yet, not fully understood

component of the answer to this and similar questions. It is known that eddies may

partially compensate for wind-induced changes in the meridional overturning cir-

culation, thereby delaying or suppressing altogether the warming phase of the two-

time scale mechanism proposed by Ferreira et al. (2015). Moreover, by modulating

the response of the MOC to wind changes, the influence of the mesoscale eddy field

extends to the salinity, carbon and heat budgets of the Southern Ocean, with impli-

cations for global climate. The mechanisms that set the magnitude and time scales

of response of baroclinic eddies to wind-stress changes, however, remain elusive.

In this manuscript, I address the problem by exploring the dynamics of (i) the

natural interaction between eddies and the mean flow and (ii) the forced response of

eddies and of the circulation of the Southern Ocean to wind stress changes. My anal-

ysis rests primarily on numerical simulations run with an idealised, eddy-resolving

configuration of a general circulation model, the MITgcm, although a realistic state

estimate product, the SOSE, is considered too. Given the idealised nature of this

study, the results presented here cannot be expected to contribute directly towards

the problems discussed in the previous sections, namely, I do not make quantitative

predictions about the future state of the Southern Ocean. However, I hope that by

focussing on some of the key physical mechanisms involved, this work will trigger

and feed further studies of the driving factors of the recent observed changes.

In order to investigate the interaction between eddies and the mean flow in the

unperturbed numerical simulations, I exploit a well-documented dynamical analogy

between the Southern Ocean’s baroclinic eddy field and the atmospheric storm track

(Thompson, 2008, Williams et al., 2007). Specifically, I will adapt a simplified the-

oretical model of atmospheric storm track variability formulated by Ambaum and

Novak (2014) to the oceanic case, and I will show that the model skilfully captures

the salient traits of eddy-mean flow interaction in both the idealised configuration
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of the MITgcm and in SOSE. The theoretical model consists of a two-dimensional

dynamical system which describes the interplay between eddies and the large-scale

flow in terms of a predator-prey relationship, akin to that expressed by the Lotka-

Volterra equations of population growth (Trefethen et al., 2018). In this picture,

baroclinic eddies behave as a population of predators feeding on a pool of preys,

that is, the available potential energy stored in the mean flow: feedbacks between

the two populations induce periodic oscillations. The eddy life-cycle discussed by

Ambaum and Novak (2014) is depicted schematically in figure 1.3, and takes place

as follows: following an increase in the mean flow, as measured for example by the

slope of the isopycnals (Phase I), more energy is available to be consumed by ed-

dies. Accordingly, the eddy activity (measured e.g. by the eddy heat flux) begins to

increase too (Phase II) until, after a certain amount of time, it attains its peak value.

The increased eddy activity depletes the mean flow energy reservoir, leading to a

decrease in the slope of the isopycnals (Phase III). Eventually, there is no longer

enough energy to sustain an intense eddy activity, and the eddy heat flux falls to a

minimum (Phase IV). In the absence of eddies, the additional energy supplied by an

external forcing can then be converted into baroclinicity, and the cycle repeats. In

this work, I will consider a linearised version of the theoretical model, and I will im-

prove it by explicitly accounting for stochastic fluctuations. For both the idealised

MITgcm configuration and the SOSE, I find that the eddy life-cycle of figure 1.3

captures the dynamics of eddy-mean flow interaction accurately.

The study of the transient response of the Southern Ocean to wind changes is

conducted by running and analysing an ensemble of wind stress step-change exper-

iments with the idealised configuration of the MITgcm. The step-change approach

has a significant provenance in the literature, and its main advantage is that linear

theory (see e.g. Seviour et al. (2016) for the conditions of applicability) allows

to compute the response to an arbitrary time modulation of the forcing from the

step-change response economically (Hasselmann et al., 1993, Lembo et al., 2020).

Alongside this ensemble of simulations, I consider an individual, long-time integra-

tion of the perturbed system, which allows to investigate the time-mean properties
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Figure 1.3: Schematic of the eddy life cycle. See main text for details.

of the equilibrated channel too. Thus, although the transient ensemble cannot be run

to equilibrium due to the computational cost of the task, I can indirectly estimate

how far its members are from the statistically equilibrated state. In order to deter-

mine exactly which processes drive SST and sub-surface temperature trends in the

model, I diagnose the terms of the temperature budget, which I recombine in a novel

way to quantify the contribution of the residual circulation to the advection terms.

I find that the idealised channel configuration reacts to a wind step-change increase

with a complex spatial pattern of circulation and temperature response. Although

the time scales of adjustment are similar to those found by other studies (Dod-

dridge et al., 2019), the detailed analysis presented here reveals that surface and

subsurface temperature trends are nontrivially driven by a combination of anoma-

lous circulation and mixing contributions. The meridional circulation compensates

within about three years but, importantly, this time scale does not communicate

straightforwardly to temperature changes.

The Thesis is structured as follows: following well-established research, in

chapter 2 I discuss the dynamics of the Southern Ocean from a theoretical stand-

point. In chapter 3, I introduce the MITgcm idealised channel configuration, and

show that its reference state constitutes a plausible representation of the real South-

ern Ocean. I test the predictions of the simplified theoretical model of eddy-mean

flow interaction with data from the MITgcm idealised channel and from SOSE in
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chapters 4 and 5 respectively. Chapter 6 is dedicated to the study of the wind step-

change experiments. I offer conclusions and future perspectives in chapter 7.
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Chapter 2

Theoretical background

2.1 Introduction

This chapter is dedicated to a review of the theory pertaining the dynamics of the

Southern Ocean: its main purpose is to provide the unfamiliar reader with the min-

imal tools needed to understand the subsequent parts of this manuscript. When

relevant, the material is presented under a set of restrictive assumptions, including

the fact that the domain is simplified to a zonally symmetric re-entrant channel.

These assumptions reproduce those of the GCM configuration used to perform nu-

merical simulations of the Southern Ocean in the rest of this work and, at the cost of

generality, facilitate comparison between the analytical equations and the numerical

model. A secondary goal of this chapter (which I pursue in chapter 3 too) is thus to

pinpoint to what extent existing theory explains the output of the numerical simula-

tions considered later on. The material is potentially vast and the presentation is not

comprehensive for reasons of space, but I strived to strike a balance between brevity

and self-consistency. The chapter is laid out as follows: in section 2.2 I present the

equations of motion, and illustrate how they can be simplified by means of scaling

arguments. Section 2.3 is devoted to baroclinic instability, the primary mechanism

by which turbulence is generated in the Southern Ocean. Section 2.4 explores Eu-
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lerian Mean and Transformed Eulerian Mean theory. In section 2.5, finally, I use

the formal equipment introduced above to discuss a number of dynamical models

specific to case of the Southern Ocean.

2.2 The equations of motion

The equations of motion for a stratified, rotating fluid are outlined in this sec-

tion. Specifically, we work with the Boussinesq approximation on the β -plane: this

choice is suited to the oceanic case (Vallis, 2017), popular in the literature (Cessi

et al., 2006, Eden and Greatbatch, 2008, Jansen and Ferrari, 2012, Sinha and Aber-

nathey, 2016), and common in the modelling practice (Abernathey et al., 2011).

Furthermore, the general circulation model used to perform the numerical simula-

tions presented in this study relies on the Boussinesq equations. The purpose of

this introduction is to set the notation and to assemble a theoretical reference for

the subsequent chapters. We do not attempt to provide a rigorous and complete pre-

sentation. The discussion follows Vallis (2017), to which we refer the reader for an

extended illustration.

2.2.1 Boussinesq equations

We study the Boussinesq equations on the β -plane. The β -plane approximation

consists in introducing a locally Cartesian coordinate system (tangent to the sur-

face of the Earth at a given latitude) to avoid the complications due to the Earth’s

sphericity. The Boussinesq approximation hinges on the observation that, in the

ocean, density variations are small with respect to the mean value of density:

ρ(t,x,y,z) = ρ0 +δρ(t,x,y,z), (2.1)

with |δρ| << ρ0. Here, ρ0 is the (constant) reference value of the density, ρ0 =

999.8 kg m−3. The reference pressure p0(z) is defined as the pressure that is in
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hydrostatic balance with the reference density:

d
dz

p0(z) =−gρ0. (2.2)

Typically, pressure variations are small compared to the reference profile p0(z) too,

so that we can write:

p(t,x,y,z) = p0(z)+δ p(t,x,y,z), (2.3)

with |δ p|<< p0. Informally, the Boussinesq equations are obtained by neglecting

the terms proportional to δρ , except when they are multiplied by the gravitational

acceleration constant g. More rigorously, an asymptotic expansion of the dynamical

variables in the small parameter |δρ/ρ0| is effected.

The Boussinesq equations on the β -plane are:

∂tu+(v ·∇)u+ f×u =−∇zφ +F (2.4)

b = ∂zφ (2.5)

∇ ·v = 0 (2.6)

∂tb+(v ·∇)b = B . (2.7)

Notation: v = (u,v,w) is the three-dimensional velocity vector, and u = (u,v,0) is

the horizontal velocity. ∇ = (∂x,∂y,∂z) is the three-dimensional gradient operator,

and ∇z = (∂x,∂y,0) is the horizontal gradient operator. It makes sense to treat the

horizontal and vertical operators separately because, due to the small aspect ratio

(i.e., the fluid is wider than deep), the flow scales differently in the two directions.

f = (0,0, f ) is the Coriolis parameter, which accounts for Earth’s rotation. On the

β -plane f is allowed to vary with latitude, namely f = f0 +βy. Typical values of

f0 and β relevant for the dynamics of the Southern Ocean are f0 = −1 · 10−4 s−1

and β = 1 ·10−11 s−1 m−1. Note that f is negative in the Southern Hemisphere. φ

is the deviation pressure field divided by ρ0: φ = δ p/ρ0. F is a frictional source

of momentum: it may represent wind stress applied at the surface of the ocean

(which inputs momentum into the fluid) or bottom drag (which removes it). b is the

buoyancy:

b =−g
δρ

ρ0
. (2.8)
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Note that b has the units of an acceleration. A particle of fluid denser than the ref-

erence density ρ0 is negatively buoyant, and will tend to sink if immersed in a fluid

environment at the reference density . Conversely, a particle of fluid less dense than

the reference density is positively buoyant. B is a diabatic source of buoyancy:

it may represent heat fluxes at the interface between the sea and the atmosphere.

Equation (2.4) is the horizontal momentum equation. The term ∂tu+(v ·∇)u repre-

sents advection of horizontal momentum by the three-dimensional velocity v. f×u

represents the Coriolis effect, and−∇zφ is the pressure force term. Equation (2.5) is

the vertical momentum equation, simplified by hydrostatic scaling. Equation (2.6)

is the mass conservation equation, expressing incompressibility. Finally, equation

(2.7) is the thermodynamic equation, which is obtained by neglecting compress-

ibility effects. The term ∂tb+ (v ·∇)b represents advection of buoyancy. These

equations form a closed set (the simple Boussinesq equations). They are comple-

mented by an equation of state, which relates the thermodynamical variables to each

other. In the simplest case (no salinity and no compressibility effects):

b = gα(T −T0), (2.9)

where a typical value for the thermal expansion coefficient is α = 2 · 10−4 K−1.

The reference temperature value T0 is dynamically unimportant as only buoyancy

gradients enter the equations of motion.

2.2.2 Geostrophic balance and thermal wind

Problems of geophysical fluid dynamics are characterised by the typical values of

the variables that describe the state of the system. These values can be postulated

a priori, or inferred from observations, or a mix of the two. If we are interested in

large scale oceanic flows, for example, we set the horizontal length scale L = 1000

km, and learn from observations that the appropriate horizontal velocity scale is

U = 0.1 m s−1. This can be exploited to simplify the equations of motion. Intu-

itively, the characteristic scales indicate which terms in the equations are larger in

magnitude, and thus contribute to the dynamics in greater measure. More formally,
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they allow to identify a small, non-dimensional parameter which is used to effect a

perturbation expansion of the state variables. The lowest order terms in the pertur-

bation parameter express the dominant dynamical balance for the specific problem

under consideration. In the case of large-scale oceanic and atmospheric flows, the

relevant parameter is the Rossby number:

Ro =
U
f0L

. (2.10)

The Rossby number represents the ratio between the typical scales of the advection

and Coriolis terms: here, Ro << 1. A second important (dimensional) quantity is

the Rossby radius of deformation Ld , which is variously defined in the literature

depending on the specific setup but in the simplest case takes the form:

Ld =
N0H

f0
, (2.11)

where H is the vertical scale of the problem and N0 a measure of stratification. In

the Southern Ocean Ld ≈ 10− 30 km. The geostrophic momentum equations are

derived from the Boussinesq equations when Ro << 1, the horizontal scale L is

much larger than the deformation radius Ld , and frictional terms can be neglected:

f×ug =−∇zφ , (2.12)

where ug is the geostrophic velocity. Equation (2.12) expresses geostrophic bal-

ance, i.e. the fact the for large scale motions in the ocean and in the atmosphere

the Coriolis term is approximately equal to the pressure force term. One of the im-

plications of geostrophic balance is that geostrophic winds (or currents) tend to be

tangent to isobars. Geostrophic balance combined with hydrostatic balance gives

the thermal wind relations:

f ∂zvg = ∂xb (2.13)

f ∂zug =−∂yb , (2.14)

i.e., the vertical shear of the horizontal velocity is related to the horizontal gradient

of buoyancy.
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2.2.3 Quasi-geostrophic equations

Quasi-geostrophic equations are obtained by assuming that the Rossby number is

small (as for the geostrophic equations), and that the horizontal scale of motion

is not significantly larger than the Rossby radius of deformation. For a stratified

fluid, this implies that variations in stratification are small compared to the mean

stratification. The quasi-geostrophic equations are widespread in the literature, and

have the advantage that they reduce to a single diagnostic equation for the quasi-

geostrophic potential vorticity q:

∂tq+ J(ψ,q) = 0. (2.15)

Here, J is the Jacobian operator: J(ψ,q) =−∂yψ∂xq+∂xψ∂yq. Potential vorticity

is related to the other variables through:

q = ∇
2
z ψ +βy+∂z

(
f 2
0

N2 ∂zψ

)
u = k×∇ψ

φ = f0ψ

b = f0∂zψ ,

(2.16)

where b and φ are the buoyancy and pressure deviations from a reference vertical

profile.

2.3 Baroclinic instability

Baroclinic instability is a physical process that concerns rotating, stably stratified

fluids. In essence, it is a mechanism that acts to transform available gravitational

potential energy into turbulent motion, or eddies. We study baroclinic instability be-

cause it constitutes the primary route by which eddies are released in the Southern

Ocean (Marshall and Speer, 2012), where they contribute to the dynamical balance

at leading order. The key ingredients of baroclinic instability are a stable stratifica-

tion (otherwise the fluid is convectively unstable), baroclinicity (i.e., there exists a
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meridional gradient of buoyancy) and rotation (necessary to support a zonal mean

flow via the thermal wind equation).

Qualitatively, baroclinic instability may be illustrated by means of a simple par-

cel argument as follows. Our discussion is adapted from Marshall and Plumb (2008)

and Vallis (2017), to which we refer for an extended treatment. Consider first a sta-

bly stratified fluid with flat isopycnals (figure 2.1 (a)). Convective stability is guar-

anteed provided the vertical density gradient is negative, in this case ρ1 < ρ2: to

prove the point, we imagine to swap positions of two fluid parcels A and B. Parcel

A finds itself at a higher height but in a lighter environment, and will thus sink under

the action of a restoring buoyancy force. Conversely, parcel B ends up in a denser

environment, and will be propelled upwards. Overall, the initial disturbance to the

background stratification decays, and the fluid is convectively stable. In terms of

energetics, the initial potential energy (per unit volume) is:

Ui = ρ2gzA +ρ1gzB , (2.17)

while the potential energy immediately after the parcels have swapped places is:

U f = ρ2gzB +ρ1gzA . (2.18)

The variation of potential energy is:

∆U =−g(zA− zB)(ρ2−ρ1)> 0 , (2.19)

because zB > zA and ρ2 < ρ1. The potential energy of the fluid increases under ver-

tical displacement of the parcels, therefore the process must be powered externally.

Due to the fact that the isopycnals are flat, the outcome is the same regardless of

how one chooses A and B within layers 1 and 2, and the system does not exhibit

baroclinic instability.

We now turn the attention to the case of a fluid with tilted isopycnals, as in figure

2.1 (b): note that rotation is necessary to balance the meridional buoyancy gradi-

ent via the thermal wind equations (Vallis, 2017). The fluid is still stably stratified

because ∂zρ < 0, i.e., if we swap positions of parcels A and C the potential energy
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Figure 2.1: Parcel view schematic of (a) a stably stratified fluid with flat isopy-

cnals and (b) a rotating, stably stratified fluid with tilted isopycnals. Fluid (b) is

baroclinically unstable.

of the system increases as before. This time, though, the outcome does depend on

the initial choice of the parcels. Consider for example an upward displacement by

an angle comprised between the horizontal and the local slope of the tilted isopy-

cnals, as for parcels A and B. Then, parcel A finds itself at a higher height and in

a less buoyant environment, and will keep rising. Parcel B, on the other hand, is

surrounded by lighter fluid, and will keep sinking. Overall, the initial disturbance

applied to the system is amplified. In terms of the potential energy of the system,

∆U < 0 because zB > zA but ρ2 > ρ1. By acting to flatten the isopycnals, baroclinic

instability releases potential energy and converts it into turbulent kinetic energy.

A variety of models have been put forward over time to describe baroclinic

instability quantitatively. Usually, these models consist of the following steps: (i)

choice of the equations of motion and of the boundary conditions (ii) choice of the

basic state upon which the turbulence develops. This is often a zonal flow with

vertical shear (iii) introduction of a small perturbation, for example in the form of a

wave (iv) linearisation of the equations (v) study of the conditions under which the

amplitude of the wave is allowed to grow. Here, we discuss in some detail the model

of Eady (Eady, 1949), one of the pioneering works on baroclinic instability. Apart

from the respect it commands due to its historical importance, it allows ourselves to

introduce the Eady growth rate, a quantity that we shall use extensively in chapters 4

and 5. To complete the presentation, we also briefly overview the models of Phillips
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(Phillips, 1954) and Charney (Charney, 1947). We follow the presentation of Vallis

(2017).

2.3.1 Eady model

The equations of motion are the Boussinesq QG equations of section 2.2.3. The

geometry of the problem is that of a zonally re-entrant channel (i.e., we impose

periodic boundary conditions along x) with null lateral boundary conditions (ψ =

0 at the meridional boundaries). The supplementary assumptions, which suit the

atmosphere better than the ocean, are that N2 is constant (uniform stratification),

f = f0, and the fluid is confined between two rigid lids. Therefore, the boundary

conditions at the top and the bottom are:

∂tb+(u ·∇)b = 0. (2.20)

The basic state is a zonal flow with uniform vertical shear, U(z) = Λz, where Λ is a

positive constant. The associated basic state streamfunction is then Ψ =−Λzy, and

the basic state potential vorticity is Q = 0. We introduce a small perturbation on top

of the basic state:

ψ = Ψ+ψ
′, (2.21)

and similarly for the other variables, so that for example q = Q+q′ and u =U +u′.

We seek wave solutions of the form:

ψ
′ = Φ(z)sin lyeik(x−ct). (2.22)

We substitute equation (2.21) into the QG potential vorticity equation (2.15), and

linearise it by discarding terms that are second order or higher in the perturbation.

This yields:

(∂t +Λz∂x)(∇
2
z ψ
′+∂z(

f 2
0

N2 ∂zψ
′)) = 0. (2.23)

The final step is to note that the initial disturbance grows when the coefficient c has

non-zero imaginary part. By inserting the ansatz (2.22) into equation (2.23), one can

work out exactly the values of the zonal and meridional wave numbers k and l such
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that this condition is satisfied. It is found that, for any given k, the most unstable

mode is that associated with the smallest value of the meridional wavenumber l. For

fixed l << 1, the instability grows the fastest when the zonal wavelength λ = 2π/k

is similar to the deformation radius Ld . The maximum growth rate is called the

Eady growth rate, and is given by:

ω = 0.31
f
N

Λ = 0.31
f
N

∂zU. (2.24)

There are limitations to the Eady model: firstly, it focuses on the initial stages of

the instability, but is unable to capture its decaying phase (physical solutions are

bounded, and the instability cannot grow indefinitely). Secondly, due to its ide-

alised nature it does not describe real world problems with quantitative accuracy.

Nevertheless, it greatly enhances our understanding of how baroclinic instability

works. The Eady growth rate is commonly used as a measure of baroclinic insta-

bility in atmospheric and oceanic problems (Ambaum and Novak, 2014, Williams

et al., 2007), and we follow suit in chapter 4.

2.3.2 Phillips problem

The continuously stratified Boussinesq equations are not the minimal setup to study

baroclinic instability, as the vertical structure of the problem can be further simpli-

fied by considering a layered fluid instead. The main advantage of this approxima-

tion is that it makes it easier to include the effect of β in the model. When the fluid

consists of two layers only, the setup is known as Phillips problem. Specifically, the

equations of motion are the two-layer QG Boussinesq equations:

∂tq j + J(q j,ψ j) = 0 , (2.25)

where j = 1,2 (layer 1 being on top of layer 2), and the potential vorticity in each

layer is given by:

q1 = ∇
2
z ψ1 +βy+

k2
d
2
(ψ2−ψ1)

q2 = ∇
2
z ψ2 +βy+

k2
d
2
(ψ1−ψ2) .

(2.26)
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Here, kd is proportional to the inverse of the Rossby deformation radius:

k2
d =

8
L2

d
=

8 f 2
0

N2H2 . (2.27)

These equations can be derived from the continuously stratified Boussinesq equa-

tions by assuming that the two levels are on average H/2 deep each, that the fluid

is confined between two rigid lids, and by applying finite differencing. The bound-

ary conditions corresponding to the rigid lids are ∂zψ = 0 at the top and bottom

boundaries.

Similarly to the Eady model, the basic state is characterised by uniform vertical

shear of zonal velocity, that is U1 = (U,0) and U2 = (−U,0). This implies Ψ1 =

−Uy, Ψ2 =Uy, and:

Q1 = βy+ k2
dUy

Q2 = βy− k2
dUy .

(2.28)

Note that, contrary to the Eady model, the basic state potential vorticity is differ-

ent from zero even when β = 0. This is a manifestation of the rigid lid boundary

conditions in the layered equations. The next steps are familiar: we add a small

perturbation to the basic state:

q j = Q j +q′j , (2.29)

and keep only linear terms in the equations of motion. We assume that the domain

is doubly periodic, and seek wave-like solutions of the form:

ψ
′
j = ψ̃ jeik(x−ct)eily . (2.30)

The disturbance grows and the system is unstable when the phase speed c is com-

plex. In the interest of brevity, we skip the details of the computation and focus

instead on the important results. There are three main cases to consider, depending

on the problem settings:

1. If there is no shear (U = 0) but β is different from zero the system is always

stable. Mathematically, there are two solutions for c and they are both real:

one of them corresponds to the phase speed of barotropic Rossby waves.
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2. If the system is sheared (U 6= 0) but β = 0, the solution approximates that

of the Eady model, and the accuracy of the approximation grows with the

number of isopycnal layers. In particular, there is a high-wavenumber cutoff

(i.e, the system is unstable only if the scale of the disturbance is λ & Ld),

but no critical value of the vertical shear. The growth rate of the instability,

though, increases with U , therefore low-shear modes will grow slowly.

3. If the system is sheared (U 6= 0) and β 6= 0: (i) there is a critical value of

the shear, U1−U2 > βL2
d/4. Physically, this condition guarantees that the

meridional gradient of the basic state potential vorticity changes sign within

the domain. (ii) There are both a high-wavenumber and a low-wavenumber

cutoff to the instability. The disturbance will only grow if its scale λ is such

that:

Ld . λ . Lβ , (2.31)

where Lβ =
√

U/β is the Rhines scale (Williams et al., 2007). The low-

wavenumber cutoff is not present in the Eady model, but even there modes

with λ & Lβ grow slowly.

2.3.3 Charney model

It is possible to include the β effect in a continuously stratified model of baroclinic

instability: this is the Charney model. Its technical aspects are far less transparent

than in the previous two cases and we shall skip them altogether, bar for saying that

the background state is of uniform vertical shear Λ, and the equations of motion are

the QG compressible equations (depending on the problem parameters, they may

simplify to Boussinesq). A critical quantity in the Charney model is the dynamical

height h:

h =
Λ f 2

0
βN2 . (2.32)

When h is much smaller then the geometrical depth H, the equations reduce to the

Boussinesq approximation and the system behaves as in the Eady model, except

that the relevant height scale is h and not H. Thus, for example, an appropriate
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horizontal scale for the instability is Nh/ f0 rather than Ld = NH/ f0. These modes

of instability are shallow, and require the presence of near-surface Rossby waves to

develop. They cannot be represented neither in the Eady model (because there are

no Rossby waves) nor in the Phillips problem (because the simplified vertical struc-

ture does not admit shallow modes). The upshot is that there is a high-wavenumber

(i.e. small scale) cutoff in the Eady and Phillips models, but not in the model of

Charney. When the shear is strong or β is weak, instead, the system is reminis-

cent of the Phillips problem. In this case, the modes of instability are deep, and the

conditions for instability are analogous to those of the layered system (which only

represents deep modes).

2.3.4 Comparison

We have presented a number of theoretical models of baroclinic instability. The

parcel view argument is important because it constitutes the most intuitive rational-

isation of the phenomenon, but it does not convey any quantitative prediction. The

models of Eady, Phillips, and Charney, instead, are quantitative models based on

modal growth of a perturbation from an unstable background state. They all focus

on the initial stages of the instability, when the perturbation is small and the equa-

tions may be linearised. However, they differ in the choice of the physical setup for

the investigation, which results in solutions with qualitatively different behaviour

and varying degrees of richness. The Phillips model hinges on the strong approx-

imation that the fluid is composed by two stacked layers only. This considerably

simplifies the equations of motion, so that it is possible to include the effect of

β while keeping the problem analytically transparent. The main drawback of this

choice is that, by construction, the model only captures deep modes of instability.

As a consequence, the model predicts a high-wavenumber cutoff. The Eady model,

conversely, adopts the continuously stratified Boussinesq equations, but foregoes

the β effect. Setting β = 0 allows to study the conditions for the onset of instabil-

ity within a stratified setup in a mathematically appealing way, yet the Eady model
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too fails to capture shallow modes of instability, because Rossby waves are not

represented. The Charney model affords both a continuous stratification and non-

zero β , and in this respect is the most complete of the models presented here. The

downside is that the technical aspects tend to take central stage, and the interpre-

tation of the results is less intuitive than in the previous cases. In the remainder of

this manuscript, the discussion around baroclinic instability is generally couched in

terms of the Eady model.

2.4 Eulerian mean and transformed eulerian mean

theory

2.4.1 Reynolds decomposition

Reynolds decomposition is a mathematical technique that allows to separate the

average value of a variable from its fluctuations. Let c be a scalar variable and let

the bar denote an averaging operator. Then, the Reynolds decomposition of c is:

c = c+ c′. (2.33)

Note that this equation constitutes the definition of the deviation term c′. A couple

of simple properties of Reynolds decomposition are used extensively in geophysical

fluid dynamics:

c′ = 0, c1c2 = c1 c2 + c′1c′2. (2.34)

These properties rely on the assumption c = c, but are otherwise independent on the

choice of the averaging operator.

2.4.2 Eulerian mean

While the flow of the Southern Ocean is steered by bottom topography, the ACC is

approximately zonally symmetric on large scales (compared to, for example, ocean
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gyres), which suggests that its dynamics may be investigated effectively and conve-

niently by averaging fluid properties along latitude circles. The operation of taking

the average of a variable along the x direction, at fixed latitude and depth, is called

zonal average. The zonal average involves an integration at fixed spatial coordi-

nates, and is thus a special instance of Eulerian mean. In this context, the applica-

tion of the zonal average operator to the equations of motion (2.4)-(2.7) is called

Eulerian mean theory. To study Eulerian mean theory, we make the supplementary

assumption that the geometry of the domain can be reduced to that of a zonally

re-entrant channel, which is motivated by the existence of a latitudinal band cen-

tred at Drake passage with no topography above 2000 meters depth. This concep-

tual idealisation naturally fosters the introduction of zonal averaging, is the choice

of numerous recent modelling studies (Abernathey et al., 2011, Cessi et al., 2006,

Doddridge et al., 2019, Ferreira et al., 2015, Viebahn and Eden, 2010, Wolfe and

Cessi, 2009), and is adopted for the numerical simulations presented in subsequent

parts of this work.

We demonstrate the basic ideas of Eulerian mean theory for the simple Boussi-

nesq equations on the β plane, equations (2.4)-(2.7), with mechanical and thermo-

dynamical forcing and periodic zonal boundary conditions. The zonal-mean equa-

tions are:

∂tu+(v ·∇)u+ f×u =−∇zφ +F

b = ∂zφ

∇ ·v = 0

∂tb+(v ·∇)b = B .

(2.35)

Here, the bar denotes zonal average:

c =
1
Lx

∫
dxc. (2.36)

where c is an arbitrary scalar variable. An obvious property is ∂xc = 0. Note also

that, thanks to the periodic boundary conditions, ∂xc = 0, and thus the zonal av-

erage commutes with the gradient operator. By incompressibility (which implies

∇ ·v′ = 0) and by operating a Reynolds decomposition, tracer advection terms can
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be decomposed as:

(v ·∇)c = (v ·∇)c+∇ ·v′c′, (2.37)

where the term v′c′ is the eddy flux of c. Similarly, the advection term in the mo-

mentum equation can be decomposed as:

(v ·∇)u = (v ·∇)u+∇ ·R, (2.38)

where:

R = v′u′, (2.39)

is the 2nd-rank Reynolds stress tensor. Overall, the zonal average equations of

motion are:

∂tu+(v ·∇)u+ f×u =−∇zφ −∇ ·R+F

b = ∂zφ

∇ ·v = 0

∂tb+(v ·∇)b =−∇ ·v′b′+B .

(2.40)

Note that the terms with zonal gradients are identically zero. We can exploit this

fact to cast the equations in a simpler form. Consider for example the zonal-mean

buoyancy equation:

∂tb+ v∂yb+w∂zb =−∂yv′b′−∂zw′b′+B. (2.41)

There is no zonal advection term. Furthermore, the zonal-mean velocity on the

meridional plane is non-divergent thanks to the zonal-mean continuity equation.

Therefore, we can introduce a streamfunction ψ such that:

v =−∂zψ w = ∂yψ, (2.42)

where ψ is called the Eulerian streamfunction. By integrating both sides of the first

part of equation (2.42) vertically, we have that:

ψ(z) =−
∫ z

−H
dz′v(z′). (2.43)

Overall, the buoyancy equation can be written as:

∂tb+ J(ψ,b) =−∂yv′b′−∂zw′b′+B, (2.44)
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where J(ψ,c) is the Jacobian operator. Note that the streamfunction ψ does not

have the dimensions of a volume transport (meter cube per second). The correct

dimensionality is restored by scaling equation (2.43) by the zonal extent of the

domain:

ψ(z) =−Lx

∫ z

−H
dz′v(z′). (2.45)

This mild misnomer is innocuous and widespread in the literature, therefore we

conform to the use by referring to ψ as defined by (2.43) or (2.45) indifferently as

the Eulerian streamfunction (and similarly for other streamfunctions on the merid-

ional plane). We adopt the Eulerian mean framework to study the zonal balance and

the mechanical energy balance of the Southern Ocean in sections 2.5.1 and 2.5.3

respectively. In section 2.5.4, we will see that in the Southern Ocean the Eulerian

streamfunction is related to the wind stress applied at the surface.

2.4.3 Transformed Eulerian Mean theory

Above, we have introduced Eulerian Mean Theory and demonstrated it in the spe-

cific case of the Boussinesq equations of motion for a zonally re-entrant channel.

In this section, we highlight some of the limits inherent to the theory, and illustrate

how it can be adapted to address them. To start, consider the steady-state zonal-

mean buoyancy equation:

(v ·∇)b =−∇ ·v′b′+B. (2.46)

In the interior layer, we can assume that the diabatic forcing term is zero, so that:

(v ·∇)b =−∇ ·v′b′ Interior. (2.47)

If the divergence of the raw eddy buoyancy flux v′b′ is not zero (as it is not in gen-

eral), then the zonal-mean buoyancy balance requires (v ·∇)b 6= 0. The geometrical

interpretation is that, in the adiabatic interior, the zonal-mean velocity is not directed

along mean isopycnals. Observational and modelling evidence, however, suggests

that tracers are advected along mean isopycnals in the Southern Ocean (Marshall
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and Speer, 2012). Therefore, the Eulerian velocity is not the velocity that advects

tracers in the Southern Ocean, and the Deacon cell (the pattern of circulation defined

by the Eulerian streamfunction, Doos and Webb (1994)) is not a representation of

their average circulation.

What is then the circulation on the meridional plane that on average advects

tracers in the Southern Ocean? Mathematically, we seek a streamfunction such that

the associated velocity vres on the meridional plane satisfies, at steady state:

(vres ·∇)b = 0 Interior. (2.48)

Before, we have made the observation that the eddy buoyancy flux, on the right hand

side of equation (2.47), is largely directly along mean isopycnals in the adiabatic in-

terior. In order to meet condition (2.48), therefore, we need to find a transformation

of the equations of motion such that the skew (= along mean isopycnals) compo-

nent of the eddy buoyancy flux is represented by advection of mean buoyancy, so

that the candidate velocity vres represents advection by the Eulerian velocity and

along-isopycnal advection by skew eddy fluxes. Finding such transformation is

the concern of Transformed Eulerian Mean (TEM) theory. Amongst the main ad-

vantages of TEM, it simplifies the equations of motion by transferring the eddy

buoyancy flux from the buoyancy equation to the horizontal momentum equation,

where it can be related to the flux of of a quasi-conserved quantity, potential vortic-

ity. The residual circulation defined in TEM theory is also related to the thickness

averaged meridional transport (section 2.4.4), a fact that is systematically exploited

in the modelling practice because it makes the associated streamfunction easier to

diagnose. In the context of Southern Ocean dynamical theories, it solves the co-

nundrum related to the large interior diabatic transport seemingly implied by the

Eulerian circulation, and is key to understand the near balance maintained by wind

forcing and baroclinic eddies. TEM theory comes with a number of drawbacks,

and the treatment of horizontal boundaries is one of them (section 2.4.3). As one

might expect from this preamble, TEM theory can be introduced from a variety of

angles: here, we will mainly follow Plumb and Ferrari (2005), and refer to Ferreira

et al. (2005), Marshall and Radko (2003), Poulsen (2018), Treguier et al. (1997) to
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complement the discussion.

The residual velocity

The key idea in TEM is to define a transformed velocity vres such that the skew

component of the eddy buoyancy flux is represented by mean buoyancy advection.

Our definition of residual velocity is:

vres = v−∇×ψ
∗i. (2.49)

The notation convention is that the bar denotes zonal average, i is the unit vector

in the x direction, and v = (0,v,w) is the velocity vector on the meridional plane.

With this, we depart from the notation used in other sections of this manuscript, for

the reason that zonal advection is unimportant in the zonal-mean buoyancy equation

and we are thus allowed to concentrate on the meridional plane. The first term on

the right hand side is the now familiar Eulerian velocity. The second term on the

right hand side is the eddy-induced velocity:

v∗ =−∇×ψ
∗i = (0,−∂zψ

∗,∂yψ
∗). (2.50)

Here, ψ∗ is the streamfunction that describes the eddy-induced circulation on the

meridional plane, also called quasi-Stokes streamfunction. Note that the eddy-

induced velocity is divergence-free by construction, and thanks to ∇ · v = 0 so is

the residual velocity.

The buoyancy equation

The zonal-mean buoyancy equation is:

∂tb+(v ·∇)b =−∇ ·F{b}+B, (2.51)

where F{b} = v′b′ is the raw buoyancy flux. We rewrite equation (2.51) in terms

of the residual velocity vres by adding (v∗ ·∇)b on both sides:

∂tb+(vres ·∇)b =−∇ ·Fres{b}+B, (2.52)
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where:

Fres{b}= F{b}+ψ
∗i×∇b (2.53)

is the residual buoyancy flux. In writing Fres{b} we have made use of the vector

identity:

∇ · (A×B) = (∇×A) ·B− (∇×B) ·A, (2.54)

with A = ψ∗i and B = ∇b, together with ∇×∇C = 0. The derivation of equations

(2.52) and (2.53) only depends on the fact that the eddy-induced velocity is non-

divergent.

The residual flux

To fully specify vres we need to define ψ∗. Remember that vres must be such that

condition (2.48) holds, which is the case if the skew component of the raw eddy

buoyancy flux F{b} is written as advection of mean buoyancy by v∗. Equivalently,

by considering the residual form of the zonal-mean buoyancy equation (2.52) we see

that condition (2.48) is met provided the skew component of the residual eddy buoy-

ancy flux Fres{b} is zero. This requirement constrains ψ∗, but does not identify it

uniquely: we examine some of the main alternatives below. To aid our discussion,

we denote by i, j,k the unit vectors in the cartesian coordinates, by n = ∇b/|∇b| the

unit vector in the direction of the mean buoyancy gradient and by:

s =−n× i =

(
0,− ∂zb
|∇b|

,
∂yb
|∇b|

)
(2.55)

the unit vector normal to the mean buoyancy gradient. Note that s is southward,

along mean isopycnals and for a stable stratification. Equipped with these notations,

we can separate the skew and diapycnal components of the raw eddy buoyancy flux

as follows:

F{b}= (s ·v′b′) · s+(n ·v′b′) ·n , (2.56)

which amounts to a change of basis, from cartesian to isopycnal-diapycnal coordi-

nates. The residual flux is then:

Fres{b}= (s ·v′b′) · s+(n ·v′b′) ·n+ψ
∗i×∇b . (2.57)
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The first term on the right hand side is the skew component of the raw eddy buoy-

ancy flux, therefore our definition of ψ∗ must satisfy:

ψ
∗i×∇b =−(s ·v′b′) · s. (2.58)

With a little algebra one can show that the above implies:

ψ
∗ =− 1

|∇b|
s ·v′b′. (2.59)

This definition can be generalised if one notes that, in the adiabatic interior, the

diapycnal component of the raw eddy buoyancy flux is approximately zero. Thus,

we are at liberty of modifying equation (2.59) by adding a term proportional to

n ·v′b′:

ψ
∗ =− 1

|∇b|
s ·v′b′− α

|∇b|
(n ·v′b′). (2.60)

The choice of α determines ψ∗ univocally. The residual flux takes the form:

Fres{b}= n ·v′b′(n−αs). (2.61)

The quasi-Stokes streamfunction

Following Plumb and Ferrari (2005), we examine three possible choices for α:

(i) The first choice is α = 0. It is the most natural choice in that ψ∗ is propor-

tional to the skew component of the raw eddy flux:

ψ
∗ =− 1

|∇b|
s ·v′b′. (2.62)

The associated residual flux is:

Fres{b}= (n ·v′b′) ·n. (2.63)

The geometrical interpretation is that, for a downgradient diapycnal flux (n ·

v′b′ < 0), the residual flux is directed downgradient.
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(ii) The second option is α =−∂yb/∂zb, so that α is equal to the isopycnal slope.

The eddy-induced streamfunction reads:

ψ
∗ =

v′b′

∂zb
, (2.64)

and the associated residual flux is:

Fres{b}=
∇b ·v′b′

∂zb
ẑ. (2.65)

The geometrical interpretation is that for a downgradient diapycnal flux the

residual flux is directed downward. This is the choice of ψ∗ that emerges

naturally in quasi-geostrophic theory, and the one that we shall adopt in the

rest of the manuscript. The eddy-induced velocity on the meridional plane is

the same as in Ferreira et al. (2005), reading:

v∗ =−∂z

(
v′b′

∂zb

)
, w∗ = ∂y

(
v′b′

∂z.b

)
. (2.66)

A downside of this definition is that it can be problematic in the mixed layer,

as explained below.

(iii) The final option is α = ∂zb/∂yb. The eddy-induced streamfunction is:

ψ
∗ =−w′b′

∂yb
, (2.67)

and the associated residual flux:

Fres{b}=
|∇b|
∂yb

j(n ·v′b′). (2.68)

The geometrical interpretation is that for a downgradient diapycnal flux the

residual flux is directed horizontally down the horizontal mean buoyancy gra-

dient. This choice of ψ∗ was notably employed in Treguier et al. (1997) and

in the model of the Southern Ocean circulation of Marshall and Radko (2003),

which we explore in section 2.5.5. This definition has the advantage that it

applies in the mixed layer too with no need for corrections.

Note that in all cases Fres{b}= 0 in the interior provided that v′b′ is along isopyc-

nals, so that the definitions differ mainly near horizontal boundaries, at the surface

and bottom.
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The surface boundary condition

The treatment of horizontal boundaries represents a conceptual and practical chal-

lenge to TEM theory. For example, the definition of the eddy induced streamfunc-

tion ψ∗ in case (ii) above is problematic near the surface because ∂zb is approxi-

mately zero in the mixed layer (Treguier et al., 1997). One possible solution to the

problem, introduced by Treguier et al. (1997) and adopted in Ferreira et al. (2015),

is to divide the domain in an interior layer (where the flow is adiabatic and the di-

apycnal component of the raw eddy buoyancy flux is approximately zero) and a

surface diabatic layer. In the diabatic layer isopycnals steepen under the influence

of turbulent mixing and air-sea fluxes, and there is a non-zero diapycnal component

of the residual flux, which in the limit of vertical isopycnals becomes parallel to the

boundary (Ferreira et al., 2005). Then, one assumes that the quasi-stokes stream-

function varies smoothly from its value at the base of the diabatic layer to zero at

the surface (Ferreira et al., 2005):

ψ
∗ = ψ

∗|z=−hµ(z) , (2.69)

where h is the depth of the diabatic layer and µ(z) is 1 at the base of the diabatic

layer and 0 at the surface. Plumb and Ferrari (2005) note that, since definition (ii) is

convenient in the interior (because of the relation with thickness-averaged transport,

see below) and definition (iii) is convenient in the surface layer (because the residual

flux is horizontal by construction, and it is easier to implement the no-normal flow

condition), one can organise a smooth transition between the two as the horizontal

boundaries are approached.

Summary

The circulation that on average advects tracers in the Southern Ocean is the residual

circulation. This is apparent from the residual form of the zonal-mean buoyancy

equation:

∂tb+ J(ψres,b) = 0. (2.70)
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The equation above is formulated in the interior, where we assume that there are

no diabatic contributions from air-sea fluxes and that the eddy buoyancy flux is

directed along mean isopycnals. Here, the residual circulation on the meridional

plane is described by the residual streamfunction ψres. The residual streamfunction

is defined by:

−∇×ψresi = vres, (2.71)

where vres is the residual velocity in the meridional plane. Therefore:

ψres(z) =−
∫ z

−H
dz′vres(z′). (2.72)

In turn, vres is defined by vres = v+v∗. By taking the vertical integral of the merid-

ional component of this equation, we obtain:

ψres = ψ +ψ
∗. (2.73)

The eddy-induced streamfunction must be chosen appropriately to guarantee that

the skew component of the residual buoyancy flux vanishes in the interior. Our

definition in what follows is:

ψ
∗ = v′b′/∂zb, (2.74)

which corresponds to choice (ii) above.

2.4.4 Thickness-averaged meridional transport

The residual streamfunction on the meridional plane is defined by equation (2.73),

but this definition is rarely used to compute ψres in practice, because ψ∗ is dif-

ficult to diagnose and often a noisy variable. Many studies (Abernathey et al.,

2011, Doos and Webb, 1994, Hallberg and Gnanadesikan, 2006, Poulsen, 2018,

Viebahn and Eden, 2012, Wolfe and Cessi, 2014, 2015) prefer to take an alternative

route which relies on the approximate equivalence between ψres and the thickness-

averaged meridional transport, which we now examine. Our presentation is adapted

from the seminal paper McIntosh and McDougall (1996) and from Poulsen (2018),

Vallis (2017): the reader is referred to these works for an extended treatment.
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Buoyancy and isopycnals

Let b(t,x,y,z) be the buoyancy field: in this section we work at fixed time and

meridional coordinates, therefore we write b(t,x,y,z) = b(x,z). The same notation

applies to other variables so that, for example, v(x,z) is short for v(t,x,y,z). Let b1

be an arbitrary value of buoyancy. We say that the isopycnal associated to b1 is the

curve η1 = η1(x) such that b(x,η(x)) = b1. Note that the equation b(x,η(x)) = b1

actually defines a two-dimensional surface in the three-dimensional (x,y,z) space.

However, given that y is fixed, we treat η(x) as a one-dimensional curve residing in

the two-dimensional (x,z) space.

Isopycnal streamfunction

Consider two isopycnals η1 and η2, with η2 > η1 ∀x. The thickness integrated

meridional transport between η1 and η2 is:

T =
∫

η2

η1

dzv(x,z). (2.75)

The zonal average of the thickness integrated transport is:

T =
1
Lx

∫
dx
∫

η2

η1

dzv(x,z), (2.76)

where the bar denotes zonal average. The zonal integral could in fact be replaced

by a circumpolar path, but we shall skip this complication. The isopycnal stream-

function is defined by:

ψI(b1) =−
1
Lx

∫
dx
∫

η1

−H
dzv(x,z), (2.77)

so that ψI(b1) is minus the zonal average, thickness integrated meridional transport

from the bottom to the isopycnal depth η1(x). Sometimes this expression is written

in an equivalent but slightly more sophisticated way in the literature (Wolfe and

Cessi, 2014, 2015):

ψI(b1) =−
1
Lx

∫
dx
∫ 0

−H
dzv(x,z)H (b1−b(x,z)), (2.78)

where H is the Heaviside step function. We will limit ourselves to the first formu-

lation here.
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Relation between residual and isopycnal streamfunction

The statement we want to prove is:

ψres(z1)≈ ψI(b1), (2.79)

i.e., the residual streamfunction at fixed depth z1 is approximated, at leading order

in a small perturbation parameter, by the isopycnal streamfunction evaluated at the

buoyancy b1 such that η1 = z1. This statement is remarkable (and not intuitive)

because the left hand side is expressed in terms of variables defined in height coor-

dinates, while the right hand side resides in isopycnal coordinates. We shall expand

on this at the end of the proof.

Useful Taylor expansions

We examine two Taylor expansions that are essential to the main proof, and will

also be used later on in this chapter. Firstly, consider the isopycnal η1(x), and let η1

be its zonal average. The Taylor expansion of the meridional velocity v(x,z) around

η1 is:

v(x,z) = v(x,η1)+∂zv|η1
(z−η1)+O(α2), (2.80)

where α is the perturbation parameter of the power expansion, representing small

deviations of z from the fixed depth η1. The expression above can be applied to

a generic scalar variable q and to the case z = η1(x), where we assume that the

fluctuations of η1(x) around η1 are small:

q(x,η1(x)) = q(x,η1)+∂zq|η1
η
′
1 +O(α2), (2.81)

which allows to express a variable evaluated along an isopycnal contour η1 in terms

of variables evaluated at the fixed depth η1. Buoyancy is a special case, because by

definition of η1 we have that b(x,η1(x)) = b1, therefore:

b1 = b(x,η1)+∂zb|η1
η
′
1 +O(α2), (2.82)
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The first order term can be approximated as:

∂zb|η1
η
′
1 = ∂z(b+b′)|η1

η
′
1 ≈ ∂zb|η1

η
′
1. (2.83)

We can now use the buoyancy expansion to obtain an expression for η ′1. At leading

order:

η
′
1 ≈

b1−b(x,η1)

∂zb|η1

. (2.84)

This can still be improved. Equation (2.82) can be rewritten as:

b(x,η1)≈ b1−∂zb|η1
η
′
1, (2.85)

and by taking zonal average we have that at leading order b(x,η1)≈ b1. Therefore,

equation (2.84) becomes:

η
′
1 ≈−

b(x,η1)−b(x,η1)

∂zb|η1

=−b′(x,η1)

∂zb|η1

. (2.86)

A lot of work with these perturbation expansions! We will meet this formula again

in section 2.5.2. Finally, we are ready for the main proof.

Main proof

The thickness integrated meridional transport between isopycnals η1 and η2 can be

decomposed as follows:

T =
∫

η2

η1

dzv =
∫

η2+η ′2

η1+η ′1

dzv =
∫

η2

η1

dzv+
∫

η2+η ′2

η2

dzv−
∫

η1+η ′1

η1

dz. (2.87)

We start by transforming the second and third terms on the right hand side. Sub-

stituting the expansion of v around η2, equation (2.80), into the η2 integral and

keeping terms up to second order yields:∫
η2+η ′2

η2

dzv≈
∫

η2+η ′2

η2

dz
[
v(x,η2)+∂zv|η2

(z−η2)
]

= v(x,η2)η
′
2 +

1
2

∂zv|η2
η
′
2

2
.

(2.88)

We take zonal average, obtaining:

1
Lx

∫
dx
∫

η2+η ′2

η2

dzv≈ v(x,η2)η
′
2 +

1
2

∂zv|η2
η ′2

2. (2.89)
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The second term on the right hand side is actually third order in the perturbation,

and can be neglected. To see why, substitute v = v + v′ into ∂zv|η2
η ′2

2. The v′

contribution is third order by construction, and ∂zv ≈ O(α) by thermal wind (in

fact, ∂zv = 0 for a zonally re-entrant channel with idealised geometry), so that at

leading order:
1
Lx

∫
dx
∫

η2+η ′2

η2

dzv≈ v(x,η2)η
′
2. (2.90)

By substituting v = v+ v′ and using v(η2)η
′
2 = 0, we obtain:

1
Lx

∫
dx
∫

η2+η ′2

η2

dzv≈ v′(x,η2)η
′
2. (2.91)

The last step with this integral is to replace η ′2 with its representation in terms of

fixed-depth variables, equation (2.86). We obtain:

1
Lx

∫
dx
∫

η2+η ′2

η2

dzv≈−
v′b′|η2

∂zb|η2

. (2.92)

The η1 integral is treated similarly. Therefore, we can write the zonal average,

thickness integrated meridional transport between η1 and η2 as :

T =
1
Lx

∫
dx
∫

η2

η1

dzv≈ 1
Lx

∫
dx
∫

η2

η1

dzv+
v′b′|η1

∂zb|η1

−
v′b′|η2

∂zb|η2

. (2.93)

The zonal average operator commutes with the vertical integral if the extremes of

integration do not depend on x: therefore, we can rewrite the first term on the left

hand side as:

1
Lx

∫
dx
∫

η2

η1

dzv≈
∫

η2

η1

dzv+
v′b′|η1

∂zb|η1

−
v′b′|η2

∂zb|η2

. (2.94)

Finally, we combine the second and third terms on the right hand side as follows:

1
Lx

∫
dx
∫

η2

η1

dzv≈
∫

η2

η1

dzv−
∫

η2

η1

dz∂z

(
v′b′

∂zb

)
. (2.95)

The right hand side is the vertical integral of the residual velocity:

1
Lx

∫
dx
∫

η2

η1

dzv≈
∫

η2

η1

dzvres. (2.96)

Next, we let η1 =−H (more formally, we set b1 = 0 and use representation (2.78)

of the vertical integrals to extend the lower limit of integration to −H), obtaining:

− 1
Lx

∫
dx
∫

η2

−H
dzv≈−

∫
η2

−H
dzvres. (2.97)

By applying the definition of the residual and isopycnal streamfunctions we obtain

the desired relation, equation (2.79).
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Summary

We have proved equation (2.79), which establishes a leading order correspondence

between the residual streamfunction in height coordinates and the isopycnal stream-

function, in buoyancy coordinates. The small perturbation parameter whose higher

order terms are neglected in the equality represents departures from zonal mean.

Equation (2.79) is used in the modelling practice as follows: the value of the resid-

ual streamfunction at a given depth z1 is well approximated by the value of the

isopycnal streamfunction at buoyancy b1, where b1 is such that the zonal average

η1 of the associated isopycnal curve satisfies η1 = z1. Normally, though, when the

zi’s are a numerical model’s vertical grid levels, the buoyancy grid levels at which

the isopycnal streamfunction can be diagnosed do not meet this condition. Hence,

at least an interpolation is usually necessary to compute ψres. We discuss this issue

further for the specific case of the MITgcm in section 3.3.9.

2.5 Dynamical models of the Southern Ocean circu-

lation

2.5.1 Zonal balance

Wind stress imparts momentum at the surface of the Southern Ocean. Therefore,

in order for a statistically equilibrated state to be attained, there must exist one or

more physical mechanisms to remove momentum from the system. For the sake

of simplicity, we will study the zonal momentum balance in the simplified setup of

a zonally re-entrant channel with flat bottom topography, zonally symmetric wind

stress forcing at the surface, and linear bottom drag (see chapter 3 for a discussion

of these assumptions). Note that the periodic zonal boundary condition is a closed

boundary condition, i.e. there can be no net gain or loss of zonal momentum across

it. Also, lateral Reynolds stresses are ineffective at transporting zonal momentum
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away across meridional boundaries (Olbers et al., 2004). Thus, at leading order

zonal momentum must be transported downward and dissipated. In this section, we

briefly discuss how the zonal momentum balance is maintained. We refer the reader

to Abernathey et al. (2011), Cessi et al. (2006), Olbers et al. (2004), Rintoul et al.

(2001), Vallis (2017) for a complete discussion. We start from the zonal momentum

equation:

∂tu+∇ · (vu)− f v =−∂xφ +Fx, (2.98)

where Fx = ∂zτx is the kinematic stress. The steady-state, zonal average, zonal

momentum equation is then:

∇ ·vu− f v =−∂xφ +∂zτx. (2.99)

The first term on the right hand side is zero because of the periodic boundary con-

ditions along the zonal direction (this result depends on the flat bottom assumption.

We shall relax this hypothesis in the next section). The first term on the left hand

side can be rewritten as:

∇ ·vu = ∂xuu+∂yvu+∂zwu. (2.100)

However, ∂xuu is zero, again because of the periodic boundary conditions. There-

fore, equation (2.99) reads:

− f v = ∂zτx−∂yvu−∂zwu. (2.101)

By vertically integrating over the water column we obtain:

− f
∫ 0

−H
dzv =

∫ 0

−H
dz∂zτx−

∫ 0

−H
dz∂yvu−

∫ 0

−H
dz∂zwu. (2.102)

The vertically integrated, zonal-mean meridional velocity must be zero due to con-

servation of mass (there can be no net meridional volume flow across any given

latitude line). The third term on the right hand side is zero too due to no flow condi-

tions at the horizontal boundaries (i.e. w = 0 at the surface and bottom). The terms

that remain are thus:

τx(0) = τx(−H)−
∫ 0

−H
dz∂yvu. (2.103)

This is the vertically integrated zonal momentum balance. It can be simplified fur-

ther by noting that the meridional term ∂yvu is negligible in the Southern Ocean
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(Cessi et al., 2006, Olbers et al., 2004, Rintoul et al., 2001, Vallis, 2017). There-

fore:

τx(0) = τx(−H). (2.104)

The kinematic stress at the surface is the zonal wind stress divided by ρ0, while

τx(−H) = rub, where r is the linear bottom drag parameter and ub is the bottom

zonal velocity. Thus:
τw

ρ0
= rub. (2.105)

Therefore, the zonal momentum imparted at the surface is dissipated by bottom

drag. In the real Southern Ocean, or in numerical models with bottom topography,

the dominant term on the right hand side is instead the topographic form stress,

which we discuss in the next section. It follows that models with flat bottom topog-

raphy require a very large bottom zonal flow to compensate the gain of momentum

at the surface:

ub =
τw

ρ0r
. (2.106)

Since wind stress at the the surface is balanced by linear drag at the bottom, there

must be a mechanism of downward transport of zonal momentum. This mechanism

is supported by geostrophic eddies and is called interfacial form stress.

2.5.2 Interfacial form stress

We explore how zonal momentum is transported from the surface to the bottom by

baroclinic eddies. Please refer to Olbers et al. (2004) for a wonderful and com-

plete presentation. Ward and Hogg (2011) also offers a lucid explanation of the

subject, with a special focus on the spin-up of interfacial form stress from rest in an

isopycnal ocean model.

Consider two isopycnal surfaces η1(x) and η2(x), and assume for the moment

that they do not intersect the surface or the bottom. Let Fp be the vertically inte-

grated contribution of the zonal pressure force to the rate of change of zonal mo-
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mentum between the two isopycnals:

Fp =−
∫

η2(x)

η1(x)
dz∂xφ . (2.107)

The right hand side can be transformed by means of Leibniz integral rule:

∂x

(∫
η2(x)

η1(x)
dzφ

)
=
∫

η2(x)

η1(x)
dz∂xφ +φ(x,η2(x))∂xη2−φ(x,η1(x))∂xη1(x),

(2.108)

so that:

Fp =−∂x

(∫
η2(x)

η1(x)
dzφ

)
−φ(x,η2(x))∂xη2 +φ(x,η1(x))∂xη1(x). (2.109)

Now we take a zonal average of both sides (this could actually be replaced by the

average along any closed circumpolar path). The first term on the right hand side

vanishes, and the layer-averaged, zonal-average zonal pressure force F p is:

F p =−
1
Lx

∫
dxφ(x,η2(x))∂xη2 +

1
Lx

∫
dxφ(x,η1(x))∂xη1(x), (2.110)

which we rewrite as:

F p =−φ∂xη2
η2
+φ∂xη1

η1
. (2.111)

Here, the bar with η denotes zonal average evaluated along the isopycnal contour.

By effecting an integration by parts, we can write equivalently:

F p = ∂xφη2
η2−∂xφη1

η1
. (2.112)

Consider for example the second form of the pressure force term, equation (2.112).

It means that the layer of fluid enclosed by the isopycnals η1 and η2 gains momen-

tum τ2 = ∂xφη2
η2 from the layer above, and loses momentum τ1 = ∂xφη1

η1 to the

one below. The term:

τi = ∂xφηi
ηi (2.113)

is the interfacial form stress at the interface ηi. Note that τi = ∂xφ ′η ′i
ηi , where

φ(x,η(x))′ = φ(x,η(x))−φ(η) and η ′ = η −η . Thus, the interfacial form stress

can be non-zero only if all the following conditions are met: (i) the zonal profile

of the isopycnal is distorted by eddies, (ii) there are fluctuations in the zonal pres-

sure gradient (also due to eddies), and (iii) isopycnal and pressure fluctuations are
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correlated. It is remarkable that despite the fact that zonal gradients of pressure can

only act horizontally, they are effective at transporting momentum downward by

transferring it across isopycnal surfaces (Olbers et al., 2004).

The downward transfer of zonal momentum is related to the meridional eddy

buoyancy flux (Olbers et al., 2004). To see why, consider that ∂xφ ′ ≈ v′g by geostro-

phy and that η ′i ≈−b′/∂zb|η i
by equation (2.86). Thus:

τi = ∂xφ ′η ′i
ηi ≈

v′gb′

∂zb
|η i

. (2.114)

The interface ηi delimiting a layer of fluid does not have to be an isopycnal

line and can also be a solid interface, for example the bottom of the ocean. The

associated interfacial form stress term takes then the name of bottom form stress τb:

τb = ∂xφηb
ηb
, (2.115)

where ηb(x) is the bottom topography. To obtain a comprehensive picture of the

downward transfer of momentum, we can imagine that the fluid is composed by

N stacked shallow water layers (Vallis, 2017). If we assume steady flow (and take

time average over a large interval of time), the layer-integrated, zonal average, zonal

momentum equation for the surface layer is:

− f
L

∫
dx
∫

ηs

ηN−1

dzv =
τw

ρ0
− τ1. (2.116)

There is no vertical gradient term because the horizontal velocity does not depend

on depth within a shallow water layer. The equation for an interior layer is:

− f
L

∫
dx
∫

ηi+1

ηi

dzv = τi+1− τi, (2.117)

and the equation for the bottom layer is:

− f
L

∫
dx
∫

η1

ηb

dzv = τ1− τb− rub. (2.118)

The vertically integrated zonal momentum balance is obtained by summing over the

layers:
τw

ρ0
= rub +∂xφηb

ηb
. (2.119)

If there is no bottom topography the second term on the right hand side is zero, and

we recover equation (2.106).
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2.5.3 Mechanical energy balance

We examine the mechanical energy budget in the context of an idealised Boussinesq

re-entrant channel, so that the equations of motion are expressed by equations (2.4)-

(2.7). The presentation is adapted from Cessi et al. (2006) and Abernathey et al.

(2011), to which we refer the reader for further discussion. We take the dot product

of the frictional momentum equations with the three-dimensional velocity v, which

gives:

u∂tu+u(v ·∇)u− f uv+u∂xφ = u
τw

ρ0
δs− ru2

δb

v∂tv+ v(v ·∇)v+ f vu+ v∂yφ =−rv2
δb

w∂zφ = bw ,

(2.120)

where δs and δb are Dirac’s delta functions centred at the surface and bottom re-

spectively. The Coriolis term drops out when effecting the sum, and we obtain:

∂tK +v ·∇(K +φ) = bw+u
τw

ρ0
Hδs− ru2

δb. (2.121)

Here, K is the kinetic energy density (divided by ρ0):

K =
1
2
(u2 + v2). (2.122)

The volume average of the energy density flux term is zero when computed over a

closed volume with rigid (no flow) or periodic boundary conditions:

1
V

∫
V

dV [v ·∇(K +φ)] =
1
V

∫
V

dV [∇ ·v(K +φ)] =
1
V

∫
∂V

dS ·v(K +φ) = 0,

(2.123)

where we have used the divergence theorem for the last equality. Therefore:

d
dt

1
V

∫
V

dV K =
1
V

∫
V

dV bw+
1
V

∫
V

dV
[

τw

ρ0
uδs− ru2

δb

]
. (2.124)

The first term on the right hand side represents the conversion between kinetic and

available potential energy (Vallis, 2017). The second term represents frictional con-

tributions to the total energy of the channel. We assume that the channel is in a sta-

tistically equilibrated state and take time average over a large time interval, so that

we can discard time derivative terms. The mechanical energy balance becomes:

1
LyH

r
∫∫

dydzu2δb =
1

LyH

∫∫
dydzbw+

1
LyH

∫∫
dydz

[
τw

ρ0
usδs

]
, (2.125)
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where bar denotes zonal and time average. This equation ignores viscous dissipation

and side drag (Abernathey et al., 2011). The APE conversion term is also negligible

(Cessi et al., 2006), and the dominant mechanical balance is:

r
∫

dyu2
b =

∫
dy

τw

ρ0
us, (2.126)

where the vertical integrals have been eliminated by the delta functions. To tidy up

notation, we write:

r〈u2
b〉= 〈

τw

ρ0
us〉, (2.127)

where angular brackets denote time, zonal, and meridional average. Given that τw

and ρ0 do not depend on time and x (under the assumption of constant, zonally

symmetric wind forcing at the surface), we can rewrite the right hand side as:

r〈u2
b〉= 〈

τw

ρ0
us〉, (2.128)

which is equation 24 in Abernathey et al. (2011). This is the mechanical balance

equation: wind work input at the surface is dissipated primarily by bottom drag. We

can transform equation (2.128) into an eddy energy equation by writing:

〈u2
b〉= 〈u2

b〉+ 〈u′
2
b〉

= 〈u2
b〉+ 〈v2

b〉+ 〈u′
2
b〉

≈ 〈u2
b〉+ 〈u′

2
b〉,

(2.129)

where the 〈v2
b〉 term is negligible (Cessi et al., 2006). We obtain:

r〈u′2b〉= 〈
τw

ρ0
us〉− r〈u2

b〉, (2.130)

An approximate expression for the zonal-mean, time-mean bottom zonal velocity

was derived in the previous sections, equation (2.106), therefore:

r〈u′2b〉= 〈
τw

ρ0
(us−ub)〉. (2.131)

The right hand side is the useful wind work, i.e. the amount of wind-supplied

energy that survives bottom drag and is actually available to drive baroclinic eddies

(Sinha and Abernathey, 2016). Equation (2.131) implies that the large bottom flow

due to the absence of bottom topography is unimportant for the eddy energy cycle

because the right hand side depends on the baroclinic difference us−ub, and not on

the surface velocity only. Note that us− ub is related to the large scale gradient of

buoyancy via the thermal wind equation, hence we expect us−ub > 0.
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2.5.4 Zonal balance and Eulerian streamfunction

Wind stress at the surface is related to the Eulerian streamfunction defined in equa-

tion (2.43) via the zonal momentum balance. We demonstrate this relationship in

the simplified setup of the previous sections. Consider the steady-state zonal bal-

ance equation (2.101):

− f v = ∂zτx. (2.132)

where we have ignored Reynolds stress terms (Marshall and Radko, 2003). By

integrating vertically from the surface to depth z in the interior we have:

− f
∫ 0

z
dz′v(z′) = τx(0)− τx(z). (2.133)

The kinematic stress is non-zero in the surface and bottom Ekman layers only, thus

τx(z) = 0. Hence:

− f
∫ 0

z
dz′v(z′) =

τw

ρ0
, (2.134)

which can also be written as: ∫ 0

z
dz′v(z′) =− τw

ρ0 f
. (2.135)

Now, by mass conservation the left hand side integral is equal to−
∫ z
−H dz′v(z′), and

by applying definition (2.43) one obtains:

ψ =− τw

ρ0 f
. (2.136)

The Eulerian streamfunction depends linearly on wind stress applied at the surface.

In the interior, ψ does not depend on depth, thus Eulerian streamlines are vertical.

The Eulerian circulation closes in the surface and bottom Ekman layers, where Ek-

man stresses support a non-zero ageostrophic component of velocity. In the South-

ern Ocean the Coriolis parameter is negative and therefore the Eulerian streamfunc-

tion is positive: the Eulerian circulation is thus characterised by upwelling in the

southern parts of the domain, downwelling in the north, equatorward flow at the

surface, and poleward bottom return flow. This circulation pattern is the Deacon

cell, and is discussed further in section 3.3.8.
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2.5.5 TEM and the Southern Ocean

Transformed Eulerian Mean theory can be used in conjunction with the zonal bal-

ance equation to study how wind stress and eddies compete to maintain the merid-

ional circulation of the Southern Ocean. The physical problem is as follows: the

westerly winds drive the zonal flow of the ACC, and induce northward Ekman

transport in the channel. The associated wind-induced circulation (represented by

the Eulerian streamfunction ψ) acts to steepen isopycnals, thereby increasing the

available potential energy stored in the fluid. The excess energy is transformed into

turbulent motion via baroclinic instability, and the associated eddy-induced circula-

tion (represented by the quasi-Stokes streamfunction ψ∗) acts to flatten isopycnals.

The two circulations are in near balance, and it is their sum (the residual circula-

tion represented by the streamfunction ψres) that on average advects tracers in the

Southern Ocean. But how exactly does this balance set the observed structure and

magnitude of the meridional overturning circulation, stratification, and zonal flow?

Here, we briefly review the model proposed in the seminal work of Marshall and

Radko (2003) (MR03). Since then, the argument has been refined to accommodate

for more realistic boundary conditions (e.g. Marshall and Radko (2006)), but the

MR03 model already elucidates the essential facts with minimal ingredients. Firstly,

we gather a few useful relations we have studied in the preceding sections:

(i) ψres = ψ +ψ∗ .

The definition of residual streamfunction. It highlights the fact that the stream-

function that advects tracers in the SO is the result of a balance between the

wind-induced and eddy-induced circulations.

(ii) vres =−∂zψres .

The relationship between the meridional residual velocity and the residual

streamfunction.

(iii) ψ =−τw/ρ0 f .

The relationship between the Eulerian streamfunction and the wind stress, ob-
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tained (with assumptions consistent with those below) by studying the zonal

balance equation.

(iv) ∂tb+(vres ·∇)b =−∇ ·Fres{b}+B .

The buoyancy equation in residual form. By construction of ψ∗, the right

hand side is approximately zero in the interior. It can be non-zero in the

mixed layer.

(v) s =−∂yb/∂zb .

The definition of isopycnal slope. s is negative in the Southern Ocean.

Next, we introduce two fundamental assumptions:

(i) The ocean can be divided into an adiabatic interior layer and a diabatic layer.

This is a standard assumption in TEM theory (see section 2.4.3).

(ii) ψ∗ =−ks2

This is a closure relation for the eddy-induced circulation. k is a positive

constant and s is the slope of the isopycnals.

The remaining assumptions are needed to characterise the diabatic layer and to clar-

ify how we treat boundaries. They are less fundamental in nature, and indeed Mar-

shall and Radko (2006) part with some of them:

(iii) The diabatic layer is vertically homogeneous (i.e., buoyancy does not depend

on z. This means that the diabatic layer is well mixed) and has fixed depth.

Also, there is no seasonal cycle.

(iv) Buoyancy is prescribed in the diabatic layer: b0 = b0(y).

(v) The vertical integral over the diabatic layer of the right-hand side of relation

(iv) is prescribed: B0 = B0(y). This amounts to prescribing the combined

effect of air-sea fluxes and lateral eddy fluxes in the diabatic layer.

(vi) Wind forcing at the surface is constant and zonally symmetric.
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These are the basic ingredients. How are they put to use? The idea at the core of

the MR03 model is that, since (vres ·∇)b = 0 in the steady state interior, there exists

a functional relationship between ψres and b. In physical terms, this amounts to

saying that the residual velocity is everywhere tangent to isopycnal lines, implying

that if one follows a line of constant b, then ψres is constant along that line too.

Mathematically, it means that one can seek a functional relationship ψres = ψres(b).

The second key point is to note that the relationship ψres = ψres(b) must be set by

the boundary conditions, in this case at the base of the diabatic layer. To see this, we

take the vertical integral of the buoyancy equation in residual form over the diabatic

layer and use assumption (v) to take care of the right hand side. We obtain:∫ 0

−h
dz(vres ·∇)b = B0(y), (2.137)

where h is the constant depth of the diabatic layer. On the left hand side, there is no

time derivative because we suppose that the system is in a statistically equilibrated

state (the bar denotes time and zonal average). Furthermore, the term with ∂zb

vanishes due to assumption (iii), and by virtue of the same hypothesis ∂yb can be

moved outside the vertical integral. On the right hand side, B0 =B0(y) is prescribed.

Therefore:

∂yb0(y)
∫ 0

−h
dzvres = B0(y), (2.138)

where b0(y) is the prescribed buoyancy profile in the diabatic layer, assumption

(iv). The vertical integral of the meridional residual velocity over the diabatic layer

is minus the residual streamfunction evaluated at the base and at the top of the

diabatic layer, equation (ii). But the top of the diabatic layer is the surface, where

ψres = 0 by definition. Hence:

ψres|z=−h∂yb0(y) = B0(y). (2.139)

This equation sets the functional relationship between the residual streamfunction

and buoyancy: the final step consists in exploiting it to compute b and ψres. We

substitute assumption (ii) and equation (iii) into equation (i):

ψres =−
τw

ρ0 f
− ks2, (2.140)
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or, equivalently:

s =−
√
− τw

ρ0 f
− ψres

k
. (2.141)

Next, we substitute the definition of s, equation (v), yielding:

∂yb−
√
− τw

ρ0 f
− ψres

k
∂zb = 0. (2.142)

This is a partial differential equation for the zonal-mean buoyancy field b(y,z). ψres

is a function of b in the interior and the wind stress only depends on y thanks to as-

sumption (vi), therefore the equation is of the form ∂yb+c(y,b)∂zb. Thus, it can be

solved with the method of characteristics (Leveque, 2002) (once b(y,z) is computed,

one obtains the residual streamfunction by exploiting the fact that ψres is constant

along isopycnals). The precise form of the solution depends on the specific choice

made for the prescribed variables b0(y), B0(y), and τw(y), but the remarkable result

is that the set of idealised assumptions above produce plausible predictions for the

thermocline depth, stratification, and for the structure and magnitude of the merid-

ional overturning circulation (we refer to the paper for details). The MR03 model is

a milestone in the current understanding of the dynamics of the Southern Ocean, and

demonstrates how TEM theory elucidates the key role played by baroclinic eddies

in its dynamical balance.
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Chapter 3

The MITgcm in idealised channel

configuration

3.1 Introduction

The results presented in this Thesis hinge on numerical simulations of the Southern

Ocean performed with a particular configuration of a general circulation model, the

MITgcm. The purpose of this chapter is to detail the modelling choices inherent

to the GCM configuration, illustrate its salient physical properties, and assess what

its advantages and disadvantages are relative to the general aims of this manuscript.

No prior familiarity with GCMs is assumed. The model configuration is inherited

from and very similar to that of Abernathey et al. (2011) and Hill et al. (2012), and

readers are referred to these studies for a summarised presentation.

The configuration I employ is that of an idealised, re-entrant channel. I will

henceforth refer to it as ”the idealised channel”. The idealised part is motivated

by the simplifying assumptions involved in the setup, which I discuss in detail in

the following sections. Amongst these, the channel geometry is zonally symmetric,

there is no bottom topography and no continental shelf. The equation of state is
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linear with no salinity, and there is no sea ice. Constant, zonally symmetric wind

stress and buoyancy fluxes are imposed at the surface, and diabatic processes that

take place outside of the Southern Ocean are represented with a sponge layer located

at the northern boundary. A number of physical processes that are known to be

important for the dynamics of the Southern Ocean cannot be captured under these

assumptions: the effect of topography on the upwelling branch of the MOC (Tamsitt

et al., 2017), or the presence of a region of temperature inversion due to sea ice

(Ferreira et al., 2015) are examples. In view of this, I do not attempt to use the

results obtained with this configuration to make quantitative predictions about the

real Southern Ocean (although, when possible, I will check that the model sits in a

regime similar to that of observational and reanalysis products). What are then the

advantages of this setup? Firstly, it can be run economically at a high horizontal

resolution of 5 km, which means that baroclinic eddies are resolved and there is no

need to employ an eddy parametrisation scheme. The ability to resolve baroclinic

eddies has been shown to be crucial for the accurate representation of the dynamics

of the Southern Ocean by a plethora of studies (e.g. Hallberg and Gnanadesikan

(2006), Screen et al. (2009), Viebahn and Eden (2010)). Secondly, although some

important physical mechanisms are not represented in the model, the effect of those

that are included can emerge more clearly, complicating factors being reduced to

a minimum. In the spirit of Abernathey et al. (2011), thus, rather than to make

quantitative predictions my goal is to gain qualitative insights on the nature of the

processes governing the physics of the Southern Ocean.

This chapter is organised as follows: in section 3.2 I give an overview of the ide-

alised channel configuration, including equations, domain, gridding choices, forc-

ing, boundary conditions, and numerical algorithms. Section 3.3 describes the phys-

ical properties of the idealised channel, with a particular emphasis placed on linking

the structure of zonal-average temperature profiles on the meridional plane to the

zonal and meridional circulation. I conclude in section 3.4.
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3.2 Setting up the model

By general circulation model we mean a numerical model that simulates the state

of a geophysical system. This could be the atmosphere, the ocean, or both. Here,

we use a general circulation model to simulate the state of the Southern Ocean: the

numerical core is the MITgcm (Marshall et al., 1997a,b).

3.2.1 Dynamical equations

The model solves the Boussinesq equations of motion in a β -plane, equations (2.4)-

(2.7), with no salinity and a linear equation of state, equation (2.9). The density ρ

is a function of temperature only, therefore lines of constant density (isopycnals)

coincide with lines of constant temperature (isothermals): unless otherwise stated,

the two terms will be used interchangeably.

3.2.2 Domain and grid

The domain is a re-entrant rectangular channel with no bottom topography and

no continental shelf. The channel is Lx = 1000 km wide in the zonal direction,

Ly = 2000 km wide in the meridional direction, and H = 2985 m deep. Periodic

boundary conditions are applied in the zonal direction (which makes the channel

re-entrant), and no-slip boundary conditions at the meridional boundaries. The hor-

izontal resolution is ∆x = ∆y = 5 km, and there are 30 unevenly spaced vertical

levels. The thickness of the vertical levels ranges from 10 m at the surface to 280 m

at the bottom. Note that the zonal extent of the real Southern Ocean is about a fac-

tor 25 larger than in the model (the length of a latitudinal circle at 45◦S is of about

28000 km): therefore, the streamfunctions defined on the meridional plane should

be scaled by the same factor to compare with observational estimates of the merid-

ional volume transport. The absence of bottom topography and continental shelf
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Figure 3.1: Schematic of the discrete grid for the 1-dimensional problem: the i-th

cell is the interval (xi− 1
2
,xi+ 1

2
), and xi− 1

2
and xi+ 1

2
are called the cell edges. The cell

center is xi.

constitute idealising assumptions that favour simplicity over realism: some of their

implications are discussed in section 3.3.3.

3.2.3 Spatial discretisation and the finite volume method

The model uses the finite volume method to integrate the equations of motion nu-

merically. A basic familiarity with the finite volume method is therefore essential in

order to understand how the variables are discretised, and to interpreter the output

of the numerical simulations. To introduce the subject, we follow an example from

Leveque (2002), to which the reader is referred for a comprehensive discussion.

Consider the 1-dimensional conservation law:

d
dt

∫ b

a
dxq(t,x) = f (q(t,a))− f (q(t,b)), (3.1)

where q is a passive tracer and f is its flux function. The goal of the finite volume

method is to divide the spatial domain into intervals, which are called cells, and to

accurately approximate the time evolution of the spatial average of q over cells. In

this one-dimensional example, the i-th cell is the interval (xi− 1
2
,xi+ 1

2
), and xi− 1

2
and

xi+ 1
2

are called the cell edges. The conservation law for an individual cell reads:

d
dt

∫ x
i+ 1

2

x
i− 1

2

dxq(t,x) = f (q(t,xi− 1
2
))− f (q(t,xi+ 1

2
)), (3.2)

where the right hand side is the flux of q across the cell edges. Integration in time
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from time step tn to time step tn+1 yields:∫ x
i+ 1

2

x
i− 1

2

dxq(tn+1,x) =
∫ x

i+ 1
2

x
i− 1

2

dxq(tn,x)+

−
[∫ tn+1

tn
dt f (q(t,x1+ 1

2
))−

∫ tn+1

tn
dt f (q(t,x1− 1

2
))

]
.

(3.3)

To simplify the equation, we denote with Qn
i the spatial average of q over the i-th

cell at time tn:

Qn
i =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

dxq(tn,x), (3.4)

where ∆x = xi+ 1
2
− xi− 1

2
. Also, we denote with Fn

i− 1
2

the time-averaged flux at the

cell edge xi− 1
2
:

Fn
i− 1

2
=

1
∆t

∫ tn+1

tn
dt f (q(t,xi− 1

2
)), (3.5)

where ∆t = tn+1− tn. Then, the approximate conservation equation reads:

Qn+1
i = Qn

i −
∆t
∆x

(Fn
i+ 1

2
−Fn

i− 1
2
). (3.6)

This is the skeleton equation for the finite volume method. The numerical method

itself is defined by the specific choice of the flux, which we do not concern our-

selves with here. Numerous alternatives for the treatment of the time and spatial

stepping exist, and the MITgcm user guide (Adcroft et al., 2022) provides a de-

tailed account of the options supported by the model. Our configuration is defined

on a more complicated domain than the simple 1-dimensional example above, but

similar ideas apply: the user guide illustrates how the spatial discretisation is gener-

alised to the three-dimensional case. The key point is that tracers (e.g., temperature)

are represented by averages over spatial cells, and are located at cell centers. Flux

variables (for example, streamfunctions), on the other hand, are located at cell inter-

faces. When necessary, linear interpolations will be effected to combine variables

defined at different spatial locations.

3.2.4 Tracer advection, time stepping, and mixed layer scheme

The model uses the Second Order Momentum scheme of Prather (Prather, 1986)

with flux limiter for temperature advection. Hill et al. (2012) showed that this
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scheme, with no horizontal and vertical diffusivity (i.e., kv = kh = 0 m2 s−1), pro-

duces values of numerical diapycnal mixing below 10−5 m2 s−1 for the same MIT-

gcm configuration considered here, consistently with observational estimates. The

implication is that the model respects the quasi-adiabatic nature of tracer advec-

tion in the interior. The horizontal and vertical eddy viscosity coefficients and

the horizontal eddy hyperviscosity coefficient parametrise the effect of turbulence

on sub-grid scale, and are set to Ah = 12.0 m2 s−1, Av = 3.0 · 10−4 m2 s−1, and

A4 = 9 · 108 m4 s−1 respectively, see also table 3.1. The time stepping algorithm

is Adam-Bashforth with staggering in time, and the model time step is 900 s. The

KPP mixed layer scheme of Large et al. (1994) is used, see Damerell et al. (2020)

for a comparison with observational products. Model parameters are summarised

in table 3.1.

3.2.5 Forcing and boundary conditions

We force the model mechanically, by wind stress applied at the surface, and thermo-

dynamically, by buoyancy fluxes applied at the surface and at the northern boundary.

Energy is removed mechanically through linear bottom drag.

The forcing is idealised: we impose constant, zonally symmetric surface wind

stress according to the formula:

τ(y) = τ0 sin(π
y
Ly

), (3.7)

so that the surface wind stress peaks in the centre of the domain (y = 1000 km),

as represented schematically in figure 3.2. The reference value for τ0 is 0.1 N

m−2 (see table 3.1). The meridional wind stress profile is chosen to mimic the

Southern Hemisphere jet stream, see figure 1 in Abernathey et al. (2011) for a com-

parison with a coupled ocean-atmosphere product, and figure 4 in Marshall and

Speer (2012) for a comparison with a reanalysis product. The wind forcing does
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Symbol Value Description

Lx, Ly 1000 km, 2000 km Domain size

Lsponge 100 km Sponge layer size

H 2985 m Domain depth

ρ0 999.8 kg m−3 Reference density

αT 2 ·10−4 K−1 Thermal expansion coefficient

f0 -1 ·10−4 s−1 Reference Coriolis parameter

β 1 ·10−11 s−1 m−1 Planetary vorticity gradient

Q0 10 W m−2 Surface heat flux magnitude

τ0 0.1 N m−2 Surface wind stress magnitude

rb 1.1 ·10−3 m s−1 Linear bottom drag parameter

τsponge 7 days Sponge layer relaxation time scale

∆x, ∆y 5 km Horizontal grid spacing

∆z 7 days Vertical grid spacing

κv 0 m2 s−1 Vertical diffusivity

κh 0 m2 s−1 Horizontal diffusivity

Av 3.0 ·10−4 m2 s−1 Vertical viscosity

Ah 12.0 m2 s−1 Horizontal viscosity

A4 9 ·108 m4 s−1 Horizontal hyperviscosity

Table 3.1: Summary of model parameters
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not include the seasonal cycle, zonal asymmetries, and fast time-scale variability,

although it would be possible to include these features in an idealised setup: for

example, Doddridge et al. (2019) employs a similar configuration of the MITgcm,

but with more realistic winds.

We prescribe fixed buoyancy fluxes at the surface, according to:

Q(y) =

 −Q0 cos(3π
y

Ly
) y≤ 5

6Ly

0 else .
(3.8)

The convention is that the flux is positive into the ocean. Q0 is set to 10 W m−2,

see table 3.1, and the meridional profile of Q(y) is represented schematically in fig-

ure 3.2. The value of Q0 and the functional form of Q(y) are intended to represent

the surface buoyancy fluxes in the Southern Ocean, see figure 1 in Abernathey et al.

(2011) and figure 4 in Marshall and Speer (2012): cooling near Antarctica is con-

nected to the formation of dense Antarctic Bottom Water (AABW), while cooling

north of the ACC with the formation of Antarctic Intermediate Water (AAIW) and

Subantarctic Mode Water (SAMW).

Previous research indicates that channel models not including heat exchanges

between the Southern Ocean and the other basins tend to return an excessively weak

deep residual circulation (Cessi et al., 2006). In our model configuration, diabatic

processes that take place equatorward of the Southern Ocean are represented by a

sponge layer located in the northernmost 100 km of the channel. Within this layer,

temperature is relaxed to a prescribed exponential vertical profile T ?(z):

T ∗(z) = ∆T (ez/h− e−H/h)/(1− e−H/h), (3.9)

where h = 1000 m represents the vertical decaying scale and ∆T = 8 ◦C the sur-

face to bottom temperature difference. The exponential vertical profile is chosen to

mimic the observed stratification at the northern flank of the Southern Ocean, and

is shown in figure 3.2. Temperature is relaxed to the T ?(z) profile with a relaxation

coefficient that varies from τ = 0 (no relaxation) at southern edge of the sponge

layer (y = 1900 km) to τ = 7 day−1 at y = Ly.
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Figure 3.2: Schematic of mechanical and thermodynamical forcing applied at the

model boundaries. The main panel shows time-mean, zonal-mean temperature

(colours) and zonal velocity (contours). The time averages are computed over a

period of 51 years. The top panels show the zonally-symmetric wind stress and

buoyancy forcing profiles applied at the surface. The convention is that the heat

flux is positive into the ocean. Blue (red) arrows represent cooling (warming) of

the ocean due to the air-sea fluxes. The lateral panel shows the vertical temperature

profile prescribed in the northern sponge layer.
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Name Unit Description

UVEL m s−1 Zonal component of velocity

VVEL m s−1 Meridional component of velocity

THETA ◦C Potential temperature

MXLDEPTH m Depth of mixed layer

ETAN m Surface height anomaly

LaVH1TH m2 s−1 Layer-integrated meridional transport

LaHs1TH m Layer thickness

Table 3.2: Summary of model diagnostics

3.2.6 Running the model

The model is run on the Imperial College High Performance Computing CX1 clus-

ter. For the latest simulations, the horizontal model tile comprises sNx× sNy =

25× 40 grid points, and there are nPx = 8 blocks along the x axis and nPy = 10

blocks along the y axis. The model is run on 3 nodes with 32 CPUs each. Less

recent runs have slightly different data layout and nodes allocation to conform to

the system’s job sizing requirements, but are similar in computational demand. The

model was spun up for approximately 200 years until it reached a statistically equi-

librated state, as diagnosed from domain-averaged kinetic energy.

3.2.7 Model diagnostics

Table 3.2 contains a list of the model diagnostics used in the remainder of this

chapter. Grid diagnostics have been omitted, and the interested reader is referred to

the MITgcm user guide (Adcroft et al., 2022) for an illustration. Model diagnostics

introduced in subsequent chapters will be presented separately on a case by case

basis.
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3.2.8 Computation of the streamfunctions

The computation of the streamfunctions describing the circulation on the merid-

ional plane (ψ , ψres, and ψ∗) is complicated by the gridding issues introduced by

the model’s spatial discretisation. In this section, we briefly document on how the

discrete computations are carried out in practice.

Eulerian streamfunction

The Eulerian streamfunction is computed according to equation (2.43). The inte-

gration is effected using a discrete integration formula:

ψ j+ 1
2
=−

Nz

∑
k= j+1

drF jVVEL j j = 1, ...,Nz−1 , (3.10)

where the index j = 1, ...,Nz labels vertical grid points ( j increases from top to

bottom), drF is the distance between vertical cell interfaces, and VVEL is the model

diagnostic for the meridional component of velocity (see table 3.2). At the bottom

(corresponding to the interface point with index Nz +
1
2 on the z grid), we explicitly

prescribe ψ = 0.

Residual streamfunction

The residual streamfunction is the sum of the Eulerian and eddy-induced stream-

functions:

ψres = ψ +ψ
∗,

but this definition is rarely used in practice, because diagnosing the eddy stream-

function directly is complicated. Commonly, the computation of ψres is carried out
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by taking advantage of its first order equivalence with the thickness averaged merid-

ional circulation. The key formula is equation (2.79), which we repeat for clarity:

ψres(η1)≈ ψI(T1).

Here, η1 is the zonal average of the isopycnal η1(x), and ψI(T1) is given by:

ψI(T1) =−
1
Lx

∫
dx
∫

η1

−H
dzv, (3.11)

Formula (2.79) means that the residual streamfunction at depth z is well approx-

imated by the value of ψI at the temperature T , where T is such that the zonal

average depth of the associated isopycnal η(x) is equal to z.

The steps to compute ψres(z) are thus (i): compute ψI(T ) and (ii): interpolate

ψI(T ) from temperature coordinates back to depth coordinates. In order to effect the

first task, we diagnose the layer-integrated meridional transport LaVH1TH, where:

LaVH1TH j ≈
∫

η
j+ 1

2

η
j− 1

2

dzv. (3.12)

Here, the index j runs on temperature grid points ( j increases from cold to warm):

in our model configuration, there are 42 equally spaced temperature bins, with cell

centers ranging from T =−0.1 ◦C to T = 8.1 ◦C and a temperature interval ∆T =

0.2 ◦C. By writing:

∫
η

j+ 1
2

−H
dzv =

j

∑
k=1

∫
η

k+ 1
2

η
k− 1

2

dzv≈
j

∑
k=1

LaVH1THk, (3.13)

where η 1
2
=−H, we can compute the residual streamfunction in isopycnal coordi-

nates as:

ψI j+ 1
2
=−

j

∑
k=1

LaVH1THk. (3.14)

As for the cold boundary condition, we explicitly set ψI 1
2
= 0.

In order to map ψI back to depth coordinates, we diagnose the layers’ thickness

LaHs1TH:

LaHs1TH j ≈
∫

η
j+ 1

2

η
j− 1

2

dz = η j+ 1
2
−η j− 1

2
. (3.15)

77



By summing over the definition of LaHs1TH above, and using the fact that η 1
2
=

−H, we have:
j

∑
k=1

LaHs1THk ≈ η j+ 1
2
+H. (3.16)

Therefore, we can explicitly compute the zonal average depth of the isopycnal η j+ 1
2

as:

η j+ 1
2
=

j

∑
k=1

LaHs1THk−H. (3.17)

By virtue of (2.79), we obtain:

ψres(η j+ 1
2
)≈ ψI(Tj+ 1

2
). (3.18)

A single interpolation is needed to map ψres from the zonal average isopycnal depths

{η} j+ 1
2

to the z-interfaces grid points {RF}k+ 1
2
.

It is possible to compute ψres even without diagnosing LaHs1TH, although this

requires two interpolations rather than one. The first interpolation is needed to map

the zonal average temperature T (z) from z-centers to z-interfaces. This corresponds

to defining an approximate function T = T (RF). With a second interpolation, which

corresponds to defining an approximate function ψI = ψI(T ), we compute:

ψres(RFk+ 1
2
)≈ ψI(T (RFk+ 1

2
)). (3.19)

The two methods give similar results, with the largest differences found in the di-

abatic layer close to the surface (not shown), where isothermals are nearly vertical

and the double interpolation is not accurate. Unless otherwise stated, the residual

streamfunction is computed according to the first method in the following.

3.3 Properties of the control run

We have discussed the technical details inherent to configuring and running the

model. Next, we turn our attention to the physical picture of the Southern Ocean

that it returns: we focus on those aspects that will recur more frequently in the

subsequent chapters, and endeavour to highlight the connection between theoretical
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predictions and model output whenever feasible. We concentrate on the reference

state of the idealised channel, which we call ”control run” and is defined by the

choice of model parameters specified by table 3.1. A different state of the chan-

nel, corresponding to an ocean driven by stronger winds, will be investigated in

chapter 6.

3.3.1 Geostrophic scaling

We test whether the idealised channel is in the low Rossby number regime. As dis-

cussed in section 2.2.2, Ro << 1 is one of the necessary conditions for geostrophic

balance. The Rossby number is defined in equation (2.10), and for the idealised

channel we have U ≈ 0.01−0.1 m/s, f0 =−10−4 s−1, and L ≈ 106 m. Therefore,

Ro ≈ 10−4− 10−3, and the idealised channel is well into the low Rossby number

regime. Anticipating on the fact that Ld << L (as illustrated below), we can expect

geostrophic balance and the thermal wind relations to hold in the channel. We will

check that this is actually the case in section 3.3.6.

The first Rossby radius of deformation Ld is formally defined as the largest

eigenvalue of the Sturm-Liouville problem (Chelton et al., 1998), and represents

the typical horizontal length scale of geostrophic eddies (Williams et al., 2007).

A simple estimate of its magnitude can be obtained via formula (2.11): for the

idealised channel, N0 ≈ 2.3 · 10−3 s−1 and H = 3000 m. Therefore Ld ≈ 22 km,

which compares well with the Ld ≈ 10-25 km estimate of Chelton et al. (1998)

for the real Southern Ocean. The horizontal grid size for the idealised channel is

∆x = ∆y = 5 km, so that ∆x < Ld by a factor 4 approximately. We thus expect that

the horizontal surface corresponding to a typical geostrophic eddy is populated by

at least O(10) grid points, which confirms that geostrophic turbulence is resolved in

the channel.
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3.3.2 Zonal-mean temperature and mixed layer depth

We start our survey of this model’s physical properties in earnest by looking at the

structure of zonal-mean temperature. The time-averaged, zonally-averaged temper-

ature is shown in figure 3.3 left, where the time average is computed over 51 years

of simulation. For a comparison with observations, see for example figure 4.6.3 in

Rintoul et al. (2001).

In the idealised channel, temperature ranges from a maximum of nearly 8 ◦C,

at the surface and near the southern boundary of the domain, to 0 ◦C in the deep

interior. It increases upwards and northwards everywhere: the meridional gradi-

ent is related to the vertical shear of zonal velocity via the thermal wind equation.

Contrary to more complex MITgcm configurations including sea ice, for example

Doddridge et al. (2019), Ferreira et al. (2015), there is no region of temperature

inversion where water gets warmer with depth. Isopycnals are tilted with a negative

slope: note however that the aspect ratio of figure 3.3 (left) greatly exaggerates its

magnitude. In fact, isopycnals would look almost flat if plotted with equally scaled

axes due to Ly >> H. At the northern boundary, the stratification is determined

by the prescribed exponential profile T ?(z) described above. Isopycnals are not

straight lines (see Marshall and Radko (2003, 2006) for an investigation of this ide-

alised limit), therefore the stratification in the northern sponge layer is not linearly

mapped in the meridional gradient at the surface.

The depth of the zonal-mean mixed layer, defined as the depth such that temper-

ature is 0.8 ◦C less than at the surface, is also shown in figure 3.3 (left, dashed black

line). Note that with this definition the mixed layer does not necessarily coincide

with the surface diabatic layer or with the Ekman layer. The model is not forced by

a seasonal cycle, hence there are no seasonal variations in the mixed layer depth.

The mixed layer is a few hundred meters deep in all regions of the domain except

near the southern boundary, where it attains a depth of over a thousand meters and
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Figure 3.3: Left: time-mean, zonal-mean temperature (colours). The time mean is

computed over a period of 51 years. The dashed black line marks the depth of the

time-mean, zonal-mean mixed layer, defined as the depth such that temperature is

0.8 ◦C less than at the surface. Right: time-mean, zonal-mean buoyancy frequency

for the upper 1000 m of the channel.

the stratification is weak. The stratification is computed as:

N2 = gα
dT
dz

. (3.20)

The buoyancy frequency N is the square root of the stratification N2, and is shown

for the top 1000 meters in figure. 3.3 (right). As expected, N is larger near the

surface and in the centre of the domain (where the mixed layer is shallower), and

smaller at depth and near the southern boundary of the domain (where the mixed

layer reaches further in depth). The minimum of N at y = 1250 km approximately

is associated with subduction of water masses operated by the upper branch of the

intermediate overturning cell (see section 3.3.9), and to the formation of Subantarc-

tic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW). The average

buoyancy frequency in the top 1000 meters is of 2.3 ·10−3 s−1, in broad agreement

with the estimates of Marshall and Plumb (2008).

3.3.3 Zonal transport

The Southern Ocean hosts the ACC, the world’s largest oceanic current. How well

does our model represent the important zonal flow? Traditionally, the ACC domain
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is partitioned by the climatological position of regions of strong horizontal gradi-

ents, named fronts (Orsi et al., 1995). More recent data, however, convey a some-

what different picture, with the ACC being composed of a greater number of rela-

tively narrow jets, which continuously interact by splitting and merging (Thompson,

2008). Figure 3.4 (left) shows an instantaneous snapshot of zonal-mean zonal ve-

locity, and demonstrates that in the idealised channel the zonal flow is composed

by a (varying) number of narrow and intense jets. The time-averaged, zonal-mean

zonal velocity is shown instead in figure 3.4 (right) where the time mean is com-

puted over a period of 51 years: as expected, the largest average velocity is attained

near the centre of the domain, where wind stress is maximum. The barotropic time-

averaged, vertically-averaged zonal flow is computed as:

Ubt =
∫ Ly

0
dy
∫ 0

−H
dzu, (3.21)

where u is the time-average, zonal-average zonal velocity. We obtain Ubt ≈ 433 Sv,

which is unrealistically large (Rintoul et al., 2001) due to the absence of bottom

topography. The baroclinic zonal flow Ubc, however:

Ubc =
∫ Ly

0
dy
∫ 0

−H
dzubc, (3.22)

where ubc = u−ub is the baroclinic velocity and ub the zonal velocity at the bottom,

returns the more reasonable value of Ubc = 88 Sv. As mentioned in section 2.5.3,

topographic form drag does not participate to the eddy energy cycle (see also Ferrari

and Wunsch (2009)) and the mechanical energy budget depends on the baroclinic

component of zonal velocity only. Thus, the unrealistically large barotropic com-

ponent does not play an important dynamical role, and we can expect that results

obtained with the idealised channel are relevant to more complex model configura-

tions and to the real Southern Ocean.

3.3.4 Zonal momentum balance

The vertically integrated zonal momentum balance equation for a Boussinesq fluid

in a re-entrant channel, subject to the assumptions discussed in section 2.5.1, reads
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Figure 3.4: Instantaneous (left) and time-mean (right) zonal-mean zonal velocity.

The time average is computed over a period of 51 years.

Figure 3.5: Left: meridional profile of time-mean, zonal-mean bottom velocity and

the theoretical prediction from zonal momentum balance τw(y)/ρ0rb. Right: wind

work at the surface (dashed blue line) and energy dissipated by bottom drag (con-

tinuous black line).

(equation (2.106)):

ub =
τw

ρ0r
,

which expresses the fact that zonal momentum imparted at the surface by wind

stress is dissipated at the bottom by linear bottom drag. Figure 3.5 (left) shows

that the meridional profile of zonal-mean, time-mean bottom zonal velocity is in

excellent agreement with the theoretical prediction τw(y)/ρ0rb computed using the

model parameters shown in table 3.1. The time averages are computed over a period

of 51 years.
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3.3.5 Mechanical energy balance

The mechanical energy balance for the Boussinesq re-entrant channel is given by

equation (2.128). Figure 3.5 (right) shows the wind work at the surface (i.e., the

left hand side of equation (2.128), dashed blue line) and the energy dissipated by

bottom drag (continuous black line). For this analysis, we diagnosed 5-day spaced

instantaneous snapshots of the horizontal velocity, and computed time averages over

a short period of 6 years (since using a shorter period gives qualitatively similar

outcomes, we do not expect that the accuracy of the results depends heavily on

the length of the averaging period). Figure 3.5 demonstrates that the vertically

integrated mechanical energy balance holds in our model at any given latitude to

within a 20% accuracy. The discrepancy between the two curves is attributed to the

undiagnosed lateral stress and viscous dissipation terms (which are neglected in the

theoretical derivation of equation (2.128)), and to the fact that a temporal resolution

of 5 days may not adequately represent the quadratic bottom dissipation term (as

this foregoes all eddy energy at time scales shorter than 5 days).

3.3.6 Thermal wind balance

We have seen in section 3.3.1 that the idealised channel is in the low Rossby num-

ber regime and satisfies geostrophic scaling. Geostrophic theory maintains that the

vertical shear of zonal velocity is related to the meridional gradient of buoyancy by

the thermal wind equation (geostrophy + hydrostasy):

∂zu =−
∂yb

f
, (3.23)

where the minus sign takes care of the fact that we are in the Southern Hemisphere

( f is negative), and the bar denotes time and zonal average. Therefore, we expect

that in the idealised channel the baroclinic component of zonal velocity is related to

the meridional gradient of buoyancy according to:

u(z) =−
∫ z

−H
dz′

∂yb(z′)
f

. (3.24)
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Figure 3.6: Left: vertical shear of time-mean, zonal-mean zonal velocity (colours),

and the corresponding thermal wind prediction from equation (3.23) (contours).

Right: baroclinic component of time-mean, zonal-mean zonal velocity (colours),

and the corresponding thermal wind prediction prediction from equation (3.24)

(contours)

Figure 3.6 (left) shows the vertical shear of time-average, zonal-average zonal ve-

locity (colours) and the corresponding prediction from thermal wind (i.e., the right

hand side of equation (3.23), contours). Time averages are computed over a pe-

riod of 51 years. Similarly, figure 3.6 (right) shows the time-average, zonal-average

baroclinic velocity (colours) and the thermal wind prediction (the right hand side

of equation (3.24), contours). The qualitative agreement between the two sides

of the thermal wind relation is satisfactory in both cases. For a more quantitative

comparison, the baroclinic zonal flow computed with equation (3.24) amounts to

approximately 93 Sv, corresponding to a 5% deviation only from the value of 88 Sv

obtained using equation (3.22).

3.3.7 Ekman spirals

Geostrophic balance does not hold in the surface and bottom frictional layers, where

the horizontal velocity is endowed with an ageostrophic component supported by

Ekman stresses. Here, we demonstrate that the magnitude of the ageostrophic ve-

locity in the surface layer of the idealised channel agrees well with the theoreti-

cal prediction based on Ekman theory. In the interest of brevity, we only review
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the essential, and refer to Vallis (2017) for the complete discussion. The time-

mean, zonal-mean horizontal velocity u can be decomposed into its geostrophic

and ageostrophic components, u = ug + uag. The geostrophic component of the

zonal velocity is given by thermal wind, while the geostrophic component of the

meridional velocity is zero as the zonal-mean zonal pressure gradient is zero by pe-

riodicity of the domain. Vallis (2017) shows that the ageostrophic component of the

horizontal velocity in the surface Ekman layer can be modelled by the equations:

uEk(z) =−
√

2
d

τ0

ρ0 f
e

z
d cos(

z
d
− π

4
) (3.25)

vEk(z) =

√
2

d
τ0

ρ0 f
e

z
d sin(

z
d
− π

4
), (3.26)

where d is an estimate of the depth of the Ekman layer. The name Ekman spirals

comes from the fact that in two dimensions uag = (uEk,vEk) describes a spiral as

depth varies from the bottom of the layer to the surface. Figure 3.7 illustrates the

separation of horizontal velocity into its geostrophic and ageostrophic components

for the top few hundreds meters of depth, at y = 1000 km. Figure 3.7 (left) shows

that the vertical profile of the baroclinic zonal velocity (continuous blue line) is well

reproduced by the sum of the geostrophic and ageostrophic zonal velocity (contin-

uous red line). The geostrophic zonal velocity alone (dashed red line), instead, is

not a good approximation of ubc in the Ekman layer. Figure 3.7 (right) demon-

strates that the meridional velocity (continuous blue line) is accurately captured by

the ageostrophic meridional velocity (continuous red line). The parameter d ≈ 25 m

was tuned so that the theoretical curves best represent the diagnosed fields. Time

averages are computed over a period of 51 years.

3.3.8 The Eulerian Streamfunction

The Eulerian streamfunction describes the circulation induced by the zonal-mean

velocity on the meridional plane. The theory is dealt with in sections 2.4.2 and

2.5.4, to which we refer for details.

Figure 3.8 (left) shows the time-averaged Eulerian streamfunction (colours),
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Figure 3.7: Separation of the time-mean, zonal-mean horizontal velocity into its

geostrophic and ageostrophic (Ekman) components. Left: vertical profile of time-

mean, zonal-mean baroclinic zonal velocity (continuous blue line), geostrophic

zonal velocity (dashed red line), and geostrophic plus ageostrophic zonal veloc-

ity (continuous red line) over the top 200 m of the ocean. Right: vertical profile of

time-mean, zonal-mean meridional velocity (continuous blue line) and ageostrophic

meridional velocity (continuous red line) over the top 200 m.

where the time average is computed over a period of 18 years (we found that 18

years provide a sufficiently robust climatology for the Eulerian, residual, and eddy-

induced streamfunction, therefore we diagnosed the layers-integrated meridional

transport for 18 out of 51 years of model integration only). The iso-contours of ψ

are approximately vertical away from the surface and bottom Ekman layers: this

is an expression of the fact that the zonal-mean meridional velocity v is entirely

ageostrophic, and that the ageostrophic velocity is non-zero only in the Ekman lay-

ers. The circulation described by ψ is the notorious Deacon cell (Doos and Webb,

1994), and is characterised by upwelling near the southern boundary, equatorward

transport at the surface, downwelling at the northern boundary, and a bottom return

flow. This pattern of circulation would imply a large diabatic transport in the interior

of the ocean but, as seen in section 2.4.3, it is not the Eulerian circulation that on

average advects tracers in the Southern Ocean. The diagnosed Eulerian streamfunc-

tion compares well with the theoretical prediction computed from the zonal balance

equation (2.136) (black contours):

ψ =− τ0

f ρ0
.
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Figure 3.8: Left: Time-mean eulerian streamfunction (colours) and theoretical pre-

diction from zonal balance, equation (2.136) (contours). For the theoretical predic-

tion we assume that ψ decreases linearly to zero in the surface and bottom Ekman

layers. Right: Residual streamfunction in isopycnal coordinates (colours). The

black dashed line marks the time-mean, zonal-mean Sea Surface Temperature

Note though that this equation is only valid in the interior. A common assumption

made to parametrise ψ in the surface and bottom Ekman layers is to assume that it

decreases linearly from its value at the base of the layer (given by equation (2.136))

to zero at the surface and bottom.

3.3.9 The residual Streamfunction

The residual streamfunction describes the circulation that on average advects tracers

in the Southern Ocean, see the theory in section 2.4.3. The time-averaged residual

streamfunction in isopycnal coordinates is shown in figure 3.8 (right), where the

average is computed over a period of 18 years. The iso-contours of ψI are approx-

imately horizontal away from the surface and northern diabatic layers (the black

dashed line marks the time-mean, zonal-mean Sea Surface Temperature), which is

an expression of the fact that the residual circulation is directed along isopycnals

in the interior. Iso-contours are not horizontal in the diabatic layers though, where

a cross-isopycnal return flow allows closure of the meridional overturning. There

are three distinct overturning cell: a lower negative cell, an intermediate positive
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cell, and an upper negative cell. Many studies focus on the first two cells only (e.g.

Abernathey et al. (2011)), which is why the intermediate cell is sometimes referred

to as ”the upper cell”. In between the lower and intermediate cell is located the

important upwelling branch of the overturning circulation, which provides an adia-

batic pathway for deep water to reach the surface (Marshall and Speer, 2012). Water

that outcrops close to the southern boundary of the domain is exposed to buoyancy

loss and transforms into very dense downwelling water, which can be thought of as

our model’s representation of AABW formation. Water that outcrops at lower lati-

tudes is exposed to northward Ekman transport and buoyancy gain, and eventually

enters a region of buoyancy loss at the surface: the ensuing downwelling branch

of the intermediate cell is representative of SAMW-AAIW formation (Abernathey

et al., 2011). We observe that the intermediate cell peaks within the surface dia-

batic layer (Abernathey et al. (2011) noted that this cell tends to become confined

in the surface diabatic layer in their weak wind-stress forcing experiments). The

partitioning of the overturning circulation in three cells takes a more familiar form

when the streamfunction is mapped back to depth coordinates, figure 3.9 (left). This

representation of the streamfunction makes it even clearer that, in the interior, the

residual circulation follows isothermals (shown in black contours). Overall, the

idealised channel produces an overturning circulation whose structure is in good

qualitative agreement with estimates for the real Southern Ocean, see for example

Marshall and Speer (2012), Rintoul et al. (2001). Similarly to Abernathey et al.

(2011), we estimate the interior volume transport associated with the lower and in-

termediate overturning cell by taking the minimum and maximum respectively of

ψres below 500 m depth and at y = 1800 km. The precise meridional location where

the extrema are taken is not important because we have seen that, in the interior, the

streamfunction is approximately constant along isopycnals. We obtain a value of

approximately 0.4 Sv for both cells, which corresponds to ∼ 10 Sv when we take

into account that the zonal extent of the idealised channel is about 25 times smaller

than that of the real Southern Ocean. This compares well with estimates for the real

Southern Ocean, see for example Marshall and Speer (2012).

89



Figure 3.9: Left: Time-averaged residual streamfunction in depth coordinates

(colours) and time-mean, zonal-mean temperature (contours). Right: Time-

averaged eddy-induced streamfunction.

3.3.10 The eddy-induced streamfunction

The eddy-induced streamfunction describes the pattern of circulation associated

with the action of baroclinic eddies. Rather than from its definition, equation (2.74),

ψ∗ is diagnosed as ψ∗ = ψres−ψ . The time-mean eddy-induced streamfunction is

shown in figure 3.9 (right), where the time mean is computed over a period of 18

years. The eddy-induced streamfunction is negative over most of the domain and

the overall sense of the circulation is counter-clockwise, demonstrating that ψ∗ ef-

fectively opposes the wind-induced circulation and acts to flatten isopycnals in the

channel. The volume transport associated with ψ∗ is large, and comparable in mag-

nitude to that of the Eulerian streamfunction, figure 3.8 (left), which is consistent

with the idea that ψres is the small residual of the balance between the large wind-

induced and eddy-induced circulations.

3.4 Conclusions

In this chapter, I have discussed a particular configuration of the MITgcm, the ide-

alised channel, which I will use to simulate the dynamics of the Southern Ocean in

the rest of the manuscript. I have made several assumptions regarding the geome-
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try of the problem and the nature of the forcing applied at the boundaries, thereby

choosing to work in a simplified setup. In return for the sacrificed realism, the model

can be run at a high horizontal resolution, so that baroclinic eddies can be resolved

throughout the domain. Consistently with this premise, my goal is to investigate the

dynamical processes at play in the channel (and those driven by baroclinic eddies in

particular) qualitatively, and not to make quantitative predictions for the real South-

ern Ocean. Nevertheless, following the lead of previous research I have explored the

physical properties of a reference state of the idealised channel (the control run), and

found that the model produces a plausible representation of the observed Southern

Ocean. Specifically, I have demonstrated that the idealised channel has a realistic

meridional structure of temperature and large scale stratification. Our estimate for

the time-averaged baroclinic zonal flow sits in the range of values reported in the

literature. The barotropic flow, on the other hand, is unrealistically large due to the

absence of topographic drag but, as explained in chapter 2, this is unimportant for

the eddy energy cycle. The model is in the low Rossby number regime, and I have

ascertained that the thermal wind relation, which crucially links tilted isopycnals

with the intense zonal flow, holds to a high accuracy in the channel. The Eulerian

streamfunction, describing the wind-induced circulation, agrees well with the theo-

retical prediction. When properly scaled, the residual streamfunction has plausible

magnitude and structure too, and captures the main processes of water masses for-

mation believed to be at play in the real ocean. Overall, this analysis confirms that

the idealised channel constitutes a reliable representation of the Southern Ocean,

and an appropriate tool to study how baroclinic eddies affect its dynamics.
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Chapter 4

Time-scales of natural variability in

the Southern Ocean: part 1

4.1 Introduction

4.1.1 Motivation

Ocean mesoscale eddies enter the dynamical balance of the Southern Ocean at lead-

ing order (Marshall and Radko, 2003). It has been shown that they play a piv-

otal role in controlling its internal variability (Hogg and Blundell, 2006, Sinha and

Abernathey, 2016, Wilson et al., 2015) and the response of its circulation to wind

stress changes (Abernathey and Ferreira, 2015, Abernathey et al., 2011, Hallberg

and Gnanadesikan, 2006, Viebahn and Eden, 2010). However, a broad consensus

over the physical mechanisms governing their interaction with the large scale flow

has not yet been established. A recent and promising research avenue towards an

improved understanding of the subject builds on the dynamical similarity between

the ACC and the atmospheric jet stream (Thompson, 2008). Williams et al. (2007),

for example, found analogies in the patterns of eddy vorticity forcing on the mean

flow in the atmospheric storm track and in the Southern Ocean. Ambaum and Novak
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(2014) (AN14 hereafter) introduced a model of atmospheric storm track variability

which describes the baroclinic life-cycle in terms of a two-dimensional dynamical

system. The key idea is that baroclinic development can be sustained by an exter-

nal forcing even in conditions of baroclinic neutrality, and that interactions between

the growing instability and the mean flow may produce periodic oscillations. The

overall physical picture is similar to that expressed by Lotka-Volterra models of

population growth, with eddies acting as a population of predators feeding upon

the mean flow, as described in chapter 1. One of the key advantages of the AN14

model is that it captures the full eddy life-cycle, whereas conventional models of

baroclinic instability (e.g. Eady (1949)) tend to focus on the growing phase of the

instability only.

The equations proposed by AN14 are:

dX
dt

= F−Y (4.1)

dY
dt

= 2(X−D)Y , (4.2)

where X and Y represent spatial averages of baroclinicity (measuring mean flow)

and eddy heat flux (measuring eddy activity) respectively. F is a diabatic forc-

ing term, and D is a dissipation term. The AN14 model was introduced based on

heuristic arguments, but Novak et al. (2017) found the model predictions in good

agreement with atmospheric reanalysis and General Circulation Model (GCM) data.

Yano et al. (2020) and Marcheggiani et al. (2022) provided further evidence that a

similar approach based on simplified dynamical systems can be successfully em-

ployed to study the variability of the atmosphere. Here, I address the following

question: to what extent is the AN14 reduced-order model of atmospheric turbu-

lence transferable to its natural oceanic equivalent? Although Marshall et al. (2017)

proposed a model of eddy saturation in the Southern Ocean inspired by AN14, the

idea that this dynamical system approach can capture the physics of eddy-mean flow

interaction in the Southern Ocean jets has not been tested yet. The purpose of this

work is to explore this possibility by using a high-resolution dataset, the MITgcm

idealised channel configuration described in chapter 3.
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4.1.2 The AN14 model

We start by taking a quick look at the AN14 model in its original formulation.

Firstly, note that equations (4.1) and (4.2) admit a stationary solution (X̄ ,Ȳ ) =

(D,F), which is found by imposing the condition d
dt (X ,Y ) = (0,0). Further proper-

ties of the AN14 model include:

1. It is non-linear, meaning that the terms on the right hand side of equations

(4.1) and (4.2) are non-linear in the state variables X and Y .

2. It is conservative, therefore there exists a function of X and Y that is conserved

under time evolution. Roncoroni (2018) explicitly calculated the Lagrangian

function associated to the equations of motion.

3. It is an oscillator, i.e. solutions to the model equations are periodic.

A corollary of the last property is that when the AN14 model is linearised it reduces

to a harmonic oscillator. To see this, it is sufficient to expand the right hand side of

equations (4.1) and (4.2) to first order around (X̄ ,Ȳ ), yielding:

dX
dt

= F−Y (4.3)

dY
dt

= 2F(X−D) . (4.4)

By rescaling X−D→ X and −(Y −F)→ Y we obtain:

dX
dt

= Y (4.5)

dY
dt

=−2FX , (4.6)

which is a harmonic oscillator of elastic constant k2 = 2F . We will see more details

about this linear limit in section 4.2.7.

Figure 4.1 (left) shows the numerical solution of equations (4.1) and (4.2), for

F = 1, D = 1, X(t = 0) = 0, and Y (t = 0) = 2. The equations are integrated with

the 4-step Runge-Kutta method with time step ∆t = 0.01, and up to a final time
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t = 10 (time is in arbitrary units). As anticipated, the system is an oscillator, i.e. the

solution repeats itself after a certain fixed period of time. Also, consistently with

the predator-prey interpretation of the dynamics, we observe that smooth peaks of

the mean flow X (the prey, continuous line) lead sharper bursts of the eddy heat flux

Y (the predator, dashed line).

Due to the chaotic nature of atmospheric and oceanic flows, the physical inter-

pretation of real-world time series is more complicated than in the simple example

above (see for example figure 4 in AN14). A more convenient way to visualise the

time evolution of the system is by tracking its trajectory in the phase space. The

phase space is the space spanned by the values of the state coordinates - in the case

of the AN14 model, there are only two variables X and Y and the phase space is a

plane. At any given instant of time, therefore, the state of the system is represented

by a point in the plane. As time evolves, the representative points of the system de-

fine curves, also called trajectories. The structure of phase space trajectories reflects

the nature of the dynamics: a rich phenomenology is observed in dynamical system

theory, including trajectories that collapse to a stationary point (e.g. the damped

harmonic oscillator), diverge (a free particle), or generate complicated fractal ob-

jects (the Lorenz system). The AN14 model is an oscillator, therefore phase space

trajectories form closed orbits. Figure 4.1 (right) shows examples of phase space

trajectories obtained by integrating equations (4.1) and (4.2) with the Runge-Kutta

method for different initial conditions. Phase-space diagrams constructed with real-

world data are noisy too, but we will exploit a kernel averaging technique developed

by Novak et al. (2017) to smooth the raw data in a way that preserves information

about the dynamics. Importantly, for the AN14 model the phase space diagram may

be interpreted as a quantitative representation of the eddy-mean flow life cycle de-

scribed in figure 1.3, where a complete circuit of the phase space orbit corresponds

to a full cycle. The implication is that, when the phase space diagram is recon-

structed from data with the kernel averaging technique, nearly-closed orbits such as

those of figure 4.1 (right) constitute a strong indication that the underlying dynam-

ics are characterised by oscillatory behaviour. In the following, we will try to detect
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Figure 4.1: Left: time evolution of baroclinicity X (continuous line) and eddy heat

flux Y (dashed line) from a numerical solution of equations (4.1) and (4.2), for

F = 1, D = 1, X(t = 0) = 0, and Y (t = 0) = 2. Right: phase space trajectories

obtained by integrating the AN14 model with the same parameters as before but

varying the initial conditions.

such signature for the oceanic case using data from the MITgcm idealised channel

configuration.

4.1.3 Structure of the chapter

The chapter is structured as follows: in section 4.2 I discuss the theoretical back-

ground necessary for the subsequent analysis. Importantly, I introduce a modified

version of the AN14 model designed to take into account stochastic effects explic-

itly. I explain which data are used and how they are processed in section 4.3. In

section 4.4, I present the method employed to fit the dynamical system to the data

and evaluate the goodness of the fit. Results are illustrated in section 4.5: this in-

cludes the analysis of the idealised channel dataset and of a synthetic validation

experiment. Conclusions and perspectives are offered in section 4.7.
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4.2 Theoretical background

The primary goal of this work is to model the interaction between eddies and mean

flow in the Southern Ocean with a two-dimensional dynamical system. As it turns

out, effecting this task requires preliminary consideration of a sizeable amount of

heterogeneous material. I have decided to collect as many technical details as possi-

ble in an individual section dedicated to theory rather than cluttering the illustration

of key results with that of necessary but unessential subtleties. Structural homo-

geneity comes at the cost of a slight abstraction, so that this section presents the

reader with content whose usefulness will only become manifest at a later stage of

the discussion. The diverse nature of the material also made it a challenge to achieve

a thematic coherence in its arrangement. Simplifying matters, however, the topics

presented in this section can be divided into three main subjects:

1. Stochastic processes and their statistical properties.

2. Stochastic bivariate oscillators.

3. Kernel averaging.

The section is structured as follows: in the first part I set out the basic notation nec-

essary to understand the mathematical properties of the stochastic dynamical system

with which I intend to model eddy-mean flow interaction. This part mostly concerns

stochastic processes and some of their statistical properties, such as covariance and

correlation functions. The model itself is introduced and discussed in the second

part. In the third and final part, I discuss a mathematical technique which allows

to reduce the amount of noise contained in an individual realisation of a stochastic

dynamical system. This section is almost entirely based on existing literature: the

exceptions are the red noise test in section 4.2.6 and the benchmarking of the kernel

averaging routine in section 4.2.9, which are the author’s own work.
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4.2.1 Foundations

Consider the two-dimensional autonomous dynamical system:

d
dt

X = f (X ,Y ) (4.7)

d
dt

Y = g(X ,Y ) . (4.8)

The state variables are named X and Y . The functions f and g on the right hand

side describe the deterministic part of the dynamics, and are at present arbitrary.

Equations (4.7) and (4.8) are meant to constitute a simplified description of a com-

plex, high-dimensional geophysical flow. The variables X and Y can be interpreted

as spatially averaged geophysical quantities, with the average taken over a suitable

domain. A notable example is the AN14 model presented in the introduction. In

this case:

f (X ,Y ) = F−Y (4.9)

g(X ,Y ) = 2(X−D)Y , (4.10)

where X is the Eady growth rate (see section 4.3.2 for the definition), Y is the eddy

heat flux, and their spatial average is computed over the North Atlantic storm track

region.

In general, it is not possible to derive a closed set of equations akin to (4.7)

and (4.8) that predicts the evolution of X and Y for a high-order geophysical system

exactly. The reason is that, even if a physical relation between the variables X and Y

exists, it is likely to be mediated by the system’s remaining degrees of freedom, so

that equations (4.7) and (4.8) should be interpreted as an averaged and approximated

representation of the dynamics (Yano et al., 2020). Under favourable circumstances,

though, the effect of the neglected degrees of freedom on the evolution of X and Y

can be modelled with the inclusion of stochastic terms on the right hand side of the

equations. With informal notation:

dX = f (X ,Y )dt +σxdξx (4.11)

dY = g(X ,Y )dt +σydξy , (4.12)
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where dξx, dξy are stochastic terms (for example, Brownian motion increments) and

σx,σy non-negative real numbers representing the amplitude of the noise. Note that

dξx, dξy do not represent any specific missing physical processes (e.g., sub-grid

scale processes): rather, they are meant to model the loss of complexity inherent

to reducing a comprehensive climate model to a simple system of two differential

equations. Such a modelling choice can sometimes be rigorously justified by means

of scale separation arguments but here, similarly to Yano et al. (2020), we simply

take it as an ansatz.

The explicit inclusion of the stochastic terms in the model introduces mild con-

straints on the deterministic part of the dynamics. Consider as an example the case

when the functions f and g are linear:

dX = (aX +bY )dt +σxdξx (4.13)

dY = (cX +dY )dt +σydξy . (4.14)

We will study these equations at length in section 4.2.7. For now, we mention that

they have statistically stationary solutions only when the matrix with components

a, b, c, and d is negative definite. The negative eigenvalues are associated to damp-

ing: in other words, the deterministic dynamics are dissipative. Intuitively, the noise

terms introduce supplementary ”energy” into the system, which must be dissipated

if the solutions are to remain bounded. This should be contrasted with the original

AN14 model, which is a conservative system and cannot support stationary solu-

tions if the stochastic terms are explicitly represented. In view of this, we seek

to represent eddy-mean flow interaction in the Southern Ocean with a dynamical

system that fulfils the following requirements:

1. It is two-dimensional.

2. It explicitly accounts for noise.

3. The deterministic part of the dynamics is oscillatory, and as in AN14 it ex-

presses a predator-prey relationship between eddies and the mean flow.
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4. The deterministic part of the dynamics is dissipative, so that stationary solu-

tions of the stochastically forced problem exist.

This is our basic problem setup. Conditions 1 and 2 are automatically satisfied

as long as the system has the form of (4.11) and (4.12). In section 4.2.7, we will

see that the simplest model that can accommodate all the remaining conditions is a

stochastic bivariate linear oscillator. Accordingly, the following sections are dedi-

cated to the exploration of some mathematical properties of the system defined by

equations (4.11) and (4.12), with a special focus on linear oscillatory dynamics.

4.2.2 Stochastic processes

Upon discretisation, a stochastic bivariate linear oscillator is a bivariate auto-regres-

sive process. This family of models is best discussed with the language of stochastic

processes theory. It is beyond the scope of this work to offer a detailed presentation

of the subject (for that we refer to Higham (2001) and references therein), and we

shall thus limit ourselves to those aspects that are strictly necessary to our analysis.

In this section, we set out the notation we use in the rest of the chapter. Selected

topics are explored more in depth in the following sections.

Consider a scalar stochastic differential equation (SDE) of the form:

dX = f (X)dt +σxdξ . (4.15)

Here, f (X) encapsulates the deterministic dynamics, σx is the noise amplitude, and

dξ is, with informal notation, the infinitesimal brownian motion increment (see

below). A discrete version of this equation can be obtained upon finite differencing.

The simplest choice is the Euler-Maruyama scheme (Higham, 2001), giving:

Xn+1 = Xn + f (Xn)∆t +σxdWn+1, (4.16)

where tn = n∆t, Xn = X(tn), and dWn+1 is the Brownian motion increment, a nor-

mally distributed random variable with zero mean and variance ∆t. By stochastic
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process we mean an indexed collection of random variables, where the index de-

scribes time. When the index is an integer, the stochastic process is said to be

discrete. Equations of the form (4.15) and (4.16) define a continuous and a discrete

stochastic process respectively. A time series is a random realisation of a discrete

stochastic process. A stochastic process is said to be real valued if Xn is real for all

n. The expectation value of Xn, which we denote by E[X ], is defined in the usual

sense of probability theory. A stochastic process is stationary if its stochastic prop-

erties do not depend on the time index n or, more formally, if the joint probability

distribution of Xn and Xm only depends on |n−m| (von Storch and Zwiers, 1999).

In this work, we only consider discrete, real-valued, stationary stochastic processes.

Some special cases are of particular interest. White noise is a sequence of indepen-

dent and identically distributed normal random variables. Some properties of white

noise will be discussed in subsequent sections. A stochastic process is linear when

f (X) = aX . The associated SDE is:

dX = aXdt +σxdξ , (4.17)

which, for a < 0, is called the Ornstein-Uhlenbeck process, see for example Vati-

wutipong and Phewchean (2019). The corresponding discrete process reads:

Xn+1 = (1+a∆t)Xn +σxdWn, (4.18)

which is named an auto-regressive process of order 1, or red noise (von Storch and

Zwiers, 1999). We will see more properties of auto-regressive processes later on.

Finally, a stochastic process is said to be multivariate when Xn is replaced with a

vector-valued variable Xn. If Xn only has two components, the process is bivariate.

Linear bivariate processes are the focus of this chapter.

4.2.3 Covariance and correlation functions

In many practical cases, stochastic processes can be characterised by investigating

a few of their statistical properties. Covariance and correlation functions are es-

pecially useful to illuminate a process’ typical time scales, and a common tool in
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time series analysis. Our goal in this section is to outline the definitions adopted

in subsequent parts of the chapter. We refer to von Storch and Zwiers (1999) for a

comprehensive discussion of the subject.

Let Xn be a real-valued, stationary, univariate stochastic process, with n= 1, ...,N.

The auto-covariance function of Xn is:

CovXX(τ) = E[(Xn−µX)(Xn+τ −µX)], (4.19)

where µX is the expectation value of Xn (i.e, the average of X in usual language),

and the integer τ is named the lag. This definition is not universal, and sometimes

the convention:

CovXX(τ) = E[(Xn+τ −µX)(Xn−µX)], (4.20)

is adopted instead (e.g. Frankignoul and Hasselmann (1977)). Two properties are

worth remembering: (i) the auto-covariance is an even function of the lag τ:

CovXX(τ) = CovXX(−τ), (4.21)

and (ii) the lag-zero auto-covariance is equal by definition to the variance of Xn:

CovXX(0) = Var[Xn]. (4.22)

Intuitively, the auto-covariance function measures how rapidly the stochastic pro-

cess Xn loses memory of its past values. Suppose, for the sake of the illustration,

that the auto-covariance of a process Xn decays exponentially with the time lag τ (as

is the case for a red noise process, see below), and let T be the e-folding time. For

τ >> T , the auto-covariance is approximately zero: this indicates that the random

variables Xn−µX and Xn+τ−µX are weakly related. Put in other words (von Storch

and Zwiers, 1999), the quantity Xn is not a skilful predictor for the future value Xn+τ .

Conversely, Xn+τ will not be too dissimilar from the initial value Xn for τ << T ,

and a prediction based on the persistence of Xn will yield reasonable success. The

e-folding time T separates between the two regimes, and may be interpreted as a

characteristic decorrelation time for the process. The auto-covariance function is

related to the spectrum of the process via the Fourier transform (von Storch and
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Zwiers, 1999), and is thus a powerful tool to detect periodic signals obscured by

noise.

When there are two stationary, univariate, stochastic processes Xn and Yn, the

notion of auto-covariance can be generalised by that of cross-covariance:

CovXY (τ) = E[(Xn−µX)(Yn+τ −µY )], (4.23)

where µX is the expectation value of X and µY is the expectation value of Y . The

cross-covariance function satisfies the property:

CovXY (τ) = CovY X(−τ). (4.24)

For a multivariate stochastic process Xn, the notions of auto- and cross-covariance

functions combine into that of lagged covariance matrix:

Σ(τ) = E[(Xn−µX)(Xn+τ −µX)
T ], (4.25)

where T denotes transposition and µX is the vector expectation value of Xn. In

the special case of a bivariate process Xn with components Xn and Yn, the lagged

covariance matrix is a 2×2 matrix:

Σ(τ) =

ΣXX(τ) ΣXY (τ)

ΣY X(τ) ΣYY (τ) .

 . (4.26)

Of special importance is the lagged covariance matrix at lag zero, simply called the

covariance matrix and denoted by Σ0:

Σ
0 = E[(Xn−µX)(Xn−µX)

T ], (4.27)

The covariance functions normalised by the variance are called correlation func-

tions. For two processes Xn and Yn, the definition of the auto- and cross-correlation

functions are:

ρXX(τ) =
CovXX(τ)

Var[Xn]
(4.28)

ρYY (τ) =
CovYY (τ)

Var[Yn]
(4.29)

ρXY (τ) =
CovXY (τ)√

Var[Xn]Var[Yn]
. (4.30)
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The correlation functions convey the same information as the covariance functions,

but are non-dimensional variables and are valued between −1 and 1. If it is conve-

nient to view Xn and Yn as the components of a bivariate stochastic process Xn, the

equations above can be re-written in the equivalent form:

ρXX(τ) =
ΣXX(τ)

Σ0
XX

(4.31)

ρYY (τ) =
ΣYY (τ)

Σ0
YY

(4.32)

ρXY (τ) =
ΣXY (τ)√
Σ0

XX Σ0
YY

, (4.33)

where the emphasis is placed on the matrix structure of the problem.

4.2.4 Estimation of the correlation functions

Consider a bivariate time series Xn = (Xn,Yn), with n = 1, ...,N. The correlation

functions can be inferred from data by means of the following estimators:

rXX(τ) =
1
N ∑

N
n=1(Xn−µX)(Xn+τ −µX)

Var[Xn]
(4.34)

rYY (τ) =
1
N ∑

N
n=1(Yn−µY )(Yn+τ −µY )

Var[Yn]
(4.35)

rXY (τ) =
1
N ∑

N
n=1(Xn−µX)(Yn+τ −µX)√

Var[Xn]Var[Yn]
, (4.36)

where rXX , rYY , rXY are the estimators of ρXX , ρYY , and ρXY respectively. In the

statistical literature, the normalisation factor is commonly set to N− 1 rather than

N, but the difference is negligible if the sample size is sufficiently large, which is

always the case in this work.

4.2.5 Correlation functions: examples

To familiarise with the computation and interpretation of auto- and cross-correlation

functions, we consider two simple examples where analytical expressions can be de-

rived exactly (see von Storch and Zwiers (1999) for the complete theory). In the first
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example we compute the auto-correlation function of an AR(1) process. The exer-

cise is instructive in that most of the ideas introduced here apply straightforwardly

to the more complicated cases considered later on. The second example consists

in predicting the form of the cross-correlation function between an AR(1) process

and its driving noise. It is informative because the cross correlation is not symmet-

ric with respect to τ = 0, which helps attributing the correct physical meaning to

values taken at positive and negative lags.

AR(1) process

Consider the zero mean AR(1) process:

Xn+1 = α1Xn +Zn+1, (4.37)

with 0 < α1 < 1 and Zn+1 = σdWn+1. The analytical expression for the auto-

correlation function can be obtained easily as follows. By taking expectation of

the defining equation we obtain E[Xn+1] = α1E[Xn], which leads to:

E[Xn] = 0, (4.38)

as expected. To compute the variance, we note that:

Var[Xn] = E[XnXn] = α
2
1 Var[Xn]+σ

2
Z , (4.39)

with σ2
Z = Var[Zn] = σ2∆t, yielding:

Var[Xn] =
σ2

Z

1−α2
1
. (4.40)

The auto-covariance function is computed similarly, obtaining:

CovXX(τ) =
σ2

Z

1−α2
1

α
|τ|
1 . (4.41)

Finally, upon normalisation by the variance we compute the auto-correlation func-

tion:

ρXX(τ) = α
|τ|
1 . (4.42)
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Thus, the auto-correlation function of an AR(1) process decays exponentially with

the lag, and the rate of decay is controlled by the process parameter α1. We gen-

erate a synthetic realisation of the process by integrating equation (4.37) with the

Euler-Maruyama method (Higham, 2001), for ∆t = 5, N = 2160 (corresponding

to 30 years if the time unit is days), and σ = 1. Figure 4.2 (left) shows the auto-

correlation function estimated with formula (4.34) (continuous blue line), and the

theoretical predication (4.42) (dashed black line). The numerical simulation con-

firms the exponential profile of the auto-correlation.

AR(1) process and its driving noise

We consider a zero-mean AR(1) process as before, and we study the cross-correlation

function between the driving noise and the process itself. Although we consider this

problem for its instructional value, a famous application was offered in the seminal

work of Frankignoul and Hasselmann (1977), where it was shown that Sea Surface

Temperature anomalies in the mid-latitudes can be modelled as an AR(1) process

forced by rapidly fluctuating air-sea fluxes. The cross-correlation function between

SST anomalies (the process) and air-sea fluxes (the driving noise) was exploited in

Figure 9 of the paper to demonstrate the agreement between model and observa-

tions. Here, we seek to understand how the form of the cross-correlation function

shown in Frankignoul and Hasselmann (1977) can be predicted analytically from

the defining equations of the process.

We start by computing the cross-covariance function at lag zero:

CovZX(0) = E[ZnXn] = E[Zn(α1Xn−1 +Zn)] = σ
2
Z , (4.43)

the last equality due to E[ZnXn−1] = 0 (i.e, the process at time n−1 does not depend

on the realisation of the noise at time n). The cross-covariance function at non-zero

lags is computed similarly, yielding:

CovZX(τ) =

σ2
Zατ

1 τ ≥ 0

0 τ < 0 .
(4.44)
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Figure 4.2: Left: estimated (continuous blue line) and theoretical (dashed black

line) auto-correlation function of an AR(1) process. Right: estimated (continuous

green line) and theoretical cross-correlation function between the driving noise of

an AR(1) process and the process itself. See main text for interpretation.

Upon normalisation we obtain:

ρZX(τ) =


√

1−α2
1 ατ

1 τ ≥ 0

0 τ < 0 .
(4.45)

In this example, the cross-correlation function is highly asymmetric. Its form can be

interpreted as follows: at positive lags, Z leads X , hence ρZX(τ) represents the cor-

relation between X and past values of its driving noise. This correlation is maximum

at lag zero and decays exponentially with time, expressing the idea that memory of

past values of the driving noise fades with time. At negative lags, X leads Z, and

ρZX(τ) represents the correlation between X and future values of its driving noise.

Accordingly, the correlation is zero. To compare the theoretical prediction with

data, we generate a synthetic realisation of the process (4.37) as before. The cross-

correlation function estimated with formula (4.36) (continuous green line) and the

prediction from equation (4.45) (dashed black line) are shown in figure 4.2 (right).

4.2.6 Statistical significance of correlation functions

In subsequent parts of this manuscript, correlation functions are estimated from

data. A common task in this case is to assess, with the help of statistical devices,
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whether or not the estimated values are significantly different from zero. The prob-

lem is usually formulated in terms of deciding whether a null hypothesis, named

H0, should be accepted or rejected in favour of an alternative hypothesis, named

Ha. The choice of the null hypothesis determines the nature of the statistical test, as

described below for two simple examples.

White noise test

In the simplest case, we consider a univariate time series Xn with n = 1, ...,N, and

formulate the hypothesis that Xn is a white noise process. Since the auto-correlation

function of white noise is zero at all non-zero lags (von Storch and Zwiers, 1999),

this is equivalent to:

H0 : ρXX(τ) = 0 ∀τ 6= 0. (4.46)

The alternative hypothesis Ha is that the auto-correlation function is non-zero at

some non-negative lag, and therefore that Xn is not a white noise process. We esti-

mate the auto-correlation ρXX with rXX defined in equation (4.34). It can be proven

(Tsay, 2013) that if Xn is a white noise process, then (i) the expectation value of rXX

is zero, and (ii) the variance of rXX satisfies:

Var[rXX ]'
1
N
. (4.47)

Therefore, at the 95% level of significance, the interval of acceptance of the null

hypothesis H0 is
[
−2/
√

N,2/
√

N
]

(this assumes that the distribution of rXX is nor-

mal). Note that, with a 95% level of significance, H0 will be rejected on average

5% of the times even if always true: the effect is called multiplicity (von Storch and

Zwiers, 1999). We use the white noise test to check that the residuals of a model fit

are normally distributed, see section 4.5.

Red noise test

The assumptions of the white noise test are too restrictive to cover all the cases

we are interested in. A relevant example is the following: we consider a pair of
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time series (Xn,Yn) where n = 1, ...,N, and estimate the cross correlation function

ρXY (τ) with rXY (τ), as defined in equation (4.36). The task is to decide whether, at

a given lag τ , the estimated value rXY (τ) is significantly different from zero. The

assumptions of the white noise test do not apply if Xn and Yn are not white noise pro-

cesses, which can be easily ascertained by studying the respective auto-correlation

functions. The rigorous way of addressing this problem is to apply the Ljung-Box

test (Tsay, 2013), which is however fairly involved and to the author’s best knowl-

edge quite uncommon in the Southern Ocean’s literature. Instead, we propose a

simplified approach which is inspired by the white noise test. We formulate the

null hypothesis H0 that Xn and Yn are independent auto-regressive processes of or-

der 1. Numerical evidence (see figure 4.3) reveals that, under this assumption, (i)

the distribution of rXY is approximately normal, (ii) The expectation value of rXY is

approximately zero, and (iii) the variance of rXY approximately satisfies:

Var[rXY ]'
1

Ne
, (4.48)

where Ne is the effective number of degrees of freedom (Bretherton et al., 1999,

Screen et al., 2009):

Ne = N
1− rX rY

1+ rX rY
. (4.49)

Here, rX and rY are the lag-1 auto-correlation coefficients of Xn and Yn respectively.

Therefore, at the 95% level of significance, the interval of acceptance of the null

hypothesis H0 is
[
−2/
√

Ne,2/
√

Ne
]
. Screen et al. (2009) used Ne to perform a two-

tailed Student-t test in the context of a univariate linear regression problem. Their

approach is more general, but it is rather unclear whether the underlying assump-

tions would hold in the bivariate problem we consider later in this work. Bretherton

et al. (1999) note that the approximation provided by equation (4.49) is accurate for

rX ,rY << 1, but our numerical experiments suggest that equation (4.48) holds even

for rX ,rY ' 1. We use the red noise test in sections 4.5.1 and 4.5.2.
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Figure 4.3: Numerical evidence supporting the results presented in the main text.

For each couple (rX ,rY ), we generated 104 realisations of two independent red noise

processes, with ∆t = 5, N = 2160 (corresponding to 30 years if the time unit is

days), and σ is extracted from a uniform distribution with bounds zero and
√

∆t.

The cross correlation function was estimated according to formula (4.36). The his-

tograms show the sampled distribution of rXY (0) for different values of rX and rY

(see subplot titles). The distribution of rXY (τ) is independent of τ (not shown),

therefore we only consider the distribution of the lag-zero coefficient. Histogram

bars are coloured in red if the associated bin edges are smaller than the 2.2 sam-

ple percentile or larger than the 97.8 sample percentile, and in blue otherwise. The

blue region corresponds to the acceptance interval of the null hypothesis at 95%

significance. The dashed black lines mark the corresponding prediction computed

according to
[
−2/
√

Ne,2/
√

Ne
]
. The continuous black line shows the zero mean

gaussian distribution with variance 1/Ne.
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4.2.7 Linear oscillators

The AN model is a two-dimensional conservative oscillator. Upon linearisation,

we obtain a two-dimensional linear conservative oscillator. If we explicitly account

for the unrepresented degrees of freedom of the complete geophysical system, the

equations are forced by stochastic noise. To guarantee the existence of stationary

solutions, dissipation terms must also be included. The model we are looking for

is thus a two-dimensional, stochastically forced, damped, linear oscillator. In this

section, we discuss some of its important mathematical properties.

General case

In two dimensions, the most general SDE defining a linear oscillator is:

dX = A Xdt +σdW, (4.50)

where A and σ are 2×2 matrices, X and dW are two-dimensional column vectors,

dW is Gaussian white noise, and certain conditions on A and σ , discussed imme-

diately below, are assumed. The associated discrete stochastic process is obtained

with the Euler-Maruyama finite differencing scheme:

Xn+1 = AXn +σdWn+1, (4.51)

with A = I2 +∆tA . Our assumptions are:

σ =

σx 0

0 σy

 , (4.52)

with σx,σy > 0, and:

A =

γxx kxy

kyx γyy

 , (4.53)

with γxx,γyy ≤ 0 and kxykyx ≤ 0. These properties ensure that the dynamical part

of the process describes an oscillator, and that there exist stationary solutions. To

understand why, consider the eigenvalues of the coefficient matrix A :

λ =
γxx + γyy

2
±

[(
γxx− γyy

2

)2

+ kxykyx

] 1
2

. (4.54)
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The system is endowed with stationary solutions if the real part of λ is negative

(Vatiwutipong and Phewchean, 2019). It is an oscillator if the imaginary part of

the eigenvalues is non-zero in the limit γxx = γyy→ 0. Here, the second condition is

automatically satisfied thanks to kxykyx≤ 0. The first is guaranteed by combining the

two assumptions γxx,γyy ≤ 0 and kxykyx ≤ 0. Inspection of the eigenvalues reveals

that the γ’s represent damping terms, while the k’s represent coupling terms. This

becomes particularly clear when one individually investigates the limits k→ 0 and

γ → 0. When neither the k’s nor the γ’s are zero there are two cases, depending

on whether the condition (γxx− γyy)
2 > 4kxykyx is satisfied or not. The former case

(with (γxx− γyy)
2 > 4kxykyx) defines the super-critical regime, when the imaginary

part of λ is zero and oscillations are suppressed by damping. The latter (with (γxx−

γyy)
2 < 4kxykyx) defines the sub-critical regime, where the imaginary part of λ is

non-zero and oscillations are not completely suppressed. When the real part of λ

is exactly zero the deterministic system is conservative, i.e. there is no dissipation

but equilibrium solutions exist. The harmonic oscillator and the AN14 model are

examples of deterministic conservative systems. A conservative system forced by

Gaussian white noise does not enjoy stationary solutions.

Statistical properties of the stochastic oscillator can be equivalently investigated

in the continuous or discrete formulation. Here we study the discrete equations, be-

cause they are analytically simpler and relate more directly to numerical simulations

of the process. The expectation value of the process is E[Xn] = 0. The covariance

matrix Σ0, defined by equation (4.27), is computed by solving the matrix equation:

Σ
0 = AΣ

0AT +∆tσσ
T . (4.55)

This formula is obtained by substituting equation (4.51) into the definition of the

covariance, equation (4.27). The ∆t factor on the right hand side originates from

the expectation value of the square of the Brownian motion increment. Under our

set of assumptions, it can be shown that the equation above is equivalent to solving
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(von Storch and Zwiers, 1999):I3−


γ2

xx k2
xy 2γxxkxy

k2
yx γ2

yy 2γyykyx

γxxkyx kxyγyy γxxγyy + kxykyx





Σ0
xx

Σ0
yy

Σ0
xy

= ∆t


σ2

xx

σ2
yy

0

 . (4.56)

The time-lagged covariance matrix, defined by equation (4.25), is computed simi-

larly, yielding:

Στ = Σ
0(AT )τ , (4.57)

where τ ∈Z is the lag in time steps. The correlation functions can be obtained from

the lagged covariance matrix as described in section 4.2.3. Finally, the marginal

Probability Distribution Functions (PDFs) of X and Y are given by:

p(x)≈ 1√
2πΣ0

xx
exp
(
− x2

2Σ0
xx

)
(4.58)

p(y)≈ 1√
2πΣ0

yy

exp

(
− y2

2Σ0
yy

)
, (4.59)

where we have made the supplementary assumption, justified a posteriori, that Σ0
xy≈

0.

Equations (4.50) and (4.51) define the model we shall refer to in the subsequent

analysis of MITgcm data. Up to this point, we have concentrated on its mathemati-

cal properties: in order to shed some light on its dynamics, we briefly explore a few

special cases.

Special case: the harmonic oscillator

The quintessential physical model: with our notation, it corresponds to γxx = γyy = 0

and kxy =−kyx = ω > 0:

d
dt

X = ωY (4.60)

d
dt

Y =−ωX . (4.61)
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The harmonic oscillator is a conservative system, i.e. ℜ(λ ) = 0, therefore the as-

sociated SDE does not have equilibrium solutions (Vatiwutipong and Phewchean,

2019). The ODE solutions are well known, and satisfy:

X2 +Y 2 = R2, (4.62)

with R a constant. Thus, trajectories in phase space are circles of radius R.

Special case: the elongated harmonic oscillator

The elongated harmonic oscillator is a linear oscillator whose trajectories in phase

space are ellipses. It corresponds to (Yano et al., 2020) γxx = γyy = 0, kxy = αω and

kyx = ω/α , with α and ω positive real numbers:

d
dt

X = αωY (4.63)

d
dt

Y =−ω

α
X . (4.64)

The elongated harmonic oscillator is a conservative system. Following Yano et al.

(2020), solutions satisfy the equation:(
X
A

)2

+

(
Y
B

)2

= 1, (4.65)

with A and B positive real numbers such that α = A/B. Note that the linearised

AN14 model, introduced in section 4.1.2, is formally equivalent to an elongated

harmonic oscillator with ω =
√

2F and α = 1/
√

2F .

Special case: the elongated, rotated, harmonic oscillator

Starting from the elongated harmonic oscillator and with a passive rotation of the

coordinate axes, one can define a linear oscillator whose trajectories in phase space

are ellipses rotated by an angle θ with respect to the horizontal (Yano et al., 2020).

The change of coordinates is X̂ = R−θ X, where Rθ is the 2×2 rotation matrix (the
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rotation is counter-clockwise when θ is positive) and X̂ are the rotated axes:

X̂ = cosθX + sinθY (4.66)

Ŷ =−sinθX + cosθY . (4.67)

As anticipated, solutions in the (X̂ ,Ŷ ) coordinate system satisfy the equation of an

ellipse rotated by an angle θ with respect to the horizontal. In terms of the rotated

variables, the evolution equations read:

d
dt

X̂ = µ1X̂ +η1Ŷ (4.68)

d
dt

Ŷ =−η2X̂−µ2Ŷ , (4.69)

with:

µ1 = µ2 = ω

(
α− 1

α

)
sinθ cosθ (4.70)

η1 = ω

(
α cos2

θ +
1
α

sin2
θ

)
(4.71)

η2 = ω

(
α sin2

θ +
1
α

cos2
θ

)
. (4.72)

Up to a minus sign, this is the model Yano et al. (2020) tested their data against.

Note that, despite appearances, the elongated, rotated, harmonic oscillator is still a

conservative system because ℜ(λ ) = µ1− µ2 = 0. Thus, there are no equilibrium

solutions for the associated SDE problem.

Remark

Anticipating on our results, we will show that eddy-mean flow oscillations in the

Southern Ocean are characterised by a balance between stochastic fluctuations and

dissipation. Therefore, rather than the conservative oscillator proposed by Yano

et al. (2020), we will fit our data with the forced-dissipative linear system of equa-

tion (4.51). Note that this approach involves little loss of generality, as near-con-

servative solutions can still be obtained from the fit in the limit of weak stochastic

forcing and dissipation.
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4.2.8 Kernel averaging

Kernel averaging is a mathematical technique which allows to reduce the amount of

noise contained in a sequence of observations of a fluctuating dynamical system. In

the following, we assume that we are given N observations (Xi,Yi) of a dynamical

system of the form (4.11) and (4.12): we use kernel averaging to investigate the

mean structure of trajectories in the phase space, and to gather information on the

deterministic part of the dynamics. The index i runs i = 1, ...,N, and observations

are separated by a time interval ∆t. Our presentation follows Marcheggiani et al.

(2022), Novak et al. (2017), Yano et al. (2020), to which we refer the reader for the

original discussion.

The kernel averaging technique in phase space consists in a weighted average,

where the weight attributed to each observation is a measure of the distance between

the observation itself and the point in the phase space where the average is evaluated.

For instance, the phase space density at point (x0,y0) is defined by:

µ(x0,y0) =
N

∑
i=1

K(x0−Xi,y0−Yi), (4.73)

where K(x,y) is the averaging kernel. Intuitively, µ(x0,y0) counts the number of

observations that fall in the vicinity of the point (x0,y0). The concept of vicinity in

the phase space is quantified by K(x,y), which we take of the form:

K(x,y) = exp{−1
2

[(
x
hx

)2

+

(
y
hy

)2
]
}, (4.74)

so that distance is evaluated according to a bivariate Gaussian distribution. The

parameters hx and hy control the width of the Gaussian filter. Note that observations

that fall in the vicinity of a given point (x0,y0) may be separated by a long interval

of time. In this sense, phase space kernel averaging allows to concentrate on the

dynamical similarity between observations, regardless of their proximity in time.

The average value of an arbitrary function q(X ,Y ) at point (x0,y0) is defined by:

q̃(x0,y0) =
1

µ(x0,y0)

N

∑
i=1

K(x0−Xi,y0−Yi)q(Xi,Yi), (4.75)
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A special case is when kernel averaging is used to reconstruct the mean phase space

velocity. The raw phase space velocity vector can be estimated with the finite dif-

ferencing formula:

ui+ 1
2
=

Xi+1−Xi

∆t
(4.76)

vi+ 1
2
=

Yi+1−Yi

∆t
, (4.77)

with i = 1, ...,N−1. Note that the velocity is defined on the interface points:

Xi+ 1
2
=

Xi +Xi+1

2
(4.78)

Yi+ 1
2
=

Yi +Yi+1

2
. (4.79)

Thus, the kernel-averaged velocity at point (x0,y0) is:

ũ(x0,y0) =
∑

N−1
i=1 Ki+ 1

2
ui+ 1

2

∑
N−1
i=1 Ki+ 1

2

(4.80)

ṽ(x0,y0) =
∑

N−1
i=1 Ki+ 1

2
vi+ 1

2

∑
N−1
i=1 Ki+ 1

2

, (4.81)

where Ki+ 1
2

is short for K(x0−Xi+ 1
2
,y0−Yi+ 1

2
). The width of the Gaussian filter,

controlled by the parameters hx and hy, can be defined based on the variability of

the observations in the x and y directions. To this end, we define the mean phase

space location of the observations as:

X =
1

N−1

N−1

∑
i=1

Xi+ 1
2

(4.82)

Y =
1

N−1

N−1

∑
i=1

Yi+ 1
2
. (4.83)

The amplitude of fluctuations around the mean location is measured by:

sx =
1

N−1

[
N−1

∑
i=1

(X−Xi+ 1
2
)2

] 1
2

(4.84)

sy =
1

N−1

[
N−1

∑
i=1

(Y −Yi+ 1
2
)2

] 1
2

, (4.85)

which allows to define the parameters hx and hy as fractions of the phase space

occupied by data, that is: hx = fxsx and hy = fysy, where fx and fy are typically
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smaller than 1. Following Marcheggiani et al. (2022), Yano et al. (2020), we set fx =

fy = 0.35 unless otherwise specified so that the Gaussian filter is sufficiently large

to remove small scale fluctuations without obscuring the large scale dynamics. See

Novak et al. (2017) for a thorough discussion of the effect of the Gaussian filter’s

size on the reconstructed phase space trajectories. The kernel-averaged velocity

(ũ, ṽ) is usually evaluated on a discrete grid in the phase space. Here, we adopt an

Nx×Ny uniform rectangular grid, with Nx = Ny = 30 and grid spacing:

∆x =
maxi Xi+ 1

2
−mini Xi+ 1

2

Nx−1
(1+2α) (4.86)

∆y =
maxiYi+ 1

2
−maxiYi+ 1

2

Ny−1
(1+2α) , (4.87)

where α = 0.1 is a parameter that controls how tightly the data-populated region is

bounded by the grid.

It is possible to evaluate the significance of the kernel-averaged trajectories.

Yano et al. (2020) introduced the following metrics: (i) the statistical significance,

which tends to be large in densely populated regions of the phase space, and mea-

sures how reliable the estimate of the averaged trajectories is, and (ii) the signal

to noise ratio, which measures the amount of fluctuations of the system around

the averaged trajectories and tends to be large in scarcely populated regions. The

physical interpretation is that a significance tradeoff should be expected: in densely

populated regions the actual trajectories of the system depart markedly from the

mean streamlines due to the elevated levels of noise (Marcheggiani et al., 2022,

Yano et al., 2020). One the other hand, it is precisely in these regions that mean

streamlines can be estimated with the highest statistical significance. Throughout

this work, however, we prefer to adopt more conventional measures of statistical

significance, such as those illustrated in section 4.2.6.

4.2.9 Kernel averaging: examples

Before turning to more complicated cases, we illustrate the phase space kernel av-

eraging technique with two simple examples.
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Van der Pol Oscillator

The Van der Pol Oscillator is a completely deterministic dynamical system defined

by:

d
dt

X = γ(1−Y 2)X−Y (4.88)

d
dt

Y = X . (4.89)

The system is nonlinear and conservative: trajectories in the phase space are closed

orbits. We demonstrate that, in the limiting case of a dynamical system with no su-

perimposed stochastic noise, the phase space kernel averaging procedure does not

distort the structure of the phase space diagram. We integrate the Van der Pol equa-

tions for γ = 3 with the four steps Runge-Kutta method, with ∆t = 0.02 and up to

a final time of t f = 60. The raw phase space diagram is shown in figure 4.4 (left).

The reconstructed phase space diagram, obtained with the procedure described in

section 4.2.8 and for fx = fy = 0.15, is shown in figure 4.4 (right). Kernel-averaged

streamlines (oriented black lines) are clustered around the deterministic trajectory,

and correctly reproduce the overall structure of the phase space diagram. The width

of the Gaussian kernel, shown by the green ellipse in the top left corner, controls

the extent of the phase space area used for the smoothing filter, and is associated

to the amount of blurring applied to the deterministic trajectory. The width of the

streamlines is proportional to the phase space speed. Consistently, regions of ve-

locity convergence are associated with the largest values of the data density µ(x,y)

(colours), and vice-versa.
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Figure 4.4: Left: raw phase space diagram for the Van der Pol oscillator with γ = 3.

Arrows indicate the sense of the circulation along the trajectory. Right: recon-

structed phase space trajectories with fx = fy = 0.15. Kernel-averaged streamlines

are represented by oriented black lines. The width of the lines is proportional to the

phase space speed. The estimated data density µ(x,y) is shown in colour shades.

The width of the Gaussian kernel is represented by the green ellipse in the top left

corner.

Lorenz system

The Lorenz system (Lorenz, 1963) is the deterministic dynamical system defined

by:

d
dt

X = σ(Y −X) (4.90)

d
dt

Y = X(ρ−Z)−Y (4.91)

d
dt

Z = XY −βZ . (4.92)

We set the problem parameters to σ = 10, ρ = 28, and β = 8/3. In this regime,

the equations have chaotic solutions, and almost all initial conditions tend to a

strange attractor. The Lorenz system is three-dimensional, but we only consider

two-dimensional sections of its phase space diagram. We use this example to test

the kernel averaging technique in the case of a system endowed with deterministic

chaos, when one degree of freedom is not directly represented in the phase space.

We integrate the Lorenz equations with the four steps Runge-Kutta method, with

∆t = 0.01 and up to a final time of t f = 40. The Y X section of the raw phase space
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Figure 4.5: Left: raw Y X phase space section for the Lorenz system with σ = 10,

ρ = 28, and β = 8/3. Arrows indicate the sense of the circulation along the tra-

jectory. Right: reconstructed phase space trajectories with fx = fy = 0.35. Kernel-

averaged streamlines are represented by oriented black lines. The width of the lines

is proportional to the phase space speed. The estimated data density µ(x,y) is shown

in colour shades. The width of the Gaussian kernel is represented by the green el-

lipse in the top left corner.

diagram is shown in figure 4.5 (left). The reconstructed phase space diagram, ob-

tained with fx = fy = 0.35, is shown in figure 4.4 (right). The width of the Gaussian

kernel is represented by the green ellipse in the top left corner. The kernel-averaged

trajectories (oriented black lines) reproduce the structure of the strange attractor

satisfactorily (for example, the change of orientation of the quasi-periodic orbits at

(0,0) is correctly captured), and the estimated data density (colours) is consistent

with that of the raw phase space diagram. The width of the averaged streamlines

clearly demonstrates that different sections of the attractor are characterised by dif-

ferent average speed, a feature not apparent from the analysis of the raw phase space

diagram only.
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4.3 Data

4.3.1 Dataset

In this chapter, we analyse data from the CTRL dataset of the idealised channel. We

use a total of 33 years of simulations, with 5-day averaged model output. Our work-

ing hypothesis is that eddy-mean flow interaction can be described by a simplified

model of the form (4.51). Here, we detail how data from the idealised channel con-

figuration is used to test this assumption. For a thorough discussion of the channel’s

setup and physics, we refer the reader to chapter 3.

4.3.2 Definition of the dynamical variables

The first task we undertake is to introduce the dynamical variables describing mean

flow and eddy activity in the oceanic case. In the atmospheric case, AN14 proposed

to use the Eady growth rate to measure mean flow and the eddy heat flux to measure

eddy activity. With minor adjustments, these choices are relevant to the oceanic

case too, as we now illustrate.

The Eady growth rate is an inverse time scale for the formation of eddies via

baroclinic instability (see the theory in section 2.3). In the Southern Ocean, it is

defined by (Williams et al., 2007):

ω =−0.31 f
∂zu
N

. (4.93)

Here, the bar denotes zonal average, f is the Coriolis parameter, and N is the buoy-

ancy frequency (note that N is a time-dependant variable here). The unit measure

is [ω] = day−1. The Coriolis parameter is negative in the Southern Hemisphere and

the vertical shear of zonal velocity is generally positive in the ACC region, there-

fore the Eady growth rate ω is a positive quantity. Note that the Eady growth rate is

related to baroclinicity (the meridional gradient of buoyancy) through the thermal
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wind relation. Substituting equation (3.23) into the definition (4.93), we obtain:

ω = 0.31
∂yb
N

, (4.94)

or:

ω =−0.31Ns, (4.95)

where s = −∂zb/∂yb is the slope of the isopycnals (which is negative on average

in the ACC region). We know from section 2.4.3 that the wind-powered Eulerian

circulation and the eddy-induced circulation have competing effects on s, respec-

tively acting to steepen and flatten isopycnals. The physical interpretation is that

s is a measure of the potential energy stored in the mean flow, and available for

consumption by baroclinic eddies (the larger the reservoir of available potential en-

ergy, the faster the growth of eddies). Thus, equation (4.95) highlights that the Eady

growth rate in turn constitutes a metric for the mean flow. Figure 4.6 (left) shows

the time-mean meridional profiles of ω in the top 1000 m of the idealised channel,

where the time mean is taken over a time interval of 33 years. The spatial average

of the time-mean Eady growth rate over the rectangular domain shown in figure

4.6 (left) is 0.052 days−1 (corresponding to an average growth period of ω−1 ≈ 20

days, broadly consistent with the estimate given by Williams et al. (2007)).

The quantity adopted by AN14 to measure eddy activity is the eddy heat flux,

which only differs from the eddy buoyancy flux by a dimensional constant. The lat-

ter quantity, however, is more pervasive in the Southern Ocean literature considered

for this work (see for example section 2.4.3 on TEM theory), and is therefore the

preferred choice here. We define the zonal-mean meridional eddy buoyancy flux as:

Fy = v+b+, (4.96)

where the bar denotes zonal mean and + deviations from time average. The unit

measure is [Fy] = J/Kgday. This quantity should be contrasted with v′b′, where

the prime denotes deviations from zonal average. For the idealised channel, we

found that the results presented in subsequent sections depend only marginally on

the choice of the averaging operator (time mean, zonal mean, or time and zonal
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Figure 4.6: Left: time-mean meridional profiles of Eady growth rate. Right: time-

mean meridional profile of zonal-mean eddy buoyancy flux. The rectangular do-

mains show the region used to take spatial averages.

mean) with respect to which deviations are taken (not shown). This is not unex-

pected as the idealised channel’s configuration is zonally symmetric, and zonally

averaged fields approximately coincide with time averaged fields. The difference

may become important in situations where the model setup is not zonally symmetric

and, of course, in the real ocean. Our definition places the emphasis on the interac-

tion between mean flow and transient eddies, as opposed to topographically driven

standing meanders. We will see in chapter 5 how it can be generalised to a non-

zonally symmetric geometry. Figure 4.6 (right) shows the time-mean meridional

profile of the zonal-mean eddy buoyancy flux in the top 1000 m of the idealised

channel, where the time mean is taken over a time interval of 33 years. Over most

of the domain Fy is negative, which is an expression of the fact that eddies transfer

heat poleward (the negative meridional direction in the Southern Hemisphere). The

spatial average of time-mean Fy over the rectangular domain shown in figure 4.6

(right) is −0.63J/Kgday.

The dynamical variables ω and Fy are related to the physical quantities dis-

cussed in the theoretical model of eddy saturation of Marshall et al. (2017). Under

suitable assumptions, it is possible to exploit this connection to express their (aver-

age) values in terms of model parameters such as the surface wind stress or the eddy

dissipation parameter, as we now briefly demonstrate. Consider the eddy buoyancy

flux Fy first: we shall show that this quantity is proportional to the eddy energy E
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defined by Marshall et al. (2017). From the definition of quasi-Stokes streamfunc-

tion (see chapter 2), we have:

Fy = N2
ψ
∗ . (4.97)

The quasi-stokes streamfunction, in turn, is related to the eddy form stress as fol-

lows. Firstly, recall that:

ψres = ψ +ψ
∗ . (4.98)

Now, ψ = −τw/ρ0 f from zonal momentum balance. The Coriolis parameter f is

negative, therefore:

ψres =
τw

ρ0| f |
+ψ

∗ , (4.99)

which we rewrite as:

τw =−ρ0| f |ψ∗+ρ0| f |ψres . (4.100)

Similarly to Marshall et al. (2017), we define the eddy form stress S as:

S =−ρ0| f |ψ∗ . (4.101)

Physically, the right hand side is (minus) the Coriolis torque on the eddy-induced

meridional circulation. Note that, with this definition, S is a positive quantity. The

above reads:

τw = S+ρ0| f |ψres , (4.102)

which, up to the convention on sign, is equation (1) in Marshall et al. (2017). From

their equation (2), the eddy energy E relates to the eddy form stress as:

S =
α1| f |

N
E , (4.103)

where α1 is a non-dimensional constant. Substituting equations (4.97) and (4.101)

into the above gives:

Fy =−
α1N
ρ0

E . (4.104)

Scaling law (3) in Marshall et al. (2017) then tells us that Fy may be expected to

increase linearly with the surface wind stress. Physically, this is an expression of

the fact that stronger winds fuel a more intense eddy field, and the eddy fluxes scale

accordingly.
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Next, we demonstrate that, under the same assumptions of Marshall et al. (2017),

the Eady growth rate is proportional to the eddy dissipation parameter λ . From the

eddy energy balance, equation (6) in Marshall et al. (2017), we obtain:

∂zu =
1

α2

λN
| f |

, (4.105)

whence:

ω =
0.31λ

α2
. (4.106)

Here, α2 is a second non-dimensional parameter. If we use the value α2 = 0.61

appropriate for linear instability (Marshall et al., 2017), this simplifies to:

ω ≈ λ

2
. (4.107)

The assumptions involved in the derivation above are quite restrictive (e.g. uniform

stratification and shear), and it is unclear to what extent they apply quantitatively

to our model setup. Furthermore, the eddy dissipation parameter λ has units s−1,

and thus different dimensionality from the bottom drag rb, which hinders a direct

evaluation of equation (4.107). Nevertheless, equations (4.104) and (4.107) estab-

lish a clear, qualitative link between our variables and the theoretical model of eddy

saturation of Marshall et al. (2017), and offer a roadmap to help interpret the equi-

librium sensitivity of ω and Fy to changes in the numerical model parameters. We

highlight, however, that the simplified theoretical model developed in this chapter

is intended to capture the variability of the dynamical variables rather than to pre-

dict their mean values, and it is thus not straightforward to communicate the added

knowledge supplied by equations (4.104) and (4.107) to our results. We return to

this point in the discussion of section 4.5.3.

4.3.3 Spatial averaging

Simplified models of the form (4.51) require the dynamical variables to depend on

time only. Here, the Eady growth rate and the zonal-mean eddy buoyancy flux are

presently functions of y, z and time. In order to obtain a suitable pair of dynamical
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variables, we average ω and Fy over a rectangular domain Ω in the meridional

plane:

ω̃(t) =
1

V (Ω)

∫∫
Ω

dydzω(y,z, t) (4.108)

F̃y(t) =
1

V (Ω)

∫∫
Ω

dydzF (y,z, t) , (4.109)

where:

V (Ω) =
∫∫

Ω

dydz. (4.110)

The rectangular domain Ω is shown in figure 4.6 (continuous black lines). Ver-

tically, it extends from z = −792 m to z = −230 m, so that the vertical average

is computed below the mixed layer, where vertical gradients become vanishingly

small, and within the top 1000 m (roughly, above the thermocline depth). Meridion-

ally, it is located at the centre of the domain (where the zonal flow and the associated

baroclinic activity is most intense) and is 100 km wide, comparable to the width of

an individual ACC jet. We found that, while quantitative details may change, the

results presented below do not depend critically on the exact size of the averaging

domain or on its precise location (see section 4.6 at the end of the chapter for an

overview). The quality of the agreement between the simplified model and the data,

however, tends to deteriorate in the opposite limits of very large (≈ 1000 km) or

very small (a few grid points) meridional width of the domain. We speculate that in

the former case the domain is sufficiently large to include statistics from multiple

ACC jets, possibly leading to a partial cancellation of the signal. The latter case is

more difficult to interpreter, but also peripheral to the main scope of this work as

model (4.51) is not meant to provide an accurate representation of pointwise evolu-

tion of geophysical variables. In view of this, these limits are not explored further.

The last step to obtain X and Y is to remove the time mean from the time series:

X(t) = ω̃(t)− 1
T

∫ T

0
dt ω̃(t) (4.111)

Y (t) = F̃y(t)−
1
T

∫ T

0
dt F̃y(t) , (4.112)

where T = 33 years. The dynamical variables are computed using 5-day averaged

model output, which yields the discrete bivariate time series Xn = (Xn,Yn), where

n = 1, ...,N, N = 2376, and ∆t = 5 days.
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4.4 Methods

We consider the following problem: we have N observations of two variables X and

Y , Xn = (Xn,Yn) for n= 1, ...,N. The observations are uniformly spaced by a known

time interval ∆t. We hypothesise that the time series Xn is a realisation of the linear

stochastic process:

Xn+1 = AXn +σdWn+1, (4.113)

where A and σ satisfy the conditions outlined in section 4.2.7, but are otherwise

undetermined. The task we undertake is (i) to compute the best estimate for the

unknown parameters A and σ , and (ii) to evaluate the goodness of the fit. This is

a standard problem in time series analysis: the method of solution which we adopt

follows the guidelines set out in von Storch and Zwiers (1999), and is based on the

Yule-Walker equations. We introduce the Yule-Walker equations in the simpler case

of a univariate process first, and from there generalise to the multivariate case.

4.4.1 Univariate Yule-Walker equations

The Yule-Walker equations are a set of relations that connect the parameters of an

auto-regressive process with its lagged correlation coefficients. In this section, we

study the simple case of a univariate, zero-mean autoregressive process of order 1:

Xn+1 = α1Xn +Zn+1, (4.114)

with 0 < α1 < 1 and Zn+1 = σdWn+1. The free model parameters to be estimated

are α1 and σ . In order to estimate α1, we multiply both sides of the equation by Xn

and take the expectation value:

E[XnXn+1] = α1E[XnXn]. (4.115)

The noise term drops out because Xn and Zn+1 are uncorrelated. The left hand side

is the lag-1covariance, the right hand side is the lag-0 covariance multiplied by α1:

CovXX(1) = α1CovXX(0), (4.116)
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or:

α1 = ρXX(1). (4.117)

The Yule-Walker equations assume a very simple form in this idealised example.

The same result could have been obtained by substituting τ = 1 into equation (4.42),

but the procedure shown above is more general and applies to autoregressive pro-

cesses of higher order as well. The lag-1 autocorrelation ρXX(1) is estimated from

the data, and yields the best estimate for α1. The noise amplitude σ can be estimated

from the analysis of the residuals, as explained in section 4.4.3 below.

4.4.2 Multivariate Yule-Walker equations

We now consider the multivariate case of equation (4.51). The model parameters

to be estimated are the 2×2 matrix of coefficients A and the 2×2 noise amplitude

matrix σ . The general procedure to compute the Yule-Walker equation was illus-

trated in the previous section, therefore here we substitute τ = 1 into equation (4.25)

directly, obtaining:

Σ(1) = Σ
0AT . (4.118)

The covariance matrix is invertible, therefore:

A = Σ(1)T (Σ0)−T , (4.119)

which is the matrix equivalent of equation (4.117). It is convenient to write the

above in terms of the lagged correlation functions:

A =

 Σ0
XX ρXX(1)

(
Σ0

XX Σ0
YY
) 1

2 ρXY (1)(
Σ0

XX Σ0
YY
) 1

2 ρY X(1) Σ0
YY ρYY (1)

T

(Σ0)−T . (4.120)

The lag-0 covariance matrix and the lag-1 correlation functions are estimated from

data, which yields the estimate of A. The noise amplitude matrix σ is estimated

from the residuals, see section 4.4.3.
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4.4.3 Goodness of fit

We assume that the estimate Â of the matrix A has been computed with the Yule-

Walker method described above. In order to evaluate the goodness of the fit, we

define:

xn = Xn (4.121)

yn = Xn+1 , (4.122)

for n = 1, ...,N− 1. Here, xn and yn are analogous to, respectively, the indepen-

dent and dependent variables in a standard curve fitting problem. The values of y

predicted by the model are:

ŷn = Âxn, (4.123)

for n = 1, ...,N− 1. The residuals, or errors, are the differences between the ob-

served and predicted values of y:

en = yn− ŷn. (4.124)

The sum of square errors is the quantity defined by:

SSE =
N−1

∑
n=1

eT
n diag(en), (4.125)

where diag(en) is the 2×2 diagonal matrix whose diagonal elements are the com-

ponents of en. Note that, component-wise:

SSE j =
N−1

∑
n=1

e2
n j, (4.126)

with j = 1,2. Another important measure of variability is:

SSY =
N−1

∑
n=1

yT
n diag(yn). (4.127)

The coefficient of determination R2 is obtained combining SSE and SSY. Component-

wise, we have:

R2
j = 1−

SSE j

SSYj
, (4.128)

for j = 1,2. The coefficient of determination R2 is valued between 0 and 1. It

can be interpreted as the fraction of the variability in the values of y j which is
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explained by the variability in the values of x j (Ross, 2014). Thus, the coefficient

of determination is a measure of the goodness of the fit. Finally, we can estimate

the noise amplitude matrix σ from the analysis of the residuals. It can be shown

that if the linear model is correct, then the errors are normally distributed:

e j =
e j√
SSE j
N−3

∼ N(0,1), (4.129)

where j = 1,2 and N(0,1) is a mean zero normal distribution with unit variance.

The proof requires independence of the yi’s (Ross, 2014), a condition which is not

fully satisfied in our setup because the time series Xi has non-zero lagged correla-

tion matrix. However, in section 4.5 below we argue that if the correlations decay

fast enough, equation (4.129) still constitutes a reasonable approximation for the

distribution of the residuals. The variables e j are called normalised errors. The last

step is to note that, if the linear model (4.51) is correct, then:

e = σdW =

 σxdW1

σydW2

 , (4.130)

with dW j ∼
√

∆tN(0,1) for j = 1,2. Comparing equation (4.129) with equation

(4.130), we obtain an estimate for the components of the noise amplitude matrix σ :

σx =

√
SSE1
N−3√
∆t

(4.131)

σy =

√
SSE2
N−3√
∆t

. (4.132)

4.5 Results

Before we present our results, let’s first summarise the problem here. The working

hypothesis is that eddy-mean flow interaction in the Southern Ocean can be repre-

sented by a simplified two-dimensional dynamical system. The model we consider

here is inspired by AN14 and consists in a linear, bivariate, damped, stochastically

forced oscillator. To keep notation within reason, we shall refer to it as the ”simpli-

fied model”. The simplified model was introduced in section 4.2.7, and its defining
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equation is:

Xn+1 = AXn +σdWn+1,

Here, Xn = (Xn,Yn). X and Y are called state variables and represent mean flow and

eddy activity respectively. Note that the simplified model is the discretised version

of a time-continuous Ornstein-Uhlenbeck process, equation (4.50):

dX = A Xdt +σdWt ,

The two formulations are equivalent. Depending on the specific task at hand, we

may switch from one to the other, and section 4.2.7 provides all the necessary de-

tails. To test the working hypothesis, we consider two dataset:

1. The idealised channel dataset. In this case, the dynamical variables are com-

puted from the MITgcm model output, as described in section 4.3.

2. A validation dataset. Here, the dynamical variables are computed by generat-

ing a synthetic realisation of the simplified model. The details are in section

4.5.2.

In both cases, the final product is a bivariate time series Xn = (Xn,Yn). The analysis

consists in fitting the simplified model to the data. It hinges on the Yule-Walker

fitting method presented in section 4.4, and can be divided into the following steps:

1. Visual inspection of the time series and of the associated phase space diagram.

2. Characterisation of the time series and estimate of its statistical properties.

3. Comparison of the estimates with qualitative predictions from the simplified

model.

4. Fit of the simplified model to the data.

5. Quantitative predictions and goodness of the fit.

We begin by looking at the idealised channel data.
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4.5.1 Idealised channel

We analyse the discrete time series Xn = (Xn,Yn) computed according to the pro-

cedure described in section 4.3. Xn is the time series of spatially-averaged Eady

growth rate (representing mean flow), and Yn is the time series of spatially-averaged

eddy buoyancy flux (representing eddy activity). The individual time series com-

prise N = 2376 points each, and data are uniformly separated by a time interval of

∆t = 5 days.

Visual inspection: time series and phase space diagram

Figure 4.7 (left) shows three-year excerpts from the full time series. Predictably,

the excerpts are characterised by intense variability at multiple time scales, so that

direct inference of dynamical relationships between the variables is impeded. To

filter out part of the noise and shed light on the dynamical structure of the evolu-

tion of X and Y , we apply the phase space kernel averaging technique described in

section 4.2.8. The kernel-averaged streamlines (black oriented lines) and the kernel-

averaged data density (colour shading) are shown in figure 4.7 (right). The width

of the averaging kernel is also shown by the green dot in the top left corner. We

observe that the data density is largest around (0,0) and decreases outward. This

is consistent with the prediction that the distributions of X and Y have finite mo-

ments and are symmetrical with respect to their respective mean (more precisely,

the simplified model predicts that the distributions of X and Y are Gaussians, as dis-

cussed below). The most remarkable feature of the phase space diagram, however,

is that the kernel-averaged streamlines are approximately closed orbits. This result

aligns with the findings of Novak et al. (2017) for the atmospheric storm track, and

as discussed in the introduction to this chapter constitutes a strong indication that,

on average, the interaction between X and Y is characterised by oscillations be-

tween the two variables. The orientation of the kernel-averaged orbits is such that

positive deviations of X (intensification of mean flow) are followed on average by

negative deviations of Y (intensification of eddies: the eddy buoyancy flux is nega-
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tive in the Southern Ocean, section 4.3). This in turn leads to an average decrease

in X (weakening of mean flow) which, in the final phase of the oscillation, is fol-

lowed by positive deviations of Y (weakening of eddies). We further observe that

the phase space velocity is generally larger at the outskirts of the data-populated re-

gion, implying that for large deviations dynamical effects dominate over stochastic

contributions (as already noted by Marcheggiani et al. (2022) for the atmospheric

case). The oscillatory life cycle is schematically illustrated in figure 4.8, and its

physical interpretation is consistent with the predator-prey picture of eddy-mean

flow interaction offered in AN14 and discussed in section 4.1. Based on the phase

space diagram, the baroclinic life cycle can be divided into four phases: in phase I,

eddies are weak (no predators), which allows the mean flow to gradually build up

(the prey population increases). When sufficient reserves have been accumulated,

they become available for consumption by baroclinic eddies. This is associated to a

sudden increase in eddy activity, as seen in phase II. The baroclinic decrease soon

depletes mean flow reserves: this is phase III of the cycle. In the final phase IV, there

is no longer enough energy in the mean flow to sustain the baroclinic activity, and

eddies fall back to a minimum. After that, the cycle resumes. It is necessary at this

juncture to remark that kernel-averaged trajectories constitute a statistical descrip-

tion of the time evolution of the system, which includes contributions from both

dynamical and stochastic effects. As such, they do not necessarily coincide (and

should therefore not be confused with) the deterministic trajectories of the system

(i.e. the paths in the phase space that would be observed in the absence of noise).

We shall return to this important point later in the section.

Estimation of sample properties

Our next task is to characterise the time series of X and Y by estimating a few of

their statistical properties from data. We begin from the sample marginal distribu-

tions of X and Y . The sample histograms of X (blue, left) and Y (red, right) are

shown in figure 4.9. The histograms are normalised, so that the value of the integral

over the bin range is 1. Visual inspection reveals that the sample PDFs are compat-
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Figure 4.7: Left: three-year excerpts from the time series of X (continuous blue

line) and Y (continuous red line). Right: kernel-averaged phase space diagram.

Black oriented lines show kernel-averaged streamlines. The width of the lines is

proportional to the phase space speed. Coloured intervals represent the density of

data points. The width of the averaging kernel is shown by the green dot in the top

left corner. The dashed blue line represents the deterministic trajectory computed

for arbitrary initial conditions and for the value of the model parameters estimated

with the Yule-Walker method. See main text for details.

X

Y

Intense	eddy	activity

Weak	eddy	activity

Strong	mean	flowWeak	mean	flow

Phase	I

Phase	III

Phase	II
Phase	IV

Figure 4.8: Schematic representation of the eddy-mean flow life cycle. See main

text for details.
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Figure 4.9: Left: sample marginal PDF of X (blue histogram) and prediction ob-

tained with equation (4.58) using the Yule-Walker estimate of the process parame-

ters (continuous black line). Right: sample marginal PDF of Y (red histogram) and

prediction obtained with equation (4.59) (continuous black line). Histograms are

normalised, i.e. the integral over the bin range is 1.

ible with Gaussian distributions, which is consistent with the theoretical prediction

of the simplified model. Further tests of normality (normal probability plots, not

shown) reveal that the sample PDF of X is Gaussian to an excellent degree of ap-

proximation, whereas the sample PDF of Y displays deviations from normality in

the tails. The overall agreement, however, remains satisfactory, and does not present

ourselves with strong evidence against the Gaussian hypothesis. We shall test this

assumption further after fitting the simplified model to the data.

Next, we turn our attention to the correlation functions. The sample lagged-

correlation functions are estimated according to the formula of section 4.2.6 and

shown in figure 4.10. The auto-correlation functions of X and Y (top and middle

panels respectively) decay non-linearly with a halving time scale of approximately

20 days for X and 10 days for Y . The cross-correlation function ρXY (τ) is to a

reasonable approximation an odd function of the lag τ , namely:

ρXY (τ)≈−ρXY (−τ), (4.133)

and accordingly displays maximum and minimum at non-zero lags. The peaks are

located at |τ| ≈ 15 days, and stand out from the 95 % confidence interval associated

to the red noise test (see section 4.2.6), the peak at positive lags more markedly
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Figure 4.10: Left: lagged auto- and cross-correlation functions of X and Y . Top:

ρXX(τ). Middle: ρYY (τ). Bottom ρXY (τ). Continuous, dotted, coloured lines show

the sample correlation functions, while continuous black lines show the correspond-

ing predictions obtained with equation (4.130) using the Yule-Walker estimate of

the process parameters. The grey shaded interval in the bottom panel marks the

95% confidence interval associated to the red noise test, see section 4.2.6. Right:

lagged auto- and cross-correlation functions of eX and eY . Top: ρeX eX (τ). Middle:

ρeY eY (τ). Bottom: ρeX eY (τ). The sample correlation functions are shown by con-

tinuous, dotted, coloured lines. The dashed black lines mark the 95% confidence

interval associated to the white noise test, see section 4.2.6 for details.

so. Thus, based on the sample cross-correlation we can reject at the 95 % confi-

dence level the null hypothesis that X and Y are independent red noise processes.

Note that the observed structure of the kernel-averaged trajectories constitutes sup-

porting evidence that X and Y are not independent. At absolute lags larger than

|τ| ≈ 15 days, the cross-correlation decays to zero. ρXY (τ) is negative at positive

lags (when X leads Y ), which means that a positive fluctuation in X (intensification

of mean flow) is on average followed by a negative fluctuation in Y (intensification

of eddies). The cross correlation function is approximately an odd function: accord-

ingly, it takes positive values at negative lags. This means that a positive fluctuation

in Y (weakening of eddies) is followed, on average, by a positive fluctuation of X

(strengthening of mean flow). Thus, the physical picture conveyed by the correla-

tion functions is in agreement with the eddy-mean flow life cycle inferred from the

analysis of the phase space diagram, and summarised in figure 4.8.
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Table 4.1: Summary of fit results for the idealised channel and the synthetic verifi-

cation experiment.

Data γxx
[
day−1]

γyy
[
day−1] kxy

[
Kg

J day

]
kyx

[
J

Kgday

]
R2 σx

[
day−3/2

]
σy

[
J

Kgday3/2

]
Channel −1.50 ·10−2 −4.30 ·10−2 2.50 ·10−3 −8.50 ·10−1 (0.89,0.69) 4.40 ·10−3 1.28 ·10−1

Synth −1.39 ·10−3 −4.13 ·10−2 2.65 ·10−3 −8.50 ·10−1 (0.89,0.71) 4.38 ·10−3 1.27 ·10−2

Fit of the model

The model is fitted to the data with the Yule-Walker method, as explained in section

4.4. The fit consists in the estimate of the simplified model’s parameter, the 2× 2

matrix of coefficients A and the 2× 2 noise amplitude diagonal matrix σ , so that

there are in total 6 scalar free parameters. The matrix of coefficients A relative to

the time-continuous SDE (4.50) associated to the discrete process is computed from

A according to the formula:

A =
A− I2

∆t
. (4.134)

The Yule-Walker estimates of A, A , and σ are denoted by Â, ˆA , and σ̂ respectively.

The best fit values are reported in table 4.1.

Quantitative predictions and evaluation of the fit

Under the hypothesis that X and Y are governed by the simplified model, and

equipped with the estimates Â and σ̂ , it is possible to make quantitative predic-

tions for the statistical properties of the bivariate process. The predictions for the

marginal probability distribution functions of X and Y are computed according to

formula (4.58) and (4.59), and shown in figure 4.9 (continuous black lines). The

model’s predictions are in excellent agreement with the sample PDFs. The agree-

ment lends further evidence to the assumption that the marginal distributions of X

and Y can be reasonably approximated by Gaussian distributions.

The predictions for the lagged correlation functions are computed according to
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equations (4.31), (4.32), and (4.33), and shown in figure 4.10 (continuous black

lines). The predictions are only in partial agreement with the sample correlations:

the auto-correlation of X is correctly reproduced up to τ ≈ 25 days, but the rate

of decay is overestimated between τ = 30 days and τ = 100 days approximately.

The predicted auto-correlation function of Y decays too slowly, and has more pro-

nounced secondary peaks than observed for the sample correlation. The predicted

cross correlation function ρXY (τ) peaks at greater lags (|τ| ≈ 25 days) than the

sample one, and the peaks are larger. Nevertheless, a few observations stand in the

simplified model’s favour: firstly, the analysis of correlation functions is not com-

monly attempted in the literature (not, for example, in Ambaum and Novak (2014),

Marcheggiani et al. (2022), Novak et al. (2017), Yano et al. (2020). Yano et al.

(2020) maintain that this is due to the fact that lagged correlation analysis intro-

duces at least an additional parameter to fit - the time lag), so that even a small

achievement in this regard represents a significant improvement with respect to the

existing body of research. Secondly, and perhaps more importantly, the model’s pre-

dictions do succeed in capturing the overall structure of the correlation functions. It

is noteworthy, in particular, that the predicted cross-correlation correctly reproduces

the symmetry properties of the sample one, with a negative peak at positive lags and

a positive peak at negative lags, thus corroborating the physical interpretation of the

eddy-mean flow life cycle. The discrepancy between the model’s predictions and

the sample correlations hints to the fact that equation (4.51) may not be sufficient to

describe the full quantitative details of eddy-mean flow interactions in the idealised

channel. However, the qualitative agreement strongly supports the idea that the

model satisfactorily captures the oscillatory character of the dynamics (plus some

of the quantitative details, as for the marginal PDFs above).

We now turn the attention to more conventional metrics of evaluation of the

fit. The coefficient of determinations for X and Y are R2
X = 0.89 and R2

Y = 0.69

respectively, therefore a large fraction of the variance in the dependent variables y

is explained by variance in the independent variables x. The value of R2
Y is small

compared to R2
X , but in the next section we show that this should be attributed to
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the levels of stochastic noise inherent to the data rather than to model deficiencies.

The fit quality is visually demonstrated in figure 4.11. In the left hand side plot,

dots represent sample values of X (blue) and Y (red) (i.e., the X and Y components

of y), while continuous lines show the corresponding predictions obtained with the

Yule-Walker method (i.e., the X and Y components of ŷ). We observe that the

simplified model predicts the evolution of the sample time series one time step

ahead satisfactorily. The scatter plots on the right hand side, or ”prediction plots”,

offer an aggregate perspective on the quality of the fit. In the left hand-side panel,

blue dots have coordinates (y1n, ŷ1n), i.e. the horizontal axis represents sample

values of X and the vertical axis represents predicted values of X . The right hand

side panel shows the same (red dots), but for sample and predicted values of Y . Note

that the aspect ratio of the axes is 1. A perfect model with vanishing noise would

produce points that fall exactly on the 1:1 line (shown by the dashed black lines). A

perfect model with non-zero noise, instead, produces points scattered around the 1:1

line. Deviations from this pattern are indicative of model deficiencies, which need

to be assessed on a case by case basis. Bar a few Y outliers, here scatter points are

clustered around the 1:1 lines with no obvious patterns of deviation, which provides

further confidence in the general quality of the fit. We stress that the scatter plots

only demonstrate that the simplified model is not a severely insufficient model.

They do not prove, of course, that it is a perfect one.

The final part of the fit evaluation consists in the analysis of the residuals.

For a perfect model, the residuals are independent Gaussian random variables, as

discussed in section 4.4.3. A common way of testing this hypothesis is to esti-

mate the auto- and cross- correlation functions of the residuals (von Storch and

Zwiers, 1999). The sample residual correlation functions, which we name ρeX eX (τ),

ρeY eY (τ), and ρeX eY (τ), are shown in figure 4.10 (continuous dotted lines), together

with the 95% confidence interval relative to the white noise test (dashed black lines.

See section 4.2.6 for the theory). They should be compared with those expected

for a bivariate white noise process, when the lag-0 auto-correlation coefficients are

equal to 1 and all remaining coefficients are zero. Although none of the three sample
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Figure 4.11: Left: three-years excerpts from the sample (dots) and one-step ahead

predicted (continuous lines) time series of X (blue) and Y (red). Right: prediction

plots for X (left hand side panel) and Y (right hand side panel). The horizontal axes

represent sample values of X and Y , while the vertical axes represent one-step ahead

predicted values of X and Y . The dashed black lines mark the 1:1 line. The aspect

ratio of the axes is 1.

correlation functions satisfies the theoretical prediction perfectly, we observe that:

(i) Only the lag-1 and lag-3 coefficients are significantly different from zero at the

95% significance level for ρeX eX (τ). All other coefficients lie either within or very

close to the acceptance interval of the null hypothesis. (ii) The sample correlation

ρeY eY (τ) shows more structure, with the first few coefficients clear of the acceptance

interval. This is where the most significant deviations from the expected behaviour

are found, which once again highlights that some of the fine details pertaining the

dynamics of Y may not be captured by the simplified model. The existence of signif-

icant persistent correlations in eY , in particular, hints that the evolution of Y might

be more accurately represented by an auto-regressive model of higher order (the

disadvantage of higher order auto-regressive models is that the interpretation of the

model coefficients is potentially complicated. For this reason, we only consider the

first-order simplified model here.) (iii) A few of the coefficients of ρeX eY (τ) stand

out clearly of the acceptance interval. Their absolute value, however, is not large

(slightly more than 0.2 at most) and the pattern they form is rather irregular, which

makes the interpretation of the sample cross-correlation unclear. Overall, this test

underscores that the residuals produced by the simplified model are not perfectly
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Figure 4.12: Left: scatter plot of eX against X . Right: scatter plot of eY against Y .

uncorrelated. As it was the case for some of the other indicators considered, it ap-

pears that the model’s most evident shortcomings are associated to the evolution of

the eddy variable Y (another possibility, which we do not explore here, is that the

stochastic forcing term is endowed with its own time scales and would be better de-

scribed by e.g. red noise). Nevertheless, the correlation plots also reveal that, when

present, departures from the theoretical expectation are not so severe to put the

ability of the model to qualitatively capture the important features of the observed

process to question. An alternative is to produce scatter plots of the standardised

residuals (i.e., the residuals divided by the estimator of their standard deviation,

equation (4.129)) against X and Y (Ross, 2014). Similarly to the prediction plots,

the emergence of coherent patterns in the scatter plots signals potential modelling

defects. Figure 4.12 shows the scatter plots of eX against X (blue dots, left) and of

eY against Y (red dots, right). We observe that for both variables the vertical coordi-

nate of a large fraction of the dots falls within the interval ±2, indicating that most

of the non-standardised residuals are valued within ±2 standard deviations. This

supports the idea that the residuals are approximately Gaussian, and that their vari-

ance is reasonably estimated by SSE/N− 3. Furthermore, the scatter plots do not

reveal any obvious patterns such as linear or polynomial dependance of the resid-

uals on X and Y , which places additional confidence in the quality of the model.
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Remark: deterministic dynamics

The estimation of the matrix of coefficients Â (or, alternatively, of its continuous

SDE equivalent ˆA ) allows to deepen our understanding of the phase space diagram.

The dashed blue line in figure 4.7 (right) shows the phase space trajectory of the

deterministic process:

Xn+1 = ÂXn, (4.135)

for arbitrary initial conditions. Simple properties of this process can be investigated

by studying the matrix structure of ˆA . The components of ˆA satisfy the conditions

γxx,γyy < 0 and kxykyx < 0 set out in section 4.2.7, therefore the deterministic sys-

tem above is a damped oscillator. The eigenvalues of ˆA are λ1 =−0.029+0.044i

and λ2 = −0.029− 0.044i: the imaginary part is non-zero, hence the oscillator is

in the sub-critical regime (i.e., deterministic oscillations are not completely sup-

pressed by damping). Accordingly, we observe that the deterministic trajectory

shown in figure 4.7 (right) is characteristic of sub-critically damped linear oscilla-

tors. What is most remarkable, though, is the stark qualitative difference between

the deterministic trajectory (decaying, indicative of dissipative dynamics) and the

kernel-averaged trajectories (quasi-periodic, suggestive of conservative dynamics).

The important implication is that this analysis shows that quasi-periodic averaged

phase space trajectories can be obtained even when the underlying deterministic

dynamic is dissipative. We argue that nearly closed kernel-averaged trajectories

similar to those observed in Novak et al. (2017) and in this work can arise in one

of two ways: (i) The underlying deterministic model is conservative or close to

being conservative. In this case, the structure of the kernel-averaged phase space

diagram is governed by deterministic effects. This is, for example, the standpoint

of Novak et al. (2017), Yano et al. (2020). Yano et al. (2020), in particular, fitted

a linear oscillator (see section 4.2.7) to data, obtaining in a few cases eigenvalues

with non-zero real part (corresponding to dissipative systems). Since these cases

where also those associated with the worst fit scores, though, the authors did not

explore the dissipative regime further. (ii) The underlying deterministic dynamics

are dissipative, but the kernel-averaged trajectories are shaped by deterministic and
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stochastic effects. This is the perspective presented for the first time in this work.

In the next section, we bolster this interpretation by studying a synthetic realisation

of process (4.51), so that the kernel-averaged trajectories originate from a dissipa-

tive system with certainty, and potential shortcomings of the simplified model in

describing the idealised channel data play no role. We stress that the approach pre-

sented here is general and can cover both case (i) and case (ii), as one can obtain

a conservative system from the fit to the data provided the diagonal elements of A

are approximately zero.

4.5.2 Validation of the fitting procedure

We validate the model fitting procedure by studying a synthetic realisation of the

simplified model. We prescribe the problem parameters A and σ , and demonstrate

that we can recover their values with good approximation. For illustration purposes,

the matrix of coefficients A and the noise amplitude matrix σ are set to the values

estimated for the idealised channel, see table 4.1. The synthetic data are generated

by integrating equation (4.51) with the Euler-Maruyama method (Higham, 2001),

with ∆t = 5 days and up to a final time of t f = 30 years.

Figure 4.13 (left) shows three-year excerpts from the time series of X and Y . As

for the case of the idealised channel data, the time series are characterised by intense

variability at multiple time scales, and do not lend themselves to straightforward

physical interpretation. To filter out part of the noise we apply the phase space

kernel averaging technique of section 4.2.8. The kernel-averaged streamlines (black

oriented lines: the width of the line is proportional to the local phase space velocity)

and the kernel-averaged data density (coloured intervals) are shown in figure 4.13

(right). Remarkably, although phase space trajectories are more regular here, the

qualitative structure of the diagram is the same as for the idealised channel, figure

4.7 (right). In particular, the idealised channel and the verification diagrams share

the following features:

144



Figure 4.13: Same as figure 4.7, but for the synthetic verification dataset.

1. The data density is largest near (0,0) and decreases outward.

2. The largest values of the phase space velocity are found at the outskirts of the

data-populated region.

3. Kernel averaged trajectories are quasi-periodic orbits. Their orientation is

consistent with the physical interpretation of the baroclinic life cycle.

4. The deterministic trajectory is typical of dissipative deterministic dynamics

and differs qualitatively from the kernel-averaged trajectories.

Since the verification data are generated by numerically integration of the simplified

model (a stochastically forced, dissipative oscillator), this analysis confirms that

quasi-periodic averaged trajectories can arise even if the underlying deterministic

dynamics are dissipative.

The sample marginal PDFs of X and Y are shown in figure 4.14. As for the

idealised channel, visual inspection of the plots confirms that p(X) and p(Y ) are

qualitatively compatible with normal distributions.

The sample lagged-correlation functions are shown in figure 4.15 (left). The

auto-correlation functions of X and Y (top and middle panels respectively) are char-

acterised by non linear decay, with a halving time scale of approximately 25 and 15

days respectively. The cross-correlation function ρXY (τ) is to a good approximation

an odd function of τ . The peaks are located at |τ| ≈ 25 days, and stand out clearly
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Figure 4.14: Same as figure 4.9, but for the synthetic verification dataset.

Figure 4.15: Same as figure 4.10, but for the synthetic verification dataset.

from the 95 % confidence interval associated to the red noise test. At absolute lags

larger than |τ| ≈ 25 days, the cross-correlation decays to zero. Compared to the case

of the idealised channel, all correlation functions show more regular dependence on

the time lag τ . Moreover, the peaks of the cross-correlation are larger and are lo-

cated at greater lags. However, the overall structure is qualitatively comparable with

that of figure 4.10.

We estimate the matrix of coefficients A and the noise amplitude matrix σ as

in the case of the idealised channel. The estimated values are shown in table 4.1.

We observe that the prescribed values of the process parameters are recovered ac-

curately: the worst estimate, obtained for the coefficient kxy, departs from the cor-

responding ”true value” by a 7.5% relative error only. For kyx, σx, and σy, on the

other hand, the associated relative error is below 1%. The coefficients of determi-
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Figure 4.16: Same as figure 4.11, but for the synthetic verification dataset.

nation are R2
X = 0.89 and R2

Y = 0.71, therefore in this case too a significant fraction

of the dependent variables’ variability is explained by the variability of the inde-

pendent variables. Importantly, the coefficients of determination are quantitatively

similar to those obtained for the idealised channel data. In the verification experi-

ment, the values of the coefficients of determination are entirely determined by the

prescribed model parameters (and in particular by the amplitude of the stochastic

terms), and are not associated to insufficiencies of the model: this suggests that

the comparatively low score R2
Y obtained for the idealised channel is driven by the

levels of noise inherent to the data, and is not indicative of modelling defects. The

estimated values of A and σ are used to compute quantitative predictions of the

marginal PDFs of X and Y (figure 4.14, continuous black lines) and of their auto-

and cross-correlation functions (figure 4.15 (left), continuous black lines). In all

cases the predicted curves are in excellent agreement with the sample ones, con-

vincingly demonstrating the validity of the fitting procedure.

The quality of the fit is visually demonstrated in figure 4.16. In the left hand

side plot, dots represent sample values of X (blue) and Y (red), while continuous

lines show the corresponding predictions obtained with the Yule-Walker method.

As expected, we observe that the simplified model reproduces the evolution of the

sample time series one time-step ahead satisfactorily. Prediction plots are shown in

figure 4.16 (right). The plots confirm that for a perfect model with non-vanishing

noise, scatter points are clustered around the 1:1 lines.
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Figure 4.17: Same as figure 4.12, but for the synthetic verification dataset.

The analysis of the residuals is conducted as in the preceding section. Fig-

ure 4.15 (right), shows the sample correlation functions ρeX eX (τ), ρeY eY (τ), and

ρeX eY (τ) (continuous dotted lines), together with the 95% confidence interval rela-

tive to the white noise test (dashed black lines). We observe that the sample residual

correlations are entirely consistent with the theoretical expectation for two indepen-

dent white noise processes, as the only correlation coefficients that stand out clearly

from the acceptance intervals are the lag-0 auto-correlations. Otherwise, the coeffi-

cients are either within the acceptance interval or in its proximity, in the latter case

due to the multiplicity effect discussed in section 4.2.6. Finally, the scatter plots of

the standardised residuals against X and Y are shown in figure 4.17. As expected,

the residuals are distributed within ±2 standard deviations from zero, and the plots

are free of structural patterns which would point to the existence of a functional

relationship between the residuals and the state variables.

4.5.3 Time scales and physical interpretation of the coefficients

The simplified model was introduced based on heuristic arguments, therefore it is

not straightforward to relate its parameters, namely the coefficients k’s, γ’s, and

σ ’s, to those characterising the idealised channel, such as wind stress and buoyancy

forcing at the surface. The most direct way to address the issue would be to per-

form a suite of sensitivity experiments, i.e., to repeat the numerical simulations and
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subsequent analysis using different values of e.g. wind stress and bottom drag, or

other relevant quantities. This method, though, has two main drawbacks: (i) it is

computationally expensive, and (ii) the numerical model’s changes may in principle

project onto any of the simplified model’s parameters (with no prior knowledge on

which one), which warrants a large number of experiments being executed in order

to establish the scaling laws with accuracy. Note that, as shown in section 4.3.2, the

theoretical model of Marshall et al. (2017) allows to derive scaling laws for the av-

erage values of X and Y : the simplified model, however, describes the variability of

deviations of X and Y around their averages, so that equations (4.104) and (4.107)

do not easily translate into additional information on the scaling of the coefficients

k’s, γ’s, and σ ’s. In view of this, and while we acknowledge its potential merits, we

do not pursue the sensitivity experiment approach further in this manuscript. Never-

theless, we can interpreter the dynamical coefficients k’s and γ’s and associate them

with typical time scales.

Consider the damping coefficients γ’s first: for the sake of clarity, we focus

on the deterministic part of the dynamics only, and momentarily assume that the

coupling coefficients k’s are set to zero. The governing equations are then:

d
dt

X = γxxX (4.136)

d
dt

Y = γyyY . (4.137)

These equations describe exponential decay of the fluctuations in the mean flow (X)

and the eddy activity (Y ) variables respectively. The coefficients γ’s control the rate

of decay, and their inverse represent therefore relaxation times. For each variable,

the halving time is computed by multiplying the relaxation time by log(2), yielding

τx ≈ 47 days for the mean flow and τy ≈ 16 days for the eddies. The time needed

to halve the initial amplitude of a perturbation, hence, is almost three times as long

for X than for Y , which also reflects in the fact the the auto-correlation function of

X decays more slowly than that associated to Y , figure 4.10 (left). Thus, our model

captures the fact that the mean flow is characterised by greater temporal persistence

than the eddy field on short time scales.
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In order to interpreter the coupling coefficients k’s, we go back to the full deter-

ministic system:

d
dt

X = γxxX + kxyY (4.138)

d
dt

Y = γyyY + kyxX . (4.139)

It being deterministic, the time evolution of the solution to this system is determined

by the initial conditions. To study the time scales associated with the coefficients

k’s, we consider two different choices for the initial values of X and Y . The first

choice is X(t = 0) = 2sx and Y (t = 0) = 0, where sx is the standard deviation of

X (note that it is different from σx, the amplitude of the stochastic forcing on the

X equation). The situation described is that of eddy growth following an intense

steepening of the isopycnals. In this case, the exact equations (4.138) and (4.139)

simplify to:

d
dt

X = γxxX (4.140)

d
dt

Y = kyx2sx , (4.141)

at t = 0. This is a crude approximation for t > 0, which can only be valid during

the initial stages of the evolution. These equations ignore the feedback of Y on X ,

the exponential decay of Y , and the effect that changes of X have on the evolution

of Y . Nevertheless, they encapsulate the dynamics of the initial stages of the evolu-

tion, and allow ourselves to make order of magnitude estimates for the time scales

associated with the coupling coefficients. Figure 4.18 (left) shows the solution to

the full deterministic system (equations (4.138) and (4.139), continuous lines) and

its approximation (equations (4.140) and (4.141), dashed lines) for the considered

initial conditions. The dashed blue line shows the exponential decay of X from an

initial displacement of two standard deviations, as described by equation (4.140):

the halving time τx ≈ 47 days corresponds to the time at which the curve decreases

to 1 sx (the 1 sx level is marked by the dashed-dotted blue line): since the initial

condition is X(t = 0) = 2sx, the halving time coincides with the time needed for a

one standard deviation decrease. Note that the exact solution (continuous blue line)

decays faster than the approximated one, as the dampening effect of the growing ed-

dies on the mean flow is ignored in the approximated equations. The continuous red
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line shows instead the exact solution for the eddy activity. We observe that its evo-

lution consists of two phases: firstly, eddy activity grows (i.e. the eddy buoyancy

flux Y becomes more negative), as eddies feed on the increased mean flow. This

initial phase is qualitatively captured by the solution of the approximated equations

(4.140) and (4.141) (dashed red line). Next, eddies start to decay due to the effect of

the damping term γyy, i.e., Y increases. Exponential decay is not included in equa-

tion (4.141), therefore this phase is not reproduced by the approximated solution.

According to equation (4.141), eddies grow linearly in time. The growth is driven

by the coupling coefficient kyx, which represent the conversion of (constant) excess

mean flow into eddying motion. A representative time scale for kyx is thus the time

needed for the eddy buoyancy flux to increase in absolute value by one standard de-

viation, which visually corresponds to the intersection between the dashed red line

(the approximated solution of Y ) and the dashed-dotted red line (the - 1 sy level,

where sy is the standard deviation of Y ) in figure 4.18 (left). We obtain a value of

about 10 days (the time scale from the exact equations is 20 days), which is a factor

5 smaller than the halving time τx ≈ 47 associated with X , suggesting that eddies

are particularly effective at extracting energy from the mean flow following positive

fluctuations.

The second case we consider is the mirror image of the one above, in that we

assume X(t = 0) = 0 and Y (t = 0) = −2sy. The situation described is thus that

of a decaying eddy field weakening the mean flow, and the relevant approximated

equations are:

d
dt

X =−kxy2sy (4.142)

d
dt

Y = γyyY . (4.143)

The time evolution of the solution to the exact (continuous lines) and approximated

(dashed lines) equations is shown in figure 4.18 (right). According to equation

(4.143), Y decays exponentially (dashed red line), and the τy ≈ 16 days time scale

corresponds to the intersection with the - 1 sy level (dashed-dotted red line). The ex-

act trajectory of Y (continuous red line) decays faster, because the effect of negative

deviations of X is ignored in the approximated solution. Similarly to the previ-
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Figure 4.18: Numerical solution of the deterministic equations for X(t = 0) = 2sx

and Y (t = 0) = 0 (left), and X(t = 0) = 0 and Y (t = 0) =−2sy (right). Continuous

lines show the solutions to the exact deterministic equations (4.138) and (4.139),

while dashed lines show the solutions to the approximated equations (4.140) and

(4.141) (left), and (4.142) and (4.143) (right). Dashed dotted lines mark the 1sx

(blue) and 1sy (red) levels. In both panels, X is shown in blue (ticks on the left hand

side axis) and Y is shown in red (ticks on the right hand side axis).

ous case, the exact solution for X (continuous blue line) is endowed with two time

scales, an initial flattening of the isopycnals driven by the coupling coefficient kxy

and a subsequent recovery driven by the damping term γxx (which includes the ef-

fect of the wind acting to restore isopycnals). The approximated solution (dashed

blue line) is a straight line, and only captures the initial decay phase. A relevant

time scale for kxy is then the time needed for the mean flow to decrease by 1 stan-

dard deviation following an intense eddy event, which visually corresponds to the

intersection between the dashed blue line and the −1sx level (dashed-dotted blue

line). We obtain a typical time scale of about 12 days, which is comparable with

that associated with kyx, but not significantly shorter than the restoring time scale

for the eddy buoyancy flux: the implication is that a few eddy events may be needed

to induce significant fluctuations in the mean flow.

In summary we have shown that, although it is not possible to relate the sim-

plified model’s dynamical parameters to the physical parameters of the idealised

channel in a simple way, we can associate them with the typical time scales of the

processes they superintend. The time scales thus obtained are all of plausible mag-
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nitude, ranging from approximately one to a few weeks, and are consistent with the

physical picture of the predator-prey relationship discussed throughout the chapter.

Identifying the important time scales associated to each of the simplified model’s

parameters is a key step towards a comprehensive physical understanding of the dy-

namics of interaction between eddies and mean flow in the Southern Ocean. Further

investigation is required, though, to fill the gap between the simplified model and

the physical variables that characterise the Southern Ocean completely, and in the

next section we discuss some of the alternatives that may contribute towards this

goal.

4.6 Sensitivity of the results to the choice of the aver-

aging domain

In this section, we demonstrate that our results do not depend strongly on the precise

choice of the averaging domain. To this end, we show the results of the fit for (i) a

domain co-located with that of section 4.5.1, but twice as wide (figure 4.19). (ii) A

domain of the same size as that of section 4.5.1, but placed in the northern half of

the channel (figure 4.20). (iii) A domain of the same size as that of section 4.5.1, but

placed in the southern half of the channel (figure 4.21). The averaging domains are

shown superimposed to time-mean, zonal-mean Eady growth rate (left) and eddy

buoyancy flux (right) in the top panels of each figure.

In all cases, the qualitative results of sections 4.5.1 are reproduced satisfactorily.

Notably, we observe that, while the details change (for example, the magnitude and

location of the peaks of the cross-correlation functions), the overall structure of the

phase space diagram and correlation functions (middle panels) is preserved through-

out the experiments. This highlights that the predator-prey relationship found be-

tween eddies and mean flow is a robust feature of the idealised channel, and its

detection does not depend critically on how the data are spatially averaged. The

quality of the fit is also of consistently high standards for all three test domains, as
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visually demonstrated by the prediction plots (no structural patterns) and residual

correlations (no large deviations from the white noise case) shown in the bottom

panels of each figure.

4.7 Summary and conclusions

In this chapter, I have shown that the interaction between eddies and the mean flow

in an idealised numerical simulation of the Southern Ocean can be modelled with a

two-dimensional stochastic linear oscillator. The work was motivated by the well-

documented dynamical analogy between the ACC and the atmospheric storm track,

and inspired by the simplified model of atmospheric variability proposed by AN14.

Specifically, AN14 and subsequent studies showed that the dynamics of eddy-mean

flow interaction in atmospheric jets are akin to those expressed by predator-prey

models of population growth. In this picture, eddies behave as a predator feeding

on the reserves stored in the mean flow, and feedbacks between the two variables

can induce oscillations. Here, I have addressed the following question: can a simple,

two-dimensional dynamical system describe the interplay between eddies and the

mean flow in the oceanic case too? Note that, while the original model of AN14 is

entirely deterministic, here I relaxed this constraint and included a stochastic term

in the dynamical equations, which allows to explicitly account for noisy fluctuations

of the data.

I have analysed data from a high-resolution configuration of the MITgcm (the

idealised channel), described in detail in chapter 3. The model grid resolves the first

Rossby deformation radius throughout the domain therefore, importantly, I need

not resort to an eddy parametrisation scheme. Similarly to what AN14 did for the

atmosphere, I have defined a pair of spatially averaged variables X and Y measuring

mean flow and eddy activity respectively for the oceanic case. My choice, supported

by previous research, was to compute the spatial averages of the Eady growth rate

and of the eddy buoyancy flux over a rectangular region on the meridional plane,
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Figure 4.19: Top: the averaging domain (i) (continuous black lines) superimposed

to time-mean, zonal-mean Eady growth rate (left) and eddy buoyancy flux (right).

Middle: phase space diagram (left) and correlation functions (right). Bottom: pre-

diction plot (left) and residual correlation functions (right). For the middle and

bottom panels, all plots are as in section 4.5.1.
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Figure 4.20: Top: the averaging domain (ii) (continuous black lines) superimposed

to time-mean, zonal-mean Eady growth rate (left) and eddy buoyancy flux (right).

Middle: phase space diagram (left) and correlation functions (right). Bottom: pre-

diction plot (left) and residual correlation functions (right). For the middle and

bottom panels, all plots are as in section 4.5.1.

156



ℱ "ℱ "

Figure 4.21: Top: the averaging domain (iii) (continuous black lines) superimposed

to time-mean, zonal-mean Eady growth rate (left) and eddy buoyancy flux (right).

Middle: phase space diagram (left) and correlation functions (right). Bottom: pre-

diction plot (left) and residual correlation functions (right). For the middle and

bottom panels, all plots are as in section 4.5.1.
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located at intermediate latitudes and in the upper interior of the domain. I have

analysed the time series of X and Y both qualitatively and quantitatively.

From a qualitative standpoint, I sought signatures of an oscillatory relationship

between the two variables by studying the structure of the kernel-averaged phase

space trajectories and of the cross correlation function between X and Y . The

data are characterised by intense variability, therefore I expected the oscillations

to emerge only on average, and not in the traditional sense of deterministic sys-

tems. Quantitatively, I have fitted the simplified model to the data by means of

the Yule-Walker method, thereby obtaining an estimate for the simplified model’s

parameters. The fitting technique was bolstered by performing a verification exper-

iment, where I numerically generated a synthetic realisation of the simplified model

and shown that I am able to successfully reconstruct the prescribed parameters.

My results are that:

1. The kernel-averaged phase space trajectories are quasi-periodic orbits, and

their orientation is consistent with the predator-prey model of AN14. This

strongly supports the idea that eddy-mean flow interactions are endowed with

an oscillatory character.

2. The cross-correlation function between X and Y is approximately an odd

function of the time lag. Its peaks are statistically significant and located

at |τ| ≈ 15 days, which can be thought of as a characteristic time for the os-

cillation. The form of the cross-correlation function is consistent with the

physical interpretation of the eddy life-cycle, corroborating the conclusions

drawn from the analysis of the phase space diagram.

3. The fit of the simplified model is satisfactory. In particular, the coefficients

of determination obtained in the case of the idealised channel are comparable

with those obtained for the synthetic validation experiment. This means that

the simplified model explains roughly the same amount of data variance in the

two cases. The analysis of the residuals revealed no severe modelling defects,
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although it also showed that higher order auto-regressive models may slightly

enhance fit performances.

4. The estimated parameters can be associated with typical time scales by means

of simple physical arguments. The time scales I obtained are plausible and

range from one to a few weeks, consistently with the predictions of traditional

linear perturbation theory.

5. The estimated parameters can be used to predict a number of properties of

the diagnosed time series of X and Y , including their correlation functions

and marginal probability distribution functions (PDFs). The simplified model

can reproduce the PDFs to a very good approximation. The prediction is less

accurate for the correlation functions but, importantly, I have also shown that

the qualitative structure of the cross-correlation function is correctly captured.

6. The estimated parameters can also be used to compute deterministic phase

space trajectories. Here, I have shown that such trajectories dissipate en-

ergy and are therefore qualitatively different from the kernel-averaged orbits,

demonstrating for the first time that phase space oscillations can be found

even when the deterministic dynamics are dissipative. The implication is that

a phase space diagram with quasi-periodic orbits does not constitute a suffi-

cient condition for the dynamics to be conservative.

7. My results do not depend strongly on the choice of the averaging domain, as

long as this is not wide enough to contain multiple ACC jets or as narrow as

to include only a few grid points.

The results lend support to the idea that reduced-order dynamical models can be

effectively employed to study the mechanisms and time scales of mesoscale eddy

variability in the Southern Ocean, but a number of important questions remain open.

Firstly, I have shown that a predator-prey relationship between eddies and the mean

flow can be found in the idealised channel configuration of the MITgcm, but are

the implied dynamics actually at play in the real Southern Ocean? Given the many
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simplifying assumptions made to configure the idealised channel (including con-

stant, zonally symmetric atmospheric forcing, no sea ice, no salinity, and a flat

bottom topography), the answer is not obvious. I take a first step in this direction

in the next chapter, where I analyse data from a realistic Southern Ocean state esti-

mate product, the SOSE. Secondly, is it possible to exploit the simplified model to

make predictions about the time scales of forced response to wind stress changes?

Ideally, one could envision numerical step-change experiments where an instanta-

neous perturbation is applied to one or more of the simplified model’s parameters

to represent an abrupt increase in wind stress. Unfortunately, this would require

knowledge of how the simplified model’s parameters scale with the wind strength,

which is not known because, following AN14, the simplified model was introduced

based on heuristic arguments. Recently, Kobras et al. (2022) made inroads towards

deriving a reduced-order model of atmospheric variability from successive approx-

imations of the equations of motion, starting from the two-level QG equations on

a beta plane. Although their final model comprises six equations, and is thus in-

herently more complicated than the one considered here, their study may constitute

a promising way forward for the oceanic case too. Alternatively, the dependence

of the simplified model’s parameters on surface wind stress could be estimated by

running the idealised channel with different values of the wind stress parameter τ0,

and fitting the simplified model to the data from each simulation. This ”sensitivity

experiment” approach has significant provenance, but is computationally demand-

ing as it requires to (i) spin up and (ii) diagnose large amounts of data from at least

a few independent configurations of the idealised channel: in view of this, the idea

is not pursued further here. Rather, in chapter 6 I study the transient response of the

Southern Ocean to wind stress changes directly by generating an ensemble of wind

step-change simulations with the idealised channel.
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Chapter 5

Time-scales of natural variability in

the Southern Ocean: part 2

5.1 Introduction

In chapter 4, I have shown that the interaction between eddies and the mean flow

in an idealised channel configuration of the MITgcm is well described by a linear

stochastic damped oscillator, named the simplified model. Specifically, the simpli-

fied model was fitted to the time series obtained by taking spatial averages of the

Eady growth rate and of the eddy buoyancy flux, representing mean flow and eddy

activity respectively: the accuracy of the fit was successfully tested against con-

ventional metrics of evaluation, and the simplified model proved able to reproduce

the statistical properties of the two time series satisfactorily. Scrutiny of the phase

space diagram and of the correlation functions further revealed that the dynamics

expressed by the simplified model are compatible with the predator-prey evolution

model introduced by AN14 to study the variability of the atmospheric storm track,

a result that strengthens the evidence pointing to dynamical analogies between the

atmospheric jet stream and the ACC. Given the many idealising assumptions in-

volved in the MITgcm configuration used for the study, however, it remains unclear
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to what extent these results apply to the real Southern Ocean: here, I seek to bolster

the conclusions drawn in the previous chapter by studying the interaction between

eddies and the mean flow with a realistic state-estimate of the Southern Ocean, the

SOSE.

The chapter is set out as follows. The dataset considered for the analysis is

presented in section 5.2: this includes an introduction to SOSE (section 5.2.1), a

brief illustration of SOSE’s climatological state (section 5.2.2), and a discussion

of how the dynamical variables are defined and spatially averaged (section 5.2.3).

In section 5.3 the fit method is described, which is more flexibly based on linear

regression rather than on the Yule-Walker equations as in the previous chapter. Re-

sults are presented in section 5.4. I conclude with a summary and a discussion of

perspectives in section 5.5.

5.2 Data

The purpose of this section is to offer a brief description of SOSE’s model config-

uration and physics, and to detail how the dynamical variables used to represent

eddies and the mean flow are computed.

5.2.1 SOSE: an overview

The acronym SOSE stands for Southern Ocean State Estimate. In climate science,

the expression ”state estimate” indicates that the output of a GCM is coupled to

actual measurements to produce an accurate representation of a geophysical system.

The SOSE is a time-evolving state estimate of the Southern Ocean (south of 25◦S)

that combines the solution of an eddy permitting configuration of the MITgcm with

observations from a variety of oceanic and meteorological datasets (Mazloff et al.,

2010). Model data and observations are coupled according to the data assimilation

technique developed by the ECCO consortium.
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Several versions of SOSE are made publicly available at http://sose.ucsd.

edu/. In this work, we employ SOSE iteration 1001, which covers six years of data

from 1 January 2005 to 31 December 2010. The model is a realistic configuration

of the MITgcm at 1/6◦ horizontal resolution and with 42 vertical levels of varying

thickness. Importantly, the model is equipped with a non-linear, two-component

equation of state, realistic bottom topography, a sea-ice model (Hibler, 1980), the

KPP scheme for mixed layer parametrisation, and a boundary layer scheme for the

parametrisation of heat, salinity, and momentum air-sea fluxes (Large and Yeager,

2004). In comparison, the idealised channel features a linear and single-component

equation of state (i.e. no salinity), no sea ice, flat bottom topography, and prescribed

air-sea fluxes. SOSE’s observational constraints come from a variety of products,

including Argo floats. Detailed information can be found in Mazloff et al. (2010), or

on the Climate Data Guide web page https://climatedataguide.ucar.edu/

climate-data/southern-ocean-state-estimate-sose. The data assimila-

tion procedure consists in minimising a cost function representing the weighted

discrepancy between the model’s solution and the observations, where weights are

assigned depending on each measurement’s uncertainty. In the case of SOSE, the

cost function is minimised by iteratively modifying a control vector which con-

tains information about the model’s initial conditions and boundary conditions at

the surface. The state estimate is then obtained by marching the model forward in

time with the optimised initial and boundary conditions. This method should be

compared with the conventional data assimilation approach used, for example, in

operational weather forecast, where it is the solution to the numerical model itself

that is adjusted to better represent observations. In contrast, SOSE remains an exact

solution of the MITgcm, and is therefore physically self-consistent.

SOSE’s horizontal grid resolution does not fully resolve the first Rossby radius

of deformation (which ranges from approximately 10 to 30 km in the Southern

Ocean, Chelton et al. (1998)), but the model naturally develops a rich mesoscale

eddy field Cerovečki et al. (2019). SOSE has been extensively validated against

1Computational resources for the SOSE were provided by NSF XSEDE resource grant

OCE130007
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observations and estimate products for both the 2005-2006 period (Mazloff et al.,

2010) and the full 2005-2010 period (Cerovečki et al., 2019). Although it retains

biases with respect to observations (e.g. SST in the subtropics and in the subpolar

gyres (Mazloff et al., 2010); isopycnal range of low potential vorticity water, cli-

matological location of the ACC fronts, depth of the mixed layer (Cerovečki et al.,

2019)), it provides a reliable representation of the state of the real Southern Ocean.

5.2.2 SOSE: climatology

In this section, selected aspects of SOSE’s climatology are explored. Here, by cli-

matology we mean that time-averaged fields are the object of investigation, with

time averages computed over SOSE’s complete 6-year time span from January 2005

to December 2010. Our limited purpose is to provide the reader with a general feel

for the model’s physics, while we refer to the cited literature for a comprehensive

illustration. In the interest of brevity, we focus on surface properties and on the

thermal wind relation.

The surface: Sea Surface Temperature, Sea Surface Height, and fronts

Time-mean Sea Surface Temperature (SST) is shown in figure 5.1 (left). Isothermal

lines are approximately zonal, with the coldest temperatures (around zero degrees)

found south of the ACC region and near the Antarctic continent, and the warmest

(≈ 27 degrees) at the lowest latitudes. Deviations from zonal symmetry are nev-

ertheless apparent throughout the domain, and more markedly so in the vicinity of

topographical features, e.g. downstream of Drake passage (at about 60◦W) and New

Zealand (at about 170◦E). The meandering, non-zonal character of the ACC is also

manifest in the time-mean surface zonal velocity, figure 5.1 (right).

In spite of the filamented nature of the flow (Marshall and Speer, 2012, Rintoul

et al., 2001), regions of strong horizontal gradients of surface properties (or fronts,
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Figure 5.1: Left: time-averaged Sea Surface Temperature. Right: time-averaged

surface zonal velocity. Time averages are computed over the full 2005− 2010 pe-

riod.

following Orsi et al. (1995)) can be exploited to identify the climatological positions

of the ACC jets (Olbers et al., 2004). One possibility (Mazloff et al., 2010) is to

compute the time-mean, vertically integrated horizontal streamfunction ψh:

ψh(x,y) =
∫ y

yS

dy
∫ 0

−H(x,y)
dzu(x,y,z), (5.1)

which is shown in figure 5.2 (left). By definition, the vertically integrated trans-

port between two streamlines is equal to the difference between the corresponding

values of ψh. Cerovečki et al. (2019) observe that the 10, 50, and 100 Sv con-

tours of ψh (green contours) tend to align with the climatological positions of the

SACCF (Southern ACC Front), PF, and SAF respectively in the Southeast Pacific

region (the alignment was not tested for other regions). Although characterised by a

large-scale zonal symmetry, the fronts show significant local meridional excursions

too: as noted by Olbers et al. (2004), all fronts pass through Drake passage, but

take otherwise independent circumpolar paths that do not necessarily follow lati-

tude circles. Poleward of the main ACC flow, the Weddell (located around 10◦E)

and Ross (200◦E) cyclonic polar gyres contribute negatively to the transport. Fig-

ure 5.2 (right) shows time-mean Sea Surface Height (SSH) anomaly profiles: for

illustration purposes, the -0.85, -0.6, and -0.1 m SSH contours are evidenced by

black contours, demonstrating an approximate correspondence between SSH and

vertically integrated horizontal streamfunction profiles.
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Figure 5.2: Left: time-averaged, vertically-integrated zonal streamfunction. Green

contours mark the climatological position of the 10, 50, and 100 Sv levels. Right:

time-averaged Sea Surface Height anomaly. Black contours mark the position of

the -0.85, -0.6, and -0.1 m levels. Green contours are as in the left panel.

Meridional structure

The most remarkable feature of meridional sections of fluid properties in the ACC

region is that isolines are negatively tilted (Rintoul et al., 2001). Dynamically, the

sloping profiles are associated with the thermal wind balance, as explained below

(Marshall and Speer (2012); see also chapter 3). Hydrographical sections are fur-

ther characterised by the presence of a series of steps (i.e. narrow regions of strong

meridional gradients), which tend to be associated with the location of the ma-

jor ACC fronts (Rintoul et al., 2001). The time-mean buoyancy contours for two

meridional sections at approximately 350◦E (section taken in the Atlantic sector)

and 240◦E (Pacific sector) are shown in figure 5.3. In both cases, the largest val-

ues of buoyancy (associated to warm and relatively salty water, with thermal effects

dominating over haline contributions) are found near the surface and at the southern

boundary of the domain. In the Atlantic section, two regions of steep meridional

gradient can be observed at approximately 45◦S and 57◦S, corresponding to the

climatological position of the SAF and PF respectively (compare also with figure

5.2 (left)). The same fronts can be detected at different latitudes in the Pacific sec-

tion (55◦S and 65◦S), again consistent with the location of the vertically integrated

streamfunction profiles shown in figure 5.2 (left). For both sections, the SAF marks
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Figure 5.3: Meridional sections of time-mean buoyancy taken at approximately

350◦E (Left) and 240◦E (Right).

Figure 5.4: Meridional sections of time-mean zonal velocity taken at approximately

350◦E (Left) and 240◦E (Right).

the southern boundary of the region interested by the largest upward and southward

sloping of the isopycnals. The meridional sections of time-mean zonal velocity

taken at the same longitudes are shown in figure 5.4. Intense and narrow eastward

jets are found at approximately the same latitudes as the meridional steps in time-

mean buoyancy, lending support to the dynamical association between fronts and

zonal flow. The meridional gradient of buoyancy is related to the vertical shear of

zonal velocity via the thermal wind relation, equation (3.23). Figure 5.5 shows the

left hand side (vertical shear of time-mean zonal velocity, colours) and the right

hand side (minus the meridional gradient of time-mean buoyancy over the Coriolis

parameter, contours) of equation (3.23) for the same meridional sections as before

and for the upper thermocline. Note that the fields are not zonally averaged. The
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Figure 5.5: Thermal wind balance. Meridional sections of the vertical shear of time-

mean zonal velocity (colours) and of −∂yb/ f taken at approximately 350◦E (Left)

and 240◦E (Right).

plots qualitatively demonstrate that thermal wind balance is satisfied to a good ap-

proximation. Quantitatively, the thermal wind relation holds within a 20% accuracy

at worse, attained at the intense Atlantic jet. The relative error decreases to order

1% away from the jet.

5.2.3 Definition of the dynamical variables

We introduce the dynamical variables X and Y describing mean flow and eddy ac-

tivity respectively. In chapter 4, we used the Eady growth rate to measure mean

flow, equation (4.93), and the eddy buoyancy flux to measure eddy activity, equa-

tion (4.96). Both definitions involve application of the zonal average operator, a

choice justified by zonal symmetry in the case of the idealised channel. SOSE’s

time-averaged flow, in contrast, is steered by topography, and the presence of stand-

ing meanders breaks zonal symmetry (see for example figure 5.2). Therefore, the

ACC flow in SOSE is best characterised by taking averages ”following the stream”

rather than along a latitude circle. In view of this, we adjust the definitions of

section 4.3 by (i) decomposing the horizontal velocity into its along- and across-

stream rather than zonal and meridional components, and (ii) taking averages along

time-mean SSH profiles rather than along latitude circles, as explained below.
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Along- and across-stream components of velocity

Following Karsten and Marshall (2002) and Olbers et al. (2004), we use time-

mean Sea Surface Height (SSH) profiles (see figure 5.2 (right)) to identify time-

mean streamlines. This choice is motivated by the following considerations: (i) the

method is conceptually simple, (ii) it has provenance in the literature, and (iii) time-

mean SSH profiles are readily available from model diagnostics. The streamlines

thus defined constitute a working approximation of the time-mean circumpolar flow

of water masses in the Southern Ocean which, at the cost of an added layer of com-

plication, may be defined based on the baroclinic shear of surface properties (Orsi

et al., 1995). There are, of course, a number of alternatives, which we now briefly

discuss.

Treguier et al. (2007) defined time-mean streamlines based on the mean con-

tours of the barotropic streamfunction ψh . According to the authors, one of the

advantages of this choice is that ψh is a vertically integrated quantity, therefore the

streamlines do not depend on depth by construction. Importantly, though, they also

note that the results do not change significantly if SSH is used instead. In view of

this, and given the approximate equivalence between mean SSH and ψh contours

in SOSE (figure 5.2 (right)), we expect that the main thrust of our argument would

not vary substantially were time-mean SSH profiles to be replaced with ψh ones. In

similar spirit, one may use f/H contours to define the streamlines. The rationale is

that the ACC is steered by bottom topography and, at leading order, its flow is di-

rected along f/H contours due to conservation of potential vorticity (Patmore et al.,

2019). However, this method still constitutes a depth-independent approximation of

the streamlines based on the dynamical properties of the ACC, and there is no obvi-

ous argument that suggests it would afford a more accurate representation than that

obtained by tracking the flow directly with SSH or ψh contours. Viebahn and Eden

(2012) defined the streamlines based on the time-mean horizontal velocity contours.

This choice is rigorous, but is mathematically complicated as the along-stream and

across-stream directions depend on depth, which yields a non-orthogonal system of
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reference. Besides, the structure of the flow being strongly barotropic in the South-

ern Ocean (Hughes and Ash, 2001), we expect SSH to be a reasonable indicator

of the flow in the interior too. Other choices, such as the Bernoulli potential con-

tours used by Polton and Marshall (2007), equally involve a degree of mathematical

sophistication.

In summary, using time-mean SSH contours to define the streamlines offers a

reasonable compromise between rigour and practicality. A possible improvement

would be to define the along- and across- stream directions based on a time-varying

SSH field. This may account for slow-time scale deviations of the flow from its

time-averaged path: as the ACC varies significantly in time, we expect that the

change would reflect in a stronger along-stream mean flow. A likely complication,

though, is that the definition of mean flow might then absorb part of the transient

eddy cross-stream fluxes, as in the limit case when the streamlines coincide with the

instantaneous SSH field (and the across-stream geostrophic velocity is thus identi-

cally zero). This warrants a careful choice of the definition of the time-varying

streamlines (and thus of what we consider as eddying motion), which should be

tested e.g. by applying time filters of varying width to the SSH field. For the sake

of simplicity, in this chapter we limit ourselves to the simpler choice of using time-

mean SSH contours. Let η = η(x,y) be the time-averaged SSH, and let (u,v) be

the zonal and meridional components of the horizontal velocity. At each grid-point,

we compute the along- and across- stream components (v‖,v⊥) according to the

formula:

v‖ =
∂yη̄

||∇η̄ ||
u− ∂xη̄

||∇η̄ ||
v (5.2)

v⊥ =
∂xη̄

||∇η̄ ||
u+

∂yη̄

||∇η̄ ||
v , (5.3)

where ∇η̄ = (∂xη̄ ,∂yη̄) is the horizontal SSH gradient, and || · || denotes the Eu-

clidean norm:

||∇η̄ ||=
√

(∂xη̄)2 +(∂yη̄)2. (5.4)

More compactly, the equations for (v‖,v⊥) describe a change of basis transforma-
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tion, from Cartesian to stream-aligned coordinates:v‖

v⊥

= S

u

v

 , (5.5)

where the change of basis matrix S is:

S =
1

||∇η̄ ||

∂yη̄ −∂xη̄

∂xη̄ ∂yη̄

 . (5.6)

Note that the matrix S depends on the horizontal coordinates via η(x,y), but not on

depth or time.

Stream-wise average

Let γ1 = γ1(x) and γ2 = γ2(x) be the circumpolar paths associated to two arbitrary

time-mean SSH levels η2 > η1 (here, x is the longitude and γ the latitude). By

definition, the paths γ1 and γ2 are such that the value of η is constant along the

path, i.e. η(x,γ1(x)) = η1 and η(x,γ2(x)) = η2 ∀x. For simplicity, we assume

that η2 > η1 implies γ2(x) > γ1(x) ∀x, and that η(x,γ(x)) = η defines a unique

connected path, a condition that is satisfied over most of the ACC region (see figure

5.2 (right)). The stream-wise average 〈q〉 of a scalar variable q = q(x,y,z) between

the contour levels η1 and η2 is defined by:

〈q〉(z) = 1
A

∮
dx
∫

γ2(x)

γ1(x)
dyq(x,y,z), (5.7)

where:

A =
∮

dx
∫

γ2(x)

γ1(x)
dy (5.8)

is the area of the horizontal surface bounded by the circumpolar paths γ1 and γ2.

Figure 5.6 offers a comparison between zonal and stream-wise averaging: figure

5.6 (left) shows the conventional time-mean, zonal-mean profiles of zonal veloc-

ity. Figure 5.6 (right) in contrast, shows the time mean, stream-averaged profiles

of along-stream velocity. Here, the stream average is computed between uniformly

spaced circumpolar paths separated by an interval ∆η = 0.052 m, and parsing SSH
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Figure 5.6: Left: time-mean, zonal-mean profiles of zonal velocity. Right: time-

mean, stream-wise averaged profiles of along stream velocity.

values from −0.8 m to 0.2 m (namely, η1 = −0.8 m, η j = η1 + ( j− 1)∆η for

j = 2, ...,N +1 with N such that ηN+1 = 0.2 m). Similarly to Olbers et al. (2004),

we observe that: (i) the zonal average profiles are characterised by the co-existence

of multiple jets of comparable magnitude, while only a few, larger and more intense

jets are found in the stream-averaged section. Interestingly, most of the zonal flow is

concentrated equatorward of η =−0.6, i.e. north of the PF. Decreasing the param-

eter ∆η (which amounts to increasing the resolution in SSH space) adds fine scale

detail but does not change the overall qualitative structure of the meridional profiles.

(ii) The stream-wise averaged velocity is positive (i.e. eastward) everywhere in the

depth range considered, whereas negative values likely associated to the presence

of standing meanders can be observed for the zonally averaged section. (iii) The

maximum of the stream-wise averaged velocity is almost a factor 2 larger than that

of the zonally-averaged velocity, expressing the fact that the stream-wise average

prevents spurious cancellations due to the non-zonal meanders. Collectively, these

observations strengthen the idea that the stream-wise average is better suited to ac-

curately capture the dynamics of the ACC flow in SOSE than the simpler zonal

average.

The paths γ1 and γ2 in equation (5.7) need not describe closed circuits around

the pole, but may only span a finite longitudinal extent. In this case, the formula for
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the stream-wise average reads:

〈q〉(z) = 1
A

∫ x2

x1

dx
∫

γ2(x)

γ1(x)
dyq(x,y,z), (5.9)

with:

A =
∫ x2

x1

dx
∫

γ2(x)

γ1(x)
dyq(x,y,z), (5.10)

and where x1 and x2 mark the longitudinal boundaries of the domain under consid-

eration. We exploit this formula to define the dynamical variables with an emphasis

on local rather than hemispheric properties.

Spatial averaging

Equipped with the notion of stream-wise average, we introduce the dynamical vari-

ables X and Y . As in chapter 4, the definitions hinge on the Eady growth rate and on

the eddy buoyancy flux. Given a longitude interval [x1,x2] and two paths γ1(x),γ2(x)

associated to the SSH levels η1,η2, the Eady growth rate is computed as:

ω =−0.31〈 f 〉
〈∂zv‖〉√
〈∂zb〉

≈ −0.31
〈 f ∂zv‖〉√
〈∂zb〉

. (5.11)

This formula is inherited from equation (4.93), with the difference that the zonal ve-

locity u is replaced by the along-stream velocity v‖ and that zonal mean is replaced

by the stream-wise average (denoted by angular brackets). Here, the stream-wise

average is taken over the domain specified by [x1,x2] and γ1(x),γ2(x) according to

definition (5.9). Experiments with time-averaged fields suggest that multiplication

by the Coriolis parameter approximately commutes with the stream-wise average

operation, hence the second equality. The eddy buoyancy flux is computed accord-

ing to:

Fy = 〈v+⊥b+〉, (5.12)

which is the same as equation (4.96), but with the meridional velocity replaced

by the across-stream velocity and with zonal average replaced by the stream-wise

average (similarly to section 4.3, + denotes deviations from time mean). As an

example, the time mean, stream-wise averaged Eady growth rate and eddy buoyancy
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Figure 5.7: Left: time mean, stream-wise average of the Eady growth rate. Right:

time-mean, stream-wise average of the eddy buoyancy flux. The stream-wise aver-

age is taken between 90◦W and 175◦W (Indian sector). SSH levels are distanced by

an interval ∆η = 0.052 m.

flux are shown in figure 5.7, where the stream-wise average is computed over the

Indian sector (i.e., between 90◦W and 175◦W). Note that the Eady growth rate ω

and the eddy buoyancy flux Fy, as defined by equations (5.11) and (5.12), are still

spatially-structured fields depending on depth z. In order to extract time series from

ω and Fy, we take their vertical average over a depth interval [z1,z2]:

ω̃(t) =
1

z2− z1

∫ z2

z1

dzω(z, t) (5.13)

F̃y(t) =
1

z2− z1

∫ z2

z1

dzF (z, t) . (5.14)

The time series of X and Y are computed from ω̃ and F̃y by subtracting the corre-

sponding time mean (as in chapter 4) and by removing linear trends (to account for

possible time mean drifts in the dataset).

In the case of the idealised channel, the time series of X and Y where computed

relative to a single domain located in the middle of the channel. This choice was

motivated primarily by the symmetric, simplified geometry of the model configu-

ration. Here, instead, we account for potential local differences in the character of

eddy-mean flow interaction by partitioning the ACC region in a greater number of

domains Ωi, where each domain is specified by a choice of x1,x2 (the longitudinal

extent), z1,z2 (the depth range), and η1,η2 (the stream paths). In all cases, the depth

range is from z = −1173.5 m to z = −550, so that X and Y are vertically aver-
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aged in the thermocline and below the mixed layer, where the seasonal cycle can be

neglected. The longitudinal extent of the domains is of approximately 20◦, and the

SSH paths are taken ∆η = 0.1 m apart, from η =−0.6 m to η = 0.2 (corresponding

to the region in SSH space where most of the flow is concentrated, see figure 5.6).

In total, there are 136 domains that tile the ACC region. We observed that a small

number of domains are associated with time series valued far outside the average

range of variability (the reasons for this behaviour are unclear, and the domains are

not spatially clustered following any obvious patterns): they were flagged as out-

liers and excluded from the analysis below, leaving a total of 124 domains covering

most of the ACC region, and shown in figure 5.8

5.3 Methods

We consider the same problem of section 4.4, which we restate here for conve-

nience: we have extracted the time series Xn and Yn of the two dynamical variables

X and Y from the data, representing Eady growth rate and eddy buoyancy flux re-

spectively. The time interval between two consecutive observations is ∆t = 5 days,

n= 1, ...,N, and we hypothesise that the time series are realisations of the simplified

model (4.51):

Xn+1 = AXn +σdWn+1, (5.15)

The task is to fit the simplified model to the data, compute the best estimate for the

unknown matrices A and σ (for a total of 6 free scalar parameters), and evaluate

the goodness of the fit. In chapter 4 we tackled the problem with the Yule-Walker

equations. Here, instead, we rely on linear regression, as explained below.
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Figure 5.8: Partition of the ACC region into the smaller domains Ωi. The domains

are bounded meridionally by SSH paths uniformly spaced by ∆η = 0.1 m (coloured

intervals), and are approximately 20◦ wide in longitude (the longitudinal extent is

marked by the dashed black lines). The continuous grey lines show the 10, 50,

and 100 Sv levels of the time-averaged, vertically-integrated zonal streamfunction.

The small gaps between the regions considered for the analysis were inadvertently

introduced when accessing the SOSE dataset, but have no foreseen relevance to the

analysis to follow.
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5.3.1 Linear regression

Similarly to section 4.4.3, we define:

xn = Xn (5.16)

yn = Xn+1 , (5.17)

for n = 1, ...,N−1. The best estimate Â of the matrix A is computed by performing

an ordinary linear regression (see e.g. Ross (2014) for the theory. In practice, the

linear regression is implemented using the Python library scikit-learn, Pedregosa

et al. (2011)), with x and y being the independent and dependent variables respec-

tively. A similar approach was promoted by Gnanadesikan et al. (2020) to estimate

the parameters of a linear model describing oscillatory convection in the Southern

Ocean. The values of y predicted by the linear model are:

ŷn = Âxn, (5.18)

for n = 1, ...,N − 1. The best estimate σ̂ of the matrix σ is computed from the

residuals e = y− ŷ as explained in section 4.4.3

5.4 Results

5.4.1 Summary

We test the working hypothesis that the interaction between eddies and mean flow

in SOSE is described by a stochastically forced, damped oscillator, the simplified

model. The data we analyse consist of 124 bivariate time series (Xn,Yn), where

for each time series Xn is the spatial average of the Eady growth rate (measuring

mean flow) and Yn is the spatial average of the eddy buoyancy flux (measuring eddy

activity). The spatial averages exploit the stream-wise averaging technique and are

taken at different locations so that, overall, the 124 domains tile most of the ACC

region (see figure 5.8). Each time series is 6 years long, and the sampling interval is
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5 days. The simplified model is presented in section 4.2.7, together with some of its

fundamental mathematical properties. Contrary to chapter 4, the fit method is based

on linear regression (section 5.3.1) and not on the Yule-Walker equations but, for a

given time series, the fit procedure is otherwise unchanged: section 4.5 contains a

summary of the main steps.

5.4.2 Analysis of data from individual domains: local dynamics

From an analytical perspective, there are two important differences between the

present case and that of chapter 4: (i) the data is spatially structured, and comprises

multiple time series associated with different physical locations, and (ii) the time

series cover a shorter period of time (6 rather than 30 years). As a first step, we

have individually fitted the simplified model to the bivariate time series from each

of the averaging regions. This procedure reveals that the spatial domains can exhibit

different behaviours, with some showing clear qualitative evidence of predator-prey

oscillations, as detected in the structure of the phase space diagram and of the cross

correlation function, and others for which supporting evidence of AN14 dynamics

cannot be easily found (a more formal criterion to distinguish between the two cases

will be discussed below). As an example, figure 5.9 shows the results of the fit for

a domain falling into the first case (with evidence of oscillatory behaviour), while

figure 5.10 shows those for a domain falling into the second (without evidence of

oscillatory behaviour). The two domains are purposely selected to best demonstrate

the argument, but the quantitative results of this section do not depend on their

precise choice.

We begin with the scrutiny of the fit outcome for the domain showing evidence

of predator-prey dynamics. Figures 5.9 (a) and (d) illustrate the goodness of the fit

qualitatively. Figure 5.9 (a) shows the time series of X and Y (blue and red dots

respectively) and the corresponding predictions obtained with linear regression one

step ahead (continuous blue and red lines): the simplified model captures the time

evolution of both variables satisfactorily. Figure 5.9 (d) shows the prediction plots
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for X and Y . We observe that the scatter points are clustered around the 1:1 line,

supporting the view that the simplified model adequately describes the data for this

domain. Figures 5.9 (b) and (c) allow ourselves to investigate whether or not the

interaction between the dynamical variables is mediated by damped oscillations.

Figure 5.9 (b) shows the phase space diagram reconstructed with the Gaussian ker-

nel method of section 4.2.8. Phase space trajectories are characterised by a high

degree of coherence, and are consistent with the signature of the predator-prey life

cycle studied in chapter 4. The phase space pattern is noisier than in the case of the

idealised channel, and the shape of the trajectories is only approximately elliptical

(compare for example with figure 4.7 (right)). These effects, however, are most

likely an artefact of SOSE’s comparatively short time series, see section 5.4.8 for

details. Further evidence comes from the inspection of the cross-correlation func-

tion, shown in the bottom panel of figure 5.9 (c). Albeit noisy, the sample cross cor-

relation (dotted green line) is approximately an odd function of the time lag with a

negative peak at positive lags (eddies intensify after an increase in mean flow) and a

positive peak at negative lags (mean flow becomes stronger after a decrease in eddy

activity). The best fit prediction for the cross-correlation (continuous black line), in

addition, captures this behaviour well. Note that the peaks of ρXY barely stand out

of the acceptance interval of the null hypothesis (in other words, the peaks of the

correlation functions are just within the significance region), but this effect too may

be partially attributed to the small size of the time series (because the width of the

acceptance interval decreases with the square root of the number of observations,

section 4.2.6). Overall, the analysis of the phase space diagram and of the cross

correlation function demonstrates that eddies and mean flow interact according to

the predator-prey oscillatory dynamics of chapter 4 in this domain.

Figure 5.10 shows the outcome of the fit for the domain without evidence of

predator-prey dynamics. As before, figures 5.10 (a) and (d) demonstrate that the

simplified model is an excellent fit to the data and, in particular, that no obvious

patterns of deviation from the 1:1 line appear in the prediction plots, figure 5.10

(d). The phase space diagram and the cross correlation function, however, convey
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a

c

b

d

Figure 5.9: Fit of the simplified model to data from an individual domain with

phase space oscillations. (a) Sample (dots) and predicted (continuous lines) time

series of X (blue) and Y red. (b): Kernel averaged phase space diagram, as in figure

4.7, right. (c) Sample (coloured dotted lines) and predicted (continuous black lines)

correlation functions of X and Y . As in figure 4.10, left. (d) Prediction plots for X

(blue) and Y (red). As in figure 4.11, right.
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a b

c d

Figure 5.10: As in figure 5.9, but for a domain without phase space oscillations.

a picture markedly different from the previous case. The phase space diagram is

shown in figure 5.10 (b). Here, the patterns formed by phase space trajectories

are highly irregular, and characterised by the presence of a number of small scale

features that cannot be associated with the predator-prey dynamics in a simple way.

This could be due to a number of reasons: (i) there is no dynamical interaction

between eddies and mean flow in this domain, (ii) the interaction follows AN14 but

is too weak to emerge due to the small size of the time series, and (iii) the interaction

does not follow AN14 (see section 5.4.8 for further details). The analysis of the

cross correlation function, shown in the bottom panel of figure 5.10 (d), confirms

the conclusions drawn from the study of the phase space diagram: in particular, no

peaks can be detected in the sample cross correlation (dotted green line) that stand

out clearly from the background. Note that ρXY takes comparatively large absolute

values at large lags, but these are more likely a manifestation of the noisiness of the

data rather than a signal generated by underlying dynamics. The structure of the

best fit cross-correlation function (continuous black line) reflects the lack of clear

cross correlation between the two variables.
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5.4.3 Classification of the domains

The analysis of the two examples above allowed ourselves to put into better focus

the qualitative factors differentiating the time series. Next, we seek a formal crite-

rion to separate the dynamics of the various domains (i.e., strong versus weak or

absent interaction). The key idea is that the eigenvalues of ˆA (where ˆA is the dy-

namical matrix estimated from linear regression) are tell-tale signs of the determin-

istic dynamics expressed by the model: when the eigenvalues are real, deterministic

oscillations are completely suppressed by damping. When the eigenvalues have

non-zero imaginary part, on the other hand, the deterministic system is in the sub-

critical regime and decaying oscillations will be seen. The eigenvalues are given by

the formula:

λ =
γxx + γyy

2
±

[(
γxx− γyy

2

)2

+ kxykyx

] 1
2

, (5.19)

where the k’s are the interaction (or coupling) terms and the γ’s are the damping

terms. Assuming that kxy and kyx have opposite sign (which is the mathematical

requirement to obtain oscillations), the imaginary part of λ becomes larger for larger

kxykyx. The mathematical condition that the eigenvalues have non-zero imaginary

part thus reflects the physical condition that the coupling terms are strong compared

to the dissipation ones.

Importantly, the eigenvalues estimated from linear regression have non-zero

imaginary part in the case of figure 5.9, while they are real for figure 5.10 (the fit

being successful in both cases). Motivated by this observation, we hypothesise that

complex eigenvalues are associated not only with deterministic oscillations but also

with the emergence of phase space quasi-periodic orbits. This allows to divide the

spatial domains into two groups, where we assign each domain to the first group if

the eigenvalues of ˆA have non-zero imaginary component, and to the second group

otherwise. We find that, overall, this criterion captures accurately the qualitative

character of the time series (see section 5.4.4 for details). The disadvantage is that a

small number of domains, associated with real eigenvalues but showing qualitative

evidence of phase space oscillations, are assigned to the second group. On the plus
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side, this choice allows to differentiate between domains with strong versus weak

or no interaction in a mathematically simple, objective, and unambiguous way. The

benefits outweigh the cons and, in the following, we focus primarily on the analy-

sis of those regions that are associated with complex eigenvalues of the dynamical

matrix.

Figure 5.11 shows the spatial location of the averaging domains associated with

complex eigenvalues (and hence with phase space oscillations). The domains tend

to cluster north of the −0.4 SSH level and around the SAF. This is consistent with

the observation that, in SSH coordinates, the ACC flow is concentrated between the

−0.4 m and the 0.2 m levels approximately (see figures 5.6 and 5.7), as we expect

that the interaction between eddies and the jets is strongest where the flow is most

intense. The circumpolar path is not continuously tiled by the averaging domains,

and a number of gaps are apparent throughout the ACC region, particularly in the

Eastern Pacific sector. However, the area around the SAF is more densely populated

by the averaging regions if one considers, alongside those with complex eigenval-

ues, the few domains which show the signature of phase space oscillations despite

being associated with real eigenvalues (figure 5.12). Thus, regardless of the fact

that one uses a quantitative (the eigenvalues) or qualitative (how the phase space di-

agram and cross-correlation function look like) criterion to label the domains, those

associated with oscillations tend to arrange coherently along the SAF of the ACC.

This underscores that the local emergence of predator-prey interaction between ed-

dies and mean flow is dynamically linked to, and plausibly driven by, the strength

of the ACC flow.

5.4.4 Analysis of averaged data: domain-scale dynamics

Figures 5.9 and 5.10 offer an anecdotical comparison between time series with real

and complex eigenvalues. Can we see the same differences if we focus instead on

the averaged behaviour of the two groups? Consider the case of the domains with

complex eigenvalues first: we assume that each individual time series is an inde-
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Figure 5.11: As in figure 5.8, but only the domains associated with complex eigen-

values are shown.

Figure 5.12: As in figure 5.8, but only the domains with complex eigenvalues or

with real eigenvalues and qualitative evidence of phase space oscillations are shown.
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pendent realisation of the same stochastic process, which represents the averaged

dynamics over the ACC belt. One possibility to study this process is to imagine

that the short, small-scale time series have been sampled from a fictitious longer,

large-scale one, which we reconstruct by concatenating the small-scale time series,

namely, by stacking them one at the end of the other. Since from figure 5.9 (c) we

know that the typical decorrelation time of the dynamical variables is much shorter

than six years (the length of the individual time series), we argue that the boundary

points between any pair of contiguous short time-series weigh only marginally on

the overall estimation of the statistical properties of the large-scale process. For the

same reason, we expect that the specific order of the short time series within the

longer one does affect our results substantially. The final step of the analysis is to fit

the simplified model to the concatenated time series as detailed in section 5.3. The

procedure is then repeated for the case of the domains with real eigenvalues.

Figures 5.13 and 5.14 show the correlation functions (left) and the phase space

diagram (right) for the domains with complex (5.13) and real (5.14) eigenvalues.

Figure 5.13 demonstrates that phase space oscillations emerge on average, and not

only locally, for the domains with complex eigenvalues. The sample cross correla-

tion function between mean flow and eddies (figure 5.13 (left); bottom panel; dotted

green line) display the by now familiar structure associated with the predator-prey

dynamics: an odd function with a negative peak at positive lags and a positive peak

at negative lags. The peaks are at a lag of approximately 20 days, which is compa-

rable with what observed for the idealised channel. The value of ρXY at the peaks

is modest (less than 0.2), but it stands clearly out of the acceptance interval of the

null hypothesis (which is computed using the total number of points in the concate-

nated time series here). Thus, the correlation between the dynamical variables is

weak, but statistically significant. As in the case of the idealised channel, the best

fit prediction for the cross-correlation captures the functional form of ρXY well, but

with larger peaks at larger absolute lags. Note also the good agreement between

the sample and predicted auto-correlation functions for X (top panel) and Y (middle

panel). Figure 5.13 (right) shows the phase space diagram for the domains with
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Figure 5.13: Correlation functions and phase space diagram for the time series ob-

tained by concatenating data from all domains associated with complex eigenvalues.

Plots are as in figure 5.9.

complex eigenvalues. The structure of the phase space trajectories is characterised

by a high degree of regularity and, similarly to that of the idealised channel, is

consistent with the physical interpretation of the eddy life cycle as a predator-prey

interaction between eddies and mean flow. It also compares well with the phase

space diagram obtained from a 30-years long synthetic integration of the simplified

model (see section 5.4.8). Thus considering the ”global” average rather than a lo-

cal specimen entails that the dynamical indicators are smoother (which is expected

whenever some form of averaging is applied), but does not change the physical

picture significantly for the domains with complex eigenvalues.

The case of the domains with real eigenvalues is different. The individual anal-

ysis of figure 5.10 does not allow ourselves to judge whether interactions between

eddies and mean flow are absent, or too weak to assert themselves due to the short

span of the time series. Consideration of the data obtained by concatenating all

the time series associated with real eigenvalues, however, tips the balance in favour

of the second possibility. The correlation functions are shown in figure 5.14 (left).

The sample cross-correlation (bottom panel; dotted green line) is very weak (al-

ways less than 0.1) and barely exceeds the width of the acceptance region of the

null hypothesis that the variables are uncorrelated. Nevertheless, the familiar struc-

ture associated with predator-prey dynamics (approximately odd function; negative

peak at positive τ and positive peak at negative τ) is recognisable, and correctly

captured by the best fit prediction (continuous black line). The best fit curves are
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Figure 5.14: Correlation functions and phase space diagram for the time series ob-

tained by concatenating data from all domains associated with real eigenvalues.

Plots are as in figure 5.9.

in reasonable agreement with the sample auto-correlations of X and Y too (top and

middle panels respectively). The kernel-averaged phase space diagram is shown in

figure 5.14 (right). The single most striking feature of this plot is its regularity. In-

deed, were it not for the larger pool of data (which shows itself in the values of the

data density, coloured intervals) and by the small ripples at the periphery that dis-

tort the elliptical orbits, it would hardly be distinguishable from that of figure 5.13.

Note that this diagram compares well with that computed from a 30-years long syn-

thetic numerical integration of the simplified model with weak coupling parameters,

but not with that from an equally long synthetic integration of two uncorrelated red

noise time series (see section 5.4.8). As anticipated the upshot is that, on average,

a form of predator-prey dynamics is at play even for the domains associated with

real eigenvalues, but that the interaction is too weak to manifest itself locally due

to the paucity of data. A second important conclusion we draw is that the phase

space diagram is a powerful diagnostic tool which, for a sufficiently large sample,

is effective at exposing the hidden dynamical relationship between the variables. It

does not contain information, though, about the strength of their interaction, and

needs therefore to be complemented by some other diagnostics: here, the correla-

tion functions. Another option may be to use the significance metrics for the phase

space diagram introduced by Yano et al. (2020).

As a last step before taking a closer look at the quantitative outcome of the fits,
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we investigate the Probability Distribution Functions (PDFs) of X and Y (in the

interest of brevity, for the domains associated with complex eigenvalues only). The

analysis of the PDFs exposes a disadvantage of studying the averaged dynamics

in the ACC region by concatenating the time series from multiple local domains,

namely, the PDFs relative to the concatenated time series depart from a normal

distribution if the individual time series are not identically distributed. In our case,

the individual time series are all approximately normally distributed with zero mean,

but their standard deviations vary over a comparatively broad range of values. As

a consequence, the PDFs associated with the concatenated time series have much

heavier tails than what expected from a normal distribution (not shown). A possible

remedy is to take the arithmetical average of, rather than concatenating, the time

series from different locations in order to study the PDFs. The mathematical basis

is that the sum of two independent normal random variables is still a normal random

variable even if the two addends are not identically distributed (Ross, 2014). In

formula, if X1 ∼ N(0,σ2
1 ) and X2 ∼ N(0,σ2

2 ), then Z = X1+X2 ∼ N(0,σ2
1 +σ2

2 ). It

follows that, for n independent normal distributions:

1
n
(X1 +X2 + ...+Xn)∼

1
n

N(0,σ2
1 +σ

2
2 + ...+σ

2
n )

∼ N(0,
1
n2 (σ

2
1 +σ

2
2 + ...+σ

2
n )).

(5.20)

Thus, we can fit the distribution of the arithmetical average of the individual time

series with a zero-mean normal distribution, with variance given by the arithmetical

average of the individual variances divided by the number of time series. The vari-

ance of an individual time series is obtained from the best fit of the lag-0 covariance

matrix, as explained in section 4.2.7. The result is shown in figure 5.15: we observe

that, while the predicted distributions of X and Y (continuous black lines) have the

correct scaling, they are significantly narrower than the sampled ones (histograms)

for both variables. Interestingly, the same effect cannot be consistently detected

when comparing the predicted versus sampled distributions of individual time se-

ries (not shown). While the reason for this behaviour remains unclear, one possible

explanation is that small deviation from Gaussianity of individual time series com-

pound to produce larger errors when the average is computed. The PDFs are the

only non-additive mathematical objects that we consider in our analysis, and in the
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Figure 5.15: Probability Distribution Function relative to the arithmetical average

of the time series associated with complex eigenvalues (histograms) and theoretical

prediction from the best fit of the data (continuous black lines) for X (left, blue) and

Y (right, red).

rest of the section we can safely focus on the properties of the concatenated time

series.

5.4.5 Fit of the model

The model is fitted to the data obtained by concatenating all the time series as-

sociated with (i) complex and (ii) real eigenvalues as described in section 5.3.1.

The best fit parameters from the linear fit for the two cases are shown in table 5.1.

Note that the parameters are comparable with those estimated for the case of the

idealised channel, table 5.1 (see section 5.4.7 for further comments). Also, the

product |kxykyx| is almost an order of magnitude larger for the data with complex

eigenvalues than for those with real eigenvalues, while the sum γxx + γyy is nearly

unchanged: thus, the outcome of the fit reflects the mathematical proposition that

complex eigenvalues (and hence phase space oscillations) are associated with larger

values of the coupling coefficients with respect to the damping terms. In the rest of

this section, we concentrate on the fit of the simplified model to the data with the

strongest evidence of predator-prey dynamics, i.e. those obtained by concatenating

the time series associated with complex eigenvalues.

189



Table 5.1: Summary of fit results for the data obtained by concatenating the time

series of all domains associated with complex (top line) and real (bottom line) eigen-

values

Data γxx
[
day−1]

γyy
[
day−1] kxy

[
Kg

J day

]
kyx

[
J

Kgday

]
R2 σx

[
day−3/2

]
σy

[
J

Kgday3/2

]
Complex eigs −1.0 ·10−2 −2.7 ·10−2 1.0 ·10−3 −2.3 ·10−1 (0.91,0.75) 2.7 ·10−3 6.4 ·10−2

Real eigs −5.7 ·10−3 −3.1 ·10−2 5.5 ·10−4 −8.1 ·10−2 (0.94,0.72) 1.6 ·10−3 3.9 ·10−2

5.4.6 Evaluation of the fit

Is the fit of good quality? The coefficients of determination for X and Y are R2
X =

0.91 and R2
Y = 0.75 respectively, remarkably close to the values obtained for the ide-

alised channel. Thus, the simplified model explains a large fraction of the variability

of the concatenated data. Figure 5.16 and 5.17, in addition, show the conventional

visual metrics for the evaluation of the fit. Figure 5.16 (left) shows the prediction

plots for X (top panel, blue) and Y (bottom panel, red). The data are clustered

around the 1 : 1 line, and no clear patterns of deviation are apparent. The correla-

tion functions of the residuals are shown in figure 5.16 (right). Remember that for

a perfect model the residuals are independent, identically distributed, normal ran-

dom variables (i.e. white noise), and only the lag-0 auto-correlation coefficients are

expected to be significantly different from zero. Figure 5.16 (right) demonstrates

that departures from the ideal case are minimal, as the lag-1 coefficients only stand

clearly out of the acceptance interval of the null hypothesis for all three correlations.

Importantly this demonstrates that, although more complex, higher-order theoreti-

cal models may provide a quantitative better fit to the data, it seems plausible to

assume that they would not significantly change the gist of the qualitative conclu-

sions drawn with the simplified model. Lastly, figure 5.17 shows the scatter plots

of the standardised residuals for X (left) and Y (right). Most of the scatter points

are located within ±2 standard deviations from zero, and their arrangement is not

indicative of linear or polynomial dependence on the dynamical variables. Overall,

no severe weaknesses of the model emerge from the analysis of the residuals.
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Figure 5.16: Left: prediction plots for X (blue, left panel) and Y (red, right panel).

See figure 4.11 for more details. Right: correlation functions for the residuals of the

fit. See figure 4.10 for details.

Figure 5.17: Left: scatter plot of eX against X . Right: scatter plot of eY against Y .
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5.4.7 Time scales and physical interpretation of the coefficients

Similarly to chapter 4, we physically interpret the dynamical coefficients of the

simplified model by associating them with typical time scales. Here, we focus on

the case of the domains with complex eigenvalues.

We start with the damping coefficients γ’s: as in section 4.5.3, we consider the

deterministic part of the dynamics only and momentarily suppose that the coupling

coefficients k’s are set to zero, so that the governing equations are given by (4.136))

and (4.137). These equations describe exponential decay, and a relevant time scale

is the halving time, log2/γ , yielding τx ≈ 69 days for the mean flow and τy ≈ 26

days for the eddies. The time scales are slightly longer than in the case of the

idealised channel (where we obtained τx ≈ 47 days and τy ≈ 16 days) but, notably,

τx is approximately a factor 2.7 larger than τy, which suggests that in SOSE too the

mean flow is characterised by greater temporal persistence than the eddies.

In order to interpret the coupling coefficients k, we consider two different sets of

initial conditions for the full deterministic problem, equations (4.138) and (4.139),

and approximate the governing equations accordingly (see section 4.5.3 for the

details). The first case corresponds to the initial conditions X(t = 0) = 2sx and

Y (t = 0) = 0, where sx is the standard deviation of X . The situation is that of eddy

growth following an intense steepening of the isopycnals at t = 0, and the approx-

imated equations are (4.140) and (4.141). In this approximation, the Eady growth

rate X decays exponentially, while the eddy buoyancy flux Y evolves by extracting

energy from the mean flow via the coupling coefficient kyx. We stress that this a

crude approximation, only valid for the initial stages of the evolution of the two

variables. The numerical solutions of the exact (continuous lines) and approxi-

mated (dashed lines) equations are shown in figure 5.18 (left). The halving time

of X visually corresponds to the intersection between the dashed blue line and the

horizontal dashed-dotted blue line, marking the 1sx level (note that since the initial

condition for X is X(t = 0) = 2sx, the halving time coincides with the time needed

for a one standard deviation decrease). As in the case of the idealised channel, the

192



exact solution (continuous blue line) decays faster than the approximated one. The

dashed red line shows the linear approximation of the exact solution for Y (con-

tinuous red line): note that only the initial phase of the evolution, corresponding

to eddy growth, is captured by the approximated line. Its intersection with the 1sy

level (horizontal dashed-dotted red line) represents the time needed for eddies to

grow by one standard deviation in absolute value, and thus the time scale associ-

ated with the coupling coefficient kyx. We obtain a value of about 31 days, which

is only a factor 2 smaller than the relaxation time scale for the mean flow (com-

pared to the factor 5 found for the idealised channel): this suggests that eddies are

less efficient at extracting energy from the mean flow in SOSE than in the idealised

MITgcm configuration. The conclusions is supported by the fact that the peaks of

the cross-correlation function are larger for the idealised channel than in the case of

SOSE.

A time scale for the coupling coefficient kyx is obtained by considering the sym-

metrical initial condition X(t = 0) = 0 and Y (t = 0) = 2sy, where sy is the standard

deviation of Y . In this case, the relevant approximated equations are (4.142)) and

(4.143), and the situation is depicted in figure 5.18 (right). Physically, it corre-

sponds to the flattening of the isopycnals following a peak in eddy activity. The

approximated solution for Y decays exponentially, and is shown by the dashed red

line. Its intersection with the dashed-dotted red line corresponds to the halving time

τy (which also coincides with the time needed for a one standard deviation absolute

decrease). The time scale associated with kyx is marked by the intersection between

the approximated solution for X (dashed blue line) and the −1sx level (horizontal

dashed-dotted blue line): we obtain a value of about 34 days, which is compara-

ble with that associated with kyx but not shorter (in fact, slightly larger) than the

relaxation time scale for Y . As for the case of the idealised channel, this implies

that a few eddy events may be needed to induce significant deviations in the mean

flow. Overall, we found that the time scales associated with the dynamical coeffi-

cients from the best estimate of SOSE’s complex domains are longer than, but still

comparable with, those of the idealised channel. Importantly though, their relative
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Figure 5.18: Numerical solution of the deterministic equations for X(t = 0) = 2sx

and Y (t = 0) = 0 (left), and X(t = 0) = 0 and Y (t = 0) =−2sy (right). Continuous

lines show the solutions to the exact deterministic equations (4.138) and (4.139),

while dashed lines show the solutions to the approximate equations (4.140) and

(4.141) (left), and (4.142) and (4.143) (right). Dashed dotted lines mark the 1sx

(blue) and 1sy (red) levels. In both panels, X is shown in blue (ticks on the left hand

side axis) and Y is shown in red (ticks on the right hand side axis).

magnitude is similar, which suggests that the dynamics of eddy-mean flow interac-

tion expressed by the best fit of the simplified model are qualitatively similar in the

two cases.

5.4.8 Comparison with synthetic time series

We corroborate the conclusions draw in the previous sections by generating syn-

thetic realisations of a number of stochastic processes, and comparing the associated

phase space diagrams with those constructed from SOSE data.

Figure 5.19 shows the phase space diagrams computed from a 6-years (left) and

30-years (right) long realisations of the simplified model, where the model’s pa-

rameters are set to the best estimate obtained for SOSE’s concatenated time series

associated with complex eigenvalues. In both cases, phase space trajectories are

quasi-closed orbits whose orientation agrees well with the predator-prey picture of

AN14. However, the diagram constructed from the 30-years long time series (right)

is more regular than that obtained from the 6-years one (left). We compare these
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Figure 5.19: Phase space diagrams from a 6-years (left) and 30-years (right) long

synthetic time series. The time series are obtained by numerically integrating the

simplified model, equation (4.2.7), with the Euler-Maruyama method. The param-

eters of the simplified model are set to those obtained from the best fit of the con-

catenated time series associated with complex eigenvalues.

synthetic diagrams with those obtained from SOSE’s data: the 30-years synthetic

phase space diagram of figure 5.19 (right) exhibits a similar structure to the one con-

structed from SOSE’s concatenated complex time series, figure 5.13 (right). This

places additional confidence in the simplified model’s ability to capture the average

dynamics of the domains with complex eigenvalues. Furthermore, the 6-years syn-

thetic diagram of figure 5.19 (left) is qualitatively compatible with that of figure 5.9

(right) which is obtained from the 6-years time series associated to an individual

domain with complex eigenvalues. This demonstrates that distorted phase space or-

bits relative to an individual domain can be explained by the short span of the time

series (however, the comparison does not prove that the length of the time series is

necessarily the only factor at play).

Figure 5.20 shows the phase space diagrams constructed from two different 6-

years (left) and 30-years (right) long realisations of the simplified model. The model

parameters are set to the best estimate for SOSE’s concatenated complex time series,

but with kxy = kyx = 0, for panels (a) and (b), and to the best estimate for SOSE’s

concatenated real time series for panels (c) and (d).

Panels (a) and (b) thus correspond to a 6-years long (panel (a)) and a 30-years
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long (panel (b)) bivariate red noise process, which can be thought of as a degenerate

instance of the simplified model, with no dynamical coupling between the variables.

Regardless of the length of the time series, no evidence of predator-prey dynamics

is discernible in the phase space diagrams: hence, we reject the null hypothesis that

quasi-periodic orbits can be generated even in the absence of dynamical coupling

between the two variables. Both the 6-years long synthetic phase space diagrams,

figures 5.20 (a) and (c), are qualitatively comparable with the diagram obtained

from SOSE data for an individual domain with real eigenvalues, figure 5.10 (b),

confirming that a six-years long time series is not sufficient to differentiate between

the cases of uncoupled (panel (a)) and weakly-coupled (panel (c)) dynamics. The

difference, however, emerges when longer time series are considered, as only the

synthetic 30-years diagram corresponding to weakly coupled dynamics (figure 5.20

(d)) is comparable with that constructed from SOSE’s concatenated real time series,

figure 5.14 (right). As noted in the previous section, though, the phase space dia-

gram does not provide information about the strength of the dynamical coupling,

therefore its analysis must be complemented by that of alternative indicators, such

as the correlation functions considered in this study.

5.5 Summary and conclusions

In this chapter, I have analysed data from a realistic state estimate of the South-

ern Ocean, the SOSE, and shown that the interaction between eddies and the mean

flow in localised regions of the ACC is characterised by predator-prey dynamics,

and can be modelled mathematically by a two-dimensional, stochastic oscillator.

This work was motivated by the results presented in chapter 4, where I have shown

that predator-prey dynamics similar to those studied by AN14 for the atmospheric

storm track are at play in an idealised channel configuration of the MITgcm. The

idealised channel configuration, however, involves a number of restrictive assump-

tions, including a zonally symmetric domain, flat bottom topography, no salinity, no

sea ice, and constant forcing at the surface, which begs the questions of whether the
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c d

Figure 5.20: Phase space diagrams from a 6-years (left) and 30-years (right) long

synthetic time series. The time series are obtained by numerically integrating the

simplified model, equation (4.2.7), with the Euler-Maruyama method. The param-

eters of the simplified model are set to those obtained from the best fit of Top: the

concatenated time series associated with complex eigenvalues, but with the cou-

pling parameters k set to zero and Bottom: the concatenated time series associated

with real eigenvalues.
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AN14 dynamics are relevant to the real Southern Ocean. SOSE, in contrast, is an

exact solution of a realistic configuration of the MITgcm, coupled to observations

from a variety of sources through a data assimilation technique. Here, I have used

SOSE iteration 100, which covers 6 years of time from 2005 to 2010. Previous

research demonstrates that this product, while being dynamically self-consistent,

provides a reliable representation of the state of the Southern Ocean.

Similarly to what done in chapter 4, I have identified a pair of variables to repre-

sent the strength of the mean flow and of the eddies, respectively, the Eady growth

rate and the eddy buoyancy flux. Stream-wise averages are more accurate than

zonal averages when the geometry of the domain is not zonally symmetric (Olbers

et al., 2004), therefore the definitions of chapter 4 were adjusted so that the averages

are taken along the time-mean flow of the ACC rather than along latitude circles.

Importantly, the dynamical variables are defined locally, over a number of compar-

atively small averaging domains, rather than hemispherically over the entire ACC

region, which allows to capture regional differences in the dynamics of eddy-mean

flow interaction. A total of 124 averaging domains tiling the ACC was considered

for the analysis. The domains are located in the upper interior and are approxi-

mately 20◦ wide: each domain is associated with a 6-years bivariate time series,

representing the time evolution of the spatially averaged Eady growth rate and eddy

buoyancy flux. The two-dimensional stochastic oscillator of chapter 4, named the

simplified model, was initially fitted to the individual time-series from each of the

124 domains (the fit method is a conventional linear regression). In addition, I fitted

the simplified model to the time series obtained by combining the data associated

with selected regions of the ACC, as explained below. I have analysed the outcome

of the fits, looking in particular for signatures of predator-prey dynamics between

the two variables. My main results are:

1. The fit of the simplified model is successful for all the domains considered

in the analysis. However, only some of them show qualitative evidence of

predator-prey dynamics.
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2. When present, the evidence for the predator-prey dynamics is supplied by the

phase space diagrams and by the cross-correlation functions. In this case,

phase space trajectories are nearly closed orbits. The cross-correlation is ap-

proximately an odd function of the time lag. The orientation of the phase

space trajectories and the sign of the cross-correlation function are consistent

with AN14 dynamics.

3. The shape of the phase space orbits is more irregular than for the idealised

channel. However, comparison with synthetic realisations of the simplified

model reveals that this effect can be attributed to the comparatively short pe-

riod of time covered by SOSE.

4. The interaction between eddies and the mean flow could be weak, absent, or

depart from the AN14 model in individual domains that do not show quasi-

periodic orbits. 6-years synthetic experiments with the simplified model re-

veal that the phase space diagrams associated with both a weakly-coupled

oscillator and with a bivariate uncorrelated red noise process are compatible

with those constructed from SOSE data. This suggests that the individual

time-series are too short to differentiate between the possible cases.

5. The domains with phase space oscillations tend to cluster around the SAF,

where the zonal flow of the ACC is most intense. This underscores that the

predator-prey dynamics are not widespread in the ACC region, but physically

linked to the presence of strong jets.

6. Mathematically, the domains can be divided into two groups depending on

whether the eigenvalues of the dynamical matrix have nonzero imaginary part

(pointing to phase space oscillations) or not (no phase space oscillations).

7. The time series of the domains belonging to each group can be combined in

order to study the averaged dynamics of the two regions.

8. For the domains with complex eigenvalues, the phase space diagram and the

correlation functions are indicative of predator-prey dynamics. The phase

space diagram is smoother than for individual domains, and comparable with
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that of a 30-years long synthetic realisation of the simplified model. The

peaks of the cross-correlation function are weak, but statistically significant.

9. Evidence of AN14 dynamics emerges even when the time series associated

with domains with real eigenvalues are combined. In this case, though, the

peaks of the cross-correlation function stand barely clear of the null hypothe-

sis acceptance region, suggesting that, albeit present, the dynamical coupling

is weak for these domains.

10. The simplified model does not capture the details of the correlation functions

and marginal probability distribution functions accurately for the combined

domains with complex eigenvalues. Importantly, though, the overall quali-

tative patterns are well reproduced. The analysis of the residuals does not

reveal any obvious shortcoming of the simplified model.

11. The fitted dynamical parameters of the simplified model can be associated

with typical time scales by considering suitable approximations of the deter-

ministic equations. The time scales for the combined complex domains are

slightly longer than, but overall comparable with, those found in the case of

the idealised MITgcm configuration, and range from a few weeks to a couple

of months.

The results presented here corroborate the view that some of the important aspects

of eddy-mean flow interaction in a realistic representation of the Southern Ocean are

captured by a simple, two dimensional stochastic oscillator. Notably, they demon-

strate that the dynamics in the oceanic case are similar to those of the AN14 model

for the atmospheric storm track: eddies feed on the available potential energy stored

in the mean flow, and the dynamical coupling between the two variables generates

predator-prey cycles with typical time scales ranging from a few weeks to a cou-

ple of months. These time scales are comparable to those found in the case of the

idealised channel: the two models’s configurations are at opposite ends of the com-

plexity spectrum, suggesting that the simplified model contains the fundamental

ingredients necessary to describe the eddy-mean flow interaction. The results also
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highlight that the predator-prey dynamics are not widespread in the Southern Ocean

domain, but tend to cluster around the strongest jets, emphasising the importance

of regional dynamics in the ACC (Frenger et al., 2015, Rintoul, 2018). Overall,

this work shows that the dynamical analogy between the ACC and the tropospheric

jets (Thompson, 2008, Williams et al., 2007) can be exploited to enhance our un-

derstanding of the dynamics of mesoscale eddies, which, as explained in chapter

1, is a key ingredient to confidently predict the future evolution of the Southern

Ocean under climate change. Moreover, here and in chapter 4 I observed that phase

space diagrams with quasi-periodic orbits can be expressed by dissipative determin-

istic dynamics, whereas the preferential interpretation is that they are associated

with conservative dynamics. Thus, these results may contribute to the discussion

within the atmospheric community too, where the analysis of phase space diagram

is emerging as a valuable diagnostic tool (Yano et al., 2020).

A number of caveats apply: firstly, the simplified model captures the salient

qualitative traits of the dynamics well, but not so the quantitative details (for ex-

ample, the fit does not reproduce the structure of the correlation functions or of the

marginal probability distribution functions accurately). Partly, this may be due to

the short period of time covered by SOSE, as it is clear from section 5.4 that the

statistical indicators constructed from the 6-years time series are characterised by

high levels of noise. However, a similar quantitative mismatch between predicted

and diagnosed statistics was observed for the 30-years long time series of the ide-

alised channel, suggesting that more complex models such as, e.g. second order

auto-regressive processes, may be needed to achieve higher fit performances. The

drawback is that increasing the complexity of an empirical models further hinders

the physical interpretation of its parameters. Secondly, it is unclear to what ex-

tent the transient response of the eddy field to wind stress changes projects onto

these modes of interannual variability. The results presented here suggest that ed-

dies strengthen a few weeks after an intensification of the mean flow, which is not

incompatible with recent modelling results (Wilson et al., 2015), where no signif-

icant non-zero lag for the EKE response to wind stress changes at yearly scale.
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However, knowledge of how the parameters scale with the wind forcing is a pre-

condition to investigate how the time scales of natural variability relate to those

of the forced response by means of reduced-order mathematical models. As high-

lighted in chapter 4, a promising way forward is to derive a mathematical model of

higher complexity by successive approximations of the equations of motion (Kobras

et al., 2022), which naturally endows the model with scaling laws for its parameters.

Here, by fitting the simplified model to data from the MITgcm’s idealised channel

configuration (chapter 4) and from SOSE, the first steps were taken to show that

low-dimensional mathematical models based on a dynamical system approach can

help us deepen our understanding of the complex nature of eddy dynamics in the

Southern Ocean.

202



Chapter 6

Time-scales of forced variability in

the Southern Ocean

6.1 Introduction

The surface of the Southern Ocean has cooled (or warmed weakly) over the last

few decades (Fan et al., 2014). Concomitantly, the seasonal sea ice has expanded

(Parkinson, 2019). A number of hypotheses have been put forward to explain

the observed trends, including enhanced freshwater fluxes (Haumann et al., 2020),

Antarctic glacial melt (Rye et al., 2020), and natural variability (Polvani et al.,

2021).

A further possibility is that surface wind stress modulations may be responsible

for the observed changes. It is widely accepted that ozone depletion over Antarc-

tica has induced a strengthening of the Southern Hemisphere jet stream over recent

decades (Polvani et al., 2011). Furthermore, the trend may persist during the 21st

century due to increased greenhouse gases concentrations (Thompson et al., 2011).

Wind stress is one of the primary drivers of the ACC, therefore its intensification

could have a large impact on the Southern ocean circulation, temperature, salinity,
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and heat and carbon uptake rates, with consequences for global climate.

Considerable efforts have been devoted to investigate the equilibrium response

of the Southern Ocean to wind stress perturbations in the last 20 years, particularly

with the advent of eddy-resolving general circulation models. There is now gen-

eral consensus about the fact that the ACC circumpolar transport is only weakly

sensitive to wind changes (Munday et al., 2013): the additional energy supplied by

the stronger winds powers eddy motion rather than the zonal flow, a phenomenon

known as eddy saturation. Many studies also suggest that baroclinic eddies par-

tially compensate for wind-induced changes in the meridional overturning circula-

tion (Viebahn and Eden, 2010), although the exact amount of so-called eddy com-

pensation is not uniform across models.

The transient response of the Southern Ocean to wind stress perturbations is

likely endowed with time scales ranging from years to decades (Kostov et al., 2017),

and is thus relevant to the future evolution of the Southern Ocean and global climate:

however, it is less well understood than the equilibrium response. Notably, a study

by Ferreira et al. (2015) proposed that the transient adjustment comprises two time

scales, separately driven by different physical processes. The fast time scale is

dictated by anomalous northward Ekman transport of cold water: in this phase, the

surface of the Southern Ocean cools. The slow time scale, instead, is controlled by

anomalous upwelling of warm water from below the seasonal sea ice, which leads to

a surface warming. This explanation reconciles an apparent paradox: observations

reveal that SST decreases following an anomalous intensification of the winds on

interannual timescales, largely due to enhanced northward Ekman transport. On the

other hand, models tend to predict long term warming of the surface.

The study of Ferreira et al. (2015) hinges on the climate response function (CRF)

formalism of Marshall et al. (2014), where the response of a system to arbitrary time

modulations of a forcing field is computed from its response to a step change per-

turbation. Subsequent studies investigating the transient adjustment of the Southern

Ocean with the same technique, though, exposed a number of problems relative to
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the two-time scales mechanism. First, the time scales themselves are only loosely

constrained, and vary widely across models (Kostov et al., 2017). Second, histori-

cal simulations are unable to reconstruct the surface temperatures observed in past

decades accurately (Seviour et al., 2019).

Critically, though, the GCMs employed in these studies are eddy-parametrising

(most, but not all, belonging to the CMIP5 suite). It is well known that the equi-

librium response of eddy-parametrising models to wind stress changes is qualita-

tively different from that of eddy-resolving models (e.g. Hallberg and Gnanadesikan

(2006)), which prompts the questions of whether this is the case for the transient re-

sponse too. Only a handful of papers has addressed the issue so far (Doddridge

et al., 2019, Haumann et al., 2020): Doddridge et al. (2019), in particular, found

that eddy compensation prevents sustained upwelling of warm water into the mixed

layer in their model: as a result, the surface does not warm on the long term, which

is the kind of response expected for the real ocean based on observations (Seviour

et al., 2019).

In this chapter, I seek to further the current understanding of which processes

drive transient surface and interior temperature changes in an eddy-resolving gen-

eral circulation model following an abrupt wind stress perturbation. A second, com-

plementary goal is to characterise the important time scales of the adjustment. In

particular, I will investigate how the spin-up of baroclinic eddies affects the merid-

ional overturning circulation of the Southern Ocean, and thereby influences the sur-

face and subsurface temperature response. To this aim, I will diagnose and analyse

the components of the temperature budget: also, I will show that under appropriate

conditions the budget equations can be formulated so as to explicitly account for

the residual advection terms, which helps separate the role of eddy and mean flow

contributions.

The model I employ is an idealised channel configuration of the MITgcm at a

high horizontal resolution, whose reference state was discussed in chapter 3. The

transient response to the perturbation is studied by realising an ensemble of step
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change simulations independently branched from the reference state. In order to

gain insight on the final state of equilibrium, I also analyse a climatology of the

equilibrated channel subject to the wind perturbation.

The chapter is organised as follows: the numerical experiments with the ide-

alised channel configuration of the MITgcm are described in section 6.2. In section

6.3, I present and discuss the temperature budget equations. The equilibrated state

of the perturbed channel is studied in section 6.4.1. In section 6.4.2, I test the

temperature budget formalism for the reference state. The transient perturbation

experiments are investigated in section 6.4.3. I offer a summary and conclusions in

section 6.5.

6.2 Data

The response of the Southern Ocean to wind stress changes is investigated by per-

forming a suite of numerical experiments with the idealised channel configuration

of the MITgcm. Specifically, we consider three different states of the channel: (i) a

statistically equilibrated, unperturbed reference state, (ii) a statistically equilibrated

perturbed state, describing the final equilibrium attained after the wind stress pertur-

bation is applied, and (iii) an out-of-equilibrium state, which captures the transient

adjustment following the abrupt wind stress perturbation. The reference state, or

”control run”, is the configuration described in chapter 3, while the architecture of

the two perturbed experiments is briefly outlined below.

Equilibrated perturbation experiment

The equilibrated perturbation experiment consists in modifying the surface wind

stress parameter from τ0 = 0.1 N m−2 to τ0 = 0.3 N m−2, and the vertical eddy

viscosity coefficient from Av = 3.0 m2 sec−1 to Av = 3.3 m2 sec−1. The change in

the wind stress parameter is an idealised and mathematically convenient represen-
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tation of the observed recent wind trends over the Southern Ocean, as discussed in

the previous section and in chapter 1. The modulation in the vertical eddy viscosity

coefficient does not alter the physics of the channel significantly, and only serves

the purpose of stabilising the model’s numerics (a long-integration experiment with

the perturbed value of τ0 lead to numerical divergence of the model, likely due to

an intense and rare eddy event that violated the CFL condition. By modifying Av,

we changed the channel’s initial conditions so as to avoid the adverse eddy event:

this allows to carry out a sufficiently long integration and obtain an appropriate cli-

matology). The channel is spun up until a statistically equilibrated state is reached,

as diagnosed from mean kinetic energy. Due to the chaotic nature of the flow, the

precise choice of the initial condition is unimportant once statistical equilibrium is

attained (i.e. , the system loses memory of its initial state), as long as numerical

stability is guaranteed. We found that 15 years of integration at equilibrium provide

a sufficiently robust climatology.

Transient perturbation experiment

Similarly to the equilibrated perturbation experiment, the transient perturbation ex-

periment consists in modifying the surface wind stress and eddy viscosity coeffi-

cients instantaneously from τ0 = 0.1 N m−2 to τ0 = 0.3 N m−2, and from Av = 3.0

m2 sec−1 to Av = 3.3 m2 sec−1. Here, we focus on the transient response of the

system to the perturbation: in order to eliminate the dependency of individual tra-

jectories on the initial conditions, we perform an ensemble of simulations and take

ensemble averages, which approximates computing the expectation value on the

time dependent measure of the system (Lucarini, 2018). The ensemble members

are initialised at instants of time spaced by at least three years, so as to guarantee

that their trajectories are independent. We realised a total of 15 members for the first

three years following the wind stress perturbation, 6 of which include the diagnos-

tics needed to close the temperature budget (see section 6.3 below. We found that 6

members suffice to robustly capture the temperature evolution). 6 ensemble mem-

bers are run for an additional three years, thus covering a total of 6 years following
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the perturbation.

6.3 Methods

6.3.1 Closure of the temperature budget

One of the main goals of this chapter is to determine what drives surface and inte-

rior temperature changes following the instantaneous wind stress perturbation. The

temperature budget is a conservation equation that relates the time derivative of

temperature to various physical processes including advection, mixing, and buoy-

ancy fluxes. By closing the temperature budget, we are able to quantify exactly to

what extent each process contributes to the temperature tendency at a given time,

and at a given spatial location. Below, we briefly outline the equations that govern

the temperature budget, and detail how the budget components are diagnosed in the

idealised channel configuration.

Fundamental equations

We start from the temperature equation:

∂tT +∇ · (vT ) = S , (6.1)

where S represents source terms. Note that it is possible to obtain a budget equa-

tion with energy density units simply by rescaling by Cpρ0, where Cp is the specific

heat capacity of water. Given that we consider a single-component fluid (no salin-

ity) with a linear equation of state, equation (6.1) is the buoyancy equation (2.7)

scaled by a factor gα/ρ0. We are interested in the zonally-averaged temperature

response to wind changes, therefore we take zonal average of equation (6.1):

∂tT +∇ ·vT = S , (6.2)
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This is the equation we use to study the temperature budget. With a slight rear-

rangement, we can write:

∂tT =−∂yvT −∂zwT +S , (6.3)

which highlights that the temperature equation is a conservation equation. Our task

is to diagnose the various terms appearing in equation (6.3) and make sure that the

equality is actually satisfied in the idealised channel.

Budget diagnostics

The MITgcm employs complicated tracer advection and time-stepping numerical

schemes (see section 3.2.4), hence applying a finite difference scheme to the tem-

perature and velocity model output is not the simplest way to analyse the tempera-

ture budget. Instead, we take advantage of the fact that the MITgcm allows for the

budget terms, as appearing in equation (6.1), to be diagnosed individually. Below,

we will give the essential information relevant to our model configuration, and refer

the interested reader to Doddridge et al. (2019) for a more general discussion of the

methodology. The model diagnostics needed to close the temperature budget are:

TOTTTEND, ADVy TH, ADVr TH, TFLUX, DFrI TH, KPP gTH.

A few grid parameters are also necessary:

rA, drF, dyG

It is straightforward to relate the model diagnostics to the physical terms of equation

(6.1): the time derivative of temperature ∂tT , at a given time and at a given point

(x,y,z) on the tracer grid, is represented by the model as TOTTTEND(ix, iy, iz).

We have omitted the here unimportant time index for clarity of notation. It fol-

lows that the time derivative of zonal average temperature ∂tT is represented by

TOTTTEND(iy, iz), where the bar denotes average over the zonal index ix. The

advection terms are related to model diagnostics ADVy TH, ADVr TH by the fol-
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lowing equations:

∂y(vT )≈ (ADVy TH(ix, iy+1, iz)−ADVy TH(ix, iy, iz))/Vc(ix, iy, iz), (6.4)

and

∂z(wT )≈ (ADVr TH(ix, iy, iz)−ADVr TH(ix, iy, iz+1))/Vc(ix, iy, iz), (6.5)

where Vc is the cell volume:

Vc(ix, iy, iz) = rA(ix, iy) ·drF(iz). (6.6)

Here, rA is the cell’s horizontal area, and drF the cell’s thickness. By applying

zonal average to the right hand side of equations (6.4) and (6.5) we recover the

advection tendency of zonal-average temperature. The source terms represented by

S in equation (6.1) can be divided in temperature fluxes at the surface and mixing.

The surface flux at point (x,y,z) is given by TFLUX(ix, iy, iz)/Cpρ0drF(iz), where

TFLUX is non-zero at the surface only. The mixing term is controlled by the KPP

scheme and divides into the implicit vertical diffusive flux:

DFrI TH(ix, iy, iz)/Vc(ix, iy, iz) ,

and the non-local flux:

KPP gTH(ix, iy, iz)/Vc(ix, iy, iz) .

Although this is not an exhaustive list of all model diagnostics that are required to

close the temperature budget in the most general MITgcm configuration, it suffices

for our simplified setup.

Discrete equations

The model’s discrete representation of the zonal average temperature equation (6.3)

is thus:

TTEND = ADV h+ADV v+TFLUX+MIX, (6.7)
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where, in order to keep the notation simple, we omit the bar denoting zonal aver-

age and assume that all budget terms are zonally averaged in the following. Here,

TTEND is short for the zonally averaged temperature tendency TOTTTEND, ADV h

and ADV v are the zonally averaged horizontal and vertical advection terms respec-

tively (equations (6.4) and (6.5)), and MIX is the mixing term:

MIX = DFrI TH/Vc +KPP gTH/Vc. (6.8)

Equation (6.7) is one of the important building blocks for the analysis below.

6.3.2 Residual budget

Residual mean equations

The key advantage of the discrete temperature budget equation (6.7) is that it is an

exact equation (up to errors introduced by the model numerics). Its main drawback

is that, since it is the residual circulation that advects tracers in the meridional plane,

it would be desirable to know how the meridional and vertical residual advection

terms contribute to the temperature budget. Unfortunately, it is not possible to asso-

ciate the advection terms in equation (6.7) to the residual or Eulerian contributions

in a simple way. For example:

ADV h≈ ∂yvT = ∂y(vT )+∂yv′T ′, (6.9)

which shows that the horizontal advection includes contributions from both the

mean flow and the eddy flux. Rather than diagnosing the terms on the right hand

side of equation (6.9), and approximate it with a finite difference scheme, we for-

mulate the temperature budget equation directly in the residual framework. We

return to the zonal-average temperature equation (6.3), and note that its residual

mean equivalent is (see section 2.4.3):

∂tT =−∂y(vresT )−∂z(wresT )−∇ ·Fres{T}+S . (6.10)

TEM theory is formulated in such a way that, away from horizontal boundaries, the

divergence of the residual flux vanishes. Let us assume for the moment that we are
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interested in closing the temperature budget in the interior only. Then, the residual

temperature equation reads:

∂tT =−∂y(vresT )−∂z(wresT )+S . (6.11)

The discrete residual budget

Equation (6.11) is the TEM equivalent of equation (6.3), so that the advection terms

are now expressed in terms of the residual velocity, which provides a clean frame-

work to relate temperature changes to residual concepts like, for example, eddy

compensation. However, the terms on the right hand side need to be computed

explicitly. To this aim, we start by computing the residual streamfunction ψres as

detailed in chapter 3, and obtain vres and wres through formula (2.71). Next, we

interpolate the zonal average temperature twice to the y- and z- interfaces. The final

part is to represent the gradients by finite differencing:

ADV vres =−∂y(vresT )≈

≈−(vres(iy+1, iz)T v(iy+1, iz)− vres(iy, iz)T v(iy, iz))/dyG(iy, iz),

(6.12)

and:

ADV wres =−∂z(wresT )≈

≈−(wres(iy, iz)T w(iy, iz)−wres(iy, iz+1)T w(iy, iz+1))/drF(iy, iz),

(6.13)

where T v and T w represent the temperature field on y- and z- interfaces respectively,

and dyG is the spacing in the meridional direction between points on y-interfaces.

Here, we have approximated the meridional and vertical gradients with a sim-

ple, first-order finite difference formula, whereas the idealised channel employs the

more complicated Second Order Momentum scheme of Prather. This implies that,

even when the divergence of the residual flux vanishes, ADV vres and ADV wres

do not correspond perfectly to the advection terms actually used by the model to
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march its state forward. Thus, the discrete representation of equation (6.11):

TTEND = ADV vres+ADV wres+TFLUX+MIX, (6.14)

will not be an exact equation in general. Note also that equation (6.14) is only

valid away from horizontal boundaries: near the surface and the bottom large errors

are expected due to the fact that the residual flux is significantly different from zero,

which is an expression of the difficulties introduced by TEM theory in the treatment

of the boundary layers. Nevertheless, the residual temperature budget can be used

effectively in the interior, as illustrated in section 6.4.

6.3.3 The time integrated budget

Suppose that the model is in a statistically equilibrated state. Then, the time average

of zonal-mean temperature tendency is zero:

∂tT =
1
τ

∫
τ

0
dt∂tT (t) =

1
τ
(T (τ)−T (0)) = 0, (6.15)

for τ >> 1. The idea is simply that temperature variance must be bounded if the

state is statistically equilibrated, and bounded random temperature fluctuations can-

cel out in the time average. Note that the bar denotes time average here, and the

convention is that all budget variables are zonally averaged. In terms of the discrete

budget variables, this reads:

TTEND = ADV h+ADV v+TFLUX+MIX = 0 . (6.16)

The second equality holds strictly when the time interval upon which the time aver-

age is taken tends to infinity. In the control run, we take time average over a large

but finite time interval (18 years), therefore we rewrite the above as:

TTENDc
= ADV hc

+ADV vc
+TFLUXc

+MIXc
= ε, (6.17)

where ε ≈ 0 is a small residual due to the finite size of the sample and ·c denotes

a long time-average in the control run. Equivalently, using the residual framework

we can write:

TTENDc
= ADV vresc

+ADV wresc
+TFLUXc

+MIXc
= ε, (6.18)
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although in practice the ε term will differ in the two equations due to the fact that

the residual budget does not close exactly.

This picture is satisfactory for a statistically equilibrated state, and we will see

hands-on how it unfolds for the control run in section 6.4.2. If the model is not in a

statistically equilibrated state, however, time averages are not especially meaningful

and a formulation based on the equations above becomes of little relevance. Neither

it is particularly illuminating to look at the time evolution of the temperature ten-

dency budget components, as one usually reasons in terms of temperature changes

and not in terms of changes of its derivative. Then, the next logical step is to take

the time integral of the temperature tendency equation, from time 0 to t:

T (t) = T (0)+
∫ t

0
dsTTEND(s) . (6.19)

Here, we identify t = 0 with the time at which the wind step change is applied. If

we expand TTEND by means of equation (6.7), we obtain:

T (t) = T (0)+
∫ t

0
ds [ADV h(s)+ADV v(s)+TFLUX(s)+MIX(s)] , (6.20)

or, more compactly:

T (t) = T (0)+∑
i

∫ t

0
dsTBDGi(s) , (6.21)

where the summation index i runs on the right hand side terms of equation (6.7). A

similar equation holds for the residual budget, equation (6.14).

Rather than temperature itself, the object of study in perturbation experiments is

often the temperature anomaly with respect to the averaged control run state (Dod-

dridge et al., 2019, Ferreira et al., 2015, Kostov et al., 2017, Seviour et al., 2017):

T ′(t) = T (t)−T c
. (6.22)

Expressing the temperature budget equation (6.7) (or equation (6.14)) in terms of

the temperature anomaly gives:

T ′(t) = T (0)−T c
+∑

i

∫ t

0
dsTBDGi(s). (6.23)
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The final step is to re-arrange this equation so that the anomalies of the budget

components appear on the right hand side. To this aim, we exploit:

∑
i

TBDGi(s) = ∑
i

TBDG′i(s)+∑
i

TBDGi
c
= ∑

i
TBDG′i(s)+ ε , (6.24)

yielding:

T ′(t) = T (0)−T c
+∑

i

∫ t

0
dsTBDG′i(s)+ εt. (6.25)

where ε ≈ 0 is the small residual of the control run time-averaged temperature bud-

get. When ε is so small that can be neglected (for very long time averages in the

control run) the equation further simplifies to:

T ′(t) = T (0)−T c
+∑

i

∫ t

0
dsTBDG′i(s). (6.26)

Equation (6.25) is yet another representation of the temperature budget. We

will see in section 6.4.3 that it is especially convenient to study how advective and

mixing flux anomalies drive anomalous temperature changes. In particular, we can

single out the effect of a particular physical process on temperature anomaly by

defining:

T ′i (t) = T (0)−T c
+
∫ t

0
dsTBDG′i(s), (6.27)

where T ′i is the the temperature anomaly that would be observed assuming that all

the physical processes appearing in the temperature budget were unchanged with

respect to the control run averaged state except for TBDGi.

6.3.4 Summary of methods

The temperature budget is a powerful diagnostic tool which allows to study the

physical processes driving temperature changes at a given place and at a given time.

The temperature budget can be expressed in many different forms, but three equa-

tions will suffice to our goals: equations (6.7) and (6.14) tell us that the temperature

tendency (i.e., the time derivative of temperature) is the sum of several contributions

representing the individual effects of different physical processes, including advec-

tive fluxes, diffusive fluxes, and boundary effects. The difference between equation
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(6.7) and equation (6.14) is that in equation (6.7) the advective fluxes are obtained

from the usual zonal-average temperature equation (6.3), and therefore do not dif-

ferentiate between eddy and mean flow fluxes. Equation (6.14), on the other hand,

is based on the residual mean temperature equation (6.10), and (at the cost of a few

approximations that are not very accurate near the surface) expresses the advective

fluxes in terms of the residual circulation. Equations (6.7) and (6.14) are meaningful

in both a statistically equilibrated state and a transient, out-of-equilibrium state. In

the latter case, however, they can be complemented by equation (6.25), which de-

scribes how the aforementioned processes govern the time evolution of temperature

(or of temperature anomaly) rather than that of its time derivative.

6.4 Results

The presentation of our results is organised as follows: firstly, in section 6.4.1 we

will briefly survey the equilibrated state which the idealised channel attains after

the wind-stress perturbation is applied. Although the main focus of this work is

the transient response, the analysis of the perturbed channel at equilibrium pro-

vides ourselves with a general sense of how the final state of the channel looks like.

Secondly, we will study the closure of the temperature budget in the equilibrated

control run, section 6.4.2. This preliminary step is necessary because (i) the con-

trol run-averaged budget components appear in the anomalous temperature budget

for the perturbation experiments, equation (6.25), and (ii) it is desirable to test the

temperature budget technique in the simpler case of the control run before consid-

ering the more complicated perturbation experiment. Thirdly, patterns of transient

temperature and circulation changes are investigated in section 6.4.3. We conclude

in section 6.5.
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6.4.1 The equilibrated response

In this section, we briefly describe the physics of the statistically equilibrated ide-

alised channel subject to the wind stress perturbation. We follow the discussion of

section 3.3 (to which we refer for details), and we place a special emphasis in high-

lighting the differences between the equilibrated channel and the control run. As

usual, we begin with zonal-mean temperature.

Zonal-mean temperature

Figure 6.1 (left) shows time-mean, zonal-mean temperature for the perturbed chan-

nel at equilibrium (colours). The temperature range is unchanged with respect to the

control run. This is expected, as both the upper and the lower bounds are dictated

by the restoring condition at the northern boundary, which is the same in the two

experiments. The mean stratification in the top 1000 meters also shows little sen-

sitivity, with the associated period 2π/N changing from 46 min in the control run

to 49 min in the perturbed run. The mean depth of the mixed layer (dashed black

line) is slightly larger in the perturbed run than in the control run in the intermediate

and northern regions, while it is drastically deeper close to the southern boundary,

where the stratification is weak. The deepening of the mixed layer is likely driven

by increased wind stirring through the KPP scheme and is associated to the steepen-

ing of the mean isopycnals, which is apparent from the comparison with the control

run mean temperature isolines (black contours). The change in slope is particularly

marked in the central and southern parts of the domain, but becomes less significant

nearer the northern boundary, where temperature is relaxed to a prescribed stratifi-

cation profile. At intermediate latitudes and near the surface, isopycnal steepening

is associated with the disappearance of a region of weak surface meridional gradi-

ent found in the control run. Due to the fact that temperature decreases southward

and downward, the regions interested by the steepening of the isopycnals display

anomalous cooling, as illustrated in figure 6.1 (right). The cool anomaly is es-

pecially pronounced near the surface at around y = 750 km, where temperature
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Figure 6.1: Left: time-mean, zonal-mean temperature in the equilibrated channel.

The dashed black line marks the depth of the time-mean, zonal-mean mixed layer,

and black contours represent time-mean, zonal-mean temperature in the control

run. Right: time-mean, zonal-mean temperature anomaly (colours) and time-mean,

zonal-mean depth of the mixed layer (dashed black line).

decreases by as much as 1.44◦ C, and, interestingly, along a cool tongue that prop-

agates the surface anomaly equatorward and towards the interior. A second cold

anomaly tongue is found at greater depths, separated from the first one by a region

of weaker warm anomaly. We will see below that these patterns of temperature

anomaly are associated to modulations of the meridional circulation.

Zonal circulation

The time-mean, zonal-mean zonal component of velocity is shown in figure 6.2

(left). The zonal flow has a meridional structure comparable to that of the control

run but, predictably, is characterised by larger average values of the velocity. For a

more quantitative comparison, we have computed the barotropic flow, Ubt = 1136

Sv, and the baroclinic flow, Ubc = 102 Sv: these values should be contrasted with

those for the control run, U (c)
bt = 433 Sv and U (c)

bc = 88 Sv respectively (section

3.3.3).

With a factor 2.6 increase, the barotropic transport nearly triples from the con-

trol run to the equilibrated perturbed run. The barotropic transport is dominated
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Figure 6.2: Left: time-mean, zonal-mean zonal velocity. Right: zonal momentum

balance. The continuous black line shows the meridional profile of the time-mean,

zonal-mean zonal bottom velocity, while the dashed blue line shows the theoretical

prediction τw(y)/ρ0rb.

by the large flow at the bottom which, according to theory, scales linearly with the

wind stress, as demonstrated by figure 6.2 (right). Therefore, the large increase in

the barotropic flow reflects the threefold increase in the wind forcing. By compar-

ison, the baroclinic transport increases by a modest 15%. This is because Ubc is

controlled, through the thermal wind relation, by the slope of the isopycnals. The

large scale structure of the isopycnals, however, is in turn constrained by the restor-

ing conditions at the northern boundary (Abernathey et al., 2011), implying that the

channel is close to a state of eddy saturation (i.e., that baroclinic transport depends

weakly on surface wind stress).

Thermal wind

The equilibrated channel is in the low Rossby number regime (formula (2.10) with

U ≈ 0.3 gives Ro≈ 3 ·10−4−10−3 ) and, similarly to the control run, geostrophic

scaling is expected to hold. The thermal wind relation combines the geostrophic

and hydrostatic approximations, and stipulates that the vertical shear of the zonal

velocity is controlled by the meridional gradient of buoyancy. As in section 3.3.6,

we have tested the thermal wind relation by comparing both sides of equation (3.23),

figure 6.3 (left), and of equation (3.24), figure 6.3 (right). The qualitative agreement
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Figure 6.3: Test of the thermal wind relation. Left: time-mean, zonal-mean verti-

cal shear of zonal velocity (colours), and the corresponding prediction from ther-

mal wind given by the right hand side of equation (3.23) (black contours). Right:

time-mean, zonal-mean baroclinic zonal velocity (colours), and the corresponding

prediction from thermal wind given by the right hand side of equation (3.24) (black

contours).

is satisfactory, and we conclude that geostrophic scaling applies to the perturbed

channel at equilibrium.

Meridional circulation

Figure 6.4 (left) shows the time-mean Eulerian streamfunction for the perturbed

channel at equilibrium. The structure of the Eulerian circulation in the meridional

plane is identical to that of the control run, see also the anomaly field in figure 6.4

(right), and in good agreement with the theoretical prediction of equation (2.136)

(black contours. The theoretical streamfunction is parametrised so that it scales

linearly to zero within the surface and bottom frictional layers). The magnitude of

the circulation is different in the two experiments though, with ψ at y = 200 km

(depth is unimportant as long as the value is taken in the interior) ranging from 1.12

Sv in the control run to 3.34 Sv in the equilibrated channel. This three-fold increase

neatly reflects the linear dependency of ψ on surface wind stress, equation (2.136).
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Figure 6.4: Left: time-mean Eulerian streamfunction (colours). Black contours

represent the theoretical prediction from equation (2.136) (we assume that ψ goes

linearly to zero in the frictional layers). Right: time-mean Eulerian streamfunction

anomaly.

The modulations of the residual streamfunctions are more nuanced. Figure 6.5

shows the residual streamfunction in isopycnal coordinates: similarly to the control

run (panel (a)), in the perturbation experiment (panel (b)) we observe that contours

are largely horizontal away from the surface and northern diabatic layers (the dashed

black line marks the time-mean, zonal-mean sea surface temperature and thus rep-

resents an estimate of the mean location of the surface diabatic layer), which is an

expression of the fact that the residual circulation advects tracers along isopycnals in

the interior. Diabatic exchanges at the fluid’s boundaries support a cross-isopycnal

flow and allow for closure of the circulation.

The residual circulation is again partitioned in three separate units (negative

lower cell, intermediate positive cell, and negative upper cell), with positive values

of the streamfunction associated with clock-wise circulation, and vice versa. Al-

though it is not immediately straightforward to interpreter changes in the location,

extent, and magnitude of the individual cells by analysing the residual circulation in

isopycnal coordinates, we note that the positive anomaly in the temperature range

1−3 ◦C, figure 6.5 (c), is associated with the intermediate cell crossing the diabatic

layer (Abernathey et al., 2011). In other words, while the positive intermediate cell

attains its maximum value within the surface diabatic layer in the control run, the

same cell resides entirely in the interior in the perturbed channel. Structural changes
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Figure 6.5: Time-mean residual streamfunction in isopycnal coordinates (colours)

for the control run (a) and the equilibrated perturbation experiment (b). The dashed

black line represents the control and equilibrated time-mean, zonal-mean sea sur-

face temperature, respectively. (c): Equilibrated residual streamfunction anomaly.

The dashed black line is as in (b).

in the residual circulation are more transparent when the streamfunction is mapped

to height coordinates, figure 6.6.

Changes in the intermediate cell are accompanied by a deepening of the negative

lower cell (which corresponds to the upwelling branch of the meridional circulation

moving at greater depths) and of the negative upper cell, see also the anomaly field

in figure 6.6 (c). The response of the meridional circulation’s magnitude is complex:

following Abernathey et al. (2011), we quantify the magnitude of the intermediate

and lower cells by taking the maximum and minimum of the residual streamfunction

at y = 1800 km and below z = −500 m depth respectively (the precise meridional

location where the extrema are taken is not important because ψres is nearly con-

stant along isopycnals below the surface layer). We find that the intermediate cell is

weakly sensitive to the wind stress perturbation, with the maximum of ψres increas-

ing from approximately 0.4 Sv in the control run to approximately 0.8 Sv in the

perturbed channel, corresponding to a factor 2 increase. This should be contrasted

with the three-fold increase in the magnitude of the Eulerian circulation, discussed

above. Note, however, that the intermediate cell attains its maximum within the

boundary layer in the control run, with a value of approximately 0.8 Sv (see figure

3.8 (right)): the transport increase associated with the intermediate cell vanishes if

computed against this value. The lower cell is practically insensitive to the pertur-
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Figure 6.6: Time-mean residual streamfunction in height coordinates (colours) for

the control run (a) and the equilibrated perturbation experiment (b). Black contours

represent the control and equilibrated time-mean, zonal-mean temperature profiles,

respectively. (c): Equilibrated time-mean residual streamfunction anomaly in height

coordinates (colours). Black contours represent the equilibrated time-mean, zonal-

mean temperature anomaly profiles.

Figure 6.7: Left: time-mean eddy-induced streamfunction. Right: time-mean eddy-

induced streamfunction anomaly.

bation too, with the minimum of ψres changing from −0.4 Sv in the control run to

−0.3 Sv in the equilibrated channel. These results are in broad agreement with the

findings of Abernathey et al. (2011). Overall, we find that the model is close to a

state of eddy compensation: the magnitude of the residual overturning cells is less

sensitive to the wind stress change than the Eulerian circulation because baroclinic

eddies spin up to counter-balance the anomalous wind-induced circulation. This

is reflected in the absolute increase of the eddy-induced circulation, illustrated in

figure 6.7.

It is remarkable that although changes in the intensity of individual cells are
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moderate, local streamfunction anomalies can take on much larger values (figure

6.6 (c)), which tend to be associated with the spatial repositioning of the cells rather

than with the modulation of their strength, as described above. These changes

are important to the equilibrated structure of zonal-mean temperature, as is clear

from comparison of the time-mean residual streamfunction anomaly (figure 6.6 (c);

colours) with the time-mean, zonal-mean temperature anomaly (contours). In par-

ticular, the upper cold anomaly tongue propagating equatorward and towards the

interior from the surface appears related to the negative near-surface anomaly of the

residual streamfunction, while the lower cold anomaly tongue seems associated to

the deepening of the lower cell of the MOC. We conclude that studying changes in

the magnitude of the residual streamfunction only is not sufficient to fully under-

stand temperature changes in the channel.

We will explore the relation between (transient) streamfunction and temperature

anomalies further in section 6.4.3 by taking advantage of the temperature budget

framework. Specifically, we will average the temperature tendency and the tempera-

ture budget components over four rectangular domains on the meridional plane, and,

for each domain, we will determine which processes drive the observed temperature

changes. The averaging domains are shown in figure 6.8 (continuous black lines),

together with the perturbed channel’s equilibrium temperature anomaly (colours).

The domains are chosen so as study the physical mechanisms driving, respectively:

1. The cold interior anomaly, poleward of the main ACC flow

2. The warm interior anomaly, equatorward of the main ACC flow

3. The cold surface anomaly at intermediate latitudes

4. The cold subsurface anomaly at intermediate latitudes

Note that domains 1 and 2 are co-located with the regions of anomalous wind-

induced upwelling and downwelling respectively, see figure 6.4 (right). The surface

domains 3 and 4 are positioned where the surface response is largest.
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Figure 6.8: Left: Equilibrated time-mean, zonal-mean temperature anomaly

(colours), and the rectangular averaging domains (continuous black lines). Right: a

close-up of the surface layer.

6.4.2 Temperature budget in the control run

Before turning our attention to the transient adjustment of the idealised channel to

the wind stress perturbation, we demonstrate the closure of the temperature budget

through equations (6.7) and (6.14) in the simpler case of the control run. In partic-

ular, we average the temperature tendency and the temperature budget components

spatially over the four domains shown in figure 6.8 and in time over 18 years of

simulation, and assess whether the sum of the individual components equals the

average temperature tendency.

The time-mean, zonal-mean temperature budget for domain 1, computed through

equation (6.7), is shown in figure 6.9 (a). Only the advection terms contribute to the

budget, which is not surprising since the domain is located in the interior, where

KPP mixing and the surface temperature flux vanish. The two advection terms have

opposite sign, with horizontal advection warming the domain on average, and ver-

tical advection cooling it. Their sum is nearly zero, matching the diagnosed time

averaged temperature exactly (we expect zero or small time averaged temperature

tendency because the control run is a statistically equilibrated state of the idealised

channel). The temperature budget for the same domain, but computed according to

the residual equation (6.14), is shown in figure 6.9 (b). Once again, it is only the ad-

vection terms that contribute to the budget non negligibly: their sum is nearly zero,
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and matches the diagnosed temperature tendency. Interestingly, though, their sign

is reversed compared to the previous case, with the residual horizontal advection

term acting to cool the domain and the vertical term acting to warm it. Domain 1 is

partially co-located with the downwelling limb of the intermediate cell, see figure

3.9 (left): therefore, the horizontal residual velocity advects on average cold water

equatorward, and the vertical residual velocity advects warm surface water down-

ward into the domain. The implied tendencies are in agreement with figure 6.9 (b).

The advection terms in equation (6.7), on the other hand, include both eddy and

mean flow contributions, so that their physical interpretation through figure 6.9 (a)

is less straightforward than in the case of the residual budget.

The ordinary and residual time-mean temperature budgets for domain 2 are

shown in figures 6.9 (c) and 6.9 (d) respectively. Domain 2 is in the interior and

partially co-located with the upwelling branch of the MOC, see figure 3.9 (left):

as a consequence, the outcome of the temperature budgets is symmetrical to that

of domain 1, which is located in a region of downwelling. Specifically, only the

advection terms contribute to the temperature tendency, with residual vertical trans-

port acting to cool the domain and horizontal transport acting to warm it. The sign

of the advection terms is reversed with respect to the ordinary budget equation. For

both figure 6.9 (c) and figure 6.9 (d), the sum of the advection terms is nearly zero

(note the different scale on the vertical axis), and matches the diagnosed tendency

well (although a small error is noticeable for the residual budget: this is a mani-

festation of the fact that the residual budget is not an exact equation, as discussed

above).

The ordinary and residual temperature budgets for the surface domain 3 are

shown in figures 6.10 (a) and (b). In this case, all terms in the budget contribute to

the temperature tendency. Domain 3 is located in a region where the buoyancy flux

at the surface is into the ocean (see for example figure 3.2), therefore the temper-

ature flux term acts to warm the domain. This tendency is nearly compensated by

the mixing term, which acts to transfer heat downward and cool the surface. The

temperature flux and mixing terms do not change between the ordinary and residual
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Figure 6.9: Time-mean, zonal-mean temperature budget for domains 1 (top) and

2 (bottom) in the control run. The budget components are computed according to

equations (6.7) (left) and (6.14) (right). The bar plots also show the sum of the

budget components (Sum) and the diagnosed temperature tendency (TTEND): the

two terms are equal if the budget closes exactly. The time mean is computed over a

period of 18 years.
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formulations of the temperature budget (note the different scale on the vertical axis).

The horizontal and vertical advection terms are in near balance with each other and,

in the case of the ordinary budget of figure 6.10 (a), cancel out exactly with the mix-

ing and temperature flux terms. Therefore, the total sum of the budget components

is zero, in perfect agreement with the diagnosed temperature tendency. Note that

the temperature tendency contributed by the individual budget components is two

orders of magnitude larger than that for the interior domains of figure 6.9. In the

case of the residual budget of figure 6.10 (b), instead, the advection terms do not

cancel with the mixing and temperature flux terms: the sum of the budget compo-

nents yields an overall tendency of about −2 ·10−3 ◦C/day, whereas the diagnosed

tendency is zero. The discrepancy between the predicted and diagnosed tenden-

cies may appear modest in comparison with the magnitude of the individual budget

terms, but the error is large as it corresponds to a spurious tendency of about 0.7
◦C/year. This underscores that the residual budget, as formulated in equation (6.14),

cannot be employed effectively near the surface layer. As discussed in section 6.3,

the limitation arises from the fact that the residual flux is not zero near the horizon-

tal boundaries. Parametrising the quasi-Stokes streamfunction within the boundary

layer may provide a pathway to circumvent the problem (see the discussion in sec-

tion 2.4.3), but to test the idea is beyond the scope of this work.

Finally, the ordinary and residual temperature budgets for the sub-surface do-

main 4 are shown in figures 6.10 (c) and (d) respectively. The temperature flux

term is non-zero only at the surface, and thus does not contribute here. The mixing

term is positive which, consistently with the discussion above, implies that mix-

ing acts to transfer heat from the surface (where it is injected in the system by the

fixed buoyancy flux) to the base of the mixed layer at the considered latitudes. At

leading order, the warming tendency driven by mixing is balanced by the horizontal

advection term in the ordinary budget, with the vertical advection also contribut-

ing negatively to the total tendency: the sum of the components is approximately

zero, and captures the diagnosed tendency exactly. Similarly to the case of domain

3, instead, the residual temperature budget is not closed: the components sum to
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Figure 6.10: Time-mean, zonal-mean temperature budget for domains 3 (top) and

4 (bottom) in the control run. The budget components are computed according to

equations (6.7) (left) and (6.14) (right). The bar plots also show the sum of the

budget components (Sum) and the diagnosed temperature tendency (TTEND): the

two terms are equal if the budget closes exactly. The time mean is computed over a

period of 18 years.

approximately 5 ·10−4 ◦C/day, whereas the diagnosed tendency is at least on order

of magnitude smaller. The error is smaller than in the case of the surface layer but

still sizeable (about 0.18 ◦C/year), implying that the residual budget is not suited to

study temperature changes in the sub-surface domain.

Overall, we have shown that the ordinary temperature budget based on equation

(6.7) is satisfied exactly for the control run within all of the four averaging domains

considered. The residual budget of equation (6.14) is easier to interpreter physically,

but is only closed to a satisfactory degree of approximation for the interior domains

1 and 2. For this reason, in the next section we will analyse temperature changes

in the surface layers based on the ordinary formulation of the temperature budget

only.
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6.4.3 The transient response

Temperature response

Figure 6.11 shows the ensemble-mean, zonal-mean temperature anomaly at differ-

ent instants of time after the perturbation. The ensemble average is computed over

15 members up until month 36, and over 6 members after that time. A rolling av-

erage with a window of six months was applied to all data for smoothing purposes.

The initial temperature response (t = 1 month) is weak, negative, and largely con-

fined to the surface layers. This surface negative anomaly is a robust feature of

Southern Ocean models (Abernathey et al., 2011, Doddridge et al., 2019, Ferreira

et al., 2015), and is usually associated to anomalous meridional Ekman transport

(i.e., to the strong, wind-induced meridional velocity perturbation acting on the

background gradient of surface temperature, see below). One year after the pertur-

bation (t = 12 months), the negative surface anomaly has considerably intensified

and propagated downward, beneath the surface layer. A meridional dipole has also

developed, with weak cold anomalies appearing in the southern regions of the do-

main, and weak warm anomalies in the northern ones. The meridional dipole is as-

sociated to anomalous patterns of upwelling and downwelling, as discussed below.

The meridional structure of temperature anomaly at subsequent times (t = 24−72

months) is similar, with the cold surface anomaly continuing to propagate down-

ward along anomalous mean residual streamlines (shown in black contours). Six

years after the perturbation (t = 72 months), temperature appears approximately

equilibrated in the top layers (compare with the equilibrated temperature response

of figure 6.1). At greater depths, the deep cold anomaly tongue descried in section

6.4.1 has not fully developed, and the interior layers are thus still in a state of slow

transient evolution.
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Figure 6.11: Ensemble-mean, zonal-mean temperature anomaly at various times af-

ter the wind stress perturbation is applied. Black contours represent the correspond-

ing ensemble-mean residual streamfunction anomaly. A six-months rolling average

is applied to all data for smoothing. The ensemble average is computed over 15

members up until month 36 after the perturbation. After that time, 6 members only

are considered.
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Circulation response

Temperature changes are related to circulation changes. The ensemble-mean resid-

ual streamfunction anomaly at various instants of time after the perturbation is

shown in figure 6.12 (see also the black contours in figure 6.11). A six-months

rolling average was applied to all data for smoothing purposes. The initial response

of the residual streamfunction (t = 1 month) is conspicuous and resembles the Eu-

lerian circulation anomaly, shown in figure 6.4 (right): streamlines are vertical in

the interior, while Ekman stresses in the surface and bottom Ekman layers allow for

closure of the meridional circulation. Within the surface layer, the anomalous Eule-

rian circulation is northward. The anomalous velocity acts on a positive meridional

gradient of surface temperature, therefore the initial velocity anomaly advects cold

water equatorward (Ferreira et al., 2015). Deep water is upwelled to the surface

in the southern flank of the ACC, and surface water is downwelled in the northern

flank. The anomalous Eulerian vertical velocity acts on a positive vertical gradient

of temperature, therefore this mechanism produces cooling to the south and warm-

ing to the north (figure 6.11). In the presence of a temperature inversion, the same

mechanism can result in subsurface warming in the southern flank of the ACC,

which corresponds to the slow time-scale mechanism proposed by Ferreira et al.

(2015). A southward return flow located in the bottom layer closes the meridional

circulation.

Overall, the initial response of the residual streamfunction is dominated by the

so-called Deacon cell pattern, discussed at some length in sections 3.3.8 and 6.4.1.

By year 1 after the perturbation, however, the Deacon pattern is distorted by the ap-

pearance of a near-surface negative anomaly which, as illustrated in section 6.4.1,

is associated to the downward propagation of the intermediate positive cell. Due to

ψres = ψ +ψ∗, equation (2.73), the departure from the Eulerian anomaly is also as-

sociated with the invigoration of baroclinic eddies. As noted in the previous section,

negative surface temperature anomalies appear to propagate along the correspond-

ing anomalous residual streamlines, figure 6.11.
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Similarly to the temperature response, the residual circulation in the top layers

equilibrates rather quickly (compare with the equilibrated residual streamfunction

anomaly, shown in figure 6.6 and in black contours in figure 6.12), while the tran-

sient adjustment takes significantly longer in the interior: 6 years after the perturba-

tion, the deep circulation is not fully equilibrated. We can estimate the adjustment

time scales of the large scale circulation by averaging the residual, Eulerian, and

eddy-induced streamfunctions over a large domain located at the centre of the chan-

nel (similarly to Doddridge et al. (2019)), specifically between y = 250 km and

y = 1750 km, and between 500 m and 2000 m depth. The evolution of the cor-

responding ensemble average time series is shown in figure 6.13. The response

of the Eulerian circulation (continuous green line) is fast, and in approximately 6

months ψ attains its equilibrium value (dashed green line). On the contrary, the

eddy-induced circulation (continuous red line) does not change significantly in the

first few months after the perturbation is applied, and ψ∗ only nears its equilibrium

value (dashed red line) after approximately 3 years. This eddy relaxation time-scale

is consistent with the findings of Doddridge et al. (2019). The response of ψres

mirrors that of ψ and ψ∗: thus, the initial adjustment is dominated by the Eulerian

response, and it is only at a later stage that baroclinic eddies activate to counter-

act the wind induced circulation, and the residual streamfunction equilibrates. A

remarkable difference between the evolution of the large-scale circulation metrics

in our model and that in Doddridge et al. (2019) is that here the initial residual

streamfunction anomaly does not exceed the Eulerian anomaly, which is instead the

case in Doddridge et al. (2019). Our findings are more aligned with the physical

understanding of baroclinic instability as a process that competes against the wind-

induced circulation by flattening isopycnals. On the contrary, ψres > ψ seems to

imply that eddies act to reinforce the Eulerian circulation at least initially. We note

though that in our experiments too the residual anomaly can exceed the Eulerian

anomaly locally (not shown), an interesting but unclear feature which we do not

investigate further.

Large-scale measures of circulation such as that of figure 6.13 provide a general
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sense for the typical time scales of adjustment but, importantly, they do not capture

the variations of the equilibration rate with depth illustrated above. Moreover, we

have seen that it is local circulation anomalies (possibly corresponding to relocation

of the meridional circulation cells) that are important to temperature changes, and

not modulations in the overall magnitude of the large-scale circulation. For this

reason, in the next section we study the relationship between the local temperature

and circulation response by means of the spatially averaged temperature budget.

Temperature budget

We can establish a physical link between temperature and circulation changes by

means of the temperature budget technique of section 6.3. Specifically, we consider

the four rectangular domains shown in figure 6.8, and for each domain we compute

the ensemble average temperature tendency anomaly and the temperature anomaly

evolution. The domains are located in the regions of cold (domain 1) and warm (do-

main 2) equilibrium interior anomaly, and in the region of largest surface (domain 3)

and sub-surface (domain 4) cold equilibrium anomaly: we seek to determine which

physical processes drive the observed temperature response within the domains, and

to characterise the important time scales of the adjustment. For the interior domains

1 and 2, we consider both the ordinary (equation (6.7)) and the residual (equation

(6.14)) budget closure formula. The ordinary formula only, however, is considered

for the surface and sub-surface domains 3 and 4, as discussed in section 6.4.2. En-

semble averages are computed over six ensemble members, and anomalies of the

budget components are with respect to the control run time-averaged values, see

section 6.4.2. Finally, the time evolution of temperature anomaly and of its compo-

nents are computed according to formula (6.25) and (6.27) respectively.

Figure 6.14 shows the temperature budget averaged over domain 1 for the first

three years following the wind stress perturbation. Figures 6.14 (a) and (c) show

the ensemble-mean diagnosed temperature tendency anomaly (red dots) and the

ensemble-mean tendency components anomaly (see legend). The sum of the bud-
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Figure 6.12: Ensemble-mean residual streamfunction anomaly at various times af-

ter the wind stress perturbation is applied. Black contours represent the equilibrated

residual streamfunction anomaly. A six-months rolling average is applied to all per-

turbation experiment data for smoothing. The ensemble average is computed over

15 members up until month 36 after the perturbation. After that time, 6 members

only are considered.

235



Figure 6.13: Time evolution of the Eulerian (dotted green line), residual (dotted

blue line), and eddy (dotted red line) streamfunction anomalies following the wind-

stress perturbation averaged between y = [250,1750] km and z = [−500,−2000]

m. The dashed lines mark the corresponding values for the equilibrated run, and

the shaded intervals mark the ensemble spread as quantified by the 84.1 and 15.9

percentiles. The ensemble average is computed over 15 members up until month 36

after the perturbation. After that time, 6 members only are considered.
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get components, which in the case of a perfectly closed budget coincides with the

diagnosed tendency, is shown by the starred blue line. The tendency components

are computed according to the ordinary formula (6.7) in panel (a), and to the resid-

ual formula (6.14) in panel (c). A six-months rolling average is applied to all data

for smoothing purposes. Figures 6.14 (b) and (d) show instead the ensemble-mean,

time-integrated temperature tendency anomaly (i.e., the temperature anomaly time

evolution, continuous red line), and the ensemble-mean, time-integrated anomalous

budget components (see legend), computed according to formula (6.25) for, respec-

tively, the ordinary and residual budget equations. The sum of the components is

shown by blue dots and the continuous blue line. Integral quantities are smoother

by construction, so no rolling average is applied in this case.

The anomalous temperature tendency is negative at all times and quasi-steady

in the period considered, see figures 6.14 (a) and (c). Accordingly, the anomalous

temperature evolution is approximately a straight line, panels (b) and (d), implying

that domain 1 cools linearly with time. Three years after the perturbation is applied,

the temperature anomaly has not achieved its equilibrium value yet, see figure 6.15

(a), implying that the time scale of adjustment for domain 1 is larger than three

years, and cannot be estimated directly with our experiment. However, by assuming

that temperature decreases linearly with constant cooling rate until the equilibrium

value is attained, and estimating an average tendency of −0.025 ◦C/month (see

panel (c)), we obtain a relaxation time scale of about 11 years. Note however that

this may be an underestimate if the linear approximation is only valid initially, and

the full adjustment follows an exponential decay (as, anticipating on our results, is

the case for domains 3 and 4, see figures 6.17 and 6.18 respectively).

The diagnosed temperature tendency is captured by the ordinary temperature

budget perfectly, panel (a), confirming that equation (6.7) is exact down to numeri-

cal precision. The residual budget is also in excellent agreement with the diagnosed

temperature tendency, see panel (c), which implies that TEM theory assumptions

are well satisfied in the interior of the idealised channel. In both the standard and

the residual picture, mixing and temperature flux anomalies play no role, and ver-
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tical advection contributes negatively to the temperature budget (which is expected

as the domain is located in a region of anomalous upwelling of cold, deep water).

Note also that, in both cases, vertical advection is the leading term of the budget: the

physical interpretation of the balance, however, is simpler in the residual framework

of figures 6.14 (c) and (d).

To see why, consider the ordinary temperature balance of figures 6.14 (a) and

(b) first. Domain 1 is located in the region of interior upwelling: since the initial

circulation adjustment is dominated by the Deacon cell anomaly, we would expect

vertical advection driven by Ekman suction to be the only non-zero term of the bud-

get. Moreover, as the streamlines of the equilibrium eddy-induced streamfunction

are approximately vertical in the region considered (see figure 6.7), we may also

imagine that the spin up of baroclinic eddies should manifest itself mainly as a mod-

ulation of the vertical advection term, with horizontal advection playing a marginal

role. Figure 6.14 (a), however, shows that ADV v is not a very good approximation

for the total temperature tendency after the first few months. This is because, some-

what counter-intuitively, the horizontal advection term is non-negligible for most

of the simulation. The issue is apparent in figure 6.14 (b) too, where the temper-

ature evolution is not well approximated by the time-integrated vertical advection

tendency (note the different scales on the vertical axis). Furthermore, it is not imme-

diately obvious how to interpreter the term corresponding to horizontal advection

physically.

Thus, while the ordinary temperature budget is a legitimate expression of the

temperature equation, it is not a particularly effective one when it comes down to

decoupling the contributions from mean flow and eddy fluxes. The problem, though,

may be relaxed by considering the residual budget of figures 6.14 (c) and (d) instead.

Here, vertical transport is dominant for the first year of simulation. Accordingly, the

residual vertical advection tendency (dashed black line) approximately coincides

with the total tendency (red circles). We may give an order of magnitude estimate

for ADV wres based on the residual formula wres = wek +w∗. Assuming that the

response is initially dominated by Ekman transport in the interior of the ocean,
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the anomalous temperature tendency equation for the initial stages of the evolution

simplifies to:

∂tT ′(t) =−w′ek∂zT
c
, (6.28)

where T ′ is the zonal-mean temperature anomaly, T c is the control run time-mean,

zonal-mean temperature, and w′ek is the vertical Ekman velocity anomaly. Us-

ing the diagnosed values w′ek ≈ 2.4 · 10−6 m/s and ∂zT
c ≈ 0.62 ◦C/km we obtain

−w′ek∂zT
c≈−1.3 ·10−4 ◦C/day, in broad agreement with the initial tendency shown

in figure 6.14 (c). The subsequent modulations of the residual vertical term (and,

two years after the wind step-change, of the residual horizontal term) are a mani-

festation of the spin up of baroclinic eddies, which act to disrupt the Deacon cell

anomaly. Their presence does not strongly affect the nature of the balance, though,

and we conclude that upwelling of cold water is the main driver of the temperature

response in domain 1.

Figure 6.16 shows the same variables of figure 6.14, but for domain 2 in figure

6.8. The anomalous temperature tendency is positive during the first 16 months

of simulation (as expected from the fact that domain 2 is located in a region of

downward Ekman pumping), and weakly negative afterwards, panels (a) and (c):

contrary to the previous case, thus, the temperature tendency is not in quasi-steady

conditions. Consequently, the temperature anomaly evolution is non monotonic,

panels (b) and (d): in fact, we observe that the anomaly overshoots its equilibrium

value in about three and a half months, figure 6.15 (b), and it is only after the 16

months turnover time that temperature starts to fall back towards the equilibrium.

The ordinary and residual frameworks convey markedly different physical pictures

as to what processes drive the diagnosed tendency: in the ordinary framework, the

tendency contribution from vertical advection (panel (a), dashed black line) is nearly

constant and positive. Accordingly, the associated temperature evolution in panel

(c) is a linear warming. Panel (a) shows that this warming tendency is partially com-

pensated by horizontal advection, most likely dominated by eddy fluxes: therefore,

the cross-over time of 16 months corresponds to the spin-up time of the horizontal

advection term in the ordinary framework.
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Figure 6.14: Spatially averaged temperature budget for domain 1 in figure 6.8. (a)

and (c): temperature tendency (red dots) and anomalous budget components ob-

tained with the ordinary and residual budget equations respectively. (b) and (d):

time-integrated anomalous temperature tendency (continuous red line) and time-

integrated anomalous budget components obtained with the ordinary and residual

budget equations respectively. The red-shaded intervals mark the ensemble spread

of the temperature anomaly, as quantified by the 84.1 and 15.9 percentiles. Note the

different scale between the time-integrated total temperature (left hand side axis)

and its components (right hand side axis) in panel (b). All quantities are ensemble

mean, and all tendency fields are smoothed with a six-months rolling average.

240



a

dc

b

Figure 6.15: Time evolution of temperature anomaly (red dots and continuous red

line) and equilibrium value of the temperature anomaly (dashed-dotted red line) for

(a): domain 1, (b): domain 2, (c): domain 3, and (d): domain 4 in figure 6.8. The

equilibrium temperature anomaly is averaged over the 15-years long climatology of

the equilibrated perturbed channel.
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As in the previous case, the physical interpretation of the temperature anomaly

evolution is simpler in the residual framework, panels (b) and (d). Here, horizontal

residual advection plays a minor role, contributing a weak positive tendency in the

early stages of the adjustment only. The dominant contribution comes from vertical

residual advection, and the cross-over time of about 16 months coincides with the

time it takes for ADV wres to change sign. The initial positive tendency, and the

corresponding warming, are associated to residual downwelling acting upon a pos-

itive vertical gradient of temperature: assuming again that the initial temperature

tendency is given by ∂tT ′(t) = −w′ek∂zT
c, and estimating w′ek ≈ −3.5 · 10−6 m/s

and ∂zT
c ≈ 2.8 ◦C/km, we obtain −w′ek∂zT

c ≈ 8.5 · 10−4 ◦C/day, in broad agree-

ment with figure 6.16 (c). The Ekman tendency is larger than for domain 1 because

the ocean is more stratified close to the northern boundary.

It is more complicated to interpreter the subsequent migration to negative ten-

dency values: assuming that the vertical temperature gradient is still dominated

by the background temperature (i.e., we neglect non-linear effects in the interior),

then the relative cooling observed after month 16 must be associated to residual

upwelling of cold water. Inspection of figure 6.11 (t = 24,36, black contours) con-

firms that the initial Deacon cell pattern is distorted in such a way that the dominant

residual vertical flow is directed upward in domain 2, although it is not clear whether

this effect would be observed with more ensemble members. It is remarkable that,

for the time scales considered here, when eddies eventually intensify after the wind-

stress perturbation their presence does not manifest itself as a simple damping effect

on the initial Eulerian-like tendency, but in a more complicated form depending on

the detailed structure of the meridional circulation’s cells (rather than simply on

their overall strength).

The analysis of the temperature budget for domain 3 is shown in figure 6.17:

as explained in section 6.4.2, we only study the ordinary budget for the surface do-

mains. Figure 6.17 (left) shows the anomalous tendency components: the initial

diagnosed temperature tendency is negative and large (note the difference in scale

between figure 6.17 (left) and figure 6.14 (a)). The tendency anomaly fades to ap-
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Figure 6.16: Same as in figure 6.14, but for domain 2 in figure 6.8.

proximately zero in a comparatively short time (about 20 months), suggesting that

the surface tends to equilibrate faster than the interior of the channel. The time

evolution of the temperature anomaly reflects that of the anomalous tendency: ac-

cordingly, domain 2 cools during the first 20 months following the perturbation,

figure 6.17 (right), while its average temperature is rather stable afterwards. The

process of adjustment approximately follows an exponential profile: however, after

36 months of simulation the temperature anomaly has not quite attained its equilib-

rium value (see figure 6.15 (c)), implying that the final part of the adjustment is not

captured by our perturbation experiment.

In spite of the fact that the initial diagnosed temperature tendency is negative, the

largest individual contribution to the temperature budget is positive, and comes from

anomalous vertical advection, figure 6.17 (left). The negative contributions, which

initially dominate over the vertical advection term, are supplied by anomalous hor-

izontal advection and vertical mixing. There is no contribution from anomalous

air-sea fluxes because the buoyancy flux at the surface is fixed, namely, it does not
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change from the control run to the perturbation experiment. Note that the negative

mixing tendency, associated with cooling of domain 3, is larger in absolute value

than the diagnosed tendency at all times: the implication is that the net effect of the

advection terms is to warm the domain. The anomalous northward Ekman transport,

however, acts on a positive meridional gradient of background temperature, and is

therefore associated with a cooling tendency too. This suggests that the warming

tendency necessary to close the budget must be supplied by eddies: we stress though

that the horizontal and vertical advection terms include contributions from both the

mean flow and the eddy fluxes in the ordinary framework, and is thus not straight-

forward to interpreter them physically in isolation as we did for the domains in

the interior. The negative tendency from mixing and from horizontal advection are

quasi-steady in the period of time considered, see figure 6.17 (left): therefore, the

associated anomalous temperature evolution corresponds in both cases to a linear

cooling, figure 6.17 (right). Interestingly, this implies that the temperature tendency

anomaly equilibrates through increased warming via anomalous vertical advection,

which is likely associated to the local spin-up of eddies counteracting the wind-

induced circulation. Overall, the situation is rather different from that depicted in

Ferreira et al. (2015), where the surface budget was characterised by a two-way

balance between anomalous fluxes and horizontal advection, see for example their

figure 8. Doddridge et al. (2019) primarily attribute the surface cold anomaly to

anomalous horizontal advection too. The fixed versus interactive boundary condi-

tion is likely an important separating factor between our results and those of the

cited studies.

Finally, figure 6.18 shows the temperature budget for domain 4 in figure 6.8. The

initial diagnosed temperature tendency anomaly is negative, figure 6.18 (left), and,

similarly to the surface case, it stabilises in approximately 20 months. Accordingly,

the temperature anomaly evolution follows an approximately exponential decay,

with typical time scale of about 20 months, see figure 6.18 (right). Three years into

the simulation, however, the anomaly has not attained the equilibrium value (figure

6.15 (d)), therefore in the subsurface layer too three years of simulation are not
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Figure 6.17: Same as in figure 6.14, but for domain 3 in figure 6.8. The ordinary

temperature budget only is shown.

sufficient to capture the full temperature response. The main difference between

this case and that of domain 3 is that the mixing term is now associated with a

warming tendency, i.e., heat is extracted from the surface and communicated to the

sub-surface layers via enhanced stirring. The result is in agreement with Doddridge

et al. (2019), although in our case anomalous subsurface mixing does not actually

induce subsurface warming. This is because horizontal advection acts to cool the

domain, is the largest term in the balance, and dominates over the warming tendency

driven by mixing and vertical advection. Similarly to the previous case, horizontal

advection includes the contribution from northward Ekman transport of cold water,

acting to cool domain 3. The adjustment of the horizontal and vertical advection

terms, which eventually leads to an approximate stabilisation of the temperature

tendency in about twenty months, is associated with the spin-up of eddies, which

induces a re-organisation of the flow and counteracts the initial Eulerian response.

6.5 Summary and conclusions

In this chapter, I have studied the transient response of the Southern Ocean to an

abrupt wind-stress perturbation with an eddy-resolving, idealised channel configu-

ration of the MITgcm.
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Figure 6.18: Same as in figure 6.14, but for domain 4 in figure 6.8. The ordinary

temperature budget only is shown.

Ozone depletion over Antarctica acted to strengthen the winds driving the ACC

over the last few decades. The transient response of the Southern Ocean to wind

stress modulations may extend for up to tens of years (Kostov et al., 2017), and is

thus key to understand how the climate of the Southern Ocean will evolve in the

near future. A hypothesis under scrutiny is that trends in the Southern Hemisphere

jet stream may explain the recently observed surface cooling in the region poleward

of the ACC. However, most of the studies addressing the issue so far relied on nu-

merical simulations performed with eddy-parametrising general circulation models,

leaving the response of eddy-resolving models largely unexplored.

Here, I have investigated the time scales and the physical mechanisms driving

the temperature and circulation response of the eddy-resolving, idealised channel

configuration of the MITgcm. Specifically, I have run and analysed an ensemble

of wind step-change experiments, where the forcing modulation corresponds to an

instantaneous threefold increase of the wind stress parameter. The transient ensem-

ble experiment was complemented by a climatology of the perturbed channel in the

statistically equilibrated state attained following the wind stress perturbation. In or-

der to determine exactly which processes drive temperature changes in the channel,

I have diagnosed and studied the terms of the temperature budget equation. Also,

I have presented an alternative formulation of the temperature budget which, in the

interior of the ocean, allows to isolate the residual circulation’s contributions to the

temperature tendency equation. My results are:
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1. The idealised channel is close to a state of complete eddy saturation, i.e., the

equilibrium ACC circumpolar transport increases only modestly despite the

large increase in wind stress. This result largely depends on the choice of

the boundary conditions, and aligns well with previous research (Abernathey

et al., 2011).

2. The channel is also close to a state of eddy compensation, as the equilibrium

intensity of the MOC cells is weakly sensitive to the wind forcing. However,

the structure of the residual cells on the meridional plane shows significant

changes: notably, the intermediate cell re-positions beneath the diabatic layer.

3. The surface of the perturbed channel at equilibrium is cooler than in the ref-

erence state at all latitudes, with a difference locally larger than 1 ◦C. In the

interior, a cold anomaly is found south of the main flow of the ACC, whereas

a warm anomaly tongue can be found north of it.

4. The patterns of equilibrium temperature anomaly closely resemble those of

residual circulation anomaly, suggesting that the two are related.

5. The residual budget technique is tested for the reference state of the chan-

nel within four averaging domains located in the regions of largest interior,

surface and near-surface equilibrium temperature anomaly (there are two do-

mains in the interior, capturing both the cold and the warm anomaly). The

method allows to close the budget to a satisfactory accuracy in the interior,

but fails near the surface. This is expected because the residual flux is non-

zero in the vicinity of horizontal boundaries.

6. The transient adjustment of the residual circulation is initially dominated by

the wind-induced anomaly: this pattern of anomalous circulation is reminis-

cent of the Deacon cell, with upwelling to the south and downwelling to the

north. The circulation is closed by anomalous northward and southward Ek-

man flow in the surface and bottom frictional layers, respectively.

7. The typical time scales of circulation response are estimated by averaging the

Eulerian, residual, and eddy-induced streamfunctions over a large domain.
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The Eulerian circulation reacts very quickly to the wind stress perturbation,

and is nearly equilibrated after 6 months. The adjustment of the eddy-induced

circulation is considerably slower, and takes approximately 3 years. This re-

sult is in broad agreement with previous research (Meredith and Hogg, 2006)

and, through ψres = ψ +ψ∗, explains why the initial response of the residual

streamfunction is dominated by the Eulerian anomaly.

8. Locally, though, the typical time scales of adjustment depart from the large

scale average significantly. Both the temperature and circulation anomalies

equilibrate faster close to the surface than in the interior. Large-scale mea-

sures of circulation response fail to capture this difference, and are unable

to account for structural changes of the MOC cells that involve variations of

their spatial location, but not of their intensity.

9. The cold and warm interior anomalies are primarily driven by, respectively,

anomalous Ekman upwelling and downwelling acting on a positive vertical

gradient of background temperature. However, the temperature evolution in

the warm anomaly region north of the ACC is non-monotonic in the period

of time analysed. This is attributed to a faster spin-up of eddies, which dis-

tort the initial Deacon cell pattern and prevent sustained Ekman pumping of

warm surface water into the domain. Three years into the simulation, the

temperature anomaly in the interior domains is far from the final equilibrium

values.

10. The adjustment of the surface domain is fast, and the temperature anomaly

approximately stabilises to its equilibrium value in about 20 months. Sur-

prisingly, the cooling trend is supported primarily by enhanced vertical mix-

ing, although horizontal advection also contributes negatively to the budget.

Moreover, the cooling tendency due to vertical mixing is larger in absolute

value than the total temperature tendency. Thus, despite the fact that north-

ward Ekman transport acts to cool the domain, the combined effect of the ad-

vection terms is to warm the domain. This suggests that eddies spin-up very

quickly to counteract the wind-induced anomaly within the surface domain.
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11. The adjustment of the sub-surface domain is similar to the surface case, but

the tendency components contribute to the balance in a different way. Here,

the dominant term is horizontal advection, which acts to cool the domain. The

mixing term is positive, implying that heat is transferred from the surface to

the sub-surface layers through enhanced wind stirring.

Overall, the results presented in this chapter suggest that the spatial rearrange-

ment of the MOC cells can have a large impact on the transient temperature evo-

lution even if the channel is nearly eddy-compensated. In addition, the analysis

above confirms that anomalous northward Ekman transport is critical to the adjust-

ment of the surface layers: however, it also highlights that vertical mixing plays at

least an equally important role. Doddridge et al. (2019) found that vertical mixing

is the dominant term of the balance immediately below the mixed layer. Here, I

have demonstrated that it is key to the surface response as well. Finally, the surface

budget indicates that close to the surface the spin-up of eddies may be so fast as

to be influential in the very initial stages of the adjustment. Indeed, given that the

combined effect of the advection terms is to warm the domain, and that a purely

Eulerian circulation would instead act to cool it, eddies must supply the warming

tendency necessary to close the budget. Thus, the results presented here suggest that

baroclinic eddies can not only alter the slow time-scale mechanism of adjustment,

as found by Doddridge et al. (2019), but may even play an important role during the

fast phase of the response.

A number of caveats apply. The idealised channel is configured based on sev-

eral simplifying assumptions that do not apply to the real Southern Ocean. These

include: flat bottom topography (and thus no standing meanders), no salinity, a

linear equation of state, idealised mechanical and thermodynamical forcing. For

this reason, the results presented here are not intended to provide a quantitative

estimate of the real ocean. Nevertheless, the climatology of the idealised channel

reproduces many aspects of the observed Southern Ocean accurately (chapter 3),

which supports the view that this analysis is relevant to more comprehensive model

configurations and to the real ocean. Importantly, the idealised channel does not
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include sea ice, and thus does not capture the region of temperature inversion below

the seasonal sea ice. Therefore, I could not test whether upwelling of warm water

from the temperature inversion induces surface warming within the transient pertur-

bation experiments. The residual formulation of the temperature budget facilitates

the physical interpretation of temperature changes. However, it does not allow to

separate between the mean flow and eddy parts of the residual circulation explicitly

and, critically, it is not valid near the surface because TEM theory breaks down at

horizontal boundaries. A target for future work is thus to improve on the methods

introduced in this manuscript by diagnosing the right hand side of equation (6.9), i.e.

eddy and Ekman fluxes, directly. Finally, the fixed flow boundary conditions and

the restoring sponge layer at the northern boundary impose severe constraints on the

response of the channel to the wind stress perturbation. For example, by control-

ling the large scale slope of the isopycnals they also limit the circumpolar transport

sensibility (via the thermal wind relation). This work informs the interpretation of

higher-complexity general circulation model configurations for the Southern Ocean.

A natural next step would be to evaluate the relative importance of vertical mixing,

eddy fluxes, and mean flow contributions to the surface response of eddy-resolving

models endowed with a region of temperature inversion. Determining how interac-

tive versus fixed flow thermodynamical boundary conditions influence the process

of transient adjustment is a further goal going forward.

250



Chapter 7

Conclusions

In this Thesis, I have investigated the role of mesoscale eddies in setting the time

scales of natural and forced variability in the Southern Ocean.

Mesoscale eddies are generated primarily via baroclinic instability, and con-

tribute to the dynamical balance of the Southern Ocean at leading order. Impor-

tantly, they communicate surface zonal momentum downwards, transfer heat pole-

wards and, by countering the wind-induced steepening of the isopycnals, shape

the residual circulation on the meridional plane: it is the residual MOC that ad-

vects tracers in the Southern Ocean, and provides a quasi-adiabatic upwelling path-

way for deep water to reach the surface. Mesoscale eddies are also key to under-

stand the response of the Southern Ocean to modulations of surface radiative (e.g.,

ozone thickness), thermodynamical (freshwater fluxes), or mechanical (wind stress)

forcing, with numerous studies showing that coarse-resolution, eddy-parametrising

GCMs disagree significantly with eddy-resolving models about the amplitude and

the structure of the circulation response.

It is an open problem whether the observed decadal trends in the strength of the

Southern Hemisphere jet stream can explain the observed weak surface warming

(compared e.g. to the Arctic region. Poleward of the ACC, the surface of the South-

ern Ocean has actually cooled in recent decades) and induce sustained temperature,
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sea-ice, and heat and carbon absorption anomalies in the Southern Ocean. The

question is compelling, as the Southern Ocean is an important regulator of global

climate, and a prominent sink of anthropogenic heat and carbon. Nevertheless, evi-

dence suggesting that changes in the ocean circulation can drive the observed trends

continues to accrue (Doddridge et al., 2019, Gruber et al., 2019).

The current understanding of the equilibrated circulation response to wind stress

changes hinges on the concepts of eddy saturation and eddy compensation. Eddy

saturation refers to the weak (but not necessarily zero) sensitivity of the ACC cir-

cumpolar transport to wind changes. The definition of eddy compensation is less

unambiguous, but the term is generally used to indicate that the MOC of the South-

ern Ocean scales sub-linearly with wind stress. While there is general consensus

about the real Southern Ocean being close to a state of eddy saturation, the response

of the residual overturning circulation varies significantly across models.

The transient adjustment of the Southern Ocean to wind stress changes is en-

dowed with time scales ranging from years to decades (according to, for example,

GCMs included in the CMIP5 suite), and is thus as important as the equilibrated

response to understand current and future changes in the Antarctic region. Notably,

Ferreira et al. (2015) proposed that the recently observed surface cooling could be

driven by a fast phase of response similar to the dominant mode of SAM-SST in-

terannual variability, with anomalous Ekman transport advecting cold water north-

wards and cooling the ACC region. However, sustained upwelling of warm water

from below the seasonal sea ice could drive a slow phase of response, leading to

long-term surface warming. This mechanism was tested by a number of studies,

with contrasting results. Models, in particular, disagree about (i) whether or not

the response of the Southern Ocean is actually endowed with a long-term warming

phase, (ii) the time scales of the response, and (iii) whether or not the proposed

mechanism can explain the observed trends. Crucially, though, most of the GCMs

employed in these works parametrise eddies, with only a handful (Doddridge et al.,

2019, Haumann et al., 2020) having enough resolution to explicitly resolve them.

Doddridge et al. (2019), in particular, found that the residual overturning circulation
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compensates almost perfectly in approximately three years in their eddy-resolving

model, potentially quenching the long-time scale warming phase of the response.

Thus, our ability to understand the present state of the Southern Ocean and to

accurately predict its future evolution depends critically on the full comprehension

of the physics of baroclinic eddies. Yet, the mechanisms that govern their interac-

tion with the mean flow, and set the time scales and structure of natural and forced

variability, are not fully understood. In this Thesis, I sought to put these mecha-

nisms into better focus primarily by running and analysing numerical simulations

of the Southern Ocean with an idealised, eddy-resolving channel configuration of

the MITgcm.

The approach I pursued is twofold and, accordingly, the original material pre-

sented in this Thesis divides in two parts. In the first part (chapters 4 and 5), I

concentrated on developing a simple mathematical model of eddy-mean flow inter-

action, which I tested against data from an idealised MITgcm configuration and a

realistic state estimate of the Southern Ocean, the SOSE. In the second part (chap-

ter 6), I studied the transient response of the idealised channel to an abrupt increase

in wind stress, with an emphasis on the relationship between circulation and tem-

perature changes. Since most of the analysis presented here is based on numerical

simulations run with the idealised channel configuration of the MITgcm, the re-

sults of this Thesis are not intended to provide a quantitative description of the real

Southern Ocean (although, whenever possible, I checked that the physics of the

idealised channel agrees with observational estimates). The upside is that the ide-

alised configuration allows to investigate the fundamental mechanisms governing

the dynamics and time scales of mesoscale eddies with a minimum of complicating

factors. Moreover, the model can be run at a high horizontal resolution, at a com-

paratively moderate computational cost: the first Rossby radius of deformation is

resolved throughout the domain, and the idealised channel develops a vigorous eddy

field with no need for an eddy parametrisation scheme. Therefore, although the

simplified assumptions made to compile the idealised channel configuration hinder

direct comparison with observations, the dynamics discussed here can be expected
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to be qualitatively relevant for higher-complexity GCM configurations and for the

real ocean.

The mathematical model of unforced eddy-mean flow variability discussed in

chapters 4 and 5 is inspired by the work of Ambaum and Novak (2014) (AN14)

on atmospheric storm track variability, and motivated by the dynamical analogy be-

tween the ACC and the tropospheric jet stream (Thompson, 2008, Williams et al.,

2007). AN14 and subsequent studies showed that the interaction between eddies

and the mean flow in the atmosphere is characterised by predator-prey oscillatory

dynamics, similar to those typical of population growth problems. In essence, ed-

dies (the predator) feed on the available potential energy stored in the mean flow

(the prey), and tend to intensify following an anomalous steepening of the isopyc-

nals. Note that the slope of the isopycnal is a common measure of mean flow: when

the isopycnals are steeper, more eddies are released by baroclinic instability. Con-

versely, when eddies are anomalously weak baroclinicity is replenished by diabatic

forcing (or wind stress at the surface in the oceanic case), and the isopycnal slope

increases. Here, I demonstrated that a similar approach can be applied to the natural

oceanic equivalent of the atmospheric jet stream, the ACC.

Firstly, I identified a pair of spatially-averaged dynamical variables in order to

represent the intensity of the mean flow and of the eddies: following previous stud-

ies (Novak et al., 2017), I employed the Eady growth rate and the eddy buoyancy

flux, respectively. The two variables were averaged in a domain of meridional width

comparable with that of an individual ACC jet, located in the upper interior and at

intermediate latitudes, in the case of the idealised channel (chapter 4). The results,

however, are not critically dependant on the precise choice of the averaging domain.

In the case of SOSE (chapter 5), I considered a higher number of domains tiling the

ACC region in order to capture regional differences in the dynamics. Also, stream-

wise averages were preferred to zonal averages to better capture the meandering

nature of the ACC flow in SOSE. The bivariate time series thus obtained were char-

acterised by means of a small number of statistical indicators: specifically, the cor-

relation functions, kernel-averaged phase space diagrams, and marginal probability
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distribution functions were computed. Construction of the kernel-averaged phase

space trajectories, in particular, helps mitigate the effect of random fluctuations on

the evolution of the state variables, and thus allows one to probe the dynamical

coupling between the two variables even in the presence of noise (Novak et al.,

2017). Despite the fact that the raw time series fluctuate randomly (and thus do not

define oscillators in the common deterministic sense), the phase space trajectories

associated with both the idealised channel and, locally, SOSE, are quasi periodic

orbits. The sense of circulation of the orbits is such that a complete circuit can be

interpreted as a full predator-prey life cycle, suggesting that the mean flow and the

eddies mutually interact according to the oscillatory picture of AN14. This con-

clusion was corroborated by examination of the cross-correlation functions which,

in both cases, are approximately odd functions of the time lag with statistically

significant peaks. The structure of the cross-correlation agrees with the physical

interpretation of the dynamics. In the case of SOSE, not all the spatial domains I

considered display evidence of predator-prey oscillations. Those which do, how-

ever, tend to cluster around the Sub Antarctic Front of the ACC, where the flow is

strongest, lending further support to the idea that the oscillatory dynamics are phys-

ically linked to the presence of intense zonal jets. Since SOSE’s time series are only

6-years long, I combined the data from these regions to reduce the level of noise in

the time series and facilitate their analysis.

The hypothesis was tested that the bivariate time series can be described by

a two-dimensional dynamical system with predator-prey dynamics. To this aim,

I adapted the original model of AN14 by linearising it (so as to retain analytical

tractability) and by including a stochastic forcing term, which allows to account for

the data’s fluctuations explicitly. The model so obtained (named simplified model)

is a stochastic linear damped oscillator or, in the discrete, a bivariate auto-regressive

process of order one. The simplified model was fitted to the data with the Yule-

Walker method (chapter 4) and with ordinary linear regression (chapter 5). The fit

was successful in both cases, and the simplified model could accurately predict the

overall structure of the statistical indicators considered (although not all the quan-
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titative details, indicating that more complex models may achieve better results).

The best fit parameters were interpreted in terms of typical time scales, which were

found to range from a few weeks to a couple of months. In particular, the analysis

revealed that eddies intensify following a steepening of the isopycnals with a lag of

15− 20 days. This time scale describes the natural variability of eddies and mean

flow, and does not necessarily coincide with the time scales of forced response to

wind stress changes (see comments below). Importantly, the time scales associated

to the best fit parameters were comparable in the case of the idealised channel and

of SOSE. Given the stark difference between the two models’ configurations, there

is reason to conclude that the simplified model robustly captures a fundamental

mechanism of natural eddy-mean flow variability. Thus, although both GCMs rep-

resent complex, three-dimensional geophysical system and comprise a high number

of degrees of freedom, the first part of this thesis demonstrates that as few as two

stochastic oscillatory equations are needed to effectively capture the important dy-

namics of eddy-mean flow interaction. Finally, the conclusions drawn in chapters 4

and 5 were supported by testing the fit procedure against synthetic realisations of the

simplified model. The numerical experiments confirmed that quasi-periodic phase

space trajectories can emerge even when the underlying dynamics are dissipative,

due to the combined effect of stochastic and deterministic contributions. This re-

sult is relevant to the atmospheric case as well, where the phase space diagram is

emerging as a powerful diagnostic tool (Yano et al., 2020).

The mechanisms and time scales of forced response to wind stress changes are

investigated in the second part of this Thesis’ original material, chapter 6. Specif-

ically, the chapter is dedicated to the analysis of wind step-change experiments

performed with the idealised channel configuration of the MITgcm. Due to its rel-

evance to the Antarctic and global climate in future decades, the transient response

of the Southern Ocean to wind stress changes has been extensively investigated.

Abrupt perturbation experiments, in particular, have attracted considerable atten-

tion because they are conceptually simple, and linear theory allows to extend the

results to the case of arbitrary time modulations of the forcing. Critically, though,
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only a handful of the studies addressing the problem so far employed eddy-resolving

models, which leaves the effect of baroclinic eddies on the mechanisms of adjust-

ments largely unexplored. Here, I sought to further the current understanding of

the subject by realising an ensemble of wind step-change experiments with the

eddy-resolving idealised channel, where the perturbation consists in an instanta-

neous threefold increase of the wind stress parameter τ0. The ensemble members

are branched from the unperturbed, equilibrated state of the channel (named con-

trol run), and the initial conditions were chosen so as to reasonably guarantee that

members evolve independently. Although the time scales of equilibration of ide-

alised models are generally faster than those of comprehensive GCMs (compare for

example Seviour et al. (2016) and Doddridge et al. (2019)), six years are not suffi-

cient for the idealised channel to reach a statistically equilibrated state, particularly

in the interior. For this reason, I complemented the ensemble perturbation experi-

ments with a climatology obtained by running a single realisation of the idealised

channel subject to the wind perturbation to equilibrium.

The first step of the analysis consisted in the study of the equilibrated state of

the perturbed channel. I found that the baroclinic circumpolar transport and the

strength of the MOC are weakly dependant on wind stress, i.e. that the chan-

nel is close to a state of both eddy saturation and eddy compensation: this result

agrees well with what found by previous studies adopting a similar GCM config-

uration (Abernathey et al., 2011). Importantly though, I also observed that, while

the volume transport associated with the individual MOC cells does not change

significantly, their structure and spatial arrangement varies greatly with respect to

the control run. This means that local residual streamfunction anomalies are large

even though the channel is in a nearly compensated state. A notable example is the

intermediate, clockwise rotating cell, which is essentially confined to the surface

diabatic layer in the control run, but reaches well below it in the perturbed state.

The implication is that the overall strength of the MOC does not characterise the

perturbed state completely, and structural changes should also be considered. The

conclusion is corroborated upon scrutiny of temperature anomalies on the merid-
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ional plane, which organise in a way that closely resembles the patterns of residual

circulation changes. In particular, I found that: (i) the surface of the ocean cools

at all latitudes, (ii) the interior cools in the southern part of the domain, and (iii) a

warm tongue can be found in the interior northern region, approximately co-located

with the downward-shifted intermediated cell of the MOC. Note that the idealised

channel does not include sea ice, therefore upwelling of warm water from below the

seasonal ice plays no role here.

To study the relationship between circulation and temperature changes in the

ensemble experiment, I have diagnosed the terms of the temperature budget, which

allows to determine exactly which processes drive the temperature tendency at a

specified location. In addition, I have also shown how an approximate tempera-

ture budget can be formulated which expresses the advection tendency in terms of

the residual circulation, thereby greatly facilitating the physical interpretation of

the results. This method was found to work remarkably well in the ocean interior,

but not close to the surface (as expected from limitations inherent to TEM theory).

Analysis of the temperature budget revealed that temperature changes in the interior

are largely driven by anomalous vertical flows, specifically, upwelling in the south-

ern part of the domain (associated with cooling) and downwelling in the northern

part (warming). This initial pattern of anomalous circulation resembles the Deacon

cell and is consistent with the results of previous modelling studies (Ferreira et al.,

2015). Interestingly, the cooling rate remains more or less constant in the southern

half of the domain three years after the perturbation, whereas an inversion of ten-

dency is observed in the northern region one year and a half into the simulation.

The difference is attributed to regional variations in the time scales of circulation

response, i.e. the residual streamfunction adjusts faster close to the northern bound-

ary of the domain. While this is probably at least partly due to the specifics of the

boundary conditions, the result underscores the importance of local modulations

of the circulation response: by way of comparison, a domain-scale average of the

residual streamfunction equilibrates in approximately three year, which does not

reflect neither of the time scales of temperature adjustments in the two interior re-
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gions considered. Here, the three-years equilibration time scale corresponds to the

spin-up of the eddy field following the wind stress perturbation. This estimate is

in overall agreement with results from previous research (Doddridge et al., 2019,

Meredith and Hogg, 2006). The wind-induced circulation, instead, reacts on much

faster scales to the perturbation (six months approximately), so that the initial cir-

culation response is dominated by the Deacon cell pattern, as noted above. Finally,

the cold surface anomaly was found to be primarily driven by enhanced vertical

mixing, with horizontal advection (associated with anomalous Ekman transport)

supplementing the cooling tendency. It equilibrates in about 20 months due to a

re-organisation of the circulation linked with the kick-off of baroclinic eddies. This

initial surface cooling response to the wind perturbation is a robust feature of GCMs

(Ferreira et al., 2015, Kostov et al., 2017), but is normally attributed to anomalous

northward Ekman transport only. The results presented in this Thesis, instead, sug-

gest that vertical mixing plays a greater role than previously thought, which could

inform experiments run with more realistic model configurations.

Overall, the two parts of this Thesis’s results complement each other and, col-

lectively, provide a characterisation of the time scales of both the natural and forced

variability of mesoscale eddies in the Southern Ocean. The results, naturally, come

with a number of caveats, including:

1. The idealised channel configuration is based on simplifying assumptions that

are not valid in the real ocean, and many important processes are not repre-

sented. Therefore, the time scales I identified in this manuscript cannot be

expected to closely reflect those of the actual Southern Ocean.

2. The fixed-flow buoyancy boundary conditions at the surface and the restoring

sponge layer at the northern boundary, in particular, impose severe constraints

on the response of the channel to wind stress changes (for example, they

enforce a state of near eddy saturation by fixing the large-scale isopycnal

slope).

3. The idealised channel does not include sea ice, and thus the sub-surface region
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of temperature inversion. Therefore, it is not possible to test whether or not

upwelling of warm subsurface water into the mixed layer induces long-term

warming

4. The simplified model captures the qualitative statistical features of the data

well, but not all the quantitative details. Furthermore, the six-years time series

of SOSE are too noisy to be fitted regionally, which means that part of the

information regarding regional variations of the dynamics is lost when the

data were aggregated.

5. The dependency of the simplified model’s coefficients on the physical param-

eters is not known, which limits one’s ability to use the simplified model to

predict the time scales of the forced response to wind changes.

This work, I believe, leaves a number of interesting options open, which in some

cases connect directly with the limitations listed above. Firstly, the simplified model

expands the framework introduced by AN14 to study eddy-mean flow variability in

the atmosphere. A natural follow-up of this study would thus be to fit the sim-

plified model to atmospheric storm-track data, and compare the results with the

oceanic case. A major (dynamical) difference between the ACC system and the

tropospheric jet stream is their scale separation (i.e. the ratio between the typical

spatial scale of the zonal flow and the Rossby radius of deformation is larger in

the ocean, Williams et al. (2007)) and it is intriguing to ask whether the simplified

model has enough structure to capture it. A second, attractive research avenue is

that it may be possible to explain the forced time scales of the transient response

to wind changes based on those of natural variability. This idea has provenance in

climate science (Gritsun and Branstator, 2007), and is theoretically rooted in the

fluctuation-dissipation theorem (Breul et al., 2022). In the context of this Thesis,

this would mean attempting to explain the time scales of eddy response observed

in the ensemble perturbation experiments based on the dynamics of the simplified

model: for example, by running a simplified version of the step change experiments

with the simplified model itself. The major obstacle in this sense is that the depen-

dency of the simplified model’s coefficients on physical parameters such as wind
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stress is not known (point 5 above), which makes it difficult to represent the applied

perturbation within the simplified model in a consistent way. There are at least two

options to circumvent the problem which can be envisioned at this stage. The first is

to infer the simplified model’s scaling by running sensitivity experiments with the

idealised channel, i.e., by fitting the simplified model to equilibrated states of the

channel with different values of the wind stress parameter. This approach has the

merit of simplicity, but is computationally expensive and may lead to overlook the

dependency of the model’s coefficients on other physical parameters (e.g. bottom

drag, buoyancy forcing at the surface, etc.). The second, more radical, option is

to formulate a mathematical model of eddy-mean flow variability from successive

approximations of the equations of motion rather than based on empirical argu-

ments. The advantage of this approach is that the scaling of the model’s coefficients

with the physical parameters would be obtained naturally from the derivation of the

model itself. On the other hand, analytical tractability may impose severe restric-

tions on the realism of the theoretical setup, so that it is not clear to what extent

such a model would afford comparison with a GCM such as the idealised channel.

Nevertheless, inroads have recently been made towards formulating a model that

describes the interplay between eddies and mean flow from first principles in the

atmosphere (Kobras et al., 2022), so that it would certainly be of interest to explore

the feasibility of this strategy for the oceanic case as well. By demonstrating the

value of simplified mathematical models of eddy variability, this work may pave

the way to further investigation aimed at bridging the gap between the time scales

of natural and forced variability.

The Southern Ocean is a key regulator of global climate, and enhancing the com-

prehension of the physical processes that drive its evolution under climate change

is a research priority and a fascinating challenge. This Thesis is dedicated to the

dynamics of mesoscale eddies: by modelling their time scales of natural variability,

and by bringing their relationship with the transient circulation and temperature re-

sponse to wind stress modulations into clearer focus, it contributes to the research

efforts devoted to this compelling scientific task.
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