Using the (iterative) ensemble Kalman smoother to estimate the time correlation in model error

[thumbnail of open access]
Preview
Text (open access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of 24908125_Ren_AAM1_Haonan Ren.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Amezcua, J. orcid id iconORCID: https://orcid.org/0000-0002-4952-8354, Ren, H. orcid id iconORCID: https://orcid.org/0000-0003-4342-3305 and Van Leeuwen, P. J. orcid id iconORCID: https://orcid.org/0000-0003-2325-5340 (2023) Using the (iterative) ensemble Kalman smoother to estimate the time correlation in model error. Tellus A: Dynamic Meteorology and Oceanography, 75 (1). pp. 108-128. ISSN 1600-0870 doi: 10.16993/tellusa.55

Abstract/Summary

Numerical weather prediction systems contain model errors related to missing and simplified physical processes, and limited model resolution. While it has been widely recognized that these model errors need to be included in the data assimilation formulation, providing prior estimates of their spatio-temporal characteristics is a hard problem. We follow a systematic path to estimate parameters in the model error formulation, specifically related to time-correlated model errors. This problem is more difficult than the standard parameter estimation problem because the model error parameters are only visible through the random model error realisations. By concentrating on linear and nonlinear low-dimensional systems, we are able to highlight the many aspects of this problem, using state augmentation in an ensemble Kalman smoother (EnKS) and its iterative variant (IEnKS). It is not possible to estimate the model error parameters in one assimilation window because enough information has to be gathered to see the parameters through the random errors, even when every time step is observed. If only one parameter is estimated in a linear one-dimensional system the EnKS works well, but when we try to estimate two parameters the method fails. An IEnKS is able to find the correct parameter values for the linear system. For the highly nonlinear logistic map the IEnKS can get stuck in local minima, but with careful tuning of the step length in the iterations and careful transformation of the solution space the correct parameter values can be found. The main conclusion is that estimating model error parameters –even in low-dimensional systems– is a difficult problem, but via careful reformulation of the problem practical solutions can be found.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/110643
Identification Number/DOI 10.16993/tellusa.55
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Taylor & Francis
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar