A Geometric Algorithm for an Artificial Life Form Based on Anachronistic Methods
Christopher A. Tucker
School of Systems Engineering, Department of Cybernetics

The University of Reading

Whiteknights, P.O. Box 217

Reading, RG6 6AH, UK

E-mail: c.a.tucker@reading.ac.uk
KEYWORDS
Archimedes, Antikythera Mechanism, universal constructor, anti-machine, systolic array, artificial life, configware, flowware.
ABSTRACT
Modern methods of spawning new technological motifs are not appropriate when it is desired to realize artificial life as an actual real world entity unto itself (Pattee 1995; Brooks 2006; Chalmers 1995). Many fundamental aspects of such a machine are absent in common methods, which generally lack methodologies of construction. In this paper we mix classical and modern studies in order to attempt to realize an artificial life form from first principles. A model of an algorithm is introduced, its methodology of construction is presented, and the fundamental source from which it sprang is discussed.
INTRODUCTION

The tradition of Greek mathematics and technology relevant to this paper can be traced back to the time of Alexander and the establishment of state-sanctioned division of labor in the form of slavery for repetitive tasks, ending with its parcel into Byzantium in the 4th Century AD, and the general decay of the Roman Empire. Starting with Euclid, a cultural tradition of mathematics can be shown to have been passed through teachers such as Hipparchos, Ptolemy, and Archimedes (Heath 1957), and this fueled a technological motif exhibited in the Antikythera Mechanism manufactured on the island of Rhodes in the mid 2nd Century BC (Marcant 2006).

The Antikythera Mechanism is complex in design and operation (Wright 2006); it demonstrates that a tradition of mathematics must have been present to create such an instrument. However the tradition of the instrument and others like it was lost between the 4th Century and the 20th Century. With the relatively recent discovery of the Archimedes Palimpsest and the Antikythera Mechanism, how can this anachronistic information aid in amalgamating ancient technological motifs with modern methods?

In particular, are there methods of technological endeavor that can aid in solving modern quandaries? Can they help solve some of today’s more intractable problems? In this paper we consider a geometric-mechanic proposition, some technology representative of the proposition, and a new algorithm based on the motif. The goal being to further understand artificial life.

THE ORIGINAL SOURCE

Consider the following figure:

[image: image1.png]

Figure 1: Archimedes Conjecture and the Antikythera Mechanism

Figure 1a (left) depicts Archimedes Proposition I, and Figure 1b (right) is the Antikythera Mechanism, an orrery of the earth, sun, moon, and five planets. We argue here that the modeling methods available to Archimedes were transmitted to and by him in an intellectual chain (Netz 1999) at which time an unspecified person constructed the Antikythera Mechanism. Although we do not necessarily argue a direct correlation, we do argue that his method did and can offer a modeling environment for algorithms. As an example, Proposition I shows how to calculate the area under the parabola using an iterative carpet of triangles to approximate the area under the curve. The procedure is given by the following equation:

[image: image2.wmf](

)

å

å

ò

¥

=

-

=

-

+

-

+

-

-

=

1

1

2

1

1

2

))

(

(

2

)

1

(

)

(

n

m

n

n

m

b

a

n

a

b

m

a

f

a

b

dx

x

f

 (1)
Additionally and importantly however, it describes a physical system (Ruffa 2002), driven by knowable parameters. The physicality of the algorithm is carried by the Antikythera Mechanism in the gearing train of the mechanism. Considering the motion of the epicyclical gearing arrangement, an approximation of arcs (planetary orbits) would have to have been carried out to construct gears that each contain only prime numbers of teeth (Marcant 2006). Additionally, the method is shown to be dimensionally constrained in that it only deals with a system of motion in two dimensions—left and right movements—of a fixed point of reference of the triangle itself.

The Proposition I conjecture algorithm is based on Eudoxus (c. 375BC) which was rendered by Euclid (c. 300BC) in Elements, Book 7, Propositions 1 and 2, which Archimedes makes a direct reference to (Heath 1957).

What is important to understand by analysis is that the method is derived by constructing a framework, then passing the phenomena under study through the system, replicating parts and measuring accordingly. The framework serves as a linear foundation for the irrational phenomena that is to be measured by it. This implies that the framework was designed to be filled by quasi-objects. The equation demonstrates that sufficiently smaller triangles can be created to increase the number of steps h and to decrease the spacing between the steps. The framework forms a closed ordered system that can be divided into as small components as necessary for the given problem (Knuth 1969; Dorst and Mann 2002).

One can guarantee to a certain level that this motif generated a real apparatus; i.e., theory was verified by experiment. Although it is most likely that numerous examples of technology were created using this motif, at the present time, only this mechanism survives. Nevertheless, if we accept the guarantee based on this singular condition, I argue we can spawn more complex algorithms for solving other open-ended, closed loop problems such as those represented in automata.

This iterative process clearly has tenets of self-organization (Ashby 1957) in that the process is stable on each of its vertices; i.e., the system in its manifest form is generated by an examination of the pathways between the outer vertices and the center of mass, thereby manipulating the generalized behavior of the object and making corrections to balance the strategy of how the data is addressed and stored in the spaces.

Geometry and problems stemming from it vary little between the ancient Greek world and modern times; the primary difference lies in the amount of complexity considered, in the sense of the number of inputs to the problem. In the ancient world, they appeared to deal with a very small number of inputs, calculated by hand with devices such as the straight-edge and compass. In this way, no attention was paid to the complexity of the algorithm at hand (Toussaint 1992). In fact such complexity was not performed in the light of computational geometry until the prevalence of the digital computer (Graham 1972), and in complexity theory appearing three years later (Shamos 1975). But now a question arises as to what analysis can be performed and what methods can be established by performing a geometric probing of the tenets of the Proposition I algorithm using a RAM machine?

Putting this in terms of a modern intractable problem, one that seems to be haunting the world of artificial intelligence, which is essentially fundamental: How should an artificial life system be defined, how should it be manifested, and what should it look like?

We argue that an artificial life being should possess a core or governing algorithm, similar in function but not necessarily in form to DNA cores and RNA assemblers in organic systems. Something analogous must be present, a driving impetus, that spawns a procedural construction of the machine.

Using the limits of this approach—drawn by a slide rule and compass—how can a rule-based approach illustrated in this method be directly applied to modern problems? And most importantly, what type of algorithm can be constructed using this motif to create self-organizing automata?

TRASITIONAL METHODOLOGY AND THE GEOMETRIC ALGORITHM

Having formed a basis on which to understand the problem at hand, how can the knowledge be directly applied to show it can demonstrate a satisfactory model of a self-replicable machine?

In assaying the typology of machines suitable for artificial life forms, instruction-stream-based von Neumann machines clearly demonstrate their failure, in that execution streams cannot be determined a priori without first processing the data received from sensors (Von Neumann 1966). What is needed is a data-stream based model (Xputer machine) that is derived from a generalization of a systolic array represented by the form and its exchange of data between the knowledge retained by its agents (constructors) and the data residing within. Only after knowledge of the data and where it is stored can meaningful arrangements be facilitated. This is the model of a reconfigurable compiler.

The inherent complexity in constructing a computational model for an artificial life form is due to its need for modeling data based on its sensor inputs. By using auto-sequencing memory (ASM) address assignments and data counters—the number of times an agent traverses a vertex edge, an iterative loop first constructs the framework by self-replication and addresses the transit data embedding it within the sub-frame. This is the model of a geometric data processor that raises the level of abstraction in algorithm description.

The model uses a geometric address generator—demarcated by a coordinate value of three vertices—a variant on the generic address generator (GAG) that is in turn a generalization of direct memory access (DMA). In total, the form is a generalized systolic array with a space-time diagram on a generalized relativistic space-time manifold. Such a purpose is to start from a fundamental point that is not derived from a more fundamental sink. It is by this mark on a most fundamental point that the form is allowed its physicality by reference to its starting location on a Cartesian grid.

The hardwired data stream present in this machine needs two program sources to control it: 1) flowware, the sequence by which the data is input into the array—known by the constructor agents—and 2) configware, how the system knows where the data is located to be utilized by a high level programming language source to execute data streams at run time—communication of the three vertex coordinates of the agent with the application layer of the program. This is a model of a reconfigurable data-stream machine.

The agents create a compiler that has a partitioner which accepts input from a high level language source, such as, for instance a programming language, i.e., C# with SQL, and automatically partitions the tasks into geometrically parallelizable parts suitable as a reconfigurable accelerator in how the locations are address by the vertices and sets the location for the memory rest for running on the microprocessor.
In terms of an artificial life system, outwardly it requires a set of fundamental laws that define how it interacts with its environment, is able to remember, is able to learn, is able to adapt, and must survive. Representing this computationally, an artificial life system needs the following abilities:

1) A constructor that builds the shape on the first iteration, traversing the shape only once,

2) Agents that possess the knowledge of their work for later search operations,

3) A limit to associated knowledge within the system so that the data is usable, i.e., doesn’t take long periods of time to assess data and make a decision based on it,

4) A method to pool data by simple addressing from sensor networks,

5) Present the refined data to a compiler.

At the onset, it is advantageous for the algorithm to represent the problem at hand. A possible solution to the artificial life quandary is to create a system in the motif of an ancient cultural technological process, considering that culture already possessed technological expertise to construct automata. In this instance, the automata will be manifest in software. Some questions to consider are: how do we generate a self-replicating system that knows its framework and can carry the knowledge with it?

[image: image3.png]W«s’
‘5‘%
e

Figure 2: Agent Constructor Progression

Figure 2 represents a method by which agents perform a collective task of construction of a geometric object. Simultaneously, they construct an addressable “data-space” system that carries the knowledge to self-modify in order to accommodate incoming data from sensor arrays which map the environment. This is covered in the next section.
THE WALKER-CONSTRUCTOR ALGORITHM

Consider Figure 3, a closed geospatial system consisting of a set of n vertices with a set of m edges built by a set of three identical agents who have the following abilities:

1) walk,

2) mark,

3) and remember.

[image: image4.png]

Figure 3: Constrained Constructor Competed by Agents
What follows is the pseudocode for the walker agents, less the messy programmatic operations between the application layer and the database layer:

Walker-Constructor Pseudocode

--Task--

Observe the result of the agents as they perform their task of constructing the object.

Pick an arbitrary point on the Einsteinian space-time manifold, call it (0,0), and run a Cartesian grid in four directions with each ray trajectory 90 degrees from its left and right nearest neighbor in 2 dimensions. Label one axis 'x' and name the other axis firstly encountered in a counterclockwise rotation 'y'.

Create three agents who are programmed identically and whose task is to walk, mark, and remember. Between them, they hold two elastic strings. Start each at (0,0): one agent (1) walks five units in the positive y direction; two agents walk five units in the negative y direction and walk 90 degrees from their path in opposite directions: (2) in the negative x direction 5 units and (3) in the x direction 5 units.

Remember your location on the grid.

Draw tight the first elastic string and pin to the edge points (1,2,3). This is the first polygon of three vertices.

Scribe circles with a diameter of 2 units filled with quantity 'theta' centered on vertices 2 and 3.

1: cast a ray that intersects point 'a' continuing to twice the distance walked and mark the edge point '4'. Save the distance (d4).

2: Walk in the +y direction along the string to the grid coordinate (2.5,0) and mark the point 'c'.

3: Walk in the +y direction along the string to the grid coordinate (-2.5,0) and mark the point 'b'.

2: cast a ray that intersects the point 'c' continuing the ray to twice the distance traveled and mark the edge point '5'. Save the distance (d5).

3: cast a ray that intersects the point 'b' continuing the ray to twice the distance traveled and mark the edge point '4'. Save the distance (d6).

Draw tight the second elastic string and pin to the edge points (4,5,6). This is the second polygon of three vertices.

Mark the intersection of the three rays as the center of mass of the triangle centroid as point 'm'.
--End Program--
The walker construction has three agents that perform all the work from the time of construction to the accessing of the framework by application operations. The collective behavior of the agents generates, in this example, a Hamiltonian cyclic graph. The agents pass through each vertex only once and step until the shape is constructed without repetition.

The action generates a finite space of data addresses generating twelve on the first iteration. In this paper we only discuss the first iteration of the carpet. The algorithm can though further divide the spaces into smaller ones by manipulating the quantity of θ by its compass tool in tandem with its knowledge of the length of each edge.

The framework carries the following features in its application layer:

1) Data-space addressing: stored as a location given by three coordinates (i, j, k). Since the system knows how the triangles were constructed, it can retrace edges to find each of the vertices,

2) Data-space resolution (how small data-block grids are), and increasing address storage (number of spaces and sequential numbering). Further iterations (the addition of vertex edges between vertices) can be constructed in Θ(di) time where di is the degree of the ith vertex,

3) Expense of access operations by assigning access point p as an input-output controller,

4) It describes the state values of any operation in terms of its common geospatial model,

5) Is a closed and well-defined system with a hub represented by m that it interacts with all points as the center of mass of the object and carries a unitary matrix of value 1.

ALGORITHM COMPLEXITY

[image: image5.png]L N N

1

23

abcd56

0

11
01
10
11
11
11
11
11
11

111110
Ll
111111
000100
000010
000001
100011
010101
001110

Table 1: The Adjacency Matrix
Table 1 is a computation of the efficiency of the algorithm when it needs to be accessed at any point in the system: read, written, or searched. Complexity can increase very quickly if the system were to subdivide its spaces, so it is important to select the right balance in the data structure around a center of mass, since the weight of operations on the vertices and edges as agents are traversing the strings greatly impacts the performance of the algorithm. Using an adjacency matrix, n x n, M where M = [i, j], to represent the vertices while needing to know how many edges can be represented; if we keep edges defined by the limit points of the set, it should take Θ(1) time to test when an edge (i, j) is represented by the adjacency matrix, the system needs to read the appropriate bit. The simplicity of this solution is what makes this geometric algorithm appealing for artificial life systems. We can add as many vertices as the number of sub-triangles inside the numbered edges since at least one edge is known each time the area is subdivided to create more addressable space.

Currently, the algorithm is O(n2) in an undiscovered state; however, the construction procedure insures each vertex is completely explored, that is all incident edges have been visited. Searches, either breadth-first or depth-first, performed on the algorithm are done in O(n + m) time. As data-spaces become filled, the form can expand into n = 3 dimensions to accommodate before subdivision. However, higher degrees of order add complexity as the as the number of edges increase. This algorithm is NP-complete (Skiena 1998).

This method of modeling how the data in the machine is constructed provides the machine the greatest amount of flexibility in how its data manipulation systems are architecturally arranged based on weights of information flow from the sensor array. In other words, it can interact seamlessly with its environment in a fundamentally physical way. Since the system is a Hamiltonian cycle given in automata by the work of the agents and directed by the Archimedes conjecture, it forms a class of algorithms that can work to assemble sensory data known to the system thereby embedding an intelligence that comes with the system. Further work to prove this concept is the subject of ongoing research as the algorithm is explored.

CONCLUSIONS

We propose this method will result in robust geometric software for artificial life applications of data storage, intelligence, and interaction - in other words, the spark that will create artificial life. We additionally propose that this form will be an important first step into understanding how to classify the intelligence of an artificial-life entity. This form must serve as a governing algorithm for how future iterations of the processing system are constructed; it contains its own template (the constructor), the knowledge of how to construct it (data-tape), and by design, can address and organize many types of sensor data into a meaningful format.

It is only after more work that if such an autonomous and directed iterative method can be useful in understanding how to give a machine the ability to construct its own systems and replicate itself using the tools available to it. The form is relatively simple in its operation, computational cost, and is easily replicable. At this time, we argue the methodology illustrated here is, in essence, a unique and optimized approach.

REFERENCES
Ashby, Ross W. 1957. An Introduction to

 Cybernetics. Chapman & Hall, Ltd., London.

Brooks, Rodney. 2006. “Rodney Brooks Forecasts

 the Future”. The New Scientist, Number 2578, 60.

Chalmers, D. 1995. “Facing up to the Problem of

 Consciousness”. Journal of Consciousness
 Studies, 2 (3), 200-219.
Dorst, Leo, Mann, Stephen. 2002. “Geometric

 Algebra: A Computational Framework for

 Geometrical Applications”. IEEE Computer

 Graphics and Applications, Vol. 22, No. 3, 24-31.

Graham, R. L. 1972. “An Efficient Algorithm for
 Determining the Convex Hull of a Planar Set”.

 Information Processing Letters, Vol. 1, 132-133.
Heath, T.L. 1957. The Works of Archimedes.
 Geometrical Solutions Derived from Mechanics,

 Letter to Eratosthenes. Dover Publications, New

 York.
Knuth, Donald, E. 1969. The Art of Computer

 Programming, Vol. 2. Addison-Wesley, Upper

 Saddle River, New Jersey.
Marcant, Jo. 2006. “In Search of Lost Time”.

 Nature, Vol. 444, 534-538.
Netz, Reviel. 1999. The Shaping of Deduction in

 Greek Mathematics: A Study in Cognitive History.

 Cambridge University Press, Cambridge.
Pattee, H.H. 1995. “Artificial Life Needs a Real

 Epistemology”. Lecture Notes in Computer

 Science, Proceedings of the Third European

 Conference on Advances in Artificial Life, Vol.

 929, 23-38.
Ruffa, Anthony, A. 2002. “The Generalized Method

 of Exhaustion”. International Journal of
 Mathematics and Mathematical Sciences, Vol. 31,

 no. 6, 345-351.
Shamos, M. I. 1975. “Geometric Complexity”. Proc.

 7th ACM Symposium on the Theory of Computing,

 224-233.
Skiena, Steven. 1998. The Algorithm Design Manual.

 Springer-Verlag, New York.

Toussaint, Godfried, T. 1992. “What is

 Computational Geometry?” Proceedings IEEE,
 Vol. 80, No. 9, 1347-1363.
Von Neumann, John. 1966. The Theory of Self-

 Reproducing Automata. University of Illinois

 Press, Urbana.

Wright, M.T. 2006. “Understanding the Antikythera

 Mechanism”. 2nd International Conference on

 Ancient Greek Technology. Athens, Greece.
1

_1278227543.unknown

