
NETWORK INTRUSION DETECTION SYSTEM FOR
DETECTING UNKNOWN NETWORK ATTACKS

USING MACHINE LEARNING METHODS

Thesis submitted for the Degree of Doctor of Philosophy

Department of Computer Science

School of Mathematical, Physical and Computational Sciences

Saif Mohammad Yousef Alzubi

September 2022

Declaration

I confirm that this is my own work and the use of all material from other sources has been

properly and fully acknowledged.

Saif Mohammad Yousef Alzubi

i

Acknowledgements

The pursuit of a PhD is a long and challenging journey which requires years of hard work,

commitment and dedication to succeed. First and foremost, thanks to Allah (God), the

Almighty, for giving me the strength, health, patience and guidance to complete this jour-

ney.

I would like to express my gratitude and appreciation to my supervisor, Dr. Fredric Stahl,

for his direction, continual support and encouragement throughout my PhD journey. I

am honoured and fortunate to be one of his students. Also, a special thanks goes to my

external supervisor, Professor Mohamed Medhat Gaber, for his valuable comments and

feedback.

I also want to express my sincere gratitude to my wonderful family for their endless sup-

port. To my father, my inspiration and source of strength, Mohammad—for all the sacri-

fices he made to make my dream come true, and for his unlimited support, financially and

emotionally. To my mom, Nabeela, the most precious person in my life—for her prayers,

encouragement, motivation and unconditional love. To my beloved wife and soul-mate,

Bayan, who believed in me, encouraged me, and stood by me through thick and thin; with-

out her, I wouldn’t have been able to complete this journey. To my children Murad, Ahmad

and Yasmeen, who always surrounded me with love, joy and happiness. To my brothers

Samer and Yazan, my sister Heba and my brother-in-law Abdallah for their constant sup-

port and encouragement. And a big ‘thank you’ to my aunt, Wafaa, for all the advice and

for always being there for me during this journey.

ii

Abstract

Since the beginning of the internet age, the number of internet users has been rapidly in-

creasing. Accordingly, the number of network attacks and their associated complexity is

likewise rising. This increase in network attacks has triggered an alarm for governments

and organisations, which have begun to invest millions in cybersecurity to mitigate the risk

of cyberattacks. One effective, practical tool to defend against cyberattacks is the Intru-

sion Detection System (IDS) [1]. IDSs have been brought to the attention of researchers,

who have begun incorporating Machine Learning (ML) methods into these systems. For

this purpose, different IDSs using supervised and unsupervised ML methods have been

proposed.

An IDS based on supervised learning methods can detect known network attacks that the

system has previously encountered and been trained on. However, they often fail to detect

network attacks that are unfamiliar to the supervised model. Unsupervised learning meth-

ods can overcome this limitation and detect new, unfamiliar attack types that the system has

never encountered. Nevertheless, unsupervised learning methods can produce many false

positives [2], low precision and recall results.

For this thesis, four research aims were developed and investigated. The first regards the

possibility of developing a network IDS that offers high detection performance. The second

aim considers the ability of the developed system to detect new network attacks introduced

to the system. The third aim investigates the possibility of improving the overall results

by implementing supervised ML models in the system. The fourth aim focuses on the

feasibility of including explainable methods to help domain experts assess the threat level

and understand the model’s decisions.

To achieve these goals, this thesis presents a novel Network Intrusion Detection System

framework that utilises the power of both unsupervised and supervised learning methods

for network intrusion detection. The proposed framework consists of three components.

The first component is a novel heterogeneous unsupervised bagging ensemble, called the

Unknown Network Attack Detector (UNAD). A set of anomaly detection algorithms were

iii

evaluated for their potential utility as base learners for UNAD. Among these algorithms,

the Local Outlier Factor (LOF) and Isolation Forest (iForest) algorithms were selected as

UNAD’s base learners, as they produced the best results. Further, the weighted majority

voting method is used as a results combiner for UNAD’s base learners.

The second component of this framework is the supervised algorithm, trained on UNAD’s

detected benign/no-rmal and attack flows, that improves the overall detection results. The

Random Forest (RF) classifier was selected for this component because it produced the

strongest results, as measured empirically. The third component in this framework is

the explainable component, which explains the decision made by the model in a human-

understandable way. Two types of explainability are implemented and illustrated in this

thesis: local and global. For local explainability, Local Interpretable Model-agnostic Ex-

planations (LIME) [3] was used, and for global explainability, the surrogate method based

on the Decision Tree (DT) was used.

The framework proposed in this thesis was evaluated using two publicly available datasets:

CICIDS2017 [4] and NSL-KDD [5]. Empirical results revealed that UNAD—the first com-

ponent—can detect completely new attack types with high detection rates for most attack

types, and the RF classifier—the second component—can boost the detection rate for most

attack types. The overall F1-scores for the CICIDS2017 and the NSL-KDD datasets were

98.31% and 98.25%, respectively. These experimental results showed that the explainable

methods used in the system—the third component—can help domain experts assess threat

levels and understand how the model made its decisions.

iv

Contents

1 Introduction 1

1.1 Background . 1

1.2 Research Motivation . 3

1.3 Problem Statement . 4

1.4 Research Questions . 5

1.5 Research Aims and Objectives . 5

1.6 Research Methodology . 6

1.7 Contribution . 7

1.8 Publication . 8

1.9 Thesis Experimental Data and Code . 9

1.10 Thesis Structure . 9

2 Background and Literature Review 11

2.1 Intrusion Detection System . 12

2.1.1 Types of Intrusion Detection System 13

2.1.2 Intrusion Detection System Methods 14

2.2 Anomaly Detection Methods and Techniques 15

2.3 Network Anomaly Detection Using Machine Learning Algorithms 17

2.3.1 Unsupervised Machine Learning Algorithms 17

2.3.2 Supervised Machine Learning Algorithms 18

2.4 Intrusion Detection Systems Evaluation Measures 20

2.5 Ensemble Methods . 24

v

2.5.1 Bagging . 24

2.5.2 Boosting . 24

2.5.3 Stacked Generalisation (Stacking) 25

2.6 Ensemble Results Combiner Methods . 25

2.6.1 Voting . 25

2.6.2 Averaging . 26

2.7 Model Explainability in Machine Learning 26

2.7.1 Machine Learning Explainability Criteria 27

2.7.2 Machine Learning Explainability Techniques 28

2.8 Dataset Preparation (Preprocessing) . 29

2.9 Related Work . 34

2.9.1 Unsupervised Anomaly Algorithms for Intrusion Detection 34

2.9.2 Unsupervised Anomaly Algorithms for Outlier Detection 38

2.10 Chapter Summary . 42

3 Preliminaries: Experiments and Evaluation 43

3.1 Research Methodology Workflow . 44

3.2 Experimental Setup . 46

3.3 Datasets Used in this Research . 47

3.3.1 CICIDS2017 Dataset . 48

3.3.2 NSL-KDD Dataset . 51

3.4 Research Dataset Preprocessing Steps . 53

3.4.1 CICIDS2017 Dataset Preprocessing 53

3.4.2 NSL-KDD Dataset Preprocessing 56

3.5 Evaluation of Anomaly Detection Algorithms as Base Learners for UNAD . 59

3.5.1 Local Outlier Factor (LOF) . 59

3.5.2 Isolation Forest (iForest) . 66

3.5.3 Elliptic Envelope . 74

3.6 Initial Experiments: Evaluation and Discussion 82

3.7 Initial Experiments: Summary . 83

vi

3.8 Chapter Summary . 84

4 Unsupervised Ensemble Learner Architecture for Unknown Attack Detection 86

4.1 The UNAD Approach . 86

4.1.1 UNAD Workflow . 86

4.1.2 Experimental Evaluation of UNAD 90

4.1.3 UNAD Current Limitation . 93

4.2 UNAD with Weighted Majority Voting to Overcome Abstaining Limitation 94

4.2.1 The UNAD WMV Workflow . 94

4.2.2 Comparative Analysis of UNAD with Majority Voting versus UNAD

with Weighted Majority Voting . 96

4.3 Chapter Summary . 99

5 Improving UNAD Detections and the System Transparency 100

5.1 Detailed Workflow of the Second Component 101

5.1.1 Research Models’ Hyperparameters 106

5.1.2 Evaluation and Results of Second Component 107

5.2 Explainability Component . 111

5.2.1 Local Explainability . 112

5.2.2 Global Explainability . 119

5.3 Chapter Summary . 121

6 Overall Results and Discussion 123

6.1 CICIDS2017 Results and Analysis . 123

6.2 NSL-KDD Results and Analysis . 127

6.3 Chapter Summary . 131

7 Conclusion and Future Work 132

7.1 Thesis Summary . 132

7.2 Limitations . 136

7.3 Future Work . 136

vii

References 138

Appendices 166

A CICIDS2017 feature description 167

B NSL-KDD feature description 170

C CICIDS2017 Information Gain 172

D NSL-KDD Information Gain 174

viii

List of Figures

1.1 Global Digital Population as of January 2021 2

2.1 Intrusion Detection System Categories . 12

2.2 Sample Binary Confusion Matrix . 21

2.3 ROC-AUC Example on Toy Dataset . 23

3.1 Research Methodology Workflow . 44

3.2 Taxonomy of the System’s Framework . 45

3.3 Initial Experiment Workflow . 53

3.4 Dataset Split Workflow . 55

3.5 PCA Method to the CICIDS2017 Dataset 56

3.6 Initial Experiment workflow . 57

3.7 NSL-KDD Dataset Split Workflow . 58

3.8 PCA Method on the NSL-KDD Dataset 58

3.9 CICIDS2017 Precision Results for LOF-Based Workflow 61

3.10 CICIDS2017 Recall Results for LOF-Based Workflow 61

3.11 CICIDS2017 F1-score Results for LOF-Based Workflow 62

3.12 CICIDS2017 ROC-AUC Results for LOF-Based Workflow 62

3.13 CICIDS2017 Precision, Recall, F1-score AND ROC-AUC Results For LOF 63

3.14 NSL-KDD Precision Results for LOF-Based Workflow 64

3.15 NSL-KDD Recall Results for LOF-Based Workflow 65

3.16 NSL-KDD F1-Score Results for LOF-Based Workflow 65

3.17 NSL-KDD ROC-AUC Results for LOF-Based Workflow 66

ix

3.18 NSL-KDD Precision, Recall, F1-score AND ROC-AUC Results For LOF . 66

3.19 CICIDS2017 Precision Results for iForest-Based Workflow 69

3.20 CICIDS2017 Recall Results for iForest-Based Workflow 69

3.21 CICIDS2017 F1-score Results for iForest-Based Workflow 70

3.22 CICIDS2017 ROC-AUC Results for iForest-Based Workflow 70

3.23 CICIDS2017 Precision, Recall, F1-score AND ROC-AUC Results For iForest 71

3.24 NSL-KDD Precision Results for iForest-Based Workflow 72

3.25 NSL-KDD Recall Results for iForest-Based Workflow 73

3.26 NSL-KDD F1-score Results for iForest-Based Workflow 73

3.27 NSL-KDD ROC-AUC Results for iForest-Based Workflow 74

3.28 NSL-KDD Precision, Recall, F1-score AND ROC-AUC Results For iForest 74

3.29 CICIDS2017 Precision Results for EE-Based Workflow 76

3.30 CICIDS2017 Recall Results for EE-Based Workflow 76

3.31 CICIDS2017 F1-score Results for EE-Based Workflow 77

3.32 CICIDS2017 ROC-AUC Results for EE-Based Workflow 77

3.33 CICIDS2017 Precision, Recall, F1-score AND ROC-AUC Results For EE . 78

3.34 NSL-KDD Precision Results for EE-Based Workflow 79

3.35 NSL-KDD Recall Results for EE-Based Workflow 80

3.36 NSL-KDD F1-score Results for EE-Based Workflow 80

3.37 NSL-KDD ROC-AUC Results for EE-Based Workflow 81

3.38 NSL-KDD Precision, Recall, F1-score AND ROC-AUC Results For EE . . 81

4.1 Proposed UNAD workflow . 88

4.2 UNAD Detected Benign and Attacks on CICIDS2017 Dataset 91

4.3 UNAD-Detected Benign and Attacks on NSL-KDD Dataset 92

4.4 updated UNAD Workflow . 95

4.5 Comparison of UNAD MV and WMV Results for CICIDS2017 Dataset . . 97

4.6 UNAD MV and WMV Results Comparison for NSL-KDD Dataset 98

5.1 Detailed Workflow of Second Component 105

5.2 Second Component Result Analysis for the CICIDS2017 Dataset 109

x

5.3 Second Component Result Analysis for the NSL-KDD Dataset 110

5.4 Explanation of Correctly Detected Benign Flow on CICIDS2017 Dataset . . 113

5.5 Explanation of Correctly Detected Attack Flow on CICIDS2017 Dataset . . 114

5.6 Explanation of Incorrectly Detected Benign Flow on CICIDS2017 Dataset . 115

5.7 Explanation of Incorrectly Detected Attack Flow on CICIDS2017 Dataset . 116

5.8 Explanation of Correctly Detected Normal Flow on NSL-KDD Dataset . . 117

5.9 Explanation of Correctly Detected Attack Flow on NSL-KDD Dataset . . . 117

5.10 Explanation of Incorrectly Detected Normal Flow on NSL-KDD Dataset . . 118

5.11 Explanation of Incorrectly Detected Attack Flow on NSL-KDD Dataset . . 118

5.12 CICIDS2017 Decision Tree . 120

5.13 CICIDS2017 Network Flow Analysis Report 120

5.14 NSL-KDD Decision Tree . 120

5.15 NSL-KDD Network Flow Analysis Report 121

6.1 UNAD WMV Results for CICIDS2017 Dataset (in %) 124

6.2 CICIDS2017 Second Component Results (in %) 125

6.3 CICIDS2017 Overall Results (in %) . 125

6.4 CICIDS2017 UNAD, second component and Overall Results (in %) 126

6.5 UNAD WMV Results for NSL-KDD Dataset (in %) 128

6.6 UNAD NSL-KDD Second Component Results (in %) 129

6.7 NSL-KDD Overall Results (in %) . 129

6.8 NSL-KDD UNAD, second component and Overall Results (in %) 130

xi

List of Tables

2.1 Summary of Literature on IDS . 40

3.1 CICIDS2017 Attack Distribution . 50

3.2 CICIDS2017 Features . 51

3.3 NSL-KDD Attack Distribution . 52

3.4 NSL-KDD Features . 53

3.5 Dataset Split Distribution . 55

3.6 NSL-KDD Dataset Split Distribution . 58

3.7 CICIDS2017 LOF Overall Experimental Results (in %) 60

3.8 NSL-KDD LOF Overall Experimental Results (in %) 63

3.9 CICIDS2017 iForest Overall Experimental Results (in %) 68

3.10 NSL-KDD iForest Overall Experimental Results (in %) 71

3.11 CICIDS2017 EE Overall Experimental Results (in %) 75

3.12 NSL-KDD EE Overall Experimental Results (in %) 78

3.13 Classifiers’ Highest Results for the CICIDS2017 (in %) 82

3.14 Classifiers highest Results for the NSL-KDD (in %) 82

3.15 Classifiers Hyperparameter Range Values 83

3.16 CICIDS2017 Best Hyperparameter values and Principal Components 84

3.17 NSL-KDD Best Hyperparameter values and Principal Components 84

4.1 CICIDS2017 LOF, iForest and UNAD Results Comparison (in %) 90

4.2 NSL-KDD LOF, iForest and UNAD Results Comparison (in %) 92

4.3 CICIDS2017 Traffic Type Instances Abstained from Detection 93

xii

4.4 NSL-KDD Traffic Type Instances Abstained from Detection 94

4.5 Comparison of Stand-alone Algorithms, UNAD MV and UNAD WMV on

CICIDS2017 . 96

4.6 Comparison of Stand-alone Algorithms, UNAD MV and UNAD WMV on

NSL-KDD Dataset . 98

5.1 CICIDS2017 IG for Top 30 Features . 102

5.2 NSL-KDD IG for Top 30 Features . 102

5.3 CICIDS2017 and NSL-KDD Data Distribution Ratio 103

5.4 Second Component Classifiers Hyperparameters 107

5.5 Classifiers’ Best Set of Hyperparameters 108

5.6 Overall Results: CICIDS2017 Second Component Classifiers (in %) 108

5.7 Overall Results: NSL-KDD Second Component Classifiers (in %) 108

6.1 CICIDS2017 Overall Results (in %) . 124

6.2 NSL-KDD Overall Results (in %) . 127

A.1 CICIDS2017 feature description [6, 7] . 168

B.1 NSL-KDD feature description [8, 9] . 171

C.1 CICIDS2017 Information Gain . 173

D.1 NSL-KDD Information Gain . 175

xiii

Abbreviations
AdaBoost Adaptive Boosting

AUC Area Under the Curve

Bagging Bootstrap aggregating

C1 First Component

C2 Second Component

C3 Third Component

CSV Comma-Separated Values

CV Cross-validation

DDoS Distributed Denial of Service

DoS Denial of Service

DT Decision Tree

EE Elliptic Envelope

FI Features Importance

FN False Negative

FP False Positive

HIDS Host-based Intrusion Detection System

HTTPS Hypertext Transfer Protocol Secure

ICA Independent Component Analysis

IDS Intrusion Detection System

IG Information Gain

IoT Internet of Things

iForest Isolation Forest

KNN K-nearest neighbors

LIME Local Interpretable Model-agnostic Explana-

tions

LOF Local Outlier Factor

ML Machine Learning

MV Majority Voting

xiv

NB Naive Bayes

NIDS Network-based Intrusion Detection System

OCSVM One-Class Support Vector Machine

PDP Partial Dependence Plot

PC Principal Component

PCA Principal Component Analysis

RF Random Forest

ROC Receiver Operating Characteristics

SDN Software Defined Networking

SSL Secure Sockets Layer

SSC Sub-Space Clustering

TLS Transport Layer Security

TN True Negative

TP True Positive

R2L Remote to Local Attack

U2R User to Root Attack

UNAD Unsupervised Network Anomaly Detector

WMV Weighted Majority Voting

XSS Cross-Site Scripting

xv

Chapter 1

Introduction

1.1 Background

The internet and its services have become an essential part of daily life, with billions of

online users every month using mobile, desktops, tablets and Internet of Things (IoT) de-

vices. According to Statista—the Statistics portal website—nearly 4.66 billion people were

active on the internet as of January 2021 (Figure 1.1) [10].

Furthermore, the COVID-19 pandemic pushed more activity on to the internet, with many

people shifting to remote work, creating new challenges for the public and private sectors

[11]. This rapid increase in the number of internet users attracted hackers, hacktivists (a

person or a group of people who hack into a computer or misuse a network for a social or

politically motivated cause) and organisations with political agendas to develop sophisti-

cated new types of network attacks aimed at leaking sensitive government data, exploiting

victims’ data to steal bank account details, using ransomware to extort money from vic-

tims, etc., all in spite of strict cybercrime legislation in most of the countries. These attacks

are difficult to distinguish from benign/normal flow. As a result, cybersecurity has become

integral to a country’s national security, and businesses and governments are investing in

cybersecurity to protect against these attacks. For instance, in the UK government’s 2021

autumn budget and spending review report, there are plans to invest £2.6 billion in cyber

1

Figure 1.1: Global Digital Population as of January 2021

and legacy IT systems for the next three years (2022–2025) to improve the government’s

cybersecurity [12].

In general, network attacks have an enormous impact on an economy, and their annual cost

keeps increasing; different sectors (e.g., government, health and education) are targeted

with different types of attacks. According to Cybersecurity Ventures—the world’s lead-

ing cybersecurity researcher and publisher—cybercrimes are expected to cost $10.5 (£7.9)

trillion annually by 2025 [13].

Network attacks on businesses can be catastrophic, as they can affect reputation and cause

financial losses [14]. For instance, Ticketmaster, the American ticket sales and distribution,

was fined £1.25m over a payment data breach because the payment information for mil-

lions of European customers had been stolen due to a vulnerability in a third-party chatbot

installed on Ticketmaster’s online payments portal that allowed the hacker to gain access

[15].

2

Similarly, Flightradar24, the popular real-time flight-tracking website, was struck by three

cyberattacks on two consecutive days in September 2020 [16]. India’s national airline,

Air India, was hit by a cyberattack on its data servers in February 2021; customer details,

including passport, ticket information and credit card data, were disclosed for around 4.5

million customers [17]. A cyberattack hit Sunderland University in the UK in October

2021. This major attack left the university’s telephone, website and IT services offline

and inaccessible for several days [18]. In 2021, attackers targeted multiple UK Voice-

over-Internet Protocol service providers with DDoS attacks to render their servers down

and inaccessible [19]. A more recent cyberattack focused on the Colonial Pipeline, the

largest fuel pipeline in the US, forcing its operators to shut it down. This incident caused

distribution problems that led to consumer panic-buying and an increase in fuel prices

[20].

1.2 Research Motivation

With the increased number and complexity of the newly created network attacks, it became

challenging to detect them. One tool that can be used to defend against network attacks is

an Intrusion Detection System (IDS) which monitors and analyses the incoming network

traffic [1].

Currently, there is considerable research interest in developing an IDS using ML algo-

rithms. Many of the proposed systems are based on supervised learning methods [21];

however, these are effective only in detecting previously known attacks, as a supervised

models must be trained on an attack beforehand. This research explores the use of unsu-

pervised algorithms to address this limitation on the utility of IDSs.

Unsupervised intrusion detection aims to detect network attacks by being trained on an

unlabeled dataset, thus assuming no previous knowledge about an attack. However, because

unsupervised intrusion detection generally incurs many false positives [2], low precision

and recall results, there is a need for more investigation of these methods. Supervised

learning methods, as previously pointed out, effectively detect previously known attacks;

3

therefore, incorporating this capability into the proposed system may improve the overall

results.

Using these ML models in the system will lead to effective detection of network attacks,

but the reasoning behind the predictions of these models will not be transparent. This

disadvantage will prevent domain experts from verifying, interpreting, and understanding

the system’s logic [22]. Therefore, in order for domain experts to rely on such systems,

it is critical to overcome the transparency limitation of the black-box ML model [23] by

incorporating ML explainability into the system.

Accordingly, this research first evaluates the performance of several unsupervised algo-

rithms with respect to precision, recall, and F1-score and their limitations. Then, it exam-

ines ensemble methods as a possible way to mitigate the limitations of existing anomaly

detection methods and derive a new, more accurate, reliable technique to work as the sys-

tem’s first line of defence, while deploying a supervised model to serve as the second line.

This supervised model will be trained on the detected attacks from the unsupervised en-

semble, so as more attacks are encountered, the system learns them. Finally, this research

explores ML explainability methods to help domain experts assess threat levels by provid-

ing them with interpretations of the model’s decision.

1.3 Problem Statement

The research problem statement can be summarised as follows:

1. An increase in network sizes, speeds and complexity is causing significant challenges

in detecting network attacks. Therefore, a model capable of handling these changes

is needed.

2. Most IDSs are supervised, meaning they have been trained on attacks previously;

unsupervised IDSs usually exhibit poor detection performance, putting more pressure

on the domain expert/system administrator to fine-tune the system.

3. Current unsupervised IDSs do not provide insights into network attack detections.

4

An explanation of the detected attack would help domain experts assess the threat.

1.4 Research Questions

Based on the research problem statement, this thesis covers the following research ques-

tions:

1. Is it possible to develop an unsupervised Network Intrusion Detection System that

can exhibit a high detection performance in terms of precision, recall and F1-score

while maintaining good performance over time with the current complexity in net-

work attacks?

2. To what extent can the developed unsupervised Network Intrusion Detection System

accurately detect attacks that have not been encountered before?

3. Is it possible to improve the system’s detection accuracy after the initial discovery of

a new type of attack using supervised methods?

4. Can a mechanism within the IDS that explains attack detections help a domain expert

to assess the threat level and understand how the model’s decisions are made?

1.5 Research Aims and Objectives

The research aims to develop a novel ML system to successfully detect unknown network

attacks or attacks that have never been previously introduced to the system while maintain-

ing a low false positive rate. To achieve this aim, the following set of objectives have been

identified:

• Objective 1: Review and evaluate the current state-of-the-art literature on unsuper-

vised, supervised and ML explainability in the intrusion detection domain to under-

stand the challenges and limitations.

• Objective 2: Empirically investigate several unsupervised algorithms to identify

their capabilities and limitations to design and develop an unsupervised ensemble

5

for detecting unknown network attacks.

• Objective 3: Examine different supervised classifiers to extend the developed unsu-

pervised ensemble by adding a supervised component as a second stage to improve

the overall detection performance of the system.

• Objective 4: Investigate ML explainability techniques and use them as the final stage

of the model to explain the decision made by the system in a way that is understand-

able to the domain expert.

• Objective 5: Evaluate and discuss the final model performance and determine the

model’s effectiveness in detecting and minimising the damage of network attacks.

1.6 Research Methodology

To answer the research questions, the research will examine different unsupervised anomaly

detection methods that will be evaluated on intrusion detection datasets, which will be as-

sessed with respect to precision, recall and F1-score. Then, based on preliminary results,

the models that are effective in dealing with high network flows with high performance will

be implemented into an ensemble model as base learners, and an ensemble model consist-

ing of the selected models will be developed and evaluated on the same dataset. For this,

the following hypothesis is proposed:

• Hypothesis 1: “Anomaly detection methods can be adapted to detect new and pre-

viously unknown network attacks as new attacks are expected to be an anomaly to

the normal network flow pattern. Moreover, the detection performance can be im-

proved by constructing an ensemble-based model consisting of anomaly detection

techniques.”

Next, the study will investigate and assess the capability of supervised models to detect

attacks that the system has encountered before, to serve as a ‘second line of defence’, thus

improving the system over time. Hence, the following hypothesis is proposed:

• Hypothesis 2: “Having a supervised model will assist in detecting attacks that have

6

been encountered before, since these attacks become known to the system, thus im-

proving the overall detection results.”

Finally, model explainability methods will be applied to help domain experts understand the

black-box ML model behaviour and its decision locally (in terms of any single prediction)

and globally (in terms of the whole model). Consequently, the following hypothesis is

proposed:

• Hypothesis 3: “It is possible to obtain some explanation from the developed model

to support domain experts in evaluating the level of threats and understanding the

decisions made by the model.”

1.7 Contribution

Using ML is crucial to defend against cybercrime. This thesis empirically investigates,

tests and evaluates supervised and unsupervised ML models in terms of their performance

and explainability to help the fight against network attacks. Accordingly, this thesis makes

the following contributions:

1. The main contribution of this thesis is a novel Network Intrusion Detection System

framework, evaluated on both older (NSL-KDD) and newer (CICIDS2017) intrusion

detection datasets, for detecting a wide type of network attacks.

2. Analysis of the performance of different commonly used anomaly detection algo-

rithms such as Local Outlier Factor, Isolation Forest, One-Class SVM and Elliptic

Envelope for their suitability in detecting unknown (zero-day) network attacks.

3. A novel heterogeneous unsupervised bagging ensemble which acts as the first com-

ponent of the framework called Unknown Network Attack Detector (UNAD), capa-

ble of detecting new previously unseen and unknown network attack types. UNAD

comprises two well-known anomaly detection algorithms, the Local Outlier Factor

and Isolation Forest, which are used as UNAD’s base learners. Further, UNAD uses

the weighted majority voting as a results combiner method for its base learners.

7

4. Analysis of the performance of different supervised algorithms, namely Random For-

est, KNN, Naive Bayes and AdaBoost, as a second component in the framework to

improve the detection performance of the network attacks. The empirical results

showed that Random Forest outperformed the other three algorithms in boosting the

detection of the attacks.

5. A utilisation of explainable Machine Learning as a third component of the framework

which includes:

(a) An adaptation of LIME as a local explainable method which aims to provide

domain experts with explanations for any data instances, thus helping to under-

stand the prediction made by the ML model for any data instance in the dataset.

(b) An adaptation of the surrogate method as an explainable global method to pro-

vide a comprehensive explanation of the model and, within this global explain-

able method, a rule extractor is developed, which extracts the rules of the ex-

plainable model and generates a CSV report for domain experts in a readable

and understandable way.

1.8 Publication

Part of Chapter 3 and Chapter 4 of this thesis appears in the following publication:

1. Alzubi, Saif 1, Stahl, Frederic 2 and Gaber, Mohamed Medhat 3. ‘Towards intru-

sion detection of previously unknown network attacks’ In 35th ECMS INTERNA-

TIONAL CONFERENCE ON MODELLING AND SIMULATION, pp. 35-41 ,

2021 [24].

1Lead author: Conducted the experiments and wrote the manuscript.
2Revised and edited the manuscript.
3Paper final revision.

8

1.9 Thesis Experimental Data and Code

Thesis experimental data and research code are available at https://github.com/salzoubi/

PhD experiments

1.10 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2: This chapter discusses using ML in the intrusion detection field. First, it pro-

vides an overview of the IDSs types and methods. Then, it reviews anomaly detection tech-

niques and describes some of the supervised and unsupervised learning algorithms used for

classification in anomaly detection tasks. Next, it presents the measures used to evaluate

IDS models’ performance which will help assess the thesis’s experimental results. Then, it

explains the ensemble techniques and the methods used to combine the ensemble results.

In addition, this chapter discusses model explainability in ML in general and presents stan-

dard preprocessing methods. Finally, this chapter discusses work related to unsupervised

intrusion detection.

Chapter 3: This chapter describes the research methodology workflow and the system’s

three components. Further, it describes the experimental setup, the datasets used in the ex-

periments and the preprocessing workflow for each dataset. Then, it evaluates the selected

anomaly detection algorithms and presents a discussion of the preliminary experiments’

results. Finally, the initial experiment summary appears at the end of this chapter.

Chapter 4: This chapter answers RQ1 and RQ2 of this thesis. First, it describes the

proposed unsupervised ensemble learner UNAD’s architecture and workflow, which acts

as the first component of the system. Next, it compares UNAD’s results with its stand-

alone algorithms. It also provides an experimental evaluation of the UNAD ensemble using

two results combiner methods, Majority Voting and Weighted Majority Voting. Then, this

chapter compares and summarises the results of these two methods. Finally, it highlights

the best methods to adopt for UNAD as a results combiner based on the given results.

9

https://github.com/salzoubi/PhD_experiments
https://github.com/salzoubi/PhD_experiments

Chapter 5: This chapter answers RQ3 and RQ4 of this thesis by presenting the second and

third components of the system. First, it describes the supervised component’s workflow in

detail, which acts as the second component of the system. Next, it introduces the proposed

classifiers used for the second component and compares and summarises their results. It

also provides a further investigation of the second component’s selected classifier. This

chapter highlights the importance of explainability in ML—the third component of the sys-

tem—and the benefits of incorporating it. Finally, it explains the two types of explainability

considered in this thesis and provides examples for each type.

Chapter 6: This chapter presents the overall boosted results after implementing the sec-

ond component and combining its results with UNAD. It begins by revisiting UNAD and

the second component classifier results and then comparing them with the overall com-

bined results. A further investigation of the detection rate for benign/normal and all attack

types after combining the second component classifier results with UNAD results is also

discussed.

Chapter 7: This chapter provides a summary and conclusion of the project. It also presents

the investigated research questions and hypotheses and their outcomes. Finally, it discusses

the limitations and the future direction of this thesis.

10

Chapter 2

Background and Literature Review

This chapter presents a comprehensive overview of the use of ML in the intrusion detec-

tion domain. It begins by explaining the taxonomy of IDS in general and presents anomaly

detection methods and techniques. It also describes some supervised and unsupervised

learning algorithms used for classification in the anomaly detection field. Furthermore, it

reviews the standard measures used to assess ML models’ performance within the intru-

sion detection domain to evaluate the research experimental results. Hence, they will help

answer the research questions and address research hypotheses.

Additionally, it discusses ensemble techniques and their combination methods, which will

be the starting point in building the unsupervised ensemble model. It also provides an

overview of model explainability in ML. Furthermore, a section on dataset preprocessing

methods for ML models is also included in this chapter. Finally, this chapter provides a

critical analysis of some related works relevant to unsupervised intrusion detection and

highlights some of their limitations.

11

2.1 Intrusion Detection System

Intrusion is defined as ‘An unauthorised penetration of your enterprise’s network, or an

individual machine address in your assigned domain’ [25]. It is believed that many unre-

ported or unnoticed intrusion cases may exist, as systems can never be completely secured

[26]. Furthermore, these intrusions can originate from someone either inside or outside the

network system seeking to gain unauthorised access [27]. Hence, networks must be con-

stantly monitored to avoid intrusions, which can be achieved by implementing Intrusion

Detection Systems [26, 27].

Anderson introduced the IDS concept in the 1980s [28]. Intrusion detection is a cyberse-

curity mechanism that aims to detect abnormal behaviour (i.e., attacks) in the host and/or

network environments, requiring a quick response to stop the behaviour once detected [29].

IDSs is categorised by the type (deployment method) and the detection method used. Fig-

ure 2.1 shows the IDSs categories.

Figure 2.1: Intrusion Detection System Categories

12

2.1.1 Types of Intrusion Detection System

IDSs can be categorised into two types: host-based IDSs (HIDS) and network-based IDSs

(NIDS), which are described as follows:

Host-Based Intrusion Detection System (HIDS)

A HIDS depends entirely on the host system itself [30]. It monitors the events running

on a single host machine to detect internal intrusions (attacks) [31]. This can be done by

collecting and analysing information about the host machine’s activities, such as integrity

of the file system, host access, system registry and system log files [31, 32]. Hence, once an

abnormal behaviour or an attack incident occurs, the HIDS system should detect it [33] and

promptly report it to the system administrators. However, the limitations of HIDS are that

they only monitor the host that the system is installed on and consume the host machine’s

resources, which affects its overall performance [34].

Network-Based Intrusion Detection System (NIDS)

NIDS are intended to detect and identify potentially malicious activities such as DoS,

DDoS and portscan attacks by monitoring the network streams [35]. Furthermore, NIDS

monitor, capture and analyse network traffic to detect possible intrusions throughout the

network [36]. The crucial factors for effective NIDS are processing and analysing the

traffic promptly, with high accuracy [35], to find suspicious patterns. Nevertheless, NIDS

cannot detect attacks in encrypted traffic and cannot provide full detection support under

high network traffic [36].

13

2.1.2 Intrusion Detection System Methods

There are two intrusion detection system methods: misuse-based IDSs and anomaly-based

IDSs.

Misuse-Based Intrusion Detection System Method

Misuse-based Intrusion Detection Systems use a set of predefined rules that are stored in

the IDS database; each rule represents a signature of a known attack pattern [37, 38]. The

IDS matches these rules with the network traffic packets to detect malicious traffic, and

if a pattern matches any of the rules stored in the IDS database, the system detects it and

triggers an alarm [37, 38, 39]. An example of a misuse-based IDS is the Snort Intrusion

Detection System [40]. Misuse-based IDS are known for achieving low false alarm rates

[41]. However, they fail to detect novel or unknown attacks since no pattern is stored

about them in the system’s database [42, 43]. Hence, once a new attack occurs, the domain

expert/network administrator should update the system’s database by adding the new attack

pattern to be able to identify the attack and detect it in the future, which can be a tedious

and time-consuming process [42, 43].

Anomaly-Based Intrusion Detection System Method

An anomaly in network security context is an event that is unusual [44]. Hence, anomaly

detection is the identification of patterns in data that do not match normal or known be-

haviour [45]. This method assumes that abnormal behaviour is uncommon and different

from normal behaviour [41]. In contrast to the misuse-based IDS method, the anomaly-

based IDS method can detect unknown and novel attacks [46]. In the anomaly-based

method, a baseline profile for the expected behaviour is created by monitoring normal and

regular activities from different sources, such as network connections, hosts or users, over

a period of time [36]. Then, the system compares the patterns with the created profiles [41].

If a divergence from the expected behaviour occurs, the system will detect it and trigger

an alarm [41]. The drawback of this method is that it suffers from high false positive rates

[47].

14

Based on the descriptions provided for the IDS and its types and methods in this section

and aligned with the thesis research questions and objectives, this thesis will implement a

Network-Based Intrusion Detection System (NIDS) because it is concerned with examin-

ing and detecting network attacks. Furthermore, this thesis will examine anomaly-based

IDS methods because they include ML methods, which will be reviewed in the following

section.

2.2 Anomaly Detection Methods and Techniques

Many anomaly detection techniques have been employed to detect network attacks. The

most-used techniques are statistical-based anomaly detection, classification-based anomaly

detection and clustering-based anomaly detection. These methods are described as fol-

lows:

1. Statistical-based anomaly detection: According to Anscombe and Guttman [48], a

statistical anomaly is defined as ‘an observation which is suspected of being partially

or wholly irrelevant because it is not generated by the stochastic model assumed’

[48]. Therefore, statistical-based anomaly detection works by applying a statistical

model to the dataset in which a statistical inference test is used to determine whether

the unseen data instances are relevant to this model [45]. Hence, data instances with a

low probability of being relevant to the model are deemed anomalies [45]. The test is

adjusted for each distribution based on the number of expected outliers and the space

in which to expect an outlier [45]. A commonly used test is the three-sigma rule

(3σ − rule), in which data instances that diverge more than three times the standard

deviation from the mean of the normal distribution can be counted as outliers [49].

2. Classification-based anomaly detection: This technique consists of two steps—the

training step, which trains the classifier using the training data in a feature space,

and the testing step, which classifies and distinguishes unseen data instances into

two categories as normal or anomalous using the trained classifier [45]. The training

step depends on the normal traffic activity profile, which establishes the knowledge

15

base and considers activities that differ from the normal traffic activity profile as

anomalous [50]. The advantage of classification-based anomaly detection is that it

can detect new and unseen attacks in an unsupervised way, assuming that they present

divergences from the normal profile [45]. An example of supervised classification-

based anomaly detection algorithms are K-Nearest neighbour (KNN) and Decision

Tree (DT); examples of unsupervised algorithms include Isolation Forest (iForest)

and Local Outlier Factor (LOF).

3. Clustering-based anomaly detection:

This unsupervised method places similar data instances into clusters [45]. Hence,

data instances that do not belong to any clusters are considered outliers [49]. In

order to detect outliers, clusters are assigned using a threshold to distinguish between

inliers and outliers [45, 49]. Hence, data instances below that defined threshold are

recognised as outliers [45, 49].

As explained by Chandola et al. [45], clustering-based anomaly detection depends on

one of three assumptions. The first is that that normal data instances fit in the cluster,

while anomalies do not fit in any cluster. An example of an algorithm based on

this category of assumption is DBSCAN. The second assumption is that normal data

instances are located near the centre of the closest cluster, while anomalies are distant

from the centre of their closest cluster. An example of an algorithm based on this

category is K-Means Clustering. The third assumption is that normal data instances

reside in large clusters, while anomalies reside in small or scattered clusters. An

example of an algorithm based on this category is the Cluster-Based Local Outlier

Factor [45].

16

2.3 Network Anomaly Detection Using Machine Learning

Algorithms

Many of the ML algorithms used for classification tasks have been applied to Intrusion De-

tection Systems. This section presents the unsupervised and supervised classification ML

models explored and implemented for this thesis. These models, which have been used

widely in the literature, are expected to perform well in detecting network attacks. The use

of unsupervised ML algorithms will help detect new and unknown network attacks which

have not been introduced to the system before. Among the reviewed algorithms are LOF,

iForest, Elliptic Envelope (EE) and One-Class Support Vector Machine (OCSVM). Super-

vised learning methods can detect previously known attacks that have been introduced to

the system. Therefore, implementing the supervised algorithm will help boost the sys-

tem’s ability to detect network attacks once it becomes known to the system. Among the

considered supervised algorithms are Decision Tree (DT), Random Forest (RF), Adaptive

Boosting (AdaBoost), Naive Bayes (NB) and K-Nearest Neighbor (KNN).

2.3.1 Unsupervised Machine Learning Algorithms

1- Local Outlier Factor (LOF)

LOF detects local outliers by comparing the local density of an object to its neighbours

[51]. LOF considers an object an outlier if the average of the local reachability density

of that object is lower than the local reachability density of its neighbours [51]. LOF’s

main advantage is detecting local and neighbouring outliers to data instances in very large

datasets with heterogeneous densities [52, 53].

2- Isolation Forest (iForest)

According to Liu et al. [54], an iForest is a tree-structured algorithm which partitions all

data instances until they are fully separated. Moreover, iForest assumes that anomalies are

expected to be split in early partitioning; therefore, instances with short path lengths are

17

expected to be anomalies. iForest provides low linear time complexity with a low memory

requirement, making it ideal for detecting network attacks quickly. Furthermore, iForest

can deal with high-dimensional data with unrelated attributes [54].

3- Elliptic Envelope (EE)

EE detects outliers on multivariate Gaussian distributed datasets [55]. EE creates and fits

an ellipse around the centre of a group of data instances using the Minimum Covariance

Determinant (MCD) [55]. Hence, any data instance outside the ellipse is considered an

outlier [55].

4- One-Class Support Vector Machine (OCSVM)

OCSVM, introduced by Schölkopf et al., extends the SVM algorithms. OCSVM creates a

function f that returns +1 for normal data points and −1 for outliers [56]. The OCSVM

uses kernels to map the data into a nonlinear high-dimensional feature space, thus separat-

ing them from the origin with a maximum margin boundary [56]. Furthermore, it creates a

hyperplane that works as that boundary to separate normal data points (+1) from anoma-

lies (−1) [56]. OCSVM can detect outliers, but it requires a high computational complexity

when dealing with large and high-dimensional datasets [57, 58, 59, 60], which makes it un-

suitable for dealing with a large amount of network flows.

2.3.2 Supervised Machine Learning Algorithms

1- Decision Tree (DT)

DT is a simple but effective ML method which can be applied to classification and regres-

sion tasks [61]. DT is a tree-structured model formed of internal and leaf nodes [61]. The

internal nodes represent the tests on features, while the leaf nodes represent a class label

[61]. Hence, each branch of the tree depicts a possible outcome. Furthermore, the classi-

fication rules are derived from the the leaf node to the root node [61]. The most common

DT algorithms are ID3, C.45 and CART. DT uses different splitting criteria, such as Infor-

mation Gain, Gain Ratio, and Gini Index, which aim to achieve the best separation for a

18

given data in order to group similar data into smaller partitions based on the outcomes of

the splitting criterion [62]. The advantages of DT are that they can deal with both nominal

and numeric input features and the possibility of turning the decision trees into a set of

rules, hence providing simplicity in interpreting the rules [63].

2- Random Forest (RF)

RF is an algorithm developed by Breiman [64]. According to Breiman [64], RF can be

applied to classification and regression tasks. RF consists of an ensemble of the CART

decision tree in which each tree is trained on a bootstrap sample of the training set with

replacement using the resampling method [64]. Furthermore, on each bootstrap sample,

about one-third of the training set is retained as a testing set (out-of-bag sample), which

estimates the prediction error for the DT [64]. Concerning the prediction results, RF uses

Majority Voting in the classification task where each tree in the ensemble represents one

vote, and the class with the highest number of votes is selected as the final prediction [64].

The main advantage of RF is that it has a low probability of overfitting [64].

3- Adaptive Boosting (AdaBoost)

AdaBoost is a boosting ensemble algorithm developed by Freund and Schapire. AdaBoost

uses a sequential approach to create highly accurate predictions by combining many sub-

sequent weak learners [65]. First, it creates a set of base learners that assign an equal

weight for the training data instance [66]. Next, if a training data instance is misclassi-

fied, the weight of that training data instance is increased, and the following base learner is

then trained on the updated weight [65, 67]. Finally, the final prediction is determined by

computing the weighted majority vote of all base learners in the ensemble [65].

4- Naive Bayes (NB)

NB is a probabilistic ML classifier based on the Bayes’ theorem; it works on the assumption

that the probability of one feature does not influence the probability of the others and that

all features are mutually independent in a given class [68, 69]. The main advantage of NB

is that it can deal with many features and datasets [70].

19

5- K-Nearest Neighbor (KNN)

The KNN algorithm was first introduced in the early 1950s [62]. KNN is known for being

an easy-to-apply classification method [71]. The KNN selects a set of k data instances in the

training set, which are the nearest to the unclassified/unlabelled data instance in the testing

set [71]. The closeness of the k data instances is calculated using distance or similarity

metrics such as Euclidean distance [71]. Furthermore, the optimum number of the KNN is

determined experimentally, where the experiments are repeated by incrementing the value

of k to add more neighbours [62]. Hence, the k value, which provides the highest results,

is selected [62]. For the final results, KNN uses majority voting, where the class label with

the highest number of votes between the k data instances is selected [71].

2.4 Intrusion Detection Systems Evaluation Measures

This section describes the evaluation measures used to evaluate the performance of the

Network Intrusion Detection Systems (NIDS). Typically, the main performance measures

used to evaluate a NIDS are the confusion matrix, accuracy, recall, precision, F1-score and

Receiver Operating Characteristics (ROC) [27].

1. Confusion matrix: An n× n matrix used to evaluate the performance of a classifier

[72]. For example, in a binary classification task, a 2×2 confusion matrix is produced

(figure 2.2) to define the dispositions of the set of instances [72]. Moreover, several

evaluation metrics, such as accuracy, recall, precision, F1-score and ROC-AUC, can

be obtained from the confusion matrix [72].

20

Figure 2.2: Sample Binary Confusion Matrix

A confusion matrix consists of the following measures [62] in a Network IDS evalu-

ation:

• True Positive (TP): The number of attack instances (malicious traffic) pre-

dicted (detected) correctly.

• True Negative (TN): The number of normal instances predicted (detected) cor-

rectly.

• False Positive (FP): The number of normal instances predicted (detected) in-

correctly.

• False Negative (FN): The number of attack instances (malicious traffic) pre-

dicted (detected) incorrectly.

2. Accuracy: Measures the percentage of data samples that are correctly classified

[62]. However, the accuracy measure is unreliable when used to evaluate models

based on imbalanced datasets and provides inaccurate and misleading results [73].

The accuracy metric is defined by the following equation [62]:

acc =
TP + TN

TP + TN + FP + FN
(2.1)

21

3. Precision: Denotes the proportion of predicted positive data instances that are indeed

positive data instances [74]. The precision metric is defined by the following equation

[62]:

precision =
TP

TP + FP
(2.2)

4. Recall (Sensitivity/Detection Rate): Denotes the proportion of positive data in-

stances that are predicted correctly [74, 75]. The recall metric is defined by the

following equation [62]:

recall =
TP

TP + FN
(2.3)

Note: in this thesis, the term Detection Rate will be used to indicate the number of

correctly detected attacks (TP) to the total number of that attack type (TP + FN).

5. F1-score:: Denotes the harmonic mean of recall and precision [62]. The F1-score

metric is defined by the following equation [62]:

F1 = 2× recall × precision

recall + precision
=

2TP

2TP + FP + FN
(2.4)

6. Receiver Operating Characteristic (ROC) Curve: A two-dimensional graph used

to plot and choose classifiers based on their performance [72]. The ROC curve plots

the trade-off between the false alarm rates (False Positive Rate) on the x-axis and

the True Positive Rate (Recall) on the y-axis of the classifier at a different threshold

values [72]. A perfect ROC curve has a 0% false alarm rate while having a 100%

True Positive Rate [76]. However, this is hard to achieve in a real-world scenario;

thus, literature tends to calculate the True Positive Rate for several false alarm rates

and plot the results on the ROC curve graph [76].

7. Area Under the Curve (AUC): A classification performance measure [77] com-

monly used with the ROC measure and referred to as the Area Under the ROC Curve

(ROC-AUC) [72, 78]. AUC calculates the percentage of accurately ranked pairs of

22

positive and negative data samples [79]. AUC is interpreted as the higher the AUC,

the more effective the classifier [80]. For instance, a classifier with an AUC of 1 de-

picts a perfect and correct classification, while an AUC near 0.5 indicates a classifier

with a random classification [80].

Figure 2.3: ROC-AUC Example on Toy Dataset

Figure 2.3 illustrates ROC-AUC results on a toy dataset. In this figure, the x-axis

represents the FPR and the y-axis represents the TPR. The blue line represents the

ROC curve, while AUC is the entire area underneath the ROC line shaded in light

grey. The result shows that the classifier has reached an ROC-AUC of 92%, meaning

that the classifier is nearly perfect in distinguishing between positive and negative

data instances.

23

2.5 Ensemble Methods

Ensemble methods combine a set of multiple weak classifiers, known as base learners, to

improve the performance and reach better results over the ensemble’s base learners [81].

Therefore, applying the ensemble methods in the system is expected to help overcome any

shortcomings in the anomaly detection algorithms and provide stronger results than these

algorithms, once they are implemented as base learners for the ensemble.

Ensemble methods are categorised into two main types: homogeneous ensemble, which is

using the same algorithm to produce different base learners, and heterogeneous ensemble,

which is using different base learners from different algorithms [81]. The most popular

ensemble methods are bagging, boosting and stacked generalisation.

2.5.1 Bagging

The bagging method, first introduced by Breiman [82], is an abbreviation of ‘bootstrap

aggregating’. According to Breiman [82], the bagging method produces multiple base

learners where each base learner is trained on a random sample of the training set with re-

placement ‘bootstrap sampling’. Hence, the probability that any data instance in the train-

ing set will occur in the sampling at least once is 1 − (1/e) ≃ 0.632 for each base learner

[82]. However, some samples may not appear in the sample [82]. The main advantages

of bagging are the reduction of error generalisation and the improvement of performance

while reducing unstable learners’ variance [81].

2.5.2 Boosting

Boosting is a sequential ensemble method that aims to transform weak learners into strong

learners [81]. Weak base learners are created and trained sequentially; the subsequent base

learners focus more on the mistakes of the previous base learners and correct them by giving

the mistakes a higher weight [81, 83]. Therefore, the base learners become dependent on

each other. The main advantage of boosting is reducing the bias of the weak learners [84].

An example of a boosting algorithm is AdaBoost [83].

24

2.5.3 Stacked Generalisation (Stacking)

Wolpert proposed stacking in 1992. Stacking is commonly made up of two levels; the

first level comprises different algorithms, trained on the entire training set, in which the

output (prediction) of the first level algorithms serves as input features for the second level

[81, 85]. The second level, commonly known as the meta-learner, is a combiner algorithm

that makes the final prediction based on the first level’s predictions [81, 85]. The main

advantage of stacking is reducing error generalisation [81].

2.6 Ensemble Results Combiner Methods

Once the base learners make their predictions, they are aggregated for the final results. The

aggregation method depends on the type of problem. For example, voting methods are used

for classification problems, while averaging methods are used for regression problems [81].

These methods are described by Zhou [81] as follows:

2.6.1 Voting

1. Majority Voting: Every base learner provides an equal vote for one class label, and

the final prediction is made for the class label with more than half of the votes [81].

2. Plurality Voting: Each base learner in the ensemble provides one vote for the class

label; unlike majority voting, which requires the class label to have more than half of

the votes to be selected as the final prediction, plurality voting selects the class label

with the most votes as the final ensemble prediction. [81].

3. Weighted Voting: In this method, a higher weight value is given to the base learners

that provide better performance; thus, these will have more weight in the voting [81].

4. Weighted Majority Voting: In this method, a weight is assigned to each base

learner, obtained from the prediction performance for each base learner in the en-

semble [86]. Then, the total weight of the base learners is combined and calculated

for each class, and the class with the highest weight is selected as the final result

25

[86, 87].

5. Soft Voting: This method calculates the probabilities of the class labels; the final

prediction is made for the class with the highest sum probability [81].

2.6.2 Averaging

1. Simple Averaging: This method calculates the average of the predictions from indi-

vidual learners. Therefore, the final prediction is made for the class with the highest

sum average [81].

2. Weighted Averaging: This method calculates the weighted average of the predic-

tions from individual learners, where each base learner has different weights based

on their performance. Hence, base learners with better performance contribute a

higher weight proportion [81].

2.7 Model Explainability in Machine Learning

Explainability and interpretability are often used interchangeably [88, 89, 90]. In the con-

text of ML, explainability is defined thusly: ‘Given a certain audience, explainability refers

to the details and reasons a model gives to make its functioning clear or easy to under-

stand’ [91]. Hence, explainability aims to answer questions in the form of what-questions,

how-questions and why-questions [92]. Consequently, to be considered useful, models are

expected to provide the reasoning process, results and recommendations behind their deci-

sions. Therefore, an explainable model can support domain experts and system developers

in understanding its decisions and reasoning process, allowing them to adjust the model

accordingly [93]. Explainability goals are described by Arrieta et al. [91] as follows:

1. Trustworthiness: Confidence that the model will perform as expected when dealing

with a problem.

2. Interactivity: Provide the end-user with the capability to adjust and interact with the

models to ensure success.

26

3. Accessibility: Allow end-users to get more engaged in improving and building the

model, making it easier for non-experts to deal with models.

4. Informativeness: Explainable models provide information about the problem being

addressed to link the user’s decision to the answer provided by the model.

2.7.1 Machine Learning Explainability Criteria

Explainability in ML can be categorised by model, method and scope [88].

1. Explainabilty by model:

• Intrinsic Explainabilty: A self-explanatory ML model that can provide ex-

plainability as part of its structure [88, 94].

• Post-hoc Explainabilty: Helps explain models that are not explainable by de-

sign by applying explanation methods after the training of the model [91, 95].

2. Explainabilty by method:

• Model-agnostic: A post-hoc method that can be used on any model after train-

ing. However, the model-agnostic method cannot access model internals such

as weights or structural information [88].

• Model-specific: An intrinsic method that is restricted to a certain ML model

and cannot be applied to any other models. For instance, the explanation of the

weighted linear regression model is model-specific and cannot be performed on

any other model [88].

3. Explainabilty by scope:

• Local Explainability: Explains individual/single prediction. Thus, it helps un-

derstand how the model made the decision (prediction) for any single prediction

[96].

• Global Explainability: Explains the entire model, therefore, it helps under-

standing of the overall reasoning of the model [96].

27

2.7.2 Machine Learning Explainability Techniques

The most common techniques used to explain a ML model are as follows:

• Decision Trees (DT): A tree-structured model formed of internal and leaf nodes [61].

The internal nodes represent the tests on features, while the leaf nodes represent a

class label [61]. Hence, each branch of the tree depicts a possible outcome [61].

Furthermore, the classification rules are derived from the leaf node to the root node.

The most common techniques used in DT are C4.5 and ID3 [61].

• Rule-based: Creates rules to identify data that the model will learn from. In rule-

based, the knowledge is stored as simple rules in the IF-THEN form or as a set of

more complicated simple rules [91]. Common rule-based techniques are RIPPER

and CN2 [97].

• Partial Dependence Plot (PDP): Helps visualise the relationship between the re-

duced input features space and the model’s predicted outcome [96].

• Features Importance (FI): A simple method that returns the weight and importance

of the features used in the model as an explanation [96]. The feature importance is

calculated using the weights of the coefficients, which define the association between

the features and the target of linear models used as explainable models [96].

• Linear and Logistic Regression classifiers: The linear regression model is used to

understand the relation between independent and dependent features, in which the

dependent variables are considered a continuous outcome [98]. The logistic regres-

sion model, by contrast, predicts a binary dependent feature; hence, the result is only

one outcome variable [91].

• Global Surrogate method: A model-agnostic method that does not require any

knowledge of how the model works internally [99]. It explains the prediction of

a complex model’s ‘black-box’ using uncomplicated self-explanatory models such

as decision trees [99, 100].

28

2.8 Dataset Preparation (Preprocessing)

Data preprocessing is a vital phase to be performed before feeding the data into models

and has a significant effect on the accuracy and performance of the ML model [101]. The

dataset preprocessing methods considered in this research are as follows:

1. Data Cleaning: It consists of handling missing, NaN and redundant values by either

dropping the instances or using statistical methods to maintain data quality and avoid

biased results [62, 102].

2. Categorical Encoding: It consists of converting categorical columns to numeric

form so the model can understand and interpret these inputs [102].

3. Training, Validation, and Test Split step: To evaluate the performance of the mod-

els and how they perform on new data, performance assessment methods should be

completed [103]. However, these methods can also ensure that the models are not

overfitting, which occurs when the classifier is very customised to the training set

and fails to generalise to new data from the same environment [103]. Moreover,

these methods help in the model selection by tuning the model’s hyperparameters,

which is a set of parameters that need to be tuned before running [104]. The most

common performance assessment methods are Leave-one-out Cross-Validation, k-

Fold Cross-Validation and Hold-out Cross-Validation.

(a) Leave One Out Cross-validation: Every data instance in the dataset works as

a validation set (k = 1) [105]. Hence, the first validation set is the first data

instance and the second validation set is the second data instance, and so on

[105].

(b) k-fold Cross-validation: A dataset is first randomly split into k disjoint sets

with nearly the same size of data instances [106]. Then, it is trained using k−1

and evaluated on the remaining set, which is known as the validation set. This

method is repeated k times until each set has worked as a validation set [106].

The final model performance is calculated by taking the overall mean for all the

29

k validation sets [105, 106].

(c) Hold-out validation: A simple cross-validation method with a single split of

data (2-fold cross-validation) [107]. The dataset is split into two sets, the

training set and the testing set (the hold-out set) [107]. A popular method in

the hold-out validation is dividing the original dataset into training, validation

(commonly known as development set) and test sets [108]. The validation set

will be used to assess the generalisation performance of the ML algorithm and

ensure that the model is not overfitting on the test set [108].

4. Data Transformation (feature scaling): In this step, data normalisation and data

standardisation are standard methods which are described as follows:

(a) Data normalisation (MinMax scaling): Features are transformed between a

range of [0,1] where the minimum feature value is 0 and the maximum fea-

ture value is 1 [109]. MinMax scaling is defined by the following equation

[109]:

Xscaled =
X −Xmin

Xmax −Xmin

(2.5)

(b) Data standardisation: Features are transformed to have a mean of zero and

a standard deviation of 1; therefore, features will have a standard normal dis-

tribution (Gaussian distribution). Standardisation is defined by the following

equation [109]:

Xscaled =
X −Xmean

Xsd

(2.6)

5. Dimensionality Reduction: A technique used to lower the number of input variables

in a dataset [110]. Hence, help mitigate the curse of dimensionality problem, which

occurs when the ML model is not performing well due to dealing with a high number

of features (high dimensional spaces) [111].The most popular unsupervised meth-

ods are Principal Component Analysis (PCA) and Independent Component Analysis

30

(ICA), where the input feature space is converted into a lower-dimensional subspace

that keeps most of the relevant information [110].

(a) Principal Component Analysis (PCA): An unsupervised multivariate statistical

technique that transforms large feature spaces into a smaller unrelated subspace

by discovering a few orthogonal linear groups of the original features with the

greatest variance [112, 113]. One of PCA’s main advantages is that it increases

interpretability, yet it minimises the information loss simultaneously by gener-

ating new uncorrelated features [112, 113, 114].

PCA works by converting n correlated random features into d ≤ n uncorrelated

features [114]. Therefore, the new generated features are a linear reduced form

of the original features [114]. The first transformed component is the reduced

form of the original feature with the greatest variance [113]. Therefore the

first principal component is projected in the direction where the projection’s

variance is maximised, and the second principal component is the reduced form

of the original feature with the second-largest variance, and orthogonal to the

first principal component [113].

(b) Independent Component Analysis (ICA): This method aims to obtain a lin-

ear representation from non-normally distributed data to reduce the statistical

dependence between components [115, 116]. Hence, ICA assumes that the

data are linearly mixed by a group of isolated independent sources; therefore,

breaking up (unmixing) these sources is based on their statistical independency

calculated by the sources’ shared information [117]. ICA model is defined by

the following equation 2.7:

x = As (2.7)

Where:

• x : Denotes the observed features

31

• A : Denotes the mixing matrix

• s : Denotes the independent components

6. Feature Selection: A method used to reduce the number of features by choosing

a subset of relevant features that can efficiently represent the input data while min-

imising the impact of noise and redundant and irrelevant features to improve the ML

model performance [118, 119]. In addition, feature selection helps create a more

generalisable prediction ML model, lowers computational costs, and reduces the re-

quired storage [120]. Feature selection is categorised under three main methods:

Filter, Wrapper and Embedded methods [121].

(a) Filter method: This method selects a subset of features independently from

the classification model by ordering the features using some criteria such as

distance, dependency, information and correlation [120]. Once the features are

ranked, a threshold is used to filter out less relevant features that do not help

determine the classes, while leaving only features that hold helpful information

in predicting these classes [119]. Examples of the filter methods algorithms

are Fisher score, correlation coefficient and Information Gain based methods

[118, 119, 120].

(b) Wrapper method: In this method, the selection of the features depends on the

performance of the chosen ML algorithms [121]. The selected ML model is

wrapped around a search algorithm (hence the name) to find the best subset

of features that produces the highest performance results [119]. A wrapper

algorithm will first create a set of features and then evaluate those features using

the chosen ML model [119, 120, 121]. This process is repeated until either the

optimal performance is obtained from the model or the predefined number of

features is achieved [119, 120, 121]. Examples of the wrapper search algorithm

are forward selection and backward elimination [118].

(c) Embedded: The embedded method combines the filter and wrapper methods.

It aims to include feature selection as part of the ML model training [121].

32

According to Tang et al. [120] embedded methods have three different types

[120]:

i. The pruning method: This method begins by training the model on all

features and then prunes the least important features returned by the model

by assigning the corresponding coefficients to zero. This method works

recursively so that less important features are eliminated in each iteration

until finally reaching the number of desired features. An example of this

method is Recursive Feature Elimination (RFE).

ii. ML algorithms with their own feature selection mechanisms, such as ID3

and C4.5 decision trees.

iii. Regularisation ML algorithms such as Ridge and Lasso which aim to min-

imise the model’s fitting errors and force the feature coefficients to be small

or exactly zero.

7. Handling Imbalanced Datasets: A class imbalance occurs when the number of in-

stances in one class is significantly more than in other classes [122]. Imbalanced

datasets are a common issue in the intrusion detection domain [123], where in this

case, the number of normal classes significantly overcomes the number of benign/attack

classes. Class imbalance can cause the classification model to be biased in favour of

the majority class [124]. Hence, some evaluation metrics, such as accuracy, will be-

come impractical for evaluating the performance of the model [124]. To overcome

this challenge, the data instances in the training set should be resampled. This can be

done using two techniques: oversampling the minority class by increasing the num-

ber of data instances that belong to the minority class to correspond to the number of

data instances that belong to the majority class, or undersampling the majority class

by reducing the number of instances that belong to the majority class to correspond

to the number of data instances that belong to the minority class [125].

33

2.9 Related Work

Supervised ML methods for IDS commonly achieve high accuracy, recall and precision,

such as [126, 127, 128]. Nevertheless, these methods are not suitable for detecting unknown

attack types. Accordingly, unsupervised ML methods are examined.

This section discusses some of the relevant work on detecting intrusion using unsupervised

ML by presenting the methods and techniques used to detect these intrusions and providing

a critical analysis of these works. Furthermore, a summary table of the reviewed literature

is provided at the end of this section.

2.9.1 Unsupervised Anomaly Algorithms for Intrusion Detection

Labonne et al. [129] propose an IDS framework that consists of five neural networks: deep

autoencoders, deep MLPs, LSTMs, BiLSTMs, and GANs. After the preprocessing stage,

the algorithms were trained on the protocol headers in an unsupervised way. The method

was evaluated on 11 attack types on the CICIDS2017 Dataset. Furthermore, the proposed

IDS had the capability of adding or removing protocols based on the monitored network.

However, the authors mentioned that the training time for the algorithms was very high,

taking up to 14 hours to train a single protocol. Furthermore, the method failed to detect

four of the attack types.

Lee et al. [130] propose a method that analyses traffic to identify whether the network

traffic is benign or attack. Their approach used Deep Sparse AutoEncoder (DSAE) as an

unsupervised dimensionality reduction method, assuming that since DSAE compresses im-

ages without reducing the number of features, it can reduce the number of features without

any loss. Once the features were reduced, the RF algorithm was used to classify the net-

work flow. The method was evaluated on the CICIDS2017 dataset. The authors claimed

that their approach improved the training time and classification by 99%. However, the

recall and F1-score for the rare classes, such as infiltration and heartbleed attacks, were

low.

34

Mhamdi et al. [131] propose a hybrid unsupervised method to detect DDoS attacks in

the Software Defined Networking (SDN) paradigm. For their approach, they used stack

autoencoder and OCSVM. Like Lee et al. [130], they used SAE as a feature extraction

method to reduce the number of features. Afterwards, they trained the OCSVM to detect

DDoS attacks. Their approach was evaluated on the CICIDS2017, for which they were

able to obtain good results. However, OCSVM has a high computational complexity [57,

58, 59]; therefore, it requires a long training time. Furthermore, the method proposed was

evaluated on only one network attack type. In addition, the authors mention that they had a

high false-positive rate, but no number was provided in the paper.

Nguyen et al. [132] propose a nested OCSVM model to detect network attacks. As a part

of their method, the authors trained their model only on normal flow, where they calculated

the nearest and farthest neighbour’s distances from each data sample in the training set. The

method was evaluated on the KDD99 dataset, where it was able to detect attacks with a low

false-positive rate. However, the KDD99 suffers from a significant number of redundant

records; around 78% and 75% of the records are duplicated in the training and testing set

[5]. In addition, Nguyen et al. did not mention any preprocessing step for the dataset.

Moreover, only 4601 data instances were used in the experiment, which does not represent

real-world traffic reflecting today’s networks and attacks.

Chou and Wang [133] propose an adaptive IDS for the cloud environment formed of three

components: the preprocessor, which converts raw packets into connection records includ-

ing features; the analyzer, which implements and trains the spectral clustering algorithm to

adjust the IDS to the current environment by clustering the collected connection records;

and the detector, which makes the decisions and reports based on a decision tree. The

adaptive IDS was evaluated on the DARPA 2000 and the KDDCup 1999 data set. The

authors state that the adaptation method gave the IDS a high detection rate while keeping

the false positive rate low. However, the method assumes that attacks consist of relatively

little traffic. Hence, DoS and DDoS attacks cannot be detected as they comprise significant

traffic. Furthermore, network connection data are generated in enormous volume, making

it time and space-intensive for the spectral clustering algorithm to compute the eigenvalues

35

and eigenvectors.

Zhang and Zulkernine [134] propose an unsupervised anomaly IDS framework that uses

the RF’s proximities to detect outliers by calculating the closeness of each network service

in the dataset. Hence, if a service activity is categorised as another service, it will be

detected as an outlier. The protocols used in the experiment are FTP, HTTP, POP, SMTP,

and telnet from the KDD99 dataset. The results showed a high detection rate with a low

false positive rate. However, the authors mention that they reduced the number of normal

attacks in the training set from 4,898,431 to 47,426 without explanation for using this

number. Furthermore, the performance of the system decreases if the number of attacks

increases in the flow. Hence, like Chou and Wang et al. [133], this method will fail in

detecting attacks with high number of flows, such as DDoS attacks.

Leung and Leckie [135] propose a hybrid unsupervised anomaly detection framework con-

sisting of a density-based and grid-based high dimensional clustering algorithm for large

datasets; the proposed clustering method was derived from an algorithm called CLIQUE

[136]. To evaluate the algorithm, the authors conducted a complexity analysis, and the

results showed that it scales linearly with the number of data instances in the dataset. Fur-

thermore, the KDD99 dataset was used to evaluate the performance of the method. The

results showed that the method achieved a good detection rate while maintaining a low

false positive rate. However, the authors state that their approach suffered from a high false

positive rate compared to other clustering methods.

Pu et al. [137] propose an unsupervised anomaly detection method consisting of Sub-

Space Clustering (SSC) and OCSVM. Their approach begins by setting an empty vector,

dividing the feature into subspaces, then applying the OCSVM to each subspace to produce

a partition. The vector in this approach is used to store the distance between the different

outliers detected in the sub-space, after which the dissimilarity vector is updated depending

on each partition. Finally, the vector will order the detected outliers. Hence, the data sample

is considered an anomaly if the dissimilarity value is higher than the predefined threshold

value. To evaluate their approach, they used the NSL-KDD99 dataset; the authors claim

they obtained a high detection rate and low false alarm rate. However, the model was

36

trained and optimised on data that contains attack data instances, but OCSVM should be

trained only on normal data instances.

Zhang et al. [138] propose an IDS based on OCSVM to detect network intrusions. Their

model consisted of two modules: the first extracted the features and split the training and

testing dataset, and the second trained and tested the OCSVM algorithm. The authors used

the KDD99 dataset to evaluate their model, and the results showed a high detection rate

for some of the attacks. However, the authors did not provide any details about the feature

extraction method used in the model; moreover, they used stratified random sampling to

reduce the dataset’s size without justification for reducing the size.

Bezerra et al. [139] propose a host-based approach, called IoTDS, to detect Botnets in

IoT devices using anomaly detection algorithms, namely EE, Isolation Forest, LOF and

OCSVM. Furthermore, an HTTPS-based agent manager is used to prevent the device from

being overwhelmed by the training activities. To analyse the device’s behaviour, the au-

thors extract several features from the device’s such as CPU utilisation and temperature,

memory consumption and the number of running tasks. If the device’s behaviour displays

an irregularity, a notification of a Botnet attack is sent to the central server. This approach

was evaluated on a dataset that comprises data obtained from infected IoT devices. The

results showed a good overall prediction performance, in which the LOF algorithm had the

best performance among all the other three algorithms. Nevertheless, this approach is lim-

ited to only one attack type (botnet). In addition, a host-based system is difficult to manage

and must be installed on every IoT device; thus, it can monitor only the device on which it

is installed on.

Guven et al. [140] propose a multiple classification cyber attack framework. First, the au-

thors compared LOF, iForest and OCSVM in detecting outliers as part of the data cleaning,

followed by feature normalisation and feature selection. Next, four supervised classifiers,

Random Forest, Naive Bayes, Logistic Regression and Decision Tree, were evaluated on

the CICIDS2017 after removing the outliers. The results showed that using LOF for de-

tecting outliers with Random Forest provided the highest results.

37

2.9.2 Unsupervised Anomaly Algorithms for Outlier Detection

Sun et al. [141] propose a method to detect abnormal user behaviour on payroll access

logs using iForest. In their workflow, a parser preprocesses all log files and stores records

by users. Next, the system extracts the features for each user, and a baseline user model is

produced by generating a set of an extended iForest tree. Hence, once a new user is added

to the system, it is mapped into every iForest tree, and the anomaly score is computed. If the

score falls below the designated threshold, the user will be considered normal; otherwise,

the user is counted as an anomaly. The proposed system was evaluated on a real payroll

access log, on which they achieved a high recall. However, precision and accuracy were

relatively low for all experiments.

Xu et al. [142] propose a method to automatically tune the LOF hyperparameters. They

aimed to apply this method to anomaly detection applications in general. Thus, the authors

evaluated the method on various datasets from the anomaly detection domain. Concern-

ing the intrusion detection dataset used in the experiments, the authors chose the KDD99

dataset, focusing only on the SMTP and HTTP protocols. The experimental results showed

that both protocols achieved a relatively low F1-score. Moreover, the authors state that for

the method to be useful, it should be used with the assumption that there be enough normal

data instances in the training set and the anomalous data instances can be distinguished

from the normal data instances based on their relative local density.

Liu et al. [143] propose a two-layer ensemble method for outlier detection comprising

LOF and iForest. The ensemble works in sequential order and includes three primary

steps. First, iForest is used to calculate the anomaly score for the data points. Then, prune

data points based on the pruning threshold to acquire the outlier candidate set. Finally,

calculate the LOF value for the acquired outlier candidate set and select the points with

high LOF values as the target outliers. The ensemble was evaluated on six synthetics and

six real-world datasets, in which the results showed that the system is effective in detecting

outliers.

38

Sahu et al. [144] propose an ensemble-based outlier detection comprising LOF, iForest, and

OCSVM methods and the majority voting method as a results combiner. The purpose of

this ensemble was to be used as a preprocessing step to remove outliers from datasets before

training the supervised classifiers. The proposed ensemble was evaluated on the NSL-

KDD dataset, in which the results of the supervised classifiers improved after removing the

outliers from the dataset.

This section provided a critical analysis of some of the literature related to unsupervised

IDS and evaluated their limitations. For example, some researchers used an algorithm

known for having a high computational complexity, while others assessed their method on

a low number of data instances; the reason for this could be to speed up the experiments or

having limited computational resources that can not handle training a high number of data

instances. However, the low proportion of data instances does not represent today’s network

standard. Furthermore, some literature included a limited number of attack types in their

experiment, achieved low precision, recall and/or F1-scores, or used a dataset with high du-

plicate records, which can affect the results. Table 2.1 summarises the literature discussed

in this section including the dataset used for the evaluation such as CICIDS2017 which is

described in section 3.3.1 and NSL-KDD which is described in section 3.3.2.

39

Table 2.1: Summary of Literature on IDS

40

41

2.10 Chapter Summary

This chapter has presented an overview of the use of ML in the intrusion detection domain.

First, it reviewed the taxonomy of IDS, then it explained some of the supervised and un-

supervised learning algorithms used for classification tasks. It also reviewed the standard

measures used to evaluate ML models’ performance, which will be used to evaluate the

research experimental results. This chapter also addressed ensemble techniques and their

combination methods, as well as ML explainability and dataset preprocessing methods

used in this research.

Finally, this chapter addressed several limitations in some of the relevant literature related to

IDS, such as using an algorithm known for having a high computational complexity, using

a low number of data instances in the experiment, testing the approach on a limited number

of attack types or models that produce low precision, recall or F1-scores. Understanding

these limitations will provide the basis for designing the research methodology workflow,

which will help answer this thesis’s research questions and address the hypotheses.

42

Chapter 3

Preliminaries: Experiments and

Evaluation

This chapter introduces the research methodology workflow at both a high and low level.

First, it explains the preliminary experimental setup of the anomaly detection algorithms.

It also describes the datasets used in the experiments and the preprocessing workflow ap-

plied to each dataset. Then, it examines and explains the unsupervised algorithms used in

this chapter. Next, this chapter discusses and evaluates the preliminary experiments’ re-

sults for the algorithms and presents the best-performing algorithms. Finally, this chapter

summarises the initial experiment, including the best hyperparameter values and principal

components used in each dataset.

43

3.1 Research Methodology Workflow

To answer the research questions and address the thesis’s hypotheses, a workflow has

been designed. Figure 3.1 shows the workflow steps that were followed to design the

system.

Figure 3.1: Research Methodology Workflow

The first component, termed ‘C1’, addresses Hypothesis 1 of the research. First, an unsu-

pervised ensemble learner component, UNAD, is developed and tested to detect unknown

network attacks. The second component, termed ‘C2’, which addresses Hypothesis 2, con-

sists of a supervised component trained on the correctly detected data instances from the

first component, aiming to improve the overall detection of the system. Lastly, the third

component, termed ‘C3’, which addresses Hypothesis 3, explains the detected attacks to

help domain experts assess the threat and understand the decision made by the system.

Figure 3.2 explains the research methodology workflow in more detail.

44

Figure 3.2: Taxonomy of the System’s Framework

45

C1 represents the first component of the system, which consists of the UNAD ensemble.

UNAD is a bagging ensemble, built using anomaly detection algorithms, that works in

an unsupervised manner to detect previously unknown network attacks. The anomaly de-

tection algorithms are selected as base learners for UNAD based on their F1-score results,

since the F1-score measure combines the results (harmonic mean) of both the precision and

recall measures. In addition, the F1-score is effective in the case of data imbalance [145].

Furthermore, UNAD will be trained on benign/normal flow only and evaluated using the

Majority Voting method as a results combiner.

C2, the second component of the system, is the supervised classifier. The goal of this

component is to boost the overall results and improve the detection rate. For this, the

second component will be trained on UNAD’s detected benign/normal and attack flow (TP

and TN) in addition to the training set used to train UNAD, which has only benign/normal

flow. Furthermore, before feeding the TP and TN of UNAD to the supervised model, a

domain expert with knowledge of networks and ML techniques will act as ‘Human-in-the-

Loop’ to check and evaluate a subsample of UNAD’s results, ensuring that the supervised

algorithm is fed with accurate data and therefore reducing the possibility of error. As

with UNAD, the selection of the supervised model will be based on evaluating a set of

supervised algorithms in which the model with the highest F1-score will be implemented

in the system.

The last component of the system is the explainable component, C3. This component aims

to explain the decision made by the model in a human-understandable way. For this, two

explainable methods—local and global explainability—are adopted. The local explainabil-

ity feature will provide an explanation for the domain expert for any single prediction made

by the system, and the global explainability feature will explain the entire model.

3.2 Experimental Setup

In this thesis, all experiments were implemented in Python 3.6 using Google Colabora-

tory [146]. Furthermore, the scikit-learn library [147] was used to carry out the research

46

preprocessing steps and to implement the ML algorithms.

This research first evaluates several unsupervised algorithms for their suitability to be se-

lected as base learners for UNAD. Four different anomaly detection algorithms that pre-

viously applied to network attack detection literature were considered: OCSVM [148],

iForest [149], LOF [51] and EE [55]. The OCSVM algorithm was excluded from the se-

lection process early, as it is unsuitable for fast network flows due to its high computational

complexity [57, 58, 59].

The remaining three algorithms were experimentally optimised on the CICIDS2017 [4]

and NSL-KDD [5] datasets and subsequently evaluated for their inclusion in the UNAD

ensemble. The reason for choosing an ensemble approach here is that, as pointed out in

Section 2.5, ensemble approaches tend to improve the average classification accuracy over

any ensemble member and reduce overfitting [150].

As mentioned in Section 3.1, the evaluation metrics used to evaluate the anomaly detection

algorithms are precision, recall and F1-score. In UNAD, precision denotes the propor-

tion of attacks correctly classified as an attack by UNAD; recall denotes the proportion

of actual attacks detected by UNAD in the network flow. Therefore, high precision is as

important high recall, since false positive alarms may activate expensive actions to address

a non-existent attack. Because both measures are equally important, the models have been

selected based on their F1-score, which combines the results of both the precision and recall

measures.

3.3 Datasets Used in this Research

A real dataset cannot be used to evaluate ML models due to privacy issues, but publicly

available synthetic benchmarking datasets can be used. The CICIDS2017 [4] and NSL-

KDD [5] datasets are used to evaluate the research workflow.

47

3.3.1 CICIDS2017 Dataset

CICIDS2017 [4] is a publicly available benchmarking dataset generated by the Canadian

Institute for Cybersecurity over five days; it consists of about 3 million data instances.

Sharafaldin Sharafaldin et al. [4] created a complete network topology to generate the

dataset, including modems, firewalls, switches and routers, various operating systems such

as Windows, Ubuntu and Mac, and commonly available protocols like HTTP, HTTPS, FTP,

SSH and email protocols. In the network architecture, Sharafaldin et al. [4] created two

networks, victim and attack, with their associated public and private IPs.

The attack network comprises one router, one switch and four PCs [4]. The victim net-

work includes three servers, one firewall, two switches and ten PCs connected by a domain

controller and active directory [4]. The CICIDS2017 outperforms the most commonly

used datasets because it is more recent (2017), more realistic and covers 14 network at-

tacks.

CICIDS2017 Attack Description

CICIDS2017 consists of 14 network attacks that belong to seven of the most up-to-date

attack categories. The CICIDS2017 attack types are described as follows:

1. Brute Force Attack: This attack uses the hit-and-trial method to crack passwords by

trying out different password combinations until it finds the correct one [151]. This

method can take a few seconds or longer, depending on password complexity. In

addition, the brute force attack can be used to find hidden content and pages within a

web application [151]. Attacks included in the dataset under the Brute Force category

are as follows:

• FTP-Patator

• SSH-Patator

2. Heartbleed Attack: This is an implementation flaw (bug) in the OpenSSL cryptogra-

phy library, which implements the Secure Sockets Layer (SSL) and Transport Layer

48

Security (TLS) protocols [152]. It is usually exploited by sending a malicious heart-

beat message with a small payload and a greater length field than the client’s actual

payload to obtain sensitive information and content stored in the client’s memory,

such as cryptographic keys and login credentials [4, 152].

3. Botnets: These are a group of infected machines that are remotely controlled by

the attacker (botmaster) [153]. Botnet attacks are used to perform various malicious

activities, such as stealing data and crashing servers [153].

4. Denial-of-Service (DoS) Attack: This attack attempts to render services temporarily

unavailable to legitimate users by flooding the targeted machine or its surrounding

infrastructure with spurious requests until it cannot process any requests and thus

becomes unavailable [154]. Attacks included in the dataset under the DoS category

include the following:

• DoS Slowloris

• DoS Slowhttptest

• DoS Hulk

• DoS GoldenEye

5. Distributed Denial-of-Service (DDoS) Attack: These attacks utilise multiple com-

promised computer systems to flood the targeted system with overwhelming internet

traffic that leaves the target services temporarily unavailable [155].

6. Web Attacks: Three different web attacks were included in the dataset: a SQL In-

jection, where an attacker creates a SQL query and executes it into an entry field

in the web application to make the database retrieve sensitive information or obtain

unauthorised access to the database [156]; Cross-Site Scripting (XSS), in which the

attacker inserts malicious scripts into a legitimate web page or browser, and once the

end-user visits the the web page or lunch the browser, the malicious code is executed,

granting the attacker access to sensitive information maintained by the browser or

used by the web page [157]. The third one is Brute Force over HTTP, which attempts

49

to obtain the administrator’s password and gain unauthorised access by trying a list

of passwords [4].

7. Infiltration Attack: This attack is usually performed from the internal network by

exploiting vulnerable application software [4]. Once the attack is successful, a back-

door will be implemented on the target’s machine, allowing for various attacks on

the network, such as IP sweep and portscan [4].

Table 3.1 summarises CICIDS2017 attack types and provides number and percentage of

instances for each attack.

Table 3.1: CICIDS2017 Attack Distribution

Type Count Percentage (%)
BENIGN 2,358,036 83.3
DoS Hulk 231,073 8.2
portscan 158,930 5.6
DDoS 41,835 1.5
DoS GoldenEye 10,293 0.4
FTP Patator 7,938 0.3
SSH Patator 5,897 0.2
DoS SlowLoris 5,796 0.2
DoS SlowHTTPTest 5,499 0.2
Botnet 1,966 0.07
Web Attack: Brute Force 1,507 0.05
Web Attack: XSS 625 0.02
Infiltration 36 0.001
Web Attack: SQL Injection 21 0.0007
HeartBleed 11 0.0004
Total 2,829,463 100

CICIDS2017 Feature Description

CICFlowMeter [6, 7] was used to extract the network traffic features from the generated

PCAP file, which is an API for capturing packets from the network. CICFlowMeter is

a Java application flow-based feature extractor and analyser which reads PCAP files and

generates 84 network traffic features, in addition to a CSV file that consists of those gener-

ated features [6, 7]. Table 3.2 shows the CICIDS2017 dataset extracted features. The full

feature description is available in Appendix A.1.

50

Table 3.2: CICIDS2017 Features

No. Feature No. Feature No. Feature No. Feature
1 Flow ID 22 Flow Packets/s 43 Fwd Packets/s 64 Fwd Avg Bulk Rate
2 Source IP 23 Flow IAT Mean 44 Bwd Packets/s 65 Bwd Avg Bytes/Bulk
3 Source Port 24 Flow IAT Std 45 Min Packet Length 66 Bwd Avg Packets/Bulk
4 Destination IP 25 Flow IAT Max 46 Max Packet Length 67 Bwd Avg Bulk Rate
5 Destination Port 26 Flow IAT Min 47 Packet Length Mean 68 Subflow Fwd Packets
6 Protocol 27 Fwd IAT Total 48 Packet Length Std 69 Subflow Fwd Bytes
4 Time stamp 28 Fwd IAT Mean 49 Packet Len. Variance 70 Subflow Bwd Packets
8 Flow Duration 29 Fwd IAT Std 50 FIN Flag Count 71 Subflow Bwd Bytes
9 Total Fwd Packets 30 Fwd IAT Max 51 SYN Flag Count 72 Init Win bytes fwd
10 Total Backward Packets 31 Fwd IAT Min 52 RST Flag Count 73 Act data pkt fwd
11 Total Length of Fwd Pck 32 Bwd IAT Total 53 PSH Flag Count 74 Min seg size fwd
12 Total Length of Bwd Pck 33 Bwd IAT Mean 54 ACK Flag Count 75 Active Mean
13 Fwd Packet Length Max 34 Bwd IAT Std 55 URG Flag Count 76 Active Std
14 Fwd Packet Length Min 35 Bwd IAT Max 56 CWE Flag Count 77 Active Max
15 Fwd Pck Length Mean 36 Bwd IAT Min 57 ECE Flag Count 78 Active Min
16 Fwd Packet Length Std 37 Fwd PSH Flags 58 Down/Up Ratio 79 Idle Mean
17 Bwd Packet Length Max 38 Bwd PSH Flags 59 Average Packet Size 80 Idle Packet
18 Bwd Packet Length Min 39 Fwd URG Flags 60 Avg Fwd Segment Size 81 Idle Std
19 Bwd Packet Length Mean 40 Bwd URG Flags 61 Avg Bwd Segment Size 82 Idle Max
20 Bwd Packet Length Std 41 Fwd Header Length 62 Fwd Avg Bytes/Bulk 83 Idle Min
21 Flow Bytes/s 42 Bwd Header Length 63 Fwd Avg Packets/Bulk 84 Label

3.3.2 NSL-KDD Dataset

The NSL-KDD dataset [5] is an updated version of the KDD99 dataset [158], based origi-

nally on the DARPA98 dataset. The data in The DARPA98 dataset is raw TCPdump data

collected with a packet sniffer placed on the network segment outer of the router [159].

The NSL-KDD [5] that overcomes the issues related to the latter, such as duplicate records,

that cause the model to be biased towards these records [5]. NSL-KDD dataset consists of

two files, KDDTrain+, which has a 125,973 record dataset, and KDDTest+, which has a

22,544 record dataset. The advantage of NSL-KDD is that the entire dataset can be used for

evaluation without the need to split it randomly and select a small proportion of it [5].

NSL-KDD Attacks Description

NSL-KDD consists of four main attack categories. These attacks are described by Tavallaee

et al. [5] as follows:

1. Denial of Service Attack (DoS): Attacker overwhelms a machine or network re-

sources with requests to render services temporarily unavailable to legitimate users.

2. User to Root Attack (U2R): Attacker obtains access to a normal user account to

51

exploit system vulnerabilities, aiming to achieve root access to that system.

3. Remote to Local Attack (R2L): Intruder sends packets over the network to another

machine that does not have permission in order to exploit vulnerabilities and achieve

unauthorised access to that machine.

4. Probing Attack: Intruder collects information about the structure of the network to

overcome the network security controls [5] and eventually access the system.

Table 3.3 summarises NSL-KDD attack types and the number of instances for each attack

[5].

Table 3.3: NSL-KDD Attack Distribution

KDDTrain+ dataset KDDTest+ dataset
Type Count Percentage (%) Count Percentage (%)
Normal 67,343 53.5 9,711 43
DoS 11,656 9.3 7,458 33.1
U2R 52 0.04 200 0.9
R2L 995 0.8 2,754 12.2
Probe 45,927 36.6 2,421 10.7
Total 125973 100 22544 100

NSL-KDD Features Description

NSL-KDD has 43 features classified into three feature groups [5]:

1. Basic features: Includes all the features produced from a TCP/IP connection [5].

2. Traffic features: Contains features calculated for a window interval having two

groups, ‘same host’ and ‘same service’ features [5].

3. Content features: Contains features that help find suspicious behaviour in the data

flow (e.g., the number of failed logins) for some attack types, such as R2L and U2R

attacks [5].

Table 3.4 shows the NSL-KDD dataset features; a full feature description is available in

Appendix B.1.

52

Table 3.4: NSL-KDD Features

No. Feature No. Feature No. Feature No. Feature
1 Duration 12 Logged In 23 Count 34 Dst Host Same Srv Rate
2 Protocol Type 13 Num Compromised 24 Srv Count 35 Dst Host Diff Srv Rate
3 Service 14 Root Shell 25 Serror Rate 36 Dst Host Same Src Port Rate
4 Flag 15 Su Attempted 26 Srv Serror Rate 37 Dst Host Srv Diff Host Rate
5 Src Bytes 16 Num Root 27 Rerror Rate 38 Dst Host Serror Rate
6 Dst Bytes 17 Num File Creations 28 Srv Rerror Rate 39 Dst Host Srv Serror Rate
7 Land 18 Num Shells 29 Same Srv Rate 40 Dst Host Rerror Rate
8 Wrong Fragment 19 Num Access Files 30 Diff Srv Rate 41 Dst Host Srv Rerror Rate
9 Urgent 20 Num Outbound Cmds 31 Srv Diff Host Rate 42 Class
10 Hot 21 Is Hot Logins 32 Dst Host Count 43 Difficulty Level
11 Num Failed Logins 22 Is Guest Login 33 Dst Host Srv Count

3.4 Research Dataset Preprocessing Steps

3.4.1 CICIDS2017 Dataset Preprocessing

Preprocessing methods were applied to the CICIDS2017 dataset to make it suitable for

training the anomaly detection algorithms. Figure 3.3 shows the initial experiment work-

flow, including the preprocessing steps applied to the CICIDS2017 dataset.

Figure 3.3: Initial Experiment Workflow

The first step was to clean the dataset by dropping missing and NaN values, which can cause

the ML model to make biased predictions and reduce its accuracy. Duplicated records were

also dropped. This step was followed by dropping out some features that could affect the

model’s performance; for instance, ID features were removed, as they do not have dis-

criminatory value for attacks. Next, features containing IP addresses were also removed

because attackers often spoof their IP addresses to avoid IP filtering systems [127]. Finally,

53

features representing port information were removed, since they can cause models to over-

fit towards socket information [160]. Next, the categorical text in the Label feature was

converted to numeric form, as the scikit-learn library requires all data to be in numerical

form [161]. Therefore, the label for all attack types was converted to ‘1’ and ‘0’ for benign

instances. Next, the dataset was divided into training, validation, and test sets (Figure 3.4).

Assuming that the system has no prior knowledge about the network attacks and following

the network flow scenario used to generate the CICIDS2017 dataset, the data from the first

day (Monday), which comprises 529,445 benign flows (about 19% of the entire dataset),

was used to train the model. The remaining four-day dataset, which contains 2,298,225

of both attacks and benign flow, were split for validation and testing (50% each). Figure

3.4 shows the CICIDS2017 dataset split workflow, and Table 3.5 illustrates the dataset split

distribution.

54

Figure 3.4: Dataset Split Workflow

Table 3.5: Dataset Split Distribution

Set Benign ’0’ Attack ’1’ Total

Training 529,445 0 529,445

Validation 870,834 278277 1,149,111

Test 870,838 278,278 1,149,116

Next, the data were normalised between [0-1] using MinMaxScaler [147]. This step gives

the data equal importance while keeping the shape of the original data distribution. Follow-

ing this, PCA was applied as a dimensionality reduction method. PCA has been applied

widely in the intrusion detection area, such as in [162], [163] and [164], as it only requires

55

a few parameters of the principal components to be managed for future detection and, most

importantly, the statistics can be estimated quickly during the detection stage, which makes

PCA feasible for real-time use [165, 166]. A preliminary exploratory analysis was per-

formed on the dataset to gain insight into the explained variance ratio for every principal

component. Figure 3.5 illustrates the explained variance ratio preserved for each principal

component.

Figure 3.5: PCA Method to the CICIDS2017 Dataset

Figure 3.5 shows that 90% of the explained variance can be preserved using seven or more

principal components. However, the number of principal components which are considered

in the initial experiments 2–15 PCs.

3.4.2 NSL-KDD Dataset Preprocessing

As datasets usually differ from one another (e.g., number and the type of features), dataset

preprocessing steps can differ too. Figure 3.6 illustrates the initial experiment workflow

with the preprocessing steps applied to the NSL-KDD dataset. Like the CICIDS2017

dataset, preprocessing began by dropping missing and NaN records. Next, duplicate records

were identified and removed. Then, protocol type, service, flag and class features were con-

verted from text to numeric. Finally, the label for all attack types was converted to ‘1’ and

‘0’ for normal instances. The next step was to split the dataset into training, validation, and

56

test sets.

Figure 3.6: Initial Experiment workflow

As previously mentioned, the NSL-KDD dataset is made of two files: training and testing.

The training file was split into 60% training, which is ideal and sufficient to train UNAD,

and 40% for validation. Then, the validation set was combined with the testing set to ensure

the same type of attacks in both sets, as some of the network attacks in the KDDTrain+

file were not available in the KDDTest+ file. Once combined, the dataset was split again

into validation and testing sets with a ≈ 50% proportion each, using a stratified random

sampling method, which helps eliminate bias and provides a representative population of

all attack types in both sets (Figure 3.7). Therefore, the total number of data instances

for each set to this stage was 75,583 for the training set, 37,791 for the validation set and

35,140 for the testing set. In the final step of data splitting, all attack flows in the training

set were dropped, retaining just the normal flow, since the models will be trained only on

normal flow. The remainder of the training set comprised 40,405 normal data instances.

Figure 3.7 shows the NSL-KDD dataset split workflow, and Table 3.6 illustrates the dataset

split distribution.

57

Figure 3.7: NSL-KDD Dataset Split Workflow

Table 3.6: NSL-KDD Dataset Split Distribution

Set Benign ’0’ Attack ’1’ Total

Training 40,405 0 40,405

Validation 18,990 18,801 37,791

Test 17,658 17,482 35,140

The next step was to normalise data between [0-1] using MinMaxScaler [147]. Following

this, the PCA method was used to reduce the dimensionality of the features. Figure 3.8

depicts the explained variance ratio preserved for every principal component.

Figure 3.8: PCA Method on the NSL-KDD Dataset

Figure 3.8 shows that 90% of the explained variance can be preserved using 11 or more

58

principal components. However, the number of principal components which are considered

in the initial experiments 2–17 PCs.

3.5 Evaluation of Anomaly Detection Algorithms as Base

Learners for UNAD

As mentioned in Section 3.2, LOF, iForest and EE algorithms will be evaluated for selec-

tion as base learners for UNAD. For this, the algorithms will be trained using the training

dataset (comprising only benign/normal network flow) and optimised using the validation

set (including all types of attacks) to find the best combinations of hyperparameters in terms

of the F1-score results. Furthermore, various Principal Components (PCs) are considered:

2–15 PCs for the CICIDS2017 dataset and 2–17 PCs for the NSL-KDD dataset, to reduce

the data’s dimensionality. A summary of the experiments and final results will be discussed

in Section 3.6.

3.5.1 Local Outlier Factor (LOF)

With the current massive network traffic, LOF is expected to play a significant role in

detecting attacks. Accordingly, it is evaluated here as a potential part of the proposed

ensemble-based UNAD. The LOF module from scikit-learn [147] was used. The hyper-

parameters are contamination and n neighbours. Contamination is the proportion of the

outliers expected in the dataset ranging from 0 to 0.5, and n neighbours is the number of

nearest neighbours needed to classify a data sample [147]. No knowledge about the pro-

portion of outliers (attacks) in the training data was assumed. The hyperparameters were

optimised using various combinations of values. The contamination parameter was opti-

mised from 0.01 to 0.5 in steps of 0.01. The n neighbours parameter value was optimised

from 5 to 50 in steps of 5. Once the hyperparameters were optimised and the best com-

bination was determined in terms of the F1 score, they were applied to the test set for

every number of PCs ranging between 2–15 for the CICIDS2017 dataset and 2-17 for the

NSL-KDD dataset.

59

CICIDS2017 Results

Table 3.7 shows LOF overall experimental results for the CICIDS2017 dataset.

Table 3.7: CICIDS2017 LOF Overall Experimental Results (in %)

PCA n neighbors Contamination Accuracy Precision Recall F1-score ROC-AUC score
2 25 0.10 79.68 56.71 67.93 61.82 75.68
3 10 0.12 80.54 56.73 82.74 67.31 81.29
4 10 0.13 79.55 55.10 84.06 66.57 81.09
5 15 0.10 82.78 60.16 85.57 70.65 83.73
6 10 0.09 83.68 61.87 84.98 71.61 84.12
7 30 0.07 85.65 66.19 83.27 73.76 84.84
8 30 0.07 84.59 63.71 84.47 72.64 84.55
9 35 0.07 84.16 63.15 83.06 71.75 83.79
10 35 0.08 83.50 61.43 85.62 71.54 84.22
11 35 0.08 82.69 60.54 81.96 69.64 82.44
12 35 0.07 83.45 62.23 80.58 70.22 82.47
13 35 0.07 83.48 62.03 81.98 70.62 82.97
14 35 0.07 82.56 60.50 80.56 69.10 81.88
15 35 0.07 82.95 60.90 82.72 70.15 82.88

Table 3.7 shows that the highest precision, F1-score and ROC-AUC score was for 7 PCs

(with contamination value of 0.07 and 30 neighbours), followed by 8 and 9 PCs (with

contamination values of 0.07 for both and 30 and 35 neighbours, respectively). On the other

hand, 2, 3, and 4 PCs had the lowest precision, F1-score and ROC-AUC score. Concerning

the recall results, the highest recall was observed for 10 PCs (with contamination values of

0.08 and 35 neighbours), followed by 5 and 6 PCs (with contamination values of 0.10 and

0.09 and 15 and 10 neighbours, respectively). Moreover, 12, 14 and 2 PCs had the lowest

recall. Therefore, based on the F1-score results, the optimal number of PCs for the LOF

algorithms for the CICIDS2017 dataset is 7.

Figures 3.14 – 3.17 show the best results for each number of PCs used; the red bar rep-

resents the highest results obtained for each measure. Figure 3.13 depicts the results of

precision, recall, F1-score and ROC-AUC measures.

60

Figure 3.9: CICIDS2017 Precision Results for LOF-Based Workflow

Figure 3.10: CICIDS2017 Recall Results for LOF-Based Workflow

61

Figure 3.11: CICIDS2017 F1-score Results for LOF-Based Workflow

Figure 3.12: CICIDS2017 ROC-AUC Results for LOF-Based Workflow

62

Figure 3.13: CICIDS2017 Precision, Recall, F1-score AND ROC-AUC Results For LOF

NSL-KDD Results

Table 3.8 shows LOF overall experimental results for the NSL-KDD dataset.

Table 3.8: NSL-KDD LOF Overall Experimental Results (in %)

PCA n neighbors Contamination Accuracy Precision Recall F1-score ROC-AUC score
2 45 0.33 76.06 70.96 87.83 78.50 76.12
3 5 0.21 82.23 77.18 91.27 83.63 82.28
4 5 0.12 84.31 82.56 86.79 84.62 84.32
5 5 0.16 83.92 79.51 91.16 84.94 83.95
6 5 0.15 85.48 81.47 91.65 86.26 85.51
7 5 0.14 85.53 81.05 92.55 86.42 85.57
8 5 0.14 84.87 80.08 92.65 85.91 84.91
9 5 0.13 84.99 80.44 92.27 85.95 85.03
10 35 0.24 81.99 77.09 90.78 83.38 82.04
11 35 0.24 80.77 75.40 91.07 82.50 80.83
12 10 0.17 84.92 80.53 91.09 85.84 84.95
13 5 0.15 81.46 75.42 93.06 83.31 81.51
14 5 0.13 82.36 76.55 93.04 83.99 82.41
15 5 0.14 82.19 76.14 93.50 83.93 82.25
16 5 0.13 83.35 77.21 94.39 83.94 83.41
17 5 0.13 83.04 76.71 94.64 83.74 83.10

Table 3.8 shows that the highest precision was achieved using 4 PCs (with a contamination

value of 0.12 and 5 neighbours). Furthermore, using 6 and 7 PCs also produced high

63

precision results (with 5 neighbours for each and a contamination value of 0.15 and 0.14,

respectively). Concerning the recall results, using 17 PCs produced the highest results (with

a contamination value of 0.13 and 5 neighbours), followed by 16 PCs (with a contamination

value of 0.13 and 5 neighbours) and 15 PCs (with a contamination value of 0.14 and 5

neighbours). For F1-score and ROC-AUC score results, the highest results were obtained

using 7 PCs (with a contamination value of 0.14 and 5 neighbours) followed by 6 and 9

PCs. On the other hand, using 2 PCs had the least precision, F1-score and ROC-AUC

score, while using 4 PCs had the least recall. Thus, based on the F1-score results, the

optimal number of PCs for the LOF algorithms for the NSL-KDD dataset is 7.

Figures 3.14 – 3.17 show the best results for each number of PCs used; the red bar rep-

resents the highest results obtained for each measure. Figure 3.18 depicts the results of

precision, recall, F1-score and ROC-AUC measures.

Figure 3.14: NSL-KDD Precision Results for LOF-Based Workflow

64

Figure 3.15: NSL-KDD Recall Results for LOF-Based Workflow

Figure 3.16: NSL-KDD F1-Score Results for LOF-Based Workflow

65

Figure 3.17: NSL-KDD ROC-AUC Results for LOF-Based Workflow

Figure 3.18: NSL-KDD Precision, Recall, F1-score AND ROC-AUC Results For LOF

3.5.2 Isolation Forest (iForest)

iForest provides low linear time complexity with a low memory requirement, suiting it

well for detecting network attacks quickly [54]. Furthermore, iForest can deal with high-

66

dimensional data with unrelated attributes [54]. These attributes make it ideal for inte-

gration into the proposed UNAD ensemble. iForest module from scikit-learn [147] was

used.

The hyperparameters are contamination factor, n estimators (number of trees) and max samples.

The contamination parameter is the same as for LOF, and n estimators is the number of

trees to be built in the forest [147]. No knowledge about the proportion of outliers in the

training data was assumed. The hyperparameters were optimised using various combina-

tions of values. For the contamination parameter, it was optimised from 0.01 to 0.5 in steps

of 0.01. The number of n estimators was selected from 50 to 450 in steps of 50.

Regarding the max samples parameter, which selects the portion of the training data for

each base estimator [147], proportion settings of 25%, 50%, 75% and 100% were used in

addition to the default setting of 256 samples, which corresponds to 0.05% and 0.63% of the

training set for the CICIDS2017 and NSL-KDD datasets, respectively. The max features

parameter, which controls the number of features to be extracted from the dataset to train

each estimator [147], was set to its default value (1.0) to use all the features to train the

estimators, and the random state parameter was set to a fixed number (42) for results re-

producibility. Once the hyperparameters were optimised and the best combination was

determined, they were applied to the test set for every number of PCs ranging between

2–15 for the CICIDS2017 dataset and 2–17 for the NSL-KDD dataset.

CICIDS2017 Results

Table 3.9 shows the iForest overall experimental results for the CICIDS2017 dataset.

67

Table 3.9: CICIDS2017 iForest Overall Experimental Results (in %)

PCA n estimators Contamination max samples Accuracy Precision Recall F1-score ROC-AUC score
2 150 0.28 0.5 71.02 44.96 87.73 59.45 76.71
3 150 0.32 auto (256) 71.45 45.07 81.83 58.12 74.98
4 50 0.31 0.25 70.06 44.04 87.37 58.56 75.95
5 50 0.29 1 70.98 44.80 85.35 58.76 75.87
6 200 0.43 auto (256) 66.9 41.64 91.39 57.21 75.23
7 200 0.35 auto (256) 71.47 45.11 82.04 58.21 75.07
8 350 0.39 auto (256) 69.62 43.47 84.76 57.47 74.77
9 350 0.41 auto (256) 68.08 42.19 85.89 56.58 74.14
10 50 0.34 auto (256) 71.21 44.76 80.77 57.60 74.46
11 400 0.24 0.25 74.44 48.42 84.84 61.65 77.98
12 100 0.33 auto (256) 72.60 46.37 84.02 59.76 76.48
13 350 0.41 auto (256) 69.97 44.12 90.08 59.23 76.81
14 100 0.38 auto (256) 70.79 44.70 87.04 59.07 76.31
15 100 0.38 auto (256) 70.04 44.04 87.72 58.64 76.05

Table 3.9 shows that the highest combined precision, F1-score and ROC-AUC score was

for 11 PCs (with a contamination value of 0.24, 400 estimators and 25% max samples),

followed by 12 PCs (with a contamination value of 0.33, 100 estimators and the default

settings for the max samples). On the other hand, 9, 8 and, 6 PCs had the lowest precision

and F1-score, and 9, 10, and 8 PCs had the lowest ROC-AUC score.

Furthermore, the highest recall was observed for 6 PCs (with contamination value of 0.43,

200 estimators and default setting for max samples), followed by 13 and 2 PCs (with con-

tamination values of 0.41 and 0.28, 350 and 150 estimators and the default settings (256)

and 50% max samples, respectively). Moreover, 10, 3 and 7 PCs had the lowest recall.

Hence, based on the F1-score results, the optimal number of PCs for the iForest algorithms

for the CICIDS2017 dataset is 11 PCs.

Figures 3.19 – 3.22 show the best results for each number of PCs used; the red bar rep-

resents the highest results obtained for each measure. Figure 3.23 depicts the results of

precision, recall, F1-score and ROC-AUC measures.

68

Figure 3.19: CICIDS2017 Precision Results for iForest-Based Workflow

Figure 3.20: CICIDS2017 Recall Results for iForest-Based Workflow

69

Figure 3.21: CICIDS2017 F1-score Results for iForest-Based Workflow

Figure 3.22: CICIDS2017 ROC-AUC Results for iForest-Based Workflow

70

Figure 3.23: CICIDS2017 Precision, Recall, F1-score AND ROC-AUC Results For iForest

NSL-KDD Results

Table 3.10 shows iForest overall experimental results for the NSL-KDD dataset.

Table 3.10: NSL-KDD iForest Overall Experimental Results (in %)

PCA n estimators Contamination max samples Accuracy Precision Recall F1-score ROC-AUC score
2 150 0.15 0.50 87.68 84.63 91.92 88.12 87.70
3 350 0.05 1 92.05 92.91 90.97 91.93 92.05
4 450 0.11 1 90.15 87.88 93.03 90.38 90.17
5 600 0.08 1 91.80 90.62 93.15 91.87 91.80
6 300 0.06 1 92.19 92.37 91.88 92.13 92.18
7 100 0.07 1 91.79 91.52 92.03 91.77 91.79
8 600 0.10 1 90.75 89.15 92.70 90.89 90.76
9 100 0.09 1 90.92 89.90 92.09 90.99 90.93
10 600 0.10 1 90.68 89.14 92.55 90.81 90.69
11 100 0.10 1 91.17 89.25 93.52 91.33 91.18
12 100 0.08 1 91.92 91.02 92.94 91.97 91.93
13 600 0.07 1 91.76 91.55 91.92 91.73 91.76
14 200 0.06 1 92.02 92.08 91.87 91.97 92.02
15 100 0.03 1 92.04 94.76 88.92 91.75 92.03
16 100 0.05 1 92.93 93.13 92.63 92.88 92.93
17 50 0.04 1 92.69 93.85 91.29 92.55 92.69

Table 3.10 shows that the highest precision was obtained using 15 PCs (with a contamina-

tion value of 0.03, 100 estimators and 100% max samples). Additionally, using 17 and 16

PCs also resulted in high precision results (with contamination values of 0.04 and 0.05 and

71

100% max samples for both and 150 and 600 estimators, respectively). Concerning the re-

call results, using 11 PCs produced the highest results (with a contamination value of 0.10,

100 estimators and 100% max samples). The second highest recall was achieved using 5

PCs (with contamination value of 0.08, 600 estimators and 100% max samples) followed

by 4 PCs (with contamination parameter of 0.11, 450 estimators and 100% max samples).

Finally, for F1-score and ROC-AUC score results, the highest results were achieved using

16 PCs (with contamination value of 0.05, 100 estimators and 100% max samples), fol-

lowed by 17 and 6 PCs, respectively. In contrast, using 2 PCs had the lowest precision,

F1-score and ROC-AUC score, while using 15 PCs had the lowest recall results. Hence,

based on the F1-score results, the optimal number of PCs for the iForest algorithms for the

NSL-KDD dataset is 16.

Figures 3.24 – 3.27 show the best results for each number of PCs used; the red bar rep-

resents the highest results obtained for each measure. Figure 3.28 depicts the results of

precision, recall, F1-score and ROC-AUC measures.

Figure 3.24: NSL-KDD Precision Results for iForest-Based Workflow

72

Figure 3.25: NSL-KDD Recall Results for iForest-Based Workflow

Figure 3.26: NSL-KDD F1-score Results for iForest-Based Workflow

73

Figure 3.27: NSL-KDD ROC-AUC Results for iForest-Based Workflow

Figure 3.28: NSL-KDD Precision, Recall, F1-score AND ROC-AUC Results For iForest

3.5.3 Elliptic Envelope

The EE module from scikit-learn [147] was used. The EE hyper-parameter is contamina-

tion, which is the same in LOF and iForest. No knowledge about the proportion of outliers

74

in the training data was assumed. The contamination parameter value was selected from

0.01 to 0.5 in steps of 0.01. Once the contamination parameter was optimised and its best

value determined, it was applied to the test set for every number of PCs ranging between

2–15 for the CICIDS2017 dataset and 2–17 for the NSL-KDD dataset.

CICIDS2017 Results

Table 3.11 shows EE’s overall experimental results for the CICIDS2017 dataset.

Table 3.11: CICIDS2017 EE Overall Experimental Results (in %)

PCA Contamination Accuracy Precision Recall F1-score ROC-AUC score
2 0.33 71.55 44.88 76.57 56.59 73.26
3 0.38 68 41.81 81.97 55.37 72.75
4 0.44 69.47 42.79 77.43 55.12 72.18
5 0.42 64.43 40.11 95.06 56.41 74.85
6 0.29 66.68 41.90 97.17 58.55 77.06
7 0.38 64.41 40.10 95.08 56.41 74.85
8 0.47 64.41 40.09 94.97 56.38 74.81
9 0.49 66.64 40.77 83.32 54.75 72.32

10 0.39 62.88 37.94 83.79 52.23 69.99
11 0.45 61.86 37.52 86.44 52.33 70.23
12 0.45 65.40 40.77 94.75 57.01 75.38
13 0.37 68.05 42.20 86.33 56.69 74.27
14 0.49 68.08 42.22 86.39 56.72 74.31
15 0.49 67.71 42.09 88.62 57.07 74.83

Table 3.11 shows that the highest F1-score and ROC-AUC score was seen for 6 PCs (with

a contamination value of 0.44), followed by 15 and 12 for the F1-score and 12, 5 and 7

for the ROC-AUC score. Furthermore, 10, 11 and 9 PCs produced the lowest F1-score

and ROC-AUC score results. Similarly, the highest recall was seen for 6 PCs, followed by

7 and 5 PCs, while 3, 4 and 2 had the lowest recall. Moreover, the highest precision was

observed for 2 PCs (with a contamination value of 0.33), followed by 4 and 14, respectively.

In contrast, the lowest precision was observed for 11, 10 and 8, respectively. Therefore,

based on the F1-score results, the optimal number of PCs for the EE algorithms for the

CICIDS2017 dataset is 11.

Figures 3.29 – 3.32 show the best results for each number of PCs used; the red bar rep-

resents the highest results obtained for each measure. Figure 3.33 depicts the results of

75

precision, recall, F1-score and ROC-AUC measures.

Figure 3.29: CICIDS2017 Precision Results for EE-Based Workflow

Figure 3.30: CICIDS2017 Recall Results for EE-Based Workflow

76

Figure 3.31: CICIDS2017 F1-score Results for EE-Based Workflow

Figure 3.32: CICIDS2017 ROC-AUC Results for EE-Based Workflow

77

Figure 3.33: CICIDS2017 Precision, Recall, F1-score AND ROC-AUC Results For EE

NSL-KDD results

NSL-KDD Elliptic Envelope’s overall experimental results are shown in Table 3.12.

Table 3.12: NSL-KDD EE Overall Experimental Results (in %)

PCA Contamination Accuracy Precision Recall F1-score ROC-AUC score
2 0.34 79.91 75.03 89.57 81.66 79.63
3 0.46 77.44 70.27 95.78 81.07 77.29
4 0.46 76.84 70 94.61 80.46 76.69
5 0.40 77.75 71.68 92.38 80.72 77.63
6 0.44 76.82 70.41 93.18 80.21 76.68
7 0.48 77.86 69.79 98.26 81.73 77.68
8 0.48 77.85 69.96 98.25 81.73 77.67
9 0.48 77.84 69.96 98.23 81.72 77.67
10 0.46 78.89 70.75 99.12 82.57 78.72
11 0.26 81.93 80.13 85.32 82.64 81.90
12 0.29 79.03 77.52 82.26 79.82 79
13 0.25 81.28 80.26 83.38 81.79 81.26
14 0.30 79 77.21 82.78 79.90 78.97
15 0.23 80.33 80.75 80.07 80.41 80.33
16 0.31 78.82 75.83 85.14 80.21 78.77
17 0.27 79.04 78.53 80.42 79.94 79.03

Table 3.12 shows that the highest precision was achieved using 15 PCs (with a contamina-

78

tion value of 0.23). The second and third highest were 13 and 11 PCs (with contamination

parameters of 0.25 and 0.26, respectively). Regarding the recall results, using 10 PCs had

the highest results (with a contamination value of 0.46). Furthermore, results were also

high using 8 PCs and 7 PCs (with a contamination value of 0.08 for each). Finally, con-

cerning the F1-score and ROC-AUC score results, the highest results were achieved when

using 11 PCs (with a contamination value of 0.26), followed by 10 and 13 PCs for the

F1-score and 13 and 15 PCs for the ROC-AUC score.

On the other hand, using 8 PCs and 9 PCs had the lowest precision, while using 15 PCs had

the lowest recall results. Finally, using 17 PCs resulted in the lowest F1-score and 2 PCs

the lowest ROC-AUC score. Therefore, based on the F1-score results, the optimal number

of PCs for the EE algorithms for the NSL-KDD dataset is 11.

Figures 3.34 – 3.37 show the best results for each number of PCs used; the red bar rep-

resents the highest results obtained for each measure. Figure 3.38 depicts the results of

precision, recall, F1-score and ROC-AUC measures.

Figure 3.34: NSL-KDD Precision Results for EE-Based Workflow

79

Figure 3.35: NSL-KDD Recall Results for EE-Based Workflow

Figure 3.36: NSL-KDD F1-score Results for EE-Based Workflow

80

Figure 3.37: NSL-KDD ROC-AUC Results for EE-Based Workflow

Figure 3.38: NSL-KDD Precision, Recall, F1-score AND ROC-AUC Results For EE

81

3.6 Initial Experiments: Evaluation and Discussion

The results presented in Table 3.13 and Table 3.14 depict the highest results achieved for the

evaluated anomaly detection algorithms for the CICIDS2017 and the NSL-KDD datasets.

LOF and iForest were chosen as base anomaly detectors for UNAD.

Table 3.13: Classifiers’ Highest Results for the CICIDS2017 (in %)

Classifier PCA Accuracy Precision Recall F1-score ROC-AUC score
LOF 7 85.65 66.19 83.27 73.76 84.84

iForest 11 73.82 47.73 84.86 61.09 77.58
EE 6 66.65 41.90 97.17 58.55 77.06

Table 3.14: Classifiers highest Results for the NSL-KDD (in %)

Classifier PCA Accuracy Precision Recall F1-score ROC-AUC score
LOF 7 85.53 81.05 92.55 86.42 85.57

iForest 16 92.93 93.13 92.63 92.88 92.93
EE 11 81.93 80.13 85.32 82.64 81.90

LOF was chosen because, in the CICIDS2017, it achieved a relatively good F1-score at

7 PCs on its own, at 73.76% and a relatively high recall with 83.27%. Furthermore, the

precision of LOF is moderate, at 66.19%. Likewise, LOF achieved comparatively high re-

sults in all measures using 7 PCs in the NSL-KDD dataset. The F1-score obtained 86.42%,

recall obtained 92.55% and precision was 81.05%.

Concerning the evaluation of the iForest algorithm, for the CICIDS2017 dataset, the F1-

score is moderate at 61.09% using 11 PCs. The recall is high at 84.86%, yet precision is

relatively low at 47.73%, meaning that about half the anomaly alarms are false alarms. On

the other hand, iForest performed very well and achieved high results on the NSL-KDD

dataset, with all measures reaching over 90% using 16 PCs. The F1-score was 92.88%,

and the results achieved for the recall and precision were 92.63% and 93.13%, respec-

tively.

The EE achieved the lowest F1-score of all anomaly detectors for both datasets. It achieved

58.55% at 6 PCs and 82.64% at 11 PCs for CICIDS2017 and NSL-KDD datasets, respec-

tively. The precision results for CICIDS2017 were 41.90% and 80.13% for the NSL-KDD

82

dataset. The recall measure had the highest recall among all anomaly detectors. The CI-

CIDS2017 dataset achieved 97.17%, and the NSL-KDD dataset achieved 85.32%.

Overall, EE achieved a very low precision and the lowest F1-score among all anomaly

detectors in the CICIDS2017 dataset. Similarly, EE achieved the lowest results on all

measures in the NSL-KDD dataset. Furthermore, since EE is more effective on Gaussian

distributed datasets, it will not perform well on data streams because the data stream distri-

bution can change over time due to concept drift. Hence, the EE classifier is highly likely

to be counterproductive in the UNAD ensemble and, therefore, was excluded.

Although the anomaly detector candidates were optimised with F1-score as a target, ROC-

AUC was included in the evaluation metrics since it is frequently used in ML literature.

However, the ROC-AUC measure is used in the case of having a balanced dataset. Inter-

estingly, in all cases, using ROC-AUC rather than F1-score would have led to the same

outcomes.

3.7 Initial Experiments: Summary

This section summarises the preliminary experiments that evaluated the outlier detection

algorithms. Table 3.15 shows the classifiers’ hyperparameters range values and the number

of steps used in the experiments.

Table 3.15: Classifiers Hyperparameter Range Values

Classifier Hyperparameter Range Step Size

LOF Contamination
n neighbors

[0-0.5]
[5-50]

0.01
5

iForest
Contamination
n estimators
max samples

[0-0.5]
50-600

auto, 25%-100%

0.01
50

25%
EE Contamination [0-0.5] 0.01

83

Table 3.16 depicts the classifiers’ best hyperparameters settings and the chosen principal

components for each classifier for the CICIDS2017 dataset.

Table 3.16: CICIDS2017 Best Hyperparameter values and Principal Components

Classifier PCA Hyperparameter Value

LOF 7
Contamination

n neighbors
0.07
30

iForest 11
Contamination
n estimators
max samples

0.24
400
25%

EE 6 Contamination 0.44

Table 3.17 illustrates the classifiers’ best hyperparameters settings and the chosen principal

components for each classifier for the NSL-KDD dataset.

Table 3.17: NSL-KDD Best Hyperparameter values and Principal Components

Classifier PCA Hyperparameter Value

LOF 7
Contamination

n neighbors
0.14

5

iForest 16
Contamination
n estimators
max samples

0.05
100

100%
EE 11 Contamination 0.26

3.8 Chapter Summary

This chapter introduced the research methodology with its three components to address the

research hypotheses. Next, it provided in-depth details regarding each component of the

system. The first component was the unsupervised bagging ensemble UNAD, which aims

to detect unknown network attacks, and the second is the supervised component which aims

to improve the overall detection rate. The third component aims to explain the predictions

made by the model to the domain expert locally and globally.

In addition, this chapter introduced the evaluated anomaly detection algorithms. Further-

more, the datasets used to evaluate the system’s framework were introduced by providing

an in-depth description and analysis of the type and the number of attacks and features for

84

each dataset. This chapter also explained the preprocessing steps applied for each dataset

before training the models. It then presented the results of the evaluated anomaly detec-

tion algorithms and the adopted ones. Finally, the initial experiments were summarised,

showing the classifiers’ best hyperparameter values and principal components used in each

dataset.

85

Chapter 4

Unsupervised Ensemble Learner

Architecture for Unknown Attack

Detection

This chapter aims to answer RQ1 and RQ2 of this thesis. First, it discusses the proposed

unsupervised ensemble learner UNAD’s architecture and workflow. It then compares its

results with stand-alone algorithms LOF and iForest, which performed the best in the F1-

score results in the initial experiments. It also provides an empirical evaluation of the

UNAD ensemble using two results combiner methods, Majority Voting and Weighted Ma-

jority Voting. Furthermore, this chapter compares and summarises the results of these two

methods. This chapter concludes by recommending the best methods to use for UNAD as

a results combiner, based on the results.

4.1 The UNAD Approach

4.1.1 UNAD Workflow

For the UNAD workflow, both CICIDS2017 and NSL-KDD datasets were preprocessed

as described in Section 3.4. Next, each dataset was projected on the best number of PCs

86

achieved in the experiments outlined in Chapter 3. For the CICIDS2017 dataset, that means

7 PCs for the LOF and 11 for the iForest, and for the NSL-KDD dataset, 7 PCs for the LOF

and 16 for the iForest. Furthermore, diversity among each type of base learner was created

through the bagging ensemble method.

Bagging was chosen over other methods, as discussed in Section 2.5, since it reduces vari-

ance and thus avoids overfitting [81]. A boosting method may decrease the model’s gen-

eralisation performance, hence, overfitting the model [167]. In addition, boosting methods

perform poorly in noisy datasets [168]. Overall, boosting methods aim to build an ensem-

ble from weak learners that performs well on the dataset, but creating many iterations for

the boosting ensemble may produce a very complex classifier, leading to a considerably

less accurate model than a stand-alone classifier [167].

Concerning the option of a stack generalisation ensemble method, this method is limited

in that the best or optimal combination of base learner classifiers and the meta-classifier

must be chosen [169]. Furthermore, tuning the classifiers’ hyperparameters in the stack

generalisation ensemble is a time-consuming process [169]. Although this problem can be

resolved using exhaustive search methods such as genetic algorithms, ant colonies or arti-

ficial bee colonies, these methods have the limitation of a high computational complexity

[170]. Moreover, the stack generalisation ensemble requires a minimum of three algo-

rithms to create the ensemble two base classifiers and a meta-classifier (2+1). The UNAD

ensemble, by contrast, comprises two algorithms only, LOF and iForest, which performed

the best in the initial experiments.

For each base learner, bagging was applied to benign/normal data instances. Figure 4.1

illustrates the UNAD’s Workflow.

87

Figure 4.1: Proposed UNAD workflow

88

UNAD is formed of 100 base learners—50 LOF and 50 iForest; the number of base learners

was selected based on the optimum results achieved, which are discussed in the remainder

of this chapter. UNAD uses the bootstrap sample with replacement method; hence, each

base learner in UNAD is trained on random data samples from the training set. Further-

more, the set of parameters that produced the highest results in the initial experiments

stage is used for UNAD’s base learners. Although the combination of parameters might

be selected again for other base learners, however, as UNAD uses random samples with

replacement, these base learners will be trained on different training samples.

UNAD uses a Majority Voting method of all 100 base learners as a results combiner to

classify the flow as either benign/normal or attack. Further, there is an equal vote per base

learner instance and per classification. The exact number of base learners for LOF and

iForest was chosen to mitigate bias towards one type of base learners; hence there is an

even number of base learners.

UNAD includes a set of heterogeneous base learners for the LOF algorithm by selecting

a different combination of hyperparameter values for each base learner. Concerning the

CICIDS2017 dataset, the hyperparameter values that produced the top three results using 7

PCs are considered, which are as follows:

• Nearest Neighbours: 25, 30 and 40

• Contamination: 0.06, 0.07 and 0.08

Furthermore, for the NSL-KDD dataset, like the CICIDS2017 dataset, the hyperparam-

eter values that produced the top three results using 7 PCs are considered, which are as

follows:

• Nearest Neighbours: 5

• Contamination: 0.14, 0.15 and 0.16

Regarding the iForest algorithm, as with the LOF, UNAD includes a set of heterogeneous

base learners for the iForest algorithm by selecting a different combination of hyperparam-

eter values for each base learner.

89

Concerning the CICIDS2017 dataset, the hyperparameter values that produced the top three

results using 11 PCs are considered, which are as follows:

• Number of estimators: 150, 350 and 400.

• Max samples: 25%

• Contamination: 0.24

Finally, for the NSL-KDD dataset, the hyperparameter values that produced the top three

results using 16 PCs are considered, which are as follows:

• Number of estimators: 100, 150 and 200.

• Max samples: 100%

• Contamination: 0.05 and 0.06.

4.1.2 Experimental Evaluation of UNAD

CICIDS2017 Results

Table 4.1 depicts UNAD experiment results for the CICIDS2017 dataset compared with

the best stand-alone LOF and iForest results.

Table 4.1: CICIDS2017 LOF, iForest and UNAD Results Comparison (in %)

Measure(%) Method LOF iForest UNAD
Accuracy 85.65 73.82 87.23
Precision 66.19 47.73 70.99
Recall 83.27 84.86 79.92
F1-score 73.76 61.09 75.19
ROC-AUC 84.84 77.58 84.74

Although the UNAD’s recall was slightly lower than that of its stand-alone algorithms

(79.92%), LOF and iForest, the precision was considerably improved (70.99%), and there

was also improvement in the F1-score (84.74%). The improvement in the F1-score is due

to the considerable improvement in the precision results.

90

Figure 4.2 illustrates the percentage of identified benign cases and detected attacks using

the UNAD ensemble.

Figure 4.2: UNAD Detected Benign and Attacks on CICIDS2017 Dataset

UNAD detected all the heartbleed attacks and almost all the portscan attacks (99.63%).

UNAD was also able to identify 89.56% of the benign flow. DDoS and DoS detection rates

were between 77.16% and 72.15% except for DoS Slowloris and DoS Slowhttptest, which

were 68.19% and 57.82%, respectively. Attacks under the Web Attack category were the

least detected, with 8.89% for Brute Force, 3.37% for XSS, and none of the SQL Injection

attacks was detected.

NSL-KDD Results

Table 4.2 depicts the ensemble experiments results for the NSL-KDD dataset compared

with the best stand-alone LOF and iForest results.

91

Table 4.2: NSL-KDD LOF, iForest and UNAD Results Comparison (in %)

Measure(%) Method LOF iForest UNAD
Accuracy 85.53 92.93 93.45
Precision 81.05 93.13 93.90
Recall 92.55 92.63 92.86
F1-score 86.42 92.88 93.38
ROC-AUC 85.57 92.93 93.44

Table 4.2 shows that the iForest algorithm performed better than the LOF algorithms in

all measures, with all measures above 92%. Furthermore, UNAD outperformed its base

learners on all measures, with all measures over 93% except for the recall, which was

92.86%.

Figure 4.3 shows the percentage of identified normal cases and detected attacks using the

UNAD ensemble.

Figure 4.3: UNAD-Detected Benign and Attacks on NSL-KDD Dataset

UNAD detected almost all the probe attacks (99.03%) and identified more than 90% of the

normal flow and DoS attacks with 94.03% and 96.16% detection rates. The detection rate

for the U2R was high at 77.23%. Finally, UNAD detected over 50% of R2L attacks, which

was the lowest detection rate among all other attack types.

92

Although there were an overall high precision, recall and F1-scores, the proportion of iden-

tified attacks varied significantly from one attack type to another. Nevertheless, all attack

types were identified by UNAD (except the SQL injection on the CICIDS2017 dataset).

However, considering that UNAD had never been introduced to or trained on any of the at-

tacks included in the test set, it performed relatively well, finding all attacks with high

precision, recall and F1-score. In addition, almost all attack types are represented by

UNAD.

4.1.3 UNAD Current Limitation

Since UNAD uses the Majority Voting as a results combiner and each base learner has equal

voting (50 base learners for LOF and 50 for iForest), ties were a significant limitation for

UNAD, causing it to abstain from classification when uncertain. The UNAD majority vote

combiner is biased towards benign/normal flow, represented by the value of ‘0’ in the label

feature in the dataset, meaning that if a tie occurs, UNAD will choose ‘0’ for that instance.

Table 4.3 and Table 4.4 depict analysis of the tie instances for both datasets, showing the

count and percentage of the abstained attack type.

Table 4.3: CICIDS2017 Traffic Type Instances Abstained from Detection

Type Count Percentage (%)
BENIGN 164,062 18.8
DDoS 2,660 4.1
FTP-Patator 1,552 39.1
DoS Slowhttptest 1,157 42.1
SSH-Patator 962 32.6
DoS GoldenEye 882 17.1
DoS Hulk 753 0.7
DoS Slowloris 632 21.8
Web Attack: Brute Force 607 80.5
Web Attack: XSS 303 92.9
PortScan 260 0.3
Bot 19 1.9
Infiltration 8 44.4
Web Attack: SQL Injection 2 20
Total 173,859
Total Abstained (%) 15.1
Ratio Abstained (Benign : Attack) 17:1

93

Table 4.4: NSL-KDD Traffic Type Instances Abstained from Detection

Type Count Percentage (%)
Normal 453 2.6
DoS 137 1.1
Probe 3 0.09
R2L 294 2.7
U2R 1 0.5
Total 888
Total Abstained (%) 2.5
Ratio Abstained (Normal : Attack) 1:1

Table 4.3 shows that UNAD abstained from detecting 173,859 instances, or 15.1% of the

entire testing set for the CICIDS2017. Furthermore, the ratio of benign flow to attacks in the

abstained data was 17:1. Concerning the NSL-KDD dataset, Table 4.4 indicates that UNAD

abstained from detecting 888 instances, or 2.5% of the entire testing set. Additionally, the

ratio of normal flow to attacks in the abstained data was equal, with a ratio of 1:1.

4.2 UNAD with Weighted Majority Voting to Overcome

Abstaining Limitation

4.2.1 The UNAD WMV Workflow

As previously discussed, UNAD’s major limitation is that it abstains from classifying some

data instances due to the equal number of base learners. Therefore, to overcome this limita-

tion, a Weighted Majority Voting function was implemented, in which the F1-score of each

base learner in the UNAD is used as the weighted vote for each data instance. Hence, the

problem of ties and biased voting resulting from the use of Majority Voting in the UNAD

ensemble was eliminated. Figure 4.4 shows the updated UNAD workflow in which the

Majority Voting method was replaced by the Weighted Majority Voting method as a results

combiner.

94

Figure 4.4: updated UNAD Workflow

95

4.2.2 Comparative Analysis of UNAD with Majority Voting versus

UNAD with Weighted Majority Voting

Once the results combiner method was changed, the same experiments were repeated as

described in Section 4.2.1.

CICIDS2017 Results

Table 4.5 compares the stand-alone algorithms used as base learners in the UNAD, the

UNAD results using the Majority Voting method (UNAD MV) as a results combiner and

the UNAD results using the Weighted Majority Voting method (UNAD WMV) as a results

combiner, all evaluated on the CICIDS2017 dataset.

Table 4.5: Comparison of Stand-alone Algorithms, UNAD MV and UNAD WMV on CI-
CIDS2017

Measure LOF iForest UNAD MV UNAD WMV
Accuracy 85.65 73.82 87.23 86.84
Precision 66.19 47.73 70.99 69.57
Recall 83.27 84.86 79.92 81.14
F1-score 73.76 61.09 75.19 74.91
ROC-AUC 84.84 77.58 84.74 84.90

The results indicate that UNAD MV method results were marginally higher than the UNAD

WMV method results on all measures except for the recall measure. However, UNAD

WMV performed better than the stand-alone algorithms, except for the recall measure.

Figure 4.5 illustrates the detection percentage using UNAD MV and UNAD WMV for the

CICIDS2017 dataset.

96

Figure 4.5: Comparison of UNAD MV and WMV Results for CICIDS2017 Dataset

The results for both methods were nearly identical, with an average difference of around

1% for most attacks. MV performed better in detecting Bot and DoS Goldeneye attacks

at 61.96% and 75.81%, respectively. MV and WMV showed the same detection rate for

Infiltration (44.44%) and Heartbleed attacks (100%). However, WMV outperformed MV

in detecting FTP-Patator and SSH-Patator attacks; the detection rate for WMV for the SSH-

Patator attack was more than double that of the MV. Finally, WMV detected 10% of the

SQL injection attacks whereas, as previously pointed out, UNAD MV did not detect any of

the SQL injection attacks.

NSL-KDD Results

Table 4.6 compares the stand-alone algorithms used as base learners in the UNAD, UNAD

MV as a results combiner and UNAD WMV as a results combiner, evaluated on the NSL-

KDD dataset.

97

Table 4.6: Comparison of Stand-alone Algorithms, UNAD MV and UNAD WMV on NSL-
KDD Dataset

Measure LOF iForest UNAD MV UNAD WMV
Accuracy 85.53 92.93 93.45 93.22
Precision 81.05 93.13 93.90 93.52
Recall 92.55 92.63 92.86 92.80
F1-score 86.42 92.88 93.38 93.16
ROC-AUC 85.57 92.93 93.44 93.22

The table shows that UNAD MV results were slightly higher than UNAD WMV on all

measures. However, UNAD WMV performed better than the stand-alone algorithms.

Figure 4.6 shows the detection percentage using UNAD MV and UNAD WMV for the

NSL-KDD dataset.

Figure 4.6: UNAD MV and WMV Results Comparison for NSL-KDD Dataset

Probe attacks had the highest detection rate for both methods, with 99.03% for MV and

98.83% for WMV, followed by DoS attacks, with just over 96% detection rate for each.

Moreover, the detection rate for normal flow was very high (at 94.09% and 93.63% for MV

and WMV, respectively). Furthermore, the U2R attack detection rate was high, just over

77% for each. In contrast, R2L attacks had the lowest detection rate for both methods, with

98

just over 51%. Overall, both MV and WMV performed nearly the same in detecting all

attack types in the NSL-KDD dataset.

In conclusion, although UNAD WMV performed slightly less well than UNAD MV, it can

be seen that WMV overcame two major limitations of WV. First, the MV would abstain

from voting when encountered ties; this limitation led to the second major limitation, which

is that WV was biased towards benign/normal flow when abstaining from voting. This bias

explains the slightly higher results, as the number of benign/normal flow is high in the

dataset. By contrast, WMV produced more accurate, unbiased results by using the weight

as a mechanism for voting. Finally, UNAD WMV was able to detect one SQL injection

(1 out 10), which might help the system’s second component (the supervised classifier) to

detect any future attack of the same type.

4.3 Chapter Summary

This chapter addressed RQ1 and RQ2 of this thesis by introducing UNAD, the unsupervised

ensemble learner for detecting unknown attacks, which acts as the first component of the

system. Furthermore, it explained the workflow and internal process of UNAD, showing

the number of principal components and the set of hyperparameters chosen for each dataset.

It also compared UNAD with its stand-alone algorithms’ results.

MV was used as the results combiner method for UNAD before the problems of abstention

from classification when ties were encountered and biased voting surfaced. Thus, WMV

was implemented to mitigate these limitations. Furthermore, a comparative analysis has

been conducted to compare the results of the two approaches; the results showed that the

WMV overcame the MV issue and provided more solid and accurate results. Another

significant improvement for UNAD when using WMV as a results combiner was that it

detected SQL injection attacks, which UNAD MV could not detect. In conclusion, this

chapter shows that the developed UNAD ensemble can detect new attack types that have

not been encountered with a high detection rate. The next chapter will introduce and discuss

the system’s second and third components.

99

Chapter 5

Improving UNAD Detections and the

System Transparency

This chapter aims to answer RQ3 and RQ4 of this thesis. First, it presents the supervised

model, the second component, where the primary goal is to boost the overall results and

improve the detection rate. It also presents the explainable component, the third compo-

nent, which aims to explain the decision made by the model in a human-understandable

way.

First, this chapter explains the second component’s workflow and discusses its steps in

detail. Next, it presents the evaluated classifiers and compares and summarises their re-

sults. In addition, it provides further analysis of the second component’s selected classifier

by showing the percentage of the detected attacks for both CICIDS2017 and NSL-KDD

datasets. Regarding the third component, the chapter discusses and highlights the impor-

tance of explainability in ML and the benefits of including it as part of the system. Finally,

this chapter describes the two types of explainability included in this thesis—Local and

Global—and provides an example of both types.

100

5.1 Detailed Workflow of the Second Component

Once the UNAD step is completed, the detected data instances in this step are passed to

the second component of the system. However, before proceeding with the second compo-

nent, a domain expert with knowledge of networks and ML techniques checks a subsample

of UNAD’s results, ensuring that the supervised model is given error-free data instances.

Once verified, this data is combined with UNAD’s training set, which contains only be-

nign/normal flow. Afterwards, the features are normalised between [0-1] using MinMaxS-

caler from scikit-learn [147] so that they have equal importance, while keeping the format

of the original data distribution.

Next, feature selection was performed to reduce the number of features by eliminating any

redundant or irrelevant features, thus enhancing the model performance. In addition, fea-

ture selection lowers the computational cost and the required storage [118, 119, 120], which

makes it suitable for dealing with a large and complex dataset. For this, the filter feature

selection method is considered. The filter method is fast and can help overcome the over-

fitting issue when training the model [118]. Furthermore, in the filter method, the selection

of the features is independent of the ML model, since it can select the relevant features in

general regardless of the chosen ML model [118]. Information Gain (IG) feature selection

was used; IG measures the dependency between features and labels by calculating the in-

formation gained between the features and the class labels [120]. Consequently, a feature

is considered relevant to the class if it has a high IG. IG is known for its computational

efficiency and simplicity of interpretation [120].

Table 5.1 and Table 5.2 show the IG for the top 30 features for the CICIDS2017 and NSL-

KDD datasets, ordered from the highest to the lowest. All CICIDS2017 and NSL-KDD

datasets features and their corresponding IG are available in Appendix C.1 and Appendix

D.1.

101

Table 5.1: CICIDS2017 IG for Top 30 Features

No. Feature IG No. Feature IG
1 Average Packet Size 0.5794 16 Avg Fwd Segment Size 0.4246
2 Packet Length Variance 0.5758 17 Fwd Packet Length Mean 0.4245
3 Packet Length Std 0.5753 18 Flow Bytes/s 0.3908
4 Packet Length Mean 0.5545 19 Flow IAT Max 0.3894
5 Total Length of Bwd Packets 0.5158 20 Flow Duration 0.3613
6 Subflow Bwd Bytes 0.5156 21 Fwd IAT Max 0.3478
7 Bwd Packet Length Mean 0.5021 22 Flow Packets/s 0.3368
8 Avg Bwd Segment Size 0.5020 23 Bwd Header Length 0.3368
9 Total Length of Fwd Packets 0.4973 24 Fwd Packets/s 0.3346
10 Init Win bytes backward 0.4825 25 Fwd IAT Total 0.3343
11 Bwd Packet Length Max 0.4797 26 Bwd Packets/s 0.3334
12 Max Packet Length 0.4790 27 Fwd Header Length 0.3236
13 Init Win bytes forward 0.4569 28 Fwd IAT Mean 0.3154
14 Fwd Packet Length Max 0.4549 29 Flow IAT Mean 0.3148
15 Subflow Fwd Bytes 0.4326 30 Flow IAT Min 0.2968

Table 5.2: NSL-KDD IG for Top 30 Features

No. Feature IG No. Feature IG
1 src bytes 0.5414 16 dst host same src port rate 0.2093
2 dst bytes 0.4302 17 flag s0 0.1929
3 dst host same srv rate 0.3372 18 dst host srv diff host rate 0.1874
4 same srv rate 0.3274 19 service private 0.1728
5 dst host diff srv rate 0.3267 20 dst host count 0.1447
6 diff srv rate 0.3266 21 dst host rerror rate 0.1209
7 flag sf 0.3224 22 srv diff host rate 0.1150
8 logged in 0.2890 23 dst host srv rerror rate 0.1150
9 dst host srv count 0.2829 24 rerror rate 0.0950
10 dst host serror rate 0.2574 25 srv rerror rate 0.0881
11 count 0.2436 26 flag rej 0.0574
12 serror rate 0.2303 27 srv count 0.0508
13 dst host srv serror rate 0.2244 28 service domain u 0.0494
14 srv serror rate 0.2108 29 duration 0.0374
15 service http 0.2093 30 service smtp 0.0321

Subsequently, the ratio of attacks to benign/normal flow is evaluated, because the data in

the CICIDS2017 dataset, which comprises 529,445 benign flows, is combined with the

detected data instances from UNAD’s (TP) and (TN), and the training set in the NSAL-

KDD dataset is combined with the detected data instances from UNAD’s (TP) and (TN).

This step is crucial, as it determines if the combined dataset needs to be balanced before

training the supervised model, as training the model on an imbalanced dataset can bias

102

model and lead to incorrect results [122]. Table 5.3 depicts the proportion of UNAD’s

training set, detected attacks and benign/normal data instances in the CICIDS2017 and

NSL-KDD datasets and their ratio.

Table 5.3: CICIDS2017 and NSL-KDD Data Distribution Ratio

Dataset CICIDS2017 NSL-KDD

Class/Label Attacks Benign Attacks Normal

UNAD’s training set 0 529,445 0 40,405
UNAD’s TP and TN 225,794 772,077 16,224 16,533

Total 225,794 1,301,522 16,224 56,938
Ratio 1 6 1 3.5

Table 5.3 shows that both CICIDS2017 and NSL-KDD datasets are imbalanced. For the

CICIDS2017 dataset, the proportion of attacks to benign flow is 1:6, while for the NSL-

KDD, the ratio is 1:3.5. Hence, both datasets require balancing before training the model.

SMOTE (Synthetic Minority Oversampling TEchnique) was applied to the training set,

after the feature selection process. SMOTE is an oversampling method where the minor-

ity class is oversampled by adding more synthetic data instances [171]. The advantage

of SMOTE is that it synthetically oversamples the minority class rather than creating du-

plicates; it creates broader decision regions, therefore ensuring more representation of the

minority class and improvement for the minority class accuracy [171].

To perform the oversampling of the minority class, the SMOTE class from the imblearn

package [172] is used. The hyperparameters are k neighbors, which assigns the number

of nearest neighbours to construct synthetic samples, and the sampling strategy, which

deals with sampling information to resample the data [172]. The former parameter was

left to its default value (k = 5). In contrast, the latter parameter was set to minority, hence

oversampling the minority class. Furthermore, the random state parameter was set to a

fixed number (42) for results reproducibility. Once applied, attack and benign/normal flow

had an equal ratio (1:1).

103

Concerning the second component’s classifier selection, four supervised algorithms were

considered, which are expected to provide high performance: RF, AdaBoost, NB and KNN.

As mentioned in Section 3.1, the second component aims to enhance the system’s over-

all detection. The selection of the supervised model is based on the highest F1-score

achieved.

For the feature selection, a “for loop” iterates over the ordered features from the feature

selection method (highest IG to lowest IG). One feature from the list is added to the loop

in each iteration. The first iteration starts with the highest five IG features and repeats by

adding one feature every iteration, until the best 30 features are assessed. Furthermore, to

avoid overfitting and to accurately assess the evaluated models, 10-fold cross-validation is

applied on every iteration [173]. In addition to cross-validation, the Grid Search method

is used to optimise the model hyperparameters and search for the best combination of

hyperparameters. Once all sets of features and model hyperparameters are evaluated, the

model with the highest F1-score will be used as the second component’s classifier. Figure

5.1 illustrates the second component’s detailed workflow.

104

Figure 5.1: Detailed Workflow of Second Component

105

5.1.1 Research Models’ Hyperparameters

The model’s hyperparameter tuning is crucial to the model’s training phase, as it signifi-

cantly influences the performance of the ML model. All models were implemented using

the scikit-learn library [147]. Hyperparameters for the four models are described in the

scikit-learn documentation [147] as follows:

1. RandomForest hyperparameters:

• n estimators: The number of trees to be built (used) in the forest.

• max depth: The maximum depth of a tree in the RF.

• max samples: The number of data samples chosen to train the base estimators.

• min samples split: Determines the minimum number of data samples needed

to split an internal tree node.

• max features: Determines the number of random subsets of features to con-

sider when splitting the tree nodes.

• min samples leaf: The minimum number of data samples needed to be at a

tree leaf node.

2. AdaBoost hyperparameters:

• base estimator: The algorithm used in the AdaBoost as a base learner.

• n estimators: The number of base learners used in the AdaBoost ensemble

• learning rate: Determines the weight applied to each base learner in the boost-

ing process, aiming to reduce the contribution of each base learner in the en-

semble.

3. Naive Bayes hyperparameters: No hyperparameters to tune

4. KNN hyperparameters:

• n neighbors: Number of nearest neighbours needed to classify each data sam-

ple

106

• weights: Weight function used in prediction, which has two weighing options:

– Uniform: All data instances in each neighbourhood have equal weight,

– Distance: Weight data instances by the opposite of their distance; closer

neighbours will have a more significant impact than farther neighbours.

Table 5.4 summarises the classifiers’ hyperparameter range values and the number of steps

used in the experiments.

Table 5.4: Second Component Classifiers Hyperparameters

Classifier Hyperparameter Range Step Size

RandomForest

n estimators
max depth
max samples
min samples split
max features
min samples leaf

100-500
Default (None), 5-15

Default (None)
2-8

Default (sqrt)
Default(1), 2-6

50
5
-
2
-
2

AdaBoost
base estimator
n estimators
learning rate

Default (DecisionTreeClassifier)
50-500
0.1 -1

-
50
0.1

Naive Bayes No hyperparameters to tune - -

KNN n neighbors
weights

5-30
’uniform’,’distance’

5
’uniform’,’distance’

5.1.2 Evaluation and Results of Second Component

This section presents the set of hyperparameters selected for each classifier that provided

the highest results, plus the overall results for the CICIDS2017 and NSL-KDD datasets.

Table 5.5 shows the classifiers’ best set of hyperparameters for the CICIDS2017 and NSL-

KDD datasets.

107

Table 5.5: Classifiers’ Best Set of Hyperparameters

Classifier Hyperparameter CICIDS2017’s value NSL-KDD’s value

RandomForest

n estimators
max depth
max samples
min samples split
max features
min samples leaf

100
10

Default (None)
8

Default (Sqrt)
2

300
15

Default (None)
4

Default (Sqrt)
1

AdaBoost
base estimator
n estimators
learning rate

Default (DecisionTree)
400
0.9

Default (DecisionTree)
500
1

Naive Base No hyperparameters to tune - -

KNN n neighbors
weights

15
Uniform

15
Distance

Table 5.6 and Table 5.7 show the highest results obtained for each classifier on the testing

set for CICIDS2017 and NSL-KDD datasets.

Table 5.6: Overall Results: CICIDS2017 Second Component Classifiers (in %)

Classifier No of features Accuracy Precision Recall F1-score ROC-AUC score
RandomForest 18 93.86 96.69 85.22 90.59 91.83

AdaBoost 16 75.85 59.55 94.79 73.15 80.28
Naive Bayes 21 49.12 40.32 97.16 60.37 60.37

KNN 17 84.67 72.52 89.88 80.27 85.89

Table 5.6 shows that the RF classifier achieved the highest results on all measures, using

18 features, compared with the other classifiers with an F1-score of 91.83%. The second

best was the KNN classifier, using 17 features with an F1-score of 85.89%. Next came the

Adaboost classifier, which achieved an F1-score of 80.28%, using 16 features. Finally, NB

had the lowest F1-score of 60.37%, using 21 features.

Table 5.7: Overall Results: NSL-KDD Second Component Classifiers (in %)

Classifier No of features Accuracy Precision Recall F1-score ROC-AUC score
RandomForest 11 74.02 69.76 89.67 78.47 73.10

AdaBoost 23 61.69 63.06 66.22 64.60 61.42
Naive Bayes 10 45.15 48.51 63.51 55.01 44.07

KNN 12 65.04 65.73 70.59 68.07 64.72

108

Table 5.7 shows that the RF classifier achieved the highest results on all measures, using

11 features, compared to the other three classifiers with an F1-score of 78.47%. Next came

the KNN classifier, using 12 features, with an F1-score of 68.07%. However, the F1-score

in the RF was significantly higher than in the KNN classifier, with a difference of around

10%. Finally, the AdaBoost classifier achieved an F1-score of 64.60%, using 23 features.

NB had the lowest results on all measures, with an F1-score of 55.01

Overall, the RF classifier achieved the highest results on all measures for both datasets,

except for the recall measure on the CICIDS2017 dataset, where the NB classifier had

the highest recall. However, the RF classifier still provided a high recall (85.22%) and

outperformed the NB classifier on all other measures. Therefore, based on the experimental

results, the RF classifier is selected as the second component’s classifier to boost the overall

results and improve the detection rate for the system.

CICIDS2017 Results Analysis

Figure 5.2 illustrates the percentage of identified benign and attacks flow on the CICIDS2017

dataset using the second component’s classifier.

Figure 5.2: Second Component Result Analysis for the CICIDS2017 Dataset

109

The RF classifier detected most attack types (10 out of 14). It detected almost all DDoS

attacks (99.40%). Detection rates for DoS slowloris and benign flows were also high, at

98.56% and 98.45%, respectively, followed by FTP-Patator at 97.18% and SSH-Patator at

96.52%. The detection rate for DoS Slowhttptest was just over 94%, and the detection rate

for DoS Hulk was high at 85.11%. DoS GoldenEye and Portscan attacks achieved low

results, 35.28% and 10.79%. The Bot attacks’ detection rate was under 1%. Finally, the RF

classifier could not detect any web attacks (brute force, SQL injection, XSS) or infiltration

attacks.

NSL-KDD Results Analysis

Figure 5.3 illustrates the percentage of identified normal and attacks flow on the NSL-KDD

dataset using the second component’s classifier.

Figure 5.3: Second Component Result Analysis for the NSL-KDD Dataset

110

The RF classifier detected all attacks on the NSL-KDD attacks. It detected almost all DoS

attacks at 98.55% and 95% of the Probe attacks. Furthermore, the detection rate for R2L

and U2R attacks was high at 84.18% and 73.33%, respectively. Finally, the RF classifier

detected more than half of the normal flow, at 56.53%.

Overall, the RF classifier performed very well with high results for benign/normal and most

attack types. Concerning the CICIDS2017 dataset, the results were high for the benign

and varied from one attack type to another. For the NSL-KDD, the normal flow result was

moderate and high for all attack types. Further discussion of the results for the RF classifier

appears in Chapter 6.

5.2 Explainability Component

This section describes the explainable component, the third component of the system. The

explainable component provides domain experts with two types of explanations related to

the decision made by the classifier. The first type is local explainability, which aims to

explain any single prediction made by the model. The second type is global explainability,

which aims to explain the entire model. Both are post-hoc explainability methods, which

are applied after the second component stage.

The benefit of the local and global explainable components is that they will provide the

domain expert with explanations about the decision made by the model. These explana-

tions are essential to confirm model fairness, detect bias in the training data, and verify that

the model works as expected [174]. Furthermore, the local and global explainable compo-

nents allow the model to be tested, audited and debugged, which helps detect faulty model

behaviour and identify erroneous predictions, thus improving the model’s safety [95]. Fur-

thermore, local and global components will increase domain experts’ trust in the system

and avoid unclear results by serving as an additional evaluation measure, contributing to

the success of the black-box model predictions. The remainder of this section demonstrates

how the explainability components help domain experts.

111

5.2.1 Local Explainability

The local explainable method provides explanations for a single prediction; LIME [3] is

used for this purpose. LIME is a reliable algorithm proposed by Ribeiro et al. that can

explain the predictions of any classifier by matching it locally with an explainable model

[3].

As explained by Molnar [88], LIME works by first selecting the desired data sample that

needs an explanation. Next, new data samples are generated by perturbing the dataset.

Then, it obtains the model predictions for these new data samples and weights the new

data samples according to their proximity to the selected data sample. After this, LIME

trains the weighted data samples using an explainable ML model. Finally, it explains the

prediction using the explainable ML model [88]. The advantages of using LIME are that it

is easy to implement and use; it can also be used on various types of data, such as tabular

data, text and images [88]. Furthermore, LIME has a reusability functionality, meaning

if the black-box ML model is changed, no alteration or modification is required to the

LIME settings [88]. Therefore, LIME will illuminate the logic behind the decision made

by the model regarding any individual or particular data instance within the testing set. An

alternative to LIME is SHAP [175]; however, SHAP is known for its high computational

complexity [176].

112

Explainability Examples on the CICIDS2017 Dataset

Figures 5.4 – 5.7 illustrate examples of model explainability on the CICIDS2017 dataset.

Figure 5.4: Explanation of Correctly Detected Benign Flow on CICIDS2017 Dataset

Figure 5.4 shows an example of correctly detected benign flow. The prediction probability

for this instance was 100% towards benign flow. Furthermore, almost all the features se-

lected this instance as benign except Subflow Bwd Bytes, Flow IAT Max, Avg Bwd Segment

Size and Bwd Packet Length Max features.

113

Figure 5.5: Explanation of Correctly Detected Attack Flow on CICIDS2017 Dataset

Figure 5.5 hows an example of a correctly detected FTP-Patator attack instance. The pre-

diction probability for this instance was 98% towards attack flow. Although most of the

features selected this instance as benign, the other remaining had a more substantial influ-

ence in classifying this instance as attack flow.

114

Figure 5.6: Explanation of Incorrectly Detected Benign Flow on CICIDS2017 Dataset

Figure 5.6 shows an example of an incorrectly detected benign flow instance. The predic-

tion probability for this instance was 74% towards attack flow. Furthermore, almost all the

features selected this instance as attack except Total Length of Fwd Packets, Packet Length

Mean, Flow IAT Max, Bwd Packet Length Mean and Packet Length Variance features.

115

Figure 5.7: Explanation of Incorrectly Detected Attack Flow on CICIDS2017 Dataset

Figure 5.7 illustrates an example of incorrectly detected SSH-Patator attack instance. The

prediction probability for this instance was 76% towards benign flow. The incorrect classi-

fication occurred because most of the features selected this instance as benign.

Explainability Examples on the NSL-KDD Dataset

Figures 5.8 – 5.11 illustrate examples of model explainability on the NSL-KDD dataset.

116

Figure 5.8: Explanation of Correctly Detected Normal Flow on NSL-KDD Dataset

Figure 5.8 shows an example of correctly detected normal flow. The predication prob-

ability for this instance was 95% towards normal flow. Further, flaf sf, logged in and

dst host serror rate features had the greatest influence on classifying this instance as nor-

mal flow.

Figure 5.9: Explanation of Correctly Detected Attack Flow on NSL-KDD Dataset

Figure 5.9 shows an example of a correctly detected DoS attack instance. The prediction

probability for this instance was 65% towards DoS flow. Although most of the features se-

lected this instance as normal, the logged in, dst host same srv rate, dst host diff srv rate

117

and same srv rate features were more influential in classifying this instance as a DoS at-

tack.

Figure 5.10: Explanation of Incorrectly Detected Normal Flow on NSL-KDD Dataset

Figure 5.10 shows an incorrectly detected normal flow instance. The prediction probabil-

ity for this instance was 100% towards attack flow. Furthermore, almost all the features

selected this instance as attack except dst host srv count, dst bytes and count.

Figure 5.11: Explanation of Incorrectly Detected Attack Flow on NSL-KDD Dataset

Figure 5.11 illustrates an example of incorrectly detected DoS attack instance. The pred-

ication probability for this instance was 79% towards normal flow. The reason for the

118

incorrect classification was that most of the features selected this instance as normal, ex-

cept dst host srv count, src bytes, dst host same srv rate and dst host diff srv rate fea-

tures.

5.2.2 Global Explainability

Global explainability aims to provide a comprehensive explanation of the model. For

this, the global surrogate method is adopted; this method explains a model using a self-

explanatory model (intrinsic model) [99, 100, 177]. Examples include linear, decision tree

and rule-based models [178].

The global surrogate method task begins by training an explainable model on the same

dataset used to train the black-box model [179]. Next, predictions of the black-box model

as the target dataset (the testing set) for the explainable model are assigned. The final step

is an evaluation, known as fidelity, of how well the explainable model can approximate the

black-box model predictions [179].

DT has been used as the explainable model for the global surrogate method. DT is a trans-

parent algorithm that can extract rules in a human-readable way, explaining the knowledge

obtained from the black-box model [91]. For this, a rule extractor function is implemented,

which extracts the rules of the DT in a human-readable format and generates a CSV report

for a domain expert to explain the model predictions and assess the results. The DT was

implemented using its default hyperparameters settings, which are the same as the RF hy-

perparameters except for the n estimators parameter, which is excluded. Descriptions of

the RF hyperparameters were provided in Section 5.1.1. For model fidelity, the accuracy

measure was used as an evaluation metric. The higher the accuracy score, the better the

explainable model can approximate the black-box model. The accuracy score achieved for

CICIDS2017 and NSL-KDSS datasets was over 99%, meaning that the DT model can very

accurately approximate the RF model predictions.

119

Figures 5.12 and 5.13 illustrate the DT and network flow analysis report for CICIDS2017,

and Figures 5.14 and 5.15 illustrate the DT and network flow analysis report for NSL-

KDD.

Figure 5.12: CICIDS2017 Decision Tree

Figure 5.13: CICIDS2017 Network Flow Analysis Report

Figure 5.14: NSL-KDD Decision Tree

120

Figure 5.15: NSL-KDD Network Flow Analysis Report

Once the DT graph is generated (Figures 5.12 and 5.14) the rule extractor function extracts

the rules and converts them into a CSV report (Figures 5.13 and 5.15). In this report, each

row represents a rule in conditional format. Furthermore, each rule comprises the features

and their range of values. If a rule results in an attack, then the rule row is highlighted in

red in the CSV report.

5.3 Chapter Summary

This chapter answered RQ3 and RQ4 of this thesis by presenting the second and third

components of the system. Concerning the second component, four different supervised

classifiers were evaluated. The classifiers were trained and optimised on UNAD’s cor-

rectly detected attacks, plus the training set used to train UNAD, which comprised only

benign/normal flow. Next, the classifiers were evaluated on UNAD’s not-detected data

instances. The classifiers were assessed in terms of the F1-score measure. The RF classi-

fier produced the highest result of the three; thus, it was selected for the system’s second

component model. Data analysis showed that using a supervised classifier improves the

detection of most attack types.

For the third component, two types of explainability have been introduced—local and

global—to provide the domain expert with explanations about the decision made by the

model. For local explainability, LIME was implemented, which provides explanations for

a single prediction, while global explainability provides a comprehensive explanation of

the model. For this, the global surrogate method was adopted, and DT was used as the

121

explainable model, in which, after generating the tree, a rule extractor function extracts the

rules and generates a human-readable report for the domain expert. This component can

help domain experts assess a threat level and understand how the model made its decisions.

The following chapter will present and discuss the thesis’s overall boosted results.

As previously mentioned, with enough experience in networking and ML techniques, a

human expert can use the local and global parts interchangeably. For example, in Figure

5.9, the flow was misclassified as an attack flow (DoS) instead of a normal flow. For this,

the human expert can compare the set of features that influenced the misclassification from

the local explanation part with the list of rules report from the global part, highlight any

inconsistencies between the two parts, and find what contributed to the misclassification.

This way, the human expert will obtain the knowledge/insight to audit the system, hence

improving the system’s overall performance, re-train and re-tune the system to avoid any

future prediction errors, and helping the system correctly classify attack types.

122

Chapter 6

Overall Results and Discussion

This chapter aims to show the overall boosted results after implementing the second com-

ponent of the system and combining its results with UNAD. Chapter 6 will present UNAD,

the second component classifier and the overall boosted results for both CICIDS2017 and

NSL-KDD datasets. This chapter revisits the data analysis from Chapters 4 and 5 to com-

pare these results with the overall obtained results. Furthermore, this chapter provides a

detailed analysis of the detection rate for benign/normal and all attack types after com-

bining the second component classifier results with UNAD results. Finally, this chapter

discusses possible reasons why some of the attacks in the CICIDS2017 dataset were not

detected by the second component classifier.

6.1 CICIDS2017 Results and Analysis

Table 6.1 illustrates the results for UNAD, the second component classifier and the overall

boosted results after combining the second component classifier’s results with UNAD’s

results on the CICIDS2017 dataset.

123

Table 6.1: CICIDS2017 Overall Results (in %)

Measure UNAD WMV Second component classifier Overall results
Accuracy 86.84 93.86 99.19
Precision 69.57 96.69 99.44
Recall 81.14 85.22 99.21
F1-score 74.91 90.59 98.31
ROC-AUC 84.90 91.83 98.52

The overall obtained results were significantly higher for all measures. F1-score results

improved from 74.91% to 98.31%, as the second component managed to detect 90.59%

of UNAD’s not-detected attacks. The precision measure results were also considerably

improved, from 69.57% on UNAD to 99.44%. Furthermore, the overall results for the

recall measure improved from 81.14% to 99.21%. Finally, the system achieved an overall

accuracy of 99.19% and ROC-AUC 98.52%.

Figures 6.1 and 6.2 revisit the results analysis for UNAD (C1) and the second component

classifier (C2) for the CICIDS2017 dataset. Figure 6.3 represents the overall boosted results

using the second component classifier for the CICIDS2017, while Figure 6.4 shows the

results of UNAD, the second component and the overall results.

Figure 6.1: UNAD WMV Results for CICIDS2017 Dataset (in %)

124

Figure 6.2: CICIDS2017 Second Component Results (in %)

Figure 6.3: CICIDS2017 Overall Results (in %)

Figure 6.4 shows that the detection rate for benign and most attack types improved after

implementing the second component classifier. As pointed out in Chapter 4, the UNAD

ensemble can detect new attack types that have not been encountered before with a high

125

Figure 6.4: CICIDS2017 UNAD, second component and Overall Results (in %)

detection rate for benign and most of the attack types (blue bar). Furthermore, as seen in

Figure 6.4, using the second component (orange bar) improved the detection rate for benign

and most attack types (red bar). The detection rate for the benign flow improved by just

over 11%, from 88.66% to 99.82%. Similarly, the DoS GoldenEye detection rate increased

by 12%, from 63.77% to 76.55%. The detection rate for DDoS and DoS Hulk attacks was

enhanced by more than 20%, with 99.87% and 96% detection rates, respectively. More-

over, DoS Slowhttptest and DoS SlowLoris detection rates were boosted by 44% and 30%,

respectively. SSH-Patator showed a significant improvement in its detection rate, from

43.42% to 98.03%, with more than 54% improvement in the detection rate. FTP-Patator

detection rate improved by around 8%. In contrast, Portscan and Bot attacks improved

slightly, with under 0.5% of enhancement in the detection rate. Finally, none of the web

attacks (Brute Force, SQL Injection, XSS) or infiltration attacks saw any improvements in

the detection rate as the second component couldn’t detect any of these attacks.

Further Analysis of Attack Types with No Improvement in Overall Detection Rate

As mentioned in Chapter 5 and seen in Figure 6.2, the second component classifier could

not detect any of the web attacks (brute force, SQL injection, XSS) or infiltration attacks.

126

Hence, it did not improve the overall detection rate for these attacks. Further analysis of

these attack types showed that the second component classifier did not detect them because

a low proportion of data instances of these attacks was detected by UNAD, which was used

to train the second component classifier. The low detection by UNAD can be due to losing

some information that helps in recognising such attacks after applying the dimensionality

reduction technique (PCA), which was aimed to reduce the number of features, hence,

avoid the curse of dimensionality problem. For example, UNAD detected only 59 brute

force attacks, which were used to train the second component classifier to detect 695 data

instances of the same attack type. Similarly, the RF classifier was trained on 13 XSS attacks

to detect 313 data instances.

Furthermore, the second component classifier was trained on only 8 infiltration data in-

stances to detect 10 data instances. Likewise, the second component classifier was trained

on only one SQL injection data instance in order to detect nine instances. In contrast, the

second component classifier was trained, for example, on 1,280 SSH-Patator attacks, 1,444

DoS Slowhttptest attacks, 50,236 DDoS attacks and 772,077 benign flow; therefore, these

attacks saw a significant improvement in their detection rate.

6.2 NSL-KDD Results and Analysis

Table 6.2 shows the results for UNAD, the second component classifier and the overall

boosted results after combining the second component classifier’s results with UNAD’s

results on the NSL-KDD dataset.

Table 6.2: NSL-KDD Overall Results (in %)

Measure UNAD WMV Second component classifier Overall results
Accuracy 93.22 74.02 98.24
Precision 93.52 69.76 97.26
Recall 92.80 89.67 99.26
F1-score 93.16 78.47 98.25
ROC-AUC 93.22 73.10 98.24

As with the CICIDS2017 results, the overall results for the NSL-KDD dataset were also

127

very high for all measures after using the second component classifier. For example, the F1-

score was enhanced by just over 5% from 93.16% in UNAD to 98.25%. Furthermore, the

precision measure results increased from 93.52% on UNAD to 97.26%. The overall results

for the recall measure improved from 92.80% on UNAD to 99.26%. Finally, the system

achieved an overall accuracy and ROC-AUC of 99.19% and 98.24%, respectively.

Figures 6.5 and 6.6 revisit the results obtained from the data analysis of UNAD (C1) and

the second component classifier (C2) for the NSL-KDD dataset. Figure 6.7 represents the

overall boosted results using the second component classifier for the NSL-KDD dataset,

and Figure 6.8 shows the results of UNAD, the second component and the overall re-

sults.

Figure 6.5: UNAD WMV Results for NSL-KDD Dataset (in %)

128

Figure 6.6: UNAD NSL-KDD Second Component Results (in %)

Figure 6.7: NSL-KDD Overall Results (in %)

129

Figure 6.8: NSL-KDD UNAD, second component and Overall Results (in %)

Figure 6.8 shows that the detection rate for normal and all attack types have improved after

implementing the second component classifier. The blue bar represents UNAD detection

results, the orange bar represents the second component detection results and the red bar

depicts the overall results after using the second component classifier. As seen in the figure,

using the second component improved the detection rate for normal and all attack types.

R2L attacks showed the most significant improvement in the detection rate, which was en-

hanced by more than 40%, from 51.55% to 92.33%, followed by U2R, which was boosted

by more than 16%, from 77.72% to 94.06%. Normal and DoS attack detection rates im-

proved by more than 3% , to 97.23% and 99.94%, respectively. Probe attacks detection rate

were enhanced by 1%, from 98.83% to 99.94%.

Overall, it is evident that the second component classifier effectively enhanced the detec-

tion rate and improved the overall results for both datasets, which can be seen in the data

analysis presented in this section. The improvement in the detection rate varied among

the attacks. However, around 68% of the total attack types were detected at rates ranging

from 92% to just below 100% after being enhanced via the second component classifier.

Furthermore, as previously pointed out, some attack types did not show any improvement,

130

due to the very low number of data instances detected by UNAD that were used to train the

second component classifier.

6.3 Chapter Summary

This chapter presented the overall boosted results after implementing the second compo-

nent of the system and combining its results with UNAD. In addition, this chapter combined

the data analysis acquired from Chapters 4 and 5 with the overall results. Then, this chapter

illustrated the detection rate for benign/normal and all attack types after merging the sec-

ond component classifier results with UNAD results. Finally, this chapter further examined

attack types in the CICIDS2017 dataset that showed no improvement in overall detection

rates, such as infiltration, brute force, SQL injection and XSS. The analysis showed that

these attacks were not detected by the second component classifier because a low propor-

tion of data instances of these attacks was detected by UNAD, which had been used to train

the second component classifier.

131

Chapter 7

Conclusion and Future Work

This chapter concludes this thesis; it addresses the research questions and hypotheses and

their outcomes. Furthermore, this chapter discusses the limitations of the research pre-

sented in this thesis. Finally, this chapter discusses further work that could build on this

research.

7.1 Thesis Summary

The threat of network attacks increases every day. These attacks originate from hackers

with various motives, such as stealing victims’ bank account details, committing financial

fraud, or for political reasons. As a result, governments and businesses have begun allocat-

ing money to strengthen network infrastructure against these attacks. One of the methods

which can be used to fight network attacks are Intrusion Detection Systems. At present,

IDSs using ML are receiving much research attention. Many researchers have proposed

systems that use supervised ML. However, these systems are limited to detecting attacks

that have been previously encountered and are well known; hence, they cannot detect new

or unknown network attacks. Unsupervised ML is the key to overcoming this limitation,

but unsupervised ML typically suffers from many false positives [2], low precision and

recall results.

132

The research presented in this thesis aimed to develop a network IDS using ML methods

to detect unknown and new attack types, while maintaining a low false positive rate for the

system. To achieve this goal, four research questions were proposed and three hypotheses

were investigated.

To investigate and answer the research questions and achieve the research objectives, the

following Chapters were presented. First, a literature review was conducted in Chapter 2.

This chapter provided a comprehensive overview of the use of ML in the intrusion detection

domain. Chapter 2 introduced types of intrusion detections systems and the measures

used to evaluate their performance. In addition, Chapter 2 reviewed anomaly detection

techniques and described some of the supervised and unsupervised learning algorithms

used in the anomaly detection domain.

Chapter 2 also explained the ensemble techniques and the methods used to combine its re-

sults. Also, Chapter 2 discussed model explainability in ML and the preprocessing meth-

ods used in this thesis. Finally, Chapter 2 reviewed and evaluated literature related to un-

supervised intrusion detection to understand the domain challenges and limitations.

In Chapter 3, a novel Network Intrusion Detection System framework was proposed (Con-

tribution 1). The framework was explained at high and low levels. This framework con-

sisted of three components: C1, C2 and C3, each with a different purpose. For example,

C1 was used to detect new and unknown network attacks. C2 was used to boost the overall

results and improve the detection rate, and C3 was used to explain the model’s decision

in a human-understandable way. In addition, Chapter 3 explained the preliminary exper-

imental setup and the datasets used in this thesis, including the type of attacks, number of

attack instances and the feature description. Furthermore, the preprocessing steps and the

workflow applied to the datasets used in this thesis were explained. In addition, Chapter

3 introduced the anomaly detection algorithms used in the first component as base learners

and examined, evaluated and compared their results (Contribution 2).

133

Chapter 4 addressed RQ1 and RQ2:

RQ1: Is it possible to develop an unsupervised Network Intrusion Detection

System that can exhibit a high detection performance in terms of precision,

recall and F1-score while maintaining good performance over time with the

current complexity in network attacks?

RQ2: To what extent can the developed unsupervised Network Intrusion De-

tection System accurately detect attacks that have not been encountered be-

fore?

Chapter 4 answered RQ1 and RQ2 by introducing a novel heterogeneous unsupervised

bagging ensemble UNAD (Contribution 3), the unsupervised bagging ensemble learner for

detecting unknown attacks, which, as previously pointed out, acts as the first component of

the system. UNAD consists of a set of heterogeneous LOF and iForest base learners and

uses Weighted Majority Voting as a results combiner. The data analysis showed that the

UNAD ensemble can accurately detect new attack types that have not been previously en-

countered and maintain a high detection rate for most of the evaluated attack types. Hence,

the results of Chapter 4 confirm Hypothesis 1:

Hypothesis 1: “Anomaly detection methods can be adapted to detect new

and previously unknown network attacks as new attacks are expected to be an

anomaly to the normal network flow pattern. Moreover, the detection perfor-

mance can be improved by constructing an ensemble-based model consisting

of anomaly detection techniques.”

Chapter 5 addressed RQ3 and RQ4:

RQ3: Is it possible to improve the system’s detection accuracy after the initial

discovery of a new type of attack using supervised methods?

RQ4: Can a mechanism within the IDS that explains attack detections help

a domain expert to assess the threat level and understand how the model’s

decisions are made?

134

Chapter 5 answered RQ3 and RQ4 by introducing the second and third components. The

second component, which addresses RQ3, is formed of the supervised algorithm. The main

goal of this component is to boost the overall results and improve the detection rate by being

trained on UNAD’s True Positive and True Negative, in addition to the training set used to

train UNAD, which comprises only benign/normal flow. The RF classifier was chosen for

the second component as the supervised classifier because it achieved the highest results

compared with the other evaluated classifiers. Furthermore, the data analysis showed that

implementing the RF classifier improved the detection rate for most of the evaluated attack

types (Contribution 4). Therefore, the results of Chapter 5 partially confirm Hypothesis

2:

Hypothesis 2: “Having a supervised model will assist in detecting attacks that

have been encountered before, since these attacks become known to the system,

thus improving the overall detection results.”

RQ4 was addressed by implementing the third component, which aims to explain the deci-

sion made by the model in a human-understandable way using ML explainability methods

(Contribution 5). Two types of explanation were used in the third component, local and

global. The local explainability used LIME [3], which provides an explanation for the do-

main expert for any single prediction made by the system. For global explainability, the

global surrogate method was applied. For this, a Decision Tree was used to explain the

entire model. Once the DT graph is created, a rule extractor function extracts the rules and

generates a human-readable report for the domain expert in CSV format. Thus, the third

component can help domain experts assess threat levels and understand how the model

made its decisions. Accordingly, the outcome of Chapter 5 confirms Hypothesis 3.

Hypothesis 3: “It is possible to obtain some explanation from the developed

model to support domain experts in evaluating the level of threats and under-

standing the decisions made by the model.”

Lastly, Chapter 6 presented the thesis’s overall boosted results after implementing the sec-

ond component to the system and combining its results with UNAD. Furthermore, Chapter

6 revisited the results analysis acquired from Chapters 4 and 5 and presented these results

135

with the overall results. In addition, Chapter 6 further examined the detection rate for

benign/normal and all attack types after combining the second component classifier results

with UNAD results. Finally, Chapter 6 discussed the possible reason that led to some

of the attacks in the CICIDS2017 dataset, such as infiltration, brute force, SQL injection

and XSS, going undetected by the second component classifier and thus not improving the

overall detection results.

7.2 Limitations

This thesis successfully answered the research questions, addressed the hypotheses and

achieved its aim and objectives. However, two limitations were identified:

1. A real dataset cannot be used to evaluate ML models due to privacy and security

issues. Hence, publicly available synthetic benchmarking datasets were used in this

thesis.

2. The second component, which uses the RF classifier, cannot effectively detect an

attack if trained on a low proportion of that attack and therefore cannot boost its

overall results.

7.3 Future Work

For future work, the contribution of this thesis can be extended in the following direc-

tions:

1. As new attack types keep emerging, test and evaluate the system’s effectiveness on

these new attack types. Furthermore, deploy, test and evaluate the current system in

the production environment (real-network environment). For an actual network, the

system would be deployed behind the firewall to allow monitoring of the inbound

and outbound traffic. This way, the system will be able to monitor, analyse and

check any malicious attempts on the organisation’s network and directly interact with

the firewall in case of detecting an attack so the firewall can block it. Further, a

136

packet sniffer such as Wireshark will be implemented between the firewall and the

system, capturing the traffic in real-time and forwarding it to the system. Further,

this system should be managed by a human expert with knowledge of networks and

ML techniques. Therefore, the human expert will be able to analyse the network

traffic, interpret the outcome of the system’s third component report, investigate and

confirm any attack incidents and train/tune the system accordingly.

2. Although UNAD performed very well in detecting new and unknown attacks, further

improvement of the overall system performance can be made by first evaluating and

analysing the performance of other anomaly detection algorithms to be included in

the UNAD ensemble as additional heterogeneous base learners. Secondly, empiri-

cally evaluate and analyse different supervised ML algorithms that can achieve the

RF results or higher; but can overcome the issue of not detecting some attacks if

UNAD was trained on a low proportion of data instances.

3. Consider using a computer cluster, if possible, to split the model training and algo-

rithms hyperparameter tuning on compute nodes when dealing with a large dataset,

which will reduce computational time for such processes.

4. Enhance the system to act in real-time (real-time IDS) in case an attack incident oc-

curs. This could be done by adopting data stream mining and concept drift detection

methods. In addition, the real-time IDS system could include features such as real-

time alert notification and an automatic quick response mechanism that shuts down

the system to mitigate damage from attacks.

5. Test and evaluate the model in other domains, such as the healthcare (identifying

diseases and outbreaks) and financial sectors (fraud detection), and evaluate how

well it can generalise and perform in those domains.

137

References

[1] Ashima Chawla, Brian Lee, Sheila Fallon, and Paul Jacob. Host based intru-

sion detection system with combined CNN/RNN model. In Carlos Alzate, Anna

Monreale, Haytham Assem, Albert Bifet, Teodora Sandra Buda, Bora Caglayan,

Brett Drury, Eva Garcı́a-Martı́n, Ricard Gavaldà, Stefan Kramer, Niklas Laves-

son, Michael Madden, Ian M. Molloy, Maria-Irina Nicolae, and Mathieu Sinn,

editors, ECML PKDD 2018 Workshops - Nemesis 2018, UrbReas 2018, SoGood

2018, IWAISe 2018, and Green Data Mining 2018, Dublin, Ireland, September

10-14, 2018, Proceedings, volume 11329 of Lecture Notes in Computer Science,

pages 149–158. Springer, 2018. doi: 10.1007/978-3-030-13453-2\ 12. URL

https://doi.org/10.1007/978-3-030-13453-2 12.

[2] Weiwei Chen, Fangang Kong, Feng Mei, Guiqin Yuan, and Bo Li. A novel unsuper-

vised anomaly detection approach for intrusion detection system. In 2017 ieee 3rd

international conference on big data security on cloud (bigdatasecurity), ieee in-

ternational conference on high performance and smart computing (hpsc), and ieee

international conference on intelligent data and security (ids), pages 69–73, 2017.

doi: 10.1109/BigDataSecurity.2017.56.

[3] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should I trust you?”:

Explaining the predictions of any classifier. In Balaji Krishnapuram, Mohak Shah,

Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi, editors,

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages

138

https://doi.org/10.1007/978-3-030-13453-2_12

1135–1144. ACM, 2016. doi: 10.1145/2939672.2939778. URL https://doi.org/10.

1145/2939672.2939778.

[4] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward generating a

new intrusion detection dataset and intrusion traffic characterization. In Paolo Mori,

Steven Furnell, and Olivier Camp, editors, Proceedings of the 4th International

Conference on Information Systems Security and Privacy, ICISSP 2018, Funchal,

Madeira - Portugal, January 22-24, 2018, pages 108–116. SciTePress, 2018. doi:

10.5220/0006639801080116. URL https://doi.org/10.5220/0006639801080116.

[5] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. A detailed

analysis of the KDD CUP 99 data set. In 2009 IEEE Symposium on Computational

Intelligence for Security and Defense Applications, CISDA 2009, Ottawa, Canada,

July 8-10, 2009, pages 1–6. IEEE, 2009. doi: 10.1109/CISDA.2009.5356528. URL

https://doi.org/10.1109/CISDA.2009.5356528.

[6] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun, and

Ali A. Ghorbani. Characterization of tor traffic using time based features. In Paolo

Mori, Steven Furnell, and Olivier Camp, editors, Proceedings of the 3rd Inter-

national Conference on Information Systems Security and Privacy, ICISSP 2017,

Porto, Portugal, February 19-21, 2017, pages 253–262. SciTePress, 2017. doi:

10.5220/0006105602530262. URL https://doi.org/10.5220/0006105602530262.

[7] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, and

Ali A. Ghorbani. Characterization of encrypted and VPN traffic using time-

related features. In Olivier Camp, Steven Furnell, and Paolo Mori, editors, Pro-

ceedings of the 2nd International Conference on Information Systems Security

and Privacy, ICISSP 2016, Rome, Italy, February 19-21, 2016, pages 407–414.

SciTePress, 2016. doi: 10.5220/0005740704070414. URL https://doi.org/10.5220/

0005740704070414.

[8] NSL KDD. NSL KDD feature description. http://kdd.ics.uci.edu/databases/

kddcup99/task.html. Accessed: 05.02.2022.

139

https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.5220/0006639801080116
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.5220/0006105602530262
https://doi.org/10.5220/0005740704070414
https://doi.org/10.5220/0005740704070414
http://kdd.ics.uci.edu/databases/kddcup99/task.html
http://kdd.ics.uci.edu/databases/kddcup99/task.html

[9] Adetunmbi A Olusola, Adeola S Oladele, and Daramola O Abosede. Analysis of

kdd’99 intrusion detection dataset for selection of relevance features. In Proceedings

of the world congress on engineering and computer science, volume 1, pages 20–22.

WCECS, 2010.

[10] Joseph Johnson. Global digital population. https://www.https://www.statista.com/

statistics/617136/digital-population-worldwide/. Accessed: 08.01.2021.

[11] Cedric Nabe. Impact of COVID-19 on Cybersecurity. https://www2.deloitte.com/

ch/en/pages/risk/articles/impact-covid-cybersecurity.html. Accessed: 04.02.2022.

[12] UK HM Treasury. Autumn Budget and Spending Review 2021. https://assets.

publishing.service.gov.uk/government/uploads/system/uploads/attachment data/

file/1043689/Budget AB2021 Web Accessible.pdf. Accessed: 04.02.2022.

[13] Steve Morgan. Cybercrime To Cost The World $10.5 Trillion Annually By 2025.

https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/. Ac-

cessed: 02.12.2020.

[14] Zeeshan Ahmad, Adnan Shahid Khan, Cheah Wai Shiang, Johari Abdullah, and

Farhan Ahmad. Network intrusion detection system: A systematic study of machine

learning and deep learning approaches. Trans. Emerg. Telecommun. Technol., 32(1),

2021. doi: 10.1002/ett.4150. URL https://doi.org/10.1002/ett.4150.

[15] BBC. Ticketmaster. https://www.bbc.co.uk/news/technology-54931873, . Ac-

cessed: 02.12.2020.

[16] BBC. Flightradar24 Cyber-attack. https : / / www . bbc . co . uk / news /

technology-54337980, . Accessed: 02.12.2020.

[17] BBC. Air India cyber-attack. https : / / www . bbc . co . uk / news /

world-asia-india-57210118, . Accessed: 05.02.2022.

[18] BBC. Sunderland University cyber-attack. https : / / www. bbc . co . uk / news /

uk-england-tyne-58925807, . Accessed: 05.02.2022.

140

https://www.https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www2.deloitte.com/ch/en/pages/risk/articles/impact-covid-cybersecurity.html
https://www2.deloitte.com/ch/en/pages/risk/articles/impact-covid-cybersecurity.html
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1043689/Budget_AB2021_Web_Accessible.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1043689/Budget_AB2021_Web_Accessible.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1043689/Budget_AB2021_Web_Accessible.pdf
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://doi.org/10.1002/ett.4150
https://www.bbc.co.uk/news/technology-54931873
https://www.bbc.co.uk/news/technology-54337980
https://www.bbc.co.uk/news/technology-54337980
https://www.bbc.co.uk/news/world-asia-india-57210118
https://www.bbc.co.uk/news/world-asia-india-57210118
https://www.bbc.co.uk/news/uk-england-tyne-58925807
https://www.bbc.co.uk/news/uk-england-tyne-58925807

[19] BBC. VoIP. https://www.bbc.co.uk/news/technology-59053876, . Accessed:

02.12.2020.

[20] The Guardian. Colonial Pipeline cyber-attack. https : / / www. theguardian .

com/us-news/2021/may/12/us-fuel-shortages-pipeline-hack-drivers. Accessed:

05.02.2022.

[21] Gaku Kotani and Yuji Sekiya. Unsupervised scanning behavior detection based on

distribution of network traffic features using robust autoencoders. In Hanghang

Tong, Zhenhui Jessie Li, Feida Zhu, and Jeffrey Yu, editors, 2018 IEEE Interna-

tional Conference on Data Mining Workshops, ICDM Workshops, Singapore, Sin-

gapore, November 17-20, 2018, pages 35–38. IEEE, 2018. doi: 10.1109/ICDMW.

2018.00013. URL https://doi.org/10.1109/ICDMW.2018.00013.

[22] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and

Klaus-Robert Müller. Explaining nonlinear classification decisions with deep taylor

decomposition. Pattern Recognit., 65:211–222, 2017. doi: 10.1016/j.patcog.2016.

11.008. URL https://doi.org/10.1016/j.patcog.2016.11.008.

[23] David Gunning and David W. Aha. Darpa’s explainable artificial intelligence (XAI)

program. AI Mag., 40(2):44–58, 2019. doi: 10.1609/aimag.v40i2.2850. URL

https://doi.org/10.1609/aimag.v40i2.2850.

[24] Saif Alzubi, Frederic T. Stahl, and Mohamed Medhat Gaber. Towards intrusion

detection of previously unknown network attacks. In Khalid Al-Begain, Mauro Ia-

cono, Lelio Campanile, and Andrzej Bargiela, editors, Proceedings of the 35th In-

ternational ECMS International Conference on Modelling and Simulation, ECMS

2021, Virtual Event, UK, May 31 - June 2, 2021, pages 35–41. European Coun-

cil for Modeling and Simulation, 2021. doi: 10.7148/2021-0035. URL https:

//doi.org/10.7148/2021-0035.

[25] Michael West. Chapter 2 - preventing system intrusions. In John R. Vacca, edi-

tor, Network and System Security (Second Edition), pages 29–56. Syngress, Boston,

141

https://www.bbc.co.uk/news/technology-59053876
https://www.theguardian.com/us-news/2021/may/12/us-fuel-shortages-pipeline-hack-drivers
https://www.theguardian.com/us-news/2021/may/12/us-fuel-shortages-pipeline-hack-drivers
https://doi.org/10.1109/ICDMW.2018.00013
https://doi.org/10.1016/j.patcog.2016.11.008
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.7148/2021-0035
https://doi.org/10.7148/2021-0035

second edition edition, 2014. ISBN 978-0-12-416689-9. doi: https://doi.org/10.

1016/B978-0-12-416689-9.00002-2. URL https://www.sciencedirect.com/science/

article/pii/B9780124166899000022.

[26] Emmanouil Vasilomanolakis, Shankar Karuppayah, Max Mühlhäuser, and Mathias

Fischer. Taxonomy and survey of collaborative intrusion detection. ACM Comput.

Surv., 47(4):55:1–55:33, 2015. doi: 10.1145/2716260. URL https://doi.org/10.1145/

2716260.

[27] Monowar H. Bhuyan, D. K. Bhattacharyya, and Jugal K. Kalita. Network anomaly

detection: Methods, systems and tools. IEEE Commun. Surv. Tutorials, 16(1):303–

336, 2014. doi: 10.1109/SURV.2013.052213.00046. URL https://doi.org/10.1109/

SURV.2013.052213.00046.

[28] James P Anderson. Computer security threat monitoring and surveillance, james p.

Anderson Co., Fort Washington, PA, 1980.

[29] Aleksandar Milenkoski, Marco Vieira, Samuel Kounev, Alberto Avritzer, and

Bryan D. Payne. Evaluating computer intrusion detection systems: A survey of com-

mon practices. ACM Comput. Surv., 48(1):12:1–12:41, 2015. doi: 10.1145/2808691.

URL https://doi.org/10.1145/2808691.

[30] Prachi Deshpande, Subhash Chander Sharma, Sateesh Kumar Peddoju, and S. Ju-

naid. HIDS: A host based intrusion detection system for cloud computing envi-

ronment. Int. J. Syst. Assur. Eng. Manag., 9(3):567–576, 2018. doi: 10.1007/

s13198-014-0277-7. URL https://doi.org/10.1007/s13198-014-0277-7.

[31] Nour Moustafa, Jiankun Hu, and Jill Slay. A holistic review of network anomaly

detection systems: A comprehensive survey. J. Netw. Comput. Appl., 128:33–55,

2019. doi: 10.1016/j.jnca.2018.12.006. URL https://doi.org/10.1016/j.jnca.2018.

12.006.

[32] Firkhan Ali Bin Hamid Ali and Yee Yong Len. Development of host based intrusion

detection system for log files. In 2011 IEEE Symposium on Business, Engineering

142

https://www.sciencedirect.com/science/article/pii/B9780124166899000022
https://www.sciencedirect.com/science/article/pii/B9780124166899000022
https://doi.org/10.1145/2716260
https://doi.org/10.1145/2716260
https://doi.org/10.1109/SURV.2013.052213.00046
https://doi.org/10.1109/SURV.2013.052213.00046
https://doi.org/10.1145/2808691
https://doi.org/10.1007/s13198-014-0277-7
https://doi.org/10.1016/j.jnca.2018.12.006
https://doi.org/10.1016/j.jnca.2018.12.006

and Industrial Applications (ISBEIA), pages 281–285, 2011. doi: 10.1109/ISBEIA.

2011.6088821.

[33] Chirag Modi, Dhiren R. Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel, and

Muttukrishnan Rajarajan. A survey of intrusion detection techniques in cloud. J.

Netw. Comput. Appl., 36(1):42–57, 2013. doi: 10.1016/j.jnca.2012.05.003. URL

https://doi.org/10.1016/j.jnca.2012.05.003.

[34] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman. Survey

of intrusion detection systems: techniques, datasets and challenges. Cybersecur.,

2(1):20, 2019. doi: 10.1186/s42400-019-0038-7. URL https://doi.org/10.1186/

s42400-019-0038-7.

[35] Shi-Jinn Horng, Ming-Yang Su, Yuan-Hsin Chen, Tzong-Wann Kao, Rong-Jian

Chen, Jui-Lin Lai, and Citra Dwi Perkasa. A novel intrusion detection system based

on hierarchical clustering and support vector machines. Expert Syst. Appl., 38(1):

306–313, 2011. doi: 10.1016/j.eswa.2010.06.066. URL https://doi.org/10.1016/j.

eswa.2010.06.066.

[36] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung.

Intrusion detection system: A comprehensive review. J. Netw. Comput. Appl., 36(1):

16–24, 2013. doi: 10.1016/j.jnca.2012.09.004. URL https://doi.org/10.1016/j.jnca.

2012.09.004.

[37] Berkah I. Santoso, M. Rien Suryatama Idrus, and Irwan Prasetya Gunawan. De-

signing network intrusion and detection system using signature-based method for

protecting openstack private cloud. In 2016 6th International Annual Engineering

Seminar (InAES), pages 61–66, 2016. doi: 10.1109/INAES.2016.7821908.

[38] Masoud Ghorbanian, Bharanidharan Shanmugam, Ganthan Narayansamy, and Nor-

bik Bashah Idris. Signature-based hybrid intrusion detection system (hids) for an-

droid devices. In 2013 IEEE Business Engineering and Industrial Applications Col-

loquium (BEIAC), pages 827–831, 2013. doi: 10.1109/BEIAC.2013.6560251.

143

https://doi.org/10.1016/j.jnca.2012.05.003
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1016/j.eswa.2010.06.066
https://doi.org/10.1016/j.eswa.2010.06.066
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/j.jnca.2012.09.004

[39] Francisco Muñoz Cortés and Natalia Gaviria Gómez. A hybrid alarm management

strategy in signature-based intrusion detection systems. In 2019 IEEE Colombian

Conference on Communications and Computing (COLCOM), pages 1–6, 2019. doi:

10.1109/ColComCon.2019.8809121.

[40] Snort. Snort Intrusion Detection System. https://www.snort.org/. Accessed:

04.12.2020.

[41] Shelly Xiaonan Wu and Wolfgang Banzhaf. The use of computational intelligence

in intrusion detection systems: A review. Appl. Soft Comput., 10(1):1–35, 2010. doi:

10.1016/j.asoc.2009.06.019. URL https://doi.org/10.1016/j.asoc.2009.06.019.

[42] R. Vinayakumar, Mamoun Alazab, K. P. Soman, Prabaharan Poornachandran,

Ameer Al-Nemrat, and Sitalakshmi Venkatraman. Deep learning approach for intel-

ligent intrusion detection system. IEEE Access, 7:41525–41550, 2019. doi: 10.1109/

ACCESS.2019.2895334. URL https://doi.org/10.1109/ACCESS.2019.2895334.

[43] Pedro Garcia-Teodoro, Jesús Esteban Dı́az Verdejo, Gabriel Maciá-Fernández, and

Enrique Vázquez. Anomaly-based network intrusion detection: Techniques, systems

and challenges. Comput. Secur., 28(1-2):18–28, 2009. doi: 10.1016/j.cose.2008.08.

003. URL https://doi.org/10.1016/j.cose.2008.08.003.

[44] Pedro Garcia-Teodoro, Jesús Esteban Dı́az Verdejo, Gabriel Maciá-Fernández, and

Enrique Vázquez. Anomaly-based network intrusion detection: Techniques, systems

and challenges. Comput. Secur., 28(1-2):18–28, 2009. doi: 10.1016/j.cose.2008.08.

003. URL https://doi.org/10.1016/j.cose.2008.08.003.

[45] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A sur-

vey. ACM Comput. Surv., 41(3):15:1–15:58, 2009. doi: 10.1145/1541880.1541882.

URL https://doi.org/10.1145/1541880.1541882.

[46] Sultan Zavrak and Murat Iskefiyeli. Anomaly-based intrusion detection from net-

work flow features using variational autoencoder. IEEE Access, 8:108346–108358,

144

https://www.snort.org/
https://doi.org/10.1016/j.asoc.2009.06.019
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1145/1541880.1541882

2020. doi: 10.1109/ACCESS.2020.3001350. URL https://doi.org/10.1109/

ACCESS.2020.3001350.

[47] Alka Chaudhary, V.N. Tiwari, and Anil Kumar. Design an anomaly based fuzzy

intrusion detection system for packet dropping attack in mobile ad hoc networks. In

2014 IEEE International Advance Computing Conference (IACC), pages 256–261,

2014. doi: 10.1109/IAdCC.2014.6779330.

[48] Frank J Anscombe. Rejection of outliers. Technometrics, 2(2):123–146, 1960.

[49] Arthur Zimek and Peter Filzmoser. There and back again: Outlier detection between

statistical reasoning and data mining algorithms. WIREs Data Mining Knowl. Dis-

cov., 8(6), 2018. doi: 10.1002/widm.1280. URL https://doi.org/10.1002/widm.1280.

[50] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of network

anomaly detection techniques. J. Netw. Comput. Appl., 60:19–31, 2016. doi: 10.

1016/j.jnca.2015.11.016. URL https://doi.org/10.1016/j.jnca.2015.11.016.

[51] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. LOF:

identifying density-based local outliers. In Weidong Chen, Jeffrey F. Naughton, and

Philip A. Bernstein, editors, Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA, pages

93–104. ACM, 2000. doi: 10.1145/342009.335388. URL https://doi.org/10.1145/

342009.335388.

[52] Dragoljub Pokrajac, Aleksandar Lazarevic, and Longin Jan Latecki. Incremental

local outlier detection for data streams. In Proceedings of the IEEE Symposium on

Computational Intelligence and Data Mining, CIDM 2007, part of the IEEE Sym-

posium Series on Computational Intelligence 2007, Honolulu, Hawaii, USA, 1-5

April 2007, pages 504–515. IEEE, 2007. doi: 10.1109/CIDM.2007.368917. URL

https://doi.org/10.1109/CIDM.2007.368917.

[53] Mahsa Salehi, Christopher Leckie, James C. Bezdek, Tharshan Vaithianathan, and

Xuyun Zhang. Fast memory efficient local outlier detection in data streams. IEEE

145

https://doi.org/10.1109/ACCESS.2020.3001350
https://doi.org/10.1109/ACCESS.2020.3001350
https://doi.org/10.1002/widm.1280
https://doi.org/10.1016/j.jnca.2015.11.016
https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
https://doi.org/10.1109/CIDM.2007.368917

Trans. Knowl. Data Eng., 28(12):3246–3260, 2016. doi: 10.1109/TKDE.2016.

2597833. URL https://doi.org/10.1109/TKDE.2016.2597833.

[54] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly detection.

ACM Trans. Knowl. Discov. Data, 6(1):3:1–3:39, 2012. doi: 10.1145/2133360.

2133363. URL https://doi.org/10.1145/2133360.2133363.

[55] Peter J. Rousseeuw and Katrien van Driessen. A fast algorithm for the minimum co-

variance determinant estimator. Technometrics, 41(3):212–223, 1999. doi: 10.1080/

00401706.1999.10485670. URL https://doi.org/10.1080/00401706.1999.10485670.

[56] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alexander J. Smola, and

Robert C. Williamson. Estimating the support of a high-dimensional distribution.

Neural Comput., 13(7):1443–1471, 2001. doi: 10.1162/089976601750264965.

URL https://doi.org/10.1162/089976601750264965.

[57] Imran Razzak, Khurram Zafar, Muhammad Imran, and Guandong Xu. Randomized

nonlinear one-class support vector machines with bounded loss function to detect of

outliers for large scale iot data. Future Gener. Comput. Syst., 112:715–723, 2020.

doi: 10.1016/j.future.2020.05.045. URL https://doi.org/10.1016/j.future.2020.05.

045.

[58] Aya Ayadi, Oussama Ghorbel, Mohammed S. BenSaleh, Abdelfateh Obeid, and

Mohamed Abid. Performance of outlier detection techniques based classifica-

tion in wireless sensor networks. In 13th International Wireless Communications

and Mobile Computing Conference, IWCMC 2017, Valencia, Spain, June 26-30,

2017, pages 687–692. IEEE, 2017. doi: 10.1109/IWCMC.2017.7986368. URL

https://doi.org/10.1109/IWCMC.2017.7986368.

[59] Lev Faivishevsky. Information theoretic multivariate change detection for multi-

sensory information processing in internet of things. In 2016 IEEE International

Conference on Acoustics, Speech and Signal Processing, ICASSP 2016, Shanghai,

China, March 20-25, 2016, pages 6250–6254. IEEE, 2016. doi: 10.1109/ICASSP.

2016.7472879. URL https://doi.org/10.1109/ICASSP.2016.7472879.

146

https://doi.org/10.1109/TKDE.2016.2597833
https://doi.org/10.1145/2133360.2133363
https://doi.org/10.1080/00401706.1999.10485670
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1016/j.future.2020.05.045
https://doi.org/10.1016/j.future.2020.05.045
https://doi.org/10.1109/IWCMC.2017.7986368
https://doi.org/10.1109/ICASSP.2016.7472879

[60] Lotfi Mhamdi, Desmond C. McLernon, Fadi El-Moussa, Syed Ali Raza Zaidi,

Mounir Ghogho, and Tuan A. Tang. A deep learning approach combining au-

toencoder with one-class SVM for ddos attack detection in sdns. In Eighth IEEE

International Conference on Communications and Networking, ComNet 2020, Vir-

tual Event, Tunisia, October 28-30, 2020, pages 1–6. IEEE, 2020. doi: 10.1109/

ComNet47917.2020.9306073. URL https://doi.org/10.1109/ComNet47917.2020.

9306073.

[61] Riccardo Guidotti, Anna Monreale, Franco Turini, Dino Pedreschi, and Fosca Gian-

notti. A survey of methods for explaining black box models. CoRR, abs/1802.01933,

2018. URL http://arxiv.org/abs/1802.01933.

[62] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Tech-

niques, 3rd edition. Morgan Kaufmann, 2011. ISBN 978-0123814791. URL

http://hanj.cs.illinois.edu/bk3/.

[63] Lior Rokach and Oded Maimon. Top-down induction of decision trees classifiers - a

survey. IEEE Trans. Syst. Man Cybern. Part C, 35(4):476–487, 2005. doi: 10.1109/

TSMCC.2004.843247. URL https://doi.org/10.1109/TSMCC.2004.843247.

[64] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001. doi: 10.1023/A:

1010933404324. URL https://doi.org/10.1023/A:1010933404324.

[65] Robert E. Schapire. Explaining adaboost. In Bernhard Schölkopf, Zhiyuan Luo, and

Vladimir Vovk, editors, Empirical Inference - Festschrift in Honor of Vladimir N.

Vapnik, pages 37–52. Springer, 2013. doi: 10.1007/978-3-642-41136-6\ 5. URL

https://doi.org/10.1007/978-3-642-41136-6 5.

[66] Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting.

Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

[67] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost. Statistics

and its Interface, 2(3):349–360, 2009.

147

https://doi.org/10.1109/ComNet47917.2020.9306073
https://doi.org/10.1109/ComNet47917.2020.9306073
http://arxiv.org/abs/1802.01933
http://hanj.cs.illinois.edu/bk3/
https://doi.org/10.1109/TSMCC.2004.843247
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-642-41136-6_5

[68] Andrzej Zolnierek and Bartlomiej Rubacha. The empirical study of the naive

bayes classifier in the case of markov chain recognition task. In Marek Kurzyn-

ski, Edward Puchala, Michal Wozniak, and Andrzej Zolnierek, editors, Computer

Recognition Systems, Proceedings of the 4th International Conference on Com-

puter Recognition Systems, CORES’05, May 22-25, 2005, Rydzyna Castle, Poland,

volume 30 of Advances in Soft Computing, pages 329–336. Springer, 2005. doi:

10.1007/3-540-32390-2\ 38. URL https://doi.org/10.1007/3-540-32390-2 38.

[69] Saurabh Mukherjee and Neelam Sharma. Intrusion detection using naive bayes

classifier with feature reduction. Procedia Technology, 4:119–128, 2012. ISSN

2212-0173. doi: https://doi.org/10.1016/j.protcy.2012.05.017. URL https:

//www.sciencedirect.com/science/article/pii/S2212017312002964. 2nd Interna-

tional Conference on Computer, Communication, Control and Information Tech-

nology(C3IT-2012) on February 25 - 26, 2012.

[70] Daniele Soria, Jonathan M. Garibaldi, Federico Ambrogi, Elia Biganzoli, and Ian O.

Ellis. A ’non-parametric’ version of the naive bayes classifier. Knowl. Based Syst.,

24(6):775–784, 2011. doi: 10.1016/j.knosys.2011.02.014. URL https://doi.org/10.

1016/j.knosys.2011.02.014.

[71] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi

Motoda, Geoffrey J. McLachlan, Angus F. M. Ng, Bing Liu, Philip S. Yu, Zhi-Hua

Zhou, Michael S. Steinbach, David J. Hand, and Dan Steinberg. Top 10 algorithms in

data mining. Knowl. Inf. Syst., 14(1):1–37, 2008. doi: 10.1007/s10115-007-0114-2.

URL https://doi.org/10.1007/s10115-007-0114-2.

[72] Tom Fawcett. An introduction to ROC analysis. Pattern Recognit. Lett., 27(8):861–

874, 2006. doi: 10.1016/j.patrec.2005.10.010. URL https://doi.org/10.1016/j.patrec.

2005.10.010.

[73] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Trans.

Knowl. Data Eng., 21(9):1263–1284, 2009. doi: 10.1109/TKDE.2008.239. URL

https://doi.org/10.1109/TKDE.2008.239.

148

https://doi.org/10.1007/3-540-32390-2_38
https://www.sciencedirect.com/science/article/pii/S2212017312002964
https://www.sciencedirect.com/science/article/pii/S2212017312002964
https://doi.org/10.1016/j.knosys.2011.02.014
https://doi.org/10.1016/j.knosys.2011.02.014
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1109/TKDE.2008.239

[74] David M. W. Powers. Evaluation: from precision, recall and f-measure to roc,

informedness, markedness and correlation. CoRR, abs/2010.16061, 2020. URL

https://arxiv.org/abs/2010.16061.

[75] Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano. GP ensemble for dis-

tributed intrusion detection systems. In Peng Wang, Maneesha Singh, Chidanand

Apté, and Petra Perner, editors, Pattern Recognition and Data Mining, Third Inter-

national Conference on Advances in Pattern Recognition, ICAPR 2005, Bath, UK,

August 22-25, 2005, Proceedings, Part I, volume 3686 of Lecture Notes in Com-

puter Science, pages 54–62. Springer, 2005. doi: 10.1007/11551188\ 6. URL

https://doi.org/10.1007/11551188 6.

[76] Aleksandar Lazarevic and Vipin Kumar. Feature bagging for outlier detection. In

Robert Grossman, Roberto J. Bayardo, and Kristin P. Bennett, editors, Proceed-

ings of the Eleventh ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, Chicago, Illinois, USA, August 21-24, 2005, pages 157–

166. ACM, 2005. doi: 10.1145/1081870.1081891. URL https://doi.org/10.1145/

1081870.1081891.

[77] Matthew Norton and Stan Uryasev. Maximization of AUC and buffered AUC in

binary classification. Math. Program., 174(1-2):575–612, 2019. doi: 10.1007/

s10107-018-1312-2. URL https://doi.org/10.1007/s10107-018-1312-2.

[78] Jesse Davis and Mark Goadrich. The relationship between precision-recall and ROC

curves. In William W. Cohen and Andrew W. Moore, editors, Machine Learn-

ing, Proceedings of the Twenty-Third International Conference (ICML 2006), Pitts-

burgh, Pennsylvania, USA, June 25-29, 2006, volume 148 of ACM International

Conference Proceeding Series, pages 233–240. ACM, 2006. doi: 10.1145/1143844.

1143874. URL https://doi.org/10.1145/1143844.1143874.

[79] José Hernández-Orallo, Peter A. Flach, and César Ferri. ROC curves in cost space.

Mach. Learn., 93(1):71–91, 2013. doi: 10.1007/s10994-013-5328-9. URL https:

//doi.org/10.1007/s10994-013-5328-9.

149

https://arxiv.org/abs/2010.16061
https://doi.org/10.1007/11551188_6
https://doi.org/10.1145/1081870.1081891
https://doi.org/10.1145/1081870.1081891
https://doi.org/10.1007/s10107-018-1312-2
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1007/s10994-013-5328-9
https://doi.org/10.1007/s10994-013-5328-9

[80] José Ramón Pasillas-Dı́az and Sylvie Ratté. Bagged subspaces for unsupervised

outlier detection. Comput. Intell., 33(3):507–523, 2017. doi: 10.1111/coin.12097.

URL https://doi.org/10.1111/coin.12097.

[81] Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms. Chapman amp;

Hall/CRC, 1st edition, 2012. ISBN 1439830037.

[82] Leo Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, 1996. doi: 10.

1007/BF00058655. URL https://doi.org/10.1007/BF00058655.

[83] Robert E. Schapire. The Boosting Approach to Machine Learning: An Overview,

pages 149–171. Springer New York, New York, NY, 2003. ISBN 978-0-387-

21579-2. doi: 10.1007/978-0-387-21579-2 9. URL https://doi.org/10.1007/

978-0-387-21579-2 9.

[84] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm.

In Lorenza Saitta, editor, Machine Learning, Proceedings of the Thirteenth Interna-

tional Conference (ICML ’96), Bari, Italy, July 3-6, 1996, pages 148–156. Morgan

Kaufmann, 1996.

[85] David H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259,

1992. doi: 10.1016/S0893-6080(05)80023-1. URL https://doi.org/10.1016/

S0893-6080(05)80023-1.

[86] Xuefeng Zhang, Penghui Wang, Lan Du, and Hongwei Liu. New method for

radar hrrp recognition and rejection based on weighted majority voting combi-

nation of multiple classifiers. In 2011 IEEE International Conference on Signal

Processing, Communications and Computing (ICSPCC), pages 1–4, 2011. doi:

10.1109/ICSPCC.2011.6061765.

[87] Hongwei Li and Bin Yu. Error rate bounds and iterative weighted majority voting for

crowdsourcing. CoRR, abs/1411.4086, 2014. URL http://arxiv.org/abs/1411.4086.

[88] Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

150

https://doi.org/10.1111/coin.12097
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/978-0-387-21579-2_9
https://doi.org/10.1007/978-0-387-21579-2_9
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
http://arxiv.org/abs/1411.4086

[89] Erico Tjoa and Cuntai Guan. A survey on explainable artificial intelligence (XAI):

toward medical XAI. IEEE Trans. Neural Networks Learn. Syst., 32(11):4793–4813,

2021. doi: 10.1109/TNNLS.2020.3027314. URL https://doi.org/10.1109/TNNLS.

2020.3027314.

[90] Wilson Silva, Kelwin Fernandes, Maria João Cardoso, and Jaime S. Cardoso. To-

wards complementary explanations using deep neural networks. In Danail Stoyanov,

Zeike Taylor, Seyed Mostafa Kia, Ipek Oguz, Mauricio Reyes, Anne L. Martel, Lena

Maier-Hein, Andre F. Marquand, Edouard Duchesnay, Tommy Löfstedt, Bennett A.

Landman, M. Jorge Cardoso, Carlos A. Silva, Sérgio Pereira, and Raphael Meier,

editors, Understanding and Interpreting Machine Learning in Medical Image Com-

puting Applications - First International Workshops MLCN 2018, DLF 2018, and

iMIMIC 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, Septem-

ber 16-20, 2018, Proceedings, volume 11038 of Lecture Notes in Computer Sci-

ence, pages 133–140. Springer, 2018. doi: 10.1007/978-3-030-02628-8\ 15. URL

https://doi.org/10.1007/978-3-030-02628-8 15.

[91] Alejandro Barredo Arrieta, Natalia Dı́az Rodrı́guez, Javier Del Ser, Adrien Ben-

netot, Siham Tabik, Alberto Barbado, Salvador Garcı́a, Sergio Gil-Lopez, Daniel

Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. Explainable arti-

ficial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward

responsible AI. Inf. Fusion, 58:82–115, 2020. doi: 10.1016/j.inffus.2019.12.012.

URL https://doi.org/10.1016/j.inffus.2019.12.012.

[92] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.

Artif. Intell., 267:1–38, 2019. doi: 10.1016/j.artint.2018.07.007. URL https://doi.

org/10.1016/j.artint.2018.07.007.

[93] Johanna D Moore and William R Swartout. Explanation in expert systemss: A

survey. Technical report, UNIVERSITY OF SOUTHERN CALIFORNIA MARINA

DEL REY INFORMATION SCIENCES INST, 1988.

[94] Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable machine

151

https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1007/978-3-030-02628-8_15
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007

learning. Commun. ACM, 63(1):68–77, 2020. doi: 10.1145/3359786. URL

https://doi.org/10.1145/3359786.

[95] Diogo V. Carvalho, Eduardo M. Pereira, and Jaime S. Cardoso. Machine learn-

ing interpretability: A survey on methods and metrics. Electronics, 8(8), 2019.

ISSN 2079-9292. doi: 10.3390/electronics8080832. URL https://www.mdpi.com/

2079-9292/8/8/832.

[96] Riccardo Guidotti, Anna Monreale, Franco Turini, Dino Pedreschi, and Fosca Gian-

notti. A survey of methods for explaining black box models. CoRR, abs/1802.01933,

2018. URL http://arxiv.org/abs/1802.01933.

[97] David Martens, Jan Vanthienen, Wouter Verbeke, and Bart Baesens. Performance of

classification models from a user perspective. Decis. Support Syst., 51(4):782–793,

2011. doi: 10.1016/j.dss.2011.01.013. URL https://doi.org/10.1016/j.dss.2011.01.

013.

[98] Amand F Schmidt and Chris Finan. Linear regression and the normality assumption.

Journal of clinical epidemiology, 98:146–151, 2018.

[99] Radwa El Shawi, Mouaz H. Al-Mallah, and Sherif Sakr. On the interpretability of

machine learning-based model for predicting hypertension. BMC Medical Informat-

ics Decis. Mak., 19(1):146:1–146:32, 2019. doi: 10.1186/s12911-019-0874-0. URL

https://doi.org/10.1186/s12911-019-0874-0.

[100] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Explainable

AI: A review of machine learning interpretability methods. Entropy, 23(1):18, 2021.

doi: 10.3390/e23010018. URL https://doi.org/10.3390/e23010018.

[101] Jianglin Huang, Yan-Fu Li, and Min Xie. An empirical analysis of data preprocess-

ing for machine learning-based software cost estimation. Inf. Softw. Technol., 67:

108–127, 2015. doi: 10.1016/j.infsof.2015.07.004. URL https://doi.org/10.1016/j.

infsof.2015.07.004.

152

https://doi.org/10.1145/3359786
https://www.mdpi.com/2079-9292/8/8/832
https://www.mdpi.com/2079-9292/8/8/832
http://arxiv.org/abs/1802.01933
https://doi.org/10.1016/j.dss.2011.01.013
https://doi.org/10.1016/j.dss.2011.01.013
https://doi.org/10.1186/s12911-019-0874-0
https://doi.org/10.3390/e23010018
https://doi.org/10.1016/j.infsof.2015.07.004
https://doi.org/10.1016/j.infsof.2015.07.004

[102] Salvador Garcı́a, Julián Luengo, and Francisco Herrera. Data Preprocessing in Data

Mining, volume 72 of Intelligent Systems Reference Library. Springer, 2015. ISBN

978-3-319-10246-7. doi: 10.1007/978-3-319-10247-4. URL https://doi.org/10.

1007/978-3-319-10247-4.

[103] Shimon Whiteson, Brian Tanner, Matthew E. Taylor, and Peter Stone. Protecting

against evaluation overfitting in empirical reinforcement learning. In 2011 IEEE

Symposium on Adaptive Dynamic Programming And Reinforcement Learning, AD-

PRL 2011, Paris, France, April 12-14, 2011, pages 120–127. IEEE, 2011. doi: 10.

1109/ADPRL.2011.5967363. URL https://doi.org/10.1109/ADPRL.2011.5967363.

[104] Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. Tunability: Importance

of hyperparameters of machine learning algorithms. J. Mach. Learn. Res., 20:53:1–

53:32, 2019. URL http://jmlr.org/papers/v20/18-444.html.

[105] Daniel Berrar. Cross-validation. In Shoba Ranganathan, Michael Gribskov, Kenta

Nakai, and Christian Schönbach, editors, Encyclopedia of Bioinformatics and Com-

putational Biology, pages 542 – 545. Academic Press, Oxford, 2019. ISBN 978-

0-12-811432-2. doi: https://doi.org/10.1016/B978-0-12-809633-8.20349-X. URL

http://www.sciencedirect.com/science/article/pii/B978012809633820349X.

[106] Tzu-Tsung Wong and Po-Yang Yeh. Reliable accuracy estimates from k-fold cross

validation. IEEE Trans. Knowl. Data Eng., 32(8):1586–1594, 2020. doi: 10.1109/

TKDE.2019.2912815. URL https://doi.org/10.1109/TKDE.2019.2912815.

[107] Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures for model

selection. Statistics Surveys, 4(0):40–79, 2010. ISSN 1935-7516. doi: 10.1214/

09-ss054. URL http://dx.doi.org/10.1214/09-SS054.

[108] Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross-validation. In Ling Liu

and M. Tamer Özsu, editors, Encyclopedia of Database Systems, pages 532–538.

Springer US, 2009. doi: 10.1007/978-0-387-39940-9\ 565. URL https://doi.org/

10.1007/978-0-387-39940-9 565.

153

https://doi.org/10.1007/978-3-319-10247-4
https://doi.org/10.1007/978-3-319-10247-4
https://doi.org/10.1109/ADPRL.2011.5967363
http://jmlr.org/papers/v20/18-444.html
http://www.sciencedirect.com/science/article/pii/B978012809633820349X
https://doi.org/10.1109/TKDE.2019.2912815
http://dx.doi.org/10.1214/09-SS054
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.1007/978-0-387-39940-9_565

[109] Sukirty Jain, Sanyam Shukla, and Rajesh Wadhvani. Dynamic selection of normal-

ization techniques using data complexity measures. Expert Syst. Appl., 106:252–

262, 2018. doi: 10.1016/j.eswa.2018.04.008. URL https://doi.org/10.1016/j.eswa.

2018.04.008.

[110] Nikolay Chumerin and Marc M. Van Hulle. Comparison of two feature extraction

methods based on maximization of mutual information. In 2006 16th IEEE Signal

Processing Society Workshop on Machine Learning for Signal Processing, pages

343–348, 2006. doi: 10.1109/MLSP.2006.275572.

[111] Kevin P. Murphy. Machine learning - a probabilistic perspective. Adaptive compu-

tation and machine learning series. MIT Press, 2012. ISBN 0262018020.

[112] Ian T. Jolliffe and Jorge Cadima. Principal component analysis: a review and

recent developments. Philosophical Transactions of the Royal Society A: Math-

ematical, Physical and Engineering Sciences, 374(2065):20150202, 2016. doi:

10.1098/rsta.2015.0202. URL https://royalsocietypublishing.org/doi/abs/10.1098/

rsta.2015.0202.

[113] Wei Wang and Roberto Battiti. Identifying intrusions in computer networks with

principal component analysis. In Proceedings of the The First International Con-

ference on Availability, Reliability and Security, ARES 2006, The International De-

pendability Conference - Bridging Theory and Practice, April 20-22 2006, Vienna

University of Technology, Austria, pages 270–279. IEEE Computer Society, 2006.

doi: 10.1109/ARES.2006.73. URL https://doi.org/10.1109/ARES.2006.73.

[114] Animesh Patcha and Jung-Min Park. An overview of anomaly detection techniques:

Existing solutions and latest technological trends. Comput. Networks, 51(12):3448–

3470, 2007. doi: 10.1016/j.comnet.2007.02.001. URL https://doi.org/10.1016/j.

comnet.2007.02.001.

[115] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms

and applications. Neural Networks, 13(4-5):411–430, 2000. doi: 10.1016/

S0893-6080(00)00026-5. URL https://doi.org/10.1016/S0893-6080(00)00026-5.

154

https://doi.org/10.1016/j.eswa.2018.04.008
https://doi.org/10.1016/j.eswa.2018.04.008
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2015.0202
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2015.0202
https://doi.org/10.1109/ARES.2006.73
https://doi.org/10.1016/j.comnet.2007.02.001
https://doi.org/10.1016/j.comnet.2007.02.001
https://doi.org/10.1016/S0893-6080(00)00026-5

[116] Hongtao Du and Hairong Qi. An FPGA implementation of parallel ICA for di-

mensionality reduction in hyperspectral images. In 2004 IEEE International Geo-

science and Remote Sensing Symposium, IGARSS 2004, Anchorage, Alaska, USA,

20-24 September 2004, pages 3257–3260. IEEE, 2004. doi: 10.1109/IGARSS.2004.

1370396. URL https://doi.org/10.1109/IGARSS.2004.1370396.

[117] Jing Wang and Chein-I Chang. Independent component analysis-based dimensional-

ity reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci.

Remote. Sens., 44(6):1586–1600, 2006. doi: 10.1109/TGRS.2005.863297. URL

https://doi.org/10.1109/TGRS.2005.863297.

[118] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selec-

tion. J. Mach. Learn. Res., 3:1157–1182, 2003. URL http://jmlr.org/papers/v3/

guyon03a.html.

[119] Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods. Com-

put. Electr. Eng., 40(1):16–28, 2014. doi: 10.1016/j.compeleceng.2013.11.024.

URL https://doi.org/10.1016/j.compeleceng.2013.11.024.

[120] Jiliang Tang, Salem Alelyani, and Huan Liu. Feature selection for classification:

A review. In Charu C. Aggarwal, editor, Data Classification: Algorithms and

Applications, pages 37–64. CRC Press, 2014. doi: 10.1201/b17320-3. URL

http://www.crcnetbase.com/doi/abs/10.1201/b17320-3.

[121] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino, Jiliang

Tang, and Huan Liu. Feature selection: A data perspective. ACM Comput. Surv.,

50(6):94:1–94:45, 2018. doi: 10.1145/3136625. URL https://doi.org/10.1145/

3136625.

[122] Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander Kotcz. Editorial: special

issue on learning from imbalanced data sets. SIGKDD Explor., 6(1):1–6, 2004. doi:

10.1145/1007730.1007733. URL https://doi.org/10.1145/1007730.1007733.

155

https://doi.org/10.1109/IGARSS.2004.1370396
https://doi.org/10.1109/TGRS.2005.863297
http://jmlr.org/papers/v3/guyon03a.html
http://jmlr.org/papers/v3/guyon03a.html
https://doi.org/10.1016/j.compeleceng.2013.11.024
http://www.crcnetbase.com/doi/abs/10.1201/b17320-3
https://doi.org/10.1145/3136625
https://doi.org/10.1145/3136625
https://doi.org/10.1145/1007730.1007733

[123] David A. Cieslak, Nitesh V. Chawla, and Aaron Striegel. Combating imbalance in

network intrusion datasets. In 2006 IEEE International Conference on Granular

Computing, GrC 2006, Atlanta, Georgia, USA, May 10-12, 2006, pages 732–737.

IEEE, 2006. doi: 10.1109/GRC.2006.1635905. URL https://doi.org/10.1109/GRC.

2006.1635905.

[124] T. Ryan Hoens, Robi Polikar, and Nitesh V. Chawla. Learning from streaming

data with concept drift and imbalance: an overview. Prog. Artif. Intell., 1(1):

89–101, 2012. doi: 10.1007/s13748-011-0008-0. URL https://doi.org/10.1007/

s13748-011-0008-0.

[125] Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz. A multiple resampling

method for learning from imbalanced data sets. Comput. Intell., 20(1):18–36, 2004.

doi: 10.1111/j.0824-7935.2004.t01-1-00228.x. URL https://doi.org/10.1111/j.

0824-7935.2004.t01-1-00228.x.

[126] Hao Zhang, Shumin Dai, Yongdan Li, and Wenjun Zhang. Real-time distributed-

random-forest-based network intrusion detection system using apache spark. In

37th IEEE International Performance Computing and Communications Conference,

IPCCC 2018, Orlando, FL, USA, November 17-19, 2018, pages 1–7. IEEE, 2018.

doi: 10.1109/PCCC.2018.8711068. URL https://doi.org/10.1109/PCCC.2018.

8711068.

[127] Christopher B. Freas, Robert W. Harrison, and Yuan Long. High performance attack

estimation in large-scale network flows. In Naoki Abe, Huan Liu, Calton Pu, Xi-

aohua Hu, Nesreen K. Ahmed, Mu Qiao, Yang Song, Donald Kossmann, Bing Liu,

Kisung Lee, Jiliang Tang, Jingrui He, and Jeffrey S. Saltz, editors, IEEE Interna-

tional Conference on Big Data (IEEE BigData 2018), Seattle, WA, USA, December

10-13, 2018, pages 5014–5020. IEEE, 2018. doi: 10.1109/BigData.2018.8622125.

URL https://doi.org/10.1109/BigData.2018.8622125.

[128] Yuyang Zhou, Guang Cheng, Shanqing Jiang, and Mian Dai. Building an effi-

cient intrusion detection system based on feature selection and ensemble classifier.

156

https://doi.org/10.1109/GRC.2006.1635905
https://doi.org/10.1109/GRC.2006.1635905
https://doi.org/10.1007/s13748-011-0008-0
https://doi.org/10.1007/s13748-011-0008-0
https://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x
https://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x
https://doi.org/10.1109/PCCC.2018.8711068
https://doi.org/10.1109/PCCC.2018.8711068
https://doi.org/10.1109/BigData.2018.8622125

Comput. Networks, 174:107247, 2020. doi: 10.1016/j.comnet.2020.107247. URL

https://doi.org/10.1016/j.comnet.2020.107247.

[129] Maxime Labonne, Alexis Olivereau, Baptiste Polvé, and Djamal Zeghlache. Un-

supervised protocol-based intrusion detection for real-world networks. In Interna-

tional Conference on Computing, Networking and Communications, ICNC 2020,

Big Island, HI, USA, February 17-20, 2020, pages 299–303. IEEE, 2020. doi:

10.1109/ICNC47757.2020.9049796. URL https://doi.org/10.1109/ICNC47757.

2020.9049796.

[130] Joohwa Lee, Ju-Geon Pak, and Myungsuk Lee. Network intrusion detection system

using feature extraction based on deep sparse autoencoder. In International Con-

ference on Information and Communication Technology Convergence, ICTC 2020,

Jeju Island, Korea (South), October 21-23, 2020, pages 1282–1287. IEEE, 2020.

doi: 10.1109/ICTC49870.2020.9289253. URL https://doi.org/10.1109/ICTC49870.

2020.9289253.

[131] Lotfi Mhamdi, Desmond C. McLernon, Fadi El-Moussa, Syed Ali Raza Zaidi,

Mounir Ghogho, and Tuan A. Tang. A deep learning approach combining au-

toencoder with one-class SVM for ddos attack detection in sdns. In Eighth IEEE

International Conference on Communications and Networking, ComNet 2020, Vir-

tual Event, Tunisia, October 28-30, 2020, pages 1–6. IEEE, 2020. doi: 10.1109/

ComNet47917.2020.9306073. URL https://doi.org/10.1109/ComNet47917.2020.

9306073.

[132] Quoc Thong Nguyen, Kim Phuc Tran, Philippe Castagliola, Truong Thu Huong,

Minh Kha Nguyen, and Salim Lardjane. Nested one-class support vector machines

for network intrusion detection. In 2018 IEEE Seventh International Conference on

Communications and Electronics (ICCE), pages 7–12, 2018. doi: 10.1109/CCE.

2018.8465718.

[133] Hui-Hao Chou and Sheng-De Wang. An adaptive network intrusion detection ap-

proach for the cloud environment. In International Carnahan Conference on Secu-

157

https://doi.org/10.1016/j.comnet.2020.107247
https://doi.org/10.1109/ICNC47757.2020.9049796
https://doi.org/10.1109/ICNC47757.2020.9049796
https://doi.org/10.1109/ICTC49870.2020.9289253
https://doi.org/10.1109/ICTC49870.2020.9289253
https://doi.org/10.1109/ComNet47917.2020.9306073
https://doi.org/10.1109/ComNet47917.2020.9306073

rity Technology, ICCST 2015, Taipei, Taiwan, September 21-24, 2015, pages 1–6.

IEEE, 2015. doi: 10.1109/CCST.2015.7389649. URL https://doi.org/10.1109/

CCST.2015.7389649.

[134] Jiong Zhang and Mohammad Zulkernine. Anomaly based network intrusion de-

tection with unsupervised outlier detection. In Proceedings of IEEE Interna-

tional Conference on Communications, ICC 2006, Istanbul, Turkey, 11-15 June

2006, pages 2388–2393. IEEE, 2006. doi: 10.1109/ICC.2006.255127. URL

https://doi.org/10.1109/ICC.2006.255127.

[135] Kingsly Leung and Christopher Leckie. Unsupervised anomaly detection in network

intrusion detection using clusters. In Vladimir Estivill-Castro, editor, Computer Sci-

ence 2005, Twenty-Eighth Australasian Computer Science Conference (ACSC2005),

Newcastle, NSW, Australia, January/February 2005, volume 38 of CRPIT, pages

333–342. Australian Computer Society, 2005. URL http://crpit.scem.westernsydney.

edu.au/abstracts/CRPITV38Leung.html.

[136] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Ragha-

van. Automatic subspace clustering of high dimensional data for data mining

applications. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD 1998,

Proceedings ACM SIGMOD International Conference on Management of Data,

June 2-4, 1998, Seattle, Washington, USA, pages 94–105. ACM Press, 1998. doi:

10.1145/276304.276314. URL https://doi.org/10.1145/276304.276314.

[137] Guo Pu, Lijuan Wang, Jun Shen, and Fang Dong. A hybrid unsupervised clustering-

based anomaly detection method. Tsinghua Science and Technology, 26(2):146–153,

2021. doi: 10.26599/TST.2019.9010051.

[138] Ming Zhang, Boyi Xu, and Jie Gong. An anomaly detection model based on one-

class SVM to detect network intrusions. In 11th International Conference on Mobile

Ad-hoc and Sensor Networks, MSN 2015, Shenzhen, China, December 16-18, 2015,

pages 102–107. IEEE Computer Society, 2015. doi: 10.1109/MSN.2015.40. URL

https://doi.org/10.1109/MSN.2015.40.

158

https://doi.org/10.1109/CCST.2015.7389649
https://doi.org/10.1109/CCST.2015.7389649
https://doi.org/10.1109/ICC.2006.255127
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV38Leung.html
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV38Leung.html
https://doi.org/10.1145/276304.276314
https://doi.org/10.1109/MSN.2015.40

[139] Vitor Hugo Bezerra, Victor Guilherme Turrisi da Costa, Sylvio Barbon Junior, Ro-

drigo Sanches Miani, and Bruno Bogaz Zarpelão. Iotds: A one-class classification

approach to detect botnets in internet of things devices. Sensors, 19(14):3188, 2019.

doi: 10.3390/s19143188. URL https://doi.org/10.3390/s19143188.

[140] Ebu Yusuf Güven, Sueda Gülgün, Ceyda Manav, Behice Bakır, and Zeynep Gürkaş

Aydın. Multiple classification of cyber attacks using machine learning. Electrica,

22(2):313–320, 2022.

[141] Li Sun, Steven Versteeg, Serdar Boztas, and Asha Rao. Detecting anomalous user

behavior using an extended isolation forest algorithm: An enterprise case study.

CoRR, abs/1609.06676, 2016. URL http://arxiv.org/abs/1609.06676.

[142] Zekun Xu, Deovrat Kakde, and Arin Chaudhuri. Automatic hyperparameter tuning

method for local outlier factor, with applications to anomaly detection. In Chai-

tanya K. Baru, Jun Huan, Latifur Khan, Xiaohua Hu, Ronay Ak, Yuanyuan Tian,

Roger S. Barga, Carlo Zaniolo, Kisung Lee, and Yanfang (Fanny) Ye, editors, 2019

IEEE International Conference on Big Data (IEEE BigData), Los Angeles, CA, USA,

December 9-12, 2019, pages 4201–4207. IEEE, 2019. doi: 10.1109/BigData47090.

2019.9006151. URL https://doi.org/10.1109/BigData47090.2019.9006151.

[143] Zhangyu Cheng, Chengming Zou, and Jianwei Dong. Outlier detection using isola-

tion forest and local outlier factor. In Chih-Cheng Hung, Qianbin Chen, Xianzhong

Xie, Christian Esposito, Jun Huang, Juw Won Park, and Qinghua Zhang, editors,

Proceedings of the Conference on Research in Adaptive and Convergent Systems,

RACS 2019, Chongqing, China, September 24-27, 2019, pages 161–168. ACM,

2019. doi: 10.1145/3338840.3355641. URL https://doi.org/10.1145/3338840.

3355641.

[144] Santosh Kumar Sahu, Durga Prasad Mohapatra, and Niranjan K. Ray. An ensemble-

based outlier detection approach on intrusion detection. In 19th OITS International

Conference on Information Technology, OCIT 2019, Bhubaneswar, India, December

159

https://doi.org/10.3390/s19143188
http://arxiv.org/abs/1609.06676
https://doi.org/10.1109/BigData47090.2019.9006151
https://doi.org/10.1145/3338840.3355641
https://doi.org/10.1145/3338840.3355641

16-18, 2021, pages 404–409. IEEE, 2021. doi: 10.1109/OCIT53463.2021.00085.

URL https://doi.org/10.1109/OCIT53463.2021.00085.

[145] Xu-Ying Liu, Qian-Qian Li, and Zhi-Hua Zhou. Learning imbalanced multi-class

data with optimal dichotomy weights. In Hui Xiong, George Karypis, Bhavani

Thuraisingham, Diane J. Cook, and Xindong Wu, editors, 2013 IEEE 13th In-

ternational Conference on Data Mining, Dallas, TX, USA, December 7-10, 2013,

pages 478–487. IEEE Computer Society, 2013. doi: 10.1109/ICDM.2013.51. URL

https://doi.org/10.1109/ICDM.2013.51.

[146] Google. What is Google Colaboratory? https://research.google.com/colaboratory/

faq.html. Accessed: 22.06.2022.

[147] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau, Matthieu Brucher,

Matthieu Perrot, and Edouard Duchesnay. Scikit-learn: Machine learning in python.

J. Mach. Learn. Res., 12:2825–2830, 2011. doi: 10.5555/1953048.2078195. URL

https://dl.acm.org/doi/10.5555/1953048.2078195.

[148] Bernhard Schölkopf, Robert C. Williamson, Alexander J. Smola, John Shawe-

Taylor, and John C. Platt. Support vector method for novelty detection. In

Sara A. Solla, Todd K. Leen, and Klaus-Robert Müller, editors, Advances in Neu-

ral Information Processing Systems 12, [NIPS Conference, Denver, Colorado, USA,

November 29 - December 4, 1999], pages 582–588. The MIT Press, 1999. URL

http://papers.nips.cc/paper/1723-support-vector-method-for-novelty-detection.

[149] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In Proceedings

of the 8th IEEE International Conference on Data Mining (ICDM 2008), December

15-19, 2008, Pisa, Italy, pages 413–422. IEEE Computer Society, 2008. doi: 10.

1109/ICDM.2008.17. URL https://doi.org/10.1109/ICDM.2008.17.

[150] Omer Sagi and Lior Rokach. Ensemble learning: A survey. WIREs Data Mining

160

https://doi.org/10.1109/OCIT53463.2021.00085
https://doi.org/10.1109/ICDM.2013.51
https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html
https://dl.acm.org/doi/10.5555/1953048.2078195
http://papers.nips.cc/paper/1723-support-vector-method-for-novelty-detection
https://doi.org/10.1109/ICDM.2008.17

Knowl. Discov., 8(4), 2018. doi: 10.1002/widm.1249. URL https://doi.org/10.1002/

widm.1249.

[151] Kaspersky. Brute Force Attack Definition. https : / / www. kaspersky. com /

resource-center/definitions/brute-force-attack. Accessed: 02.12.2020.

[152] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael Bailey,

Frank Li, Nicholas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, and

Vern Paxson. The matter of heartbleed. In Carey Williamson, Aditya Akella, and

Nina Taft, editors, Proceedings of the 2014 Internet Measurement Conference, IMC

2014, Vancouver, BC, Canada, November 5-7, 2014, pages 475–488. ACM, 2014.

doi: 10.1145/2663716.2663755. URL https://doi.org/10.1145/2663716.2663755.

[153] Nazrul Hoque, Dhruba K. Bhattacharyya, and Jugal K. Kalita. Botnet in ddos at-

tacks: Trends and challenges. IEEE Commun. Surv. Tutorials, 17(4):2242–2270,

2015. doi: 10.1109/COMST.2015.2457491. URL https://doi.org/10.1109/COMST.

2015.2457491.

[154] Glenn Carl, George Kesidis, Richard R. Brooks, and Suresh Rai. Denial-of-service

attack-detection techniques. IEEE Internet Comput., 10(1):82–89, 2006. doi: 10.

1109/MIC.2006.5. URL https://doi.org/10.1109/MIC.2006.5.

[155] Saman Taghavi Zargar, James Joshi, and David Tipper. A survey of defense mecha-

nisms against distributed denial of service (ddos) flooding attacks. IEEE Commun.

Surv. Tutorials, 15(4):2046–2069, 2013. doi: 10.1109/SURV.2013.031413.00127.

URL https://doi.org/10.1109/SURV.2013.031413.00127.

[156] William G Halfond, Jeremy Viegas, Alessandro Orso, et al. A classification of sql-

injection attacks and countermeasures. In Proceedings of the IEEE international

symposium on secure software engineering, volume 1, pages 13–15. IEEE, 2006.

[157] KirstenS. Cross Site Scripting (XSS). https://owasp.org/www-community/attacks/

xss/. Accessed: 02.05.2020.

161

https://doi.org/10.1002/widm.1249
https://doi.org/10.1002/widm.1249
https://www.kaspersky.com/resource-center/definitions/brute-force-attack
https://www.kaspersky.com/resource-center/definitions/brute-force-attack
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1109/COMST.2015.2457491
https://doi.org/10.1109/COMST.2015.2457491
https://doi.org/10.1109/MIC.2006.5
https://doi.org/10.1109/SURV.2013.031413.00127
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/

[158] KDD99. The UCI KDD Archive. http://kdd.ics.uci.edu/databases/kddcup99/

kddcup99.html. Accessed: 18.06.2020.

[159] John McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999

DARPA intrusion detection system evaluations as performed by lincoln laboratory.

ACM Trans. Inf. Syst. Secur., 3(4):262–294, 2000. doi: 10.1145/382912.382923.

URL https://doi.org/10.1145/382912.382923.

[160] Osama Faker and Erdogan Dogdu. Intrusion detection using big data and deep learn-

ing techniques. In Dan Lo, Donghyun Kim, and Eric Gamess, editors, Proceedings

of the 2019 ACM Southeast Conference, ACM SE ’19, Kennesaw, GA, USA, April

18-20, 2019, pages 86–93. ACM, 2019. doi: 10.1145/3299815.3314439. URL

https://doi.org/10.1145/3299815.3314439.

[161] scikit learn. scikit-learn dataset feature format. https://scikit-learn.org/stable/faq.

html. Accessed: 10.04.2022.

[162] Fadi Salo, Ali Bou Nassif, and Aleksander Essex. Dimensionality reduction with

IG-PCA and ensemble classifier for network intrusion detection. Comput. Networks,

148:164–175, 2019. doi: 10.1016/j.comnet.2018.11.010. URL https://doi.org/10.

1016/j.comnet.2018.11.010.

[163] Liqun Liu, Bing Xu, Xiaoping Zhang, and Xianjun Wu. An intrusion detection

method for internet of things based on suppressed fuzzy clustering. EURASIP J.

Wirel. Commun. Netw., 2018:113, 2018. doi: 10.1186/s13638-018-1128-z. URL

https://doi.org/10.1186/s13638-018-1128-z.

[164] K. Keerthi Vasan and B. Surendiran. Dimensionality reduction using principal com-

ponent analysis for network intrusion detection. Perspectives in Science, 8:510–

512, 2016. ISSN 2213-0209. doi: https://doi.org/10.1016/j.pisc.2016.05.010.

URL https://www.sciencedirect.com/science/article/pii/S2213020916301446. Re-

cent Trends in Engineering and Material Sciences.

162

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://doi.org/10.1145/382912.382923
https://doi.org/10.1145/3299815.3314439
https://scikit-learn.org/stable/faq.html
https://scikit-learn.org/stable/faq.html
https://doi.org/10.1016/j.comnet.2018.11.010
https://doi.org/10.1016/j.comnet.2018.11.010
https://doi.org/10.1186/s13638-018-1128-z
https://www.sciencedirect.com/science/article/pii/S2213020916301446

[165] M. Shyu, S. Chen, K. Sarinnapakorn, and L. Chang. A novel anomaly detection

scheme based on principal component classifier. In Proceedings of the IEEE Foun-

dations and New Directions of Data Mining Workshop, in conjunction with the Third

IEEE International Conference on Data Mining (ICDM03), page 172–179, 2003.

[166] S. Almotairi, A. Clark, G. Mohay, and J. Zimmermann. A technique for de-

tecting new attacks in low-interaction honeypot traffic. In 2009 Fourth Interna-

tional Conference on Internet Monitoring and Protection, pages 7–13, 2009. doi:

10.1109/ICIMP.2009.9.

[167] Lior Rokach. Ensemble methods for classifiers. In Oded Maimon and Lior Rokach,

editors, The Data Mining and Knowledge Discovery Handbook, pages 957–980.

Springer, 2005.

[168] Gonzalo Martı́nez-Muñoz, Daniel Hernández-Lobato, and Alberto Suárez. An anal-

ysis of ensemble pruning techniques based on ordered aggregation. IEEE Trans.

Pattern Anal. Mach. Intell., 31(2):245–259, 2009. doi: 10.1109/TPAMI.2008.78.

URL https://doi.org/10.1109/TPAMI.2008.78.

[169] P. Shunmugapriya and S. Kanmani. Optimization of stacking ensemble configura-

tions through artificial bee colony algorithm. Swarm Evol. Comput., 12:24–32, 2013.

doi: 10.1016/j.swevo.2013.04.004. URL https://doi.org/10.1016/j.swevo.2013.04.

004.

[170] M. Paz Sesmero Lorente, Agapito Ledezma, and Araceli Sanchis. Generating en-

sembles of heterogeneous classifiers using stacked generalization. WIREs Data

Mining Knowl. Discov., 5(1):21–34, 2015. doi: 10.1002/widm.1143. URL

https://doi.org/10.1002/widm.1143.

[171] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.

SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res., 16:321–

357, 2002. doi: 10.1613/jair.953. URL https://doi.org/10.1613/jair.953.

163

https://doi.org/10.1109/TPAMI.2008.78
https://doi.org/10.1016/j.swevo.2013.04.004
https://doi.org/10.1016/j.swevo.2013.04.004
https://doi.org/10.1002/widm.1143
https://doi.org/10.1613/jair.953

[172] Guillaume Lemaitre, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn:

A python toolbox to tackle the curse of imbalanced datasets in machine learning. J.

Mach. Learn. Res., 18:17:1–17:5, 2017. URL http://jmlr.org/papers/v18/16-365.

html.

[173] Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures for model

selection. Statistics surveys, 4:40–79, 2010.

[174] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael A. Specter,

and Lalana Kagal. Explaining explanations: An overview of interpretability of

machine learning. In Francesco Bonchi, Foster J. Provost, Tina Eliassi-Rad, Wei

Wang, Ciro Cattuto, and Rayid Ghani, editors, 5th IEEE International Confer-

ence on Data Science and Advanced Analytics, DSAA 2018, Turin, Italy, October

1-3, 2018, pages 80–89. IEEE, 2018. doi: 10.1109/DSAA.2018.00018. URL

https://doi.org/10.1109/DSAA.2018.00018.

[175] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model pre-

dictions. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wal-

lach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances

in Neural Information Processing Systems 30: Annual Conference on Neural In-

formation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,

pages 4765–4774, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/

8a20a8621978632d76c43dfd28b67767-Abstract.html.

[176] Kjersti Aas, Martin Jullum, and Anders Løland. Explaining individual predictions

when features are dependent: More accurate approximations to shapley values. Artif.

Intell., 298:103502, 2021. doi: 10.1016/j.artint.2021.103502. URL https://doi.org/

10.1016/j.artint.2021.103502.

[177] Erik Strumbelj and Igor Kononenko. Explaining prediction models and individual

predictions with feature contributions. Knowl. Inf. Syst., 41(3):647–665, 2014. doi:

10.1007/s10115-013-0679-x. URL https://doi.org/10.1007/s10115-013-0679-x.

164

http://jmlr.org/papers/v18/16-365.html
http://jmlr.org/papers/v18/16-365.html
https://doi.org/10.1109/DSAA.2018.00018
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.1016/j.artint.2021.103502
https://doi.org/10.1016/j.artint.2021.103502
https://doi.org/10.1007/s10115-013-0679-x

[178] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Explainable

AI: A review of machine learning interpretability methods. Entropy, 23(1):18, 2021.

doi: 10.3390/e23010018. URL https://doi.org/10.3390/e23010018.

[179] Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl. Interpretable machine

learning - A brief history, state-of-the-art and challenges. In Irena Koprinska,

Michael Kamp, Annalisa Appice, Corrado Loglisci, Luiza Antonie, Albrecht Zim-

mermann, Riccardo Guidotti, Özlem Özgöbek, Rita P. Ribeiro, Ricard Gavaldà, João

Gama, Linara Adilova, Yamuna Krishnamurthy, Pedro M. Ferreira, Donato Malerba,

Ibéria Medeiros, Michelangelo Ceci, Giuseppe Manco, Elio Masciari, Zbigniew W.

Ras, Peter Christen, Eirini Ntoutsi, Erich Schubert, Arthur Zimek, Anna Monreale,

Przemyslaw Biecek, Salvatore Rinzivillo, Benjamin Kille, Andreas Lommatzsch,

and Jon Atle Gulla, editors, ECML PKDD 2020 Workshops - Workshops of the Eu-

ropean Conference on Machine Learning and Knowledge Discovery in Databases

(ECML PKDD 2020): SoGood 2020, PDFL 2020, MLCS 2020, NFMCP 2020,

DINA 2020, EDML 2020, XKDD 2020 and INRA 2020, Ghent, Belgium, September

14-18, 2020, Proceedings, volume 1323 of Communications in Computer and Infor-

mation Science, pages 417–431. Springer, 2020. doi: 10.1007/978-3-030-65965-3\

28. URL https://doi.org/10.1007/978-3-030-65965-3 28.

165

https://doi.org/10.3390/e23010018
https://doi.org/10.1007/978-3-030-65965-3_28

Appendices

166

Appendix A

CICIDS2017 feature description

167

Table A.1: CICIDS2017 feature description [6, 7]

No. Feature Name Feature Description

1 FlowID Flow ID number
2 Source IP Source IP address
3 Source Port Source port number
4 Destination IP Destination IP address
5 Destination Port Destination port number
6 Protocol Protocol
7 Timestamp Timestamp of the flow
8 Total Fwd Packets Total packets in the forward direction
9 Total Backward Packets Total packets in the backward direction

10 Total Length of Fwd Packets Total size of packet in forward direction
11 Total Length of Bwd Packets Total size of packet in backward direction
12 Fwd Packet Length Max Maximum size of packet in forward direction
13 Fwd Packet Length Min Minimum size of packet in forward direction
14 Fwd Packet Length Mean Average size of packet in forward direction
15 Fwd Packet Length Std Standard deviation size of packet in forward direction
16 Bwd Packet Length Max Maximum size of packet in backward direction
17 Bwd Packet Length Min Minimum size of packet in backward direction
18 Bwd Packet Length Mean Mean size of packet in backward direction
19 Bwd Packet Length Std Standard deviation size of packet in backward direction
20 Flow Bytes/s Number of packets transferred per second
21 Flow Packets/s Number of packets transferred per second
22 Fwd Packets/s Number of forward packets per second
23 Bwd Packets/s Number of backward packets per second
24 Min Packet Length Minimum length of a packet
25 Max Packet Length Maximum length of a packet
26 Packet Length Mean Mean length of a packet
27 Packet Length Std Standard deviation length of a packet
28 Packet Length Variance Variance length of a packet
29 Down/Up Ratio Download and upload ratio
30 Avg Fwd Segment Size Average size observed in the forward direction
31 Avg Bwd Segment Size Average size observed in the backward direction
32 Fwd Avg Bytes/Bulk Average number of bytes bulk rate in the forward direction
33 Fwd Avg Packets/Bulk Average number of packets bulk rate in the forward direction
34 Fwd Avg Bulk Rate Average number of bulk rates in the forward direction
35 Bwd Avg Bytes/Bulk Average number of bytes bulk rate in the backward direction
36 Bwd Avg Packets/Bulk Average number of packets bulk rate in the backward direction
37 Bwd Avg Bulk Rate Average number of bulk rates in the backward direction
38 Init Win bytes forward Number of bytes sent in initial window in the forward direction
39 Init Win bytes backward Number of bytes sent in initial window in the backward direction
40 Act data pkt fwd Number of packets with at least 1 byte of TCP data payload in the forward direction
41 Min seg size forward Minimum segment size observed in the forward direction
42 Flow Duration Flow duration
43 Flow IAT Mean Average time between two packets sent in the flow
44 Flow IAT Std Standard deviation time between two packets sent in the flow
45 Flow IAT Max Maximum time between two packets sent in the flow
46 Flow IAT Min Minimum time between two packets sent in the flow
47 Fwd IAT Total Total time between two packets sent in the forward direction
48 Fwd IAT Mean Mean time between two packets sent in the forward direction
49 Fwd IAT Std Standard deviation time between two packets sent in the forward direction
50 Fwd IAT Max Maximum time between two packets sent in the forward direction
51 Fwd IAT Min Minimum time between two packets sent in the forward direction
52 Bwd IAT Total Total time between two packets sent in the backward direction
53 Bwd IAT Mean Mean time between two packets sent in the backward direction
54 Bwd IAT Std Standard deviation time between two packets sent in the backward direction
55 Bwd IAT Max Maximum time between two packets sent in the backward direction
56 Bwd IAT Min Minimum time between two packets sent in the backward direction

168

57 Fwd PSH Flags

Number of times the PSH flag was set in packets travelling in the forward direction (0

for UDP)

58 Bwd PSH Flags

Number of times the PSH flag was set in packets travelling in the backward direction (0

for UDP)

59 Fwd URG Flags

Number of times the URG ag was set in packets travelling in the forward direction (0

for UDP)

60 Bwd URG Flags

Number of times the URG ag was set in packets travelling in the backward direction (0

for UDP)

61 FIN Flag Count Number of packets with FIN

62 SYN Flag Count Number of packets with SYN

63 RST Flag Count Number of packets with RST

64 PSH Flag Count Number of packets with PUSH

65 ACK Flag Count Number of packets with ACK

66 URG Flag Count Number of packets with URG

67 CWE Flag Count Number of packets with CWE

68 ECE Flag Count Number of packets with ECE

69 Subflow Fwd Packets The average number of packets in a sub flow in the forward direction

70 Subflow Fwd Bytes The average number of bytes in a sub flow in the forward direction

71 Subflow Bwd Packets The average number of packets in a sub flow in the backward direction

72 Subflow Bwd Bytes The average number of bytes in a sub flow in the backward direction

73 Fwd Header Length Total bytes used for headers in the forward direction

74 Bwd Header Length Total bytes used for headers in the backward direction

75 Average Packet Size Packet average size

76 Active Mean Mean time a flow was active before becoming idle

77 Active Std Standard deviation time a flow was active before becoming idle

78 Active Max Maximum time a flow was active before becoming idle

79 Active Min Minimum time a flow was active before becoming idle

80 Idle Mean Mean time a flow was idle before becoming active

81 Idle Std Standard deviation time a flow was idle before becoming active

82 Idle Max Maximum time a flow was idle before becoming active

83 Idle Min Minimum time a flow was idle before becoming active

84 Label Indicates whether the flow is an attack or not

169

Appendix B

NSL-KDD feature description

170

Table B.1: NSL-KDD feature description [8, 9]

No. Feature Name Feature Description

1 Duration Length of the connection in seconds.

2 protocol_type Type of the protocol.

3 Service Network service on the destination.

4 src_bytes The number of data bytes transferred from source to destination.

5 dst_bytes The number of data bytes transferred from destination to source.

6 Flag Connection status (normal or error).

7 Land If the connection is from/to the same host/port, then 1 or 0 otherwise.

8 wrong_fragment The number of wrong fragments.

9 Urgent The number of urgent packets.

10 Hot The number of hot indicators.

11 num_failed_logins The number of failed login attempts.

12 logged_in If successfully logged in, then 1 or 0 otherwise.

13 num_compromised The number of compromised conditions.

14 root_shell If root shell is obtained, then 1 or 0 otherwise.

15 su_attempted If su root command is attempted, then 1 or 0 otherwise.

16 num_root The number of root accesses.

17 num_file_creations The number of file creation operations.

18 num_shells The number of shell prompts.

19 num_access_files The number of operations on access control files.

20 num_outbound_cmds The number of outbound commands in an ftp session.

21 is_hot_login If the login belongs to the hot list, then 1 or 0 otherwise.

22 is_guest_login If the login is a guest login, then 1 or 0 otherwise.

23 Count

The number of connections to the same host as the current connection

in the past two seconds.

24 serror_rate The percentage of connections that have SYN errors.

25 rerror_rate The percentage of connections that have REJ errors.

26 same_srv_rate The percentage of connections to the same service.

27 diff_srv_rate The percentage of connections to different services

28 srv_count

The number of connections to the same service as the current

connection in the past two seconds.

29 srv_serror_rate The percentage of connections that have SYN errors.

30 srv_rerror_rate The percentage of connections that have REJ errors.

31 srv_diff_host_rate The percentage of connections to different hosts.

32 dst_host_count

The total number of connections having the same destination and host

IP address.

33 dst_host_srv_count The total number of connections having the same port number.

34 dst_host_same_srv_rate

The percentage of connections that were to the same service among the

connections collected in dst_host_count.

35 dst_host_diff_srv_rate

The percentage of connections that were to different services among the

connections collected in dst_host_count.

36 dst_host_same_src_port_rate

The percentage of connections that were to the same source port among

the connections collected in dst_host_srv_count.

37 dst_host_srv_diff_host_rate

The percentage of connections that were to different destination

machines among the connections collected in dst_host_srv_count.

38 dst_host_serror_rate

The percentage of connections that have activated the flag (s0, s1, s2 or

s3) among the connections collected in dst_host_count.

39 dst_host_srv_serror_rate

The percentage of connections that have activated the flag (s0, s1, s2 or

s3) among the connections collected in dst_host_srv_count.

40 dst_host_rerror_rate

The percentage of connections that have activated the flag (REJ) among

the connections collected in dst_host_count.

41 dst_host_srv_rerror_rate

The percentage of connections that have activated the flag (REJ) among

the connections collected in dst_host_srv_count.

42 Class Indicates if the flow is an attack or not.

43 difficulty_level Class/flow difficulty level.

171

Appendix C

CICIDS2017 Information Gain

172

Table C.1: CICIDS2017 Information Gain

No. Feature IG No. Feature IG
1 Average Packet Size 0.5794 39 Subflow Bwd Packets 0.2569
2 Packet Length Variance 0.5758 40 Bwd IAT Total 0.2507
3 Packet Length Std 0.5753 41 Bwd IAT Mean 0.2354
4 Packet Length Mean 0.5545 42 Fwd Packet Length Std 0.2307
5 Total Length of Bwd Packets 0.5158 43 Bwd Packet Length Min 0.2261
6 Subflow Bwd Bytes 0.5156 44 Subflow Fwd Packets 0.2162
7 Bwd Packet Length Mean 0.5021 45 Total Fwd Packets 0.2161
8 Avg Bwd Segment Size 0.5020 46 Fwd IAT Std 0.2152
9 Total Length of Fwd Packets 0.4973 47 Active Min 0.1788
10 Init Win bytes backward 0.4825 48 Idle Max 0.1787
11 Bwd Packet Length Max 0.4797 49 Active Mean 0.1768
12 Max Packet Length 0.4790 50 Active Max 0.1720
13 Init Win bytes forward 0.4569 51 Idle Mean 0.1689
14 Fwd Packet Length Max 0.4549 52 Idle Min 0.1665
15 Subflow Fwd Bytes 0.4326 53 Bwd IAT Std 0.1533
16 Avg Fwd Segment Size 0.4246 54 min seg size forward 0.1453
17 Fwd Packet Length Mean 0.4245 55 Down/Up Ratio 0.1333
18 Flow Bytes/s 0.3908 56 PSH Flag Count 0.1015
19 Flow IAT Max 0.3894 57 act data pkt fwd 0.0976
20 Flow Duration 0.3613 58 Idle Std 0.0418
21 Fwd IAT Max 0.3478 59 ACK Flag Count 0.0356
22 Flow Packets/s 0.3368 60 URG Flag Count 0.0348
23 Bwd Header Length 0.3368 61 Active Std 0.0328
24 Fwd Packets/s 0.3346 62 FIN Flag Count 0.0247
25 Fwd IAT Total 0.3343 63 SYN Flag Count 0.0077
26 Bwd Packets/s 0.3334 64 Fwd PSH Flags 0.0076
27 Fwd Header Length 0.3236 65 Fwd Avg Packets/Bulk 0.0005
28 Fwd IAT Mean 0.3154 66 Bwd PSH Flags 0.0003
29 Flow IAT Mean 0.3148 67 Bwd Avg Packets/Bulk 0.0003
30 Flow IAT Min 0.2968 68 Fwd Avg Bulk Rate 0.0002
31 Bwd Packet Length Std 0.2913 69 CWE Flag Count 0.0001
32 Fwd IAT Min 0.2805 70 ECE Flag Count 0.0001
33 Bwd IAT Min 0.2702 71 Bwd Avg Bulk Rate 0.0001
34 Fwd Packet Length Min 0.2690 72 Bwd URG Flags 0
35 Min Packet Length 0.2665 73 Fwd URG Flags 0
36 Bwd IAT Max 0.2665 74 RST Flag Count 0
37 Flow IAT Std 0.2577 75 Bwd Avg Bytes/Bulk 0
38 Total Backward Packets 0.2570 76 Fwd Avg Bytes/Bulk 0

173

Appendix D

NSL-KDD Information Gain

174

Table D.1: NSL-KDD Information Gain

No. Feature IG No. Feature IG
1 src bytes 0.5414 62 flag sh 0.0046
2 dst bytes 0.4302 63 service urp i 0.0045
3 dst host same srv rate 0.3372 64 service login 0.0044
4 same srv rate 0.3274 65 service name 0.0044
5 dst host diff srv rate 0.3267 66 service daytime 0.0044
6 diff srv rate 0.3266 67 service netbios dgm 0.0043
7 flaf sf 0.3224 68 service sql net 0.0042
8 logged in 0.2890 69 service kshell 0.0041
9 dst host srv count 0.2829 70 service hostnames 0.0041

10 dst host serror rate 0.2574 71 service echo 0.0041
11 count 0.2436 72 service bgp 0.0039
12 serror rate 0.2303 73 num root 0.0038
13 dst host srv serror rate 0.2244 74 service ldap 0.0038
14 srv serror rate 0.2108 75 service netbios ns 0.0037
15 service http 0.2093 76 service netbios domain 0.0037
16 dst host same src port rate 0.2086 77 service mtp 0.0035
17 flag s0 0.1929 78 flag s3 0.0034
18 dst host srv diff host rate 0.1874 79 service ssh 0.0033
19 service private 0.1728 80 service nnsp 0.0033
20 dst host count 0.1447 81 wrong fragment 0.0033
21 dst host rerror rate 0.1209 82 service gopher 0.0032
22 srv diff host rate 0.1150 83 service urh i 0.0030
23 dst host srv rerror rate 0.1128 84 num access files 0.0027
24 rerror rate 0.0950 85 num compromised 0.0026
25 srv rerror rate 0.0881 86 flag oth 0.0026
26 flag reg 0.0574 87 urgent 0.0026
27 srv count 0.0508 88 service klogin 0.0025
28 service domain u 0.0494 89 service tim i 0.0024
29 duration 0.0374 90 service ctf 0.0024
30 service smtp 0.0321 91 service exec 0.0023
31 protocol type udp 0.0313 92 service pm dump 0.0022
32 protocol type icmp 0.0194 93 service netbios ssn 0.0020
33 service ftp data 0.0174 94 service harvest 0.0019
34 flag rsto 0.0169 95 service remote job 0.0018
35 service telnet 0.0151 96 num shells 0.0017
36 service eco i 0.0143 97 service time 0.0016
37 protocol type tcp 0.0142 98 service nntp 0.0014
38 flag rstr 0.0134 99 service shell 0.0012
39 service ecr i 0.0133 100 service discard 0.0012
40 service imap4 0.0096 101 service systat 0.0012
41 hot 0.0087 102 service printer 0.0012
42 service csnet ns 0.0084 103 service http 2784 0.0010
43 service iso tsap 0.0082 104 service X11 0.0007
44 service finger 0.0082 105 service rje 0.0006
45 service sunrpc 0.0079 106 service http 8001 0.0004
46 service Z39 50 0.0073 107 is host login 0.0004
47 service courier 0.0069 108 service ntp u 0.0003
48 service supdup 0.0068 109 root shell 0.0001
49 service vmnet 0.0059 110 num file creations 0
50 service ftp 0.0059 111 su attempted 0
51 service efs 0.0059 112 service tftp u 0
52 service auth 0.0057 113 flag s1 0
53 service pop 3 0.0057 114 flag s2 0
54 service link 0.0055 115 service red i 0
55 service uucp path 0.0054 116 land 0
56 service http 443 0.0053 117 service aol 0
57 service vmnet 0.0051 118 service pop 2 0
58 service uucp 0.0050 119 is guest login 0
59 service other 0.0048 120 service IRC 0
60 num failed logins 0.0047 121 flag rstos0 0
61 service netstat 0.0047

175

	Introduction
	Background
	Research Motivation
	Problem Statement
	Research Questions
	Research Aims and Objectives
	Research Methodology
	Contribution
	Publication
	Thesis Experimental Data and Code
	Thesis Structure

	Background and Literature Review
	Intrusion Detection System
	Types of Intrusion Detection System
	Intrusion Detection System Methods

	Anomaly Detection Methods and Techniques
	Network Anomaly Detection Using Machine Learning Algorithms
	Unsupervised Machine Learning Algorithms
	Supervised Machine Learning Algorithms

	Intrusion Detection Systems Evaluation Measures
	Ensemble Methods
	Bagging
	Boosting
	Stacked Generalisation (Stacking)

	Ensemble Results Combiner Methods
	Voting
	Averaging

	Model Explainability in Machine Learning
	Machine Learning Explainability Criteria
	Machine Learning Explainability Techniques

	Dataset Preparation (Preprocessing)
	Related Work
	Unsupervised Anomaly Algorithms for Intrusion Detection
	Unsupervised Anomaly Algorithms for Outlier Detection

	Chapter Summary

	Preliminaries: Experiments and Evaluation
	Research Methodology Workflow
	Experimental Setup
	Datasets Used in this Research
	CICIDS2017 Dataset
	NSL-KDD Dataset

	Research Dataset Preprocessing Steps
	CICIDS2017 Dataset Preprocessing
	NSL-KDD Dataset Preprocessing

	Evaluation of Anomaly Detection Algorithms as Base Learners for UNAD
	Local Outlier Factor (LOF)
	Isolation Forest (iForest)
	Elliptic Envelope

	Initial Experiments: Evaluation and Discussion
	Initial Experiments: Summary
	Chapter Summary

	Unsupervised Ensemble Learner Architecture for Unknown Attack Detection
	The UNAD Approach
	UNAD Workflow
	Experimental Evaluation of UNAD
	UNAD Current Limitation

	UNAD with Weighted Majority Voting to Overcome Abstaining Limitation
	The UNAD WMV Workflow
	Comparative Analysis of UNAD with Majority Voting versus UNAD with Weighted Majority Voting

	Chapter Summary

	Improving UNAD Detections and the System Transparency
	Detailed Workflow of the Second Component
	Research Models' Hyperparameters
	Evaluation and Results of Second Component

	Explainability Component
	Local Explainability
	Global Explainability

	Chapter Summary

	Overall Results and Discussion
	CICIDS2017 Results and Analysis
	NSL-KDD Results and Analysis
	Chapter Summary

	Conclusion and Future Work
	Thesis Summary
	Limitations
	Future Work

	References
	Appendices
	CICIDS2017 feature description
	NSL-KDD feature description
	CICIDS2017 Information Gain
	NSL-KDD Information Gain

