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1Chapter 6

2Quality Estimates for 3D Protein Models

3Ali H. A. Maghrabi, Fahd M. F. Aldowsari, and Liam J. McGuffin

4Abstract

5Protein structure modeling is one of the most advanced and complex processes in computational biology.
6One of the major problems for the protein structure prediction field has been how to estimate the accuracy
7of the predicted 3D models, on both a local and global level, in the absence of known structures. We must
8be able to accurately measure the confidence that we have in the quality predicted 3Dmodels of proteins for
9them to become widely adopted by the general bioscience community. To address this major issue, it was
10necessary to develop new model quality assessment (MQA) methods and integrate them into our pipelines
11for building 3D protein models. Our MQAmethod, called ModFOLD, has been ranked as one of the most
12accurate MQA tools in independent blind evaluations. This chapter discusses model quality assessment in
13the protein modeling field, demonstrating both its strengths and limitations. We also present some of the
14best methods according to independent benchmarking data, which has been gathered in recent years.

15Key words Protein structure prediction, Model quality assessment, Estimates of model accuracy,
16Accuracy self-estimates, Template-based modeling, Free modeling

171 Introduction

18Understanding protein function is one of the keys for understand-
19ing life at the molecular level. Each protein molecule has its own
20unique sequence, which consist of linear chains of amino acids.
21These amino acid chains fold to form tertiary structures, which
22confer the proteins function. In other words, characterizing protein
23structures leads to the ability to better understand their functions.
24Experimental methods such as X-ray crystallography and nuclear
25magnetic resonance have been considered as the methods of choice
26for 3D structure determination. However, such methods are costly
27and time-consuming, and some proteins are also problematic or
28impossible to be characterized using these methods. Consequently,
29the process of growing protein structure data is relatively slow in
30comparison to the speed of sequencing genomes and their encoded
31proteins, which has kept increasing, especially after breakthroughs
32in the genetic sequencing technology. As a result, a gap has grown
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33between known protein sequences and their resolved structures,
34and it has been necessary to find another solution.
35Computational methods, which predict the structure of pro-
36teins directly from their own sequences, have become fast and
37effective alternatives to experimental methods. Over the past
3820 years, there has been an emergence of different types of protein
39structure prediction methods, the most accurate type being the
40comparative modeling method, which consists of a number of
41steps including template recognition, alignment, quality assess-
42ment, and ending with refinement. Each of these steps plays an
43essential part in order to achieve a successful modeling pipeline, but
44perhaps the most critical step for the wider acceptance of 3D
45models of proteins has been the protein modeling quality assess-
46ment pipeline. In this step, the predicted models are evaluated in
47terms of their likely accuracy without the need of an experimental
48structure. Numerous challenges were identified and many
49approaches to the quality estimation problem have been developed
50over the years including the use of statistical potentials, stereo-
51chemistry checks, and machine learning techniques. Such methods
52have traditionally been referred to as the model quality assessment
53(MQA or QA) methods, and they have been evaluated in successive
54critical assessment of structure prediction (CASP) experiments
55under the estimates of model accuracy (EMA) and the accuracy
56self-estimates (ASE) prediction categories.

572 Estimates of Model Accuracy (EMA) Are Essential for Template-Based Modeling
58(TBM) and Template-Free Modeling (FM)

59The fact that evolutionarily related proteins have similar structures
60has encouraged researchers to develop methods for predicting the
61structure of proteins from their sequences [1]. One way of model-
62ing a protein structure is by aligning the sequence to those of
63already experimentally observed protein structures and then using
64those structures as templates in order to map the 3D coordinates of
65each aligned residue. This procedure has been termed as homology
66modeling or comparative modeling [2]. However, sometimes
67structurally homologous proteins can have a very low sequence
68identity, and in these cases homology modeling methods fail to
69identify suitable template structures or produce poor alignments.
70This issue led to another way of determining protein structure
71called threading or fold recognition [3]. This modeling method
72does not use the homologous proteins with known structures but
73rather uses statistical knowledge of the relationship between the
74structures, which have been deposited in the PDB database and the
75targeted sequence. Both approaches have been improved over the
76years along with the integration of EMA programs, and systematic
77differences were noticed.
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78In recent years, fold recognition and homology modeling tech-
79niques have somewhat merged with the ability to detect ever more
80distant evolutionary relationships using profile-profile searching
81methods and HMM-HMMmethods, such as the popular HHpred
82method [4]. The general concept of modeling based on existing
83structures is now classified as template-based modeling (TBM), and
84the success of such methods relies on the availability and accurate
85detection of suitable templates. As the amount of detectable simi-
86larity between target protein and template structures decreases, the
87accuracy of template-based techniques starts to be insufficient and
88such methods become unreliable. In this case, another structure
89prediction technique, traditionally called de novo or ab initio pro-
90tein structure prediction, is the only remaining option. The tech-
91nique is based on predicting the structure of proteins without the
92need of a template and is therefore known as template-free model-
93ing or FM [5]. FM methods are not nearly as accurate as TBM
94methods when templates are available [6]. However, the concept of
95such techniques is fairly simpler comprising of only two elements:
96firstly, an algorithm to search the space of possible protein config-
97urations for cost function minimization; secondly, various
98restraints, which are the composition of the cost function itself,
99being either derived from physical laws and structural features
100predicted by machine learning or other types of statistical systems
101[7]. FM techniques have been incrementally improving and can
102provide us with valuable information on how novel domains may
103fold [8].
104Regardless of whether TBM or FM approaches are used to
105model a protein target, a researcher will often end up with dozens,
106or even hundreds, of alternative models for the same protein target.
107The first problem they will then face is how to select the best model
108from among the alternatives and then, once selected, they will need
109to know how confident they can be in the model accuracy overall
110and, more specifically, which local regions of the model can be
111trusted; EMA methods are critical for answering all of these
112questions.

1133 Methods for Estimates of Model Accuracy

114Traditionally, protein structure modeling has been far less trusted in
115terms of accuracy than deriving protein structures from experi-
116ments. Models are typically left unannotated with quality estimates
117and can span a broad range of the accuracy spectrum, whereas the
118accuracy of observed protein structures can be estimated from
119experiments and falls within a narrow range [2]. Therefore, a
120number of quality evaluation methods have been developed by
121modelers using techniques such as statistical potentials, molecular
122mechanics energy-based functions, stereochemistry checks, and
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123machine learning in order to analyze the correctness of protein
124structures and models [9]. Examples of the early/simple quality
125checking tools include WHAT-CHECK [10], PROCHECK [11],
126and, more recently, MolProbity [12]. These tools use basic stereo-
127chemical checks, and they are very useful in identifying unusual
128geometric features in a model. However, such quality checking
129tools are not able to produce a single score for ranking alternative
130models. Other examples of early quality assessment tools that use a
131variety of different methods include ProSA [13] and DFIRE [14],
132which have been used along with VERIFY3D [15] in order to
133provide single scores that relate to the global quality of protein
134models. Machine learning-based quality assessment programs have
135also been utilized to provide a higher value of prediction accuracy.
136ProQ [16], ModFOLD method [17], and QMEAN [18] are
137examples of early machine learning-based QA methods, which
138helped programmers to use various combinations of structural
139features and individual energy potentials in order to predict the
140accuracy of global model quality.

1414 Observed Model Accuracy Scoring

142In order to evaluate predicted model quality scores, in the early
143years of structure prediction, the predicted models were compared
144with the superposed observed structures simply by using the root-
145mean-square deviation (RMSD). To overcome some of the RMSD
146limitations, EMA developers started to use improved similarity
147scoring measures such as GDT-HA and GDT [19], MaxSub [20],
148TM-score [21] (which are superposition based), and local Distance
149Difference Test (lDDT) (which does not require superposition of
150the model and observed structures) [22]. These scores were used to
151measure the predicted model quality for each individual model by
152comparing them to the observed native (solved experimental)
153structures. The term GDT stands for “global distance test,” in
154both the GDT and GDT-HA scores. These two scores represent
155the measurement of similarity between two protein structures that
156both have identical amino acid sequences but may have different
157tertiary structures, i.e., a predicted model and the observed crystal
158structure [21]. The difference between GDT and GDT-HA is that
159GDT-HA is “high accuracy” and uses smaller cutoff distances,
160which makes it more rigorous and, as a result, is more stringent
161than GDT [23]. MaxSub is a measure that identifies in a model the
162largest subset of Cα atoms that superimpose over the experimental
163structure, producing a single normalized score that represents the
164quality of that model. The TM-score stands for “template model-
165ing” score. Likewise, this measure is for calculating the similarity
166between two models with the same sequence but with different
167tertiary structure. The TM-score is arguably more accurate than
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168GDT and GDT-HA in comparing the similarity of structures with
169full-length protein chains rather than domains [21]. Each of these
170measures indicate the difference between two protein structures
171(predicted versus observed) by providing a score between 0 and
1721, where 1 is a perfect match between the two compared structures
173(i.e., identical relative atom coordinates) and 0 is a nonmatched
174structure [20]. The comparison between the predicted and
175observed scores of each region of the protein structure is compared
176using the pairwise correlation technique, an example of this type of
177correlation can be seen in Fig. 1. Such superposition-based scoring
178measurement may have some limitations as they are affected by
179differences in the relative orientation of domains following global
180superposition in structures with more than a domain. This can lead
181to, for example, poor scores given for correct small domains
182because the largest domain will be dominating the global rigid-
183body superposition. The local Distance Difference Test (lDDT)
184scoring is independent of superposition, so it does not have the
185same issues when scoring multiple domains with different relative
186orientations. A variety of observed model accuracy scoring methods
187are used as the target functions in order to train and benchmark
188EMA methods over the years. Practically, the GDT score and the
189lDDT score have been used more recently due to their adoption as
190the gold standards for the CASP and CAMEO experiments,
191respectively [24].

Fig. 1 Predicted model quality scores versus observed model quality scores. The
plot compares the predicted scores for one of the top-performing individual EMA
methods, ModFOLDclust2 (Mc2s), against TM-score observed scores. (The data
set was collected from CASP12)
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1925 EMA Classification

193The field of computational protein structure prediction is evolving
194constantly, following the increase in computational power of
195machines and the development of intelligent algorithms. Despite
196the rapid development of methods and fusion of applied
197approaches, a broad classification and categorization of these meth-
198ods can be made. Numerous methods have been developed over
199the years in an attempt to provide users with scores that will give
200them confidence in their 3D models and allow them to identify any
201potentially suspect regions. As previously mentioned, the model
202quality assessment field has its roots in early structure validation
203tools [10, 11, 25]. While such tools can be used to perform basic
204stereochemical checks and identify unusual geometric features in a
205model, they are not able to produce a single global score that can be
206used for ranking alternative models nor can they be relied upon for
207discriminating good models from bad (often bad models will still
208have good stereochemistry). Modern methods for EMA can be
209classified into three broad categories in terms of input: pure-single-
210model methods [14, 15, 17, 18, 25–28] which consider only
211information within an individual model, clustering/consensus
212approaches [29–33] which can only be used if you have multiple
213alternative models built for the same protein target, and quasi-
214single-model methods [34, 35] which can score an individual
215model against a pool of alternative models generated from the
216target sequence. Each approach has its advantages and disadvan-
217tages. Clustering methods have been far more accurate than pure-
218single-model methods, but they are more computationally inten-
219sive and do not work when very few similar models are available,
220which is often the case in real-life research scenarios. Pure-single-
221model methods are less accurate overall, but they are more rapid,
222they produce consistent scores for single or few models at a time,
223and they often perform better at model ranking and selection.
224Quasi-single-model methods attempt to provide comparable accu-
225racy to clustering methods while addressing real-life needs of
226researchers with few/single models.
227Moreover, there are several other factors that EMA methods
228can be categorized with, such as the predicted property, target
229function, machine learning method, and other features. Table 1
230contains a list of some of the most popular programs and servers for
231EMA, which have been independently evaluated in the CASP [36]
232and CAMEO [37] experiments.
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2336 ModFOLD: A Leading EMA Web Server

234One of the top leading EMA methods is ModFOLD, which has
235been developed by Prof. LiamMcGuffin and colleagues [17]. Since
236its inception, ModFOLD has been continuously improved, going
237through many upgrades until its latest version, ModFOLD8 [38].

6.1 ModFOLD History 238In the 2 years following CASP7, performances of protein structural
239QA servers were observed to be considerably increasing. Model
240quality assessment programs, or MQAPs, have become the

t:1 Table 1
Examples of different EMA methods used in CASP13

Method
Local/
global Inputs

Structure
features

Predicted
features

Target
function

Machine
learning
methodt:2

FaeNNz [38] Local
(global
is avg.
local)

Model and
full-length
target
sequence

Statistical
potentials of
mean force +
distance
constraints
from templates
+ solvent acc.

Sec. str and
surface
area

LDDT
(local)

Multilayer
perceptront:3

ModFOLD7
[39]

Local
(global
is sum
of
local)

Model and
full-length
target
sequence

Pairwise
comparisons of
generated
reference
models, residue
contacts

Contacts,
sec. str
and
disorder

S-score
(local)

Multilayer
perceptront:4

ProQ3 [26] Local
(global
is sum
of
local)

Profile +
model +
predictions
+ energies

ProQ2 + energy
terms

Sec. str and
surface
area

S-score
(local)

Linear SVMt:5

VoroMQA-A
[40]

Local and
global

Model Voronoi
tessellation-
based contact
areas

Not used Not used Statistical
potentialt:6

MULTICOM-
CLUSTER
[41]

Global Model and
full-length
sequence

Secondary
structure,
solvent
accessibility,
residue contacts

Contacts,
sec. str,
surface
area, and
structural
scores

GDT_TS
(global)

Deep
network +
ensemblet:7

t:8 The methods have been chosen randomly taking into consideration the differences between them with regard to their

measuring method (local/global), inputs, structure features, predicted features, target function, and machine learning

method
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241cornerstone of many protein structure modeling methods. More
242than a dozen papers were published in the area of QA between
243CASP7 and CASP8, and 45methods were submitted for evaluation
244to CASP8 in that category.
245

6.1.1 The Initial

Construction of ModFOLD

245ModFOLD is a machine learning-based QA program which was
246developed at the University of Reading by the McGuffin group.
247The original ModFOLD method was developed based on the
248nFOLD protocol [39], which was a combination of the new Gen-
249THREADER protocol [40] and a number of extra inputs into the
250underlying neural network, including the SSEA score [41], a new
251functional site detection score (MetSite) [42], and a simple model
252quality checking algorithm, MODCHECK [40].
253Initially, ModFOLD was developed in two editions: Mod-
254FOLD, designed to be fast and used for the global assessment of
255either single or multiple models, and ModFOLDclust, a more
256intensive method that carries out clustering of multiple models
257and provides a per-residue local quality assessment. ModFOLD-
258clust was shown to significantly outperform all of its clustering/
259multiple MQAP competitors, while ModFOLD has competed well
260against some of the best “true” single-model MQAP methods
261[17]. Since CASP ranking relies on the prediction accuracy regard-
262less of the method used, clustering- or consensus-based MQAPs
263were ranked as the most accurate methods for predicting 3Dmodel
264quality, outperforming the single-model methods.
265

6.1.2 ModFOLDclustQ for

Speed, Accuracy, and

Consistency

266Despite their accuracy, it was noticed that a number of advantages
267of the single-model-based methods were missing in the clustering
268methods. One missing feature was the speed. Like Pcons and other
269consensus-based approaches, ModFOLDclust carries out pairwise
270comparisons of numerous models by using multiple structural
271alignments, and that makes it often CPU intensive [28]. Another
272difficulty found in QA programs including ModFOLDclust was the
273requirement of a large pool of diverse models, and thus, smaller
274numbers of models can minimize the accuracy. To overcome such
275problems, McGuffin and Roche designed an upgraded version of
276the same method, called ModFOLDclustQ [33]. The initial “Q”
277labeled in the upgraded version name is referred to a score called
278Q-score; this score was utilized in ModFOLDclustQ while also
279standing for “Quick.” The Q-score is derived from the Q measure
280that was developed by the Wolynes group [43]. The Q-score has
281the ability to efficiently estimate structural relations between two
282proteins based on their residue distances. This method has been
283suggested by the CASP8 assessors as an alternative to the other
284scoring methods such as the GDT-TS [44]. By importing Q-score,
285ModFOLDclustQ was shown to compete with the leading consen-
286sus MQAPs. Furthermore, when taking the mean of ModFOLD-
287clustQ score and the older ModFOLDclust score, a significant
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288increase in prediction accuracy was achieved, with little computa-
289tional overhead. That led McGuffin and Roche to combine both
290scoring methods to form a new method named ModFOLDclust2
291[35]. There are a number of other MQAPs that also used Q-score
292to assess each individual residue in a model pertaining to the
293per-residue accuracy. A successful per-residue consensus-based
294method was Pcons method, which was superseded then by one of
295the leading consensus single-model per-residue programs, known
296as ProQ [45]. The method was then upgraded by updating its
297structural and predicted features, this upgrade to be as the second
298top ranking MQAP, ProQ2 [46].
299Although upgrading ModFOLDclust to ModFOLDclustQ
300and combining their scores showed a high improvement in the
301quality assessment speed and accuracy level, McGuffin also noticed
302the potential of using ModFOLDclust2 to guide 3D modeling
303using multiple templates. In the process of modeling, using more
304than onefold template is helpful in assessing models more accu-
305rately. However, it was noticed that such a technique is not prefera-
306ble in many cases as it may result in poorer model quality. Besides
307the speed and the accuracy of anMQAP, there has to be consistency
308as well. To solve such a problem, McGuffin and colleagues have
309started to investigate the use of local as well as global model quality
310prediction scores that are produced by ModFOLDclust2. This led
311to improvements in the selection of target-template alignments for
312the construction of multiple-template models. After the investiga-
313tion, it was found that the most accurate and consistent way in
314improving models is to use accurate local model quality scores to
315guide alignment selection while using accurate global model quality
316before selection for re-ranking alignments. Applying this technique
317has made significant performance improvements to the tertiary
318structure prediction IntFOLD server [47].
319

6.1.3 The Quasi-Single-

Model Approach

320Another important feature that was missing in the clustering-based
321approaches was addressing the real-life needs of protein researchers,
322when often only a single or few models for each protein target are
323available for evaluation. In such cases, clustering methods will
324provide poor performance. McGuffin’s research group was aware
325of this problem and they found a way to address it. Instead of
326proceeding with a direct clustering to the submitted model/s, a
327tertiary structure prediction method [48] was used at the begin-
328ning as the first stage of the quality assessment procedure, in order
329to generate an initial reference set of template-based models. The
330user-submitted model/s are then pooled with the generated mod-
331els and clustered using ModFOLDclust2 as the second stage of the
332process. By integrating this algorithm, if the server received multi-
333ple models, then the procedure will go with the full clustering
334approach, whereas if only single or few models are submitted,
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335then the pipeline will be diverted to the so-called quasi-single-
336model approach which operates with comparable accuracy. This
337method was implemented initially with the ModFOLD v3.0: a
338server developed using ModFOLDclust2 integrated with the
339IntFOLD-QA tertiary structure prediction pipeline [33]. The algo-
340rithm has since been independently tested for confidence and pub-
341lished as the fourth version of the ModFOLD server [34].
342CASP assessments of QA methods were more concerned about
343the quality scoring results rather than other practical considera-
344tions, such as the researcher’s accessibility, until the assessment
345was updated following the eighth and ninth seasons of the experi-
346ment [49] (details about CASP in Subheading 7). In CASP10, the
347criteria were modified to rebalance the quality assessment. This
348modification was implied by using smaller bespoke data sets rather
349than allowing large sets of models, which some participants argued
350had unfairly favored clustering approaches in previous CASPs.
351Despite this change of criteria in CASP10, ModFOLD4 was ranked
352among the top-performing methods in the quality assessment cate-
353gory. ModFOLD4 also provided a free service for accurate predic-
354tion of global and local QA of 3D protein models. The server had a
355comparable performance to clustering-based methods but retained
356the capability of making predictions for a single model at a
357time [34].
358

6.2 Latest Versions

of ModFOLD

359In 2015, the fifth version of ModFOLD was released. This version
360was integrated with the upgraded tertiary structure prediction
361IntFOLD3-TS pipeline which gave ModFOLD5 the ability to
362generate a greater number and variety of reference models
363[50]. In 2017, ModFOLD was upgraded to its sixth version with
364a new neural network-based quasi-single-model method that took
365as its input a sliding window of per-residue scores from six different
366pure-single and quasi-single scoring methods and a single quality
367score for each residue in the model [51]. ModFOLD6 was inde-
368pendently evaluated during the CASP12 experiment and it is freely
369available at https://www.reading.ac.uk/bioinf/ModFOLD/
370ModFOLD6_form.html (Fig. 2). During the past 2 years, Mod-
371FOLD had further improvements and was upgraded to the seventh
372and eighth versions, which were tested in CASP13 and CASP14,
373respectively. More details about the ModFOLD server interface
374and inputs and outputs can be found in Maghrabi and McGuffin
3752017 [51].

3767 EMA in Community-Wide Experiments

377EMA and a few of several other modeling techniques have been
378developed and utilized through the last decades in order to solve
379the protein sequence-structure gap dilemma. The methods and
380servers were included for evaluation as a category in two major
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381worldwide organizations that are specialized in the protein struc-
382ture prediction field. The first organization conducts independent
383blind testing with the Critical Assessment of Techniques for Protein
384Structure Prediction (CASP) [36] experiments, which are held
385every other year. The second organization is the continuously
386automatic model evaluation project called CAMEO [37]. Both
387organizations have highlighted the importance of the EMA devel-
388opment for the improvement of protein structure prediction and
389have helped to encourage progress in the field.
390The importance and far-reaching implications of having the
391ability to predict protein structures from their amino acid is man-
392ifested by the ongoing biennial experiment on “Critical Assessment
393of Structure Prediction” (CASP). The Critical Assessment of Tech-
394niques for Protein Structure Prediction or CASP is a global
395community-wide experiment that has started taking place every
396other year since 1994 [52]. Protein structure modelers in more
397than a hundred research centers around the world dedicate their
398late spring and summer to preparing their methods to be indepen-
399dently tested in this center. CASP is designed as a blind prediction

Fig. 2 ModFOLD6 server results for models submitted to CASP12 generated for target T0859 (PDB ID: 5jzr). (a)
An example of the graphical output from the server showing the main results page with a summary of the
results from each method (truncated here to fit page). Clicking on the thumbnail images in the main table
allows results to be visualized in more detail. (b) A histogram of the local or per-residue errors for the
top-ranked model, with the residue number on the x-axis and the predicted residue error (distance of the Cα
atom from the native structure in Å) on the y-axis, which may be downloaded. (c) Interactive views of models,
which can be manipulated in 3D using the JSmol/HTML5 framework and/or downloaded for local viewing.
(Adapted from Maghrabi and McGuffin [51])
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400experiment (Fig. 3). A set of protein sequences are selected by the
401assessors in order to test the performance of the methods in pre-
402dicting their protein structures which are already experimentally
403observed and hidden with the organizers, for an attempt to help
404advancing these protein prediction methods. In the first CASP, the
405experiment was quite basic consisting of just three parts: collecting
406protein targets (which will subsequently be solved experimentally),
407collecting tertiary structure predictions, and assessing and discuss-
408ing the results [52]. CASP experiment has since become popular,
409and its participants and prediction categories have been growing
410over the years. CASP takes the form of an international competi-
411tion, which can be thought of as the world championships for
412protein structure prediction. Fourteen CASP experiments have
413been performed during the last 25 years, with the last one com-
414pleted in late 2020. The competition has evolved over the years and
415is now carried out by dividing its experiments into slightly more
416complicated subcategories, including the following: tertiary struc-
417ture prediction; disorder prediction; contact prediction; model
418quality assessment or QA, which is also called estimates of model
419accuracy (EMA); binding site prediction; protein-protein interac-
420tions; oligomerization state; and protein model refinement
421[53]. Each category represents an important part of the structure
422prediction process that needs further improvements in terms of the
423predictive power of the underlying algorithms. An aim of CASP is
424to drive new developments, which will lead to higher levels of
425accuracy and consistency in producing models that are closer in
426quality to the experimentally derived protein structures.

Fig. 3 EMA ranking section in the CASP community web page. Results from CASP13 showing the top ranking
EMA based on stage 1 which consists of 20 models, and the scores were ranked against the observed scores
from GDT_TS. https://www.predictioncenter.org/
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427Another evaluation resource for EMA methods is the CAMEO
428project, where the methods are continuously automatically evalu-
429ated each week, with tables and plots produced that show if there
430are any significant improvements between competitors (Fig. 4).
431Every week, CAMEO publishes benchmarking results based on
432models collected during a 4-day prediction window by assessing
433an average of a hundred targets during a time frame of 1 week,
4341 month, 3 months, 6 months, and 1 year. The server benchmarks
435the most popular and top-ranked protein prediction methods as
436well as EMA methods separately.
437The benchmarking data is generated consistently for all parti-
438cipants at the same time, enabling them to benchmark and cross-
439validate the performance of their methods. CAMEO sends emails
440with submission statistics and low performance warnings weekly in
441order to facilitate server development and promote shorter release
442cycles. This server has become a compliment to many participants
443of CASP and helped them when preparing their methods for
444upcoming community experiments [54, 55].

4458 Recent Advances in EMA Methods

446Most recent breakthroughs have arisen with the onset of deep
447learning. New approaches built using artificial intelligence
448(AI) have been accelerating the structure prediction field by far. A

Fig. 4 CAMEO continuous benchmarking for EMA servers. A 6-month result of
the top EMA methods being benchmarked continuously in CAMEO servers.
https://www.cameo3d.org/
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449method called AlphaFold [56], developed by the DeepMind AI
450company, has shown significant progress on generating 3D models
451of proteins in the worldwide protein prediction competition, CASP.
452The method was placed first in rankings among the teams that
453entered in protein modeling competitions. The reason behind this
454success lies in the integration of the deep neural networks (DNNs)
455approach, which is a system of neural layers trained to accurately
456predict the distances between residues, and as a result, it generates
457highly accurate structures. Such a success has drawn the attention
458from all structural biologists to start studying this field in
459depth [56].
460Unlike standard neural networks (NNs), the multiple layers in
461the DNNs give it the ability to process more complicated problems
462[57]. By testing the visual pattern recognition example using
463DNNs, the neurons in the first layer could recognize edges, and
464then the neurons in the second layer would learn to recognize more
465shapes like triangles or rectangles which are built up from edges
466which already have been learnt in the first layer. The third layer
467could then recognize static more complex shapes, and the fourth
468learns animatic shapes, and so on. This reminds us of how children
469start to learn basic shapes around them when their brains that
470contain multiple layers of neurons give them a compelling advan-
471tage in starting to learn complex patterns. We can expect that
472having more hidden layers would make our networks more power-
473ful. However, changing a single layer to multiple-layered neural
474networks could lead to having more complex intermediate layers
475which can have multiple layers of abstraction [58].
476DNNs can compute more advanced problems with several
477techniques and architectures to be formulated; the multilayer per-
478ceptron (MLP) has been the chosen feedforward neural network
479class that has the ability to map a set of inputs which pass it through
480hidden layers and send the calculated data to an output unit
481[59]. MLP networks have been considered as a powerful technique
482in a large number of applications from different fields of research.
483The benefits of MLPs come from the appropriateness in dealing
484with most of the problems involving function approximation, pat-
485tern classification, process control, and time series forecasting
486[60]. MLPs have been used in many successful EMA methods
487(Table 1) and they have grown in complexity to accommodate the
488growth in input data.
489Recent studies have shown that up until CASP14, there has
490been a small but significant improvement in EMA methods. It was
491noted that many of the improved methods have used deep learning
492but in various ways. However, the indications for such an imple-
493mentation remain vague and are still under evaluation. The best
494way to use machine learning for EMA is still not functionally
495available, and there is plenty of space for developers to work on
496this area for improvements. We notice that on average the best
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497EMAmethods select models that are better than those provided by
498the best individual TBM- or FM-based server. However, still, fur-
499ther significant improvements could be achieved if there were
500possible ways to always select the best model for each target. Finally,
501we do notice systematic differences when using different model
502evaluation methods. Single-model methods perform relatively bet-
503ter when using local evaluation methods and appear better at
504ranking higher-quality models [61].
505Assessing the quality of protein structure prediction has been
506continuously improving over the last decades. Variant types of AU1

507methods were developed for different tasks in the estimates of
508model accuracy sector, and the most succeeding ones were the
509pure-single, quasi-single, and the clustering methods which have
510shown significant results in controlling the prediction quality in
511CASP and CAMEO. Recently, around 50 EMA methods partici-
512pated in CASP13 showing an increase in the number compared to
513the previous season. The recent concern which was focused on for
514EMA development was having more FM targets for which high-
515quality models were generated by the TS servers. Another concern
516was having higher consensus among high-quality models on aver-
517age than ever before [62]. There are also some challenges that need
518to be overcome such as improving the way EMA methods are
519trained and the integration of deep learning tools for having more
520accurate prediction checking.
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