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We consider a class of models describing an ensemble of identical interacting agents subject to multiplicative
noise. In the thermodynamic limit, these systems exhibit continuous and discontinuous phase transitions in a,
generally, nonequilibrium setting. We provide a systematic dimension reduction methodology for constructing
low-dimensional, reduced-order dynamics based on the cumulants of the probability distribution of the infinite
system. We show that the low-dimensional dynamics returns the correct diagnostic properties since it produces a
quantitatively accurate representation of the stationary phase diagram of the system that we compare with exact
analytical results and numerical simulations. Moreover, we prove that the reduced order dynamics yields also
the prognostic, i.e., time-dependent properties, as it provides the correct response of the system to external
perturbations. On the one hand, this validates the use of our complexity reduction methodology since it
retains information not only of the invariant measure of the system but also of the transition probabilities and
time-dependent correlation properties of the stochastic dynamics. On the other hand, the breakdown of linear
response properties is a key signature of the occurence of a phase transition. We show that the reduced response
operators capture the correct diverging resonant behavior by quantitatively assessing the singular nature of the
susceptibility of the system and the appearance of a pole for real values of frequencies. Hence, this methodology
can be interpreted as a low-dimensional, reduced order approach to the investigation and detection of critical
phenomena in high-dimensional interacting systems in settings where order parameters are not known.

DOI: 10.1103/PhysRevResearch.5.013078

I. INTRODUCTION

The investigation of dynamical phenomena in complex
networks constructed according to different topologies is an
extremely active research area [1–3]. Interacting agent based
models are commonly employed to model various phenomena
in the natural sciences, social sciences and engineering [4,5],
such as cooperation [6], synchronization [7], systemic risk
[8], and consensus formation [9]. Several algorithms for sam-
pling, optimization and the training of neural networks can be
interpreted as interacting particle systems [10–12]. In the ther-
modynamic limit, such models often exhibit phase transitions
as a result of the complex interplay between the interacting
dynamics and the noise. Clearly, singularities associated to
phase transitions, such as the divergence of correlation prop-
erties [6] and the breakdown of linear response properties
[13,14], can only be observed in the mean-field (thermody-
namic) limit. Consequently, their investigation involves the
study of a (nonlinear and nonlocal) mean-field Fokker-Planck
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equation or a brute force approach, i.e., extensive numeri-
cal simulations of very large ensemble of agents. Reduction
of complexity can be achieved by defining collective vari-
ables (reaction coordinates) able to accurately describe the
full dynamics in a low-dimensional space. Nonetheless, while
order parameters like magnetization can in many cases eas-
ily deduced for equilibrium systems using, e.g., symmetry
arguments, the definition of reaction coordinates for nonequi-
librium system is far more challenging [15–17].

The goal of this paper is to present a model reduction
approach for the study of such infinite systems based on
a systematic approximation of the full infinite-dimensional
dynamics in terms of a low number of ODEs. This method-
ology can be applied to any interacting systems model with
mean-field polynomial dynamics, with numerous applica-
tions including cooperation phenomena [6], synchronization
of nonlinear, possibly chaotic, oscillators [18,19] and emer-
gent phenomena in neural networks and life sciences [20,21].
The dimension reduction procedure we propose is based on
a suitable closure method of the infinite hierarchy of equa-
tions for the moments or, equivalently, cumulants of the
probability distribution of the infinite-dimensional system.
Such closure method results in a deterministic parametrization
of the full dynamics in terms of a low number of cumulants.
One could potentially improve on this by using the Mori-
Zwanzig formalism [22,23] to construct a stochastic, possibly
non-Markovian, parametrization [24–26]. From a data-driven
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perspective, one could rely on empirical model reduction [27]
techniques to obtain closures from partial observations of the
system. The resulting closure structure is given in terms of
multilayer stochastic systems whose relevance and robustness
has also been highlighted from an alternative, theory-informed
parametrization perspective [28]. As validation case studies,
we apply our dimension reduction methodology to investigate
the nonequilibrium continuous phase transition in a model
featuring noise-induced stabilization phenomena [29] and a
model featuring an equilibrium discontinuous transition [30].

II. THE CLASS OF MODELS

We consider a system of exchangeable weakly interacting
one-dimensional diffusions whose dynamics is governed by
the following Stratonovich SDE:

dxi =
[

Fα (xi ) − θ

N

N∑
j

U ′(xi − x j )

]
dt + σ (xi ) ◦ dWi (1)

with initial condition xi ∼ ρ̂(x) and i = 1, . . . , N . Each agent
undergoes an internal dynamics given by the vector field
Fα (x), depending on a set of parameters α, and is coupled with
all the other agents through a symmetric interaction poten-
tial U (x) = U (−x), with θ denoting the interaction strength.
Furthermore, dWi, i = 1, . . . , N , are independent Brownian
motions and σ (x) > 0 ∀x ∈ R is a multiplicative diffusion
coefficient. The main assumption in this paper is that F (x),
U (x) and the diffusion matrix �(x) = σ 2(x) all have a poly-
nomial functional form. We consider quadratic interactions,
U (x) = x2

2 , corresponding to cooperative interactions among
the agents that attempt to synchronise them towards their com-
mon center of mass x̄(t ) = 1

N

∑N
i xi(t ). We are interested in

the thermodynamic limit N → +∞ of Eq. (1). It is known that
the empirical measure ρN = 1

N

∑N
i δxi (t ) converges (weakly)

[31–33] to the one particle distribution ρ(x, t ) satisfying
the nonlinear, nonlocal Fokker-Planck (McKean-Vlasov) PDE
that, according to our setting, can be written as

∂ρ

∂t
= ∂

∂x

(
σ 2(x)

2
ρ

∂

∂x
( f〈x〉(x) + ln ρ)

)
, (2)

where ρ(x, 0) = ρ̂(x) and

f〈x〉(x) = 2
∫ x −F̂α (y) + θ (y − 〈x〉)

σ 2(y)
dy + ln σ 2(x). (3)

〈x〉 = ∫
R yρ(y, t )dy represents the first moment of the distri-

bution ρ(x, t ) and F̂α (x) = Fα (x) + 1
2σ (x)σ ′(x). Equation (2)

exhibits, at low temperatures, nonuniqueness of stationary
solutions, that correspond to phase transitions [30,34].

Stationary solutions of Eq. (2) can be written as a one
parameter family of distributions

ρ0(x; m) = e− fm (x)∫
R e− fm (x)dx

≡ e− fm (x)

Z (m)
(4)

where the parameter m satisfies the self-consistency equation

m = R(m) ≡
∫
R

xρ0(x; m)dx (5)

and Z (m) > 0 denotes the partition function. Equation (5)
plays a major role in determining the stationary properties of
the system. Solutions m	 of Eq. (5) correspond to stationary
measures ρ0(x; m	) with first moment 〈x〉 = m	, a suitable
order parameter of the system for this type of quadratic in-
teractions. Partial information on the stability of the invariant
measures can be obtained by the investigation of the slope of
the self-consistency equation R′(m	) = dR(m)

dm |m	 . In particular,
if R′(m	) > 1, the stationary solution ρ(x; m	) is unstable.

III. REDUCED ORDER DYNAMICS

In order to construct the reduced order dynamics, we mul-
tiply Eq. (2) by xn, n ∈ N, and integrate over R. Given our
assumptions on the drift and diffusion terms, this procedure
results in an infinite hierarchy of equations for the moments
Mn = 〈xn〉 of ρ, see Appendix B for more details. In order to
elucidate the procedure above, we will first consider model A
defined by Fα (x) = −V ′

α (x) where Vα (x) = x4

4 − α x2

2 is a dou-
ble well potential if α > 0 and the diffusion matrix is �(x) =
σ 2 + σ 2

mx2. This model was introduced in [29] to investi-
gate the effect of multiplicative noise on spatially extended
systems. We mention that, if σm = 0, model A becomes the
well-known Desai-Zwanzig model [35], a paradigmatic exam-
ple featuring an equilibrium continuous phase transition. The
state-dependent noise arises as the parameter α is not known
with infinite precision and is allowed to randomly fluctuate
in time, namely α → α + σmdξ where dξ is another uncor-
related Brownian motion. Model A shows a noise induced
stabilization phenomenon. When σm �= 0, the multiplicative
noise has a rectifying effect, pushing, for strong enough cou-
pling θ , the phase transition point to higher and higher σ , see
Appendix A and in particular Fig. 3 for more details. We apply
the procedure mentioned at the beginning of this section to
model A and obtain the following equations for the moments
Mn

dMn

dt
=n

(
α − θ + n

2
σ 2

m

)
Mn − nMn+2

+ n(n − 1)

2
σ 2Mn−2 + nθM1Mn−1

(6)

with M0 = 1, M−1 ≡ 0. Firstly, we observe that the global
coupling among the agents gives rise to an interaction term
between the order parameter 〈x〉 = M1 and all the other mo-
ments Mn, introducing a nonlinear term in the hierarchy for
the moments. Secondly, the nonlinear features of the dynam-
ics given by Vα (x) introduce a (linear) dependence of lower
moments on higher degree ones. The infinite hierarchy of
moment Eq. (6) is equivalent to Eq. (2) and no reduction
in the level of complexity of the mathematical description
has been accomplished yet. The necessity of finding appro-
priate closure schemes for the hierarchy arises. Were we to
truncate the system of Eq. (6) at a specific level n̄, a clo-
sure scheme for Mn̄+1, Mn̄+2 in terms of Mn with n < n̄ is
needed. Truncated moment problems and closure schemes are
not easily amenable to a mathematical investigation and are
known to introduce statistical assumptions whose validity is
difficult to justify, if not from an a posteriori perspective, see
Refs. [36–38].
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FIG. 1. Phase diagram, 〈x〉 = 〈x〉(σ ). The continuous blue line refers to the self-consistency equation, the red dots to the reduced order
dynamics (n̄ = 4) and the magenta dots (with errorbars) to the numerical integration. (a) Continuous transition given by model A. The inset at
the bottom shows the absolute error � between the reduced order dynamics and the self-consistency approach. The error � for n̄ = 4 is out
of scale and peaks at a value � ≈ 0.1. The vertical dashed line refers to the critical condition R′(0) = 1. Fixed parameters are (α, θ, σm ) =
(1, 4, 0.8). (b) Discontinuous phase transition of model B. The insets show the relative error �rel between the reduced order dynamics and
the self-consistency approach. The inset at the top (bottom) refers to the upper (lower) branch of the phase diagram. The vertical dashed line
is obtained numerically through the self-consistency approach and its value has been consistently checked to yield a slope R′(m) such that
R′(m) − 1 ≈ 10−4. Fixed parameters are (α, θ, μ) = (1, 4, 0.02).

Following [35,39,40], we implement a cumulant truncation
scheme [40–42]. We introduce the cumulants kn as

∞∑
n=1

kn(t )
λn

n!
= ln

∫
R

ρ(x, t )eλxdx. (7)

The truncation scheme consists of imposing the con-
dition kn̄+1 = kn̄+2 = 0. This procedure provides a clo-
sure relations for M̄n̄+1 = M̄n̄+1(M1, . . . , Mn̄) and M̄n̄+2 =
M̄n̄+2(M1, . . . , Mn̄). Alternatively, one can obtain from (7) and
(2) an infinite hierarchy of equations for the cumulants

dkn

dt
= Gn(k1, . . . , kn, kn+1, kn+2), (8)

where the explicit expression of the nonlinear function Gn(·)
is written Appendix B. Equation (8) indicates that the cu-
mulant truncation scheme corresponds to a parametrization
of the dynamics given by Eq. (1), in the limit N → +∞, in
terms of a finite number n̄ of cumulants. It is well known
that such a scheme is inconsistent, since a function with a
finite cumulant expansion cannot be positive if the order of
the highest cumulant is larger than two [43]. Heuristically, a
parametrization in terms of cumulants is expected to perform
better than parametrizations in terms of (central) moments
based on the observation that a Gaussian distribution has
vanishing cumulants kn = 0 for n > 2, while all (central)
moments are nonzero. For non-Gaussian distributions, one
expects that neglected higher-order cumulants will be smaller
than the corresponding (central) moments. Moreover, the rel-
evance of cumulants in the description of statistical properties
of complex systems, especially in settings with athermal
noise, has recently been highlighted, see Refs. [44,45] and
references therein. We refer the reader to Appendix C for the

comparison between different parametrizations and the val-
idation of the cumulant truncation scheme for the systems
under investigation. For model A, Eq. (5) predicts that the
stable solution 〈x〉 = 0 bifurcates when R′(0) = 1 through
a continuous phase transition in two symmetric, competing
states with opposite order parameter. Panel (a) of Fig. 1
shows the continuous phase diagram for the state with posi-
tive order parameter, obtained with the exact self-consistency
equation and the reduced order dynamics, see Eq. (8). As
soon as n̄ = 4 cumulants (main panel) are introduced, the
reduced dynamics provides a very good approximation of
the phase diagram. The critical value of the parameter is
underestimated by the reduced order dynamics, with such
approximation getting progressively better as more cumulants
are considered. The accuracy of the reduced dynamics has
been quantitatively assessed in terms of the absolute error
� (shown in the inset) with respect to the self-consistency
approach. The reduced dynamics has also been compared to
numerical simulations of an ensemble of N = 12 000 agents
described by Eq. (1). We have used the Milstein scheme
[46], which has strong order of convergence 1, with time step
�t = 0.01 and estimated the order parameter as the time av-
erage, at stationarity, of the center of mass x̄(t ). Moreover, the
reduced order dynamics has been initialised with a Gaussian
initial condition, such that (k1, k2) = (0.1, 0.01) and all oth-
ers cumulants set to zero. Very good agreement is observed.
Close to the phase transition, finite size effects arise in the
numerical simulations. Noise-induced transitions among the
two symmetric solutions become a relevant feature and one
should consider the rectified order parameter (shown in the
figure), obtained as the time average of x̄(t ) conditioned on the
fact that the system is in the basin of attraction of the positive
solution. We have also probed the validity of the cumulant
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FIG. 2. Green function G(t ) (a) and susceptibility χ (ω) (b) for model A. The blue (black) lines refer to a noncritical setting 5% below
(above) the transition point. Red lines refer to critical settings. Fixed parameters are as in (a) of Fig. 1. The red color code and the arrows
correspond to increasing values of n̄ = 4, 6, 8, 10, 14, 18, 22. In (b), black and blue lines have been multiplied by a scaling factor for graphical
purposes.

based parametrization by investigating discontinuous phase
transitions. We introduce model B, characterised by a tilted
potential Vα,μ = Vα (x) + μx and additive noise �(x) = σ 2.
Stationary properties of the reduced dynamics, with Gaussian
initial condition (k1, k2) = (1, 0.01), are in very good agree-
ment with the other two approaches, see Panel (b). The insets
show the relative error �rel between the reduced dynamics and
the self-consistency equation. The top one, referring to the
top branch of the phase diagram, shows that in the very close
proximity, represented as a shaded area, of the transition point,
�rel jumps to higher values, due to the fact that the reduced
dynamics underestimates the critical value of the parameter
and approaches it from below as n̄ increases. The bottom inset
shows that �rel for the bottom branch of the phase diagram is
instead a smooth function that is not affected by the transition.
This confirms that the reduced dynamics is able to track, as
σ is parametrically changed, the disappearing attractor until
a transition occurs to the other stable, smoothly changing,
attractor. Noise-induced transitions are observed close to the
phase transition in the finite system. Due to the asymmetry
between the two competing states, the metastable lifetime of
the state with 〈x〉 > 0 decreases as the transition is approached
and the system, after a short time, is driven to the other state
of much longer lifetime.

The above results confirm that the reduced order dynamics
correctly retains information of the exact invariant measure
of the system. Below, we show that the approximate dynam-
ics also captures time-dependent properties, and, specifically,
correlations, by investigating, in the spirit of the fluctua-
tions dissipation theorem [47,48], to time-modulated external
perturbations. We report linear response properties of the re-
duced dynamics for model A (see Appendix A for response
properties of model B). We perturb a stable stationary state
with a homogeneous perturbation in the drift term F (x) →
F (x) + εT (t ), where ε is small. Such procedure results in
a one-cumulant perturbation k(0)

1 → k(0)
1 + εT (t ) for Eq. (8),

where k(0)
1 is the unperturbed order parameter. Following [14],

we choose as temporal modulation for the forcing a Dirac’s
δ: T (t ) = δ(t ), which corresponds to a broad band forcing in
frequency space. We then observe the Green function G(t ),
associated to the order parameter, defined by k1(t ) = k(0)

1 +
ε
∫ ∞

0 G(t − τ )T (τ )dτ . Convergence to the linear regime has
been assessed evaluating the response for different values
of ε. Panel (a) of Fig. 2 shows that, at the transition point
(red lines), the Green function has an exponential decay (see
inset) with an associated timescale that is order of magnitudes
greater than what is observed in noncritical settings (blue
and black lines). Moreover, such timescale is an increasing
function of the level of truncation n̄ of the reduced dynamics,
whereas no dependence on n̄ is observed for the noncritical
Green functions—see panel (a) of Fig. 2. The critical behavior
is linked to the breakdown of linear response theory at the
phase transition point, in the thermodynamic limit of Eq. (1)
due to the agent-to-agent interactions, thus being associated
with endogenous dynamical processes [13]. As the number
of agents N is increased, one observes an emerging singular
behavior in the susceptibility χ (ω), defined as the Fourier
transform of G(t ), signalled by a development of a pole ω0

on the real axis of the frequencies [14]. The infinite hierarchy
(7) corresponds to the thermodynamic limit of the ensemble
of agents and one expects a diverging response in critical
settings. However, we observe that the truncation scheme
introduces a mollifying effect of the singular behavior of the
reduced response operators. The resonance of such operators
can be investigated through the susceptibility of the reduced
dynamics that can be written as χ (ω) = κ

ω−ω0+iγ (n̄) + r(ω)
where ω0 = 0 and r(ω) is an analytic function in the upper
complex ω plane. As the number of reaction coordinates in-
creases, n̄ → ∞, the regularising effect vanishes, γ (n̄) → 0,
and the susceptibility develops a singular behavior given by
limn̄→∞ χ (ω) = −iπκδ(ω − ω0) + κP ( 1

ω−ω0
) + r(ω). Panel

(b) confirms the appearance of an emerging pole with an
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imaginary residue κ = i|κ|. The real part χRE (main panel) of
the susceptibility clearly shows the resonant δ-like behavior
for ω = ω0. Alternatively, the top inset shows that the primi-
tive function of χRE close to the pole (c = −0.01) converges
accordingly to a Heaviside function. We observe that n̄ = 4
does not show a resonant behavior, even though it is associated
with a longer timescale. The imaginary part χIM(ω) of the
susceptibility (bottom inset), behaving like a Cauchy principal
value distribution, yields a quantitative estimate |κ| ≈ 1 for
the residue of the pole. It is possible to obtain a formula
for the amplitude of the residue as |κ| = 1

θτx,A
, where (see

Appendix D)

τx,A =
∫ +∞

0

〈
x(t ) arctan

(
σm
σ

x(0)
)〉

0dt〈
x arctan

(
σm
σ

x
)〉

0

. (9)

Numerical simulations on an ensemble of N = 16 000 agents
yield a value of τx,A ≈ 0.25 and, since θ = 4, |κ| ≈ 0.99,
validating thus our results. We remark that the existence of
the pole ω0 at the phase transition, as opposed to its residue κ ,
depends neither on the forcing T (t ) nor on the choice of the
observable and can be related to spectral properties of suit-
ably defined evolution operators [14]. This crucial property
validates the use of our cumulant based reduced dynamics
to settings where the order parameter is not known or cannot
easily be written in terms of the cumulants.

IV. CONCLUSIONS

In this paper, we considered a class of models describ-
ing an ensemble of N identical interacting agents subject
to multiplicative noise that exhibits phase transitions in the
thermodynamic limit. We derived a reduced low-dimensional
system for the moments of the probability distribution func-
tion of the mean-field dynamics. We showed that such
approximate dynamics provides an accurate representation of
the stationary phase diagram, even for a very low number
(e.g., 4) of moments. This indicates that the cumulants act
as effective reaction coordinates, which are able to capture
the essential properties of the system with moderate loss
of information due to the cumulant truncation. Addition-
ally, the linear response properties of the projected dynamics
agrees with that of the full system, and the breakdown of the
corresponding linear response operators can be used to char-
acterise the phase transition occurring in the system. Hence,
our methodology seems useful for performing linear stability
analysis for a large class of interacting multiagent systems,
and for predicting their response to forcings of general na-
ture. It is worth investigating how our dimension-reduction
methodology compares with what one would obtain by ap-
plying variational autoencoders [49] to construct a surrogate,
low-dimensional representation of the system. On top of the
detection of critical phenomena for high-dimensional sys-
tems, a further application of our methodology relates to the
issue of parameter estimation for interacting systems. Current
parameter estimation techniques rely on suitable fitting pro-
cedures of the observational data to the infinite-dimensional
dynamics [50], whereas one could envision simpler settings
where the reduced order dynamics is taken as the reference
point. We expect that this complex reduction methodology

will not prove to be as effective when the system does not
exhibit a clear separation of time or phase space scales, see
Ref. [51] and references therein for a review of systems that
can be “effectively reduced” either from a theoretical or data-
driven perspective.
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APPENDIX A: THE MODELS

In this section, we provide further details on the models we
have studied in the paper. As specified in the main text, we
investigate multi agent systems whose dynamics is given by
the following equations:

dxi =
[

Fα (xi ) − θ

N

N∑
j

U ′(xi − x j )

]
dt + σ (xi )dWi, (A1)

where i = 1, . . . , N . The examples we have provided refer to
a quadratic interaction potential U (x) = x2

2 . This results in

dxi = [Fα (xi ) − θ (xi − x̄)]dt + σ (xi )dWi, (A2)

where x̄(t ) = 1
N

∑N
i xi(t ) is the common center of mass of the

system. Given that the interaction potential is convex, phase
transitions of the system arise from nonconvexity features of
the local vector field F (x).

Model A was introduced in Ref. [29] to study the effect of
multiplicative noise on spatially extended systems. We con-
sider the Desai-Zwanzig model [6,35,52] settings where the
local dynamics F (x) = −V ′

α (x) is given by a double well po-
tential Vα (x) = x4

4 − α x2

2 and the noise is additive σ (x) = σ .
The equations for motions are given by

dxi = [
αxi − x3

i − θ (xi − x̄)
]
dt + σdWi, (A3)

where the Ito convention is now used. The above equations de-
scribe a system at equilibrium. In the N → ∞ limit, it is
useful to introduce the free energy functional F [ρ] such that

F [ρ] =
∫

dxVα (x)ρ(x) + θ

2

∫∫
dxdyρ(x)U (x − y)ρ(y)

+ σ 2

2

∫
dxρ(x) ln ρ(x)

:= V[ρ] + θW[ρ, ρ] − σ 2

2
S[ρ]. (A4)

The above equation describes energy balance in the system:
V[ρ] represents the internal energy associated to the local
potential Vα (x), W[ρ, ρ] is the energy given by the inter-
action among the agents and, lastly, S[ρ] is an entropic
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contribution. As explained in the main text, the empirical
measure ρN = 1

N

∑N
i δxi (t ) converges in the N → ∞ limit to a

one agent distribution ρ(x, t ) satisfying a nonlinear and non-
local Fokker-Planck equation. The corresponding nonlinear
Fokker-Planck equation of Eq. (A3) can be written in terms
of the free energy as

∂tρ = ∂

∂x

(
ρ

∂

∂x

δF

δρ

)
. (A5)

Remarkably, this equation belongs to a rich class of dissipative
PDEs, including the heat equation, the porous medium equa-
tion and the diffusion-aggregation equation, that are gradient
flows with respect to the Wasserstein metric on the space of
probability measure with finite second moment, see Ref. [53]
and references therein. The free energy F [ρ] is a Lyapunov
function for the dynamics and stationary solutions of the
McKean-Vlasov equation are critical points of the free energy
functional. In fact, the time derivative of F [ρ] along solutions
of Eq. (A5) is [53,54]

dF [ρ]

dt
= −

∫
dyρ(y)

(
∂

∂y

δF

δρ

)2

� 0 (A6)

If an unique minimiser of the free energy exists, the dynamics
converge exponentially fast, in relative entropy, to the unique
stationary state and the rate of convergence to equilibrium
can be established [55]. However, the minimiser is not nec-
essarily unique and multiple stationary solutions can coexist.
Furthermore, convexity properties of the free energy func-
tional provide a one-to-one characterization of the stability
properties of the stationary solutions. The model we have
investigated in the main text arises from the assumption that
the parameter α is not known exactly but rather erratically
fluctuates in time, that is α → α + σmdξ where dξ is another,
uncorrelated, Brownian motion. This results in a set of equa-
tions for the N interacting agents that reads

dxi = [−V ′(xi ) − θ (xi − x̄)] dt + σmxi ◦ dξ + σdWi (A7)

where the symbol ◦ stands for a generic (not necessarily Ito)
prescription for the equations. It is convenient to write the
above set of equations in the equivalent, in law, form

dxi = [−V ′(xi ) − θ (xi − x̄)] dt + σ (xi ) ◦ν dWi, (A8)

where σ (x) = √
σ 2 + σ 2

mx2 is a state-dependent stochastic
term. It is well known that the presence of multiplicative
noise introduce a modeling issue, since it is not clear, a
priori, what prescription should be given to the stochastic
integral defining the stochastic equation [56–58]; see also
discussion in Ref. [48]. We interpret Eq. (A8) as a generic
one parameter family of stochastic integrals parametrised by
a parameter ν ∈ [0, 1]. Different values of ν correspond to
different prescription of the SDEs. In particular, α = 0, 1/2, 1
correspond to the Ito, Stratonovich, and Klimontovich pre-
scription, respectively. Different conventions of the stochastic
integral lead to different stability properties of the SDE. Re-
markably, the convention for a given system might also vary
depending on the operational conditions [59]. In the main text
of the paper, we always choose ν = 1

2 . It is known that a
generic SDE can be transformed into an Ito-SDE by suitably
modifying the drift coefficient as Fα (x) → Fα,ν (x) = Fα (x) +

νσ (x)σ ′(x) [56]. Since it is more convenient to work with the
Ito prescription, we apply this transformation to Eq. (A8) and
obtain

dxi = [−Vν (xi ) − θ (xi − x̄)]dt + σ (xi )dWi, (A9)

where Vα,ν (x) = Vα (x) + νσ 2
m

x2

2 = x4

4 − (α + νσ 2
m) x2

2 .
The introduction of a fluctuating parameter in the drift term

corresponds to applying an external, state-dependent noise
that breaks the detailed balance condition, thus driving the
N − particle system to an out of equilibrium state. Equa-
tion (3) in the main text yields in this setting

f〈x〉(x) = −
α − θ + (ν − 1)σ 2

m + σ 2

σ 2
m

σ 2
m

ln

(
1 +

(
σm

σ
x

)2)

+ x2

σ 2
m

− 2
θ〈x〉
σσm

arctan

(
σm

σ
x

)
.

(A10)

The analysis of the self-consistency Eq. (5) (main text)
provides insightful information on the stationary phase dia-
gram of the model. In particular, symmetries of the problem
force the system to always have the trivial solution m	 =
0, corresponding to disordered state ρ0(x; 0) of vanishing
order parameter. This can be easily shown by observing
that R(−m) = −R(m) since stationary distributions satisfy
ρ0(x; m) = ρ0(−x; −m), see Eqs. (3) and (4) in the main text.
Moreover, if m	 is a solution of the self-consistency equation,
so is −m	. We thus expect that two symmetric branches of
stable solutions will arise as soon as the disordered state loses
stability. The disordered state becomes unstable as soon as
R′(0) = 1, which reads

θ

σσm

〈
x arctan

(
σm

σ
x

)〉
0

= 1

2
, (A11)

where the expectation value 〈·〉0 is taken with respect to the
stationary distribution ρ0(x; 0). Since the order parameter van-
ishes at the transition point, the above equation yields, fixed
all the other parameters, the critical value σc = σc(α, θ, σm)
of the strength of the additive noise. Figure 3 shows the
multiplicative noise induced stabilization phenomenon we
mentioned in the main text. Indeed, the multiplicative noise
has a rectifying effect, pushing, for strong enough coupling θ ,
the transition point to higher and higher values of σ . More-
over, the amplitude of the order parameter gets magnified,
since it exceeds the maximum value

√
α, the minimum point

of the potential Vα (x), that is attained in the low noise regime
(σ → 0) when σm = 0.

Model B features a discontinuous phase transition and
is obtained by breaking the symmetry x → −x through a
tilted potential as Vα,k = Vα + μx, with μ > 0. Moreover, the
system is subject to thermal noise σ (x) = σ . The pitchfork
bifurcation of invariant solutions one obtains for μ = 0 dis-
appears. In particular, there exists a smooth, stable branch of
negative order parameter 〈x〉 for all values of the strength of
the noise σ . However, decreasing σ , a pair of solutions appear
through a saddle node bifurcation, yielding another branch of
stable 〈x〉 > 0, with the other one being unstable, see Fig. 1 in
the main text. The saddle node bifurcation is characterised by
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FIG. 3. Order parameter 〈x〉 as a function of (σ, θ ) obtained via
the self-consistency equation analysis. The red dashed line and the
continuous red line represent the exact transition curve for σm = 0
and σm �= 0, see Eq. (A11). The other parameters of the model are
fixed and equal to α = 1, σm = 1.5, ν = 1/2.

the condition R′(mc) = 1 that reads

θ

σ 2
〈(x − mc)2〉0 = 1

2
, (A12)

where mc is the value of the positive order parameter at the
transition point and the expectation value is taken with re-
spect to the stationary distribution ρ0(x; mc). Since mc is not
known a priori and has to be evaluated numerically by solving
the self-consistency equation, the above equation does not
directly provide the value of the critical noise σc at which the
saddle node bifurcation takes place. Nevertheless, it provides
a criterion to assess how close the critical point evaluated
numerically is to the exact one by evaluating the slope R′(mc)
and comparing it to the exact value 1.

Model B’ interesting feature is represented by the discon-
tinuous phase transition and the jump from the top branch to
the bottom one as the parameter σ is changed. Such analysis
has been performed in the main text. Nevertheless one could
study the dynamical response of the system as the transition
point is approached from below on the top branch. Since it is
associated with the loss of stability of the invariant measure,
we expect similar results to hold for this model as well. We
refer to the main text and to Appendix D for the explanation
(and for the notations) of the linear response investigation
we have performed. Figure 4 shows that the Green function
associated to the order parameter 〈x〉 and a time delta δ(t )
homogeneous perturbation develops a timescale, for settings
near the phase transition, that is orders of magnitude bigger
than the timescale associated to noncritical settings. We re-
mark that such behavior does not depend on the specific form
of the forcing [13]. The figure refers to a level of truncation
of n̄ = 22. One could also perform an analysis by looking
at different values of n̄. We expect to obtain similar results
to what is reported in the main text. However, such analysis
is more complicated here by the discontinuous feature of
the transition. Firstly, the reduced dynamics transition point

FIG. 4. Green function G(t ) as a function of time for model B. δ

represents the relative distance from the phase transition point.

depends on n̄ and the analysis becomes increasingly hard very
close to the transition point, see shaded area in panel (b) of
Fig. 1 in the main text. Secondly, Fig. 4, clearly shows that the
timescale associated to the Green function is highly sensitive
to small deviations, such as δ = 0.1%, from the transition
point.

APPENDIX B: HIERARCHY OF EQUATIONS
FOR THE MOMENTS AND CUMULANTS

In this section we provide a few more details on how to
obtain the dynamical evolution of the moments and cumulants
of the distribution of the infinite system ρ(x, t ). As explained
in the main text, ρ(x, t ) satisfies a nonlinear and nonlocal
Fokker-Planck equation that we write here in an alternative
way as

∂ρ

∂t
= ∂

∂x
((F̂α (x) + θ (x − 〈x〉))ρ) + 1

2

∂2

∂x2
(σ 2(x)ρ), (B1)

where F̂α = Fα + 1
2σ (x)σ ′(x). If we multiply (B1) by xn and

integrate on the phase space R, we obtain after performing
some integration by parts

dMn

dt
= n(〈F̂αxn−1〉 − θ〈(x − 〈x〉)xn−1〉)

+ n(n − 1)

2
〈xn−2σ 2(x)〉

= n(〈F̂αxn−1〉 − θ (Mn − M1Mn−1))

+ n(n − 1)

2
〈xn−2σ 2(x)〉,

(B2)

where 〈·〉 represents the expectation value with respect to
the probability distribution ρ and we have introduced the
moments Mn = 〈xn〉. We observe that the main assumption
in this paper, namely the fact that we assume that the local
drift Fα and the diffusion coefficient σ 2(x) have a polynomial
functional form, implies that both 〈F̂αxn−1〉 and 〈xn−2σ 2(x)〉
can be written in a closed form in terms of the moments Mn.
Indeed, let us explicitly carry out these calculations for model
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A. Similar results hold for model B. We recall that model A is
defined by a diffusion coefficient is σ 2(x) = σ 2 + σ 2

mx2 and a
local drift Fα (x) = αx − x3, hence

〈xn−2σ 2〉 = 〈
xn−2

(
σ 2 + σ 2

mx2
)〉

= σ 2Mn−2 + σ 2
mMn,

〈F̂αxn−1〉 = 〈(
Fα + 1

2σ 2x
)
xn−1

〉
= αMn − Mn+2 + 1

2σ 2
mMn.

(B3)

From (B2) one then obtains an infinite hierarchy of equa-
tions for the moments as

dMn

dt
=n

(
α − θ + n

σ 2
m

2

)
Mn − Mn+2

+ n(n − 1)

2
σ 2Mn−2 + θM1Mn−1.

(B4)

The above calculations have been obtained for a quadratic
interaction potential U (x) = x2

2 , but we remark that infinite
hierarchies of equations for the moments such as (B4) can be
obtained for any polynomial interaction potential U (x). If the
functions describing the dynamics are generic, as opposed to
polynomials, it is not possible to find close equations for the
moments. However, one could potentially recur to a Taylor
expansion to approximate, in a controlled way, these functions
as polynomials and then construct the corresponding approx-
imate hierarchy of equations for the moments. Of course, this
would introduce another source of approximation on top of
the one deriving from the truncation scheme of the hierarchy.

Following Ref. [35], one can alternatively obtain an infinite
hierarchy of equations for the cumulants of the probability
distribution ρ. We remark that the cumulants kn are defined
through the cumulant generating function G(λ, t ) = ln g(λ, t )
as

∞∑
n=1

kn(t )
λn

n!
= ln

∫
ρ(x, t )eλxdx ≡ ln g(λ, t ). (B5)

Equation (B1) yields an evolution equation for the cumulant
generating function

dG

dt
=1

g

dg

dt
= 1

g

∫
∂ρ

∂t
eλxdx

= − λ

g

∫
dx(x3 − (α − θ + νσ 2x2) − θ〈x〉)ρeλx

+ λ2

2g

∫
dx

(
σ 2 + σ 2

mx2
)
ρeλx.

(B6)

By separating the different powers of the variable x we
can write the above equation in terms of G, its derivative
G′(λ, t ) = ∂G

∂λ
and higher order derivatives as

dG

dt
=λθ〈x〉 + λ2σ 2

2
+ λ(α − θ + νσ 2)G′

+ λ2σ 2
m

2
(G′2 + G′′)

− λ(G′G′2 + 3G′G′′ + G′′′).

(B7)

Using the definition of the cumulants given in Eq. (B5) and
comparing same powers of λ one finally obtains the equa-

tions for the cumulants

1

n

dkn

dt
=θk1δ1n + σ 2

2
δn2

+
(

α − θ + σ 2
m

(
ν + n − 1

2

))
kn − kn+2

+ σ 2
m(1 − δn1)

(n − 1)!

2

n−1∑
i=1

kikn−i

(i − 1)!(n − i − 1)!

− 3(n − 1)!
n∑

i=1

kikn−i+2

(i − 1)!(n − i)!
− (n − 1)!

n∑
i=1

×
n−i+1∑

j=1

kik jkn+2−i− j

(i − 1)!( j − 1)!(n − i − j + 1)!
.

(B8)

APPENDIX C: TRUNCATION SCHEMES

This section is divided in two parts. In the first, we provide
the algebra to perform a cumulant truncation scheme at any
generic order n for the hierarchy of equations for the moments
(B4). Secondly, we compare the performances of multiple
truncation schemes and assess that the cumulant truncation
scheme correspond to the best parametrization choice for the
thermodynamic limit of the interacting agents system.

1. Cumulant truncation scheme

The relationship between cumulants and moments of a
probability distribution is

kn =
n∑

l=1

(−1)l−1(l − 1)!Bnl (M1, . . . , Mn−l+1), (C1)

where Bnl (M1, . . . , Mn−l+1) are partial (incomplete) Bell
polynomials. In particular, these polynomials are given by

Bnl (M1, . . . , Mn−l+1) =
∑ n!

j1! j2! . . . jn−l+1!

(
M1

1!

) j1

×
(

M2

2!

) j2

. . .

(
Mn−l+1

(n − l + 1)!

) j1

,

(C2)

where the sum is taken over all the sequences j1 j2 . . . jn−l+1 of
non-negative integers such that the following two conditions
hold:

j1 + j2 + . . . jn−l+1 = l,

j1 + 2 j2 + · · · + (n − l + 1) jn−l+1 = n.

Moreover, we will make extensive use of the following two
properties of the Bell polynomials:

Bn1(M1, . . . , Mn) = Mn, (C3)

Bn2(M1, . . . , Mn−1) = 1

2

n−1∑
k=1

(
n

k

)
MkMn−k . (C4)
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FIG. 5. (a) Phase diagram for model A. The continuous black line corresponds to the phase diagram as obtained from the self-consistency
equation, see main text. The red dots correspond to the CT scheme of order n̄ = 4. The continuous lines with markers correspond instead to a
MT schemes of increasing order. The bottom left inset shows the absolute error � between the self-consistency equation and the CT scheme.
(b) The top (bottom) panel shows the difference in magnitude between moments (central moments) and cumulants for increasing order of
truncation. Moments, central moments, and cumulants have been obtained from the known expression of the invariant distribution ρ0(x; m),
where m has been evaluated through the self-consistency equation, see main text. Here the parameters are (α, θ, σm, ν ) = (1, 4, 0.2, 0.5).
Moreover, in (b), σ ≈ 1.

The closure approximation M̄n̄+1 can be easily found by sep-
arating the term l = 1 from Eqs. (C1) and using (C3),

kn = Mn +
n∑

l=2

(−1)l−1(l − 1)!Bnl (M1, . . . , Mn−l+1). (C5)

In fact, evaluating the above equation for n = n̄ + 1 and im-
posing the condition kn̄+1 = 0 results in

M̄n̄+1 = −
n̄+1∑
l=2

(−1)l−1(l − 1)!Bn̄+1,l (M1, . . . , Mn̄+2−l ).

(C6)
The evaluation of M̄n̄+2 requires more care since it involves
M̄n̄+1 as well. Let us first observe that the cumulant kn̄+2 can
be written as, see Eq. (C1),

kn̄+2 =Mn̄+2 − Bn̄+2,2(M1, . . . , Mn̄+1)

+
n∑

l=1

(−1)l−1(l − 1)!Bn̄+2,l (M1, . . . , Mn̄+3−l ). (C7)

Using Eq. (C4), we can write

Bn̄+2,2(M1, . . . , Mn̄+1) =(n̄ + 2)Mn̄+1M1

+
n̄∑

k=2

(
n̄ + 2

k

)
MkMn̄+2−k, (C8)

where we have separated the term k = 1 and k = n̄ + 1 from
the total sum.

Finally, by imposing the condition kn̄+2 = 0 and consis-
tently estimating Mn̄+1 as M̄n̄+1 we obtain the approximated

value for Mn̄+2 as

M̄n̄+2 =(n̄ + 2)M̄n̄+1M1 + 1

2

n̄∑
k=2

(
n̄ + 2

k

)
MkMn̄+2−k

−
n̄+2∑
l=3

(−1)(l−1)(l − 1)!Bn̄+2,l (M1, . . . , Mn̄+3−l ).

(C9)

In conclusion, the cumulant truncation scheme consists in the
finite set of Eq. (6) with n = 1, . . . , n̄ along with the boundary
conditions M0 = 1 and Mn̄+1 = M̄n̄+1, Mn̄+2 = M̄n̄+2 as given
by Eqs. (C6) and (C9), respectively.

2. Comparison between different truncation schemes

The infinite hierarchy of equation for the moments (B4)
or cumulants (B8) are equivalent to the McKean Vlasov
equation (B1) describing the thermodynamic limit of the
interacting agents system. For obvious practical reasons, it
is necessary to find appropriate truncation schemes to the
hierarchy resulting in a finite, preferably small, number of
ordinary differential equations for the moments or cumu-
lants. In particular, common truncation schemes include a
moment truncation scheme (MT), a central moment trunca-
tion scheme (cMT) and a cumulant truncation scheme (CT).
These schemes correspond to imposing ad hoc boundary con-
ditions to the hierarchy of moments or cumulants. Following
Refs. [35,40], we have implemented in the main text the CT
scheme and proved that the cumulants act as effective reac-
tion coordinates for the system. The low-dimensional reduced
order dynamics for a small number of cumulants, resulting
from the CT scheme, is able to capture both stationary and
time-dependent properties of the thermodynamic limit of the
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interacting agents system. We recall that the CT scheme of or-
der n̄ is equivalent to imposing the condition kn̄+1 = kn̄+2 = 0
in Eq. (B8). This is equivalent, as explained in the previous
section, to imposing the boundary conditions (C6) and (C9) to
the hierarchy of equations for the moments (B4). Instead, the
MT scheme at level n̄ is obtained by imposing the condition
Mn̄+1 = Mn̄+2 = 0 for Eq. (B4). Similarly, when the above
vanishing condition is applied to the central moments one
obtains the cMT scheme. Figure 5 provides a quantitative
comparison between the three approaches and clarifies why
the CT is preferable in our settings. Panel (a) shows the phase
diagram of the system. The black solid line derives from solv-
ing numerically the self-consistency equation and provides a
reference point for the approximate results stemming from the
reduced dynamics obtained from the CT (red dots) and the MT
(lines with markers) schemes. It is clear that a parametrization
in terms of cumulants provides a better approximation, fixed
the order n̄, of the dynamics of the system than a parametriza-
tion in terms of moments. As shown in the main text too, a
parametrization in terms of as low as n̄ = 4 cumulants yields
a good approximation of the stationary dynamics, see also the
bottom left inset showing the absolute error � between the CT
and the self-consistency equation. In particular, as explained
in the main text, near the phase transition point one needs to
include a higher number of reaction coordinates to achieve a
better performance. On the contrary, the MT scheme yields
a reduced order dynamics that does not capture the stationary
properties of the system in most of the range of values spanned
by the strength of the noise σ .

In order to investigate in a quantitative way the difference
between the three truncation schemes we introduce the met-
rics δ1 = |Mn| − |kn| and δ2 = |M ′

n| − |kn|, where we have
denoted with M ′

n the central moment of order n. These metrics
provide a measure, at each order of truncation n, of the differ-
ence of the magnitudes of the moments and central moments
with respect to the corresponding cumulant. Panel (b) shows
that δ1 and δ2 are positive meaning that the cumulants kn are,
in magnitude, always smaller than the corresponding (central)
moments, validating a posteriori our choice of using a CT
scheme.

APPENDIX D: LINEAR RESPONSE THEORY FOR
MCKEAN-VLASOV EQUATION: SINGULARITIES

OF THE SUSCEPTIBILITY

In this section we provide more details about the linear
response properties of model A. The ultimate goal of this
section is to prove the formula for the residue of the singular
part of the susceptibility χ (ω) at the phase transition.

The invariant measures ρ0(x) of the McKean-Vlasov equa-
tion, see Eq. (2) in the main text, satisfy the eigenvalue
problem L〈x〉0ρ0(x) = 0, where the linear differential operator
L〈x〉0 is defined by

L〈x〉0ψ (x) = ∂

∂x

(
σ 2(x)

2
ψ

∂

∂x
( f〈x〉0 (x) + ln ψ )

)
, (D1)

where ψ (x) is a smooth function and f〈x〉0 (x) is defined in
Eq. (3) in the main text. We now perturb the stationary
state by applying a perturbation to the drift Fα (x) → Fα (x) +
εX (x)T (t ), where ε � 1. We can observe the effect of the

perturbation in terms of the measure of the system as ρ(x, t ) =
ρ0(x) + ερ1(x, t ) + . . . Alternatively, we can investigate the
time-dependent properties of any observable of the system
after the perturbation. In the following, we will observe the
response of the order parameter 〈x〉 and write 〈x〉 = 〈x〉0 +
ε〈x〉1(t ) where 〈·〉1 represents the expectation value with re-
spect to the measure ρ1(x, t ). We define the Fourier transform
of any function f (t ) as f (ω) = ∫

f (t )eiωt dt . The response of
the order parameter in frequency space is given by [13,14]

〈x〉1(ω) = χ (ω)T (ω), (D2)

where the susceptibility χ (ω) is written as

χ (ω) = �(ω)

1 − θ�(ω)
. (D3)

The microscopic susceptibility �(ω) is related to microscopic
correlation properties of the system in the unperturbed state
described by ρ0. In particular, �(ω) is the Fourier transform
of the microscopic response function �(t ) that can be written
as a suitable correlation function as [13]

�(t ) = −�(t )

〈
1

ρ0(x)

∂

∂x
(ρ0X (x)) exp(L†

〈x〉0
t )x

〉
0

, (D4)

where the operator L†
〈x〉0

is the adjoint of L〈x〉0 and can be
interpreted as the generator of the Koopman operator of the
stationary dynamics described by ρ0(x). For gradient systems
with thermal noise, it is possible to write �(t ) as a time
derivative of suitable correlation properties. We remark that
for general nonequilibrium systems this is not always possi-
ble. However, given the structure of the problem, we are able
find an analogous formula for �(t ). As described in the main
text, we evaluate the response of the system to a homogeneous
perturbation X (x) = 1. The microscopic response function,
see Eq. (D4), is

�(t ) = −�(t )
∫

dx
∂ρ0

∂x
exp(L†

〈x〉0
t )x

= −�(t )
∫

dxx exp(L〈x〉0t )
∂ρ0

∂x

= +�(t )
∫

dxx exp(L〈x〉0t )ρ0(x)
∂

∂x
f〈x〉0 (x), (D5)

where we have used the definition of the adjoint of an operator
and Eq. (4) in the main text to evaluate the derivative of the
stationary distribution. We now define the function g(x) =
− 1

σσm
arctan( σm

σ
x) such that its derivative is ∂g(x)

∂x = − 1
σ 2(x) .

We then evaluate the following expression:

L〈x〉0 (gρ0) = ∂

∂x

(
σ (x)2

2
gρ0

∂

∂x

(
f〈x〉0 (x) + ln ρ0 + ln g

))

= ∂

∂x

(
σ (x)2

2
gρ0

∂

∂x
ln g

)
= ∂

∂x

(
σ (x)2

2
ρ0

∂

∂x
g

)

= −1

2

∂

∂x
ρ0 = +1

2
ρ

∂

∂x
f〈x〉0 (x), (D6)

where we have used the fact that f〈x〉0 (x) + ln ρ0 = Z =
constant.
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The microscopic response function can thus be written as

�(t ) = − 2

σσm
�(t )

∫
dxx exp(L〈x〉0t )L〈x〉0 arctan

(
σm

σ
x

)
ρ0(x)

= − 2

σσm
�(t )

d

dt

∫
dxx exp(L〈x〉0t ) arctan

(σm

σ
x
)
ρ0(x)

= − 2

σσm
�(t )

d

dt
Cx,A(t ), (D7)

where in the last line we have introduced the correlation func-
tion between observable x and observable A = arctan( σm

σ
x)

defined as

Cx,A(t ) = 〈x(t )A(x(0))〉0 − 〈x〉0〈A〉0

=
∫

dxx exp(L〈x〉0t )A(x)ρ0(x) − 〈x〉0〈A〉0. (D8)

The microscopic susceptibility can thus be written as

�(ω) =
∫ +∞

−∞
dteiωt�(t ) = 2

σσm
(Cx,A(0) + iωĈx,A(ω)),

(D9)

where Ĉx,A(ω) = ∫ +∞
0 eiωtCx,A(t ) is the (one-sided) Fourier

transform of the correlation function Cx,A(t ).
We can then show that the macroscopic susceptibility χ (ω)

develops a singular behavior for a real frequency ω0 = 0 at
the phase transition. Let us observe that Eq. (A11), that char-
acterises the phase transition line, can be written as

θ

σσm
Cx,A(0) = 1

2
(D10)

since 〈x〉0 = 0 at the transition point. In conclusion, using all
the above results, the susceptibility χ (ω) of the system is

χ (ω) = −1

θ
+ i

1

ω

σσm

θ2Ĉx,A(ω)
= −1

θ
+ i

1

ω

Cx,A(0)

θĈx,A(ω)
. (D11)

Being related to the spectral properties of the operator L〈x〉0 ,
the quantity Ĉx,A(ω) is an analytical function at the phase
transition [13,14,52]. Consequently, the above equation shows
that linear response theory breaks down at the phase transi-
tion, with the susceptibility χ (ω) developing a simple pole in
ω = ω0 = 0 with residue

κ = Res
ω=ω0

χ (ω) = i

θ

Cx,A(0)

Ĉx,A(0)
= i

θτx,A
, (D12)

FIG. 6. Correlation function Cx,A(t ) as a function of time. The
orange line in the inset corresponds to an exponentially decaying
function y = 0.1e−t/τ where τ = 0.25. The parameters of the model
are the same as in Fig. 2 of the main text.

where τx,A is the integrated auto-correlation time defined by

τx,A = Ĉx,A(0)

Cx,A(0)
=

∫ +∞
0 Cx,A(t )dt

Cx,A(0)
. (D13)

As σm → 0, the above equations are compatible with the
results of Ref. [52]. We have numerically estimated the corre-
lation function Cx,A(t ) by evaluating the one-agent correlation
function ci(t ) between xi and A(xi ) and then averaging over
the whole ensemble of agents (N = 16000), thus yielding
Cx,A(t ) = 1

N

∑N
i=1 ci(t ). The integrated correlation time τx,A

has been estimated by imposing a cut off T = 1.5 on the time
integral corresponding to the moment after which the noisy
signal takes over the exponential decay of the correlation func-
tion (see inset of Fig. 6). The resulting value is τ = 0.25091
with corresponding amplitude of the residue k = 0.99636,
which agrees with what has been obtained through the reduced
order dynamics, see Fig. 2 in the main text.
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