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Classification of static postures 
with wearable sensors mounted 
on loose clothing
Udeni Jayasinghe 1,2*, Balazs Janko 3, Faustina Hwang 1,4 & William S. Harwin 1,4

Inertial Measurement Units (IMUs) are a potential way to monitor the mobility of people outside 
clinical or laboratory settings at an acceptable cost. To increase accuracy, multiple IMUs can be used. 
By embedding multiple sensors into everyday clothing, it is possible to simplify having to put on 
individual sensors, ensuring sensors are correctly located and oriented. This research demonstrates 
how clothing-mounted IMU readings can be used to identify 4 common postures: standing, sitting, 
lying down and sitting on the floor. Data were collected from 5 healthy adults, with each providing 1–4 
days of data with approximately 5 h each day. Each day, participants performed a fixed set of activities 
that were video-recorded to provide a ground truth. This is an analysis of accelerometry data from 3 
sensors incorporated into right trouser-leg at the waist, thigh and ankle. Data were classified as static/ 
dynamic activities using a K-nearest neighbour (KNN) algorithm. For static activities, the inclination 
angles of the three sensors were estimated and used to train a second KNN classifier. For this highly-
selected dataset (60000–70000 data points/posture), the static postures were classified with 100% 
accuracy, illustrating the potential for clothing-mounted sensors to be used in posture classification.

Maintaining correct posture in daily life is important and brings benefits such as maintaining good blood circula-
tion and reducing the risk of chronic diseases1,2. When it comes to healthcare monitoring systems, for example in 
rehabilitation settings, it is important to monitor posture as well as the daily activity intensity of an individual3,4. 
Such monitoring allows both the person and the healthcare professional to assess the condition and the effects of 
any interventions, thereby helping to avoid injuries such as those arising from falls and to improve the physical 
condition of the patient5. For example, in stroke rehabilitation, posture evaluation can be done in the clinic using 
the Postural Assessment Scale for Stroke Patients (PASS)6 and can be used to measure the progress of patients’ 
recovery7. The availability of a PASS-like measurement with a finer graticule and greater accuracy can provide 
better insight into this recovery.

Mosenia et al.8 noted posture identification and posture correction as some of the main applications of wear-
able medical sensors. Commercially-available wearable sensors are popular in activity monitoring in free-living 
environments as they can be used as self-monitoring devices. Consumer products typically contain all their sen-
sors in a single housing designed to be worn in one body location, for example, on the wrist. However, research 
into activity-4,9,10 and posture-classification11–13 has demonstrated that the use of multiple sensors increases 
classification accuracy. Further, there is a trade-off between having multiple sensors with light-weight algorithms 
and having a single sensor to extract multiple heuristic features to feed into a complex algorithm.

For the end user, putting on multiple sensors can be a tedious or laborious task, and this can be exacerbated 
when the physical process of attaching the sensor to the body is difficult, for example due to motor impairment 
or due to a design requiring good manual dexterity. Furthermore, analysis of the sensor data can be complicated 
if sensors are incorrectly placed, or if they slip off the limb during the day. One approach to make it easier for 
the end user to wear multiple sensors is to embed the sensors into garments13–15. In 2002, Laerhoven et al.16 
emphasised the importance of mounting sensors into clothing. They claimed that as clothing gives a larger space 
to mount multiple miniaturised IMUs, clothing is an excellent platform to collect more data without disturbing 
the wearers. Most prior work on smart garments investigates tight-fitting garments in order to hold the sensors 
in-place close to the body. Our research investigates sensors in loose-fitting, everyday clothing that is likely to 
be more comfortable for the wearer, easier to don on and off and more appropriate for everyday use.
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This work is novel in a number of ways. Most prior work in smart garments investigates tight-fitting garments, 
whereas here we investigate loose clothing which is likely to be more comfortable for everyday use. Other stud-
ies investigating loose clothing have examined specific activities (shoulder movements17) or specific clothing 
items (hospital garments18), whereas here the sensors are embedded into participants’ own everyday clothing 
and capture data relating to a range of everyday activities/postures. Our study was conducted in a semi-natural 
setting over an extended period (hours and days), compared with others15,17–19 which look at shorter time periods 
(e.g. on the order of minutes) under controlled conditions. Finally, this study demonstrates that a single feature 
from each of multiple sensors is enough to achieve a high level of classification accuracy.

Related work
Work by Lyons et al.12 describes a method of calculating the inclination angles of the thigh and trunk for different 
postures. Dual axis accelerometers were strapped onto the person over their clothing. Data analysis distinguished 
activities into dynamic and static activities based on the standard deviation of the magnitude of the thigh accel-
erometer data over a 1 second window. Lyons et al. used a pre-defined threshold value to assign the data into the 
two categories (static and dynamic)12. Vipul et al.11 used both waist and thigh sensor data (right hand side) to 
classify data into dynamic and static activities. They investigated two features, the integral of the signal magnitude 
over 1 s windows and a continuous wavelet transform of the filtered raw acceleration. Fida et al.20 described how 
the window sizes contribute in identifying static/ dynamic/ transition activities. Their conclusion was that larger 
window sizes (e.g. 1.5–3.0 s) gave higher accuracy in identifying long duration activities and smaller window sizes 
(e.g. 0.5 s), gave higher accuracy in identifying short duration activities such as transitions20. Fida et al. used a 
single triaxial accelerometer mounted on the waist and a feature vector consisting of 22 time-based components, 
including means, standard deviations, skewness, and kurtosis for all window sizes (0.5 s, 1s, 1.5 s and 3 s). Chong 
et al.21 examined 206 time and frequency-based features with different types of classifiers (Artificial Neural Net-
works, Support Vector Machines and Random Forests(RF)) in activity classification with a single accelerometer 
mounted on the right hip. The study indicated that subsets from time-domain features are sufficient to classify 
accelerometry into activities even without analysing frequency domain features21.

Other than the above mentioned studies with body-mounted sensors and smart-textile data, Chiuchisan 
et al.18 used a pair of loose-fitting trousers with an Arduino Nano board with 2 inductive sensors and an IMU. 
The sensor was placed near the knee. From their data, they concluded that there was potential to use these data 
from loose-fitting trousers for identifying different movement patterns in clinical rehabilitation18.

In addition to the studies based on data from the lower-body, data from the upper body has also been 
investigated in posture classification. Lin et al.19 and Harms et al.17 implemented posture classifiers with sensors 
mounted in loose-fitting jackets. The study conducted by Lin et al. was based on four low-cost strain sensors 
mounted on the shoulder, elbow, abdomen and waist19. They used Long Short-Term Memory (LSTM) networks 
in implementing three classifiers with their sensor output which was a single voltage value. First, they classified 
the data into three static postures (standing, sitting and lying) and two dynamic activities (walking and run-
ning). Secondly, they detected static postures with random arm movements and finally, they classified the data 
into sitting and two different slouch positions19. Harms et al. attached accelerometers onto the forearm and 
upper arm of a loose-fitting garment to classify the data into ten postures that are useful in shoulder and elbow 
rehabilitation. They implemented a simulation with a body model and corrected the orientation error based on 
empirical samples of data. Finally, they concluded that there was a possibility of increasing the classifier accuracy 
based on the correction of the simulation17.

To perform posture classifications, both11 and12 calculate inclination angles of the waist and thigh sensors 
relative to the direction of gravity. Skach et al.15 use woven pressure sensors on trousers to categorise postures. 
These sensors were near the person’s thigh and buttocks during a set of video-recorded, controlled postures 
involving the thigh and shank (e.g. leg-crossing postures). They used a RF classifier to classify the data into 
postures12 and15 both relied on thigh data in posture classification.

In11,12 the sensors were strapped onto the body over the clothing and in15 the sensors were woven into the 
clothing. In our present study, the sensors were attached to the inside of loose clothing. Prior to the work reported 
here, an earlier study verified how well loose clothing-mounted sensor data correlated with body-worn sensor 
data22 and concluded that clothing sensor data were reasonably correlated with body worn sensor data, especially 
with static postures. Hence, there is good potential of using clothing-mounted sensor data in activity/posture 
classification.

The above mentioned studies which used lower-body data in posture classification11,20,21 used multiple features 
from each sensor to train the classifiers. Even though Lin et al.19 used only a single feature from each sensor, they 
used an LSTM (deep learning approach) network in their study. Rather than using a deep learning approach 
which usually trains classifiers on the raw data, our study uses a machine learning approach with a meaning-
ful single feature (inclination angle). As the inclination angles of body parts are used as the feature vector, the 
features can be easily represented by a stick figure for an intuitive interpretation of the classifier output. Vipul 
et al.11 (waist and thigh) and Lyons et al.12 (trunk and thigh) used two body-mounted sensors in their studies. 
However, an additional ankle sensor, as studied here, can improve classification accuracy as it helps to differenti-
ate postures that depend on the lower leg. Further, Lyons et al. pre-defined threshold values for the inclination 
angles to classify the data into different postures, whereas the present study uses a machine-learning approach 
to define the classes, rather than hard coding the threshold values. See supplemental files for a table comparing 
prior studies with the present work.
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Methodology
Materials.  Our sensing system consisted of 12 IMUs (based on the Bosch Sensortec BMI160 smart IMU), all 
using a differential serial bus, connected using flat ribbon cable forming a “sensor string”. The 12 bespoke sensors 
were approximately 15×12×7 mm each (see Fig. 1a) and had a combined weight of 18g. The inter-connecting 
cables weighed 146 g. The sensor string was connected to a Raspberry Pi where the data were stored (Fig. 1a). A 
battery pack enabled continuous mobile data collection for more than 12 hours (10,000 mAh output : 5V, 2.1A). 
Data were sampled at 50 Hz. The range of the accelerometers was ± 16 g with 12-bit resolution. The BMI160 IMU 
includes a gyroscope and a magnetometer, which were also used to record data, alongside the accelerometers. 
The sensors use a time division multiple access (TDMA) based protocol, where each start-of-frame character 
allows the IMUs to trigger the acquisition of the next sample, thus resulting in a tightly-synchronised sensor 
network.

The 12 IMUs were positioned in the clothing so that there were sensors along the lateral side of the upper 
limbs (wrist, upper arm, and shoulder/neck) and lower body (ankle, thigh, waist), on both sides (Fig. 1b). To 
attach the sensors to the clothes, the sensors were taped securely along the inner seams of the clothes in the cho-
sen position, and cotton bias binding was taped on top of the sensor string using double-sided tape for fabric. In 
this way, the sensors were not outwardly visible (see Fig. 1c) and also not in contact with the skin which helped 
to make the system more comfortable for the wearer.

Data collection procedure.  Five healthy participants (age range: 28–48 years old; 3 males and 2 females) 
took part in the study. Each person selected a pair of trousers and a hoodie jacket in their usual size, and the 
researcher attached the sensors to the clothes. Four participants wore cotton-blend fleece jogging trousers, and 
one wore loose cotton slacks. Participants wore the clothes on three or four days (with the exception of 1 partici-
pant who was only able to take part for one day) for 5–8 hours per day of data collection. The Raspberry Pi and 
the battery pack were kept in a bag on the waist of each participant as shown in Fig. 1c.

On each day of data collection, participants were asked to perform a set of predefined activities which were 
videoed to provide a ground truth. Thereafter they continued with their usual activities for the rest of the day. 
The ground truthed activities comprised two minutes of each of the following: (1) Standing still, (2) Sitting on a 
chair, (3) Lying on their back (supine position), (4) Sitting on the floor with legs outstretched, (5) Walking back 
and forth and (6) Going up and down stairs. For the rest of the day’s activities, participants were requested to 
keep a diary of their activities.

The study was reviewed by the research ethics committee of the School of Biological Sciences, University of 
Reading, UK and given a favourable ethical opinion for conduct (reference: SBS-19-20 31). The study was con-
ducted in accordance with this approved protocol and the relevant guidelines and regulations. All participants 
provided written informed consent.

Data processing work flow.  In this section, we provide an overview of the data processing workflow. 
Further elaboration of particular steps in the workflow are in the subsections that follow.

Data from the 12 IMUs were logged onto the Raspberry Pi. Once the data collection was completed, the data 
were transferred to a PC and analysed using MATLAB. Although the IMUs provide accelerometer, gyroscope 
and magnetometer readings, the main focus of this analysis was the accelerometer data from the right side of 
the lower body (sensors 1, 2 and 3 as shown in Fig. 1b).

As the placement and orientation of the sensors relative to the body could vary slightly from day to day 
depending on the fit of the clothing, each day’s data were pre-processed to align all sensors to a common 

Figure 1.   (a) Components of the sensor system. (b) Sensor placement on clothes. (c) Sensor placement 
on trousers. 12 IMUs are connected to a synchronous bus via ribbon cable. The sensors are connected to a 
Raspberry Pi via a USB to RS485 converter, and the Pi was powered by a battery pack. Lights on the sensors 
provided assurance of the sensors’ operation but were not visible outside the clothing. The Pi and battery were 
worn in a waist-pouch attached with a belt, with 4-pin connectors connecting the bag components, the trousers 
and the top. The 12 sensors were sampled synchronously at 50Hz. Since accelerometer, magnetometer, and 
gyroscope data were all recorded from each sensor, this demanded a time division multiplexing bus protocol 
running at 500K baud.
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coordinate frame such that the z-axis is aligned with the direction of gravity  (Section ‘Data pre-processing’). 
The data were also low-pass filtered to remove noise. From the filtered data, the sensor-to-vertical angle was 
estimated as described in Section ‘Calculating sensor to vertical axis angles’.

A classifier was implemented to first classify the data into “static postures” or “dynamic movements” (Section 
‘Classifying static and dynamic activities (classifier 1)’). For data classified as “static postures”, a second classifier 
was implemented to classify the data into four specific postures (i.e. standing, sitting on a chair, lying down, 
sitting with legs outstretched) (Section ‘Classifying postures (classifier 2)’).

Data pre‑processing.  Data rotations.  With the sensors embedded in the clothing, the initial orientation 
of the sensor relative to the limb and to the world is unknown. Hence, we apply a rotation to the accelerometer 
data to align the sensor’s z-axis with the direction of gravity. This rotation can be computed easily using Rod-
rigues’ rotation formula23 by identifying the axis for rotation as being perpendicular to both the gravity vector 
and the z-axis. This is identified as the cross product between the gravity vector and the z-axis and the angle for 
rotation is the angle between these two vectors. To do this, we find a segment of ‘standing still’ data and assume 
that the limbs are all vertical and the only accelerations are those due to gravity22.

There is a possibility of having a second rotation that transforms the data so that the transformed y-axis is 
aligned with the anterior-posterior direction and the transformed x-axis is aligned with the medial-lateral direc-
tion perpendicular to the sagittal plane. The rotation matrix can be estimated by finding suitable segments of 
data where there is rotation in the sagittal plane (e.g. walking, leg raising, sitting-to stand). However, the second 
rotation was not required for the present analysis.

Filtering.  Accelerometer signals were then low-pass filtered with a second-order Butterworth filter with a 3 Hz 
cut-off as suggested in12. The filter was run on the data both forwards and backwards to minimise phase distor-
tions at the expense of causality.

Calculating sensor to vertical axis angles.  Estimation of the orientation of a wearable inertial sensor 
from gyroscope, accelerometer and magnetometer measurements is complex, with a variety of approaches24. A 
common simplification is to estimate the sensor inclination angle with respect to the local gravity vector. This 
estimate can be made with only the accelerometer, but additional information from the gyroscope and mag-
netometer can be used to improve the estimate of the sensor inclination angle.

The acceleration measured by the accelerometer can be considered as a baseline gravitational acceleration g 
with a ‘dynamic’ acceleration a added. Thus the accelerometer sensor measurement is 

[

sx , sy , sz
]T

= Sg + Sa , 
where the two accleration components are measured in the sensor frame {S}25. It is fair to assume that the mag-
nitude of gravity is fixed in a world frame {W} , i.e. Wg ≈

[

0 0 9.8m/s2
]T and that for typical human movement 

the ‘dynamic’ acceleration will have a zero mean if estimated over a sufficiently long time window.
When subjected only to gravitational acceleration (that is, a = 0 ) the sensor will measure the components 

of g in the world frame along its three sensor frame axes as shown in Fig. 2. That is to say that the sensor will 
measure just the gravity vector so g = |g|

[

cos θx cos θy cos θz
]T.

Three methods are outlined to recover the sensor orientation with respect to gravity and hence the angle 
of a limb with respect to a vertical axis. The first of these (the arccos method), was used for subsequent results.

Estimating sensor inclination angle with arccos.  If the sensor consists of only a 3-axis accelerometer, and we 
assume one of the sensor axes is aligned with the limb (it was assumed the sensor z-axis aligns with limb), then 
the inclination of the sensor is simply calculated as the arccos of the relevant sensor component on the assump-
tion that there is no dynamic (non gravitational) acceleration (Eq. 1).

(1)θz = arccos
( sz

|g|

)

Figure 2.   Orientation of the IMU with respect to a vertical axis represented by gravity ( g ) can be defined as the 
cosines of angles θx , θy and θz.
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Estimating sensor inclination angle with atan2.  If the sensor is well positioned on the limb so that it is aligned 
with an anatomical plane (for example the y-axis lies in the sagittal plane with the x-axis perpendicular to the 
plane), then an atan2 function can give information relating to the limb angle (Eq. (2)). Using the atan2 function 
would allow a direct distinction of whether the person was leaning forward or backward, or lying in a supine 
position or prone position.

This method confines the result to be in the y − z plane that may move with respect to the sagittal plane if the 
sensor is able to twist on the clothing, hence was not used for this analysis.

Estimating sensor inclination angle with a rotation matrix.  Sensor fusion algorithms such as MARG (Magnetic, 
Angular Rate, and Gravity) algorithms attempt to calculate an orientation matrix or quaternion relating the sen-
sor frame {S} to the world frame {W} , for example Mahony et al.26, Madgwick et al.27 and Sabatini28. The orienta-
tion of the sensor is then simply the relevant column of the orientation matrix since the gravity vector would 
align with a world coordinate frame. A problem is that the sensor is defined with respect to a global coordinate 
frame (e.g. East, North, Up). The ‘horizontal’ (East and North) axis estimates tends to be poor as they suffer 
from problems such as integration drift or local distortions in the earth magnetic field. It then becomes difficult 
to align the global frame with the sagittal plane of the individual, hence the arccos method was considered the 
simplest and easiest method to use for this work.

Classifying static and dynamic activities (Classifier 1).  Activity extraction.  The ground truth vid-
eos were synchronised with the sensor data using ELAN software29. The start and end points for each of the 
four static postures (standing, sitting, sitting on the floor with legs outstretched and lying down) and dynamic 
activities (walking, going up and down stairs) were manually identified and annotated by the first author, and 
those segments of the data were extracted for analysis. In this way the transitions in-between the activities were 
deliberately not included in the analysis. For postures and dynamic activities, data segments of approximately 
90 s were extracted from longer continuous data segments. The final labelled dataset comprised data collected 
over 15 participant-days across the 5 participants, with 6 video ground truthed activities per participant per 
day. Roughly 405,000 (= 6 activities × 90 s × 50 Hz × 15 days) data-points were used in the training process 
(data collection frequency was 50 Hz).

Static postures versus dynamic movements.  The main intention of this study was to analyse the postures of the 
participants, hence the activities were first categorised into two classes: static postures and dynamic movements. 
We extracted three features which were moving standard deviation of the vertical axis of the ‘Thigh’ data and 
moving standard deviation of the magnitude of the ‘Thigh’ and of the ‘Waist’ data, according to the literature 
(11,12,15,21). Instead of defining threshold values to distinguish static vs dynamic activities as in11,12, we compared 
the accuracy of classifiers in distinguishing the two classes with different combinations of features and with five 
different window sizes (0.5 s, 1 s, 1.5 s, 2 s and 3 s). The annotation files described in section ‘Classifying static 
and dynamic activities (classifier 1)’ were used to provide the ground truth for the classifier. The activities were 
labelled as static (standing still, sitting on a chair, lying on their back, sitting on the floor with legs outstretched) 
or dynamic (walking back and forth, going up and down stairs). Those labels, along with the three features, 
were then passed into MATLAB’s ‘Classification Learner App’. The data were trained with all the options avail-
able in MATLAB’s ‘Classification Learner App’. These included ‘Discriminant analysis’, ‘Naive Bayes’, ‘Decision 
trees’, ‘Support vector machines’, ‘K-nearest neighbour (KNN)’ and ‘Ensemble classifiers’. It was found that the 
‘Weighted KNN’ classifier achieved the highest accuracy in this classifier (Classifier 1). As such Weighted KNNs 
which use an Euclidean distance metric with 10 neighbours were used, and a further comparison to study the 
accuracy of the classifier with different combinations of features and window sizes was conducted. To evaluate 
the model, 5-fold cross-validation and leave-one-subject-out methods were used.

When analysing the data from the non-ground truthed (i.e. the rest of the day’s) activities, ‘Classifier 1’ out-
puts were checked for both the left and right legs separately, to account for the possibility that a person could be 
moving one leg while still being considered to be in a ‘static’ posture. Data were not classified as dynamic unless 
the ‘Classifier 1’ output indicated that there was dynamic movement in both legs.

Classifying postures (classifier 2).  For each sensor, the accelerometer data were further filtered by taking 
the moving mean over a 1s window. The filtered acceleration values were used to calculate the inclination angle 
of each sensor using Eq. (1), where sz is the moving mean of the acceleration in the z-axis and g is the magnitude 
of the moving mean of the acceleration when the participant is ‘standing still’.

The inclination angles of the three lower body sensors (Waist, Thigh and Ankle) were extracted and, along 
with their annotations, were fed into MATLAB’s ‘Classification Learner App’ to train a KNN classifier (Classifier 
2). As mentioned earlier in "Static postures versus dynamic movements" section all the options in the ‘Clas-
sification Learner App’ were checked with the data and the classifier type which gave the highest accuracy was 
selected. The selected KNN classifier was a ‘Weighted’ KNN which uses a ‘Euclidean’ distance metric with 10 
neighbours. To evaluate the model, 5-fold cross-validation and leave-one-subject-out cross validation were used.

(2)θz = atan2
(

sy , sz

)
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Results and discussion
Classification of static and dynamic activities.  The confusion matrices were examined for different 
combinations of features ((i) moving standard deviation of the magnitude of the thigh data alone, (ii) moving 
standard deviation of the magnitude of the thigh data combined with the moving standard deviation of the verti-
cal axis of the thigh data, and (iii) the previous two features combined with the moving standard deviation of the 
magnitude of the waist data) and window sizes (0.5 s, 1 s, 1.5 s, 2 s and 3 s). They showed that the false positive 
and false negative values were gradually decreased with additional features when the windows were 0.5 s and 1 s. 
However, when the windows were 1.5 s, 2 s and 3 s, the classification accuracies for all combinations of features 
were 100% with the given training dataset.

Further, it was noted that the moving standard deviation of the magnitude of the waist data and of the thigh 
data were strongly correlated. As the thigh can capture more information than the waist in postural changes, 
only the standard deviation of the magnitude of thigh data was selected to train Classifier 1.

It was noted that for the static postures, the moving standard deviation did not surpass ≈ 0.005 g, whereas 
for dynamic activities it was consistently above 0.1 g.

Figure 3 illustrates how the classification output varies with window size, over four sit-to-stand cycles. With 
window sizes of 0.5 s (left), 1 s, 1.5 s and 2 s, the classifiers identified periods of sitting and standing as static 
postures, and transitions between sitting and standing as dynamic movements. With a window size of 3 s (right), 
however, the classifier identified the whole segment where the participant was performing sit-to stands as a 
dynamic movement segment.

For this paper, the intention was to analyse the participants’ postural changes throughout the day and estimate 
the proportion of active (dynamic) movements relative to passive postures. Hence, the transition movements 
were not of primary interest, rather the focus was on identifying longer segments of static and dynamic activi-
ties. Therefore, the standard deviation of the magnitude of the ‘Thigh’ data for 3 s windows was selected as the 
only feature to train the classifier, based on the accuracy values as mentioned in section ‘Classification of static 
and dynamic activities’.

Classifier 1 was trained and evaluated with all 15 datasets across the 5 participants with 5-fold cross 
validation and the accuracy was 100%. Classifier 1 was further evaluated with a leave-one-subject-out 
approach. For each left-out participant, 3 days of data were used for testing, and roughly 90 seconds of data 
were taken from 4 static postures ( 4 postures× 90 s× 50 Hz× 3 days = 54000 ) and 2 dynamic activities 
( 2 activities× 90 s× 50 Hz× 3 days = 27000 ) to evaluate the classifier.

Classification of postures.  The inclination angles for the waist, thigh, and ankle for each posture from 
all 15 datasets are shown in Fig. 4. Figure 5 shows the same data in a 3D representation, with the waist, thigh, 
and ankle inclination angles on the three axes. The plots show four clusters corresponding to the four postures.

Classifier 2 had a 100% classification accuracy for both 5-fold cross validation and leave-one-subject-out 
methods. The given confusion matrix in Table 1 was based on a 5-fold cross validation method.

All the analyses presented above were conducted with the ‘Right’ leg data. The same analyses were conducted 
with the left leg to examine if there were any differences. Similar accuracies were observed from both Classifiers 
1 and 2.

Analysis of “usual activities”.  By combining both classifier outputs the data were categorised into five 
categories, the four static postures plus dynamic movements as a fifth category. Again we observed that the accu-
racy remained the same at 100% even after combining both classifiers with the given dataset.

The data collected from the participants’ “usual activities” for the rest of the day (i.e. non-ground truthed 
activities) were analysed to characterise the postural variations of the participants. Figure 6 shows one of the 
summary reports (‘Participant A’). Each day, ‘Participant A’ was wearing the sensors for more than 8 hours 
during daytime hours. Three of the days were weekdays when ‘Participant A’ was mainly working (in front of a 
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Figure 3.   Classification outputs for a 0.5 s window (left) compared with a 3 s window (right), trained using the 
standard deviation of the magnitude of the thigh data. The plots show the 3-axes of acceleration from a sensor 
on the thigh as one participant performs 4 sit-to-stand cycles. The classifier outputs are shown at the top of each 
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computer) and during the weekend-day, the participant was doing miscellaneous activities including shopping, 
according to the diary reports.

By comparing the weekday plots against the weekend plot (Fig. 6a,b.1,c and d), the sensor data capture that 
‘Participant A’ had been sitting and sitting with legs outstretched between 73% and 86% of the time throughout 
the data collection on weekdays. In contrast, on the weekend, the proportion of time spent sitting and sitting 
with legs outstretched was comparatively lower (35%). Moreover, the sensors captured a higher proportion of 
time spent lying down (14%) on the weekend, which corresponded to the participant having a nap and lying 
down on a sofa, according to their diary data. Further, during the weekend, the participant’s dynamic activities 
and standing durations made up a higher proportion of the activities (51%), compared to weekdays. During the 
weekdays the total dynamic and standing data were between 13% and 25%.

According to Fig. 6b.1, on Day 2, ‘Participant A’ had spent 45% of their day in a ‘sitting with legs outstretched’ 
posture and 41% of the time sitting. In order to check why ‘Participant A’ had been sitting with legs outstretched 
for a longer period than that of sitting, the data were analysed against the diary data. Figure 6b.2 shows the dis-
tribution of postures based on the classifier (b.1) as compared with the participant’s diary data (b.2). According 
to Fig. 6, it would appear that 28% of activity recorded in the diary as ‘sitting’ was classified as ‘sitting with legs-
outstretched’, and roughly 5% of dynamic movements from the diary data appear to be classified as ‘standing’ data.

In order to understand these discrepancies better, the classifier output and the diary data were plotted along-
side the corresponding angle data of the waist, thigh and ankle and the z-axis of acceleration from each sensor 
(Fig. 7).

Figure 7a shows a data segment where the classifier alternates between ‘sitting’ and ‘sitting with legs out-
stretched’ even though, that entire segment was recorded as ‘sitting’ in the diary. Within that segment, the ankle 
angles changed between 30◦ and 60◦ , resulting in the classifier distinguishing them as ‘sitting’ and ‘sitting with 
legs outstretched’. When ‘Participant A’ was asked about the data, they stated that during some segments their 
legs were in different positions and they might have stretched their legs while working. By considering all these 
factors it could be said that unconsciously the participant might have stretched out the ankles from the proper 
sitting posture without changing the waist or thigh, which could be the reason for the discrepancies in ‘sitting ’ 
vs ‘sitting with legs outstretched’ data between the classifier output and the diary data.

Similarly, Fig. 7b shows an instance where there was a discrepancy in standing and dynamic activities in clas-
sifier output versus diary data. The participant recorded a period of fidgeting (from 13:40) which was annotated 
as dynamic activity. Examination of the sensor data, however, indicated that the data also included periods of 
standing which were not noted in the diary, yet were classified by the classifier as standing. Figure 7b shows 

Figure 4.   Inclination angles for the waist, thigh, and ankle from all 15 datasets for (a) standing, (b) sitting, (c) 
lying down, and (d) sitting with legs outstretched. The stick figures are drawn using the median value of the 
inclination angles.
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one such fidgeting segment from the whole dataset. Not only by considering the classifier output, but also by 
examining the flat lines of the waist, thigh and ankle accelerometer signals, it can be said that there were static 
(standing) segments within that fidgeting segment.

This paper focused on analysis of static postures based on accelerometry. Further, this paper gives an insight 
as to how the different window sizes can be used in feature vectors in training classifiers under different scenarios. 
Both classifiers implemented in this study had 100% accuracy when trained and evaluated with an annotated 
dataset. This dataset was highly-selected and accuracies could decline with more naturalistic activities that 
include, for example, sitting with the legs crossed. Nevertheless, the results indicate that sensors embedded in 
loose clothing are significant as a way of capturing posture information. Comparison of the diary data and the 
posture classifier output indicates that a significant percentage of activity during a person’s days can be captured 
by postures that can be recognised with sensors only on the lower body (waist, thigh, ankle). Still, inclusion of 
upper body sensor data could be useful to understand whole body postures.

Even though this study is limited to the classification of data into four basic postures, further improvements 
are possible by using a different method for estimating the inclination angle. For instance, a rotation matrix 
approach as described in "Estimating sensor inclination angle with a rotation matrix" section could be used, 
which would allow estimation of angles from 0◦ to 360◦ (versus the arccos method which estimates angles 

Figure 5.   (a) 3D plot of the inclination angles. Shadows of the data are projected in grey onto the walls of the 
graph. Four clusters correspond to standing (blue ‘o’), sitting (red ‘x’), lying down (black ‘ △ ’) and sitting with 
legs outstretched (yellow pentagon). Projections of the data are shown in (b) ‘thigh’ vs ‘waist’, (c) ‘ankle’ vs ‘thigh’ 
and (d) ‘ankle’ vs ‘waist’.

Table 1.   Confusion matrix for Classifier 2 (posture classification) Posture 1: Standing, Posture 2: 
Sitting,Posture 3: Lying down, Posture 4: Legs outstretched. There were approximately 22.5 minutes (67,500 
samples) of data per activity (maximum of 90 seconds per posture per day x 15 participant-days).

True class

Posture 1 65785 0 0 0

Posture 2 0 69015 0 0

Posture 3 0 0 67175 0

Posture 4 0 0 0 58605

Posture 1 Posture 2 Posture 3 Posture 4

Predicted class
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between 0◦ and 180◦ ). With some adjustments to the method of estimating the inclination angles to be able to 
distinguish, for example, between “forward” and “backward” inclinations, there is a possibility of using these 
clothing-mounted wearable sensors in analysing ‘sleeping’ postures such as “supine position”, “prone position”, 
“right position”, “left position”, and “sitting position” as mentioned in30.

We acknowledge that this study was conducted with a limited number of participants, nevertheless the data 
collection with each of the 5 participants was extensive (1–4 full days each, resulting in more than 90 hours of 
data) and systematic. Altogether, 15 datasets (i.e. 15 participant-days) were used to train and evaluate the clas-
sifiers, and we believe that this analysis is sufficiently robust to show that the clothing-mounted sensor data can 
be used productively in posture analysis.

Dynamic activity classification is as important as posture classification, and is an important direction for 
future work. One of the main benefits of looking at dynamic activities is the possibility of analysing the intensity 
of physical activities. Physical inactivity causes many health issues31 and classification of dynamic activities 
could help provide insights that are relevant in healthcare monitoring. Another area for further work is to extend 
this study to analyse the upper body data, to improve the static posture and dynamic movement classifications.

Conclusion
Monitoring posture and classifying activities for long-term healthcare can be challenging. In order to achieve a 
reasonable level of accuracy, more sensors can help but can be difficult or cumbersome for the person to wear. A 
solution is to mount the sensors into everyday clothing, so the data collection is unobtrusive for the individual. 
This study analysed data from 3 sensors mounted along the lateral seam of both legs of loose-fitting trousers, 
corresponding to the waist, thigh, and ankle. Three features (inclination angles of the waist, thigh, and ankle) 
were used to implement a posture classifier, which achieved 100% accuracy. Hence, we conclude that sensors 
mounted on loose clothing can be used successfully for posture classification.
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Figure 6.   Four days’ activity summary report for ‘Participant A’, based on analysis of the sensor data (a, b.1, c 
and d) and activity percentages based on diary data for Weekday 2 (b.2). This includes three weekdays and one 
weekend day. Compared to weekdays, there was more standing and dynamic movements at the weekend. Also, 
the participant was sitting most of time during the weekdays with less time spent in dynamic movements.
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