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ON THE PRODUCT FORMULA FOR TOEPLITZ AND

RELATED OPERATORS

JANI A. VIRTANEN

In memory of Harold Widom

Abstract. In this note known formulas for the product of Toeplitz
operators are revisited in the context of their applications to the study
of Fredholmness, boundedness of Toeplitz products, and the Berezin-
Toeplitz quantization. A few open problems are also mentioned.

1. Introduction

Given two bounded Toeplitz operators Tf and Tg on the Hardy space H2,
their product can be written as

(1) TfTg = Tfg −HfHg̃,

where Hf and Hg̃ are Hankel operators acting on H2. As stated in [2], this
identity was established by Widom [20], while it had been known and used
for a long time in other forms, such as

PfPgP = PfgP − PfQgP,

where P is the orthogonal projection of L2 onto H2 and Q = I − P . What
resulted from Widom’s use of this identity was a very ingenious way of
dealing with the asymptotics of block Toeplitz determinants in [20], now
known as the Szegö-Widom asymptotics, via operator theoretic methods
and Schatten class properties of Hankel operators. Paper [2] is embarking
on this topic.

Going back to the identity in (1) and its original intent to show that
certain Toeplitz operators are Fredholm, I will discuss extensions of this
formula in the context of other function spaces, such as Bergman and Fock
spaces, and show how it leads to interesting questions about the properties
of Hankel operators. What we lack in these other function spaces, however,
are effective matrix representations of Toeplitz and Hankel operators, which
creates an obstacle to obtaining Widom type identities for the products of
truncated Toeplitz matrices.
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For simplicity, we limit the discussion to function spaces defined over
domains in C, except for Section 5, and note that the generalizations to the
n-dimensional setting can be easily found in the literature.

2. Preliminaries

For 0 < p < ∞, Ω ⊂ C, and µ a positive measure on Ω, denote by
Lp(Ω, dµ) the space of all complex measurable functions f on Ω for which

‖f‖p =

(∫
Ω
|f |p dµ

)1/p

<∞.

For a complex measurable function f on Ω, define ‖f‖∞ to be the essential
supremum of |f | and denote by L∞(Ω, dµ) all f for which ‖f‖∞ <∞. The
set of all analytic functions in an open set Ω is denoted by H(Ω).

In terms of domains Ω, the usual three model cases consist of the unit
circle T, the unit disk D, and the complex plane C. When Ω = T, we write
Lp(T) for Lp(T, dθ) and define the Hardy space Hp by

Hp = {f ∈ Lp(T) : fk = 0 for k < 0}.
Let dA = dxdy be the usual area measure on C. We write Lp(D) for
Lp(D, dA) and define the Bergman space Ap by

Ap = H(D) ∩ Lp(D).

When Ω = C, define the Fock space F p by

F p = H(C) ∩ Lp(C, e−
p
2
|z|2dA).

LetX2(Ω) ∈ {H2, A2, F 2}. ThenX2(Ω) is a Hilbert space and the orthog-
onal projection of L2(Ω) onto X2(Ω) is denoted by P . We write Q = I − P
for the complementary projection. Given a bounded function f on Ω, the
Toeplitz operator Tf : Xp(Ω)→ Xp(Ω) with symbol f is defined by

Tfg = P (fg).

When 1 < p <∞, since P extends to a bounded projection on Lp(Ω), Tf is
clearly bounded on Xp(Ω) if f is bounded.

Defining Hankel operators is less straightforward. Indeed, the Hankel op-
erators that appear in (1) act on the Hardy space while the Hankel operators
on Bergman spaces Ap or Fock spaces F p map into the corresponding Lp(Ω).
More precisely, define the flip operator J : Lp(T)→ Lp(T) by

Jf(t) = t̄f(t̄)

for t ∈ T. For a bounded symbol f , the Hankel operator Hf is defined on
Hp by

Hfg = PMfQJf,

where Mf is the multiplication operator. When Ω ∈ {D,C}, we define the
Hankel operator Hf : Xp(Ω)→ Lp(Ω) by

Hfg = Q(fg).



ON THE PRODUCT FORMULA FOR TOEPLITZ AND RELATED OPERATORS 3

Again, it is easy to see that the Hankel operator Hf is bounded in all the
three cases if 1 < p <∞ and f is bounded.

3. Fredholm properties of Toeplitz opeators

In this section the Fredholm properties of Toeplitz operators acting on
Hardy, Bergman and Fock spaces are considered using (1) and its general-
izations. Recall that an operator A on a Banach space is said to be Fredholm
if kerA and X/A(X) are both finite dimensional, in which case the index
indA is defined by

indA = dim kerA− dimX/A(X).

Equivalently, A is Fredholm if and only if A + K(X) is invertible in the
Calkin algebra B(X)/K(X), where B(X) and K(X) denote the sets of all
bounded and compact operators on X, respectively. The essential spectrum
of A is defined by

σess(A) = {λ ∈ C : A− λ is not Fredholm}.

3.1. The Hardy space case. Let f, g be bounded on T and write f̃(t) =
f(t̄) for t ∈ T. Then

Tfg = PMfgP = PMfMgP = PMfPMbP + PMfQMgP

= PMfP
2MgP + PMfQJ

2QMgP,
(2)

which is (1).
Suppose now that f is continuous and has no zeros on T. Then g = 1/f is

also continuous and has no zeros. By (1), since Hf is known to be compact,

TfTg = I +HfHg̃ = I +K

for some compact operator K. Similarly, TgTf − I is compact, and hence Tf
is Fredholm. In situations when Hankel operators are compact, the identity
in (1) is tailor-made for proving that Toeplitz operators are Fredholm. In
other words, whenever the Hankel operators are compact, the corresponding
Toeplitz operators commute modulo compact operators. A similar approach
also applies to symbols in the Douglas algebra C + H∞ but the use of (1)
is no longer as effective with more general classes of symbols.

Let f ∈ L∞(T)N×N and consider the block Toeplitz operator Tf on Hp
N =

{(f1, . . . , fN )> : fj ∈ Hp}. Suppose that f ∈ (C + H∞)N×N and det f is

invertible in C +H∞. Choose h ∈ (R+H∞)N×N , where R is the set of all
rational functions, sufficiently close to f in the norm of L∞N×N (T). Then

indTf = indTh and indTdet f = indTdeth.

Since Hh has finite rank, (1) implies that the entries of Th commute modulo
finite-rank operators, and hence indTh = indTdeth (see Theorem 1.15 of [7]),
which reduces the index computation to that of the scalar-valued symbols.
For more general symbols, such as piecewise continuous symbols, no such
reductions are possible.
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Although the projection P is unbounded on L1(T), a Fredholm theory
for Toeplitz operators on H1 can still be developed. In particular, when
f is a continuous function of logarithmic vanishing mean oscillation, the
Hankel operator Hf is compact on H1, so (1) is readily available, and the
Fredholm properties can be described as in the reflexive case 1 < p < ∞
(see [19]). However, as recently observed, there are continuous symbols f
that generate bounded Toeplitz operators on H1 and for which Hf is not
compact (see [10]). This makes the study of Fredholmness of Tf with such
continuous symbols considerably more difficult in H1 because (1) no longer
produces a desired conclusion.

There are many other aspects of Toeplitz operators on the Hardy space
whose proofs benefit from (1), such as invertibility with analytic symbols, the
applicability of local principles, the study of Toeplitz algebras and Fisher-
Hartwig symbols, but we refrain from further details (all of which can be
found in [7]) and keep our focus only on the Fredholm properties in this
section.

3.2. The Bergman space case. As mentioned above, for 1 < p < ∞
and f ∈ L∞(D), the Hankel operator Hf is defined by Hfg = Q(fg) for
g ∈ Ap, and so it maps into Lp(D) instead of Ap. However, we can still
obtain formulas similar to (1) as follows. For two bounded functions f, g on
Ω, using the inner product in A2, it is easy to see that

(3) TfTg = Tfg −H∗f̄Hg

when p = 2, which shows that

T|f |2 − Tf̄Tf = H∗fHf ,

and hence compactness of Hf is equivalent to compactness of the semi-self-
commutator T|f |2 − Tf̄Tf . In addition, the formulas

TfTg = PMfPMg = PMf (I −Q)Mg = Tfg − PMfHg(4)

= I − P (I −Mfg)− PMfHg = I − T1−fg − PMfHg(5)

are useful. For example, in [14], the identity in (4) was used to show that
the Toeplitz operator Tf with f ∈ C(D) is Fredholm on A2 if and only if f
has no zeros on the boundary. A similar approach, using (5), can be used to
treat symbols in the Douglas algebra C(D) +H∞ and symbols of vanishing
mean oscillation.

Let f ∈ L∞(D)N×N and consider the block Toeplitz operator Tf on

ApN = {(f1, . . . , fN )> : fj ∈ Ap}. Fredholmness of block Toeplitz opera-

tors with symbols in the Douglas algebra (C(D) +H∞(D))N×N can be han-
dled as in the Hardy space case but now with the identities in (4) and (5).
However, the index formula for these symbols cannot be derived as easily
as in the Hardy space case because the formula indA = ind detA, which
holds for operator matrices A whose entries commute modulo trace class
operators, fails to reach all of C(D) + H∞(D) via (4). For an alternate
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approach to the computation of the index of block Toeplitz operators Tf
on the Bergman spaces on the unit ball, see [6]. Similar comments can be
made about symbols in (L∞(D) ∩ VMO)N×N , where VMO is the space of
functions of vanishing mean oscillation, and in particular the approach in [6]
should produce an index formula for this symbol class, too. We return to
this topic in the next section when dealing with Toeplitz operators in the
Fock space setting, where an analogous problem still remains open.

3.3. The Fock space setting. As in the Bergman space case, for Toeplitz
operators on F 2, we again have

(6) TfTg = Tfg −H∗f̄Hg.

To my knowledge, this identity was first used to describe the Fredholm
properties of Tf on the Fock space in [17]. It was shown that, when f ∈
L∞(C) and Hf is compact, we have

(7) σess(Tf ) =
⋂
r>0

cl f̃(C \ Dr),

where clE stands for the closure of E in C, Dr = {|z| < r}, and f̃ is the
Berezin transform of f defined by

(8) f̃(z) =
1

2π

∫
C
f(w)e−

1
2
|z−w|2dA(w)

for z ∈ C. In the proof of (7), identity (6) comes into play as follows.
Suppose that ξ /∈ cl f(C\Dr) for some r > 0. To show that Tf−ξ is Fredholm,
define

g(z) =

{
(f(z)− ξ)−1 if z ∈ C \ Dr,
1 if z ∈ Dr.

Then g ∈ L∞(C), and an application of (6) shows that

TgTf−ξ = I −H∗ḡHf − T(f−ξ−1)χDr
.

Notice that (f − ξ − 1)χDr has compact support and hence T(f−ξ−1)χDr
is

compact. Since Hf is compact, it follows that Tf−ξ+K(F 2) is left-invertible
in B(F 2)/K(F 2). That Tf−ξ + K(F 2) is also right-invertible follows from
Tf−ξ = T ∗

f̄−ξ̄ and the fact that Hf̄ is compact whenever Hf is compact (see,

e.g., [3] or [13]). Therefore, Tf−ξ = Tf − ξ is Fredholm, that is, ξ /∈ σess(Tf ),
and so σess(Tf ) ⊂ cl f(C \ Dr) for all r > 0. Further, since Tf−f̃ is known

to be compact, σess(Tf ) = σess(Tf̃ ) ⊂ cl f̃(C \Dr) for all r > 0 by the above

argument applied to f̃ . For the other inclusion (which involves no product
formulas), see [17].

For an extension to other Fock spaces

F pϕ =

{
f ∈ H(C) :

∫
C
|f(z)|pe−pϕ(z) dA(z) <∞

}
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with more general weights ϕ and 0 < p < ∞, see [12], which deals with
the so-called doubling weights. These are very general weights that include
all standard weights (i.e., ϕ(z) = −α

2 |z|
2 with α > 0), the so-called Fock-

Sobolev weights, and the weights ϕ for which there are positive constants
m and M (depending on ϕ) such that

(9) m ≤ ∆ϕ ≤M
on C, where ∆ is the Laplacian. It is worth noting that, unlike in these other
Fock spaces, we do not currently know whether Fredholmness of Toeplitz
operators on doubling Fock spaces can be extended to Cn due to the lack of
suitable estimates for the reproducing kernel.

Let f ∈ L∞(C)N×N and consider the block Toeplitz operator Tf on F 2
N =

{(f1, . . . , fN )> : fj ∈ F 2}. As in the previous two function spaces, the
study of Fredholmness of block Toeplitz operators can be reduced to the
scalar-valued case using (6). However, similarly to Tf on A2

N with f ∈
(C(D) +H∞)N×N , the index computation in the Fock space setting cannot
be reduced to the scalar-valued case and it remains an open problem—
perhaps the approach in [6] can be adapted to this case.

A partial answer to the index computation can be derived from a recent
result in [10], in which the Schatten class properties of Hf are described
in terms of integral distance to analytic functions. More precisely, for f ∈
L2

loc(C), define

Gr(f)(z) = inf
h∈H(D(z,r))

(
1

|D(z, r)|

∫
D(z,r)

|f − h|2dA

) 1
2

(z ∈ C),

where D(z, r) is the disk centered at z with radius r. For 0 < s ≤ ∞, we say
f ∈ IDAs if ‖Gr(f)‖Ls(C) <∞ for some r > 0. Notice that the space IDAs

is independent of r. In [10], for 0 < p <∞, it was shown that Hf is in the

Schatten class Sp if and only if f ∈ IDAp. Let f ∈ (L∞(C)∩ IDA1)N×N and

suppose that d̃etf is bounded away from zero on C \ DR for some R > 0.
Then (6) can be used to show that the entries of Tf commute modulo trace
class operators, and hence using the scalar-valued case (see [3]), we conclude
that

indTf = indTdet f = −wind(det f ||z|=R).

This result is unsatisfactory because there are bounded symbols that gener-
ate compact Hankel operators but do not belong to IDA1, and further work
is required as indicated above.

4. Sarason’s product problem

In [16], Sarason proposed the problem of characterizing the pairs of func-
tions f, g in H2 such that the operator TfTḡ is bounded on H2. Related to
the present work, he remarked that the identity

(10) H∗f̄Hḡ = Tfḡ − TfTḡ
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reduces the problem to the question of when H∗
f̄
Hḡ is bounded under the

assumption that fg is bounded. When the boundedness assumption on fg
is dropped, it can be easily seen that the latter problem is more general
(e.g., choose an unbounded f such that Hf̄ is bounded and take g = f).
The following conjecture is often referred to as Sarason’s conjecture: For
two functions f, g in H2, TfTḡ is bounded if and only if

(11) sup
z∈D
|̂f |2(z)|̂g|2(z) <∞,

where ĥ is defined as the Poisson extension of h ∈ L1(T). In fact, Treil
had communicated an argument showing that (11) is necessary to Sarason
(see Comment 6 in [16]) and subsequently Zheng [21] proved that (11) with
2 replaced by 2 + ε is sufficient. Finally, in the well-known unpublished
manuscript of Nazarov [15], it was shown that Sarason’s conjecture fails.

A related conjecture was formulated in the Bergman space setting: For
f, g ∈ A2, TfTḡ is bounded on A2 if and only if

(12) sup
z∈D
|̃f |2(z)|̃g|2(z) <∞.

This conjecture was also shown to be false by Aleman, Pott, and Reguera [1]
using harmonic analysis. However, Stroethoff and Zheng [18] showed that
if we consider the question of whether TfTḡ is both bounded and invertible,
then (11) and (12) provide the right conditions in the settings of H2 and A2,
respectively. More precisely, they showed that for f, g ∈ A2, TfTḡ is bounded
and invertible on A2 if and only (12) holds and inf{|f(z)||g(z)| : z ∈ D} > 0.
They also remarked that a similar approach yields an analogous result for
Toeplitz operators on the Hardy space, that is, for f, g ∈ H2, TfTḡ is
bounded and invertible on H2 if and only (11) holds and inf{|f(z)||g(z)| :
z ∈ D} > 0. It should be noted that the latter result was proved earlier for
a pair of outer functions f, g ∈ H2 by Cruz-Uribe [9] using a characteriza-
tion of invertible Toeplitz operators due to Devinatz and Widom (see, e.g.,
Theorem 2.23 of [7]).

Finally, using a number of product identities, Stroethoff and Zheng [18]
proved that TfTḡ is bounded and Fredholm on A2 if and only if (12) holds
and infz∈D\rD |f(z)g(z)| > 0 for some r < 1. Again, the same is true in the
setting of the Hardy space—just replace (12) by (11).

Above we have considered Sarason’s problem only rather superficially, and
while the product formula in (10) gives a more general problem involving
Hankel operators, the product formulas do not contribute to the two impor-
tant counterexamples. It is also worth noting that, despite the considerable
progress, Sarason’s product problem still remains open in the Hardy and
Bergman space settings.

We now turn our attention to the Fock space, where Sarason’s problem
has a simple solution. Indeed, in [8], for f, g ∈ F 2, it is shown that TfTḡ is
bounded on F 2 if and only if there are a, b, c ∈ C such that f(z) = ea+cz
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and g(z) = eb−cz for all z ∈ C. One of the key observations is that, when

a ∈ C, f(z) = e
1
2
āz, g(z) = e−

1
2
āz, we have

TfTḡ = e
1
4
|a|2Ua,

where Ua is the unitary operator on F 2 defined by

Uaf(z) = f(z − a)ka(z)

and ka is the normalized reproducing kernel of F 2 defined by

ka(z) = e
1
2
āz− 1

4
|a|2 .

As weighted Fock spaces F 2
ϕ have received significant attention recently,

it would be interesting to know whether something similar holds true for
more general weights than those considered in [5, 8]. A possible starting
point may be the weights ϕ whose Laplacians are bounded above and below
(see (9) and [11]). What makes Sarason’s product problem interesting in
this generalized setting is that the reproducing kernel of F 2

ϕ has no explicit

representation (unlike in F 2) and the unitary operators Ua can no longer
be employed. The former obstacle may be possible to overcome with the
use of estimates for the (normalized) reproducing kernel, but overall the
generalized Sarason’s product problem seems nontrivial in generalized Fock
spaces and requires new ideas.

5. Quantization

As an application of product formula (6) and recent work on Hankel
operators, we consider deformation quantization (in the sense of Rieffel)
and one of its essential ingredients involving the limit condition

(13) lim
t→0

∥∥∥T (t)
f T (t)

g − T
(t)
fg

∥∥∥
F 2
t (ϕ)→F 2

t (ϕ)
= 0,

where the Toeplitz operators T
(t)
f and the Fock spaces F 2

t (ϕ) are defined as

follows. For t > 0, we set

dµt(z) =
1

tn
exp

{
−2ϕ

(
z√
t

)}
dv(z)

and denote by L2
t (ϕ) the space of all Lebesgue measurable functions f in

Cn such that

‖f‖t =

{∫
Cn

|f |2 dµt(z)
} 1

2

.

Further, we let F 2
t (ϕ) = L2

t (ϕ) ∩ H(Cn) and define the Toeplitz operator

T
(t)
f on F 2

t (ϕ) by

T
(t)
f = P (t)Mf ,

where P (t) is the orthogonal projection of L2
t (ϕ) onto F 2

t (ϕ).
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Using the dilation Ut : f 7→ f(·
√
t), it can be easily shown that

(14) ‖H(t)
f ‖F 2

t (ϕ)→L2
t (ϕ) = ‖Hf(·

√
t)‖F 2(ϕ)→L2(ϕ),

where H
(t)
f = (I − P (t))Mf is the Hankel operator. To study the limit

condition in (13), define for f ∈ L2
loc, z ∈ Cn, and r > 0,

MO2,r(f)(z) =

(
1

|B(z, r)|

∫
B(z,r)

∣∣f − fB(z,r)

∣∣2 dv) 1
2

where B(z, r) = {w ∈ Cn : |z − w| < r}, fS = 1
|S|
∫
S fdv for S ⊂ Cn

measurable and dv is the usual Lebesgue measure on Cn. Now, let f ∈ L2
loc.

We say that f ∈ VMO if

lim
r→0

sup
z∈Cn

MO2,r(f)(z) = 0.

Further, we say that f ∈ VDA∗ if

lim
r→0

sup
z∈Cn

G2,r(f)(z) = 0.

In [13], it was shown that, given f ∈ L∞, then for all g ∈ L∞, the limit
condition in (13) holds if and only if f ∈ VDA∗.

To verify this, notice first that (6) gives

T
(t)
f T (t)

g − T
(t)
fg = −

(
H

(t)

f

)∗
H(t)
g .

for all f, g ∈ L∞. Let f ∈ VDA∗. Then, for all g ∈ L∞,∥∥∥T (t)
f T (t)

g − T
(t)
fg

∥∥∥
F 2
t (ϕ)→F 2

t (ϕ)
≤ ‖g‖L∞

∥∥∥(H(t)

f

)∗∥∥∥
L2
t (ϕ)→F 2

t (ϕ)

≤ C‖G2,1(f(·
√
t))‖L∞

= C‖G2,
√
t(f)(·

√
t)‖L∞ → 0

as t → 0, where we used the norm estimate for Hankel operators given in
Theorem 1.1 of [13]. For the converse, again by product formula (6), we
have

lim
t→0

∥∥∥H(t)

f

∥∥∥2

F 2
t (ϕ)→L2

t (ϕ)
= lim

t→0

∥∥∥(H(t)

f

)∗
H

(t)

f

∥∥∥
F 2
t (ϕ)→F 2

t (ϕ)

= lim
t→0
‖T (t)

f T
(t)

f
− T (t)

|f |2‖F 2
t (ϕ)→F 2

t (ϕ) = 0,

and it remains to notice that

1

C
‖G2,1(f(·

√
t))‖L∞ ≤

∥∥∥(H(t)

f

)∗∥∥∥
L2
t (ϕ)→F 2

t (ϕ)
,

which follows from the estimate for Hankel operators mentioned above.
Combining the characterization for (13) with the observation that VMO =

VDA∗ ∩VDA∗ gives the main result of [4] (where it was assumed that ϕ(z) =
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1
8 |z|

2 is the standard weight), that is, given f ∈ L∞, then, for all g ∈ L∞, it
holds that

(15) lim
t→0

∥∥∥T (t)
f T (t)

g − T
(t)
fg

∥∥∥ = 0 and lim
t→0

∥∥∥T (t)
g T

(t)
f − T

(t)
fg

∥∥∥ = 0

if and only if g ∈ VMO. Here ‖ · ‖ = ‖ · ‖F 2
t (ϕ)→F 2

t (ϕ). For further details,

see [13].
As for an open problem in this line of work, it would be interesting to

characterize those symbols f ∈ L∞(Cn) for which (13) holds for all g ∈
L∞(Cn) when the operator norm is replaced by the Hilbert-Schmidt (or
other Schatten class) norm.
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