Tropical moist convection an important driver of Atlantic Hadley circulation variability

[thumbnail of Open Access]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.
| Preview
Available under license: Creative Commons Attribution
[thumbnail of HadleyTrpWaves_QJRMS_Tomassini.pdf]
Text - Accepted Version
· Restricted to Repository staff only
Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Tomassini, L. and Yang, G.-Y. orcid id iconORCID: https://orcid.org/0000-0001-7450-3477 (2022) Tropical moist convection an important driver of Atlantic Hadley circulation variability. Quarterly Journal of the Royal Meteorological Society, 148 (748). pp. 3287-3302. ISSN 1477-870X doi: 10.1002/qj.4359

Abstract/Summary

The exact role of moist deep convection and associated latent heating in the tropical Hadley circulation has been debated for many years. This study investigates the connection between moist convection and the strength of the upper-level meridional circulation over the tropical Atlantic, focusing mainly on one particular boreal winter season. There is a close relationship between events of strong organised deep convection and enhanced meridional upper-level wind on many occasions. A process-based analysis of specific events suggests that moist convection impacts Hadley circulation variability on time-scales of days to months through equatorial wave dynamics. Equatorial waves play an important role, both directly by contributing to the Hadley circulation via their meridional wind component and also indirectly by triggering moist convection through low-level convergence. Specific Hadley circulation surge events, short-term, regionally confined intensifications of the upper-level meridional circulation, can be attributed to enhanced organised moist convection and equatorial wave activity in many cases, with implications for trade wind cloudiness. The findings thus elucidate how the mean Hadley circulation is shaped by and composed of temporally and spatially varying convection–circulation interactions.

Altmetric Badge

Item Type Article
URI https://reading-clone.eprints-hosting.org/id/eprint/108601
Identification Number/DOI 10.1002/qj.4359
Refereed Yes
Divisions Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Publisher Royal Meteorological Society
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Search Google Scholar