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A new paradigm for BCI research

Ian Daly and Slawek J. Nasuto and Kevin Warwick!

Abstract. A new control paradigm for Brain Computer Interfaces
(BClIs) is proposed.

BClIs provide a means of communication direct from the brain t a
computer that allows individuals with motor disabilities an additional
channel of communication and control of their external environment.

Traditional BCI control paradigms use motor imagery, frequency
rhythm modification or the Event Related Potential (ERP) as a means
of extracting a control signal.

A new control paradigm for BCIs based on speech imagery is ini-
tially proposed.

Further to this a unique system for identifying correlations be-
tween components of the EEG and target events is proposed and in-
troduced.

1 Introduction

Investigations into the possibility of creating a speech imagery based
BCI are described. Such a BCI allows a degree of control of a com-
puter system by the user without the need for muscle movement.
Thus individuals with motor disabilities would be able to use the
system to communicate and control their immediate environment.

A speech imagery based BCI has several advantages over tradi-
tional BCI control paradigms.

1. It’s a more natural way for the user to communicate. Imagining
words is a much more direct means of communication then imag-
ing hand movements which is then used to control a cursor to
(among other things) select letters to spell a word.

2. No training is required on the part of the user. This reduces setup
time and increases user motivation.

3. It’s amuch more direct means of control for the user. Thus the user
will have a greater level of success and hence be more motivated
to use the system.

Towards this end it becomes necessary to identify correlations
within the EEG between speech imagery of specific words and cer-
tain features of the EEG. Thus a unique solution to identifying these
correlations is outlined.

Such a solution has numerous advantages to other researchers in
the BCI field. Hence our motivation is to create a unique solution for
identifying correlations between EEG features and specific tasks.

In researching such systems current methods within the BCI field
are first identified.

1.1 Current BCIs - background

Traditional methods for interacting with computers are based on mo-
tor movement controlled interfaces. The most common of which are
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the keyboard and the mouse. However an expanding field of cur-
rent research involves methods for directly interfacing between the
brain and a computer, bypassing motor movement control. Such di-
rect interfacing opens up the possibility for additional channels of
communication and environmental control for individuals with mo-
tor disabilities.

It should be noted at this stage that systems interfacing with the
brain can be classified as Brain Machine Interfaces (BMIs), where
BMIs usually refer to invasive interfacing and signal extraction tech-
niques, and Brain Computer Interfaces (BCls), which commonly re-
fer to noninvasive techniques [33]. However to avoid overly verbose
language here we simply refer to all Brain Computer and Brain Ma-
chine Interfaces as BCIs.

BCI components can be broken down into five broad areas, these
are.

1. Signal extraction.

2. Signal processing techniques.
3. Feature extraction.

4. Classification techniques.

5. Control paradigms.

Signal extraction refers to the reading of levels of neurological
activity from individuals with the aim of extracting a useful control
signal for our BCI. This can take two general forms, either invasive
techniques such as implanted electrode arrays or non-invasive tech-
niques such as the EEG.

Signal processing refers to the intermediate steps taken between ex-
tracting a signal and classifying it. The techniques that can be used
here are many and vary significantly depending on the type of signal
extraction method and specific hardware used. They can also depend
on the intended usage of our signal. However the general aim is al-
ways to maximize the signal to noise ratio with respect to the features
of the signal that are the most interesting and usable for our purposes.

Signal types within BCI encompass both the type of signal ex-
tracted and the way that signal is used. There are many different
types of signals that can be extracted from the brain, these include
EEG rhythms such as the mu rhythm (related to motor movement),
neural firing spike trains (from invasive signal extraction methods),
event related potentials and many more.

Classification follows on from signal processing. Classification at-
tempts to determine whether a specific signal belongs to a specific
class group. That is; what command or stimulus presentation a spe-
cific signal feature corresponds to.

There are two paradigms for control of BCI systems; control based
paradigms and the goal based paradigms.

Goal based BCIs present a selection of options to the user. The
user then chooses one of them as their target [33]. For example; in
a BCI speller the subject will be presented with a selection of letters
from which they select the one they want.



Figure 1. Figure 1.0 - Typical EEG recording

Control based BCIs by contrast allow the user to set their own
goals [33]. For example; many motor imagery based BCIs such as
[7] make use of this paradigm. With these systems the user attempts
to position a cursor or prosthetic device in any location. Typically the
cursor or prosthetic’s velocity along one or more directional axis is
controlled by the strength of some neurological signal component.

We can thus say that goal based BClIs are discrete, digital systems
and control based BCIs are open, analog systems.

1.2 Neurolinguistics

Of key importance for attempts to develop a speech production based
BCI is the current research into neurolinguistics. That is, research
into the neurological mechanisms of speech perception and produc-
tion. Therefore the following introduces relevant neurolinguistic con-
cepts.

The key areas in the brain involved in speech are Broca’s area
which lies on the third convolution in the left brain hemisphere and
was first identified by Paul Broca in 1861 [29]. This region has been
shown to display activity during speech production in a number of
studies using different imaging techniques such as EEG [5], fMRI
[9] and various other functional neuroimaging techniques including
the use of the ERP paradigm [31] and [21]. Furthermore studies on
patients with lesions (localized damage to specific areas within the
brain), located in or overlapping with Broca’s area have been shown
to have a correlation with speech motor difficulties [1].

We can thus say that imaging techniques such as the EEG have
been shown to identify activity in specific brain regions during cer-
tain speech production related functions.

Carl Wernicke produced evidence in 1874 showing that an area
of the brain located on the inferior parietal lobe (later to be known
as Wernicke’s area) consistently showed activity during speech per-
ception [4]. Furthermore damage to this area caused speech percep-
tion difficulties in patients. Wernicke extended this work to produce
a theory of a ”language gyrus”, an area of the brain comprising Wer-
nicke’s area, Broca’s area and the pathways of communication be-

tween them. Damage to any region in this area would lead to aphasia
(language disorders).

From this theory naturally emerges the idea of functional local-
ization within the brain. That is, we attribute specific localized areas
specific functions, Broca’s area performs speech production, Wer-
nicke’s area speech perception and together they are responsible for
language. This idea was further strengthened by the formulation of a
much more detailed model of the different specialized areas of lan-
guage localization within the brain by Salomon Henschen in 1926
[15]. This model was based on previous clinical studies of patients
with aphasia and the specific localization of lesions within their
brains. The model has been elaborated on in further studies with even
more specific sites added to the map of the brain developed by Brod-
mann [20].

It’s important to note that there can be said to exist a level of local-
ization of function within the brain. For example damage to Broca’s
area will most likely result in loss of speech production abilities, al-
though the extent of the loss of function and which specific speech
functions are lost is still the subject of much research. It can how-
ever be said with a very high level of confidence that when a subject
speaks a high level of activity will occur within Broca’s area and
when a subject listens to speech a high level of activity will occur
within Wernicke’s area. Furthermore it has been shown that this ac-
tivity can be detected via EEG [6] using wavelet decomposition and
independent component analysis to reveal high levels of EEG activity
within certain components at times corresponding to speech percep-
tion.

Other research into EEG analysis of language has shown a level of
similarity between the mental rehearsal (imagination) of a language
function and it’s implementation [5]. This is akin to the level of sim-
ilarity exhibited between the mental imagery of a motor function and
it’s implementation [19]. It is upon this principle that the majority of
the current BCI research into motor control is based.

Additionally fMRI is shown to exhibit specific activity patterns
during linguistics tasks such as word perception and production.
Analysis of EEG using fuzzy logic to classify wavelet decompo-
sitions of the signal is shown to correctly classify speech imagery
tasks fr three simple nouns (colour names; red, green and blue). This
demonstrates that it is possible to use a range of imaging techniques
to identify neurological processes related to speech perception and
production. Further to this it is possible to correctly identify the per-
ception and imagined production of different words in the EEG.

It is therefore reasonable to hypothesize that a BCI based upon the
imagination of speech production is a feasible area of research.

2 Methods

To investigate speech based BCls it is necessary to first asses whether
stimuli presented to subjects can be recognized from their EEG. A se-
ries of papers ( [25], [28], [26], [27] and [24]), propose a method
that recognizes images presented to subjects from the EEG. These
papers also report internal speech can be recognized from the EEG.
These methods are therefore of great interest. However there are
problems; most notably a validation set is not used to cross-check
results achieved on the training set.

Therefore an investigation is made into the validity of this method
with an independent data set [18]. The results of this investigation
are explained below.

Further to this EEG recordings are made of subjects in the speech
perception and speech imagery condition. This data will help to iden-
tify when subjects percieve/imagine producing specific words. These



recording methods are also discussed below.

A research group headed by Philip Kennedy [30] is attempt-
ing to recognize phonemes produced by a subject with implant
data recorded from a locked in patient. Comparisons with the re-
sults of this investigation are therefore very relevant. The experi-
mental paradigm for investigating the perception and production of
phonemes is directly translatable into researching the perception and
production of words in the EEG and is therefore adapted for this pur-
pose. This is described below.

2.1 Recognition of presented stimuli

The methods presented in a series of papers [25], [28], [26], [27]
and [24] are investigated. A good rate of recognition of words pre-
sented to, and spoken by, subjects (both silently and overtly) is re-
ported [25]. Similarly high recognition rates for sentences presented
orally to the subject and words presented visually are reported to be
high [28].

Additionally high recognition rates for images presented to the
subjects are described [26] and [27]. A high level of invariance in
the brains representation of words, sentences and stimuli is also de-
scribed [26], [27] and [24]. This is contrary to common understand-
ing of the brains representation of words and stimuli which states that
the representation of such stimuli within the brain signal exhibits a
large degree of variance over time and over different subjects [22].

As we recall from neurolinguistics research there exists a level of
localization within the brains representation of linguistic functions.
The extent of this localization is not however clearly defined. Repre-
sentation of cognitive states can therefore be considered to be variant.
This means it’s representation varies within a loosely defined physi-
cal region of the brain.

2.1.1 Operations

The method performs the following operations.

1. Templates are generated from recordings of the subjects EEG
while exposed to a stimuli.

2. Waveforms recorded during a series of stimuli presentations are
taken as a training set.

3. Training and template waveforms are pass-band filtered.

4. If the smallest Euclidean distance is between the template and a
waveform for the same stimulus as that template then this is taken
as a correct recognition.

5. Steps 2 to 6 are performed across a set of waveforms.

6. For each pass band in the range of 1 to 40Hz a recognition rate is
obtained. Hence the frequency range that gives the highest recog-
nition rate for the target stimuli can be seen.

There are some problems with these methods as they have been
presented. The most crucial of these is results are only presented for
the training data. It is well understood in machine learning that good
results in the training set do not necessarily translate to good results
when applied to an independently generated validation set.

Therefore an attempt is made to validate these methods with an
independent data set. Data is taken from the EPFL data sets used by
Ulrich Hoffmann [32] for this purpose.

2.1.2 Results

The confusion matrices in Figure 1.0 show the presented stimuli
against the classification results.

Training data

Target stimuli

TV Phone  Lamp Door Window  Radio
TV 205 16 0 12 11 12
§ Phone 13 206 0 8 15 14
2| Lamp 2 1 251 0 1 1
£ | Door 11 17 1 204 13 10
Z| Window 6 14 3 9 212 2
[ Radio 15 11 1 9 13 207

Figure 2. Figure 2.0 - Confusion matrix results for training set

Verification data
Target stimuli

TV Phone  Lamp Door Window  Radio
TV 63 50 4 52 2 45
T% Phone 54 58 5 47 42 50
2| Lamp 10 10 212 6 12 6
< | Door 48 49 6 53 39 61
Z| Window 50 49 9 44 52 52
“| Radio 46 39 7 49 56 39

Figure 3. Figure 3.0 - Confusion matrix results for verification set



When applying these trained parameters to a validation set a much
lower level of recognition is achieved for all stimuli except the third
stimulus (a picture of a lamp). The lamp is recognized at a statisti-
cally significant rate of p j 0.01. However the other stimuli where
recognized at a rate of statistical significance of almost p = 1.0. Thus
they are recognized at the same rate had no classification been occur-
ring and the results are being just picked randomly.

The recognition of one stimuli out of 6 in the majority of cases in-
dicates that there may be some potential from this method. However
recognition of 1 out of 6 stimuli is not the ideal case.

2.2 Word perception/production

EEG is recorded from 20 subjects during the speech perception and
the internal or covert speech production condition. This is done with
the following aims.

1. Provide a large data set to act as a test bed for further research.

2. Identify any unique features related to subjects listening to lan-
guage.

3. Identify any unique features related to subjects producing lan-
guage.

4. Identify if we can distinguish between different words within the
EEG when a subject is listening to or producing specific words.

This extends the research into methods for identifying visual stim-
uli presented to a subject. However a different approach will be taken
to analyzing the data from that presented in [25], [28], [26], [27]
and [24].

The experimental paradigm used for recording this data is based
on the method described in [10] and originally proposed by Philip
Kennedy’s team. This ensures an accepted experimental paradigm
is used and allows meaningful comparison of results with those ob-
tained by Philip Kennedys group.

The experimental paradigm can be broken down into the following
steps.

1. A listen instruction is presented to the subject. This is a pre-
recorded voice to ensure it is identical across trials and subjects’it
takes the form “Listen”.

2. One stimulus audio waveform from a set of 6 different pre-
recorded nouns is presented to the subject.

3. A pre-recorded speak instruction will be presented to the subject.
This takes the form ”Speak”.

4. The subject then has a fixed period of time to “speak” the stim-
uli they where presented. All speech takes place internally, i.e.
silently. Subjects are instructed to try not to make any muscle
movements or blink during the course of the experiment so as to
minimize interference from EMG activity and blink artifacts.

Stimuli is presented in random order from a list of pre-recorded
voices. This ensures that the same stimuli retain the same character-
istics across multiple trials. The randomized order ensures that sub-
jects don’t become overused to hearing a particular stimulus or able
to predict future stimuli.

Stimuli is in the form of individual words of similar linguis-
tic characteristics (short nouns). The experimental paradigm allows
recording of both speech perception and speech production within
the same trial.

Each trial lasts 5000ms. Trials are run consecutively in a session
with each trial presenting different random stimuli from a pre-defined

set. Stimuli presented in each trial is recorded along with additional
relevant notes.

After every three stimulus presentations a pause is given. The sub-
jects are instructed to use the pause to blink and adjust their position
to keep themselves comfortable. This is an addition to the method
in [10] and is added to account for the fact that the subjects need to
move and blink occasionally to maintain comfort and alertness.

Trial sessions last 6 minutes to ensure subjects do not become
overly tired or bored. There where 15 sessions in total. Frequent
breaks between sessions are offered to the subjects. All the sessions
for a single subject occurred on the same day.

3 Ongoing work

Ultimately a correlations looked for between the linguistics stimuli,
the imagination of the production of these stimuli and the neurolog-
ical activity as seen through the EEG that is time-locked to these
events. Therefore of key importance to developing a speech BCI is
producing a method to automatically identifies correlations between
features of the EEG and time-locked events. An outline of our unique
proposed method is described below.

Much of this research aims to produce greater understanding of
classification methods and the way language is processed in the
brain.

3.1 Data cleanup

As a pre-processing step it is necessary to remove eye blinks and
EMG artifacts from the data. Artifact data arises from electrical ac-
tivity with other causes to neurological activity. It often has little or
no correlation to the neurological events we’re interested in.

Blinks and EMG data both have large profiles in the signals time
domain and need to be removed before many methods, such as the
ERP, can become meaningful. Such removal schemes must meet the
following criteria.

1. They must be consistent across different data sets.

2. They must be automatic.

3. They must have a high accuracy rating. Too many false positives
or false negatives reduces the confidence with which the final data
set can be treated.

Methods being investigated for cleaning of the EEG data include
the blink filter described in [23] and investigations into other blink
and EMG artifact filtering techniques such as linear trends and ICA
based methods.

3.2 Feature extraction

There are many techniques available for feature extraction. These
include Principal Component Analysis (PCA) [13] which attempts
to identify the features of a given set of signals with the maximum
variance. Thus PCA can be used in conjunction with other feature ex-
traction methods to help identify the most suitable features for clas-
sification across different stimulus presentations. PCA has been used
widely in BCI research and with some considerable success such as
in [14] and [16].

Additionally Independent Component Analysis (ICA) has been
used in neurolinguistics with some success to identify the elec-
trode channels with the highest variance when subjects are imagining
phonemes [6]. ICA is similar to PCA but assumes a functional inde-
pendence between the different components of a system.



Other methods include variants on the Fourier transform to trans-
late the signal from the time domain to the frequency domain al-
lowing the power of frequency components within the signal to be
revealed. Such techniques can help reveal frequencies that have the
largest variance cross different stimulus presentations.

Alternatively the wavelet decomposition acts to highlight certain
time-frequency components of the signal by convolving the original
signal with a wavelet basis function. Such techniques can help re-
veal local time-frequency specific information that is lost when using
Fourier methods.

Both these signal decomposition schemes are considered for fea-
ture extraction from the data.

3.3 Classification

Cleaned EEG data is classified into groups according to the stimuli
being presented to, or produced by, each subject during a trial. There
are various methods that have been used to classify data in BCI sys-
tems. These included Bayesian classifiers as used in [2] and [12],
Hidden Markov Models as used in [11] and [17], Support Vector
Machines [3] and [8] and Neural Networks [12].

Hidden Markov Models (HMMs) have been used to successfully
classify overt speech from recorded sound waves. This naturally sug-
gests they could be suitable for classification of the neurological sig-
nals corresponding to speech as recorded from the EEG.

Furthermore HMMs model a stochastic process via a series of
probabilistically connected states where each state generates an ob-
servation, or signal component based on a probability distribution.
This makes them ideally suited to modeling stochastic processes with
an underlying probabilistic process such as overt audible speech.

EEG signals are known to be non-stationary in nature [22] ex-
hibiting a large degree of variance over different subjects. However
if there is an underlying probabilistic model which produces these
stochastic signals then a HMM could be a good tool to help identify
it and subsequently classify it.

When training a HMM the model that best describes the system is
the ideal case. This means identifying the model parameters which
give the highest probability of the sequence of observations made
from the system. In the case of the recorded EEG data the best HMM
is the model that has the highest probability of coming up with iden-
tical observation sequences to those seen in experimentation.

This is known as the optimization problem and is non-trivial.
When the optimal model for the signals representing a given stim-
ulus has been found via optimization this model can subsequently
be applied to classification of other signals that relate to the same
stimulus.

4 Automated feature correlation identification

A unique solution is proposed here for use in identifying correlations
in the EEG with speech imagery related tasks.

A combination of ICA and HMMs is used to model the Indepen-
dent Components (ICs) of a signal time locked to stimulus presenta-
tion / speech imagery. ICs with a large degree of correlation to events
are modeled with HMMs. This combination of techniques has sev-
eral advantages.

1. ICA can be used to identify components of a signal that have a
large correlation with time locked events. Thus it can be used to
select the components that are most suitable for classification.

2. EEG signals are inherently variant and stochastic in nature. There-
fore by extension components of these signals are also variant in
nature. Thus a probabilistic model to classify the most suitable ICs
of a signal is well suited to our needs.

3. Automated means for identifying and classifying correlations be-
tween time locked events and EEG components will allow for ef-
ficient identification of suitable components within the EEG for a
speech imagery BCIL.

Towards this end the following goals are to be met.

1. Suitable methods for the identification of optimal HMMs are to be
identified.

2. Automated EEG artifact removal methods are to be developed.

3. Means for identifying correlations between Independent compo-
nents and EEG events are to be developed and applied.

5 Summary

A new BCI paradigm has been proposed which uses the neurologi-
cal processes related to speech perception and production as a more
natural and intuitive way to interact with a computer. Such a sys-
tem presents a potentially significant improvement over current BCI
systems in terms of ease of use for the intended recipients.

A unique method for identification and classification of these sig-
nals is also proposed. Such a system uses ICA to identify potentially
useful components of a signal that have a high correlation with time
locked events of interest. Hidden Markov Models are then used to
model these components and subsequently classify them.

As an initial step a rigorous investigation is conducted into meth-
ods proposed to identify and classify EEG data with a high corre-
lation to time locked events such as image and word presentations
(18]

The progression of this work aims to develop automated meth-
ods for component identification and classification using ICA and
HMMs.

Such efforts will greatly assist other research efforts in the field of
biomedical signal processing.

6 Conclusion

A summary of the research into a new paradigm for BCI systems us-
ing a unique new method for correlation identification and classifica-
tion is presented. Relevant background material has been introduced
and relevant results obtained in the course of this research program
are also presented.
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