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Brain and brain-heart Granger
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2Department of Biomedical Engineering, School of Biological Sciences, University of Reading,
Reading, United Kingdom, 3Center for Neuroscience and Integrative Brain Research (CENIBRE),
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In this exploratory study we apply Granger Causality (GC) to investigate the

brain-brain and brain-heart interactions during wakefulness and sleep. Our

analysis includes electroencephalogram (EEG) and electrocardiogram (ECG)

data during all-night polysomnographic recordings from volunteers with

apnea, available from the Massachusetts General Hospital’s Computational

Clinical Neurophysiology Laboratory and the Clinical Data Animation

Laboratory. The data is manually annotated by clinical staff at the MGH

in 30 second contiguous intervals (wakefulness and sleep stages 1, 2, 3,

and rapid eye movement (REM). We applied GC to 4-s non-overlapping

segments of available EEG and ECG across all-night recordings of 50

randomly chosen patients. To identify differences in GC between the different

sleep stages, the GC for each sleep stage was subtracted from the GC

during wakefulness. Positive (negative) differences indicated that GC was

greater (lower) during wakefulness compared to the specific sleep stage.

The application of GC to study brain-brain and brain-heart bidirectional

connections during wakefulness and sleep confirmed the importance of

fronto-posterior connectivity during these two states, but has also revealed

differences in ipsilateral and contralateral mechanisms of these connections.

It has also confirmed the existence of bidirectional brain-heart connections

that are more prominent in the direction from brain to heart. Our exploratory

study has shown that GC can be successfully applied to sleep data analysis and

captures the varying physiological mechanisms that are related to wakefulness

and different sleep stages.
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sleep, electroencephalogram (EEG), electrocardiogram (ECG), Granger causality,
connectivity
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Introduction

Sleep is a complex physiological process, with an essential
role in maintaining normal cognitive functions and facilitating
memory processes. The process of sleep affects the entire body,
which is an integrated network of sub-systems, each with
their own internal regulatory mechanisms, interacting with
each other to maintain normal physiological functions. Sleep
is sub-classified into two main types: non-rapid eye movement
(NREM) and rapid eye movement (REM) sleep. The former
is subdivided further into three stages: relaxed wakefulness
(S1), light-sleep (S2) and slow-wave deep sleep (S3) (Nayak
and Anilkumar, 2022). Each stage is characterized by different
physiological activity in the central and autonomic nervous
systems, but a common way of identifying and classifying sleep
into different stages utilizes the distinct EEG patterns observed
in each one. In the awake stage, EEG is characterized by fast low-
voltage frequencies, also known as beta rhythm (13–24 Hz). As
we transition to falling asleep and NREM sleep dominates, beta
waves are progressively substituted by slower frequency waves.
Before the commencement of S1 stage, alpha waves (8–12 Hz)
with some beta waves appear. S1 shows the disappearance of
the alpha waves with medium frequency amplitude waves taking
over. During this stage, alerting the person can lead to alpha
wave recurrence. S2 shows appearance of K-complexes, which
have a V-shaped pattern, alongside theta waves (4–7 Hz). S3
is characterized by changes from theta waves to the slower
and larger delta waves (1–4 Hz). Following the NREM stage,
REM sleep occurs, which has characteristic saw-tooth waves
intermittently with low-voltage, random fast waves similar to the
beta waves seen when awake (Nayak and Anilkumar, 2022).

Even though sleep affects the entire brain, it does not
necessarily begin simultaneously in all cortical areas. It has
been shown that ‘sleep is not only a global phenomenon but
also a local brain process with a different regional involvement
of neuronal populations’ (Werth et al., 1997). This is also
evident in changes in brain connectivity that have been
found to characterize different sleep stages. During light sleep
(N2), the increase in interdependent EEG signals is related
to increased temporal synchronizations. As an example, as
we progress into deeper stages of sleep, Synchronization
Likelihood (SL) is reduced, indicating reduction in recurrence
of temporal signal patterns. By the time the stage of sleep
gets into REM, the brain presents with more interdependent
signals that decrease temporal synchronicity at this stage,
the brain has more complex interactivity (Migliorelli et al.,
2009). There is also a functional dissimilarity between the
REM and NREM sleep stages (Dimitriadis et al., 2008) as
slow wave activity occurs predominantly in NREM, which is
caused by quick alterations in hyperpolarized and polarized
states of neurons (Valderrama et al., 2012). As a result,
the disintegration of brain complexity occurs due to the
inability of the thalamocortical system to engage in complex

patterns (Sarasso et al., 2014). Using EEG with concurrent
transcranial magnetic stimulation (TMS), it has been found
that effective connectivity breaks down during NREM sleep
compared to quiet wakefulness (Massimini, 2005). Regarding
the state of dreaming or REM sleep stage, the recovery of
conscious experience with cortical pattern activation is similar
to wakefulness (Sarasso et al., 2014).

Growing evidence support that sleep EEG is characterized
by wide frequency-specific and state-specific differences across
the fronto-posterior brain axis (Werth et al., 1997; Ferrara
et al., 2002). In the study of Lee et al., higher Phase-Locking
Value (PLV) was observed between electrodes in the alpha
and beta bands in conscious experience compared to no
conscious experience with topographical analysis revealing a
higher clustering coefficient in parietal-occipital regions in delta
band in non-conscious experience than conscious experience
(Lee et al., 2009). Describing the transition from wakefulness
to sleep, the propagation of nerve signals is such that during
deep sleep, slow oscillations sweep the cortex in an antero-
posterior direction (Massimini et al., 2004). Slow rhythms
are more prominent in the fronto-parietal lobes compared
to the occipital lobes which supports the notion that spread
of synchronizing signals from associative pre-frontal zones to
posterior zones have an important role in wakefulness-sleep
transition (De Gennaro et al., 2004).

Other measurements of brain function that have been used
in the study of the awake-sleep cycle include blood oxygen
level dependency detected from functional magnetic resonance
imaging (fMRI), to look at connections within the brain during
wakefulness and sleep. In a study by Lv et al., graph theory
was used to analyze such data during wakefulness and sleep,
and found that there was decreased connectivity between the
paralimbic-limbic cortex and the neocortical system and the
centrencephalic structure during sleep (Lv et al., 2015). This
finding shows that there is a suppression in the interference
of the external environment within the brain during sleep as
compared to wakefulness, supporting the existence of a ‘defense
mechanism’ in place to prevent external interference during
sleep. Another study looked into using single pulse electrical
stimulation to monitor differences in brain connectivity during
sleep as compared to wakefulness (Usami et al., 2019). An
increased propagation to the parietal lobe was found during slow
wave sleep when the frontal lobe was stimulated as compared to
wakefulness. During REM sleep it was found that there was an
increase in parietal lobe propagation and a decrease in frontal
lobe propagation when stimulated, respectively.

In addition to changes in central nervous system activity, the
autonomic nervous system (ANS) controls and regulates many
biological processes during sleep. As the transition happens
between wakefulness and NREM sleep, the parasympathetic
drive increases while the sympathetic drive decreases. This trend
continues along the transition from NREM to REM sleep with
the only exception being in phasic REM sleep (where there is

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2022.927111
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-927111 September 9, 2022 Time: 15:20 # 3

Abdalbari et al. 10.3389/fnins.2022.927111

a slight increase in the sympathetic tone) (Lee-Chiong, 2008).
During NREM sleep, there is a drop in the heart rate as well
as a decline in the mean arterial pressure by 10% compared to
that of wakefulness. This is known as the dipping phenomenon
and can be attributed to the decrease in sympathetic drive
to the heart (Silvani and Dampney, 2013). The nucleus of
the solitary tract located in the medulla, is what regulates
the sympathetic outflow to the heart (Andresen et al., 2006).
Furthermore, circadian rhythm changes are believed to be the
reason behind the increase in parasympathetic effects on cardiac
activity (Burgess et al., 1997), an example of these changes
is night time reduction in catecholamines levels (Lee-Chiong,
2008). Along with cardiovascular changes during sleep, there is
a drop in the respiratory rate. Respiration is driven metabolically
during sleep and the controlling factor is the Bötzinger complex,
a cluster of neurons located in the rostral ventrolateral medulla.
The Bötzinger complex receives projections form the nucleus of
the solitary tract (Spyer and Gourine, 2009).

Heart rate variability (HRV) is a universally accepted term
used to describe both the variations in heart rate and R to R (RR)
intervals (Task Force of the European Society of Cardiology and
the North American Society of Pacing and Electrophysiology,
1996). HRV changes during different stages of the sleep wake
cycle and HRV data correlates strongly with the hypothesis
that adverse cardiovascular events occur predominantly early
in the morning shortly after awakening. This is because the
sleep-to-wake cycle transition in the morning has the highest
activation towards the sympathetic nervous system compared
to the rest of the day. This is shown by the increased low
frequency to high frequency ratio (LF:HF), which is interpreted
as an increase in the sympathovagal balance (Boudreau et al.,
2013). Changes in autonomic function, which are mirrored
in HRV (Kamen et al., 1996), can be evaluated through
the use of Poincaré plots (Ardissino et al., 2019). Poincaré
plots provide non-linear, geometrical representations of HRV
dynamics over a period of time. The width (SD2) of the Poincaré
plot reflects parasympathetic activation, while its length (SD1)
reflects sympathetic antagonism to vagal tone. Furthermore,
the SD1/SD2 ratio is analogous to the spectral measure of
LF/HF ratio, indicating sympathovagal balance. Despite the
popularity of time-frequency HRV analysis, it has been shown
that this is susceptible to high levels of respiratory noise
(Penttilä et al., 2001). On the contrary, Poincaré plots are not
as susceptible to respiratory noise compared to other methods
of HRV analysis, while correlating directly with spectral data
(Brennan et al., 2001).

Granger Causality (GC) is another measure that can be
used to capture bidirectional connectivity not only in a single-
system (EEG), but also across systems (e.g., EEG–ECG). Despite
the popularity of GC in neuroscience applications, including
in the study of physiological states similar to sleep, such
as anesthesia (Nicolaou et al., 2012; Pullon et al., 2020),
there are only a handful of studies applying it in sleep.

An example is the study by Hartmann et al., where GC
was used to study the brain-heart interactions during the
cyclic alternating pattern of non-rapid eye movement sleep
(Hartmann et al., 2021). According to the authors, their study
provided the first evidence on the causal interplay between
cortical and cardiovascular activities during cyclic alternating
pattern. Faes et al., also present brain-heart causality across
different frequency ranges during sleep in healthy subjects
(Faes et al., 2015, 2014). In this exploratory study we apply
GC to investigate the differences in brain (EEG) and brain-
heart (EEG-ECG) connectivity during wakefulness and sleep,
in patients with sleep apnea. We hypothesize that GC will be
able to capture physiological mechanisms of brain-brain and
brain-heart changes that characterize wakefulness and sleep, as
well as provide complementary information to measures that
are commonly applied to sleep analysis (e.g., non-directional
correlation, coherence etc.).

Materials and methods

Dataset

The data used in this study is available online via
PhysioNet (Goldberger et al., 2000), as part of the “You
Snooze You Win - The PhysioNet Computing in Cardiology
Challenge 2018” [(Ghassemi et al., 2018); see Data availability
statement for access details]. The data has been collected
during polysomnographic sleep studies to detect sources
of arousal (non-apnea) during sleep and was provided by
the Massachusetts General Hospital’s (MGH) Sleep Lab, the
Computational Clinical Neurophysiology Laboratory and the
Clinical Data Animation Centre. The entire dataset comprises
1,985 subjects monitored at the MGH Sleep Lab for the
diagnosis of sleep disorders. A variety of physiological signals
were recorded as the subjects slept through the night:
EEG, ECG, electrooculogram, electromyogram, and oxygen
saturation. Signals were sampled at 200 Hz (with the exception
of oxygen saturation, which was subsequently resampled to
200 Hz). The EEG was recorded using the sleep EEG montage
recommended by the American Academy of Sleep Medicine
at 6 standard international 10/20 placement locations with
mastoid references (M1, M2): F3-M2, C3-M2, O1-M2, F4-
M1, C4-M1, and O2-M1. ECG was recorded below the
right clavicle near the sternum and over the left lateral
chest wall. Annotations of 30-second segments under one
of five sleep stages (wakefulness, stage 1, stage 2, stage 3,
and REM) and “undefined” were made by clinical staff at
the MGH, according to the American Academy of Sleep
Medicine manual for the scoring of sleep. As the dataset
was provided as part of a competition challenge, sleep stage
annotations are available for only half of the records (994).
In this study we analyzed EEG and ECG data from 50
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randomly chosen subjects extracted from the records that are
annotated.

Granger causality

Initially a notion introduced by Wiener (1956), it was
later formalized by Granger (1969) in what is today known
as GC. It is used to infer the directionality and dynamics
of influence between two (or more) sources. In its simplest
definition, a process, X, is said to Granger-cause another
process, Y, if the past of X assists in the prediction of
the present of Y beyond the degree by which the present
of Y is predicted by the past of Y alone. The traditional
formulation relies on the use of autoregressive (AR) models
of order p for the linear prediction of each variable,
X = [x (1) , x (2) , ..., x(T)] and Y =

[
y (1) , y (2) , ..., y(T)

]
(where T: number of time-series samples) using information
from its own past only (univiate AR – Equation 1) or using
information from the past of both variables (bivariate AR –
Equation 2). The GC is then estimated by comparing the
variance of the residuals from the two models (Equation 3).

x (t) =
p∑

i = 1

aix(t − i)+ εx(t) (1)

x (t) =
p∑

i = 1

bix(t − i)+
p∑

i = 1

ciy(t − i)+ εxy(t) (2)

GC
(
y→ x

)
= ln

var(εx)

var(εxy)
(3)

In the above equations, a is the estimated univariate
AR model parameter; b and c are the estimated bivariate
AR model parameters; εx (εxy) is residual noise for
the univariate (bivariate) AR model; and var(.) is the
variance. Equation 3 is an estimate of the GC in the
direction y→ x.

From the GC definition, it can be seen that GC is always
positive and represents the amount by which the past of one
variable improves the prediction of another variable. If there is
significant GC, then it is said that “Y is causal to X,” and vice
versa if in the above equations the roles of X and Y are switched.
GC becomes zero if there is no improvement in prediction.
In this traditional definition of GC it can be seen that causal
effects resulting either from direct or indirect relationships
with other processes are not taken into account. Thus, the
traditional definition of pairwise GC has been extended to
include multivariate AR models that include observations from
additional variables, non-parametric approaches, as well as
models that capture non-linear relationships (Nicolaou and
Constandinou, 2016).

In this work we use the multivariate autoregressive
(MVAR) GC as implemented in the Matlab R© toolbox eGC

(Schiatti et al., 2015). The order of the MVAR model was
estimated using both the Akaike and Minimum Description
Length criteria.

Analysis methodology

(1) For each subject, the EEG and ECG records were bandpass
filtered from 0.1 to 40 Hz, using an FIR filter (filter order
35, Hamming window). The filtered signals were then split
into non-overlapping 4-s segments.

(2) Each segment was further pre-processed by demeaning,
first order differencing and testing for stationarity
(Kwiatkowski-Phillips-Schmidt-Shin test) (Kwiatkowski
et al., 1992). Any segment that was not stationary was
excluded from further processing.

(3) GC was estimated for each 4-s segment and only GC values
that were statistically significant were kept for subsequent
analysis. Prior to GC estimation, the AR order, p, was
estimated for all segments, for p = 1, 2, ..., 30. Based on
both the Akaike and MDL criteria, an AR order of 20 was
chosen for GC estimation.

(4) The average and grand average significant GC (statistical
significance estimated at 95% significance level using Fisher
F-test, as provided in the eGC toolbox (Schiatti et al., 2015))
corresponding to each sleep stage was obtained for each
subject and over all subjects respectively. Segments that
corresponded to arousal due to apnoea were not included
in the analysis.

(5) To identify differences in GC between the different sleep
stages, the GC for each sleep stage was subtracted from
the GC during wakefulness. Positive (negative) differences
indicated that GC was greater (lower) during wakefulness
compared to the specific sleep stage. This allowed us
to easily identify underlying changes in GC that took
place during sleep compared to wakefulness. The resulting
differences were plotted in topographic maps using custom
modifications of functions for visualising EEG brain
network provided via Matlab R© Central File Exchange
(Johann, n.d.).

(6) We also estimated GC between all 6 EEG channels
and ECG at wakefulness and each sleep stage, to
characterise how brain-cardiovascular relationships differ
during wakefulness and sleep.

Results

The GC of the EEG and ECG time series was estimated for 50
randomly chosen participants. Our random sample comprised
33 male and 17 female subjects (maintaining the 2/3 male, 1/3
female ratio of the initial training dataset), with mean age 53.5
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years of age (standard deviation 12.3). Across all 50 subjects,
4.3% of the data were excluded from the analysis due to non-
stationarity. The remaining 95.7% of data that were available for
the analysis comprised a total of 363.8 h.

Figure 1 shows the significant differences in GC between
wakefulness and all sleep stages. The line thickness is
proportional to the value of the GC difference (thicker
lines represent larger differences). Dashed (solid) lines represent
negative (positive) differences, i.e., GC during wakefulness
is lower (higher) than GC during the specific sleep stage.
As expected, wakefulness and light sleep have very few
significant differences in the GC patterns. However, as the
state moves progressively from wakefulness to deeper sleep and
REM sleep, there are significant differences in bidirectional
fronto-posterior GC. There appears to be a sustained positive
GC difference (i.e., decrease during sleep compared to
wakefulness) from frontal to posterior areas contralaterally,
whose strength remains approximately constant in both
NREM and REM sleep compared to wakefulness. In contrast,
a negative (i.e., increase during sleep compared to wakefulness)
bidirectional fronto-posterior GC difference is observed
ipsilaterally, with the strength of this difference increasing
with deepening NREM stage, and reaching a maximum during
REM sleep. Smaller, but still significant, contralateral increases
are also observed between centro-posterior connections,
mostly in the direction central→posterior. An interesting
observation is the significant decrease in motor connectivity
(C3-C4), which is distinct for REM sleep stage compared to
wakefulness.

Even though the increase in brain GC during sleep is
bidirectional, the increase is larger in the fronto→posterior
direction. This is shown in Figure 2, which depicts the
differences in fronto-posterior interactions during each
sleep stage compared to wakefulness. Negative (positive)
values indicate increase (decrease) of GC during the
specific sleep stage compared to wakefulness. Thus,
bidirectional ipsilateral fronto-posterior GC increases
progressively during sleep, but increase is larger in the
fronto→posterior direction. In contrast, a progressive decrease
is observed contralaterally in fronto→posterior GC, with
corresponding connectivity in the opposite direction not being
significant.

Figure 3 shows the significant GC between each EEG
channel and ECG for wakefulness and sleep. There is significant
bidirectional EEG-ECG causality for all sleep stages and
wakefulness, with GC(F3-ECG) having a much larger value
compared to all other GC values. With the exception of
C3-ECG, GC is higher in the direction EEG→ECG for
wakefulness, NREM and REM sleep. There is a clear pattern
of GC over the left hemisphere and ECG, compared to
the right hemisphere. The GC shows a progressive decrease
from wakefulness through to lighter and then deeper NREM
stages, and is lowest for REM sleep. This pattern is more

prominent in the direction ECG→EEG. No clear pattern
can be discerned for EEG-ECG connectivity over the right
hemisphere.

Discussion

Fronto-posterior EEG connectivity decreases contralaterally,
but not ipsilaterally, during sleep. Wakefulness and light sleep
have very few significant differences in GC patterns. This is
expected as NREM stage 1 sleep is a transition period from
wakefulness. Even though the brain and heart activity begin to
slow down during stage 1 sleep, the brain activity still resembles
that of a relaxed but awake state, and people who are woken
up during stage 1 sleep will often report that they have not
been asleep. The increasing negative difference in ipsilateral
fronto-posterior GC indicates that GC increases progressively
as we move into deeper NREM stages and subsequently into
REM sleep. This implies that, ipsilaterally, not only there is
no disconnection between frontal and posterior regions during
sleep, but there is an increase in their bidirectional connectivity
progressively from stages 1–2 to deep sleep and to REM sleep.
However, the increase is larger in the fronto-posterior direction
compared to the posterior-frontal direction. In contrast, the
positive sustained difference contralaterally from frontal to
posterior regions, as well as over the occipital cortices, suggests
some form of disconnection (decreased connectivity) between
the two hemispheres during sleep compared to wakefulness.
The strength of this disconnection appears to be independent
of the sleep stage. These selective increases and decreases in
synchronized activity of specific brain structures are thought
to be driving the EEG activity patterns observed during REM
sleep (Reinoso-Suárez et al., 2001). Despite the work of Faes
et al. also applying GC to brain and heart time series obtained
during sleep from healthy subjects, direct comparison with our
findings is non-trivial: Faes et al. present GC strength between
different frequency ranges across all EEG locations (Faes et al.,
2015, 2014). However, they too report significant information
transfer during whole-night polysomnographic recordings, both
within the brain network and the brain-heart system.

Different methods of connectivity can contribute
complementary information to the field. For example, similar
ipsilateral increase in fronto-posterior connectivity is reported
by Salih et al., who studied EEG connectivity (coherence and
Directed Transfer Function) during awake and non-REM
sleep (Salih et al., 2009). These findings are also in line with
those reported by Massimini et al., and de Gennaro et al.,
describing synchronizing oscillations that, during sleep, sweep
the cortex in the anterior to posterior direction, and which
have an important role in wakefulness-sleep transition (De
Gennaro et al., 2004; Massimini et al., 2004). Specifically, in
de Gennaro et al., changes in bidirectional fronto-posterior
Directed Transfer Function (DTF) during transition to sleep
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FIGURE 1

Topographies of significant GC differences between wakefulness and sleep [(A) Stage 1, (B) stage 2, (C) stage 3, (D) REM], at F3, F4, C3, C4, O1,
and O2 electrode locations. Results are averaged over all 50 participants. Dashed lines indicate negative differences, i.e., GC during the specific
sleep stage is significantly greater than GC during wakefulness. Solid lines indicate positive differences, i.e., GC during the specific sleep stage is
significantly lower than GC during wakefulness. The line thickness corresponds to the strength of the difference, i.e., thicker lines represent
larger differences compared to thinner lines.

(De Gennaro et al., 2004). Namely, an increase in frontal to
parieto-occipital DTF is observed at sleep onset, compared
to the pre-sleep state. The authors also report a decrease in
corresponding parieto-occipital to frontal DTF. In both cases
the changes are observed across all frequency ranges studied
(δ/θ, α, σ, β). The EEG channels used by de Gennaro et al.
are along the midline (Fz, Pz, and Oz), hence we cannot
directly compare with our own work that captures changes
across the left and right hemispheres. We also report changes
across all sleep stages, as opposed to the wake-sleep transition.
Related work by Salih et al. shows bidirectional fronto-posterior
connectivity that is sustained during sleep, with connectivity in

posterior→frontal direction increasing from light to deep sleep,
and decreasing in the opposite direction (Salih et al., 2009).
Despite the above, frontal→posterior connectivity remains
higher compared to the opposite direction.

Another complementary work is by Bartsch et al., who
report Time Delay Stability (non-directional connectivity
measure based on time-delayed correlation) in brain-brain,
as well as brain-heart networks during sleep (Bartsch et al.,
2015). The authors report brain-brain interactions of similar
topology during wakefulness and light sleep, cross-hemisphere
interactions (Fp1-O2, Fp2-O1) that are not as pronounced
during deep sleep and REM sleep, decrease in O1-O2
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FIGURE 2

Fronto-posterior significant average GC differences between wakefulness and sleep stages S1, S2, S3, and REM. Negative values indicate GC is
greater during sleep compared to wakefulness, and vice versa. In the posterior→frontal direction only the contralateral GC was significant,
while in the fronto→posterior direction both contralateral and ipsilateral connectivity were significant.

FIGURE 3

Significant average GC between brain-heart at different EEG locations and across wakefulness and sleep. GC is significant in both directions, but
the dominant direction of interaction is brain→heart, with the exception of C3.

connectivity during sleep compared to wakefulness, and lower
C3-C4 connectivity during REM compared to wakefulness.
However, there are also some important differences, such as

the ipsilateral fronto-posterior connectivity, which Bartsch et al.,
report as decreasing during light and deep sleep, and increasing
during REM sleep but still remaining at a lower level compared
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to wakefulness. This is in contrast to our findings, which
show a sustained increase in ipsilateral bidirectional fronto-
posterior connectivity (Figure 3). This can be interpreted in
a complementary manner when considering that the TDS
measure is based on nondirectional correlation, while the GC
measure we use is causal and bidirectional and, thus, more
specific (correlation is not causation). Another difference is that
TDS captures time delays at which correlation remains at its
maximum for a number of consecutive time windows, while GC
captures causal connections at zero time lag only.

The differences in ipsilateral and contralateral connectivity
observed during sleep could be interpreted in terms of the
Default Mode Network (DMN), a circuit of brain regions that
is highly active in the absence of overt behavior or in the
absence of cognitively demanding tasks. During light sleep,
DMN connectivity persists in the form of frontal-posterior
coherence. As we progress into sleep, and particularly at
deep sleep stages, there is decoupling of frontal areas and a
reduction in frontoparietal correlation, suggesting that coherent
activation of all parts within the network leads to a conscious
experience (Horovitz et al., 2009). We have also observed such
fronto-posterior decoupling, contralaterally but not ipsilaterally.
Despite the lowest level of logical thinking in REM sleep,
connectivity between different parts of the brain was found to
be stronger than in NREM sleep; again, this is something that
we have also observed ipsilaterally. This supports the hypothesis
that connectivity patterns involving DMN subsystems may
reflect the underlying brain function in REM sleep (Koike et al.,
2011).

In addition, it has long been postulated that wakefulness and
REM sleep are fundamentally equivalent functional states, but
differ in the way that sensory information and cortical inhibition
are handled (Llinás and Paré, 1991). The differences identified
in the connectivity between wakefulness and REM sleep in this
study may provide some insight to the underlying connectivity
mechanisms that set these two functionally equivalent states
of wakefulness and REM sleep apart. Another interesting
observation is the significant decrease in motor (C3-C4)
connectivity observed during REM, in contrast to wakefulness
and non-REM sleep stages, during which no significant change
in connectivity over the motor cortex is observed. This could be
related to the muscle atonia that is specific to REM sleep stage.

EEG-ECG connectivity decreases as sleep deepens, but
increases during REM, with more pronounced changes over the
left hemisphere. Our findings indicate that bidirectional brain-
heart GC decreases progressively from wakefulness to sleep,
while in some cases GC during REM is stronger than other
sleep stages, but still lower than wakefulness. However, there are
two interesting observations from our findings. The first one is
that, while the dominant direction of connectivity we observe
is from brain→heart at all electrode pairs, this does not hold
for the C3-ECG pair, where the connectivity is strongest in the
ECG→C3 direction. The second interesting observation is the

strength of GC for the F3-ECG pair, which is strongest than
all other brain-heart connections, and also displays a distinct
(and reversed) pattern of F3→ECG connectivity compared to all
other brain locations. GC(F3ECG) increases from wakefulness
to light sleep (S1), decreases progressively in stages S2 and S3,
and then increases again during REM at a level that is even
higher than wakefulness. The GC measure we used captures
GC patterns across the entire frequency content of the time
series analysed, but it is likely that the observed patterns could
be related to specific frequency rhythms of the EEG and ECG
signals during the different sleep stages. For example, in the
study by Faes et al., a strong bidirectional interaction is identified
between the high frequency component of heart rate variability
and EEG β power, and a weaker unidirectional connection is
identified from heart to brain at slower EEG rhythms (Faes et al.,
2014).

It has always been the conventional belief that brain
commands the heart, but in recent years this has been
reconsidered, and it has also been shown that the cardiac
system communicates with the brain not only through one but
rather through multiple brain rhythms simultaneously. Studies
report that, synchronized to the activity of the heart, there is
a significant amount of the alpha brain rhythm (Wölk and
Velden, 1989), as well as the beta brain rhythm (McCraty et al.,
2009). In addition, different branches of the autonomic nervous
system are more active during sleep: the sympathetic branch
of the autonomic system is more active during wakefulness
and REM, while parasympathetic control is more dominant
during non-REM sleep (Baharav et al., 1995). Changes in the
neural regulation of cardiac dynamics during different sleep
stages (in healthy subjects) have also been reported by Lin
et al. (2016). Bidirectional interactions have been identified
with positive correlation in the brain-heart direction being
higher than the negative (heart-brain) direction. The authors
also identify that heart→brain interaction is maximum at a
time delay of approximately 6 s in light and deep sleep, which
decreases in REM and vanishes in wakefulness.

Bartsch et al. have shown that different brain rhythms
mediate brain-heart communication during sleep (Bartsch
et al., 2015). They also show that the brain-heart network is
characterized by relatively symmetric links strength to all six
brain areas during wakefulness and sleep, but with stronger links
during wakefulness and light sleep, and weaker links during
deep sleep and REM [this is also shown in Schmitt et al. (2009)].
Specifically, the authors report that ‘the average link strength
for the entire network of brain-heart interactions is highest
during W [wakefulness] and LS [light sleep], lower during REM
and lowest during DS [deep sleep]’, as obtained via the non-
directional correlation-based measure of TDS (Bartsch et al.,
2015). This is mostly in agreement with our findings, despite the
difference in connectivity measures used in the two studies.

Limitations. Despite the popularity of GC use in
neuroscience applications, there are a number of known
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limitations specific to the method (Stokes and Purdon, 2017).
GC is, by definition, a linear measure of causality, therefore
the connectivity patterns discussed in this work reflect linear
interrelationships between brain-brain and brain-heart during
wakefulness and sleep. It is possible that a non-linear measure
of GC (e.g., Nicolaou and Constandinou, 2016) may capture
additional connections that have not been identified in this
study or related sleep studies that use other linear measures
of connectivity (e.g., correlation, coherence, DTF). This is not
unlikely as some studies report that the type (i.e., linear or
non-linear) of brain-heart dynamics may show dependence on
the frequency range studied (Dumont et al., 2004). Another
consideration with the use of connectivity methods in EEG
analysis is the potential spurious causality / connectivity
that can arise if not all the variables are included in the
model, or if there are some latent variables. To eliminate
this problem, in theory one must include all sources of
influence into the estimation, which is practically unfeasible.
As a result, connectivity methods will always be provisional,
but the extension to multivariate models, such as the one
used in this study, provides an intermediate solution as at
least all information that is available is utilized in the GC
estimation. Lastly, a general limitation of EEG connectivity
analyses is the nature of the scalp-recorded EEG, which are
a mixture of attenuated activity from various brain sources
as well as potential volume conduction artifacts. Hence,
when conducting such analyses, the observed connectivity
patterns should be interpreted in reference to the EEG
electrode locations, which should not be used as a proxy
to underlying brain areas (though one can hypothesize
based on the physiological mechanisms that characterize
the specific states being studied). One way of minimizing
volume conduction or extracting some source information
from surface EEG is through source decomposition, e.g.,
using a state-space (Manomaisaowapak et al., 2022) or
Independent Component Analysis (Cohen and Mohammad-
Rezazadeh, 2015) approach, and subsequent estimation of
connectivity from the decomposed signals. However, even
such decomposition does not pinpoint the location of the
source, thus, the estimated directed connectivity between the
reconstructed sources is not always a reflection of the ground
truth (Anzolin et al., 2019). Hence, the interpretation of GC of
such sources as functional connectivity between brain regions
is as problematic as for sensor level GC. In addition, such
methods rely on having an accurate head model and sufficient
number of EEG signals (in this study there are only 6 EEG
channels available) to be able to capture the underlying brain
sources with higher accuracy. An indication that findings are
due to spurious connectivity from volume conduction is very
strong connectivity at neighboring electrodes, whose strength
decreases with increasing inter-electrode distance. Looking at
our findings (Figure 1), we detect the presence of connectivity
between fronto-posterior electrodes (long distance apart),

which is stronger than the connectivity observed at neighboring
electrodes.

Conclusions

The application of GC to study brain-brain and brain-
heart bidirectional connections during wakefulness and sleep
confirmed the importance of fronto-posterior connectivity
during these two states, but has revealed differences in ipsilateral
and contralateral mechanisms of these connections. It has also
confirmed the existence of bidirectional brain-heart connections
that are stronger from brain to heart, with the exception of
the left central brain C3-heart connection, which is stronger in
the heart-to-brain direction. Given the relationship between the
variation in autonomic nervous system (ANS) activation during
different sleep stages, future work could include complementary
characterization of the two ANS branches (sympathetic and
parasympathetic) during wakefulness and sleep with, for
example, Poincaré plots (Ardissino et al., 2019).
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