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Isman Susanto2, Siti Nurunniyah2,7, Ratih Devi Alfiana6, Wahyuningsih Wahyuningsih2,8, 
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Abstract 

Background: Our objectives were to investigate the relationship between maternal vitamin D status and IGF-1 levels 
in healthy Minangkabau pregnant mothers and their impact on newborn anthropometry outcomes and to examine 
whether this relationship was modified by dietary intake using a nutrigenetic approach.

Methods: Healthy singleton pregnant mother and infant pairs (n = 183) were recruited. We created three genetic risk 
scores (GRSs): a six-SNP GRS based on six vitamin D-related single nucleotide polymorphisms (SNPs) involved in the 
synthesis of vitamin D (vitamin D-GRS), a two-SNP GRS using SNPs in VDR genes (VDR-GRS) and a four-SNP GRS using 
SNPs from DHCR7, GC, CYP24A1 and CYP2R1 genes (non-VDR GRS). The effect of the GRSs on IGF-1, vitamin D and 
newborn anthropometry and the interaction between the GRSs and dietary factors were tested using linear regres-
sion analysis.

Results: The vitamin D- and non-VDR GRSs were significantly associated with lower 25(OH)D concentration 
(p = 0.005 and p = 0.001, respectively); however, there was no significant association with IGF-1, and newborn anthro-
pometry outcomes. However, there was a significant interaction of VDR-GRS with carbohydrate intake on birth length 
outcome  (Pinteraction = 0.032). Pregnant mothers who had higher carbohydrate intake (405.88 ± 57.16 g/day) and who 
carried ≥ 2 risk alleles of VDR-GRS gave birth to babies with significantly lower birth lengths compared to babies born 
to mothers with < 2 risk alleles (p = 0.008).

Conclusion: This study identified a novel interaction between VDR-GRS and carbohydrate intake on birth length out-
come. These findings suggest that reducing the intake of carbohydrates during pregnancy, particularly for those who 
have a higher genetic susceptibility, might be an effective approach for preventing foetal growth abnormalities.
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Background
The neonatal mortality rate in Indonesia in 2017 was 
reported to be 12.4 per 1,000 live births [1], which is 
higher than in other South East Asian countries [2]. Key 
factors in this high prevalence may include the poor qual-
ity of perinatal health services, newborns with low birth 
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weight and smaller size, and short birth interval factors 
[3]. Optimal intrauterine growth is necessary for foetal 
development and contributes to the long-term health of 
the newborn. Foetal growth may also be influenced by 
the interactions between genetic, nutritional, hormonal 
and environmental factors [4].

Vitamin D deficiency is a worldwide public health con-
cern [5] and is mainly caused by inadequate exposure to 
sunlight. Vitamin D deficiency has been recognised as 
an epidemic in many regions, including Europe, Amer-
ica, the Middle East and Asia [6–9]. Vitamin D status 
during pregnancy has a significant impact on maternal 
health and foetal growth [10]. Vitamin D is a potentially 
modifiable regulator of the Insulin-like Growth Factor 1 
(IGF-1) axis and a positive correlation has been demon-
strated between serum 25-hydroxyvitamin D (25(OH)
D) and IGF-1 levels [11, 12]. Placental growth hormones 
(GH) are produced by the placental syncytiotrophoblast 
and gradually replace pituitary GH from eight weeks of 
gestation in maternal circulation, increasing during preg-
nancy. The increase in maternal serum IGF-1 is thought 
to be caused by placental GH [13]. Previous studies have 
also demonstrated that maternal serum IGF-1 levels are 
significantly associated with increasing gestational age 
[14, 15]. However, while recent cross-sectional studies 
based on prospective cohort design found a positive rela-
tionship between serum 25(OH)D and IGF-1 levels [11, 
12, 16, 17], the relationship between vitamin D and IGF-1 
levels in pregnancy outcomes remains unknown.

It has been determined that vitamin D-related single 
nucleotide polymorphisms (SNPs) affect 25(OH)D con-
centrations, yet only a few studies have found evidence of 
this in South East Asian populations, notably in Minang-
kabau mothers, West Sumatra, Indonesia [18–20]. The 
Minangkabau is a matrilineal community in West Suma-
tra that has a high prevalence of vitamin D deficiency 
[21–27], which comes despite the tropical climate and 
abundant sunlight exposure all year round in Indonesia. 
Low vitamin D status has been shown to have a negative 
impact on foetal growth and development in areas such 
as bone development and the immune and nervous sys-
tems during pregnancy [28, 29]. In addition to genetic 
factors, race and ethnicity play an important role in the 
determination of vitamin D status [30]. Dietary factors 
also contribute to vitamin D status [18, 28, 29].

To our knowledge, no prior study has examined the 
relationship between vitamin D, IGF-1 and newborn 
anthropometry in Indonesia, particularly among the 
Minangkabau population, West Sumatra. This study 
identified whether this relationship was modified by die-
tary intake during pregnancy using a nutrigenetic study. 
Due to the high level of confounding that can influence 
phenotypic associations, we created three genetic risk 

scores (GRSs) using genetic variants as markers of mater-
nal vitamin D concentration, given that genetic associa-
tions are less prone to confounding, and tested for their 
association with 25(OH)D, IGF-1 and newborn anthro-
pometry outcomes.

Methods
Study population
The Vitamin D Pregnant Mother (VDPM) cohort study 
was conducted in West Sumatra Province, Indonesia 
from 1 June 2017 to 1 May 2018. The study design had 
been published previously [18, 20, 25, 31–34]. Different 
geographical locations were used, including two cities 
in mountainous areas (Payakumbuh, Lima Puluh Kota) 
and three cities in coastal areas (Padang, Pariaman, 
Padang Pariaman). The target population included the 
first trimester of pregnancy and their newborns (n = 183, 
p < 0.05). We followed all subjects up to their delivery pro-
cess to perform newborn anthropometry measurements 
(birth weight, birth length and head circumference).

The VDPM study included mothers who 1) visited a 
public health care centre during the first trimester of 
pregnancy (< 13 weeks), 2) were healthy based on a doc-
tor’s examination and health history, and 3) were willing 
to participate in the study, sign an informed consent and 
follow the research procedures. The exclusion criteria 
were mothers with multiple pregnancies, preeclamp-
sia, miscarriage or stillbirth, chronic illnesses such as 
diabetes, hypertension, cardiovascular disease or hypo-
thyroidism, and those who were taking drugs that can 
interfere with vitamin D metabolism. Of a total of 239 
mothers, 53 dropped out for various reasons, including 
pregnancy loss, change of residence, unwillingness to 
continue with the research, and inability to contact again. 
This left a total of 186 pregnant mothers who completed 
all requirements and attended follow-ups from T1 to 
delivery. After subsequently excluding three samples due 
to low DNA yield, 366 subjects (183 mother and infant 
pairs) were used for the present study to determine the 
association between GRS and 25(OH)D concentration in 
newborn anthropometry. Additionally, 180 subjects were 
used to determine the association between IGF-1 and 
25(OH)D concentration on newborn anthropometry and 
pregnancy outcomes and whether this relationship was 
modified by genetic variants of vitamin D. The subject 
recruitment process is shown in our recently published 
article [18].

Subjects’ characteristics
Maternal sociodemographic factors were recorded using 
structured questionnaires. Demographic data includ-
ing age, age group, education and sun exposure status 
were collected. These data were prospectively collected 
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from medical records or interviews with the partici-
pants. Sun exposure status was defined by the duration 
of sun exposure, which was calculated as the average 
time spent daily in the sun during the participants’ lei-
sure and working time. Maternal anthropometric meas-
urements included pre-conception body weight, height 
and pre-pregnancy body mass index (BMI). These data 
were collected by a trained nutritionist to increase the 
accuracy of the anthropometric data collection. Pre-
pregnancy BMI was calculated based on the routine 
height measurements taken during clinic visits and pre-
pregnancy body weight data were obtained during inter-
views through the maternal and child monitoring book. 
Maternal body weight was measured to the nearest 50 g 
using an electronic scale (Seca 815, Seca GmbH. Co. kg, 
Germany) and height was measured to the nearest mil-
limetre using a stadiometer (Seca 217, Seca GmbH. Co. 
kg, Germany). The BMI calculation was based on the 
body weight (kg) divided by the square of body height 
(m) and we used the Asia–Pacific classification to define 
nutritional status [35].

Biochemical measurements
To determine IGF-1 and 25-hydroxyvitamin D (25(OH)
D) levels, blood samples (3  ml) were collected by a 
trained phlebotomist in the first and third trimesters for 
25(OH)D and the third trimester for IGF-1. The blood 
samples were used to measure serum IGF-1 and 25(OH)
D levels using enzyme-linked immunosorbent assays 
(ELISA) with an xMark Microplate Spectrophotometer 
(Bio-Rad Laboratories Inc, Hercules, California, USA) 
according to the manufacturer’s instructions. Serum 
concentrations of IGF-1 were assessed using ELISA kits 
from Bioassay Technology Laboratory (Shanghai, China). 
The serum IGF-1 levels ranged from 2.11  ng/mL to 
347.46 ng/mL and assay sensitivity was 0.058 ng/mL. The 
intra-assay and inter-assay values were < 8% and < 10%, 
respectively. Serum levels of 25(OH)D were assessed 
using ELISA from Diagnostic Biochemistry Canada 
(DBC) 25-Hydroxyvitamin D ELISA kit (DBC, London, 
Ontario Canada). The assay has a sensitivity of 5.5  ng/
ml and intra- and inter-assay coefficients of variation of 
5% and 8.1%, respectively. Vitamin D status was defined 
as serum 25(OH)D < 12  ng/mL (vitamin D deficient), 
12–19  ng/mL (vitamin D insufficient) and ≥ 20  ng/mL 
(vitamin D sufficient) according to Institute of Medicine 
(IOM) guidelines [5].

Dietary intake assessment
A trained nutritionist was recruited to collect the dietary 
intake data. The pregnant mothers were asked about 
their third-trimester dietary intake status. Macronutri-
ents such as carbohydrates, protein and fat intake were 

collected and analysed after the data collection as crude 
intake (g/day). Dietary data and intake during pregnancy 
were collected and assessed using a validated semi-quan-
titative food frequency questionnaire (SQ-FFQ) [26, 27]. 
All data provided by the participants were analysed and 
the nutritionist asked the mothers to think specifically 
about their dietary consumption during their third tri-
mester of pregnancy.

SNPs selection and genotyping analysis
We selected six candidate SNPs based on the follow-
ing criteria: (1) biological significance in vitamin D 
synthesis, and metabolism; (2) SNPs with minor allele 
frequency of > 5%, (3) evidence of significant association 
with the risk of adverse pregnancy outcomes that deter-
mine newborn anthropometry [36–38], and (4) evidence 
of a significant association with 25(OH)D concentra-
tions in previous genome-wide association studies and 
RCT studies [39–42]. The selected genes were DHCR7 
(rs12785878), CYP2R1 (rs12794714), GC (rs2282679), 
CYP24A1 (rs6013897) and VDR (rs2228570 and 
rs7975232).

Blood samples were collected from all the study sub-
jects. Genomic DNA was isolated from peripheral blood 
leukocytes using the PureLink Genomic DNA Mini Kit 
(Invitrogen, Carlsbad, USA). DNA was also extracted 
from the whole blood using the PureLink Genomic 
DNA Mini Kit (Invitrogen, Carlsbad, CA, USA). The 
DNA concentration was determined using a NanoDrop 
spectrophotometer (Isogen Life Science, De Meern, the 
Netherlands). Genotyping was performed using the com-
petitive allele-specific PCR-KASP assay at LGC Genom-
ics, London, UK.

Pregnancy outcomes
Gestational age (GA) at birth was calculated from the 
estimated GA obtained by obstetricians or midwives 
through an examination using either a transabdominal 
ultrasound or the date of last menstrual period in the 
absence of ultrasound at a maternal clinic or hospital. 
Infant birth weight, birth length and head circumference 
were recorded at birth using Seca mechanical measur-
ing scales (Seca 803, Seca GmbH. Co. kg, Hamburg, 
Germany). We classified newborn anthropometry sta-
tus according to the World Health Organization Child 
Growth Standards for head circumference-for-age (small 
head circumference, < 35 cm and normal head circumfer-
ence, ≥ 35 cm), weight-for-age (low birth weight, < 2,500 g 
and normal birth weight ≥ 2,500  g) and length-for-
age (short birth length, < 50  cm and normal birth 
length, ≥ 50  cm) [43]. Placental weight was recorded by 
the obstetrician who delivered the baby and categorised 
as normal when the weight was greater than or equal to 
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500 g. Assessment of neonatal Apgar scores was under-
taken at minutes 5 and 10 after birth. A newborn with 
5-min and 10-min Apgar scores of 7 to 10 was catego-
rised as normal status; subsequent 5-min and 10-min 
scores of < 7 were categorised as a low Apgar score. In 
addition, small-for-gestational age (SGA) was calculated 
as the weight below the  10th percentile for gestational age. 
Preterm birth was described as a delivery that occurred 
before the  37th week of pregnancy. The mode of delivery 
was classified as vaginal birth or caesarean section.

Data analysis
We used the SPSS statistical package (version 23; SPSS 
Inc., Chicago, IL, USA) for the statistical analysis. The 
results from the descriptive analyses are presented as 
means ± standard deviations (SD) for continuous vari-
ables and as percentages for categorical variables. All 
six genetic variants were in the Hardy–Weinberg equi-
librium (HWE) (p > 0.05), which was tested using a 
chi-square test [20]. Pre-pregnancy BMI was defined 
according to the World Health Organization Asia Pacific 
Guidelines for Asians as non-obese (BMI < 25 kg/m2) and 
obese (BMI ≥ 25  kg/m2) [44]. Normality of variable dis-
tribution was verified using the Shapiro–Wilk test; any 
variables that were not normally distributed were log-
transformed prior to the analysis, such as 25(OH)D (ng/
mL) and IGF-1 (ng/mL) concentration. Details of the 
power calculation have previously been published else-
where [18].

Given the lack of any pre-existing cut-off points for 
IGF-1 status, the variable was divided into tertiles. The 
lowest tertile group was classified as those who had log-
transformed IGF-1 ≤ 1.20  ng/mL, the medium tertile 
group was categorised as those who had values from 1.20 
to 1.34  ng/mL and the highest tertile group was classi-
fied as those with values ≥ 1.35 ng/mL. Multivariate lin-
ear regression models were constructed to examine the 
phenotypic and genetic associations in this study: 1) the 
association between maternal vitamin D status and IGF-1 
levels using a two-tailed t-test analysis, 2) the association 
between serum IGF-1 levels and newborn anthropome-
try outcomes, and 3) the association of vitamin D-related 
GRSs with 25(OH)D concentration and IGF-1 level dur-
ing pregnancy.

The following interactions were tested: 1) the interac-
tion between GRSs and serum IGF-1 levels on newborn 
anthropometry outcomes; 2) the interaction between 
GRS and 25(OH)D T3 levels on IGF-1 T3 levels during 
pregnancy; 3) the interaction between GRS and dietary 
intake on newborn anthropometry outcomes. These 
interactions were tested using linear regression after 
adjusting for potential confounding factors such as age, 
pre-pregnancy BMI, total energy intake, vitamin D, GA 

at birth and gender of the infant, wherever appropriate. 
P < 0.05 was considered statistically significant.

The three GRSs were created by summing the risk 
alleles from five genes [39–42]. The ‘Vitamin D-GRS’ 
was created from the six SNPs, rs12785878 (DHCR7), 
rs12794714 (CYP2R1), rs2282679 (GC), rs6013897 
(CYP24A1), and rs2228570 and rs7975232 (VDR), that 
play a role in the synthesis and metabolism of vitamin 
D. Two SNPs in VDR genes were included in the ‘VDR-
GRS’ and four SNPs in genes encoding proteins involved 
in 25(OH)D synthesis and metabolism (GC, CYP24A1, 
DHCR7) were included in the ‘non-VDR-GRS’. This study 
distinguished between VDR-GRS and Non-VDR-GRS due 
to the VDR gene variants associated with adverse preg-
nancy outcomes [18]. Assessing the influence of VDR 
gene variants alone may be a key factor in determining 
the association between 25(OH)D concentration and 
newborn anthropometry outcomes.

Results
Characteristics of the study subjects
The characteristics of the study participants stratified 
by third trimester (T3) vitamin D status are shown in 
Table  1. This study found that deficiency-insufficiency 
vitamin D status was significantly more prevalent among 
mothers aged 20–30 years than sufficiency vitamin D sta-
tus (p = 0.025). There was no association between vita-
min D status and newborn anthropometry outcomes 
(p > 0.05). Mothers with a sufficient vitamin D status 
had statistically higher IGF-1 levels than mothers with 
a deficiency-insufficiency vitamin D status (p = 0.036). 
The change in 25(OH)D concentration was significantly 
higher for mothers in the ‘sufficiency’ vitamin D status 
group (p < 0.001).

Association between IGF‑1 and newborn anthropometry 
and pregnancy outcomes
There was no statistically significant association between 
IGF-1 levels and newborn anthropometry outcomes 
such as birthweight, birth length and head circumfer-
ence (p > 0.05 for all comparisons, Additional File 1). Fur-
thermore, there was no significant association between 
the IGF-1 levels and pregnancy outcomes such as small-
for-gestational age (SGA status of preterm birth, mode 
of delivery, placental weight, Apgar 5’ and Apgar 10’ 
(p > 0.05 for all comparisons, Additional File 1)).

Association between GRSs and 25(OH)D concentration
There was a statistically significant association between 
the vitamin D-GRS and non-VDR-GRS and log-trans-
formed 25(OH)D concentration in both the crude and 
adjusted models (p < 0.05, for all comparisons), where 
individuals carrying a greater number of risk alleles had 
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a lower 25(OH)D concentration than those carrying a 
smaller number of risk alleles (Table  2). There was no 
association between VDR-GRS and 25(OH)D concentra-
tion (p > 0.05, for all comparisons).

Interaction between GRSs and serum IGF‑1 levels 
on newborn anthropometry outcomes
As shown in Additional File 2, there was no statistically 
significant interaction between GRSs and log-trans-
formed IGF-1 for newborn anthropometry outcomes 
such as birthweight, birth length and head circumference 
(p > 0.05 for all comparisons).

Interaction between GRS and 25(OH)D concentration 
on serum IGF‑1 levels during pregnancy
No statistically significant interactions were found 
between GRSs and log-transformed 25(OH)D concen-
tration on log-transformed IGF-1 levels during preg-
nancy (p > 0.05 for all comparisons) (Additional File 3).

Interaction between GRS and dietary intake on newborn 
anthropometry outcomes
There was a statistically significant interaction between 
VDR-GRS and carbohydrate intake on birth length out-
comes  (Pinteraction = 0.032). As shown in Fig.  1, those 

Table 1 Characteristics of study subjects based on T3 vitamin D status

Data are presented as percentages (%) for categorical data variables and mean and standard deviation [mean (SD)] for numeric data variables. Indicators of vitamin 
D status during pregnancy are based on the Institute of Medicine (IOM); sufficient (≥ 20 ng/mL), insufficient (12–19.00 ng/mL) and deficient (< 12 ng/mL). Changes in 
25(OH)D levels during pregnancy are defined by 25(OH)D T3 – 25(OH)D T1

IGF-1 Insulin-like growth factor 1, 25(OH)D 25-hydroxyvitamin D, T1 First trimester, T3 Third trimester, BMI Body mass index

Variables ‘Deficiency‑insufficiency’ VD status 
(n = 86) (47.0%)

‘Sufficiency’ VD status (n = 97) 
(53.0%)

P Value

Demography
Age, years 28.92 (5.07) 30.28 (6.12) 0.101

Maternal age group 0.025
 a. ≤ 20 1 5.8

 b. 21–30 60.2 43.0

 c. > 30 38.8 51.2

Education 0.255

 a. Primary 23.5 31.4

 b. Secondary 38.8 41.9

 c. Tertiary 37.8 26.7

Sun exposure status per day 0.721

 a. < 1 h 52.6 48.8

 b. ≥ 1 h 47.4 51.2

Maternal anthropometry
Pre-conception body weight, kg 54.56 (11.21) 55.71 (10.15) 0.469

Height, cm 154.73 (5.79) 153.85 (6.65) 0.341

Pre-pregnancy BMI, kg/m2 23.12 (4.46) 23.61 (4.35) 0.457

Pre-pregnancy BMI status 0.361

 a. < 25 kg/m2 72.4 65.1

 b. ≥ 25 kg/m2 27.6 34.9

Newborn outcomes
Gestational age at birth, weeks 39.08 (1.81) 38.73 (1.94) 0.211

Infant gender

 a. Boy 51 60.5

 b. Girl 49 39.5

Birthweight, g 3147.09 (458.73) 3244.90 (469.51) 0.156

Birth length, cm 48.53 (2.05) 48.59 (3.43) 0.893

Head circumference, cm 33.55 (1.89) 34.10 (2.97) 0.139

Biochemical Measurements

 IGF-1, ng/mL 20.74 (12.89) 32.21 (1.89) 0.036
 Changes in 25(OH)D, ng/mL 1.52 (6.17) 14.12 (8.40)  < 0.001
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who were in the highest tertile of carbohydrate intake 
(mean ± SD: 405 ± 57.16  g/day) and carried ≥ 2 risk 
alleles gave birth to babies with a significantly lower birth 
length compared to babies from mothers carrying < 2 

risk alleles (p = 0.008). None of the other interactions on 
newborn anthropometry outcomes was statistically sig-
nificant (Table 3).

Table 2 Association between GRS and serum 25(OH)D levels during T3 of pregnancy

Data are presented as mean and standard error [mean (SE)]

25(OH)D 25-hydroxyvitamin D, SE Standard error, VDR Vitamin D receptor, GRS Genetic risk score
‡ P values obtained from linear regression analysis with the crude model
† P values obtained from linear regression analysis adjusted for age, pre-pregnancy BMI, sun exposure status, vitamin D supplement and geographical status
a The analysis was performed on log-transformed variables
* All six SNPs in genes are involved in the synthesis and metabolism of vitamin D
** Two SNPs in VDR genes are included in the ‘VDR-GRS score’
*** Four SNPs in the DHCR7, GC, CYP24A1 and CYP2R1 genes are included in the ‘Non-VDR GRS score’

Variables N Log 25(OH)D (ng/mL)a Log 25(OH)D (ng/mL)a

β Mean (SE) P value‡ β Mean (SE) P value†

Vitamin D‑GRS total score*

  ≤ 3 110 0.08 1.31 (0.02) 0.010 0.08 1.31 (0.02) 0.009
  ≥ 4 73 1.23 (0.02) 1.23 (0.02)

VDR‑GRS score**
  < 2 102 0.04 1.30 (0.02) 0.241 0.03 1.29 (0.02) 0.334

  ≥ 2 79 1.26 (0.02) 1.26 (0.02)

Non‑VDR GRS score***

  < 3 124 0.09 1.30. (0.02) 0.009 0.10 1.31 (0.02) 0.003
  ≥ 3 54 1.213 (0.03) 1.21 (0.03)

Fig. 1 Interaction between the VDR-GRS and dietary carbohydrate intake (g) on birth length (cm)  (Pinteraction = 0.032). Mothers who were in the 
highest tertile of carbohydrate intake and carried ≥ 2 risk alleles gave birth to babies with significantly lower birth length (p = 0.008)
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Discussion
The current study is the first to investigate the interaction 
of maternal genetic susceptibility with dietary factors 
on maternal vitamin D and IGF-1 levels, and newborn 
anthropometric measurements in South East Asia. Using 
a genetic approach, our study has shown evidence for a 
novel interaction between VDR-GRS and carbohydrate 
intake on birth length outcomes, where mothers with 
higher VDR risk alleles and high carbohydrate consump-
tion (339–581  g/day) gave birth to babies with lower 
birth length. The mean carbohydrate intake for the high-
est tertile was above the level stipulated in the Indonesian 
dietary guidelines [45]. Hence, these findings may have a 
significant public health implication in terms of improv-
ing newborn anthropometric measurements such as 
birth length by developing dietary intervention strategies 
to reduce carbohydrate intake for those who have higher 
vitamin D-related genetic risks.

Our study found an association between vitamin 
D status and IGF-1 levels but no significant associa-
tion between IGF-1 levels and newborn anthropomet-
ric measurements and interaction of GRS with 25(OH)
D, and IGF-1 on newborn anthropometric measure-
ments, respectively, were observed. Our study findings 
are in accordance with other studies [12, 46]. A study 
of 241 healthy individuals also demonstrated a positive 
correlation between serum 25(OH)D and IGF-1 levels 
[11]. Previous studies have shown that IGF-1 stimulates 

the activity of enzyme 1α-hydroxylase, which has been 
shown to control the renal production of the active form 
of vitamin D [calcitriol or 1,25(OH)D] [47]. A previous 
intervention study in an Italian adult population showed 
that vitamin D supplementation increases the production 
of IGF-1 levels [12]. These results suggest that the associ-
ation between vitamin D and foetal growth might depend 
on the effect of vitamin D on IGF-1 during pregnancy.

Even though GRS was not associated with newborn 
anthropometry, there was an interaction of VDR-GRS 
with carbohydrate intake on birth length. Those who 
consumed a high-carbohydrate diet and had higher risk 
alleles of vitamin D deficiency gave birth to babies with 
significantly lower birth lengths than those babies born to 
mothers with lower risk alleles. The average carbohydrate 
intake for the pregnant mothers in the highest tertile 
was 405.88 ± 57.16 g/day, which is above the Indonesian 
dietary recommendation [45, 48] of up to 360–400  g/
day or equal to 50–60% of total energy percentage dur-
ing the third trimester of pregnancy. A review of studies 
[48] from Hatriyanti et al. showed that no studies identi-
fied a deficiency in fat or carbohydrate intake for Indone-
sian pregnant mothers; in contrast, they mostly consume 
high amounts of dietary carbohydrates and fat during 
pregnancy. The Minangkabau Indonesia Study on Nutri-
tion and Genetics (MINANG) also demonstrated that in 
the dietary intake of Indonesian Minangkabau women 
[19], more than 70% of the daily energy requirement 

Table 3 Interaction between GRSs and T3 dietary intake on newborn anthropometry outcomes

IGF-1 Insulin-like growth factor 1, PAL Physical activity level, T3 Third trimester

Adjusted for age, total energy intake in T3, pre-pregnancy BMI and vitamin D
a Interaction between GRS and dietary carbohydrate intake
b interaction between GRS and dietary protein intake
c Interaction between GRS and dietary fat intake
* All six SNPs in genes involved in the synthesis and metabolism of vitamin D (vitamin D-GRS);
** Two SNPs in VDR genes are included in the ‘VDR-GRS’;
*** Four SNPs in DHCR7, GC, CYP24A1 and CYP2R1 genes are included in the ‘Non-VDR GRS score’

Genetic risk score (GRS) Birth weight (g) Birth length (cm) Head circumference 
(cm)

N Mean Std. Error Pinteraction Mean Std. Error P interaction Mean Std. Error Pinteraction

Vitamin D-GRS*
  ≤ 3 risk alleles 110 3197.46 40.90 0.611a

0.872b

0.524c

48.75 0.19 0.065a

0.073b

0.300c

33.97 0.18 0.982a

0.364b

0.227c  ≥ 4 risk alleles 73 3233.58 50.84 48.70 0.23 33.93 0.23

VDR-GRS**
  < 2 risk alleles 102 3188.11 43.30 0.810a

0.775b

0.556c

48.80 0.19 0.032a

0.099b

0.447c

34.01 0.19 0.970a

0.701b

0.571c  ≥ 2 risk alleles 79 3229.51 50.48 48.65 0.23 33.83 0.22

Non-VDR GRS***
  < 3 risk alleles 124 3250.11 38.82 0.841a

0.795b

0.710c

48.79 0.18 0.256a

0.079b

0.278c

34.06 0.17 0.835a

0.230b

0.168c  ≥ 3 risk alleles 55 3148.72 60.40 48.56 0.28 33.80 0.26
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was obtained from carbohydrates. This is not surprising 
because Indonesian people generally consume rice as a 
staple food and hence carbohydrate is the main source 
of energy during pregnancy [49]. Excess macronutrient 
intake, including high carbohydrate consumption dur-
ing pregnancy, can increase maternal blood glucose lev-
els and lead to pregnancy outcomes such as macrosomia 
[50].

The nutritional status of pregnant mothers is an impor-
tant determinant in maintaining maternal health, such as 
preventing intrauterine growth restriction and neonatal 
size [51]. During pregnancy, vitamin D has been shown to 
be crucial for the development of the foetal skeletal sys-
tem, immune system and tooth formation, along with the 
general growth of the foetus [21]. A study among West 
Javanese pregnant mothers revealed a negative associa-
tion between low levels of vitamin D during pregnancy 
and SGA [52]. The prevalence of vitamin D deficiency has 
been reported to exceed 95% in the North Sumatra pop-
ulation [53] and 90% among pregnant mothers living in 
Jakarta [54, 55]. These studies demonstrate the fact that 
maternal vitamin D deficiency may be related to adverse 
pregnancy outcomes as well as newborn anthropometry. 
However, the results have been conflicting due to the 
small sample size in some studies, cross-sectional study 
design, lack of adjustment for seasonal variation, ethnic-
ity, differences in study design in terms of the trimester 
 (1st,  2nd or  3rd trimester), and the different cut-off points 
for categorising vitamin D status. Such inconsistencies 
highlight the need for large prospective and intervention 
studies to examine these causal associations.

Our study has been the first to investigate the interac-
tion between maternal genetic susceptibility and dietary 
factors on newborn anthropometry in Indonesia. No 
published research exists on the interaction between 
vitamin D pathway-related SNPs and dietary factors on 
newborn anthropometry in Indonesia, although there 
have been limited studies in other countries. A study 
from a Japanese cohort comprising 78,793 paired moth-
ers and their singleton offspring found that increased 
maternal carbohydrate intake was causally associated 
with increased birth length; however, the study did not 
explore the genetic susceptibility of the pregnant moth-
ers [56]. In contrast, our study has shown that mothers 
with high carbohydrate intake gave birth to babies with 
lower birth length if they had a high VDR-GRS compared 
to mothers with a low VDR-GRS. While the relation-
ship between VDR and foetal outcomes such as new-
born anthropometry remains unclear, the role of VDR 
in normal and abnormal pregnancy conditions such as 
preeclampsia, foetal growth restriction, gestational dia-
betes and preterm birth have been reported in previ-
ous studies [57–59]. In addition, a recent meta-analysis 

[38] in 615 pregnant mothers showed that VDR genetic 
polymorphisms may play an important role in neonatal 
anthropometry via innate immunity and implantation, 
thereby suggesting that VDR could be a key factor in foe-
tal growth and newborn anthropometry outcomes, mak-
ing it a strong candidate gene for our study.

The mechanism by which carbohydrates interact with 
vitamin D pathway-related SNPs and affect newborn 
anthropometry, such as birth length outcome, is unclear 
and requires further investigation. The interaction of 
VDR-GRS with dietary carbohydrate intake during preg-
nancy on newborn anthropometry that was observed in 
our study is biologically plausible, given that vitamin D 
has been shown to regulate the development of meta-
bolic diseases through its action on the metabolism of 
carbohydrates and its role in insulin secretion and sen-
sitivity [60]. During pregnancy, the consumption of a 
high-carbohydrate diet can lead to excess glucose which 
is stored either as glycogen or converted into fatty acids 
and stored as fat in adipose tissue [61]. On the one hand, 
an excess of adipose tissue leads to its deposition and a 
decrease in vitamin D bioavailability; on the other hand, 
vitamin D deficiency in obesity affects the pathogenetic 
mechanisms associated with impaired tissue sensitivity 
to insulin and systemic inflammatory responses, promot-
ing the development of insulin resistance and DM during 
pregnancy [62]. In addition, VDR and vitamin D-metabo-
lising enzymes have been found to be strongly expressed 
in pancreatic beta cells and insulin-responsive cells such 
as adipocytes [63]. The polymorphisms of VDR may be 
associated with insulin resistance, which may lead to the 
risk of gestational diabetes mellitus (GDM) [64]. While a 
few studies have demonstrated a link between GDM and 
foetal macrosomia [65, 66], a recent meta-analysis found 
that specific patterns of VDR polymorphisms influence 
birth weight and other anthropometric neonatal out-
comes [38]. High-risk alleles of vitamin D deficiency due 
to genetic susceptibility may lead to pregnancy compli-
cations and affect pregnancy outcomes such as lower 
birth length in the presence of a high-carbohydrate diet. 
An understanding of the genetic variants will yield posi-
tive results based on the implementation of personalised 
nutrition to prevent adverse pregnancy outcomes and 
maintain a balanced diet during pregnancy. Furthermore, 
future larger studies are required to confirm this finding.

The strengths of the current study include being the 
first nutrigenetic approach to determine the interaction 
between genetic variations and dietary factors on new-
born anthropometry measurements among Minangka-
bau women. The construction of the GRSs, as opposed 
to a single SNP approach, improved the statistical ability 
to analyse the gene–nutrient interactions. Furthermore, 
we used a comprehensive, validated SQ-FFQ, which in 
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turn enhanced the accuracy of the dietary data collec-
tion. In addition, the exposures examined in our study 
were collected by well-trained staff who followed vali-
dated and standard operating procedures. However, this 
study also has limitations that should be acknowledged. 
The main limitation of this study was its small sample 
size; however, the study was able to demonstrate signifi-
cant associations and interactions. Although we used a 
validated SQ-FFQ, it is impossible to rule out bias due 
to the self-reported nature of the dietary intake infor-
mation. The present study had no data on the specific 
categories of foods consumed during the dietary intake 
data collection, notably on the quantification of different 
types of carbohydrates into complex, simple and mono-
saccharides. The study participants were not screened for 
GDM and hence this could be a confounder in our study. 
Furthermore, the serum levels of 25(OH)D concentration 
were not measured by the liquid chromatography tandem 
mass spectrometry assay, which has been demonstrated 
to be the gold standard technique for the measurement 
of vitamin D metabolites. Finally, the study findings were 
limited to pregnant mothers among the Minangkabau 
people and thus cannot be generalised to the whole Indo-
nesian population.

Conclusions
The present study has demonstrated a novel interaction 
between VDR-GRS and carbohydrate intake on birth 
length outcomes among Indonesian pregnant Minangka-
bau mothers where individuals with a higher genetic risk 
of low vitamin D concentration and higher consumption 
of carbohydrates gave birth to babies with lower birth 
length. These findings are relevant for public health as 
they suggest the need for intervention to reduce the car-
bohydrate intake of Indonesian pregnant mothers given 
that a third of our study participants had a mean carbo-
hydrate intake of ~ 405 g/day. This is equivalent to 66.48% 
of daily carbohydrate intake, based on the average carbo-
hydrate intake (i.e. 2,441  kcal/day) in our study popula-
tion, which exceeded the Indonesian dietary guidelines 
for pregnant mothers. During the third trimester, car-
bohydrates should account for 50–60% of daily total 
energy, which includes approximately 6–9 servings of 
whole grains daily [45]. Future studies with larger sam-
ple sizes and objective measures of carbohydrate intake, 
such as the type of carbohydrate, are needed to confirm 
these findings, which may be useful in establishing die-
tary interventions to overcome the genetic susceptibility 
of vitamin D deficiency and improve newborn outcomes.
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