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Improving quantitative synthesis to achieve generality in ecology 

Rebecca Spake, Rose E. O’Dea, Shinichi Nakagawa, C. Patrick Doncaster, Masahiro Ryo, 

Corey T. Callaghan, James M. Bullock 

Abstract 

Synthesis of primary ecological data is often assumed to achieve a notion of ‘generality’, 

through the quantification of overall effect sizes and consistency among studies, and has 

become a dominant research approach in ecology. Unfortunately, ecologists rarely define 

either the generality of their findings, their estimand (the target of estimation) or population 

of interest. Given that generality is fundamental to science, and the urgent need for scientific 

understanding to curb global-scale ecological breakdown, loose usage of the term ‘generality’ 

is problematic. In other disciplines, generality is defined as comprising both generalisability: 

extending an inference about an estimand from the sample to the population, and 

transferability: the validity of estimand predictions in a different sampling unit or population. 

We review current practice in ecological synthesis, and demonstrate that by failing to define 

the assumptions underpinning generalisations and transfers of effect sizes, generality often 

misses its target. We provide guidance for communicating nuanced inferences, and 

maximising the impact of syntheses both within and beyond academia. We propose pathways 

to generality applicable to ecological syntheses, including the development of quantitative 

and qualitative criteria with which to license the transfer of estimands from both primary and 

synthetic studies.  

Keywords: applicability; external validity; meta-analysis; meta-science; relevance   



2 

MAIN 

Ecologists often seek to extend inferences from their studied systems to predict phenomena in 

different taxonomic, spatial or temporal settings1. Indeed, around 40% of the top ecology 

journals demand that submissions are relevant for other species, ecosystems, biomes, or time 

periods (Appendix S1). In principle, this is a fair request, to prevent the literature from 

becoming a descriptive ‘stamp collection’ of case studies2, with inferences limited to the 

sampled population. Ecologists have pursued many roads to generalities3,4, including 

developing mathematical models to predict key population parameters5,6, unifying conceptual 

frameworks to predict the importance of different mechanisms in different contexts4,7, and 

coordinating globally distributed experiments to predict responses of ecological systems to 

perturbations8. A further road that has gained prominence in ecology over the past 30 years is 

the use of ‘quantitative synthesis’ to identify generalities about the strength and direction of 

ecological effects9. 

Quantitative syntheses identify, appraise, and combine data from individual studies or sites 

that have measured an effect of interest, typically via meta-analysis or multilevel 

modelling10–14 (Box 1). Syntheses have been used to answer both basic and applied ecological 

questions by quantifying, for example, the effects of major environmental drivers such as 

climate change on ecological communities, the effectiveness of conservation actions, and 

evaluating the evidence for ecological and evolutionary theories11. Central to quantitative 

synthesis is the ‘effect size’ estimated for each study, representing the direction and/or 

magnitude of an effect, commonly measured using differences between categorical group 

means, or the strengths of association between variables. In the absence of theoretical models 

or distributed experiments, effect sizes enable scientists to combine, compare and organise 

extensive literatures using a common measurement scale, to identify generalities across 

taxonomic, spatial or temporal contexts11. 

Evidence from rigorous quantitative syntheses is considered to represent one of the most 

methodologically robust sources for testing key ecological hypotheses, disproving or 

corroborating theories, and informing environmental decision making9–11. Concurrently, an 

insidious myth persists that the very act of quantitatively synthesising data from diverse 

studies is enough to warrant claims of generality about effect sizes11–13. Syntheses continue to 

proliferate in ecology10, and are often associated with high-impact journals and media 

attention, for the apparently regional or global reach of their inferences14. At the same time, 
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however, they can stimulate much scientific debate on biases and interpretation14. Here we 

argue that current approaches to quantitative synthesis often fail to make valid inferences 

about the generality of effect sizes, or allow such inferences to be drawn by readers.  

ASSESSING GENERALITY 

Any assessment of generality requires two decisions: i) what type of generality we wish to 

pursue, defined by the particular target context (the population or unit of observation of 

interest), and ii) the estimand of interest: the quantity we have estimated from a sample, 

based on our research question, and that we wish to predict in the target context15,16. Human 

behavioural and health disciplines tend to define generality, or more formally, ‘external 

validity’ as the extent to which estimands drawn from a studied sample can be used to predict 

the same estimands of a broader population or other target contexts. The estimand might be a 

descriptive sample statistic of a variable of interest (e.g. mean, variance of species richness), 

or a measure denoting the magnitude and/or direction of a particular effect (e.g., difference in 

mean species richness of logged and unlogged forest stands) for a specified individual unit or 

population. We focus on the latter in this review. 

In contrast, generality is rarely defined in ecology, with researchers often discussing the 

degree to which study ‘findings’, or ‘results’ can be ‘transferred’, ‘extrapolated’, 

‘generalised’, ‘applied’ or ‘are relevant’ to other contexts. Figure 1 summarises two types of 

generality: generalisability and transferability13,17,18. Generalisability concerns the validity of 

extending an inference about an estimand from the sample to the sampled population. For 

example, ecologists might reasonably conclude that the mean effect of forest logging on 

understory vegetation observed in a randomly selected sample of independent forest stands in 

a national park in central Japan represents the mean effect across all forest stands in the park. 

Extending inferences beyond the sampled population extends the scope of statistical 

inference to different sampling units or a spatiotemporally different population of units. The 

validity of this extension is termed ‘transferability’18,19. For example, one might predict a 

similar effect of logging to that observed in central Japan for a similar forest type in the UK. 

The validity or bias of this transfer could be defined as the accuracy of an estimand in a target 

context, quantified by the difference between the transferred estimand and the ‘true’ 

estimand. 
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Ecologists’ statements concerning generality in both primary case studies and syntheses often 

do not use formal definitions of generality, and, in our experience, usually gloss over the 

assessments required to individuate both the studied context and the target context over 

which to transfer specific estimands of interest. In quantitative synthesis, the estimand is the 

target of estimation by an effect-size metric. A recurrent criticism is that combining effect 

sizes from very different contexts (‘mixing apples with oranges’) makes for questionable 

interpretability of overall ecological effects20, leaving us with precise answers to vague 

questions21. We argue that the direction of progress in synthesis science needs resetting to 

enable the valid transfer of estimands in ecology. Determining the criteria or conditions that 

permit transfer to a specific target context is a research agenda in its own right. In this 

Perspective, we first examine current practice of quantitative synthesis, to understand 

whether and how it can substantiate claims about the generalisability or transferability of 

ecological effect sizes. We then provide guidance to enable nuanced inferences about the 

generalisability and transferability of estimands. While our focus is on synthetic research, the 

ability of syntheses to make general claims will depend on generality being precisely defined 

within primary studies, and therefore our recommendations extend to primary studies too. 

Finally, we outline a research agenda to guide both fundamental and applied ecological 

research towards valid generalisations and transfers.   
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Figure 1.  Generality - which we use synonymously with external validity - comprises the 

generalisability and transferability of estimands drawn from primary and synthetic research. 

Syntheses collate data from primary studies, each of which usually has a well-defined and narrow 

context relative to the context of the synthesis, and these studies are here each represented by a fruit 

of one of several types. Collated, these studies form a reference sample from a hypothetical 

population of studies, which together cover a broader context (here of fruits, either implicitly or 

explicitly defined by the researcher). Generalisability concerns the validity of an inference based on a 

sample that is randomly or non-randomly drawn from the target population (left column). 

Transferability concerns the validity of inferences based on a reference sample, when applied to 

either a different target population or unit (target context). Transfer across space is shown as an 

example, to sites in a different spatial location (middle row), or an individual target site from a different 

population (bottom row), which may also differ in temporal or taxonomic context to the reference 

sample. In both cases, the synthesised samples and the populations may have well-defined or poorly 

defined contexts. Here, the context of the synthesis is represented by the distribution of individual 

studies (fruits) within three measured or unmeasured dimensions of parameter space, e.g. edaphic, 

taxonomic, climatic variables (V) that vary depending on context and may influence the outcome of a 

study. In our example, the hypothetical reference and target contexts overlap (within the parameter 

space shaded blue) despite being on different continents.  
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DO CURRENT PRACTICES IN QUANTITATIVE SYNTHESIS 

SUPPORT GENERALITY? 

Quantitative syntheses, whether by meta-analysis or full-data analysis (Box 1; Table 1), 

generally involve some or all of three steps: i) the estimation of study-level effect sizes and 

an overall mean effect size, ii) estimation of heterogeneity statistics that describe differences 

in study-level effect sizes, and iii) attribution of effect-size heterogeneity to meaningful 

predictors (known as moderators), intended to provide a more nuanced configurative account 

of the overall effect. In syntheses, the estimand of interest is the effect size. Here we review 

these steps to demonstrate how current practices often do not support valid inferences about 

the generalisability and transferability of effect sizes. 

Step 1: Estimating mean effects across a sample of primary studies 

Meta-analyses of primary studies typically synthesise study-level differences between 

categorical treatments (e.g. Hedges’ g and log response ratios LR), or the magnitudes of these 

changes against a continuous predictor (e.g. Pearson’s z), whereas full-data analyses are 

performed with raw, site-level observations using (generalised) linear mixed models. 

Standard statistical procedures are used to estimate a measure of central tendency in effect 

sizes, which correspond to a weighted mean effect (meta-analysis) or a fixed effect estimated 

by the partial pooling of random slopes (full-data analysis). Weighting and shrinkage increase 

the precision of model parameters for meta-analysis and full-data analysis, respectively22,23.  

Implicitly or explicitly, these mean-effect-size estimates are generalised by the researcher 

from the sample of primary studies to some hypothetical population of studies, which is 

rarely defined. In the absence of its characterisation, it is typically implied or assumed that 

the target population is either i) exactly the study sample (in which case generalisation is 

unnecessary), or ii) the whole population from which the study observations have been 

randomly and independently sampled (in which case generalisation is valid). In both cases, it 

is assumed that the target population is implicitly defined by the inclusion and exclusion 

criteria of the study19. The validity of generalisation depends on representativeness (increased 

by unbiased random sampling) and sample size. Often syntheses claim to be ‘global’ (Figure 

S1), implying that inference can be generalised to some global population of studies. Such 

inferences are criticised when study contexts do not comprise a random and representative 

sample of possible contexts across a hypothetically ‘global’ population, due to taxonomic and 
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geographic biases24. Samples are further distorted by language25 and publication26 biases (e.g. 

file-drawer effects27). Moreover, mean estimates can be strongly skewed by outlying 

effects28.  

With at least a qualitative evaluation of possible sources of bias, such syntheses nevertheless 

have value. Indeed, as Rothman et al.29 argue, “It is not representativeness of the study 

subjects that enhances the generalisation, it is knowledge of specific conditions and an 

understanding of mechanism that makes for a proper generalisation.” Accordingly, the main 

issue is failure to characterise the reference or target contexts, even if they are narrow in 

scope (e.g. a limited geographic area or number of taxonomic groups studied). Rather than 

representativeness, a greater cause for concern is the biases introduced through the uncritical 

application of synthesis methods, originally developed for orthogonal medical and social 

studies30,31. For example, in serving to increase the precision of estimated mean effects, the 

weighting and shrinkage imposed by under-parameterised meta-analytic and multi-level 

models can amplify any within-study biases30. This is due to non-random variation in scale 

across studies, yielding precise yet inaccurate effect-size estimates30. Ecological studies 

employ a range of study and analytical designs30,32; variously factoring confounding 

variability in or out. A meta-analyst typically equates the different covariate configurations 

and study designs of primary studies when estimating effect sizes from treatment group 

means, and so introduces differing degrees of omitted variable bias and internal validity 

among the included primary studies.  

Step 2: Estimating heterogeneity 

The mean effects reported by a synthesis cannot be properly interpreted without an analysis 

of heterogeneity, or inconsistency, among effect sizes33. For meta-analysis, the I2 statistic 

represents the percentage of variance between effect sizes that cannot be attributed to 

sampling error34. For full-data analyses, heterogeneity can be assessed using measures of 

random-slope variance36,37. Reviews have found that a large proportion of meta-analyses in 

ecology and evolution do not report heterogeneity statistics35,36, and/or present aggregated 

mean effects that can conceal variability even within relatively homogeneous subgroups40. 

Yet heterogeneity is critical to interpreting mean effects34. For example, consider that a mean 

effect of zero biodiversity change with land use change can be achieved under two 

circumstances: i) effect sizes are all zero (homogenous; low between-study variance), or ii) 

effect sizes are very different but centred on zero (heterogeneous; high between study 

variance), with high heterogeneity signalling a need to explore the nature or drivers of the 
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variation. It is important to present the range and variability of effect sizes alongside main 

effect interpretation, using e,g., orchard plots37 (e.g. as in refs 38,39), and density plots (as in 

refs 40, 41). 

Ecological syntheses that estimate between-study variability often report very high 

heterogeneity (I2 values ~90%)42, and random slope variances43. Average effect sizes with 

high heterogeneity have questionable meaning. While meta-analysis of a set of similar 

experiments on a single species has a clear interpretation, interpreting a meta-effect across 

species and biogeographic contexts may be questionable44. Even Glass, an early proponent of 

meta‐analysis45, suggested that while meta-analysis is able to provide a “big fact”, it cannot 

give more “sophisticated answers; they aren't there” 46. The key point here is that while 

average effects are often assumed to yield generalities, averages of highly heterogenous 

effect sizes are neither generalisable nor transferable by themselves. 

Step 3: Attributing variation to meaningful predictors 

The next, and arguably the most useful, step is to attribute effect-size variation to meaningful 

predictors, and reach beyond the scope of individual studies to evaluate what Cooper47 called 

"review-generated evidence". In meta-analysis, this is achieved by subgroup analyses that 

estimate and compare mean effects across meaningful groupings of studies, and the meta-

regression of effect sizes against ‘effect modifiers’, or ‘moderators’. In full-data analyses, 

attribution is either done by fitting more complex models that contain interaction terms 

between study-level or site-level covariates (e.g. that comprise an environmental gradient), or 

post-hoc, through regressions of random slopes on effect modifiers48.  

Attribution attempts to make inferences about the degree of transferability of an effect size, 

with moderators specifying the conditions to which effects can be transferred. No single 

reference study or sample of studies will transfer perfectly to another target context, due to 

inherent contextual and study-design differences. Attribution should force us to define the 

populations to which we wish to transfer our effect sizes (subgroups of studies, levels of 

predictors in a meta-regression). Target contexts are typically coarsely parameterised, 

however, and researchers usually estimate overall effects across broad and heterogeneous 

subgroupings. Obviously, subgrouping and model complexity are limited by sample size, and 

data availability/reporting by primary studies49. Attribution is prone to bias and spurious 

effect modification when there is covariation amongst study-design attributes (e.g. 

replication), random effects and effect modifiers30. Because the effect modifiers that 
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implicitly represent target contexts are often poorly characterised or heterogeneous, this 

limits the transferability of meta-estimates to any single setting11. 

PATHWAYS TO GENERALITY WITH ECOLOGICAL 

SYNTHESIS 

We have demonstrated that ecology currently lacks frameworks with which to generalise or 

transfer estimands from quantitative syntheses. Generalisation is rarely achievable given that 

samples are typically non-random and heterogeneous in ecology50. In this section, we propose 

three actions that can be taken immediately by ecologists to facilitate greater nuance in 

communicating the transferability of the estimands. We then detail four urgent research 

agendas required to improve the validity of estimand transfers.   

THREE ACTIONS FOR COMMUNICATING THE TRANSFERABILITY OF ESTIMANDS  

Define the estimands and target contexts in a ‘Constraints on Generality’ statement 

Psychology researchers have called for journals to require ‘Constraints on Generality’ (CoG) 

statements in the discussion sections of empirical articles, encouraging authors to draw 

conservative inferences, rather than make broad generalisations about undefined or ill-

defined target contexts. CoG statements describe and justify target contexts, and specify 

assumptions the authors consider necessary for the estimand to validly transfer to other 

contexts51,52. They discourage exaggerated generality claims. CoG statements function to help 

both researchers and readers transfer estimands to specific target contexts. We provide an 

example in Box 2.  

A CoG statement can explicitly define the estimand to be transferred, the target context, and 

any boundary conditions to which findings can be confidently applied, distinguishing 

between so-called ‘known’ and ‘speculative’ inferences51. Context parameterization might be 

quantitative (e.g. stating climatic, edaphic and topographic ranges), or qualitative (e.g. insects 

in coniferous forests of central Japan, but not all animals over the globe). Variables include 

those that might alter the importance of a mechanism through which a causal effect 

operates53. Context parametrisation permits both researchers and readers to implement what 

social scientists term the ‘proximal similarity model’ sensu Campbell 198654. This model 

involves conceptualisation of potential target contexts as a gradient of similarity, from most 

closely similar to least similar. Proximal similarity supports transferability to those 



10 

populations that are spatially, temporally, and taxonomically most alike (i.e., most proximally 

similar to) those in the focal study13. 

Researchers could make statements about the predicted estimand in a specific target context, 

e.g. the magnitude and sign of an effect on a specified outcome, and how estimands might 

change along a given gradient under specified conditions, and state whether the target 

gradient extends beyond the range of the reference population’s parameter space. Researchers 

could articulate assumptions underlying the predictions (e.g. what conditions must hold, such 

as site historical factors), as well as potential ecological and/or societal impacts of an 

assumption being violated.  

We see an opportunity for reviewers to be involved in improving CoG statements. If the onus 

is only on authors to specify generality, these statements risk being arbitrarily subjective, and 

marginalised to a perfunctory ‘limitations’ section. Reviewers could serve two roles in this 

regard. First, at the stage of submitting their evaluation, reviewers could be asked a short-

response question about what they perceive the generalisability and transferability of the 

empirical findings to be. If the statements of the authors and reviewers diverge notably, this 

would indicate to the editor a lack of clarity in the manuscript about generality or necessary 

context. For journals that provide peer-review reports alongside published papers, the 

reviewers’ perceptions of generality could provide additional insights to readers. Second, 

reviewers can serve a role, again through a short-response question, in discouraging authors 

from exaggerating generality, especially in the title and abstract.  

Move beyond static representations of ecological relationships 

Researchers could work harder to meaningfully communicate contingency, uncertainty and 

transferability of estimands to different audiences, including researchers and practitioners. In 

both primary and synthetic studies, the usual current practice is to display outputs of analyses 

as two-dimensional (2D) static plots, typically holding other covariates at their mean values55. 

Given the conditional character of ecological relationships, estimated using nonlinear link 

functions and linear models with interaction terms, such 2D plots are often ineffective at 

displaying the range and variability of estimands56. Possible alternatives include interactive 

graphics that enable readers to explore underlying data points from full-data syntheses, and 

the prediction of marginal effects for user-specified covariate values (e.g. ref 57). For 

example, McCabe et al.58 produced an interactive web application to help psychology 

researchers visualise interaction effects, and communicate the statistical integrity of analyses 

https://journals.sagepub.com/doi/pdf/10.1177/2515245917746792


11 

(https://connorjmccabe.shinyapps.io/interactive/). For meta-analysis, ‘dynamic meta-analysis’ 

software has been developed, whereby effect sizes can be filtered and weighted, and results 

can be recalculated, using subgroup analysis, meta-regression, and recalibration59, which 

could be extended to alternate weighting schemes that incorporate generality criteria31,60. 

EviAtlas is an example of open source software for producing interactive visualisations of 

systematic map databases61. These applications could be embedded within online 

publications, which increasingly support interactive graphics and code62,63.  

Quantify the ‘transfer domain’ for full-data syntheses 

In addition to quantitative context parameterisation (Action 1), researchers could identify the 

‘transfer domain’ that delineates the parameter space to which effect sizes can be validly 

transferred (given CoG statements and assumptions), also known as the ‘applicability 

domain’, in predictive modelling across disciplines including chemistry64, material science65, 

and environmental science66. For full-data syntheses of large datasets, cross-validation 

techniques could be used, wherein model parameters are estimated using 90% of the primary 

studies (training set), and model predictive performance evaluated using the remaining 10% 

(test set). After repeating on different combinations of primary studies in training and test 

sets, studies for which effect sizes are not predicted well would be considered outside of the 

transfer domain. To identify the boundary conditions, one could identify the characteristics of 

studies that are unpredictable. Employing cross validation for meta-analysis will change the 

focus from the most precise estimate and its statistical significance, to how well estimands 

transfer to different contexts. 

FOUR AGENDAS FOR DEVELOPING A SCIENCE OF GENERALITY APPLICABLE TO 

SYNTHESIS 

Here we propose four research agendas to guide the development of both quantitative and 

qualitative assumptions that underpin the generalisability and transferability of estimands for 

scientists and policymakers. We identify six key steps (Figure 2) which could help to 

formalise the assumptions that underpin transfer of estimands to specific contexts in 

ecology67.  

 

 

Figure 2. Six steps to transfer an estimand to a target context 

https://connorjmccabe.shinyapps.io/interactive/
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Develop qualitative and quantitative criteria with which to evaluate transferability of an 

estimand (for scientists) 

After specifying an estimand for a target context of interest (Figure 2, steps 1 and 2), 

researchers could develop qualitative criteria or quantitative indicators with which to appraise 

the transferability, or assumptions that (if met) justify the transfer of an estimand of interest 

(step 3). These criteria can be used to enhance CoG statements (Action 1) and guide the 

appraisal of primary studies that are used in quantitative syntheses. Criteria could comprise 

descriptors of dissimilarity between the reference and target contexts (their covariate 

distributions), study-design attributes (e.g. replication, spatial interspersion), analytical design 

attributes (e.g. model complexity, statistical matching), modelling choice (e.g. machine 

learning), and the mechanistic nature of the causal relationships. Ideally, these criteria and 

assumptions would be identified at the beginning of a study, to guide its design, rather than at 

the end68. While high-level categories of appraisal criteria are likely to be useful to guide the 

analysis and interpretation of primary and synthetic studies, exact criteria will be specific to 

the ecological question and estimand of interest.  

Health disciplines have developed objective criteria with which to judge the external validity 

of primary studies for a defined target context, e.g.69–71. For example, the Population-

Intervention-Environment-Transfer Model of Transferability helps different audiences to 

judge the transferability of a health intervention, according to characteristics of the studied 

Population (socio-demographic, attitudinal), Intervention (internal validity of study), 

Environment (public perception, climate) and Transfer (feasibility of intervention)70. These 

have been recently extended to syntheses68,72. For example, the TRANSFER approach68 

supports collaboration between researchers and stakeholders during the review process to 

systematically and transparently consider factors that may influence the transferability of 

medical systematic review findings. To support the identification of important contextual 

variables with which to define reference and target contexts and evaluate the validity of 

potential transfers, the use of ‘selection diagrams’ can help identify important conditioning 

variables and study design attributes that might influence the transferability of causal effects. 

Pearl and Bareinboim67,73 proposed the use of these graphical representations of causal 

relationships, which formally articulate commonalities and differences in the form of 

unobserved factors capable of causing differences in causal effects between reference and 

target contexts. This approach is a useful tool for identifying important conditioning 
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covariates and detailing the assumptions and tests that are required to develop qualitative 

indicators and tests of transferability (example in Box 3). 

Develop quantitative methods to transfer estimands (for scientists) 

Ecologists could develop methods to transfer estimands to different target contexts, once the 

reference and target contexts have been parameterized. Degtiar et al. (2021)74 reviewed the 

numerous quantitative approaches that have been developed in primarily health-related 

disciplines to: i) evaluate the validity of transferring an estimand to a specified target context, 

based on a set of assumptions (Figure 2, step 3) and the quantitative dissimilarity of the study 

and target contexts (step 4), and ii) ‘external validity bias adjustment’ methods to adjust an 

estimand for a target context  (step 5). For example, Pearl and Bareinboim formalised a range 

of ‘transport formulae’ associated with selection diagrams that enable the re-calibration of 

average population-level effect sizes for a well-defined target context, e.g. through re-

weighting observations in the reference population in proportion to distributions of 

conditioning covariates in the target context18,75 (example in Box 2). The choice of method 

for estimand adjustment may be restricted by data availability (e.g., summary-level vs. 

individual-level data) and mechanistic understanding of the target system. 

Validation of quantitative transfers (step 6), and of the methods developed to enable transfer, 

will only be possible with independent studies and data using cross validation (Action 3), 

although they are often unavailable or insufficient for a target context. Transfer methods and 

understanding need development as a discipline. In the meanwhile, data gaps might be filled 

by making use of continental-scale, fine-resolution data from environmental monitoring 

programmes that span multiple environmental contexts, such as The National Science 

Foundation's National Ecological Observatory Network (NEON, 

https://www.neonscience.org), and national forest inventories. In the absence of validation 

data for a target contexts, transferability could be estimated by contrasting predictions with 

existing expert knowledge, simulations, or by performing controlled, distributed 

experiments8.  

Conduct interdisciplinary research that seeks to understand how multiple stakeholders 

perceive generalisability and transferability (for scientists and practitioners) 

Scientists need to communicate the transferability, contingency and uncertainty of ecological 

effects in a meaningful and practicable way. This requires an understanding of how 

perceptions of transferability and uncertainty are formed by different audiences, including 

https://www.neonscience.org/
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scientists, practitioners and policymakers76,77. Interdisciplinary research is required to 

understand how different attributes affect the perceived transferability of ecological effects 

(using e.g., surveys, workshops). These might include i) audience attributes (e.g., sector, 

experience), ii) study context (biogeography, climatic conditions), iii) study design attributes 

(e.g., design, scale, replication), and iv) presentation attributes (e.g., graphical presentation of 

results). Next, we can use this understanding to determine how uncertainty and contingencies 

are unambiguously communicated, by trialling different methods of translation, and for 

improving CoG statements. 

Conduct adaptive research that feeds into syntheses (for scientists and science funders) 

Research funding is usually based on competition between individual proposals, with an 

emphasis on novelty. Distributed experiments have become popular in many disciplines78 as 

an approach that aims at generality by repeating an experimental design in multiple locations 

(e.g. Nutrient Network [NutNet]8, Marine Global Earth Observatory [MarineGEO]79, and 

ManyLabs in psychology80). In practice, such distributed experiments are poorly resourced, 

depending for setup and maintenance on freely-offered endeavours of dedicated researchers. 

Large-scale, multinational and long-term funding to institutions for collaboration could 

transform this approach, to sample across the range of contextual variables, as orthogonally 

as possible. Importantly, the results could inform extensions to these studies, or a new set of 

studies, in accordance with the concept of ‘adaptive experimentation’81. This would lead to 

syntheses that inform transferable research designs in an iterative manner, rather than 

‘making do’ with what has gone before. This idea replaces the current paradigm of 

individual-level competitiveness and novelty with institutional-level collaboration and scope 

for generality, and it provides a framework for individual scientists to develop their talents in 

collaborative teams. 
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Box 1.  Current practices in quantitative synthesis  

Two approaches to quantitative synthesis are widely used: (a) the meta-analysis of study-level summary 

statistics (hereafter ‘meta-analysis’), which requires treatment-level means, standard deviations and sample 

sizes; (b) full-data analyses that fit multilevel (generalised) linear mixed models to raw, site-level 

observations, hereafter ‘full-data analysis’ (Table 1). In health disciplines, full-data analyses are known as 

‘individual patient data meta-analysis’, and are considered the ‘gold standard’82, due to their potential for 

resolving issues regarding study-specific designs and confounding variation. The use of full-data analyses 

has also surged in ecology, aided by open-science policies that encourage or mandate the publication of 

raw data alongside articles, and initiatives that collate raw data (e.g., PREDICTS83, BioTime84, 

COMPADRE/COMADRE85,86). While definitions vary within and between disciplines, e.g. meta-analysis 

may be considered a special case of multilevel modeling87, we use the term ‘synthesis’ to encompass both 

meta-analysis and full-data analysis, as defined in Table A. 

 Table A. Two approaches to the synthesis of primary studies that have measured responses of some 

ecological variable Y, such as biodiversity or carbon storage, to variable X, and effect modification by 

variable Z. 

 Meta-analysis Full-data analysis 

Input data Study-level summary statistics (mean, standard 
deviation, n) compiled across multiple studies. 
Primary studies may have measured outcomes in 
different units. 

Study-level raw data compiled across multiple studies. 
Unit of measurement must be consistent across 
studies. 

Study-level 
effect sizes 

study-level differences between categorical 
treatments (e.g. Hedges’ g or log response ratios), 
or the magnitudes of these changes against a 
continuous predictor (e.g. correlations). 

Study-level random slopes on the scale of the linear 
predictor 

Statistical 
procedure  

Precision-weighting, generally using the inverse of 
the sum of study-level and between-study 
variance. 

Partial pooling, wherein group (study) estimates are 
‘shrunk’ toward the population mean as a function of 
the relative variance of each estimate. 

Estimate of 
overall mean 
effects 

Meta-estimate of mean effect (ΔY; top left in figure) Fixed-effect estimate (top right in figure) 

Estimate of 
between-study 
heterogeneity 

Heterogeneity statistics e.g. I2. Benchmarks of I2 of 
25%, 50%, and 75% are interpreted as small, 
medium, and high, respectively. 

Concurrent interpretation of three parameters: the 
variance of i) random slopes ii) random intercepts, 
and iii) the covariance of intercepts and slopes.  

Attribution  Comparison of subgroup mean effects, or meta-
regression of effect sizes on meaningful  ‘effect 
modifiers’ or ‘moderators’ (Z; bottom left in figure). 
 

The analyst may fit an interaction term between the X 
and Z, and interrogate the marginal effects. 
Sometimes analysts perform post-hoc analyses of 
random slopes, e.g. regression on ‘effect modifiers’ 
or ‘moderators’, (Z; bottom right in figure). 
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Box 2. Example ‘Constraints on Generality’ statement for synthesis of 
plantation thinning effects on broadleaved sapling abundance 

Summary of study: Spake et al. (2019)88 synthesised the effects of stand-level forest 
management interventions on biodiversity in Japan. Here we present effect sizes representing 
the effect of plantation thinning on broadleaved tree regeneration, for plantations dominated 
by either Cryptomeria japonica (sugi) or Chamaecyparis obtusa (hinoki) distributed across 
Japan. For each comparison, a log response ratio was estimated to represent the 
proportionate difference in broadleaved sapling/seedling abundance between replicates of 
thinned and unthinned stands. Effect sizes were meta-regressed on thinning intensity, 
measured as the percent of stand volume removed. A positive effect of stand thinning on 
biodiversity increased with thinning intensity (below, left). Further details are available in 
Appendix S2. 

 

 

 

 

 

Left: Effect sizes representing the effects of plantation thinning on abundance of saplings and seedlings 
depend on thinning intensity, showing grey‐shaded 95% CI in the regression based on between‐study 
and within-study uncertainty; values above horizontal dotted line signify higher abundance in thinned 
than unthinned stands. Point colour and shape combinations correspond to study identifiers, while point 
size is proportional to estimated weights. Middle: Spatial distribution of study sites in Japan. Right: 
Distribution of studies in parameter space according to mean annual rainfall and elevation. Coloured 
study locations are overlain on parameter space occupied by plots dominated by sugi or hinoki 
surveyed in a national forest inventory89 (grey shading corresponds to plot density; see Appendix S2 for 
details).  

Constraints on Generality: Reductions in sugi and hinoki stand volumes by greater than 
30% are likely to increase sapling and seedling abundances in young, even-aged plantations 
between 20 and 41 years old, located across warm-temperate Japan (above figure, middle & 
right).  For these closed-canopy forests, the positive effect of thinning on sapling abundance 
should increase with thinning intensity, up to 60%. Further studies are required to establish 
whether positive effects remain or indeed become stronger after 60%, because planted trees 
might have indirect effects on broadleaved regeneration: clear-cutting (100% reductions) can 
lead to dominance of herbs and/or shrubs, which inhibit the regeneration of broadleaved tree 
species90. In the studies collated, stands had been surveyed between two and seven years 
after line or selective thinning. Positive effects may not be evident after longer periods, as 
recruitment to older age classes may not persist following rapid canopy closure, and repeated 
thinning may be required to ensure the survival of regenerated seedlings.  

Positive effects of thinning on broadleaved tree regeneration should hold for plantations with 
intact broadleaved seed banks, which are major sources of seedlings recruited after 
disturbance in conifer plantations91, and for sites located in highly-forested landscapes. We 
caution against transferring the positive effect of thinning to landscapes with little forest cover, 
because recruitment has been shown to decline with distance to forest91, with seeds of more 
than 60% of tree species in warm-temperate forests of Japan dispersed by forest-dwelling 
birds92. We speculate that these positive effects will extend to closed-canopy plantations in 
other temperate regions where light availability is the most limiting resource for understory 
plants, but caution that the positive effect of thinning will likely not extend to older plantations 
with more complex age structures and open canopies, i.e. to stands with forest floors that are 
not light-limited, or to stands in regions with high densities of deer (Cervus japonicus) that limit 
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regeneration93, or where thinning is known to enhance single-species dominance or invasive 
species establishment (e.g., giant bamboo [Phyllostachys sp.] in warm-temperate Japan)94 
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Box 3: Selection diagram approach for identifying contextual variables and 
assumptions, and transport formulae to enable transfer of an estimand.  

 

 

 

Selection diagram approach for the effect of forest thinning on understory biodiversity (Adapted from 

Pearl & Bareinboim (2013)75.  

a) Consider the problem of transporting experimental results between two locations. We 

first conduct a randomized experiment in a location (reference context) and estimate the 

causal effect of forest thinning (treatment X) on understory biodiversity (outcome Y) for 

every stand age group (Z = z), denoted P(y|do(x),z). We now wish to transport the results 

to forests in another location (target context), but we find the distribution P(xyz) to be 

different from the one in target context (call the latter P*(xyz)). In particular, the average 

age of the trees is significantly lower than that in the reference context. How do we 

estimate the causal effect of X on Y in the target context, denoted R = P*(y|do(x),z)? 

b) The selection diagram conveys the assumption that the only difference between the two 

populations are factors determining age distributions of trees shown as S → Z, while age-

specific effects P(y|do(x),Z=z) are invariant across forest contexts. Dashed arcs (e.g., X⇠ 

⇢Y) represent the presence of latent variables affecting both X and Y.  

  

Under these assumptions, the causal effect in the target context, R, can be estimated using 

a transport formula as follows:        

R = ∑ 𝑃∗(𝑦|𝑑𝑜(𝑥), 𝑧)𝑍 𝑃∗(𝑧)       

   

    = ∑ 𝑃(𝑦|𝑑𝑜(𝑥), 𝑧)𝑍 𝑃∗(𝑧)       

   

It combines experimental results obtained in the reference context, P(y|do(x),z); with 

observational aspects of target context P*z, to obtain an experimental claim P*(y|do(x), 

about the target context. By formalising this graphically and formulaically, we are forced to 

define what we must assume about other confounding variables beside stand age, both 

latent and observed, for our formulae to have validity. 
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Box 4. Glossary of terms 

Accuracy / bias: the distance of an estimate from the value it is estimating, with a large distance 
signifying low accuracy / high bias. 

Boundary conditions: the regions of the parameter space that describe a context, within which an 
inference is valid.  

Causal inference: an evidence-based conclusion about the causal, driving effect of a particular 
phenomenon.  

Effect modification: an effect magnitude and/or direction that varies with the values of another 
effect, and vice versa. 

Estimand: the target of estimation, characterised by: a response variable of interest (e.g. species 
richness), an independent variable of interest (e.g. forest logging), a summary measure (e.g., the 
standardised mean difference in species richness between the populations of logged and unlogged 

stands: [μ1 – μ2]/σ), the target population or unit of interest (e.g., planted forest stands within a 

national park).. 

External validity: Here referred to as ‘generality’. The capacity for a sample estimand to apply to a 
specified target population. Two types are distinguished: generalisability and transferability. 

Generalisability: concerns the validity of extending an inference about an estimand from the 
sample to the population from which it is drawn. Generalisability could be defined as the accuracy 
of a sample estimand, in terms of its difference from the true population estimand.  

Internal validity:. The degree to which observed covariation between a dependent and an 
independent variable can be interpreted as a causal effect.  

Precision: the distribution of replicate estimates around their mean, with a tight distribution 
signifying high precision. In the absence of systematic bias, greater precision leads to higher 
accuracy. 

Primary study: a study that gathers new data on a particular population (distinguished from a 
secondary study, such as a synthesis of primary studies).  

Sampled population: the set of observational units of a distributed variable that define the scope 
of inference of the testable hypotheses. Statistical analyses require random and independent 
sampling from the population of interest, which means that the population needs defining at the 
design stage. The outcome of statistical testing (e.g., detection of a trend) applies to the sampled 
population, not to the sample(s). Thus, confidence intervals around a sample mean describe the 
range of plausible values of the population mean given the sample.   

Shrinkage: a fundamental property of multilevel models, also known as ‘borrowing strength’, 
wherein individual group (e.g., study-level) estimates are shrunk toward the overall population 
mean. Data nuances will determine the relative amount of strength borrowed per study, but in 
general, shrinkage is a function of the relative variance of each estimate, and is greater for groups 
with extreme values and lower replication95. As with weighting in meta-analyses of effect sizes, 
shrinkage functions to reduce the variance of cross-study estimates. 

Transferability: The validity of extending an inference about an estimand to different sampling 
units or a different population of units. Transferability could be measured by the accuracy of a 
predicted estimand for a target population or observation, quantified by the difference between the 
transferred estimand and the ‘true’ estimand. 

Weighting: Considered a hallmark of formal meta-analysis, the precision-weighting of each effect 
size by the inverse of its variance ensures that more precise studies make a larger contribution to 
the meta-estimate. Weighting serves only to increase the precision of the meta-estimate and the 
power of tests, not the accuracy of meta-estimation96. In the presence of bias, it can lead to 
precisely wrong estimates30. 
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Figure legends 

Figure 1.  Generality - which we use synonymously with external validity - comprises the 

generalisability and transferability of estimands drawn from primary and synthetic research. 

Syntheses collate data from primary studies, each of which usually has a well-defined and narrow 

context relative to the context of the synthesis, and these studies are here each represented by a fruit 

of one of several types. Collated, these studies form a reference sample from a hypothetical 

population of studies, which together cover a broader context (here of fruits, either implicitly or 

explicitly defined by the researcher). Generalisability concerns the validity of an inference based on a 

sample that is randomly or non-randomly drawn from the target population (left column). 

Transferability concerns the validity of inferences based on a reference sample, when applied to 

either a different target population or unit (target context). Transfer across space is shown as an 

example, to sites in a different spatial location (middle row), or an individual target site from a different 

population (bottom row), which may also differ in temporal or taxonomic context to the reference 

sample. In both cases, the synthesised samples and the populations may have well-defined or poorly 

defined contexts. Here, the context of the synthesis is represented by the distribution of individual 

studies (fruits) within three measured or unmeasured dimensions of parameter space, e.g. edaphic, 

taxonomic, climatic variables (V) that vary depending on context and may influence the outcome of a 

study. In our example, the hypothetical reference and target contexts overlap (within the parameter 

space shaded blue) despite being on different continents. 

Figure 2. Six steps to transfer an estimand to a target context 

Figure legend in Box 1:  

Two approaches used to synthesise primary studies, represented as different fruits, that have 

measured responses of some ecological variable Y to variable X and effect modification by variable Z. 

See Table 1. 

Figure legend in Box 2:  

Left: Effect sizes representing the effects of plantation thinning on abundance of saplings and 

seedlings depend on thinning intensity, showing grey‐shaded 95% CI in the regression based on 

between‐study and within-study uncertainty; values above horizontal dotted line signify higher 

abundance in thinned than unthinned stands. Point colour and shape combinations correspond to 

study identifiers, while point size is proportional to estimated weights. Middle: Spatial distribution of 

study sites in Japan. Right: Distribution of studies in parameter space according to mean annual 

rainfall and elevation. Coloured study locations are overlain on parameter space occupied by plots 

dominated by sugi or hinoki surveyed in a national forest inventory89 (grey shading corresponds to 

plot density; see Appendix S2 for details).  

Figure legend in Box 3:  
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Selection diagram approach for the effect of forest thinning on understory biodiversity (Adapted from 

Pearl & Bareinboim (2013)75 


